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Abstract

In the present paper we develop the algebraic Bethe ansatz approach to the case of non-skew-symmetric 
gl(2) ⊗ gl(2)-valued Cartan-non-invariant classical r-matrices with spectral parameters. We consider the 
two families of these r-matrices, namely, the two non-standard rational r-matrices twisted with the help of 
second order automorphisms and realize the algebraic Bethe ansatz method for them. We study physically 
important examples of the Gaudin-type and BCS-type systems associated with these r-matrices and obtain 
explicitly the Bethe vectors and the spectrum for the corresponding quantum hamiltonians in terms of 
solutions of Bethe equations.
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1. Introduction

1.1. Classical r-matrices and quantum integrable systems

Quantum integrable systems are of utmost importance for the quantum mathematical physics. 
In some sense, the most interesting quantum solvable systems are the ones admitting Lax rep-
resentation, i.e. the so-called Lax-integrable models. These systems can be further divided into 
the two classes: the ones for which the relevant Lax algebra is linear and the ones for which 
the Lax algebra is quadratic. The commutation relations of linear and quadratic Lax algebras are 
determined by classical r-matrices and quantum R-matrices, respectively.

For a long while it was commonly believed that integrable systems associated with linear 
Lax algebras are just the artefacts of the integrable systems associated with quadratic algebras 
i.e. quantum groups. That is to say that for quantum integrability are pertinent only the skew-
symmetric classical r-matrices r12(u1, u2) ∈ g ⊗ g, such that r12(u1, u2) = −r21(u2, u1), and the 
corresponding linear Lax algebras. Here g is (semi)simple Lie algebra or reductive Lie algebra 
gl(n).

In the papers of the first author [17,18,21,20] it was shown that one can associate quantum 
integrable systems also with more general, non-skew-symmetric, classical r-matrices r12(u1, u2)

satisfying instead of the ordinary classical Yang-Baxter equation the generalized classical Yang-
Baxter equation [7–9]:

[r12(u1, u2), r13(u1, u3)] = [r23(u2, u3), r12(u1, u2)] − [r32(u3, u2), r13(u1, u3)]. (1.1)

Notice that the variety of solutions to the equation (1.1) is wider than the variety of solutions 
to the ordinary classical Yang-Baxter equation [3,4], in particular, it contains the set of skew-
symmetric classical r-matrices as a subset. It also contains the “twisted” non-skew-symmetric 
classical r-matrices of the following form:

rσ
12(u1, u2) = r12(u1, u2) − σ2r12(u1, u

σ
2 ), (1.2)

where r12(u1, u2) is a skew-symmetric classical r-matrix such that

r12(u1, u2) = −σ1σ2r12(u
σ
1 , uσ

2 ),

here σ is an involutive automorphism of g and u → uσ is an involution in C. The variety of 
solutions to the equation (1.1) contains also many other non-skew-symmetric classical r-matrices 
[16,17,20].

Any solution to the equation (1.1) yields different quantum integrable models, in particular, 
the generalized Gaudin models [16–18] and generalized Gaudin models in an external magnetic 
field [21], where the role of the “integrable” magnetic field is played by the shift element c(u)

satisfying the following linear equation:

[r12(u1, u2), c1(u1)] − [r21(u2, u1), c2(u2)] = 0. (1.3)

In the case of the Lie algebra g = gl(2), considered in the present paper, the corresponding 
mutually commuting hamiltonians have the following explicit form:

Ĥn =
N∑ 2∑

rij,kl(νm, νn)Ŝ
(m)
ij Ŝ

(n)
kl +
m=1,m �=n i,j,k,l=1

2
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+ 1

2

2∑
i,j,k,l=1

r
ij,kl

0 (νn, νn)(Ŝ
(n)
ij Ŝ

(n)
kl + Ŝ

(n)
kl Ŝ

(n)
ij ) +

2∑
i,j=1

cij (νn)Ŝ
(n)
ij , (1.4)

where r12(u, v) =
2∑

i,j,k,l=1
rij,kl(u, v)Xij ⊗ Xkl is a classical r-matrix, r

(0)
12 (u, v) =

2∑
i,j,k,l=1

r
ij,kl

0 (u, v)Xij ⊗ Xkl its regular part, c(u) =
2∑

i,j=1
cij (u)Xij is a shift element, Xij , 

i, j ∈ 1, 2 is a standard basis of gl(2): (Xij )αβ = δiαδjβ , Ŝ(n)
kl = π(n)(Xij ) and π(n), n ∈ 1,N are 

representations of the Lie algebra gl(2).
The physical importance of the generalized Gaudin hamiltonians (1.4) is based on the fact that 

upon fermionization of the spin operators Ŝ(n)
kl they produce integrable fermion hamiltonians of 

the BCS-Richardson-type used in nuclear physics [2], in the theory of quantum dots and small 
metallic grains [11–13] etc. The generalized Gaudin models and non-skew-symmetric classical 
r-matrices have attracted considerable interest [33,35,37–40,32,34,36,41].

1.2. Aims of the paper

The aim of this paper is two-fold. The first aim is to continue the study of the general-
ized Gaudin models based on the non-skew-symmetric classical r-matrices, their generalized 
Richardson’s counterparts and to specify physically interesting ones. This study was initiated by 
the first author in [16,17] for the case of the Gaudin-type models and in [22] for the case of the 
Richardson-type models. Moreover, the cases of r-matrices which are diagonal in some natural 
basis, have been studied in the papers [22–24,27], including their Richardson-type systems and 
corresponding spectral problem. With the present paper we begin the study of the general non-
diagonal, non-Cartan-invariant non-skew-symmetric r-matrices, their Richardson-type models 
and their spectra. For this purpose we consider two non-standard rational skew-symmetric r-
matrices written as follows [4,10]:

r12(u, v) =

2∑
i,j=1

Xij ⊗ Xji

u − v
+ c

(
v(X11 − X22) ⊗ X21 − uX21 ⊗ (X11 − X22)

)
, (1.5a)

r12(u, v) =

2∑
i,j=1

Xij ⊗ Xji

u − v
+ c

(
(X11 − X22) ⊗ X21 − X21 ⊗ (X11 − X22)

)
, (1.5b)

where c is an arbitrary parameter. Furthermore, we construct their twisted counterparts (1.2)
having, up to an equivalence, the following explicit form:

rσ
12(u, v) =

2∑
i,j=1

Xij ⊗ Xji

u − v
+ c(X11 − X22) ⊗ X21, (1.6a)

rσ
12(u, v) = v2

u2 − v2 (X11 ⊗ X11 + X22 ⊗ X22) + uv

u2 − v2 (X12 ⊗ X21 + X21 ⊗ X12)+
+ cv(X11 − X22) ⊗ X21, (1.6b)
3
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here, again, c is an arbitrary parameter. These r-matrices may also be viewed as two one-
parametric families of non-skew-symmetric, non-Cartan-invariant deformations of standard 
skew-symmetric rational and non-skew-symmetric trigonometric r-matrix [24]. The correspond-
ing Richardson-type models will be one-parametric deformations of the Richardson model of the 
s-type [2] and px + ipy -type [23,24], [28]. In particular, the r-matrix (1.6b) yields the following 
integrable Richardson-type fermion hamiltonian:

Ĥ =
N∑

n=1

εn(c
†
n,ε′cn,ε′ + c†

n,εcn,ε) + g

N∑
m,n=1

√
εnεmc

†
m,ε′c†

m,εcn,εcn,ε′+

+ cg

N∑
m=1

(c
†
m,ε′cm,ε′ + c†

m,εcm,ε)

N∑
n=1

√
εncn,εcn,ε′ , (1.7)

constituting a one-parametric family of deformations of the px + ipy reduced BCS hamiltonian 
[23,24]. Here c†

n,ε , cm,ε′ , m, n ∈ 1,N , ε, ε′ ∈ {+, −} are standard fermion creation-anihilation 
operators, εn is a free energy of the n-th fermion and gnm = g

√
εnεm is a pairing interaction 

strength.
Notice that non-standard rational skew-symmetric r-matrices (1.5a)-(1.5b) have no diago-

nal shift elements satisfying the equation (1.3). Therefore one can not associate with them 
Richardson-type hamiltonians possessing the kinetic terms. This confirms the observation of 
the first author [27] that non-skew-symmetric classical r-matrices are more pertinent to the con-
structions of the integrable Richardson-type hamiltonians than the skew-symmetric ones.

