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Abstract 
 A method is described whereby any desired longitudinal 
electron bunch profile may be generated in a storage ring 
by tailoring the wake potential. The required wake function 
is found by implicitly solving the Haïssinski equation 
through the usage of a regularization parameter. For two 
coveted longitudinal profiles—a lengthened profile and a 
triangular profile—the required solutions are obtained and 
verified through particle simulations in longitudinal phase 
space, as well as through full particle tracking simulations. 
Auxiliary variables such as energy spreads/chirps and 
transverse phase-space distributions are found to be unaf-
fected by the additional potentials. A possible implementa-
tion means is discussed in the context of using multiple 
harmonic cavities. 

INTRODUCTION 
In applications of relativistic electron bunches, various lon-
gitudinal bunch profiles are desired for various purposes. 
In particular, bunch lengthening and resultant particle den-
sity reduction are desired for longer Touschek lifetimes in 
electron storage rings. Active or passive high harmonic 
cavities are constantly being developed and employed in 
order to achieve this goal [1, 2]. Another much-desired 
bunch profile is the triangular shape for use as the drive 
beam in beam-driven accelerators. This profile allows for 
a transformer ratio that is much larger than two, which is 
the theoretical limit for Gaussian drive and witness bunch 
profiles. Methods such as emittance exchange [3] are being 
developed in linac contexts, but there are unfortunate draw-
backs such as relatively poor distributions in transverse 
phase space, large energy chirps or spreads, and beam in-
tensity reduction due to masking. 
 Here we describe a method in which arbitrary bunch 
shapes may in principle be obtained in a storage ring 
through wake potential tailoring. In the process we show 
how the self-consistency equation for a steady-state distri-
bution in longitudinal phase space in a storage ring—the 
Haïssinski equation—may be solved for the longitudinal 
wake function for any given bunch shape. We also briefly 
touch upon the possibility of retrieving the machine imped-
ance from a measured bunch distribution. 

INVERSE HASSINSKI PROBLEM 
Problem Formulation and Solution 
We begin with the equations of motion of an electron in 
longitudinal phase space (𝑧𝑧, 𝛿𝛿) in a storage ring subject to 
RF and wake potentials in normalized quantities: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝜂𝜂𝜂𝜂, (1) 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑉𝑉0 sin𝜔𝜔𝑟𝑟𝑟𝑟𝑧𝑧 − � 𝑑𝑑𝑧𝑧′𝜌𝜌(𝑧𝑧′)𝑊𝑊(𝑧𝑧 − 𝑧𝑧′)
∞

−∞
, (2) 

where 𝑠𝑠  is the abscissa along the accelerator circumfer-
ence, 𝑧𝑧 the spatial deviation from the synchronous particle, 
𝛿𝛿 = Δ𝐸𝐸/𝐸𝐸0  the relative energy deviation, 𝜂𝜂  the slippage 
factor, 𝜔𝜔𝑟𝑟𝑟𝑟  the RF frequency, 𝑉𝑉0  the RF amplitude, 𝜌𝜌(𝑧𝑧) 
the line number density, and 𝑊𝑊(𝑧𝑧) the longitudinal wake 
function. We assumed zero energy loss per turn for sim-
plicity. Placing Eqs. 1 and 2 in Hamiltonian context, the 
normalized Hamiltonian is 

𝐻𝐻 =
1
2
𝜂𝜂𝛿𝛿2 +

2𝑉𝑉0
𝜔𝜔𝑟𝑟𝑟𝑟
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𝜔𝜔𝑟𝑟𝑟𝑟𝑧𝑧

2

−� 𝑑𝑑𝑧𝑧′′ � 𝑑𝑑𝑧𝑧′𝜌𝜌(𝑧𝑧′)𝑊𝑊(𝑧𝑧′′ − 𝑧𝑧′)
∞
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𝑧𝑧

0
 

If the distribution function 𝜓𝜓(𝑧𝑧, 𝛿𝛿)  is a function of 𝐻𝐻 , 
i.e., 𝜓𝜓 = 𝜓𝜓(𝐻𝐻) , then it is a stationary solution of the
Vlasov equation. Choosing 𝜓𝜓 ∼ exp �− 𝐻𝐻

𝜂𝜂𝜎𝜎𝛿𝛿
�  where 𝜎𝜎𝛿𝛿   is 

the energy spread of the beam, writing 𝜌𝜌(𝑧𝑧) = ∫ 𝜓𝜓𝜓𝜓𝜓𝜓∞
−∞ , 

and differentiating both sides yield the Haïssinski equation 
in differential form, 

