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Abstract

A method is described whereby any desired longitudinal
electron bunch profile may be generated in a storage ring
by tailoring the wake potential. The required wake function
is found by implicitly solving the Haissinski equation
through the usage of a regularization parameter. For two
coveted longitudinal profiles—a lengthened profile and a
triangular profile—the required solutions are obtained and
verified through particle simulations in longitudinal phase
space, as well as through full particle tracking simulations.
Auxiliary variables such as energy spreads/chirps and
transverse phase-space distributions are found to be unaf-
fected by the additional potentials. A possible implementa-
tion means is discussed in the context of using multiple
harmonic cavities.

INTRODUCTION

In applications of relativistic electron bunches, various lon-
gitudinal bunch profiles are desired for various purposes.
In particular, bunch lengthening and resultant particle den-
sity reduction are desired for longer Touschek lifetimes in
electron storage rings. Active or passive high harmonic
cavities are constantly being developed and employed in
order to achieve this goal [1, 2]. Another much-desired
bunch profile is the triangular shape for use as the drive
beam in beam-driven accelerators. This profile allows for
a transformer ratio that is much larger than two, which is
the theoretical limit for Gaussian drive and witness bunch
profiles. Methods such as emittance exchange [3] are being
developed in linac contexts, but there are unfortunate draw-
backs such as relatively poor distributions in transverse
phase space, large energy chirps or spreads, and beam in-
tensity reduction due to masking.

Here we describe a method in which arbitrary bunch
shapes may in principle be obtained in a storage ring
through wake potential tailoring. In the process we show
how the self-consistency equation for a steady-state distri-
bution in longitudinal phase space in a storage ring—the
Haissinski equation—may be solved for the longitudinal
wake function for any given bunch shape. We also briefly
touch upon the possibility of retrieving the machine imped-
ance from a measured bunch distribution.
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INVERSE HASSINSKI PROBLEM

Problem Formulation and Solution

We begin with the equations of motion of an electron in
longitudinal phase space (z, §) in a storage ring subject to
RF and wake potentials in normalized quantities:

dz - s 1
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= Vosinw, sz — f dz'p(z" YW (z—2"), (2)

where s is the abscissa along the accelerator circumfer-
ence, z the spatial deviation from the synchronous particle,
6 = AE /E, the relative energy deviation, 77 the slippage
factor, w, s the RF frequency, V the RF amplitude, p(z)
the line number density, and W (z) the longitudinal wake
function. We assumed zero energy loss per turn for sim-
plicity. Placing Eqgs. 1 and 2 in Hamiltonian context, the
normalized Hamiltonian is
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If the distribution function ¥(z,§) is a function of H,
i.e., Y =1P(H), then it is a stationary solution of the

Vlasov equation. Choosing ¥ ~ exp (— n%) where o5 is
s

the energy spread of the beam, writing p(z) = fjom Ydé,

and differentiating both sides yield the Haissinski equation

in differential form,

no? dinp(2)
dz

Equation 4 is usually solved for p given W. Here, we try
to do the opposite and solve for W given a particular de-
sired or measured p. The proposed method is as follows.
First, we defined the left-hand side as L(p(z)), which is
entirely a function of p(z). Then, we Fourier transform
both sides and use the fact that convolution in physical
space is multiplication in Fourier space. Then we have end
up with an expression for the longitudinal impedance:
L(p()

— (5)

p(w) B
where p(w) is the Fourier transform of p(z), and L(w) is
the Fourier transform of L(z).

This is seemingly straightforward, but there are two
problems with this expression. First, there is no guarantee
that Eq. (5) leads to a physical, causal wake function with
W(z > 0) = 0. Mathematically, this means that the im-
pedance should satisfy the Kramers-Kronig relations

Zy(w) =
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Because Z in Eq. 5 is entirely a function of §(w), Egs. (6)
and (7) are restrictions on the physically possible bunch
shapes. The solution to finding physical bunch shapes is
still under active investigation. Thus, in this work, we will
leave out the problem of bunch shape physicality.

The second problem with Eq. 5 is that high-frequency
noises are amplified. For instance, if we assume that the
bunch distribution is Gaussian, §(w) ~ exp(—w?) and so
Zy ~ p~' ~ exp w?. Therefore, high frequency noises get
amplified. The solution to this problem is motivated from
the Wiener filter [4] and is proposed as follows:
_L(pw)p" (w) ®

(@) +e€
where €, is a regularization parameter that suppresses
high-frequency elements.