Now we come to the second aim of our paper, which is to the develop methods for complete 
integrability of the quantum systems related to the classical r-matrices.

1.3. Algebraic Bethe ansatz

The exact solvability of the quantum integrable models, i.e. the diagonalization of the cor-
responding Hamiltonian and related integrals of motion, can be obtained by several methods. 
For the Lax integrable models the most important method is the algebraic Bethe ansatz. For the 
quadratic Lax algebras and Cartan-invariant quantum R-matrices the Bethe ansatz technique was 
proposed and developed in the papers of Leningrad school of mathematical physics (see [14,15]
for the reviews), for the linear Lax algebra case and the Cartan-invariant skew-symmetric classical 
r-matrices it has been proposed in [1] and developed in [5,6].

In the papers of the first author the algebraic Bethe ansatz approach was applied on the Lax-
integrable systems governed by Cartan-invariant non-skew-symmetric classical r-matrices: for 
the case of Lie algebras g = sl(2), gl(2) in [19,23] and for the case of Lie algebras g = gl(n) in 
[25,26]. The Cartan-non-invariant case is investigated much less [32,34]. Thus the second aim of 
this paper is to develop the algebraic Bethe ansatz for the Lax-integrable systems with linear Lax 
algebras governed by Cartan-non-invariant non-skew-symmetric classical r-matrices r12(u, v).

For the Cartan-invariant case and Lie algebras g = sl(2), gl(2) the algebraic Bethe ansatz is 
implemented to the non-skew-symmetric case just in the same manner as in the skew-symmetric 
case [5]. In more details, the eigenvectors of the quantum hamiltonians are given by:

|v1, v2, ..., vM 〉 = B̂(v1)B̂(v2)....B̂(vM)|0〉,
where |0〉 is the vacuum vector such that
4
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Ĉ(u)|0〉 = 0, Â(u)|0 >= 	1(u)|0〉, D̂(u)|0 >= 	2(u)|0〉, (1.8)

where

Â(u) = L̂11(u), D̂(u) = L̂22(u), B̂(u) = L̂21(u), Ĉ(u) = L̂12(u),

L̂(u) =
2∑

i,j=1
L̂ij (u)Xij is the Lax matrix and rapidities vi satisfy a set of Bethe-type equations.

In order to apply the algebraic Bethe ansatz for the considered Cartan-non-invariant r-matrices 
(1.6a)-(1.6b) we use the approach of the second author to the skew-symmetric classical r-matrix 
(1.5a)-(1.5b) in [29,30] with the assumption that non-skew-symmetric case is organized analo-
gously. Namely, for the Bethe states we take the vectors of the following from

|v1, v2, ..., vM 〉 = B̂1(v1)B̂2(v2)....B̂M(vM)|0〉,
where the vacuum vector satisfies the conditions (1.8) and the operators B̂k(vk) are defined as 
follows:

B̂k(vk) = L̂21(vk) + (2k − 1)f (vk)Id,

here f (vk) = c in the case of the r-matrix (1.6a) and f (vk) = cvk in the case of the r-matrix 
(1.6b).

Moreover, the form of the Bethe equations that guarantee the diagaonalization of the gener-
ating functions of the quantum Hamiltonians for the r-matrices (1.6a)-(1.6b) — as the for the 
skew-symmetric r-matrices (1.5a)-(1.5b) — is the same as in the undeformed c = 0 case. Thus 
we have that the one-parametric families of the obtained deformed BCS-Richardson’s Hamilto-
nians of s- and px + ipy -type have the same spectrum as the non-deformed Hamiltonians of the 
same type, but their eigenvectors are different and depend on the deformation parameter c.

1.4. The structure of the paper

The structure of the paper is the following: in the Section 2 we outline some general facts 
about the quantum integrable systems and non-skew-symmetric classical r-matrices. In the Sec-
tions 3 and 4 we consider the non-skew-symmetric r-matrices (1.6a)-(1.6b) correspondingly, 
their Gaudin-type and Richardson-type models and the implementation of the algebraic Bethe 
ansatz for them.

2. Quantum integrable systems and classical r-matrices

In this section we will briefly review the relation of the theory of general non-skew-symmetric 
classical r-matrices with spectral parameters with the theory of quantum integrable systems [16–
19]. Although the constructions presented in this section hold true for any simple (reductive) Lie 
algebra, we will state them in the case of the reductive Lie algebra g = gl(2).

2.1. Definition and notations

Let g = gl(2) be the Lie algebra of the general linear group over the field of complex numbers. 
Let Xij , i, j = 1, 2 be a standard basis in gl(2) with the commutation relations:

[Xij ,Xkl] = δkjXil − δilXkj . (2.1)
5
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Definition 1. A function of two complex variables r(u1, u2) with values in the tensor square 
of the algebra g = gl(2) is called a classical r-matrix if it satisfies the following generalized 
classical Yang-Baxter equation [7,9,8]

[r12(u1, u2), r13(u1, u3)] = [r23(u2, u3), r12(u1, u2)] − [r32(u3, u2), r13(u1, u3)], (2.2)

where r12(u1, u2) ≡
2∑

i,j,k,l=1
rij,kl(u1, u2)Xij ⊗Xkl ⊗1, r13(u1, u3) ≡

2∑
i,j,k,l=1

rij,kl(u1, u3)Xij ⊗
1 ⊗ Xkl , etc. and rij,kl(u, v) are matrix elements of the r-matrix r(u, v).

Remark 1. In the case of skew-symmetric r-matrices, i.e. when r12(u1, u2) = −r21(u2, u1) the 
generalized classical Yang-Baxter equation reduces to the proper classical Yang-Baxter equation 
[3,4]:

[r12(u1, u2), r13(u1, u3)] = [r23(u2, u3), r12(u1, u2)] + [r23(u2, u3), r13(u1, u3)]. (2.3)

In the present paper we are interested in the meromorphic r-matrices that possess the decompo-
sition:

r(u1, u2) = 


u1 − u2
+ r0(u1, u2), (2.4)

where r0(u1, u2) is a regular function with values in gl(2) ⊗ gl(2), 
 =
2∑

i,j=1
Xij ⊗Xji is tensor 

Casimir.