𝜂𝜂𝜎𝜎𝛿𝛿2
𝑑𝑑 𝑙𝑙𝑙𝑙 𝜌𝜌(𝑧𝑧)

𝑑𝑑𝑑𝑑
+ 𝑉𝑉0 𝑠𝑠𝑠𝑠𝑠𝑠 𝜔𝜔𝑟𝑟𝑟𝑟𝑧𝑧 = � 𝑑𝑑𝑧𝑧′𝜌𝜌(𝑧𝑧′)𝑊𝑊(𝑧𝑧′′ − 𝑧𝑧′)

∞

−∞
. (4) 

Equation 4 is usually solved for 𝜌𝜌 given 𝑊𝑊. Here, we try 
to do the opposite and solve for 𝑊𝑊 given a particular de-
sired or measured 𝜌𝜌. The proposed method is as follows. 
First, we defined the left-hand side as 𝐿𝐿�𝜌𝜌(𝑧𝑧)�, which is 
entirely a function of 𝜌𝜌(𝑧𝑧) . Then, we Fourier transform 
both sides and use the fact that convolution in physical 
space is multiplication in Fourier space. Then we have end 
up with an expression for the longitudinal impedance: 

𝑍𝑍∥(𝜔𝜔) =
𝐿𝐿��𝜌𝜌�(𝜔𝜔)�
𝜌𝜌�(𝜔𝜔) , (5) 

where 𝜌𝜌�(𝜔𝜔) is the Fourier transform of 𝜌𝜌(𝑧𝑧), and 𝐿𝐿�(𝜔𝜔) is 
the Fourier transform of 𝐿𝐿(𝑧𝑧). 
 This is seemingly straightforward, but there are two 
problems with this expression. First, there is no guarantee 
that Eq. (5) leads to a physical, causal wake function with 
𝑊𝑊(𝑧𝑧 > 0) = 0 . Mathematically, this means that the im-
pedance should satisfy the Kramers-Kronig relations †email address: youngdae.yoon@apctp.org 
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ℜ𝑍𝑍∥(𝜔𝜔) =
1
𝜋𝜋
𝑃𝑃.𝑉𝑉.  � 𝑑𝑑𝜔𝜔′ ℑ𝑍𝑍∥(𝜔𝜔

′)
𝜔𝜔′ − 𝜔𝜔

∞

−∞
, (6) 

ℑ𝑍𝑍∥(𝜔𝜔) = −
1
𝜋𝜋
𝑃𝑃.𝑉𝑉.  � 𝑑𝑑𝜔𝜔′ ℜ𝑍𝑍∥(𝜔𝜔

′)
𝜔𝜔′ − 𝜔𝜔

∞

−∞
. (7) 

Because 𝑍𝑍∥ in Eq. 5 is entirely a function of 𝜌𝜌�(𝜔𝜔), Eqs. (6) 
and (7) are restrictions on the physically possible bunch 
shapes. The solution to finding physical bunch shapes is 
still under active investigation. Thus, in this work, we will 
leave out the problem of bunch shape physicality. 
 The second problem with Eq. 5 is that high-frequency 
noises are amplified. For instance, if we assume that the 
bunch distribution is Gaussian, 𝜌𝜌�(𝜔𝜔) ∼ exp(−𝜔𝜔2) and so 
𝑍𝑍∥ ∼ 𝜌𝜌�−1 ∼ exp𝜔𝜔2. Therefore, high frequency noises get 
amplified. The solution to this problem is motivated from 
the Wiener filter [4] and is proposed as follows: 

𝑍𝑍∥ =
𝐿𝐿��𝜌𝜌�(𝜔𝜔)�𝜌𝜌�∗(𝜔𝜔)
|𝜌𝜌�(𝜔𝜔)|2 + 𝜖𝜖𝑟𝑟

, (8) 

where 𝜖𝜖𝑟𝑟  is a regularization parameter that suppresses 
high-frequency elements.  
 

Verification via Simulation 
In order to verify the validity of Eq. 8, a simple macro-
particle tracking code was developed that solves Eqs. 1 and 
2 with more realistic effects such as energy loss per turn, 
radiation damping, and quantum excitation. Machine pa-
rameters for a 4th-generation storage ring being designed in 
South Korea (Korea-4GSR) were used.  

 
Figure 1: Profile of a Gaussian bunch train in a storage ring 
without for a zero wake function (blue). The desired 
lengthened bunch distribution (orange). The bars represent 
normalized quantities. 

