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Abstract

Four and a half decades after the introduction of the information loss problem by Hawking in

1976, it is a current thought that now, in 2020, an aspect of it has been solved. This aspect

relates to the recovery of the initial infalling matter state from the interior of the black hole

through operations performed on the final radiation state. Arriving at the solution involved

integrating key historical and recent works such as Page’s 1993 study of entropies in black

hole evaporation, Ryu-Takayanagi’s 2006 holographic area relation, Faulkner, Lewkowycz and

Maldacena’s and Engelhardt and Wall’s extensions to the area relations in 2013 and 2015 respec-

tively, Penington’s work on entanglement wedges in 2019 and Almheiri, Mahajan, Maldacena

and Zhao’s work on the island conjecture in 2019. This dissertation reviews these selected works.
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1 Introduction

The subject area of the black hole information loss problem is a melting pot of various areas

of physics – from general relativity, statistical mechanics, quantum mechanics to string theory,

quantum information and chaos theory. These areas are integrated with the several layers of

studying black holes – from a far away external perspective to an internal perspective going all

the way to the singularity. These separate individual perspectives produces different descriptions

and thus properties of the black hole. General relativity provides a surface-level description of

the spacetime outside the black hole and does not reveal any fine-grained details. From the

point of view of the infalling observer, such fine-grained details are also not entirely accessible as

there is only a finite amount of information available to them in a finite amount of time before

reaching the singularity. We will see that the tools of quantum gravity and string theory are

required to describe the black hole interior and study its microscopic degrees of freedom.

This dissertation will take a historical route and progress towards providing a resolution to the

information loss problem. Crucially, if black hole evaporation starts in a pure total state, then

the thermodynamic entropy of Hawking radiation has to eventually decrease back to zero at the

end of evaporation. This was missed in Hawking’s original calculation in 1975. We will see this,

mostly qualitatively, using Page’s 1993 and 2013 analysis, and more recently, with significant

work by Almheiri et al. [1, 2] and Penington et al. [3]. The latter research considered semiclas-

sical descriptions of specific gravity theories. In reviewing this, the entropies involved in black

hole evaporation and the role of entanglement wedges in information recovery from the black

hole interior will also be discussed. We will begin by providing a historical overview of black

hole mechancis, thermodynamics and the information loss problem.

Classical black holes were first predicted by Einstein’s equations as its classical solutions, but

physicists at the time did not place much value to its physical realisation. In 1916, Schwarzschild

discovered the first exact spherically symmetric solution to Einstein’s equations in vacuum Rµν =

0, called the Schwarzschild metric

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2, (1.1)

where M is the mass of the star that collapses to form a black hole and dΩ2 = dθ2 + sin2θdφ2

is the metric on the unit two-sphere. Schwarzschild found two singularities associated to his so-

lution. One was a coordinate singularity at the Schwarzschild radius rs = 2M , called the event

horizon, and the other was a curvature singularity at r = 0. Subsequent work by Eddington,

Finkelstein, Kruskal and Szekeres from the 1920s to 1960s shed light on the former singularity.

It was found that by changing the coordinate system from Minkowski to Kruskal, the geometry

1



is smoothly extendable past r = rs, where the metric is well defined and in fact for all r > 0. In

other words, there is nothing special about the event horizon for a freely falling observer, which

is the equivalence principle. In Kruskal coordinates it is also seen that r = 0 is not a position in

space but rather an unavoidable moment of time if one passes the event horizon. A signal that

has passed rs will not be able to escape back out.

In 1971 Hawking’s area theorem was published. He proved that the horizon area of a classical

black hole can never decrease with time [4]. In 1972–1973, Bardeen, Carter and Hawking

raised the analogy between a black hole’s area and thermodynamic entropy. They suggested a

mathematical relation between the laws of black hole mechanics and the laws of thermodynamics

but did not draw any physical conclusions to the relations [5]. Also in 1973, papers by Bekenstein

sparked the study into the meaning of black hole entropy and the mechanism behind the laws

of black hole mechanics [6]. Bardeen, Carter and Hawking took the view that black holes have

zero temperature, do not radiate and thus do not have a physical entropy. This was implied by

the fact that classical black holes obey the no-hair theorem, which states that a classical black

hole is completely characterised by its mass M , angular momentum J and charge Q. By this

theorem, it would seem that solutions for black holes have no connection to thermodynamics.

But Bekenstein conducted the following thought experiment: consider throwing a highly entropic

system into the black hole. If black holes indeed do not radiate, the object would cool to absolute

zero and this would result in a decrease in the total entropy of the external universe not including

the black hole. This violates the second and third law of thermodynamics. In order for the second

law of thermodynamics to hold, the increase in entropy of the black hole SBH has to outweigh

the decrease in entropy of the exterior Sexternal. He called this the generalised second law (GSL);

in any process involving black holes, the generalised entropy Stotal does not increase [7]:

dStotal = dSBH + dSexternal ≥ 0. (1.2)

Bekenstein’s GSL of thermodynamics holds true as if SBH decreases via black hole evaporation,

Sext will increase due to the thermodynamic nature of Hawking radiation in a way such that

Stotal = SBH +Sext does not decrease with time. In this way, the second law of thermodynamics

is not violated. More subtly, we see that to an external observer, black holes must have an

entropy in order to avoid the violation of the second law of thermodynamics, which led to the

GSL. Crucially, the GSL implies the dependence of the increase in the horizon area of the black

hole horizon on the infalling matter’s microscopic degrees of freedom. But this dependence is

not implied by the Einstein’s equations that governs black holes. It was shown in [7] and [8]

that there is a bound which characterises the maximum value of entropy S that a system with

finite energy E and size, characterised by a radius R, can have. This is the Bekenstein bound

S ≤ 2π

~
ER. (1.3)
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In other words, the quantum information of the system is related to its energy and geometry.

Importantly, as pointed out by Bousso in [8], the absence of the constant GN and black hole

parameters A, M , Q, J in the bound relation implies its universality; the bound is associated

with only the system.

1.1 Hawking Radiation

In 1975 Hawking discovered that black holes radiate with a temperature TH = ~c3/8πkBGNM

[9], implying that the temperature of the black hole increases as it evaporates. The geometry of

a black hole comprises an exterior and an interior region. A full quantum state near the black

hole event horizon consists of entangled pairs of particles, which are created and annihilated due

to quantum fluctuations in the vacuum. One particle of the pair falls into the singularity in the

interior while the other particle escapes out to infinity. The latter is termed outgoing Hawking

quanta or modes and constitute the outgoing Hawking radiation. In Hawking’s 1976 paper the

information loss problem was introduced [10]. In quantum mechanics, an isolated system evolves

unitarily and information is conserved. Hawking’s calculation revealed that radiation emitted

from a black hole does not depend on the initial state of photons; different initial states can

lead to the same final state. A black hole formed from the collapse of a pure state of matter

ends up emitting radiation of mixed states that are entangled both with previously infalling

matter states and with earlier radiation states, which gives the final mixed radiation state a

high entanglement entropy (see section 2.2). As the black hole evaporates, its area decreases

until it reaches zero, i.e. it completely evaporates into outgoing quanta such as photons and

gravitons, which constitutes the outgoing Hawking radiation. This evaporation of pure infalling

matter into mixed outgoing radiation implies the violation of unitarity in quantum mechanics

and loss of information. We have that in the process of formation and evaporation of a black

hole, ingoing quanta are deemed lost and unretrievable.

Bekenstein proved that the black hole entropy associated to TH is proportional to the area of

the horizon and Hawking later proved the proportionality constant by using QFT in curved

spacetime. The Bekenstein-Hawking entropy was understood to measure the information inside

the black hole according to information theory. We will now see the analogies between the laws

of black hole mechanics and the laws of thermodynamics by re-expressing Einstein’s equations

in an indicative way.

1.2 The Laws of Thermodynamics and Black Hole Mechanics

The first law of black hole mechanics states that if an object is slowly added to a stationary

black hole with event (Killing) horizon area A, mass M , charge Q, angular momentum J , surface
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gravity of the horizon κ, electric surface potential ΦH and angular velocity ΩH , its mass, charge

and angular momentum will change in response to the change in its area as

dM =
κ

8π
dA+ ΩHdJ + ΦHdQ. (1.4)

In parallel, the first law of thermodynamics states

dM = TdSBH + ΩHdJ + ΦHdQ. (1.5)

If one defines for a black hole a temperature T ∝ κ and an entropy SBH ∝ A, one can rewrite

equation (1.4) as (1.5) and infer the Hawking temperature T = ~κ/2πkB and the thermodynamic

Bekenstein-Hawking entropy

SBH ∼
A

4lp
2 , (1.6)

where A = 4πrs
2 is the horizon area and lp =

√
GN~ is the Planck length. This entropy is

of statistical origin and counts the logarithm of the number of microstates. The resemblance

between (1.4) and (1.5) was viewed by Bardeen Carter and Hawking as only a mathematical

one. The entropy (1.6) is massive; the black hole in the centre of the Milky Way has an entropy

larger than that of all observable matter in the universe excluding black holes [11]. The most

straightforward way to derive (1.6) was proposed by Gibbons and Hawking in 1977 in [12]. This

Gibbons-Hawking method provides the classical answer A/4~, which is the tree level (lowest

order ~) contribution in the functional integral. In addition, (1.6) also appears in holographic

entanglement entropy (see section 2.3). By attributing an area of l2p to one pair of entangled

particles, the entanglement entropy is proportional to the amount of entanglement among par-

ticle pairs across the event horizon. Entropy (1.6) also appears in the covariant entropy bound

and in general codimension 2 surfaces [13] with the area being the leading order classical piece.

The second law of black hole mechanics, also referred to as Hawking’s area theorem, states

that the area A of the future event horizon of a black hole in asymptotically flat spacetime is a

non-decreasing function of time:

dA ≥ 0. (1.7)

In the event of two black holes coalescing, the area of the final state is greater than the sum

of the areas of the two initial states. Analogously, the second law of thermodynamics demands

that the total entropy of a system S should not decrease: dS ≥ 0. Whereas entropy can be

transferred from one system to another, the same is not true for the area of black holes.

The zeroth law of black hole mechanics states that the surface gravity κ is constant over the

future event horizon of a stationary black hole. This parallels the zeroth law of thermodynamics,

which states that a system in thermal equilibrium has a constant temperature. Lastly, the third
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law of black hole mechanics states that it is impossible to reduce the surface gravity of a black

hole to zero in a finite number of operations. In parallel, the third law of thermodynamics states

that the temperature of any system cannot be reduced to absolute zero in a finite number of

operations.

The study of black holes boils down to understanding the following areas: 1. The microscopic

meaning of black hole entropy, in particular, from a gravity perspective; 2. The mechanism

of the GSL and 3. The information loss problem. A resolution in these areas is important,

on a basic level, to ensure that the fundamental laws of quantum mechanics and information

preservation still holds in the case of black hole evaporation, but also for its potential to im-

plicate future lessons on the black hole interior and singularity. The study of the information

loss problem draws from and integrates different areas of physics, as well as produces major

developments and extensions in those areas. Of notable example is the discovery of AdS/CFT

in string theory, which has injected new ideas and driven discoveries in the area of black holes

since the nineties. Initially introduced as a new way to count microscopic states of black holes, it

also suggested that information does indeed escape and is not lost. In 2020 we are four decades

into understanding the information loss problem, an aspect of which has been solved, as claimed

in a recent paper by Almheiri et al. [1].

The plan of this dissertation is as follows. In this section an overview of the history of black hole

mechanics, thermodynamics and the information loss problem were given. A brief statistical

interpretation of the thermodynamic Hawking entropy is given in section 2.1. In section 2, two

distinct notions of entropy are introduced. The first is the entanglement entropy or fine-grained

entropy, which is covered in section 2.2. The Ryu-Takayanagi prescription [14–16] in AdS/CFT

for computing the holographic entanglement entropy, which was inspired by Hawking’s area

term, is then introduced in section 2.3. The second notion of entropy introduced in section

2.4 is the thermodynamic or coarse-grained entropy. The semiclassical generalised entropy and

its quantum corrections are then introduced in sections 2.5 and 2.6 respectively. The section

ends with a review of quantum extremal surfaces and its use in computing the gravitational

generalised semiclassical entropy in section 2.7. The information loss problem and some of its

early suggested solutions and oppositions, along with the concept of the central dogma, are

introduced in section 3. This leads to the discussion of the Page curve in section 4, where the

evolution of the entanglement and thermodynamic entropies involved in black hole evaporation

are explained. A brief quantification of the curve is provided in section 4.1, followed by using

the gravitational fine-grained entropy formula on an evaporating black hole to obtain its Page

curve in section 4.2. In section 5, the island conjecture for computing the entropy of Hawking

radiation is discussed. The Euclidean black hole is then introduced in section 5.1 and sets the

historical context for the concept of entanglement wedge reconstruction, which we will finally see
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in section 6 is involved in resolving an aspect of the information loss problem. The dissertation

is concluded with a summary and discussion in section 7.