For the subsequent we will also need the following definition:

Definition 2. A gl(2)-valued function c(u) =
2∑

i,j=1
cij (u)Xij of one complex variable is called 

generalized shift element if it satisfies the following equation:

[r12(u1, u2), c1(u1)] − [r21(u2, u1), c2(u2)] = 0. (2.5)

2.2. The σ -twisted classical r-matrices with spectral parameters

Let r12(u1, u2) be a skew-symmetric r-matrix i.e. a non-degenerate meromorphic solution of 
the proper classical Yang-Baxter equation (2.3). Let σ be an automorphism of g = gl(2) of the 
second order: σ 2 = 1.

Let us assume that the following anti-invariance condition is satisfied:

r12(u1, u2) = −σ̃1σ̃2r12(u1, u2) = −σ1σ2r12(u
σ
1 , uσ

2 ), (2.6)

where σ̃ is an extension of σ onto the algebra of meromorphic functions, i.e. σ̃ (X(u)) =
σ(X(uσ ))), σ : u → uσ is a certain involution in C, e.g. uσ = −u or uσ = u−1. The index 
i ∈ 1, 2 in σi refers to the component of the tensor product in which the automorphism σ acts.

Taking into account the definitions above, it is possible to show [18,19] that the following 
tensor

rσ (u1, u2) = r12(u1, u2) − σ2r12(u1, u
σ ) (2.7)
12 2

6
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is a solution of the generalized classical Yang-Baxter equation (2.2), i.e. is a non-skew-symmetric 
classical r-matrix with spectral parameters. A particular case of such a non-skew-symmetric 
classical r-matrices will be the main interest of the present article.

2.3. Lie algebra of Lax operators

In the space of certain gl(2) valued functions of the complex parameter u, using the classical 
r-matrix r(u1, u2), it is possible define the tensor Lie bracket [7,9,8]

[L̂1(u1), L̂2(u2)] = [r12(u1, u2), L̂1(u1)] − [r21(u2, u1), L̂2(u2)], (2.8)

where L̂1(u1) = L(u1) ⊗ 1, L̂2(u2) = 1 ⊗ L(u2), L̂(u) =
3∑

i,j=1
L̂ij (u)Xij , r21(u2, u1) =

P12r12(u2, u1)P12, and P12 is the permutation operator which interchanges the first and second 
spaces in the tensor product.

Tensor bracket (2.8) between the Lax matrices L̂1(u1) and L̂2(u2) is a symbolic notation for 
the Lie brackets between their matrix entries. Explicitly, in terms of matrix entries the bracket 
(2.8) takes the following form

[L̂ij (u), L̂kl(v)] =
2∑

s=1

(ris,kl(u, v)L̂sj (u) − rsj,kl(u, v)L̂is(u))−

−
2∑

s=1

(rks,ij (v, u)L̂sl(v) − rsl,ij (v, u)L̂ks(v)). (2.9)

Remark 2. From the explicit form of the Lie bracket (2.9) it follows that the operators (L̂11(u) −
L̂22(u)), L̂12(u), L̂21(u) span a subalgebra and an ideal in the Lax algebra spanned over the 
elements L̂11(u), L̂22(u), L̂12(u), L̂21(u), independently on the form of the classical r-matrix.

2.4. Generating functions of quantum integrals

Let us now consider the following linear function on the Lax algebra

τ̂ (1)(u) = L̂11(u) + L̂22(u). (2.10)

From the tensor form of the Poisson brackets (2.8) it follows that it generates commutative sub-
algebra. Moreover, the following Proposition is valid

Proposition 2.1. The function τ̂ (1)(u) is a generating function of the center of the Lax algebra 
(2.8) if and only if the following conditions on the components of the r-matrix hold true

2∑
k=1

rii,kk(u, v) =
2∑

k=1

rjj,kk(u, v), i, j ∈ 1,2. (2.11a)

2∑
rij,kk(u, v) = 0, i, j ∈ 1,2, i �= j. (2.11b)
k=1

7
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Proof. The statement follows from the brackets (2.9).

By the direct calculation one can also prove the following Proposition

Proposition 2.2. The gl(2) ⊗ gl(2)-valued r-matrices r12(u, v) that satisfy the conditions (2.11)
can be brought to the sl(2) ⊗ sl(2)-valued form by the equivalence transformation1:

r12(u, v) → r12(u, v) + 1 ⊗ X(u,v), (2.12)

where X(u, v) takes the value in gl(2).

Let us now consider the following quadratic function on the Lax algebra

τ̂ (2)(u) = 1

2

(
L̂11(u)L̂11(u) + L̂22(u)L̂22(u) + L̂12(u)L̂21(u) + L̂21(u)L̂12(u)

)
. (2.13)

We can state the following Theorem

Theorem 2.1. Let the classical r-matrix r(u, v) satisfy the conditions (2.4) and (2.11). Then

[τ̂ (2)(u), τ̂ (2)(v)] = 0. (2.14)

Proof. In order to prove the theorem, we note that in the new notations Ĥ (u) = 1
2 (L̂11(u) −

L̂22(u)), Ĉ(u) = L̂12(u), B̂(u) = L̂21(u) corresponding to the sl(2) basis the generating function 
τ̂ (2)(u) is re-written in the following way

τ̂ (2)(u) = 1

2

(1

2
Ĥ 2(u) + Ĉ(u)B̂(u) + B̂(u)Ĉ(u)

) + 1

4
(τ̂ (1)(u))2.

Now we note that under the conditions of the Theorem τ̂ (1)(u) is a central element, hence it 
commutes with everything and its presence or absence does not influence the relation (2.14). 
Moreover, under the conditions of the Theorem by the virtue of the Proposition 2.1 and the 
arguments of the previous subsection, the Lax algebra (2.9) is a direct sum of sl(2)-valued Lax 
algebra with the generating functions of the basis being Ĥ(u), B̂(u) and Ĉ(u) and a center with 
the generating function being τ̂ (1)(u). Finally, by the virtue of the Proposition 2.2 the r-matrix 
r12(u, v) is equivalent to the sl(2) ⊗sl(2)-valued one. That is why the proof of the commutativity 
of the generating functions τ̂ (2)(u) and τ̂ (2)(v) is reduced to the proof of the commutativity of 
the generating functions τ̂ (u) and τ̂ (v), where

τ̂ (u) = (1

2
Ĥ 2(u) + Ĉ(u)B̂(u) + B̂(u)Ĉ(u)

)

is a quadratic generating function on sl(2)-valued Lax algebra with the sl(2) ⊗ sl(2)-valued r-
matrix. Finally, to prove the theorem we recall that the proof of the commutativity of τ̂ (u) and 
τ̂ (v) under the condition (2.4) was done in the paper [19].

1 The transformation that preserves the Lie brackets (2.8) is called the equivalence transformation.
8
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2.5. Generalized Gaudin models in external magnetic field

2.5.1. General case
Let Ŝ(m)

ij , i, j = 1, 2, m = 1, 2, ..., N be linear operators in some Hilbert space that span Lie 

algebra isomorphic to gl(2)⊕N with the commutation relations

[Ŝ(m)
ij , Ŝ

(n)
kl ] = δnm(δkj Ŝ

(m)
il − δil Ŝ

(m)
kj ). (2.15)

Let us fix N distinct points of the complex plain νm, m ∈ 1,N . It is possible to introduce the 
following quantum Lax operator [16,17,21]

L̂(u) =
2∑

i,j=1

L̂ij (u)Xij ≡
N∑

m=1

2∑
i,j,k,l=1

rij,kl(νm,u)Ŝ
(m)
ij Xkl +

2∑
i,j=1

cij (u)Xij , (2.16)

where c(u) =
2∑

i,j=1
cij (u)Xij is a shift element satisfying the equation (2.5). Using generalized 

classical Yang-Baxter equation one can show that it satisfies a linear r-matrix algebra (2.8). 
This quantum Lax operator corresponds to the generalized gl(2)-Gaudin system in the external 
magnetic field.

