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In this paper, we present a cutting-edge approach that combines Graph Neural Networks (GNNs)
with AutoML for reconstructing ground-based cosmic ray (CR) observational data. Our novel
method accurately estimates primary cosmic ray energy and enhances P/gamma identification.
Leveraging Full Monte Carlo simulations, emulating the Tibet ASgamma experiment (Tibet-III +
MD), we achieve compelling results. By harnessing the power of AutoML and GNNS, our inte-
grated approach achieves a remarkable 31% enhancement in energy resolution for reconstructed
cases above 100 TeV, surpassing the performance of S50 reconstruction. Additionally, our method
effectively reduces the cosmic ray background by 30%, while preserving the crucial gamma events.
The outstanding accuracy of our GNN-based energy reconstruction is further amplified through
AutoML, which enables the assimilation of critical information, such as air shower size, secondary
cosmic ray lateral distributions, density distributions on the detector, core position, zenith angle
distributions, and more. Beyond cosmic ray observation, our versatile machine learning approach
holds promise for tackling a wide range of particle physics and astrophysics challenges, making
substantial contributions to these fields and paving the way for exciting future advancements.
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1. Introduction

The Tibet ASgamma experiment, situated at an altitude of 4300 meters in Yangbajing, Tibet,
China, covers an area of 65,700 m?2 [1]. Comprising three sub-arrays, namely, the Tibet air-
shower array (Tibet-1II), air-shower-core detector-grid (YAC-II), and underwater Cherenkov muon
detector array (MD) extending over 3,400 m? [2, 3], this study focuses on the application of Graph
Neural Networks (GNN) and automated machine learning (autoML) trained on simulated data from
Tibet-III and MD array.
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Figure 1: Schematic view of (Tibet-III+MD) array(left) and a MD detector structure(right).

Machine learning (ML) has proven invaluable in particle physics, enabling data collection,
physics object reconstruction, identification, and new physics searches [4]. Traditionally, ML
methods relied on manually extracted high-level features, employing algorithms like decision trees,
support vector machines, and shallow neural networks for regression or classification. However, the
landscape has evolved, with deep neural networks, such as Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs), and Graph Neural Networks (GNNs), capable of leveraging
low-level features directly obtained from detectors [5]. This shift eliminates the need for laborious
manual feature extraction and yields superior results.

Among these advancements, graph neural networks have seen remarkable progress, finding
applications in diverse fields like recommendation systems, medical biology, risk control, and
combination optimization.

Given the abundance of ML methods, selecting suitable techniques and searching for opti-
mal hyperparameters can become time-consuming. In this context, automated machine learning
(autoML) offers a straightforward, robust, and efficient solution, ensuring high fault tolerance.

The Tibet ASgamma experiment’s detector arrangement is hexagonal, resulting in different
internal and external intervals, making it challenging to directly employ matrix representations.
Additionally, the data translation symmetry is not ideal, leading to subpar performance when using
convolutional neural networks. However, graph neural networks excel in handling data in non-
Euclidean spaces. This article proposes utilizing a graph neural network for feature extraction and
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integrating the results with traditionally extracted features. The subsequent event reconstruction
and identification will be accomplished through the application of the autoML approach.

2. Graph Neural Network

Graph Neural Networks (GNNs) are powerful tools for representing complex relationships
found in various datasets, including social networks, maps, knowledge graphs, and more. In
the realm of particle physics, leveraging graphs to represent data offers distinct advantages over
traditional table or matrix structures. These advantages include the ability to handle variable-sized
data without the need to fill vacant positions with zeros and effectively manage sparse, heterogeneous
detector data that may not be easily projected into image representations[6].

Formally, we define a graph G = (u, V, E) with N, vertices and N, edges. Here, u represents
the global graph features, while V = v; constitutes the set of nodes, each denoted by v;, capturing
the features of the i-th node. Correspondingly, E' = e;; forms the set of edges, with e;; representing
the features associated with the edge connecting the i-th and j-th nodes.