2 Entropies

In this section a brief statistical interpretation of black hole entropy is given. The notions

of entanglement entropy, holographic entanglement entropy and thermodynamic entropy are

introduced. The semiclassical generalised entropy and its quantum corrections are then covered.

Lastly, the notion of a quantum extremal surface and gravitational fine-grained entropy are

reviewed.

2.1 A Statistical Interpretation

Recall that in statistical mechanics, we obtain the macroscopic properties of a system, such

as temperature and statistical entropy, by counting the microscopic degrees of freedom or mi-

crostates of the system. For example, the entropy is given by the logarithm of the number of

microstates. However in black hole thermodynamics, it is a struggle to understand what micro-

scopic degrees of freedom correspond to the temperature and entropy of the black hole. The

presence of the physical constants ~ and GN in the Bekenstein-Hawking temperature formula

suggests that the microscopic degrees of freedom describing the statistical mechanics of black

holes could be described by a full theory of quantum gravity [17]. However, it is a non-trivial

task to find a statistical mechanical description of black hole degrees of freedom; one has to

find candidates for a full theory of quantum gravity that produces entropy expressions that are

in agreement with the Bekenstein-Hawking entropy. Investigations attempting to address the

nature, description and interpretation of microscopic black hole degrees of freedom in the past

were found to naturally lead one to use the tools of quantum gravity and holography. The dif-

ferent areas related to black hole statistical mechanics studied included entanglement entropy,

the AdS/CFT correspondence, weakly coupled strings, “fuzzballs”, and loop quantum gravity

among others [17]. We will focus in particular on the first two areas in this dissertation. It has

to be noted that the derivations in these different areas, which counts different microstates, gave

the same macrostate properties. This was called “the problem of universality” by Carlip in [17].

In the area of weakly coupled strings, Stominger and Vafa in 1996 were the first to count black

hole microstates and to reproduce the Bekenstein-Hawking entropy for a class of five-dimensional

extremal black holes [18]. It was shown that their results are extendable to some other class

of extremal and nonextremal black holes [19]. In 2007, Horowitz and Roberts reproduced the

entropy for a four-dimensional Kerr black hole by counting microstates in string theory [20]. A

characteristic of this method is that the computation of the entropy is dependent on the black

hole geometry; a different calculation would have to be done for, say, a three-charge black hole
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in five dimensions and a four-charge black hole in six dimensions.

The AdS/CFT correspondence discovered in 1998 by Maldacena [21, 22] is a relation in string

theory that conjectures a gauge/gravity duality or map between a quantum theory of gravity

in d-dimensional asymptotically anti-de-sitter (AdS) bulk spacetimes M to a certain conformal

field theory (CFT) on the conformal boundary, ∂M of M, that is in a flat (d− 1)-dimensional

space. This correspondence naturally obeys the holographic principle [23–25], which relates the

number of degrees of freedom in a theory of quantum gravity to the area of the system, i.e.

AdS/CFT correspondence is a relation between entropy and area. This allows one to study

entropy dependence on area instead of volume, which is usually the case for extensive entropies

in QFTs. A black hole in AdS space can be described in terms of a QFT in one lower dimension;

AdS/CFT allows one to count the microstates and compute the entanglement entropy in a one

dimensional lower non-gravitational dual CFT associated with a subsystem of the boundary

CFT. This implies that information in the bulk is stored in the one dimensional lower event

horizon of the black hole, which can be regarded as a hologram.

One can also statistically interpret the black hole degrees of freedom by computing the quantum

mechanical (holographic) entanglement entropy. This was realised in 1994 in [26, 27] and in

subsequent years by [28–30]. The entanglement entropy characterises correlations between the

degrees of freedom near and across the horizon that are associated to information loss.

2.2 Entanglement Entropy

We aim to answer the following question: how is the initial infalling data encoded in the outgo-

ing Hawking radiation? First, we have to distinguish between two concepts of entropy. The first

we will discuss is entanglement entropy, which is quantum mechanical in nature. This entropy is

also called the von Neumann entropy, or fine-grained entropy. It arises due to the existence of a

fundamental limit to the level of detail we can know about the microscopic behaviour of a state

of the system; this limit exists regardless of the amount and complexity of the measurements

performed on the state. This entropy is conserved by the principle of unitarity in quantum

mechanics, which translates to the preservation of information. Hence von Neumann entropy

plays an important role in the study of quantum information.

Consider a total quantum system composed of two subsystems A and B with A ∪ B being a

pure state. The states of the total system lives in the bipartite Hilbert space H = HA ⊗ HB.

A general state in this space can be written as |ψ〉 =
∑

a,b ψ(a, b) |a〉 ⊗ |b〉, where {|a(b)〉} is an

orthonormal basis for HA(B). The state is invariant under unitary time evolution. The reduced

density matrix of the subsystem A(B) in the basis {|a(b)〉}, ρA(B), is the partial trace over
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subsystem B(A) of the total density matrix ρtot = 〈ψ|ψ〉 [31]:

ρA = trB ρtot, (2.1)

ρB = trA ρtot. (2.2)

The entanglement entropies of subsystems A and B are defined by

SE(A) = − trA ρA log ρA, (2.3)

SE(B) = − trB ρB log ρB. (2.4)

Entanglement entropy can increase or decrease with time and it is not the entropy that appears

in the second law of thermodynamics, which would be the thermodynamic entropy (see section

2.4). Also note that the entanglement entropy can be defined at a finite temperature T = β−1,

by using a thermal density matrix ρth = eβH , where H is the Hamiltonian. Then for a total

system A, SA(β) is just the thermodynamic entropy. A general property in the high temperature

limit is that SA1(β)− SA2(β) would approach Sth,A1 − Sth,A2 , where Sth is the thermodynamic

entropy [16].

Entanglement entropy is generally applicable to quantum mechanical lattice models and QFTs.

Such an example would be a quantum mechanical spin chain that has a large number of degrees

of freedom. At zero temperature the von Neumann entropy of the total state, given by the

density matrix of the pure ground state, would be zero. Imaginarily divide the total system

into two sub-chains, corresponding to subsystems A and B. The entanglement entropy of the

subsystem A measured by an observer that has no access to subsystem B would measure the

extent to which the state |ψ〉 is entangled [16].

For a pure state of A ∪ B, SE(A) = SE(B) and a subsystem has SE = 0 only if there is

zero entanglement between the two subsystems, i.e. the total state is not quantum. Assuming

that the dimension of HB, DB, is less than or equal to that of HA, then the maximum value

of SE(B) (and thus of SE(A)) is SE(B)max = − ln(DB) [31]. In non-static backgrounds, the

density matrices are time dependent and the time at which the entropy is measured will have

to be specified [16]. An important property of entanglement entropy is that it obeys the strong

subadditivity condition [32], which are the inequality relations [16]:

SA+B+C + SB ≤ SA+B + SB+C , (2.5)

SA + SC ≤ SA+B + SB+C , (2.6)

where A, B and C are subsystems with no overlaps. From these relations, a quantity called the
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mutual information I(A,B) can be defined; letting B in (2.6) be an empty set, we obtain [16]

I(A,B) = SA + SB − SA+B ≥ 0. (2.7)

The mutual information between two subsystems for a specific state in AdS/CFT was shown to

be proportional to the Bekenstein-Hawking entropy in [33]. In the context of black holes, the

outgoing radiation located outside the black hole is represented by the subsystem A and the

interior of the black hole is represented by subsystem B.

2.3 Holographic Entanglement Entropy

Entanglement entropy is useful in allowing one to study spacetime geometry emerging from en-

tanglement. The initial studies of entanglement entropy later led to the discovery of holographic

entanglement entropy (HEE), which was inspired by AdS/CFT correspondence. In particular,

analogies between the holographic principle and the Bekenstein-Hawking entropy given by the

area law motivated a gravitational interpretation of the entanglement entropy in QFTs. Ryu and

Takayanagi (R-T) [14] and Hubeny, Rangamani, and Takayanagi (HRT) [15] provided the first

tools to compute HEE using the ideas of bulk reconstruction and gravity quantisation to study

the holographic properties of a d-dimensional black hole embedded on the (d + 1)-dimensional

boundary of asymptotic AdS space. By considering the geometric properties of an appropriate

bulk spacetime, the HEE connects the dynamics of the bulk and the entanglement entropy. A

gravitational perspective will be taken to explore the HEE. We have seen that the entanglement

entropy SA measures the extent of entanglement with subsystem B and thus the information

encoded in B. We now reformulate this question as: where in AdS space contributes to the

evaluation of SA in the CFT, or which part of AdS encodes the information which is given in

the CFT ?

In the previous subsection we saw how to compute the entanglement entropy among two sub-

systems in QFTs. A modification to this prescription is required when considering theories with

a gravity dual [14, 16]. In such cases, we have to first look for a static (spatial) surface in the

spatial boundary region A that extends up to its boundary which has the minimal area. This

would be called the minimal surface and it splits the bulk into two regions – region Ab that

resides in the bulk and its complement – corresponding to two subsystems. These regions are

illustrated in figure 1. The area of the minimal surface in this prescription is associated to the

classical bulk contribution to the HEE, which is given by [34]

S(A) =
(Area)min

4GN
. (2.8)

We now introduce the general form of the formula (2.8). In 2006, R-T motivated the first
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Figure 1: The minimal area associated to the classical bulk term in the holographic entangle-
ment entropy is depicted as the dotted surface that splits the bulk region into two, which are
represented by Ab and its complement. The minimal surface is bounded by the spatial region
A, which is the boundary associated to the bulk region and thus has one dimension less. Figure
taken from [34].

holographic formula for entanglement entropy in quantum CFTs using the AdSd+2/CFTd+1

correspondence and called it the (holographic) area law relation. R-T considered a bulk space-

time with a static asymptotic boundary that has a timelike Killing field, which enabled them to

work in Euclidean spacetime. For a d-dimensional CFT in R×Sd space with a (d−1)-dimensional

boundary ∂A ∈ Rd space, R-T defined the HEE of a subsystem A, SA, as [14]

SA =
Area(γA)

4GN
(d+2)

, (2.9)

where γA is the d-dimensional static minimal surface in the bulk geometry (the bulk gravita-

tional dual) AdSd+2, whose boundary is given by the (d − 1)-dimensional manifold ∂A, and

GN
d+2 is the (d + 2)-dimensional Newton constant. Region A lives in the boundary CFTd+1.

This formula was actually a speculation from the Bekenstein-Hawking formula (1.6). Figure 2

illustrates the regions associated with the R-T formula. In figure 1 we had d = 1, in which case

the extremal surface γA is the geodesic line of minimal area that lies in the bulk Cauchy slice

in AdS3. A local observer of subsystem A would identify γA as a hologram. This identification

can also be seen by comparing (2.9) to the Bekenstein-Hawking entropy (1.6). As in the case

for entanglement entropy, equation (2.9) also obeys the strong subadditivity condition and it is

also defined for finite temperatures T , in which case the density matrix would represent a mixed

state. This formula can also be used for asymptotically AdS static spacetimes. In the presence

of an event horizon, the minimal surface wraps around it; in this sense, we see that (2.9) is a

generalisation of (1.6). This was shown in [35]. The metric of the bulk AdS produces finite

contributions to the expansions of GN and the entanglement entropy. The R-T formula is the

leading order result of such an expansion and arises from classical physics in the bulk.

The R-T formula has been proven to work in various applications [36], providing an understand-

ing of the physical realisation of the microstates involved. R-T compared results in the AdS
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Figure 2: The minimal surface γA entering the computation of the holographic entanglement
entropy for a CFTd+1 ends at the boundary of region B. Figure taken from [16].

space obtained using their formula for a general d with known CFT results in two dimensions,

which showed agreement. It was also proven for AdS3 space in [37, 38]. As soon as the R-T

proposal was released, several derivations were provided. Fursaev’s derivation in 2006, despite

having many evidences [39–41], contained a mistake relating to a misuse of the codimensional

2 surface and its dual. Later in 2013 Lewkowycz and Maldacena provided a proof for a general

version of the R-T formula in [42].