As our next step, we apply the results of the previous subsection to the Lax operators of the 
generalized Gaudin systems. A direct calculation yields the explicit form of the corresponding 
generating functions:

τ̂ (1)(u) =
N∑

l=1

2∑
i,j,k=1

rij,kk(νl, u)Ŝ
(l)
ij +

2∑
i=1

cii(u). (2.17)

Under the conditions (2.11) on the r-matrix the generating function (2.17) is further reduced to 
the following form:

τ̂ (1)(u) =
N∑

l=1

(

2∑
k=1

r11,kk(νl, u))(Ŝ
(l)
11 + Ŝ

(l)
22 ) +

2∑
i=1

cii(u),

i.e. it becomes the linear combinations of the linear Casimirs of gl(2).
The second order generating function is given by

τ̂ (2)(u) = 1

2

( N∑
n,m=1

2∑
i,j,k,l,p,q=1

rij,kl(νm,u)rpq,lk(νn, u)Ŝ
(m)
ij Ŝ(n)

pq

+
N∑

m=1

2∑
i,j,k,l=1

rij,kl(νm,u)Ŝ
(m)
ij clk(u)+

+
N∑

n=1

2∑
k,l,p,q=1

rpq,lk(νn, u)Ŝ(n)
pq ckl(u) +

2∑
k,l=1

ckl(u)clk(u)
)
.

Maybe somewhat more transparent are the residues of τ̂ (2)(u) at u = νn:

Ĥn = −Res τ̂ (2)(u), n ∈ 1,N.

u=νn

9
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They have the following form

Ĥn =
N∑

m=1,m �=n

2∑
i,j,k,l=1

rij,kl(νm, νn)Ŝ
(m)
ij Ŝ

(n)
kl +

+ 1

2

2∑
i,j,k,l=1

r
ij,kl
0 (νn, νn)(Ŝ

(n)
ij Ŝ

(n)
kl + Ŝ

(n)
kl Ŝ

(n)
ij ) +

2∑
i,j=1

cij (νn)Ŝ
(n)
ij , (2.18)

where rij,kl

0 (νn, νn) are the matrix elements of the regular part of the classical r-matrix r(u, v) at 
the point u = v = νn. The Hamiltonians (2.18) are the generalized Gaudin Hamiltonians corre-
sponding to the gl(2) ⊗gl(2)-valued r-matrix [16,17]. By the virtue of the results of the previous 
subsection as well as of the general results of [17,21] they mutually commute

[Ĥm, Ĥn] = 0, ∀m,n ∈ 1,N.

2.5.2. The σ -twisted case
The non-skew-symmetric classical r-matrices we will consider in the present paper are the 

σ -twisted classical r-matrices (2.7). The corresponding Lax matrix of the Gaudin-type models 
in the external magnetic field can be written as follows

L̂(u) =
N∑

m=1

2∑
i,j,k,l=1

rij,kl(νm,u)Ŝ
(m)
ij Xkl −

N∑
m=1,m �=n

2∑
i,j,k,l=1

(σ2 · r)ij,kl(νm,uσ )Ŝ
(m)
ij Xkl+

+
2∑

i,j=1

cij (u)Xij . (2.19)

In this case, the Gaudin-type Hamiltonians (2.18) have the following form

Ĥn =
N∑

m=1,m �=n

2∑
i,j,k,l=1

rij,kl(νm, νn)Ŝ
(m)
ij Ŝ

(n)
kl −

N∑
m=1,m �=n

2∑
i,j,k,l=1

(σ2 ·r)ij,kl(νm, νσ
n )Ŝ

(m)
ij Ŝ

(n)
kl

− 1

2

2∑
i,j,k,l=1

(σ2 · r)ij,kl
0 (νn, ν

σ
n )(Ŝ

(n)
ij Ŝ

(n)
kl + Ŝ

(n)
kl Ŝ

(n)
ij ) +

2∑
i,j=1

cij (νn)Ŝ
(n)
ij , (2.20)

where rij,kl(νm, u) in the formula (2.20) are the components of the initial skew-symmetric clas-
sical r-matrix from which the r-matrix (2.7) is obtained. By the virtue of all we have stated above 
as well as the results of [17,18,21], the Hamiltonians (2.20) mutually commute

[Ĥm, Ĥn] = 0, ∀m,n ∈ 1,N.

Remark 3. In all the applications below we will consider only the case where the involution is 
given by νσ

n = −νn.

2.6. Integrable fermion models

Base on integrable quantum spin chains it is possible to derive integrable fermion systems. To 
this end it is necessary to consider the realization of the corresponding spin operators in terms of 
10
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fermion creation-anihilation operators. In other words, it is necessary to obtain the fermionization 
of the underlying Lie algebra gl(2)⊕N , where N is the length of the chain.

2.6.1. Fermionization
Here we will consider only the simplest fermionization of the Lie algebra gl(2)⊕N corre-

sponding to the case when all the Lie algebras gl(2) in the direct sum have the representation 
with the lowest weight λ = (0, 1).

More explicitly, let cj,ε′ , c†
i,ε , i, j ∈ 1,N , ε, ε′ ∈ {+, −} be fermion creation-annihilation op-

erators, then we have

c
†
i,εcj,ε′ + cj,ε′c†

i,ε = δεε′δij , c
†
i,εc

†
j,ε′ + c

†
j,ε′c

†
i,ε = 0, ci,εcj,ε′ + cj,ε′ci,ε = 0. (2.21)

By direct calculation it is possible to show that the following formulae

Ŝ
(j)
12 = c

†
j,ε′c

†
j,ε, Ŝ

(j)
21 = cj,εcj,ε′ , Ŝ

(j)
11 = c

†
j,ε′cj,ε′ , Ŝ

(j)
22 = cj,εc

†
j,ε, i, j ∈ 1,2, ...N, ε �= ε′,

(2.22)

provide realization of the Lie algebra gl(2)⊕N with the lowest weight λj = (0, 1), j ∈ 1,N . Here 
operators cj,ε are chosen to annihilate, and operators c†

j,ε are chosen to create fermion in the state 
j, ε.

Remark 4. Note, that after the restriction to the subalgebra sl(2) and after the identification 
Ŝ

(j)
+ = Ŝ

(j)

12 , Ŝ(j)
− = Ŝ

(j)

21 , 2Ŝ
(j)

3 = Ŝ
(j)

11 − Ŝ
(j)

22 we obtain the well-known fermionization of the Lie 
algebra sl(2) [11,12].

2.6.2. BCS-type Hamiltonians
In order to construct some interesting integrable fermion Hamiltonian Ĥ of the BCS-type 

it is necessary to apply the above fermionization formulae to the certain combination of the 
generalized Gaudin Hamiltonians, Casimir functions and, possibly, some linear integrals. The 
concrete form of the Hamiltonian Ĥ will depend on the underlying classical r-matrix. We will 
consider some explicit examples in the next sections.