In the context of graph neural networks, the computation for the (I + 1)*"
G = (u'!, VI*1 E™1) can be outlined as follows:

iteration of the graph

» Update edge features: eﬁ;fl = ¢e(vf, vi., ef.j), where ¢¢ is a function that aggregates informa-
tion from adjacent nodes via edges.

« Update node features: v''i = p(ef;fl) for all j € N;, where p is a function that processes the
aggregated edge features.

« Update global graph features: u!*! = ¢"(v5', vf., u'), where ¢” is a function that updates node
features and the global graph features.

The choice of functions ¢¢, ¢V, and p allows for various graph neural network structures, enabling
flexibility in capturing different patterns and dependencies within the data. By iteratively applying
these operations, GNNs can effectively learn and represent complex relationships within graph-
structured data, making them well-suited for tasks in particle physics and beyond[6-8].

3. Automated Machine Learning

Automated Machine Learning (AutoML) is a methodology designed to simplify the process
of selecting, configuring, and optimizing machine learning models. Traditional machine learning
requires skilled data scientists or machine learning experts to conduct extensive manual work in
model selection and hyperparameter tuning. However, with the rapid advancement of machine
learning, AutoML has emerged to offer a convenient pathway for non-experts to leverage machine
learning techniques effectively[9].

The primary goal of AutoML is to automate various common machine learning tasks, including
data preprocessing, feature engineering, model selection, hyperparameter optimization, and model
ensemble. By employing AutoML tools and techniques, users can significantly reduce manual
intervention and quickly build high-performing machine learning models. AutoML algorithms
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automatically choose appropriate model types, optimize hyperparameters, and further enhance
model performance through model fusion techniques[10, 11].

Several popular AutoML tools and platforms include Google’s AutoML[12], Microsoft’s Azure
AutoML[13], Auto-Sklearn[14], H20.ai[15], autogluon[16], among others. They provide users
with automated model selection and optimization capabilities, making machine learning more
accessible and user-friendly.

4. Data

The extensive air showers (EAS) development in the atmosphere and the response in the
Tibet hybrid experiment array have been comprehensively studied using full Monte Carlo (MC)
simulation. The widely-used simulation code, CORSIKA [17], is employed to generate both gamma
events and cosmic ray events.

For the gamma events, the primary particle’s energy ranges from 300 GeV to 100 PeV, with a
spectral index of —2.0. In total, 10° gamma events are generated to capture a broad range of energy
levels.

Regarding the cosmic rays, the model spectrum proposed by M. Shibata et al. [18] is adopted to
determine their chemical composition and energy spectrum. The low-energy hadronic interactions
are simulated using FLUKA [19], while the high-energy interactions are modeled using EPOS
LHC [20]. A significant number of 4 x 10° cosmic ray events are generated to ensure robust and
statistically significant results.

Table 1: Parameters used in thet CORSIKA air shower simulation

E
Primary type Spectral ran;:(r”l%g\/) Events
Gamma rays | Power law with index -2 | 0.3 — 10° 10°
Cosmic rays | M. Shibata et al.[18] 03-10° | 4x10°

5. Method

The cut condition employed closely follows the approach used in the Crab study [21], with the
omission of Nmu cut condition and the removal of age cut condition to increase the dataset.The
traditional method refers to the method in ref[21, 22].

not yet

6. Result and Discussion

not yet
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Figure 2: Algorithm flowchart
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Figure 3: Comparison of energy fitting results between traditional method and this work.

Table 2: Comparison of energy resolution between traditional method and this work

Energy about 50 TeV about 100 TeV
sec(theta) 1.0-1.1 | 1.1-1.3 | 1.3-2.0 | 1.0-1.1 | 1.1-1.3 | 1.3-2.0
Traditional method | 0.33 0.47 0.87 0.20 0.31 0.72
This work 0.22 0.30 0.44 0.17 0.23 0.39
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Figure 4: Comparison of arrival directions between traditional method and this work
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