In 2007, HRT extended R-T’s HEE formula covariantly. Whereas in the R-T proposal, a codi-

mension 2 minimal area γA is the surface lying in a spatial slice in the bulk, in HRT’s prescription,

the codimension 2 minimal surface would be the extremal surface ΣA that has the same bound-

ary as γA but found using a different method. In the R-T proposal, we vary the surface in space

since there is no time component in a static spacetime; in this case we would just have that

ΣA is constant on a time slice and is thus the same as γA. In the HRT proposal, one needs to

vary the surface in both space and time directions in finding ΣA. The maximin method [43] for

finding ΣA is useful. The procedure is as follows. For each spatial slice in the bulk geometry,

find the minimal surface on ∂A. Then among all slices, choose the minimal surface that has

the maximum surface area. This would be the extremal surface. Another method would be to

use the action principle to find the extremal surface for which any first-order variation in its

area produces zero. It was proposed that in the classical limit, the entanglement entropy of an

area region A in the bulk CFT is related to the spacelike, codimension 2 extremal surface Σ in

the bulk such that ∂A = ∂Σ and Σ is homologous to A. Then for a static spacetime, one has

S(Σ) = Area(A)/4G~, valid to order O(~−1) in the CFT [44].
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2.4 Thermodynamic Entropy

The second kind of entropy we will now discuss is the coarse-grained entropy. It characterises

the ignorance we have about the system. An example of this type of entropy would be the ther-

modynamic entropy, which exists because we can never know the fine-grained or microscopic

details of a system, which are blurred or smoothed over. In this case the density matrix that is

associated to the system characterises this ignorance and is manifested as attributing a probabil-

ity to each state. This is in contrast to the density matrix in the case of entanglement entropy,

which characterises the extent of the subsystem’s quantum entanglement with the rest of the

system. A system in contact with a reservoir at a constant temperature T = β−1 is described

by a Maxwell-Boltzmann density matrix

ρMB = Z−1e−βH , (2.10)

where Z is the partition function and H is the Hamiltonian of the system. The thermodynamic

entropy is then defined as

ST = −Tr [ρMB ln(ρMB)] . (2.11)

It obeys the second law of thermodynamics and increases under unitary time evolution. Another

way to obtain the coarse-grained entropy of a system described by the density matrix ρ is to

measure a subset of coarse-grained observables Ai and evaluate all possible density matrices ρ̃

such that Tr [ρ̃Ai] = Tr [ρAi]. Then for each ρ̃, evaluate the fine-grained entropy associated to

it, SvN (ρ̃), and the maximum value among all obtained would be the coarse-grained entropy [1].

By a direct consequence of the definitions, we have that SvN ≤ ST . This conveys the fact

that the coarse-grained description of the state encompasses the macroscopic properties of the

fine-grained details. In other words, coarse graining the microscopic degrees of freedom of the

black hole would produce a single thermal state, where coarse graining means grouping eST

microscopic states with similar macroscopic behaviour into a single thermodynamic state that

has thermodynamic entropy ST . Therefore the coarse-grained entropy establishes the limit on

the degree of entanglement of the interior and exterior of the black hole (the two subsystems).

For a pure state, the fine-grained entropy is zero but the coarse-grained entropy is logN by

ergodic theory1. An analogy for the two types of entropies can be illustrated with a ball made

with many threads – the fine-grained volume of the ball would be represented by the volume of

the threads, which is constant, while the coarse-grained volume of the ball would be the volume

that is associated to the profile of the ball [45].

1This theory states that the probability for the state to be in all N states is the same.
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2.5 Semiclassical Generalised Entropy

The Bekenstein-Hawking entropy does not capture the full entropy of the black hole system.

For a full expression one has to include the entropy from all quantum fields outside the black

hole, which accounts for the matter in the exterior region, such as gravitons, stars, Hawking

radiation and vacuum contributions from the quantum fields. Let the state of such matter fields

be described by the density matrix ρ. Then the fine-grained entropy of the external matter fields

is Soutside = − tr[ρ ln ρ]. Adding this to our previous entropy (1.6), we obtain the generalised

entropy of the event horizon Sgen, which represents the total entropy comprising the geometric

black hole entropy, given by the area of the horizon Areahor, plus the entanglement entropy of

the quantum fields outside the event horizon Soutside:

Sgen =
Areahor

4~GN
+ Soutside. (2.12)

This is also sometimes referred to as the thermodynamic entropy and it is finite. The second

term in (2.12) was obvious to Bekenstein, who just added the area term. Including Soutside

ensures that Sgen obeys the second law of thermodynamics when there is emission of Hawking

radiation; if the first term in (2.12) decreases, the second term will increase in a way that en-

sures the increase of total entropy. The generalised entropy has a massive number of degrees of

freedom – the black hole at the center of the Milky Way has Sgen ≈ 1085 and a black hole the

size of a proton has Sgen ≈ 1040 [1].

In the semiclassical description we treat a gravity theory in the semiclassical approximation and

we have a background geometry that is classical with quantum fields and perturbative gravitons

defined on it. In this approximation we have effective coupling of the strength geff
2 ∝ GN

rs2 ∝ 1
S ,

which implies a non-perturbatively small energy spacing between the energy states of the black

hole that are of the order e−S ∼ e
− 1

g2
eff [46]. The semiclassical entropy Ssemi-cl(Σ) of a spatial

subregion Σ is defined as the fine-grained entropy of the quantum fields and gravitons on the

semiclassical geometry. Referring back to equation (2.12), we identify the semiclassical entropy

as the second term in the formula, Soutside.

2.6 Quantum Corrections to Semiclassical Generalised Entropy in Black Hole

Thermodynamics and in AdS/CFT

We have established that in both the contexts of black hole thermodynamics and AdS/CFT,

the entropy of a surface is proportional to its area. At first order in ~, we have Sgen = SBH ,

i.e. the area term (1.6) is just the leading classical contribution to the black hole entropy. Re-

call that the underlying mechanism behind the proportionality between entropy and horizon

area is the correlations across the event horizon. The fact that black holes radiate imply that
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they are quantum in nature and hence their entropy cannot be fully described using classical

geometry. We thus expect the area theorem to have quantum corrections. In the R-T and HRT

prescriptions, a calculation of the semiclassical generalised entropy involved evaluating it on an

event horizon slice. In fact, a UV divergence in the entropy is encountered at the horizon that

is due to a UV divergent contribution to the partition function. This divergent component is

proportional to the area of the boundary ∂A of the subsystem A, which is a standard result

in QFT. It arises due to the entanglement among particles that are produced from vacuum

excitations across the horizon. The divergence is dealt with using a regulator and is to be

offset by the renormalisation of GN [26], which one can compute using Feynman diagrams for

gravitational scattering. The renormalisation of GN ensures that the entropy is independent

of how one divides black hole in the computation. This means that unlike the thermodynamic

entropy, the entanglement entropy is not an extensive quantity. The horizon also contains other

subleading divergences, such as quantum corrections to the black hole entropy, which are to be

absorbed into counterterms. Then for the semicalssical generalised entropy, one should really

write: equation (2.12) + counterterms.

Faulkner, Lewkowycz and and Maldacena (FLM) [34] and Engelhardt and Wall (E-W) [44]

extended the R-T and HRT prescriptions to include quantum effects. The former computed the

first quantum corrections to HRT’s formula. By considering order G0
N quantum effects in the

bulk, FLM computed the quantum corrections to the bulk entanglement entropy between the

bulk region Ab and other subregions in the bulk in figure 1, which we denote Sbulk-ent(Ab). This

gives the leading classical correction, which we denote Sq(A), to the boundary entanglement

entropy (2.8). In FLM’s bulk field dependent computation, the bulk is essentially treated as an

effective field theory that lives on a fixed background geometry, which parallels the framework

in which entropy is computed in a normal QFT [34]. FLM wrote the quantum correction as [34]

S(A) = Scl(A) + Sq(A) +O(GN ), (2.13)

Sq(A) = Sbulk–ent(Ab) + ..., (2.14)

where the dots in (2.14) represents one loop correction integrals, such as terms that offset the

UV divergence of the bulk entanglement entropy, which ensures the finiteness of Sq [34].

In QFT, the density matrices describing quantum entanglement between subsystems are mostly

studied using the tool of path integrals. There are two types of path integral prescriptions

corresponding to a time-dependent or time-independent Hamiltonian and states. The former

case uses a Euclidean path integral in Euclidean time while the latter case uses a Lorentzian

one that involves integrating over Lorentzian time using the Schwinger-Keldysh contour. Higher

powers of the density matrix can be calculated using the replica trick, which is a mathematical
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method to evaluate −Tr[ρ log ρ] in a case where the density matrix ρ is not known. In particular,

for time-independent states, the replica method can be used to compute the entropy to any

order in GN , thus allowing for the computation of the quantum corrections. By an analytic

continuation, the entanglement entropy associated to a ρ = ρA, where A is a region in the

boundary theory, can be formulated from the Renyi entropies [42]. Renyi entropies are a set of

entropies defined as [47]

S
(n)
A =

1

1− n
log TrA(ρ

(n)
A ) (2.15)

The nth Renyi entropies are found by computing the complete partition functions about the

analytic bulk solutions for each integer n. For order G0
N , this involves computing the one loop

bulk quantum corrections to the classical solutions [34]. In [37], the Renyi entropies and related

partition functions of (1+1)-dimensional CFTs were computed via the replica trick. An analytic

continuation in n in this case reproduced the R-T formula. One-loop bulk corrections to this

was calculated by [48]. In general, the entropy of n copies of the system, which could be the

black hole or the radiation, obtained by analytically continuing the computation in n, is given

by [42]

S = −∂n (logZn − n logZ1) |n=1 = −Tr[ρA log ρA]. (2.16)

Copies of the system can be connected via various topologies that fulfill the boundary condi-

tions. All valid topologies are to be summed over in the calculation of Tr(ρn). The completely

connected and disconnected topologies are the two extreme geometry choices. For n = 1 the

system is disconnected and one just gets the Hawking saddle which gives the dominant contri-

bution to Tr ρ. For n 6= 1, one gets the subdominant contributions to the radiation outside the

cutoff surface. Consider the case n = 2 where we want to compute Tr
(
ρ2
)
. The disconnected

geometry would give the Hawking saddle where we have two disconnected copies of the black

hole geometry, while the connected geometry gives the replica wormhole saddle in which the

black hole interiors are connected. The latter geometry can be written as a product of two sepa-

rate copies of Tr(ρ), indicating that this is a pure state. The replica wormhole saddle thus gives

the dominant contribution to Tr
(
ρ2
)

in this case [1]. Equation (2.16) is the standard method of

computing the von Neumann entropy using the replica trick.

With knowledge of this classical replica trick, one can see that the Bekenstein-Hawking equation

(1.6) is the “shortcut” answer obtained from using this method. After performing the replica

trick at the quantum level, FLM found the following full expression for formula (2.14), the

quantum correction to the entropy [34]

Sq = Sbulk–ent +
δ(Area)

4GN
+ 〈∆SW–like〉+ Scounterterms, (2.17)
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where the first entropy term is of the bulk entanglement, which obeys the strong subadditivity

condition individually, the second term corresponds to a shift in the area due to quantum

corrections and the third term represents the expectation value of a Wald-like entropy2. The

final term is included to absorb other subleading divergences so that Sq is finite. At order G0
N ,

these corrections are negligible. The last three terms in (2.17) represent the dots in (2.14) and

are integrals of local quantities on the minimal surface [34]. Note that if these last three terms

are added to the R-T formula (2.9), one still obtains the desired minimal value result. Lastly,

Sq also obeys the subadditivity condition. At the lowest boundary order, or bulk order O(~0),

we therefore have [34]:

Sgen(A) =
Areahor

4~GN
+ Sbulk-ent + counterterms, (2.18)

where Sbulk-ent is the bulk entanglement entropy between region Ab and the remaining bulk.

Since FLM only considered the case where the total state is pure, we have that Soutside = Sbulk-ent.

We see a similarity between equation (2.12) counterterms and equation (2.18). Whereas in the

former the generalised entropy was associated to the minimal area of an event horizon slice, the

latter is associated to a surface extremised with respect to space and time.