3. The rational r-matrix

3.1. Twisted non-standard rational r-matrix

Let us consider skew-symmetric rational r-matrix of the following form [10]

r12(u, v) =

2∑
i,j=1

Xij ⊗ Xji

u − v
+ c

(
v(X11 − X22) ⊗ X21 − uX21 ⊗ (X11 − X22)

)
.

Furthermore, let σ be a trivial automorphism of gl(2): σ(X) = X and let us also consider the 
following involution in C: uσ = −u.

Due to the fact that r12(−u, −v) = −r12(u, v), it immediately follows that

σ1σ2 · r12(−u,−v) = −r12(u, v).

Thus, we can define the following twisted non-skew-symmetric classical r-matrix of the type 
(2.7)
11



T. Skrypnyk and N. Manojlović Nuclear Physics B 967 (2021) 115424
rσ
12(u, v) = r12(u, v) − σ2 · r12(u,−v) =

2∑
i,j=1

2vXij ⊗ Xji

u2 − v2 + 2cv(X11 − X22) ⊗ X21.

Making the equivalence transformation, namely, dividing this r-matrix by 2v, and changing the 
parametrization: u2 → u, v2 → v we come to the following shifted non-skew-symmetric rational 
r-matrix

rσ
12(u, v) =

2∑
i,j=1

Xij ⊗ Xji

u − v
+ c(X11 − X22) ⊗ X21, (3.1)

which we will consider in this section. In order to simplify our notation in the following we will 
denote it simply by r12(u, v).

Remark 5. Observe that the r-matrix (3.1) can be viewed as a shifted standard rational r-matrix

r12(u, v) = rrat
12 (u − v) + c12,

with the shift tensor being constant and non-skew-symmetric: c12 = c(X11 − X22) ⊗ X21.
The r-matrix (3.1) evidently satisfies the condition (2.4) as well as the conditions (2.11).
It is straightforward to show that the r-matrix (3.1) possess the following constant shift ele-

ment

c(u) = c11X11 + c22X22. (3.2)

3.2. Linear Lax algebra and generating functions of the integrals of motion

With the help of the classical r-matrix (3.1) one can define the linear Lax algebra (2.8)

[L̂1(u), L̂2(v)] = [r12(u, v), L̂1(u)] − [r21(v,u), L̂2(v)],

where L̂1(u) = L̂(u) ⊗ 1, L̂2(v) = 1 ⊗ L̂(v), and L̂(u) =
2∑

i,j=1
L̂ij (u)Xij .

As a consequence of the fact that the r-matrix (3.1) satisfies the conditions (2.11) the function

τ̂ (1)(u) = L̂11(u) + L̂22(u)

generates a center of the linear Lax algebra (2.8). Also, it follows from the Theorem 2.1 the 
function

τ̂ (2)(u) = 1

2

(
L̂11(u)L̂11(u) + L̂22(u)L̂22(u) + L̂12(u)L̂21(u) + L̂21(u)L̂12(u)

)
is a generating function of the commuting quantum integrals

[τ̂ (2)(u), τ̂ (2)(v)] = 0.

The main task of the subsequent subsections will be to diagonalize this operator function.
For the subsequent it will be convenient to introduce the following notations:

Â(u) = L̂11(u), B̂(u) = L̂21(u), Ĉ(u) = L̂12(u), D̂(u) = L̂22(u).

In terms of these operators the commutation relations of the considered Lax algebra (2.9) become
12
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[Â(u), Â(v)] = [Â(u), D̂(v)] = [D̂(u), D̂(v)] = 0, (3.3a)

[Â(u), B̂(v)] = 1

u − v
(B̂(u) − B̂(v)), (3.3b)

[D̂(u), B̂(v)] = − 1

u − v
(B̂(u) − B̂(v)), (3.3c)

[B̂(u), B̂(v)] = −2c(B̂(u) − B̂(v)), (3.3d)

[Â(u), Ĉ(v)] = − 1

u − v
(Ĉ(u) − Ĉ(v)), (3.3e)

[D̂(u), Ĉ(v)] = 1

u − v
(Ĉ(u) − Ĉ(v)), (3.3f)

[Ĉ(u), Ĉ(v)] = 0, (3.3g)

[B̂(u), Ĉ(v)] = 1

u − v

(
(Â(u) − D̂(u)) − (Â(v) − D̂(v))

) − 2cĈ(v). (3.3h)

Also, the generating functions τ̂ (1)(u), τ̂ (u) ≡ τ̂ (2)(u) are given by

τ̂ (1)(u) = A(u) + D(u), τ̂ (u) = 1

2

(
Â2(u) + D̂2(u) + Ĉ(u)B̂(u) + B̂(u)Ĉ(u)

)
.

3.3. Algebraic Bethe ansatz

3.3.1. Vacuum vector and Bethe vectors
Let us assume that in a space V of representation of the Lax algebra (3.3) there exists a vacuum 

vector |0〉 such that

Ĉ(u)|0〉 = 0, Â(u)|0 >= 	1(u)|0〉, D̂(u)|0 >= 	2(u)|0〉. (3.4)

Let us, following the ideas of [29–31], construct the following vectors |v1, v2, ..., vM 〉 in the 
space V

|v1, v2, ..., vM 〉 = B̂1(v1)B̂2(v2)....B̂M(vM)|0〉, (3.5)

where the operators B̂k(u) are defined by the following formula

B̂k(u) = B̂(u) + (2k − 1)cId. (3.6)

From the commutation relation (3.3d) we have that:

B̂k(u)B̂k+1(v) = B̂k(v)B̂k+1(u). (3.7)

Therefore the vector |v1, v2, ..., vM 〉 is a symmetric function of its arguments.

3.3.2. The spectrum of the generating functions
In this subsection we seek the spectrum of the generating functions τ̂ (1)(u) and τ̂ (2)(u) corre-

sponding to the Bethe vectors |v1, v2, ..., vM 〉 (3.5).
Notice that due to the fact that τ̂ (1)(u) is a Casimir function, the spectrum of τ̂ (1)(u) is

τ̂ (1)(u)|v1, v2, ..., vM 〉 = (
	1(u) + 	2(u)

)
B̂1(v1)B̂2(v2)....B̂M(vM)|0〉.

Below we will simplify our notation by τ̂ (u) ≡ τ̂ (2)(u). To calculate the spectrum of τ̂ (u) we 
will need the following Proposition.
13
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Proposition 3.1. The following commutation relations hold2

[τ̂ (u), B̂1(v1)B̂2(v2)....B̂M(vM)] =

= −B̂1(v1)B̂2(v2)....B̂M(vM)
(
(Â(u) − D̂(u))

M∑
i=1

1

u − vi

−
M∑

i=1,j=2,i<j

2

(u − vi)(u − vj )
Id

)+

+
M∑

k=1

B̂1(v1)B̂2(v2)....
ˇ̂
Bk(vk)B̂k(u)...B̂M(vM)

1

u − vk

(
(Â(vk) − D̂(vk)) −

M∑
s=1,s �=k

2

vk − vs

Id
)+

+ 2cMB̂1(v1)B̂2(v2)....B̂M(vM)Ĉ(u). (3.8)

Proof. The proof of the proposition is by the mathematical induction. To prove the first step 
we calculate the following commutator using the commutation relations (3.3) and the direct 
calculation. We obtain that

[τ̂ (u), B̂(v)] = −(B̂(v) + cId)(Â(u) − D̂(u))
1

u − v
+

+ (B̂(u) + cId)
1

u − v
(Â(v) − D̂(v)) + 2c(B̂(v) + cId)Ĉ(u).