    Figure 1 shows the desired lengthened bunch train dis-
tribution (orange), compared to the original Gaussian 
bunch train (blue). To obtain the impedance, the orange 
profile is Fourier transformed to obtain 𝜌𝜌�(𝜔𝜔), and then Eq. 
8 is used to obtain the require impedance. Figure 2 shows 
the obtained impedance. The peaks are harmonics of the 
RF frequency. It is emphasized here that the impedance is 
unphysical, i.e., that it leads to an acausal wake function, 
but in this work the mathematical validity of Eq. 8 itself is 
being verified.  
 The obtained impedance was used in the macro-particle 
tracking simulation, and the results at 29,900 turns are 
shown in Figure 3. It can be seen that a lengthened bunch 

distribution is indeed obtained (Fig. 3c), while the energy 
distribution is maintained (Fig. 3b). The total potential de-
velops a plateau on which the beam sits on. Thus, the math-
ematical validity of Eq. 8 is confirmed. 
 Similar verification was done for a triangular bunch train 
but are not shown here.  

 
Figure 2: The impedance obtained from Eq. 8 using a 
lengthened bunch profile. The peaks are harmonics of the 
RF frequency.  

 
Figure 3: Results from the longitudinal particle-tracking 
simulation showing (a) 𝜓𝜓(𝑧𝑧, 𝛿𝛿)  in arbitrary units (blue 
color) and the total potential experienced by the beam 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 
(orange; amplified by a factor of 40 for visibility). (b) The 
initial (black), final (blue), and 10,000-turn-averaged en-
ergy distributions. The lines are not discernible because the 
profiles are nearly the same. (c) The initial (black), final 
(blue), and 10,000-turn-averaged (red) longitudinal bunch 
distributions in arbitrary units. (d) Time evolution of 𝜎𝜎𝑧𝑧 
(purple) and 𝜎𝜎𝛿𝛿  (green).  

IMPEDANCE RETRIEVAL 
Another way Eq. 8 can be used is in retrieval of the ma-
chine impedance through bunch distribution measure-
ments.  In other words, if we know the stationary bunch 
profile 𝜌𝜌(𝑧𝑧),  we can use Eq. 8 to retrieve the impedance 
that led to that bunch profile. While traditional methods to 
measure the machine impedance relies on measuring the 
impedances of different components and then adding them 
together, this method may provide a simpler alternative.  
 To check the validity of this method, the macro-particle 
simulation was conducted under a broad-band resonator 
impedance of the form 
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𝑍𝑍∥(𝜔𝜔) =
𝑅𝑅𝑠𝑠

1 + 𝑖𝑖𝑖𝑖 �𝜔𝜔𝑟𝑟𝜔𝜔 − 𝜔𝜔
𝜔𝜔𝑟𝑟
�

, (9) 
where 𝑅𝑅𝑠𝑠 is the shunt impedance,  𝑄𝑄 the quality factor, and  
𝜔𝜔𝑟𝑟 the resonant frequency.  The parameters were chosen so 
that the equilibrium distribution changes to the orange line 
in Fig. 4.

 

 
Figure 4: The equilibrium bunch profile without a wake 
field (blue) and the equilibrium distorted bunch profile un-
der the impedance given by Eq. 9. 

 
Figure 5: The left panel shows imposed impedance. The 
right panel shows the retrieved impedance by Fourier 
transforming the orange profile in Fig. 4 and inserting it 
into Eq. 8.  

 Fourier transforming the distorted bunch profile and in-
serting it into Eq. 8 yields the retrieved impedance, as 
shown in the right panel of Fig. 5. Comparing it to the im-
posed impedance shown in the left panel, the real part is 
accurately retrieved, but there is a mismatch of the imagi-
nary part. 
 To see why there is a mismatch, an inverse Fourier trans-
form is done on the retrieved impedance to obtain the re-
trieved wake function, as shown in Fig. 6. It can be seen 
that some discrepancies exist. In particular, the sharp drop 
at the origin in the imposed wake function is not retrieved, 
and this leads to a shift in the wake function. Nevertheless, 
the overall order and the shape is relatively well retrieved.  
 

 
Figure 6: The imposed wake function (green) and the re-
trieved wake function (red) 

 

CONCLUSION 
    A method to obtain the impedance given a desired or a 
measured bunch profile was presented. The Haissinski 
equation can be solved in an inverse manner, yielding an 
impedance that is entirely a function of the bunch shape. 
The method was verified through macro-particle simula-
tions. Several outstanding problems were discussed and 
will be subject to future investigations. 
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