2.7 Quantum Extremal Surfaces and Gravitational Fine-Grained Entropy

E-W in [44] pointed out that the black hole entropy is not always represented by the semiclassical

generalised entropy of the horizon because in general, Sgen can be defined for an extensive class

of arbitrary surfaces; other surfaces with a statistical interpretation can also be chosen. We now

review E-W’s argument. Consider a static codimension 2 surface E that divides a spatial surface

Σ into two spatial regions denoted by Ext(E) and Int(E), as shown in figure 3. The former is

contained outside E and the latter inside E. Define Sout(E) and Sin(E) to be the entanglement

entropy in Ext(E) and Int(E) respectively. If Sgen is defined by (2.12) but evaluated on E rather

than on a horizon spatial slice, then by unitarity, any Σ that passes through E would define the

same entropy, rendering the outcome that Sgen(E) is independent of the choice of E [44]. For a

pure state, we have Sout(E) = Sin. But for a mixed state, one has to choose the side with region

corresponding to the boundary entropy being computed; one is not allowed to choose the other

side for the reason of locality violation [44]. Note that entanglement entropy is defined for both

pure and mixed states.

Recall that in FLM’s prescription, the area was first extremised before Soutside was added. Above

we saw a setback in this formulation of choosing arbitrary surfaces. Noticing this, E-W pro-

posed the following modification to computing the entropy of a holographic boundary region:

2See [34] and [49] for an explanation of the Wald-like entropy.
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Figure 3: The setup used to define the generalised entropy on an arbitrary surface and to argue
that the generalised entropy does not always represent the black hole entropy. The spatial
surface Σ in AdS space is split into two by a codimension 2 static surface E into the regions
denoted by Ext(E) and Int(E). Entropies Sout and Sin represent the entanglement entropy in
the former and latter regions respectively. For a pure state, the generalised entropy computed
on either region is the same while for a mixed state it depends on the side chosen to compute
the generalised entropy on. Figure taken from [44].

extremise the total generalised entropy, which is defined on a quantum extremal surface (QES),

a quantum corrected R-T or HRT surface. Despite its name, the QES is a classical surface on

the spacetime geometry. E-W also extended FLM’s formulation for non-static extremal sur-

faces. E-W showed that at order O(~0) of the first quantum corrections, their prescription is

equivalent to FLM’s. Since the latter was only proved at this order, the equivalence does not

tell us which prescription is correct at higher orders; E-W argued that at higher, even infinite,

order in ~, FLM’s prescription does not compute the entanglement entropy as it changes under

boundary unitary transformations. In addition, E-W produced a few theorems for their pre-

scription which do not hold for FLM’s. These conclusions were viewed by E-W as evidence that

their prescription is accurate and that QESs are physical realisations of quantum spacetimes [44].

The QES is defined as the surface on which the fine-grained entropy of the black hole has

minimal extremal value; on the QES, the gravitational generalised entropy is minimised in the

spatial direction but maximised in the time direction. In the case where more than one extremal

surfaces are found, one should choose the global minimum. The maximin construction [43] is

one way to carry this out. In finding the QES, one starts from a surface at a time on the cutoff

surface outside the black hole and move inwards, even crossing the horizon to consider surfaces

in the interior. If the QES lies totally in the interior of the black hole, then there will no area

contribution to the total entropy. This prescription implies that the fine-grained entropies of

black holes is dependent on the black hole interior geometry and thus that black holes that have

the same exterior characteristics but different interiors would have different entropies.

For quantum systems coupled to gravity, the extremal value of the semiclassical generalised

entropy obtained by choosing the surface which minimises its value gives the gravitational fine-

grained entropy of the black hole. According to the QES proposal, this entropy is [44]
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S(R) = min
Q

{
extQ

[
Area(Q)

4GN
+ Ssemi-cl(ΣQ)

]}
, (2.19)

where surface Q is the QES, a codimension 2 bulk surface homologous to the boundary region

R on which the entropy is calculated on, Ssemi-cl is the semiclassical fine-grained entropy on a

partial Cauchy surface extending from Q to R on the asymptotic boundary and represents the

entropy of the quantum matter fields and gravitons in the fixed background geometry outside

the black hole, and ΣQ is the region bounded by the QES Q and the AdS boundary. The

extremisation is with respect to the surface Q and the minimisation is with respect to the sur-

face Q with the minimal generalised entropy. For states described using path integrals, formula

(2.19) can be derived using a similar method to that of Gibbons-Hawking (see section 5.1). In

later sections we will see that this gravitational entropy formula was successfully applied to

compute the fine-grained entropy of an evaporating black hole, which is a gravitational system.

This implies that Hawking was just not using the right formula to compute the entropy, which

ultimately led him to the conclusion that black hole evaporation violates unitarity.

3 The Information Loss Problem

As a black hole radiates away energy, its mass decreases and eventually it will evaporate away

completely. Consider a classical static black hole formed from the stellar collapse of some pure

quantum state of matter, which in the process produces thermal Hawking radiation via evapora-

tion. The exterior geometry of the black hole is almost stationary whereas the interior geometry

is extended along a direction whilst shrinking to zero size in the angular direction. The angular

direction and event horizon becomes the singularity at the end of the evaporation and outside re-

mains a smooth spacetime containing thermodynamic radiation. It appears that in this process

an initially pure state has been converted into a final thermal mixed state. Similarly, one can

consider adding infalling matter to an evaporating black hole to balance the outgoing radiation

such that it stays in equilibrium. In both scenarios, the evolution appears to violate unitarity.

The concept that black holes are described by microscopic degrees of freedom have been ap-

plied to the process of black hole evaporation in past suggestions and attempts to solve the

information loss problem [50–53]. Many of the proposed solutions fell into the following main

areas: 1. The black hole does not completely evaporate and information ends up encoded in a

remnant [54, 55]; 2. Information is lost; 3. The end state of the radiation is pure, not mixed,

and the information escapes the black hole through correlations among the outgoing radiation

quanta; 4. The information escapes together with the bulk of the radiation and this gives an

S-matrix that maps the in states to the out states [31,56–58].
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The first possibility is realised when the black hole stops evaporating when its mass and size

reaches Planck scale and a remnant is leftover. But in this case the remnants would have to have

unbounded degeneracy or be highly entropic if one started with an arbitrarily large black hole

and the entanglement entropy of the remnant would exceed the Bekenstein-Hawking entropy.

This is in contrast to expecting only a finite number of states; having an infinite number of

states would revoke the interpretation of black holes as being described by microscopic degrees

of freedom. Possibility two, that in the process of black hole formation and evaporation, quan-

tum information is permanently lost and the von Neumann entropy of the universe increases,

was advocated by Hawking [10,59]. Computations performed by Hartle and Hawking suggested

that information is lost via Hawking radiation. In this case the mixed state of radiation has en-

tropy of the order of the initial black hole horizon area in Planck units, and there is no S-matrix

to describe the transition. Possibility three suggests that the final state of the evaporation is

a pure state of the radiation field, with a complete basis of dimensionality of the order of the

exponential of the Bekenstein-Hawking entropy. Any small subsystem considered would appear

thermal. In this possibility, the outgoing radiation and thus information that escapes are inde-

pendent of the details of the initial state of infalling matter. However, quantum gravity as an

effective field theory breaks down at small curvature.

The fourth and last possibility was investigated by Page in [56], which was eliminated as a

potential solution by Giddings and Nelson in [52,60]. Hawking’s original argument for informa-

tion loss claimed that the semiclassical approximation breaks down when the black hole reaches

Planck mass. Giddings and Nelson studied two dimensional dilatonic black holes with N min-

imally coupled fields and showed that all correlation functions and the density matrix of the

Hawking radiation can be exactly computed. In other words, the formation and evaporation

processes for this setup can be explained until the breakdown of the semiclassical approximation;

in [52], Giddings showed that working perturbatively in 1/N reveals that information escapes

only after the Planck scale for a four dimensional black hole. It was concluded that quantum

dilaton gravity would have to be futher quantised in order to obtain deeper understandings.

However, considering the works of Giddings and Nelson, Page in [50] found that even a per-

turbative analysis would not recover the information. He argued that information does escape,

but at a very slow rate or with long intervals, which would require an unphysical number of

measurements to detect – even an analysis limited to perturbations in mplanck/M cannot recover

the information [50]. We will explore the ideas of Page on the entropies involved in black hole

evaporation in section 4 through the introduction of the Page curve.
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3.1 Paradoxical Spacetime Geometries for the Black Hole

One could argue the following perspective of the information loss problem [1]: imagine dividing

the spacetime of an evaporating black hole into two aymptotic regions – a parent universe and

a baby universe. The latter is formed from the infalling matter and could be some future region

that is near the singularity. During evaporation the two regions are still connected and the

infalling matter creates the singularity. After the black hole has completely evaporated, the two

regions will disconnect but still be highly entangled with each other. One will then be left with

a baby universe that is the singularity, entangled with a parent universe that is filled with the

previously escaped radiation. It now appears, to an external observer of the parent universe,

that information is lost. In a semiclassical gravity theory, the argument is that an understanding

of the interior has no bearing on the way that the information is lost. In fact, an observer of

the whole universe, including both baby and parent universes, can conclude that information is

not lost by using the wavefunction of the baby universe, which was shown in [61].

Consider another spacetime geometry – the vacuum solution corresponding to the two-sided

maximally extended Schwarzschild geometry, which represents two black holes by two exteriors

that are sharing an interior. The two black holes asymptotically looks like two disconnected

R3 connected by a wormhole, which is called the Einstein-Rosen bridge. Now we consider a

geometry called “bags of gold” [62] that is closely related to the geometry above. This object

has the second R3 replaced by, say, an S3, which represents a highly entropic closed universe

since it can contain a lot of matter [63]. This classical geometry is shown in figure 4. We have

the Schwarzschild solution in the throat (neck) region, which is asymptotically flat and narrow.

The argument is that this geometry looks like a black hole with an entropy given by the horizon

area of the throat when viewed from the outside, which is in contrast to the possibility of having

an arbitrarily larger entropy in the closed universe. This object has been used to argue that the

area entropy does not measure the entropy on some spatial slice inside a black hole [1]. We will

revisit both geometries at the end of section 6.

3.2 The Central Dogma

Considering the mechanics and thermodynamics of black holes, Almheiri et al. in [1] advocated

for regarding the black hole as seen by an external observer as an ordinary quantum system

with S = Area/4GN degrees of freedom, or qubits, and which obeys the laws of thermodynam-

ics and evolves unitarily under time evolution. For this advocation they coined the name the

“central dogma”. One can visualise this by imagining a reflecting circular surface (which acts

as a reflecting boundary condition) surrounding the black hole and the environment around

it up to some cutoff surface a few rs away from the black hole, and regard the system inside
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Figure 4: The “bags of gold” spatial geometry consists of an asymptotically flat space connected
to a highly entropic closed universe by a narrow neck or throat. As viewed by an observer on
the outside, it is argued that this geometry describes a black hole with an entropy computed by
the area formula, which does not account for the entropy of the matter contained in the closed
universe. In section 6, this is resolved by considering entanglement wedges; we will see that the
entropy area formula computes the fine-grained entropy of only the exterior and not the whole
interior. Figure taken from [1].

the cutoff surface as a quantum system. For example, this could be a set of qubits that has

interactions with the exterior described by a strongly interacting unitary Hamiltonian that can

generate a chaotic gravity evolution in time [1]. In AdS/CFT the cutoff surface is represented

by a boundary coupled to degrees of freedoms living outside the cutoff surface. Another analogy

would be to replace the black hole as viewed from the outside with a burning piece of coal,

in the sense that it is just an ordinary quantum system [63], with the crucial difference of the

presence of a horizon in the former. A piece of coal in an initially pure state, through burning,

emits radiation quanta that are entangled with other quantum degrees of freedom in the coal.

Whilst quantum degrees of freedom inside the coal can affect the radiation modes at late times,

the same is not true for the interior modes inside black holes due to causality.

Almheiri et al. pointed out that the central dogma is not implied in the gravity description

since we do not know how to derive the S degrees of freedom and the unitary Hamiltonian in

this description. The central dogma thus has to be treated as an assumption of a full theory of

quantum gravity and not a theorem; the assumption is that the degrees of freedom can describe

arbitrarily precise measurements performed outside the black hole. Black hole thermodynamics

and fine-grained entropies are characteristics of a full theory of gravity and do not rest on the

validity of the central dogma [1]. The statement of the central dogma made above only describes

the exterior of the black hole and not its interior. The information loss problem, if true, would

imply that the central dogma is false.