Using the definition of the operator B̂1(v) (3.6) the M = 1 case follows directly from the formula 
above

[τ̂ (u), B̂1(v)] = −B̂1(v)(Â(u)−D̂(u))
1

u − v
+B̂1(u)

1

u − v
(Â(v)−D̂(v))+2cB̂1(v)Ĉ(u).

(3.9)

Now let us assume that the formula (3.8) is valid for M . We have to prove that it is also valid 
for M + 1. Using the Leibnitz rule for the commutator we have

[τ̂ (u), B̂1(v1)B̂2(v2)....B̂M+1(vM+1)] = [τ̂ (u), B̂1(v1)B̂2(v2)....B̂M(vM)]B̂M+1(vM+1)+
+ B̂1(v1)B̂2(v2)....B̂M(vM)[τ̂ (u), B̂M+1(vM+1)]. (3.10)

Using further the formulae (3.8) and (3.9) we obtain

[τ̂ (u), B̂1(v1)B̂2(v2)....B̂M+1(vM+1)] =
= −B̂1(v1)B̂2(v2)....B̂M(vM)B̂1(vM+1)(Â(u) − D̂(u))

1

u − vM+1

+ B̂1(v1)B̂2(v2)....B̂M(vM)B̂1(u)
1

u − vM+1
(Â(vM+1) − D̂(vM+1))+

+ 2cB̂1(v1)B̂2(v2)....B̂M(vM)B̂1(vM+1)Ĉ(u)

− B̂1(v1)B̂2(v2)....B̂M(vM)
(
(Â(u) − D̂(u))

M∑
i=1

1

u − vi

−

2 Check over the operator B̂k(vk) means that it is omitted in the corresponding product.
14
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−
M∑

i=1,j=2,i<j

2

(u − vi)(u − vj )

)
B̂M+1(vM+1)+

+
M∑

k=1

B̂1(v1)B̂2(v2)....
ˇ̂
Bk(vk)B̂k(u)...B̂M(vM)

1

u − vk

(
(Â(vk) − D̂(vk))−

−
M∑

s=1,s �=k

2

vk − vs

)
B̂M+1(vM+1)+

+ 2cMB̂1(v1)B̂2(v2)....B̂M(vM)Ĉ(u)B̂M+1(vM+1). (3.11)

In order to obtain the desired formula we have to pass the operator B̂M+1(vM+1) to the left of 
the operators Â(u), D̂(u), Ĉ(u), Â(vk), D̂(vk) on the rhs of the formula (3.11). To this end we 
use

[Â(u) − D̂(u), B̂M+1(vM+1)] = 2

u − vM+1
(B̂M+1(u) − B̂M+1(vM+1)), (3.12a)

[Â(vk) − D̂(vk), B̂M+1(vM+1)] = 2

vk − vM+1
(B̂M+1(vk) − B̂M+1(vM+1)), (3.12b)

[Ĉ(u), B̂M+1(vM+1)] = 1

u − vM+1

(
(Â(vM+1) − D̂(vM+1)) − (Â(u) − D̂(u))

) + 2cĈ(u).

(3.12c)

The careful analysis shows that the additional terms obtained from the commutators (3.12) trans-
form the right hand side of (3.11) to the form (3.8) with M → M + 1. To show this we have used 
the operator identity

B̂1(v1)...
ˇ̂
Bk(vk)B̂k(u)...B̂M(vM)B̂M+1(vk) = B̂1(v1)...B̂k(vk)...B̂M(vM)B̂M+1(u),

the definition of B̂M+1(v) and the following identity:

1

u − vk

(
1

u − vM+1
− 1

vk − vM+1
) = − 1

u − vM+1

1

vk − vM+1
.

Therefore the proposition is shown.

Now we can formulate the following Theorem

Theorem 3.1. Let the rapidities vk , k ∈ 1,M satisfy the following set of Bethe equations

	1(vk) − 	2(vk) −
M∑

s=1,s �=k

2

(vk − vs)
= 0. (3.13)

Then the Bethe vectors |v1, v2, ..., vM 〉 are eigenvectors of the generating functions of the inte-
grals

τ̂ (u)|v1, v2, ..., vM 〉 = 	(u,v1, v2, ..., vM)|v1, v2, ..., vM 〉
with the following eigenvalues 	(u, v1, v2, ..., vM)
15
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	(u,v1, v2, ..., vM) = 1

2
(	2

1(u) + 	2
2(u)) − 1

2
(∂u	1(u) − ∂u	2(u))+

+ (	1(u) − 	2(u))

M∑
i=1

1

u − vi

−
M∑

i=1,j=2,i<j

2

(u − vi)(u − vj )
. (3.14)

Proof. The statement of the theorem follows from the previous Proposition. Indeed, we have

τ̂ (u)|v1, v2, ..., vM 〉 = B̂1(v1)B̂2(v2)....B̂M(vM)τ̂ (u)|0〉+
+ [τ̂ (u), B̂1(v1)B̂2(v2)....B̂M(vM)]|0〉.

On the other hand we have that

τ̂ (u) = 1

2

(
Â2(u) + D̂2(u) − (∂uÂ(u) − ∂uD̂(u)) + 2B̂(u)Ĉ(u)

)
,

where we have used the commutation relations (3.3h) in the limit v → u. Then, using the relations 
(3.4) we obtain

τ̂ (u)|0〉 = (1

2
(	2

1(u) + 	2
2(u)) − 1

2
(∂u	1(u) − ∂u	2(u))

)|0〉.
Now, making use of the Proposition 3.1 we obtain that, by the virtue of the conditions (3.4), 

for the rapidities vi that satisfy Bethe equations (3.13) the following equality holds true:

[τ̂ (u), B̂1(v1)B̂2(v2)....B̂M(vM)]|0〉 = (
(	1(u) − 	2(u))

M∑
i=1

1

u − vi

−

−
M∑

i=1,j=2,i<j

2

(u − vi)(u − vj )

)|v1, v2, ..., vM 〉

This completes the proof of the Theorem.

Remark 6. It is of interest to notice that the spectrum and the Bethe equations of the models 
associated with the r-matrix (3.1) coincide with that in the standard rational case, when c = 0
[5]. But, as we have shown, when c �= 0, the Bethe vectors have different form.