Verification via Simulation

In order to verify the validity of Eq. 8, a simple macro-
particle tracking code was developed that solves Egs. 1 and
2 with more realistic effects such as energy loss per turn,
radiation damping, and quantum excitation. Machine pa-
rameters for a 4"-generation storage ring being designed in
South Korea (Korea-4GSR) were used.
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Figure 1: Profile of a Gaussian bunch train in a storage ring
without for a zero wake function (blue). The desired

lengthened bunch distribution (orange). The bars represent
normalized quantities.

Figure 1 shows the desired lengthened bunch train dis-
tribution (orange), compared to the original Gaussian
bunch train (blue). To obtain the impedance, the orange
profile is Fourier transformed to obtain p(w), and then Eq.
8 is used to obtain the require impedance. Figure 2 shows
the obtained impedance. The peaks are harmonics of the
RF frequency. It is emphasized here that the impedance is
unphysical, i.e., that it leads to an acausal wake function,
but in this work the mathematical validity of Eq. 8 itself is
being verified.

The obtained impedance was used in the macro-particle
tracking simulation, and the results at 29,900 turns are
shown in Figure 3. It can be seen that a lengthened bunch
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distribution is indeed obtained (Fig. 3¢), while the energy
distribution is maintained (Fig. 3b). The total potential de-
velops a plateau on which the beam sits on. Thus, the math-
ematical validity of Eq. 8 is confirmed.

Similar verification was done for a triangular bunch train
but are not shown here.

A0

wlw,f

Figure 2: The impedance obtained from Eq. 8 using a
lengthened bunch profile. The peaks are harmonics of the
RF frequency.
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Figure 3: Results from the longitudinal particle-tracking
simulation showing (a) ¥ (z,§) in arbitrary units (blue
color) and the total potential experienced by the beam V;,,,,
(orange; amplified by a factor of 40 for visibility). (b) The
initial (black), final (blue), and 10,000-turn-averaged en-
ergy distributions. The lines are not discernible because the
profiles are nearly the same. (c) The initial (black), final
(blue), and 10,000-turn-averaged (red) longitudinal bunch
distributions in arbitrary units. (d) Time evolution of g,
(purple) and o5 (green).

IMPEDANCE RETRIEVAL

Another way Eq. 8 can be used is in retrieval of the ma-
chine impedance through bunch distribution measure-
ments. In other words, if we know the stationary bunch
profile p(z), we can use Eq. 8 to retrieve the impedance
that led to that bunch profile. While traditional methods to
measure the machine impedance relies on measuring the
impedances of different components and then adding them
together, this method may provide a simpler alternative.

To check the validity of this method, the macro-particle
simulation was conducted under a broad-band resonator
impedance of the form
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Figure 4: The equilibrium bunch profile without a wake
field (blue) and the equilibrium distorted bunch profile un-
der the impedance given by Eq. 9.
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Figure 5: The left panel shows imposed impedance. The
right panel shows the retrieved impedance by Fourier
transforming the orange profile in Fig. 4 and inserting it
into Eq. 8.

Fourier transforming the distorted bunch profile and in-
serting it into Eq. 8 yields the retrieved impedance, as
shown in the right panel of Fig. 5. Comparing it to the im-
posed impedance shown in the left panel, the real part is
accurately retrieved, but there is a mismatch of the imagi-
nary part.

To see why there is a mismatch, an inverse Fourier trans-
form is done on the retrieved impedance to obtain the re-
trieved wake function, as shown in Fig. 6. It can be seen
that some discrepancies exist. In particular, the sharp drop
at the origin in the imposed wake function is not retrieved,
and this leads to a shift in the wake function. Nevertheless,
the overall order and the shape is relatively well retrieved.

TUXD: MCO05.2 - Beam Dynamics and Electromagnetic Fields (Invited)

ISSN: 2673-5490

JACoW Publishing
doi: 10.18429/JACoW-IPAC2023-TUXD1

where R; is the shunt impedance, @ the quality factor, and
w, the resonant frequency. The parameters were chosen so
that the equilibrium distribution changes to the orange line
in Fig. 4.
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Figure 6: The imposed wake function (green) and the re-
trieved wake function (red)

CONCLUSION

A method to obtain the impedance given a desired or a
measured bunch profile was presented. The Haissinski
equation can be solved in an inverse manner, yielding an
impedance that is entirely a function of the bunch shape.
The method was verified through macro-particle simula-
tions. Several outstanding problems were discussed and
will be subject to future investigations.
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