Counting the microstates of supersymmetric black holes using strings and D-branes have pro-
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vided evidence for the central dogma. These have been seen to reproduce the area formula and its

corrections [18,64]. The BFSS matrix model and BFSS conjecture related to the 11-dimensional

S-matrix [65] provides another piece of evidence. Lastly, the AdS/CFT correspondence is useful

in studying the microstates of an AdS black hole through studying its thermal state in a unitary

CFT [42,66].

4 Page Curve for the Black Hole

A quantitative form of the information loss problem is encapsulated in the Page curve, which is

a plot of the entanglement entropy of the radiation as a function of time. We will now consider

the evolution of the fine-grained and coarse-grained entropies of the radiation and the black hole

horizon during the formation and evaporation process for a black hole formed from the collapse

of a pure state.

At the beginning, the coarse-grained or thermodynamic entropy of the horizon is given by the

area of the black hole, which starts at zero. Before matter starts falling into the black hole,

its area increases exponentially during black hole formation. The area reaches a maximum just

before infalling matter reaches the black hole and the evaporation process starts [31]. During

evaporation, the area decreases linearly with time. Thus, the thermodynamic entropy decreases

steadily until the black hole has completely evaporated at which point the thermodynamic en-

tropy is zero. This evolution is depicted in figure 5 as the decreasing orange curve. In contrast,

at the start of the evaporation process, no Hawking radiation has been emitted yet so its ther-

modynamic entropy starts at zero. As the black hole evaporates, more Hawking radiation is

emitted so the thermodynamic entropy of the outgoing radiation increases steadily. This evolu-

tion is represented by the increasing green line in figure 5. The gradient of this line is constant

as the radiation is characterised by the Hawking temperature. The entropy eventually reaches a

maximum, at which point the black hole has completely evaporated and the entropy stays con-

stant from then on. This is Hawking’s calculation for the entropy of outgoing radiation. Note

that we have already encountered a problem – at the point where the thermodynamic entropy

of the outgoing radiation exceeds that of the black hole horizon, there is insufficient black hole

microscopic degrees of freedom to entangle with the entropy of outgoing radiation.

Now we consider the fine-grained entropies, or the entanglement entropies. Since the total state

at the start is pure, by unitarity, we must have that the black hole quantum system and radiation

are described by pure states as well and also be entangled with each other. At the start of the

evaporation process when the black hole horizon still has a small area, the black hole quantum

system is still described by a pure state. Hence, the outgoing radiation, which is entangled with
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Figure 5: The themodynamic and fine-grained entropies of the outgoing radiation and black hole
involved in the evaporation process of a black hole are schematically illustrated. The decreasing
contribution in yellow represents the thermodynamic entropy of the black hole given by the
area of its horizon. It starts to decrease as the black hole evaporates and its area shrinks.
The increasing contribution in green represents the thermodynamic entropy of the outgoing
radiation, which increases as more radiation is emitted and reaches a maximum value at the
point of complete evaporation and remains constant after that. By unitarity, the fine-grained
entropy of radiation cannot exceed the thermodynamic entropy of the black hole. Thus the
entanglement entropy follows the Page curve, represented by the purple curve. The point of
inflection occurs at the Page time, when the fine-grained entropy of radiation is equal to the
thermodynamic entropy of the black hole and this quantity characterises the Page curve. Figure
taken from [1].

the black hole, will also be described by a pure state and thus be approximately thermal during

this time. Note that the fine-grained entropy of the radiation is that of the radiation that is

outside the cutoff surface and neglects vacuum contributions to the entropy. The fine-grained

entropies of both the black hole and outgoing radiation are equal. This entropy starts at zero

and increases as the black hole evaporates and outgoing radiation enters the region outside the

cutoff surface. However, this entropy cannot exceed the thermodynamic entropy of the black

hole, which is given by the horizon area, or bounded by the dimension of the Hilbert space of

the black hole horizon. Therefore we expect the fine-grained entropy of radiation to decrease

back to zero as the horizon area shrinks back to zero at the end of the evaporation process. The

point where the fine-grained entropy of radiation is equal to the thermodynamic entropy of the

black hole before it starts decreasing is called the Page time. At this point the semiclassical

gravity description is still applicable. Page argued that the fine-grained entropy of the black

hole would follow the thermodynamic entropy of the outgoing radiation at the early stages and

overall, would follow the Page curve, which is represented by the purple line in figure 5. Note

that the exact shape of the curves would depend on the details of the black hole and radiation
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systems. Figure 5 just shows the approximate general feature.

4.1 Quantifying the Page Curve

In this section a brief quantification of the Page curve using Page’s theorem is given. Page

considered the black hole (or equivalently, the radiation in the black hole that has not yet been

emitted) as one quantum subsystem BH and the radiation outside the imaginary sphere as

another quantum subsystem R. The bipartite Hilbert space for the outgoing radiation can be

written as Hout = HR ⊗HBH . The total system is always in some pure state throughtout the

evaporation process so we always have that SvN
R = SvN

BH . Each subsystem has an associated

density matrix, which when traced over gives a generically mixed state of the other subsystem.

Page studied the information encoded in the radiation subsystem throughout the evaporation

process by studying the reduced density matrices at different times. Page confirmed that the

fine-grained entropy of outgoing radiation, SvN
R , follows the Page curve. It increases as the black

hole evaporates, reaching a maximum value of SvN
R ≈ S0/2 at a time tPage ≈ tevap/2, where

S0 = 4πM2 is the thermodynamic entropy of the black hole at the start of evaporation. It then

decreases back to zero upon complete evaporation. Note that tPage and SvN
R are not exactly half

of tevap and S0 respectively as they depend on the evaporation process, which is irreversible.

Page performed numerical calculations for a large Schwarzschild black hole that started in a

pure state and which evaporated into photons and gravitons in [67], where he found a value

of SvN
R ≈ 0.6S0 at tPage ≈ 0.54tevap. Page derived the numerical equations governing the time

dependence of the fine-grained entropy of outgoing radiation for both initially pure and mixed

states of the same black hole.

We now follow Harlow’s [11] approximate derivation for Page’s numerical equation using Page’s

theorem. Page’s theorem [68] states that a pure state randomly chosen is almost maximally

entangled3 if DR/DBH � 1, where DR(BH) is the dimension of HR(BH). A random pure state is

given by |ψ(U)〉 ≡ U |ψ0〉, where |ψ0〉 is some particular state and U is a random unitary matrix.

At early times we have Scoarse
R = logDR < Scoarse

BH = logDBH . By approximating the outgoing

radiation as a (1+1)-dimensional photon gas, we can write for early times: Scoarse
R ∝ tT , where t

is the time that has elapsed since the start of evaporation and T is the temperature of the black

hole [11]. While subsystem R has an order of M−1 characterised by the Hawking temperature,

subsystem BH has order M2 characterised by the thermodynamic entropy of radiation (1.6).

Hence for t � M3, we have: Scoarse
R � Scoarse

BH . Applying Page’s theorem, we see that the

fine-grained and thermodynamic entropies of the radiation are approximately equal at early

3This is characterised by a very small deviation of ρR from the maximally mixed state. A maximally mixed
state is characterised by having a pure total density matrix, and a reduced density matrix that is proportional to
the identity operator on the respective Hilbert space.
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times [11]:

SvN
R ≈ Scoarse

R t�M3. (4.1)

This explains the qualitative behaviour at the start of the evaporation process: the fine-grained

entropy of radiation follows the thermodynamic entropy of radiation, reflecting the fact that

the outgoing radiation is entangled with the black hole quantum system. At early times, there

are many black hole degrees of freedom available for the radiation to form a pure state with.

This initial behaviour is not in contradiction with the central dogma. Then when the fine-

grained/thermodynamic entropy of the radiation is equal to the thermodynamic entropy of the

black hole at the Page time, we have Scoarse
R ≈ fS0, where f is a fraction of order one and S0 is

the initial thermodynamic entropy of radiation. Similarly applying Page’s theorem (in reverse)

after the Page time, one obtains SvN
BH ≈ ScoarseBH . Now we have that the outgoing radiation is

entangled with radiation that was emitted at earlier time. After the Page time, the outgoing

radiation can no longer form a pure state together with the black hole since the former region

is greater than the latter. Past the Page time, one can say that the information of the initial

state starts to escape. If the central dogma is true, we expect the Page curve to be followed.

Overall, the approximate qualitative form of the Page curve is represented by [11,67]:

SR ≈ ScoarseBH ∝ S0

(
1− t

tevap

)2/3

tPage < t < tevap. (4.2)

In order to obtain a more accurate form and the exact values of tPage and the entropy at that

time, one has to take into account details such as greybody factors and particle helicities, which

were done by Page in [67].

4.2 Gravitational Fine-Grained Entropy Formula and the Page Curve for the

Black Hole

We will now apply the gravitational fine-grained formula (2.19) to the case of an evaporating

black hole. We introduce the term entanglement wedge (EW) [69–71] which is the bulk region

of the semiclassical spacetime that is described by or encoded in the given boundary system

such as the radiation or the black hole. It is defined at a moment in time and depends on time.

For a boundary region B, an EW is the bulk region, or domain of dependence, bounded by the

QES Q (that is homologous to B) and the boundary region B, that has the minimal generalised

entropy (2.19) by the maximin prescription, and has Q ∪ B = ∂Q [72]. From here we will call

the QES that gives the minimal generalised entropy the quantum R-T surface.

Penington [69] and Almheiri, Engelhardt, Marolf and Maxfield (AEMM) [71] embedded the

information loss problem in AdS/CFT by coupling a AdS black hole with absorbing boundary

conditions to an auxiliary system Hrad that absorbs the Hawking radiation. An example was
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done in [2] where an auxiliary system that is half of Minkowski space and containing no gravity

is attached to the boundary of AdS, through which radiation into matter fields is allowed to pass

through. To avoid backreaction, the auxiliary system is assumed to be a large and holographic.

In this prescription one has two holographic boundary systems: HCFT and Hrad. The HEE

of the black hole is then measuring the entanglement between these two systems. By the R-T

formula, this HEE would be the generalised entropy of the quantum R-T surface associated to

the boundary CFT.

The exact location of the QES depends on the amount of radiation that has escaped, and thus

on the time along the cutoff surface at which we decide to calculate the entropy. To locate the

QES, we travel a scrambling time β/2π logSBH
4 into the past along the cutoff surface and then

send a light ray into the black hole. The point where this light ray crosses the horizon is where

the surface is located close to [1]. The QES would be constant with respect to infinitesimal di-

rectional deformations. For example, consider a surface Q on the horizon and moving it inwards

along an ingoing null direction, which would decrease its area. If one moves Q too inwards to the

point where it includes more black hole interior degrees of freedom (that are entangled with the

outgoing radiation) than those that are purifying the outgoing radiation, then this would cause

the bulk entropy Ssemi-cl to increase. The location where Q accounts for just enough black hole

degrees of freedom to purify all the outgoing radiation is where the QES lies. Any infinitesimal

variations to its direction would change both its area and entropy in such a way that they offset

each other [1].

An obvious QES homologous to the entire boundary in any Cauchy slice through the interior at

any time is the empty surface. Before the Page time, this QES gives the minimal generalised en-

tropy and is thus the quantum R-T surface during this time. This vanishing surface is pictured in

figure 6. In such cases, the area term in (2.19) is zero and the generalised fine-grained entropy, or

the bulk entanglement entropy Srad, measures the entanglement between the outgoing radiation

in Hrad and the interior black hole degrees of freedom in HCFT. In other words, the interior of

the black hole is entirely encoded in the boundary HCFT, or in the EW of the CFT. During this

time, information has not yet escaped the black hole interior [69]. The reduced density matrix

of Hrad is thermal. Note that since the entropy depends on the interior geometry of the black

hole and the area term is zero, if we started in a pure state then we have that the initial entropy

is zero as well. As the black hole evaporates, the generalised entropy increases as the outgoing

radiation modes are entangled with the previously infalling matter states. This contribution of

4This is the timescale at which information gets encoded in the black hole interior and is short compared to
the evaporation time rsSBH. The scrambling time can be derived in Eddington-Finkelstein coordinates as the
infalling time of the QES [69]. In later sections as will see that after a scrambling time, the information will be
contained in the EW of the radiation and is thus recoverable by acting on the radiation with complex operators.
From the point of view of the boundary, the information lives in the past.