3.4. Corresponding generalized Gaudin models

3.4.1. Lax matrix and Gaudin-type Hamiltonians
Let us now consider the Lax algebra of the Gaudin-type models. In the case when r-matrix is 

(3.1) the corresponding Lax matrix (2.16) has the following form

L̂(u) =
N∑

m=1

(

2∑
i,j=1

Ŝ
(m)
ij Xji

νm − u
+ c(Ŝ

(m)
11 − Ŝ

(m)
22 )X21) + c11X11 + c22X22. (3.15)

The mutually commuting quantities it produces with the help of the generating functions τ̂ (1)(u), 
τ̂ (2)(u) are linear and quadratic Casimirs of the direct sum gl(2)⊕N

Ĉ(1)
m = Ŝ

(m)
11 + Ŝ

(m)
22 , Ĉ(2)

m = 1
(Ŝ

(m)
11 Ŝ

(m)
11 + Ŝ

(m)
22 Ŝ

(m)
22 + Ŝ

(m)
12 Ŝ

(m)
21 + Ŝ

(m)
21 Ŝ

(m)
12 ),
2
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as well as the following Gaudin-type Hamiltonians (2.18) in an external magnetic field

Ĥn =
N∑

m=1,m �=n

(

2∑
i,j=1

Ŝ
(m)
ij Ŝ

(n)
ji

νm − νn

+ c(Ŝ
(m)
11 − Ŝ

(m)
22 )Ŝ

(n)
21 ) + c

2
((Ŝ

(n)
11 − Ŝ

(n)
22 )Ŝ

(n)
21 +

+ Ŝ
(n)
21 (Ŝ

(n)
11 − Ŝ

(n)
22 )) + c11Ŝ

(n)
11 + c22Ŝ

(n)
11 . (3.16)

3.4.2. Algebraic Bethe ansatz
Let us apply the construction of the previous subsection to the case of the Lax operators of 

the generalized Gaudin models. Let us consider a finite-dimensional irreducible representation 
of the algebra gl(2)⊕N in some space V . Due to the fact that any irreducible representation 
of the direct sum of the Lie algebras is a tensor product of irreducible representations of their 
components, we will have V = V λ1 ⊗ V λ2 ⊗ · · · ⊗ V λN , where V λk is an irreducible finite-
dimensional representation of the k-th copy of gl(2) with the lowest weight λk = (λ

(k)
1 , λ(k)

2 ), 

with λ(k)
1 , λ(k)

2 ∈N . Each representation V λk contains the lowest weight vector vλk
such that

Ŝ
(k)
11 vλk

= λ
(k)
1 vλk

, Ŝ
(k)
22 vλk

= λ
(k)
2 vλk

, (3.17a)

Ŝ
(k)
21 vλk

= 0. (3.17b)

Therefore, the whole space V λk is spanned by the vectors vm
λk

= (Ŝ
(k)
12 )mvλk

, m ∈ 0, (λ
(k)
2 − λ

(k)
1 ). 

The Casimir function Ĉ(2)
k

Ĉ
(2)
k = 1

2
(Ŝ

(k)
11 Ŝ

(k)
11 + Ŝ

(k)
22 Ŝ

(k)
22 + Ŝ

(k)
21 Ŝ

(k)
12 + Ŝ

(k)
12 Ŝ

(k)
21 ),

acts on each vector vm
λk

∈ V λk in the usual way Ĉ(2)
k vm

λk
= 1

2

(
(λ

(1)
k )2 + (λ

(2)
k )2 + (λ

(2)
k −λ

(1)
k )

)
vm
λk

.
Let us consider the following vacuum vector in the space V

|0〉 = vλ1 ⊗ vλ2 ⊗ · · · ⊗ vλN
. (3.18)

From the definition of the Lax matrix (3.15) it follows that

Ĉ(u) = L̂12(u) =
N∑

m=1

Ŝ
(m)
21

νm − u
, Â(u) = L̂11(u) =

N∑
m=1

Ŝ
(m)
11

νm − u
+ c11,

D̂(u) = L̂22(u) =
N∑

m=1

Ŝ
(m)
22

νm − u
+ c22. (3.19)

Thus, we have the following action of the entries of the Lax matrix on the vacuum vector

Ĉ(u)|0〉 = 0, Â(u)|0〉 = 	11(u)|0〉, D̂(u)|0〉 = 	22(u)|0〉,
where, due to (3.19) and (3.17a)-(3.17b), the eigenvalues are given by

	ii(u) ≡
N∑

k=1

λ
(k)
i

νk − u
+ cii , i ∈ 1,2 .

In this case, the creation operators B̂k(u) have the following form

B̂k(u) =
N∑ Ŝ

(m)
12

νm − u
+ c

N∑
(Ŝ

(m)
11 − Ŝ

(m)
22 ) + (2k − 1)cId. (3.20)
m=1 m=1

17
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Due to the results of the previous subsection we know that the Bethe vectors are given by

|v1, v2, ..., vM 〉 = B̂1(v1)B̂2(v2)....B̂M(vM)|0〉,
where the rapidities vi should satisfy the Bethe equations (3.13), which now read

N∑
s=1

λ
(1)
s − λ

(2)
s

νs − vk

−
M∑

s=1,s �=k

2

(vk − vs)
= c22 − c11, k ∈ 1,M. (3.21)

The spectrum of the generating function τ̂ (u) is given by

	(u,v1, v2, ..., vM) = 1

2
((

N∑
k=1

λ
(k)
1

νk − u
+ c11)

2 + (

N∑
k=1

λ
(k)
2

νk − u
+ c22)

2)−

− 1

2
(

N∑
k=1

λ
(k)
1

(νk − u)2 − λ
(k)
2

(νk − u)2 ) + (

N∑
k=1

λ
(k)
1 − λ

(k)
2

νk − u
+ c11 − c22)

M∑
i=1

1

u − vi

−

−
M∑

i=1,j=2,i<j

2

(u − vi)(u − vj )
. (3.22)

Also, the spectrum of the generalized Gaudin Hamiltonians is

hn =
2∑

i=1

N∑
k=1,k �=n

λ
(k)
i λ

(n)
i

νk − νn

+
2∑

i=1

ciiλ
(n)
ii − (λ

(n)
1 − λ

(n)
2 )

M∑
i=1

1

vi − νn

. (3.23)

Remark 7. The spectra of the generalized Gaudin Hamiltonians and the Bethe equations are the 
same as in the standard rational case, when c = 0. However, for c �= 0 the Bethe states of the 
model are different.

3.5. Corresponding BCS-type models

3.5.1. The BCS-type Hamiltonian in the spin and fermion form
Let us consider the following combination of the generalized Gaudin Hamiltonians (3.16) and 

the second order Casimir operators:

Ĥ =
N∑

n=1

νnĤn −
N∑

n=1

Ĉ(2)
n . (3.24)

More explicitly we have

Ĥ = c11

N∑
n=1

νnŜ
(n)
11 + c22

N∑
n=1

νnŜ
(n)
22 − 1

2

2∑
i,j=1

N∑
m,n=1

Ŝ
(m)
ij Ŝ

(n)
ji +

+ c

N∑
m=1

(Ŝ
(m)
11 − Ŝ

(m)
22 + Id)

N∑
n=1

νnŜ
(n)
21 . (3.25)

Applying the fermionization formulae (2.22) we obtain the following Hamiltonians of the BCS-
type
18
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Ĥ = c11

N∑
n=1

νnc
†
n,ε′cn,ε′ + c22

N∑
n=1

νncn,εc
†
n,ε−

− 1

2

N∑
m,n=1

(c
†
m,ε′c†

m,εcn,εcn,ε′ + cm,εcm,ε′c†
n,ε′c†

n,ε)−

− 1

2

N∑
m,n=1

(c
†
m,ε′cm,ε′c†

n,ε′cn,ε′ + cm,εc
†
m,εcn,εc

†
n,ε)+

+ c

N∑
m=1

(c
†
m,ε′cm,ε′ − cm,εc

†
m,ε + 1)

N∑
n=1

νncn,εcn,ε′ , (3.26)

where ε, ε′ ∈ 1, 2 and ε �= ε′.