26



entropy is called Sgen = Srad of the vanishing surface and is depicted as the increasing green

line in figure 7. The growth of this entropy parallels the thermodynamic entropy of outgoing

radiation.

Figure 6: An empty surface homologous to the boundary that gives the minimal generalised
entropy before the Page time is labelled as the vanishing surface. The generalised entropy is
characterised by the bulk entanglement entropy of the radiation in the region Hrad. Figure taken
from [1].

Now we consider any Cauchy slice after the Page time and apply the maximin method. One

would be able to find a non-empty surface homologous to the entire boundary that lies outside

the event horizon with an area larger than that of the horizon [69]. This surface in Hrad con-

tains outgoing radiation that encodes the interior degrees of freedom. The generalised entropy

computed with this surface measures the degree of entanglement between Hrad and HCFT and is

given by the Bekenstein-Hawking entropy SBH = Ahor/4GN , which is now smaller than Srad, the

entropy computed with the vanishing surface. Therefore, this non-empty QES is the quantum

R-T surface after the Page time. During this time, for increasing times on the cutoff surface, the

QES moves along a spatial slice outwards towards the horizon. As the black hole evaporates and

the area of the horizon decreases, the QES produces a decreasing Sgen = SBH. This is depicted

as the decreasing yellow line in figure 7.

In fact, a non-empty QES already exists a short time after the emission of outgoing radiation

starts and before the escape of radiation. This surface lies a scrambling time inside the black

hole near the horizon. However, it is not the quantum R-T surface since its generalised entropy

exceeds that given by the vanishing surface. But at the Page time, the black hole undergoes a

phase transition and this is when this QES becomes the quantum R-T surface [69].

To summarise, we have three types of quantum R-T surfaces that gives the minimum of the
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Figure 7: The green line represents the increasing generalised entropy of the black hole region
with time as more outgoing radiation gets emitted. This rising entropy contribution is given by
the vanishing surface. There is entanglement among the escaping modes that are represented
by the same colour. The yellow line represents the decreasing generalised entropy of the non-
vanishing extremal surface that appears near the event horizon in the interior a scrambling time
after the black hole forms. For increasing times on the cutoff surface, we get a decreasing surface
which moves along a spatial direction outwards towards the horizon. This gives a decreasing
generalised entropy (since the black hole area is shrinking). The decreasing thermodynamic
entropy of the black hole is represented by the dotted line which is overlapped by the yellow
line. This is in contrast to the growing entropy of radiation. The fine-grained entropy of the
black hole follows the Page curve in black. This curve is a result of transitioning between the
contributions from the vanishing surface and the non-vanishing extremal surface. Figure taken
from [1].

generalised entropy Sgen across all QESs at different times: the vanishing surface before the Page

time, the non-empty surface inside the horizon at the Page time and the non-empty surface out-

side the horizon after the Page time. Using the R-T formula, the generalised entropy is initially

the fine-grained entropy of the black hole Srad until the time when the entropy contribution

from the non-vanishing surface, SBH, becomes lesser than the former. Overall, the generalised

entropy ends up following the Page curve, represented by the black line in figure 7. The tran-

sition in the Page curve from increasing to decreasing entropy at the Page time corresponds to

when the outgoing radiation starts to encode most of the black hole interior. Note that if we

were still using the original classical R-T surface instead of a QES in the computation of Srad,

then we will always find the whole interior encoded in HCFT and not Hrad, which suggests that

information never escapes the black hole interior. We have shown how the black hole gravita-

tional fine-grained entropy follows the Page curve, which indicates that evaporation as a unitary

process.
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5 Islands and the Page Curve for Hawking Radiation

The EWs and Page curve considered in the previous section concerns the black hole entropy

and not the entropy of Hawking radiation, the latter of which is involved with the information

loss problem. We would like to account for the increasing entropy of radiation Ssemi-cl(ΣRad),

where ΣRad is the exterior region outside the cutoff surface. After complete evaporation, all

the radiation resides outside the AdS space, where (quantum) gravity effects are negigible. (It

could therefore be imagined that it is collected into a quantum computer far away from the

black hole [1].) We are unable to describe this final radiation state, which we have obtained

by gravity, by a density matrix since we do not have the information required to compute its

individual matrix elements. In fact if we were to use the standard S = −Tr[ρ log ρ] as for an

ordinary QFT without gravity, we would obtain Hawking’s answer.

We have seen with holographic entropy formula (2.19) how to compute the entropy of the out-

going radiation that is entangled with the interior of a black hole in gravity. Despite residing in

a region with no gravity, it has been argued that the final radiation state could and should also

be computed using formula (2.19) since it was obtained using gravity. In other words, the argu-

ment is that the same formula can be applied in the following two different regions: the interior

of the cutoff surface in AdS space and some region without gravity outside the cutoff surface

containing a quantum system [1]. Now we will apply formula (2.19) to a region containing no

black holes – the region behind the horizon, which is not included in either of ΣRad or ΣBulk.

This motivated the addition of “islands”, ΣIsland, to the existing formula (2.19) and was first

suggested by Penington and AEMM. Considering this addition alongside the QES prescription

allows one to find the island regions. We will see that computing the Page curve using the

revised formula (with islands) turns out to compute the Page curve for the radiation and not

the black hole.

The idea to add contributions from islands to the computation of the fine-grained entropy for a

system coupled to gravity, called the island conjecture, was realised by Almheiri, Mahajan, Mal-

dacena and Zhao (AMMZ) [73] in 2019. The prescription computes the von Neumann entropy

of a region A in a QFT by extremising the generalised entropy with respect to islands and then

minimising with respect to all islands with extrema entropy. This approach was termed ‘doubly

holographic’. In formula (2.19), we considered connected QESs Q. In the island prescription,

disconnected Qs are allowed. These are manifested as regions outside the black hole far away

that contain entangled matter. An island is defined as any disconnected codimension 1 region

found by extremising the entropy; the boundary of an island is the QES. The causal diamond of

an island region is the causal domain of dependence of the region that the entropy is calculated

in and is a part of the EW of the radiation [1]. Recall that outgoing radiation is entangled

with the interior degrees of freedom. The island prescription thus allows one to increase the
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area of the boundary by including the black hole interior, which corresponds to including the

disconnected regions, and simultaneously decrease the semiclassical entropy contribution. This

is achieved by adding an area term, Ssemi-cl(ΣIsland), corresponding to the boundary area of the

island [1]. An island region with centre at the origin in shown in figure 8.

Figure 8: At late times, there is an island EW that is disconnected from the region ΣRad that
contains the outgoing radiation. When calculating the semiclassical fine-grained entropy in the
latter region, one finds that entropy in ΣIsland contributes. In two dimensions, the EW of the
black hole describes only a part of the interior and the rest is described by the EW of the
radiation, which is disconnected from the interior. In three dimensions, this disconnection is
not manifested in the same way; a connection living in another dimension connects the island
with the CFT interval in ΣRad on which we are computing the fine-grained entropy. This was
shown in [73] by considering a two-dimensional black hole in a gravity theory that is coupled to
a matter CFT2. Figure taken from [1].

The island prescription states that the fine-grained entropy of the full exact quantum state of

the radiation, Srad(R), is given by the “island formula” [1]

SRad(R) = minQ

{
extQ

[
A(Q)

4GN
+ Ssemi-cl [ΣRad ∪ ΣIsland]

]}
, (5.1)

up to subleading corrections. We vary the area A of the boundary of the island to find an

extremal value for the RHS of (5.1), then find the minimal value across all extremal positions

as well as islands. Here ΣRad represents the entire region outside the cutoff surface to infinity,

which is where all the outgoing radiation that has escaped from the black hole interior resides,

and ΣIsland is some island region of the bulk inside the black hole. There can be any number

of such island regions. Region ΣRad is described by the density matrix ρΣRad
in the full theory

of quantum gravity and a state in the region ΣRad ∪ ΣIsland is described by the density matrix

ρ̃ΣRad∪ΣIsland
. Such states can be evaluated by performing a semiclassical path integral on the

Euclidean black hole saddle [2]. Ssemi-cl [ΣRad ∪ ΣIsland] is the fine-grained entropy of the bulk,
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which is the entropy of the island plus the outgoing radiation in the semiclassical description. It

was emphasised in [1] that the LHS is the full entropy for the full exact quantum state of radia-

tion while the RHS is the quantum state of radiation in the semiclassical description; both states

are different. The former is the radiation state that one would wish to obtain non-perturbatively

from a complete theory of gravity. We see that formula (5.1) is a generalisation of (2.19); both

formulas are based off the same principles of minimising and extremising. Whilst the latter was

motivated as the generalised entropy of a black hole, the former has no relation to a black hole

and concerns just the radiation [1]. In a case where the quantum system is entangled with fields

inside a closed universe, or in a case where the interior of a black hole has evaporated completely,

the area contribution from the boundary of the island is zero.

Now we will compute the Page curve for the radiation using the island formula. At early times

of the evaporation there is no island. Thus extremising the island formula would yield an empty

set. Then Ssemi-cl(ΣIsland) = 0 and the contribution is just Ssemi-cl(ΣRad). Note that, similar to

the vanishing surface considered in section 4.2, the no island contribution also always extremises

the generalised entropy, but does not always give the global minimal entropy. As the black hole

evaporates, more outgoing radiation escapes and Ssemi-cl(ΣRad) increases. This is represented

by the increasing green line in figure 9. A scrambling time after the black hole forms, a non-

vanishing island that extremises the generalised entropy surfaces. This island has a centre at the

origin and its boundary is close to the black hole event horizon [1]. For increasing times on the

cutoff surface, the island moves outwards towards the horizon. The Ssemi-cl term is small relative

to the area term because now most of the interior modes that purify the outgoing radiation are

included in the island [1]. In this case, the generalised entropy is dominated by the area term in

(5.1), and decreases to zero with time. This behaviour is represented by the decreasing yellow

line in figure 9.

To summarise, we found an increasing entropy contribution from the empty island and a de-

creasing entropy contribution from the non empty island which appears shortly after the black

hole starts evaporating. As in the case of applying the QES prescription in section 4.2, here we

also choose the island which gives the minimal entropy contribution at each time. Doing this,

we obtain the form of the Page curve again. The overall fine-grained entropy of the outgoing

radiation is depicted as the black curve in figure 9. Thus we see that the gravitational fine-

grained entropy formula for the black hole, formula (2.19), and the formula for the entropy of

exact state of radiation, (5.1), indeed point to the same result.
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Figure 9: The green line represents the increasing generalised entropy with time from the no-
island contribution, Ssemi-cl(ΣRad), as more outgoing radiation escapes as the black hole evapo-
rates . The yellow line represents the decreasing entropy from the the island contribution which
appears some scrambling time after the black hole forms. It tracks the thermodynamic entropy
of the black hole. When we consider both contributions and at each time and pick the minimal
one, we get the final answer for the full entropy of radiation, which gives the Page curve. This
is shown in black. Figure taken from [1].

5.1 The Euclidean Black Hole

Before moving on to the next section, we would like to first set some historical context in

this section. We begin by introducing the Euclidean black hole and its thermal properties and

lead up to a historical overview of the topic of reconstructions of the black hole interior. The

geometry of the four-dimensional Euclidean black hole is obtained by analytically continuing the

Schwarzschild solution to a Euclidean geometry by performing a Wick rotation t = iτ , where τ

is some imaginary time. The Euclidean metric is

ds2
E =

(
1− rs

r

)
dτ2 +

1

1− rs
r

dr2 + r2dΩ2
2. (5.2)

By choosing the periodicity of τ = τ +β with period 2π/κ, where κ = 1/2rs, and defining a new

radial polar coordinate, this metric is made regular everywhere; the conical singularity at the

horizon rs = 2M becomes a coordinate singularity at the origin. Near the horizon, this metric

has a R2×S2 topology; the former is given by the first two terms in the metric. The periodicity

condition in imaginary time required to make the metric regular at rs defines a unique temper-

ature TH = κ/2π, the Hawking temperature of the black hole. At any other temperature, or

with any other periodicity in τ , a conical singularity would exist. In other words, the black hole

is in equilibrium with the quantum fields only at TH [74].

Gibbons and Hawking in [12] used an Euclidean path integral for the imaginary-time evolution of

the Euclidean black hole. They treated this path integral as a partition function Z(β) = Tr e−βH .

In QFT this is a standard argument; with knowledge of the partition function, one can compute
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the energy and entropy using

E = −
∂βZ(β)

Z(β)
, (5.3)

S = (1− β∂β) logZ(β). (5.4)

For the Euclidean black hole, we have the path integral [1, 74]

Z(β) =

∫
[DΦ]e−IE [Φ] ∼ e−IclassicalZquantum, (5.5)

where the fields Φ have the same periodicity as τ and IE is the Euclidean action that gives

the Euclidean Einstein equations whose solutions give the metric (5.2). This thermal partition

function has a contribution Iclassical from gravity and Zquantum from the quantum fields on the

geometry. More precisely, one can implement a cutoff at some finite radius such that the geom-

etry within this cutoff is Euclidean and that outside the cutoff is flat, with each metric having

its own Euclidean action [11]. It turns out that the latter, flat, geometry contributes to (5.5)

more than the former Euclidean geometry. This is not alarming if one considers the leading con-

tribution to (5.5) as coming from the Hawking radiation residing in the flat space region. The

Euclidean metric then produces the subdominant contributions. By considering the solutions

near rs and applying equation (5.4) to (5.5), one can derive the generalised entropy (2.12) [12].

The metric (5.2) corresponds to a “cigar” shape with a regular tip at the horizon rs. At a

distance a few rs away from the black hole, the metric has the geometrical shape of a cylinder,

which is equivalent to having a strip with both its ends glued together with circumference β,

where β is the inverse temperature measured by an observer far away [1]. The path integral will

be calculated on this geometry with the angular coordinate θ = θ + β. Likewise, the fields in

the path integral would have the same periodicity, as well as any observables computed. The

cigar geometry (5.2) can be split into two and by computing the Euclidean path integral on the

lower half, one can obtain the quantum state of the fields on the upper half, corresponding to

a two-sided Schwarzschild black geometry with a smooth horizon. Tracing over one side would

give a thermal distribution around TH [11, 59]. In general, this is called the thermofield double

state [75].

Similarly, in AdS/CFT, an eternal AdS black hole can be represented by two disconnected

flat CFT exteriors (two asymptotic AdS boundaries), that are connected by a wormhole called

the Einstein-Rosen bridge. The degrees of freedom on the two CFTs do not interact, but

by gravity, bulk interactions are allowed via the wormhole. This manifests in terms of an

entanglement entropy between the black holes characterised by the Bekenstein-Hawking entropy

of the black hole [76]. It was shown in [77] that the bulk ground state of the wormhole, obtained
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by performing the CFT path integral on the boundary, can be written in terms of a product of

the two CFTs. Two maximally entangled CFTs are represented by the state [76]

|Ψ〉 ∝
∑
i

e−βEi/2 |̄i〉 |i〉 , (5.6)

where |i〉 is an eigenstate of the Hamiltonian of one CFT and |̄i〉 is the state obtained by switch-

ing the two CFTs and reversing time in each CFT. This is the CFT version of the general

thermofield double state.

This construction was used in introducing the concept of “ER=EPR” [76]. Unitarity required

that the outgoing radiation modes be entangled with both the interior modes inside the hori-

zon and the early outgoing radiation (which later becomes the late time outgoing radiation).

But this is forbidden by the strong subadditivity condition. This implied that unitarity of the

bulk dynamics is inconsistent with having a smooth horizon for an infalling observer after the

Page time [78, 79]. According to ER=EPR, the Einstein-Rosen bridge in the two-sided AdS-

Schwarzschild geometry is a manifestation of entanglement and connects the black hole and

outgoing radiation regions. These two regions are entangled in the sense that if an observer

were to collect the radiation and input it into a quantum computer, the output would be the

second black hole that is maximally entangled with the first [77]. Even though an evaporating

black hole is one-sided, at the Page time it becomes two-sided. At this time, there is maximal

thermal entanglement between the two regions [76].

The constructions we have reviewed above are part of the historical development of studying

the information loss problem and black hole interior reconstructions. In 1976, Hawking argued

that correlations between outgoing radiation with the initial matter state decay exponentially in

the entropy for computations performed on the Schwarzschild geometry. Late time correlations

were largely studied as a means to probe the microscopic degrees of freedom of a black holes

quantum system. However, they do not agree with the semiclassical description of the black

hole horizon [78]. In AdS/CFT, large black holes do not spontaneously evaporate; radiation is

reflected off the AdS boundary and back into the black hole. Thus correlations with the initial

states in this context in the semiclassical description take arbitrarily long to decay. This is in

fact the information loss problem in the context of AdS/CFT. Maldacena in [77] considered

a thermal state of an eternal AdS black hole and showed that the two-point correlation func-

tion of quantum fields do fluctuate and eventually decay exponentially in the entropy. Noting

that the entropy is inversely proportional to GN , this suggests that the correlations are due to

non-perturbative effects and thus are undetectable by a perturbative analysis. Such late time

correlation functions were also studied in JT gravity [80]. Generally, in the past, investigating

the information loss problem in the context of AdS/CFT was limited to studying effects that
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were exponentially small, which excludes the Page curve since it has a O(1/GN ) effect [2].

A resolution to this was to construct a dictionary for interior operators behind the horizon and

CFT observables [81]. This was studied by Almheiri in [79]. Papadodimas and Raju argued

that such boundary operators must be state-dependent and explicitly constructed the interior

operators for a given microstate [82, 83]. Different boundary operators of a bulk AdS space are

related to different interior bulk operators; the latter can be reconstructed from the former. This

is an example of state dependence, which was argued in [70] to be only required for certain types

of reconstructions. In general, interior reconstructions of the black hole in the past involved the

state-dependence of interior operators [82–85] and is an area of study in quantum information

and correction. Past ideas for interior reconstruction served as motivation for reconstruction

proposals today like the entanglement wedge reconstruction (EWR) [86–88]. A bulk operator

can only be reconstructed if it is strictly in the EW of the boundary region and we use EWR

to find the part of the boundary to use in the reconstruction. In [79], Almheiri applied EWR

alongside ER=EPR for a two-sided black hole with absorbing boundary conditions. He noted

that degrees of freedom in the EW of one side can be later found in the EW of the other side.

Penington in [69] applied the works of [79] and [76] and used EWR to show the consistency

between having a smooth horizon and ensuring unitarity for one-sided evaporating black holes.

6 Entanglement Wedge Reconstruction

Thus far we know that information is not lost and does escape. In the previous sections we

found that both the black hole and radiation entropies follow the Page curve. However, under-

standing the Page curve is only an aspect of the black hole information loss problem. We still

do not know: 1. How the infalling matter escapes as outgoing radiation from a bulk perspective;

2. If the black hole degrees of freedom in the central dogma (which characterise the geometry

contained within the minimal surface) provide any information about the interior and 3. How

the final state encodes the initial infalling information.

A peek into the answer to the above questions were given in section 4.2, where the EWs of

the black hole and of radiation were introduced. Note that it was assumed that the outgoing

radiation remained completely thermal till the end of the black hole evaporation and that it is

purified by interior modes. The EWR proposal by Penington and AEMM states that the degrees

of freedom of the black hole or radiation subsystem is described by its respective EW, or vice

versa [69]. A part of the interior is encoded in the black hole degrees of freedom and a part to

the radiation (represented by islands). When we say that the EW describes the subsystem, by

describe we mean that one can perform a quantum operation on the radiation degrees of free-
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dom in order to recover the state of a qubit (or a small number of qubits) inside the EW (the

interior), with the recovery being state or subspace dependent, i.e. dependent on the state of

the rest of the qubits [69]. Such operations have complexity of the order of an exponential of the

black hole entropy. One complex measurement involves creating a wormhole (such as the Gao

Jafferis Wall traversable wormhole [89]) that connects the black hole interior to the quantum

computer that is conducting the measurement. Other operations include the Petz map [90–93]

and a modular Hamiltonian that can act non-locally in the bulk. Petz maps were used in [3] to

define a reconstruction operator using a gravitational path integral and the replica method.

In information recovery, the Hayden-Preskill decoding criterion [94] states that if a small diary

was thrown into the black hole before the Page time, then its information can be reconstructed

at the Page time. But if the diary was thrown in after the Page time, one would have to wait

for a scrambling time before its information can be reconstructed from the outgoing radiation.

Penington in [69] showed that the EWR precisely reproduces these results and further gener-

alised the criterion to show that reconstruction of the diary depends on its energy and entropy.

A diary that was thrown into the black hole before and after the Page time would reside in the

EW of the radiation and the CFT respectively. The reconstruction of the diary that was thrown

in before the Page time rests on knowing the state of the black hole. Note that although the

entanglement between radiation and the interior is independent of the initial state that fell into

the black hole, the encoding of the interior in the radiation does depend on the initial state.

Hence, an observer with access to the radiation is able to recover information about the initial

state.

Penington showed that at late times after the Page time, interior degrees of freedom are encoded

in the early-time outgoing radiation. In other words, a large part of the interior is described

by radiation degrees of freedom and not by the black hole degrees of freedom that is associated

to the central dogma. We have in fact already used EWR in section 2.7. In the context of the

island conjecture, EWR implies that information in islands ΣIsland is contained in the radiation

region ΣRad. For late times after the Page time, we have outgoing radiation modes b that are

entangled with both the early time outgoing radiation modes b′ and their Hawking mode partner

a that is in the interior. The clearer picture here is that b′ actually resides in an island and

is a part of the radiation (it is in the EW of radiation) and a is the future evolution of b′, i.e.

a = b′ [63]. We see that the interior operators do not act on the Hilbert space of the black hole

associated with the central dogma, but on the Hilbert space of the radiation.

Actually if one noticed the use of the same surface Q in both the QES and island prescriptions,

one would not be surprised by both producing the Page curve. Indeed, for a pure matter state

on the whole Cauchy slice, we have Ssemi-cl(ΣQ) = Ssemi-cl(ΣRad∪ Island) [1]. In particular, only
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if one assumes EWR, can the claim that the QES computes the radiation entropy be valid.

AMMZ considered black hole evaporation in AdS2 with JT gravity embedded in a holographic

theory in AdS3 [73]. They considered a black hole coupled to a matter CFT on a half line and

computed the entropy associated to regions in the CFT. It was found that after the Page time,

regions lying deep in the black hole interior (and thus the degrees of freedom of the interior

quantum state) are geometrically connected to the escaped radiation via an extra dimension.

In other words, the EW for the radiation can reside deep inside the black hole interior in the

form of an island. In fact, the appearance of an island was previously noted by Penington and

AEMM when computing the EW of a black hole. The extra dimension in the holographic theory

connects the island to the exterior where the radiation resides in [73]. A similar embedding was

done for an AdS4 black hole in [95].

We now illustrate EWR using a simple example. In figure 10, the green spacetime regions

represent the EW of the black hole, which are associated to the quantum degrees of freedom

that describe the black hole from the outside. The blue regions represent the EW of radiation.

Consider the minimal vanishing surface of a spatial slice going all the way to r = 0 at a time

before the Page time. The EW of the black hole in this case is represented by the green region in

figure 10(a). Any point in this region can be reached with initial knowledge of that slice. After

the Page time, we have a new QES and the spatial slice only goes up to the point labelled QES

in figure 10(b). Now the blue regions includes part of the black hole interior. In other words, the

black hole degrees of freedom only describes a part of the interior, given by the green region in

figure 10(b). In computing the entropy of radiation, we were including an interval on the inner

blue region in figure 10(b). Thus the EW of radiation includes this interval region of the black

hole interior. The fine-grained entropy formula of the radiation after the Page time includes this

portion of the interior (the interval) as part of the island. Thus formula (5.1) depends on the

quantum state of that region. Lastly ,when the black hole has evaporated completely, the EW

of radiation is the whole black hole interior (which is flat space), represented by the blue region

in figure 10(c).

For some intuition on the QES in figure 10(b), consider decoupling the total quantum system

at some time on the cutoff surface using some boundary condition. This stops the black hole

evaporation at the point of decoupling, i.e. there is no longer interaction between the radiation

outside and the black hole. Now, one can only recover information in the green region (the

black hole) behind the horizon by altering the Hamiltonian, but not from the blue region in

the interior (the island). Regardless of the amount and complexity of operations done on the

black hole system, information in the island can never be retrieved. In this sense, the QES that

connects the island and black hole systems acts as the boundary of the region that is accessible
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Figure 10: The green and blue regions represent the EWs of the black hole and escaped radiation
respectively. The white region contains no gravity and is flat. (a) The black hole at early times
before the Page time. A diary previously thrown into the black hole would reside in the EW
of radiation represented by the inner green region. (b) The black hole after the Page time. A
diary previously thrown into the black hole would reside in the EW of the CFT represented
by the inner and outer blue regions that are disconnected. The diaries in (a) and (b) can be
reconstructed by operating on the radiation if the initial state of the black hole is known. (c)
The black hole after complete evaporation. Semiclassical description is no longer valid. The
radiation and CFT systems are disconnected. All the outgoing radiation modes lie in the EW
of the radiation represented by the inner blue region. Figure taken from [1].

through operations on the black hole degrees of freedom [63].

Almheiri et al. in [1] emphasised that there are two concepts associated to the black hole degrees

of freedom. The first is that it refers to the quantum degrees of freedom associated to the central

dogma. In the analogy with a piece of coal, this corresponds to all the degrees of freedom of the

coal’s surface and interior. The second concept is that it refers to the quantum interior degrees

of freedom of the black hole in the semiclassical description. The degrees of freedom inside the

coal are not included in this case. These degrees of freedom are either encoded in the Hilbert

space associated to the central dogma or to that of the radiation region, depending on the QES

containing the degrees of freedom [1].

We now revisit the two geometries that were introduced in section 3.1. In figure 10(b), consider

some qubit that is inside the island, i.e. it is associated to the black hole degrees of freedom. In

principle, this qubit is accessible by operating on the outside radiation (outer blue region in the

figure 10(b)). Note that this operation ultimately does not affect the state of the qubit; initial

perturbations can be quantum error corrected to ensure this [63]. Relating to the second con-

cept of black hole degrees of freedom mentioned above, this qubit has no relation with degrees

of freedom inside the coal. In the geometry of a disconnected parent and baby universe, the
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former only has access to a part of the latter, which is the middle green region in figure 10(b).

The other part of the baby universe, the island region, can only be accessed from the outside [63].

Recall that in the bags of gold geometry, the fine-grained entropy of the object from the outside

is just the area term given by the area of the throat, which is the QES. But this would not

account for the large “extra” amount of entropy because the EW of the black hole degrees of

freedom ends near the surface of the throat and does not include the whole interior, but only a

part of it. The rest of the interior region is entangled with other matter that lives inside this

closed universe. In fact, after the Page time late into black hole evaporation, the geometry of

the black hole resembles that of a bag of gold [63]. In figure 10(b), consider a slice starting in

the interior, passing through the QES and ending in the outer blue region. The geometry of this

slice and its associated entropy parallels that of the bag of gold, where the portion of the slice

that is in the green region and crossing the black hole horizon (QES) corresponds to a narrow

throat. The entropy in the island in the case for an old black hole would be the radiation of the

bag of gold, and the rest of the entropy in the bag would be entangled to some other system

that depends on how the closed universe was created [63].

7 Conclusion and Discussion

We saw the analogies between the laws of black hole mechanics and laws of thermodynamics,

which suggested the thermodynamic Bekenstein-Hawking entropy. Evidence that such an en-

tropy is thermodynamic has to come from a precise statistical mechanical interpretation, like the

counting of black hole microstates. To this day we have only achieved this for specific black holes

in string theory and AdS/CFT. Since the first piece of such evidence was provided by Strominger

and Vafa in 1996, many similar calculations have been done, even for the Schwarzschild black

hole. This was done in various dimensions by Xiao in [96] by considering the black hole as com-

posed of microscopic particles. In particular, he noted a resemblance of a Schwarzschild black

hole to a long non-relativistic quantum mechanical string in one dimension. Futhermore, Xiao

advocated for describing a black hole with an equation of state with cosmological constant w = 1

and suggested that a corresponding holographic fluid permeated the early universe. Another mi-

croscopic derivation of the Bekenstein-Hawking entropy for non-supersymmetric Schwarzschild

black holes in four and five dimensions was performed in [97] and was also related to D-branes.

The Bekenstein-Hawking entropy together with AdS/CFT motivated its generalisation to higher

dimensions for CFTs with a dual gravitational theory, the R-T formula, which computes the

fundamental entanglement between the boundary CFT and a region in AdS space in the CFT’s

gravitational dual. The area of interest is the minimal bulk surface. For a black hole treated as
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two subsystems, the HEE is given by the entangling surface that separates the subsystems and is

the event horizon. Solodukhin in [28] provided a holographic description of the horizon for two-

and four-dimensional black holes; an attempt to interpret the Bekenstein-Hawking entropy as a

HEE was also done. The minimal R-T surface in the HEE is generally a challenge to find and

compute. Whilst relatively simpler to find for specific geometries in three-dimensional gravity

AdS3/CFT2, Bao and Davies in [98] produced an algorithm with a polynomial complexity to

achieve this task for n boundary subregions.

The beauty of the R-T formula is that its nature converts the computation of reduced density

matrices to a geometric one; pure and mixed states of a black hole can be distinguished by the

interior geometry. The approaches used to compute entropy in this dissertation do not involve

knowing the precise quantum state of the subsystems; we only provided qualitative descriptions

of the fine-grained entropies in semiclassical geometry using gravity as an effective theory, which

showed us how the spacetime geometry is constructed from the degrees of freedom. AdS/CFT

and holography have been used to test these results; the tools of string theory serves as a geomet-

rical bridge between the entropies of gravitational systems and of quantum systems. AdS/CFT

allows us to answer the question of why black holes with different interiors result in the same

final state of radiation.

We do not know if the fine-grained formula (2.19) would work for cutoff surfaces lying near

the black hole or in non static spacetimes outside the cutoff surface. Current derivations of

formula (2.19) involves summing over degrees of freedom or microstates using the Euclidean

gravitational path integral using a method similar to that of Gibbons and Hawking in [12]. It is

an assumption, a constituent of the central dogma and also does not reveal an explicit picture

of the Hilbert space associated to the computation. Nonetheless, current understanding using

string theory is successful in explaining the emergence of black hole thermodynamics. In gravity,

we still need to understand how to define or derive this formula, such as the saddle points one

should use [1]. In [3], it was claimed that the Page curve for the black hole was derived from

using only a gravitational path integral without requiring AdS/CFT.

We saw that the quantum extended R-T formula, which uses QESs, explains the Page curve.

In the QES prescription, the quantum term in (2.19) can compete with the classical area term

to produce new saddle points for the QES, which could describe the late time behaviour of the

entanglement entropy. At the Page time the EW undergoes a phase transition in the quantum

R-T surface, the QES that gives the minimal generalised entropy, of an evaporating black hole.

The decrease in entanglement entropy is strictly less than that of the Hawking radiation because

the quantum R-T surface lies strictly just inside the event horizon a scrambling time in the past.

This is equivalent to the statement that the GSL is a strict inequality. It is remarkable that we
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could reproduce the Page curve from the extremising and minimising procedures in the semi-

classical prescription without knowledge of the details of black hole degrees of freedom and how

information is encoded in the radiation. EWR explains the Hayden Preskill decoding criterion

as well as ensures consistency between the Page curve and the bulk entanglement structure.

Crucial is the state dependence of the EWR, which explains how information is able to escape

the black hole.

In the island prescription, we saw that the black hole interior is included in the final state of

radiation, and that the Page curve was also reproduced. One could argue that the addition

of islands is just equivalent to including the interior region, which included for more purifying

modes and produced a pure state. But, as pointed out in [1], this was necessitated by gravity.

In the island formula there is the presence of two types of radiation quantum states – the one

that lives in the semiclassical geometry and the exact one that a full theory of quantum gravity

is supposed to give. In the future, one would like to obtain the latter directly from a theory of

gravity instead of through string theory in the semiclassical description.

In the last section, we qualitatively saw that information recovery is possible through performing

operations on the outgoing radiation, which allowed for the extraction of information from the

interior. More precisely, Penington et al. in [3] showed that this involves creating wormholes in

the semiclassical geometry, which ensures unitarity. In such cases the exact state of radiation

(the left hand side of (5.1)) and computations using the replica method are required. Crucial to

the historical development of an understanding of the information loss problem was the AMPS

paradox, of which an explicit discussion was omitted in this dissertation. However, this paradox

was shown to be resolved in [1] and [69].

7.1 A Few Notes on the Page Curve

We saw that by the requirement of having a pure final state radiation, the entanglement en-

tropy must decrease back to zero. Page noted that the rate of this decrease is bounded and the

inflection point of the Page curve at the Page time is consistent with this. The transition at the

inflection point is sharper and faster for more chaotic black hole systems; else, the evolution of

the entropy takes on a flatter shape [99].

In the discussion of the Page curve, a detailed description of the segment of time within

O(tPage/
√
SBH) of the turning point at the Page time was omitted. This was tackled by Pening-

ton in [69], which we will now follow. The curve has an O(1) correction [68] at the turning point

of the curve due to fluctuations in the area of the horizon and total energy of radiation that are

of order O(
√
GN ) and O(

√
S) respectively. In other words, there is no well-defined R-T surface
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in this period of time and so the entanglement entropy remains stagnant. But it is argued to be

possible to treat a state in the total system, which is a superposition of the two subsystems (the

black hole and radiation), as having a well-defined R-T surface. Then upon performing EWR,

one will find that a tiny, non-perturbative error exists for some of the states of the total system;

these states would have the interior encoded in the radiation outside the cutoff surface, while

the remaining states will have the interior encoded in the CFT. The number of former states

increases as the black hole evaporates until the whole interior can be reconstructed from the

radiation, albeit with a tiny error [69]. Penington pointed out that a plot of the fraction of states

with interior encoded in the radiation region against time would allow one to discern the form of

the peak of the Page curve. In addition, an “error” in the Page time of order O(β
√
SBHH) due

to the uncertainty in the rate of evaporation implies that in principle it is possible to compute

the entropy to order O(1/
√
SBH) accuracy at all times [69]. Hence, we see that the fluctuations

allows for a more precise calculation of the Page curve.

7.2 Looking Towards the Future

The AdS/CFT framework, which is presently assumed to be accurate non-perturbatively, allows

us to explore the low energy effective gravitational theory and its properties. It also explains ob-

servations such as the fate of the information, but not how the fate occurs. One would also desire

to understand current formulations of HEE and the EWR beyond the context of AdS/CFT and

in the context of an independent theory of quantum gravity in a general background. Such a full

theory of quantum gravity will be reproducible from perturbative analyses in string theory, which

will also extend the types of quantum mechanical systems we can study. Currently, AdS/CFT

is limited to specific or special geometries and spacetimes with boundary conditions where we

can define quantum mechanical systems or quantum fields on [99]. Of particular attention is the

problem of microscopically distinguishing between the degrees of freedom encoding the black

hole and the degrees of freedom encoding the radiation, which requires using the holographic

tools beyond asymptotic boundaries. Achieving this would provide an explicit picture of how the

black hole interior is encoded in the radiation even before one is able to extract the radiation [69].

Generalising current constructions in string theory to be applicable in cosmology is important

for obtaining an accurate interpretation of the black hole singularity and the physics near that

region. What does an infalling observer see? Past proposals for ensuring a smooth horizon is

seen by such an observer were attempted without accurate knowledge of the black hole inte-

rior [100, 101]. Understanding quantum gravity in a cosmological background would allow us

to study the information problem in our universe. In this context, we still do not know if in-

formation escape black holes. There are no timelike or lightlike asymptotic regions in de Sitter

spacetime on which to base the Cauchy slice; the state-dependent encoding of the interior in
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radiation after the Page time may not be applicable [69]. Lastly, quantum cosmology would

allow for the study of the big crunch of our universe. In similar analogy, Hawking radiation is

like the early fluctuations that permeated the universe during inflation which later became the

CMB. Our expanding universe also has a cosmological event horizon which we would like to

understand fundamentally and quantum mechanically.

The topic of this dissertation connects many different areas of physics and in particular con-

nects quantum information theory and the geometry of spacetime. Models of quantum systems

resembling black holes have been used to study this area. Such models must have, among other

features, a qubit number comparable to the black hole entropy, be chaotic, and be strongly

interacting [102]. Quantum circuits are such an example; operating on technologies such as

trapped ions, superconductors and silicon quantum dots, one would like to study the emergence

of gravity and the spacetime in relation to quantum corrections in such systems. It will be

interesting to discover if such systems are a universe of their own [102].
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