Remark 8. It maybe of interest to discuss briefly the terms of the Hamiltonian (3.26). The first 
two terms are the kinetic ones. They acquire the standard form upon setting c22 = −c11. The 
third term is the s-type pairing interaction. The fifth term is new, non-standard and it is due 
to the additional summand in the considered r-matrix. Finally, the fourth term corresponds to 

the negative half sum of Ŝ2
11 = (

N∑
m=1

Ŝ
(m)
11 )2 and Ŝ2

22 = (
N∑

m=1
Ŝ

(m)
22 )2. This term is absent in the 

standard BCS-Richardson’s Hamiltonian since in the standard rational case Ŝ11 =
N∑

m=1
Ŝ

(m)
11 and 

Ŝ22 =
N∑

m=1
Ŝ

(m)
22 are the integrals of motion and one can add 1

2 (Ŝ2
11 + Ŝ2

22) to the Hamiltonian 

(3.25) without spoiling its integrability. In the c �= 0 case, the operators Ŝ11 =
N∑

m=1
Ŝ

(m)
11 and 

Ŝ22 =
N∑

m=1
Ŝ

(m)
22 are not the integrals of motion and therefore their functions can not be added to 

the Hamiltonian (3.25).

3.5.2. The spectra and Bethe equations
In particular case when λ(k)

2 = 1, λ(k)
1 = 0, k ∈ 1,N the Bethe equations (3.21) have the fol-

lowing simple form

N∑
s=1

1

νs − vk

−
M∑

s=1,s �=k

2

vk − vs

= c22 − c11, k ∈ 1,M. (3.27)

The spectra of the generalized Gaudin Hamiltonians is also simple in this case

hn =
N∑

k=1,k �=n

1

νk − νn

+ c22 +
M∑
i=1

1

vi − νn

, (3.28)

where the rapidities vi satisfy the Bethe equations (3.27).
19
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The spectrum of the BCS-like Hamiltonian (3.26), up to the constant, has the following form

h =
N∑

n=1

M∑
i=1

νn

vi − νn

= −MN + (c22 − c11)

M∑
i=1

vi, (3.29)

here we have used the definition of Ĥ and the Bethe equations (3.27). It is important to notice 
that the spectrum of the Hamiltonian Ĥ (3.26) is the same as in the standard Richardon’s case 
[2,11], but the Bethe vectors are different.

4. The trigonometric r-matrix

4.1. Shifted twisted trigonometric r-matrix

Let us consider another non-standard skew-symmetric rational r-matrix of the following form 
[4]:

r12(u − v) =

2∑
i,j=1

Xij ⊗ Xji

u − v
+ c

(
(X11 − X22) ⊗ X21 − X21 ⊗ (X11 − X22)

)
.

It is straightforward to check that

σ1σ2r12(u
σ − vσ ) = −r12(u − v),

where uσ = −u, vσ = −v and the automorphism σ on g = gl(2) is defined by

σ(Xij ) = (−1)i+jXij .

Thus we can define the following non-skew-symmetric classical r-matrix

rσ
12(u, v) = r12(u − v) − σ2r12(u + v).

By making the equivalence transformation, namely, multiplying this r-matrix by 
v

2
we come to 

the following non-skew-symmetric r-matrix of the type (2.7)

rσ
12(u, v) = v2

u2 − v2 (X11 ⊗ X11 + X22 ⊗ X22) + uv

u2 − v2 (X12 ⊗ X21 + X21 ⊗ X12)+
+ cv(X11 − X22) ⊗ X21. (4.1)

In this section we will focus on this r-matrix and it will be denoted simply by r12(u, v).

Remark 9. Notice that the r-matrix (4.1) may be also viewed as a shifted trigonometric r-matrix:

r12(u, v) = r
trig
12 (u, v) + c12(v),

where

r
trig

12 (u, v) = 1

2

u2 + v2

u2 − v2 (X11 ⊗ X11 + X22 ⊗ X22) + uv

u2 − v2 (X12 ⊗ X21 + X21 ⊗ X12)

with the shift tensor c12(v) defined as follows c12(v) = − 1
2 (X11 ⊗X11 +X22 ⊗X22) +cv(X11 −

X22) ⊗ X21.
20
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The trigonometric parametrization is obtained by the following substitution u = exp
(

iφ
2

)
,

v = exp
(

iψ
2

)
. The r-matrix (4.1) satisfies the condition (2.4) in the trigonometric parametriza-

tion, since the r-matrix rtrig
12 (u, v) satisfies it in this parametrization. Furthermore, is straightfor-

ward to show that the r-matrix (4.1) satisfies the conditions (2.11).

4.2. Linear Lax algebra and generating functions of the integrals of motion

In the standard way the classical r-matrix (4.1) defines the linear Lax algebra (2.8):

[L̂1(u), L̂2(v)] = [r12(u, v), L̂1(u)] − [r21(v,u), L̂2(v)],

where L̂1(u) = L̂(u) ⊗ 1, L̂2(v) = 1 ⊗ L̂(v), and L̂(u) =
2∑

i,j=1
L̂ij (u)Xij .

Using the fact that the r-matrix (4.1) satisfies the conditions (2.11) we have that the function

τ̂ (1)(u) = L̂11(u) + L̂22(u)

generates a center of the linear Lax algebra (2.8). Also, it follows from the Theorem 2.1, that the 
function

τ̂ (2)(u) = 1

2

(
L̂11(u)L̂11(u) + L̂22(u)L̂22(u) + L̂12(u)L̂21(u) + L̂21(u)L̂12(u)

)
is a generating function of the commuting quantum integrals of the second order

[τ̂ (2)(u), τ̂ (2)(v)] = 0.

The spectral decomposition of this function will be the main topic of the subsequent subsections. 
As in the previous section, it will be convenient to use the following notations

Â(u) = L̂11(u), B̂(u) = L̂21(u), Ĉ(u) = L̂12(u), D̂(u) = L̂22(u).

In these terms the commutation relations of the Lax algebra (2.8) acquire the following form:

[Â(u), Â(v)] = [Â(u), D̂(v)] = [D̂(u), D̂(v)] = 0, (4.2a)

[Â(u), B̂(v)] = uv

u2 − v2 B̂(u) − u2

u2 − v2 B̂(v), (4.2b)

[D̂(u), B̂(v)] = − uv

u2 − v2 B̂(u) + u2

u2 − v2 B̂(v), (4.2c)

[B̂(u), B̂(v)] = −2c(vB̂(u) − uB̂(v)), (4.2d)

[Â(u), Ĉ(v)] = − uv

u2 − v2 Ĉ(u) + u2

u2 − v2 Ĉ(v), (4.2e)

[D̂(u), Ĉ(v)] = uv

u2 − v2 Ĉ(u) − u2

u2 − v2 Ĉ(v), (4.2f)

[Ĉ(u), Ĉ(v)] = 0, (4.2g)

[Ĉ(u), B̂(v)] = − uv

u2 − v2

(
(Â(u) − D̂(u)) − (Â(v) − D̂(v))

) + 2cvĈ(u). (4.2h)

In terms this notation, the generating functions τ̂ (1)(u), τ̂ (u) ≡ τ̂ (2)(u) have the following form:

τ̂ (1)(u) = A(u) + D(u), τ̂ (u) = 1 (
Â2(u) + D̂2(u) + Ĉ(u)B̂(u) + B̂(u)Ĉ(u)

)
.

2
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4.3. Algebraic Bethe ansatz

4.3.1. Vacuum vector and Bethe vectors
As usual, let us assume that in the representation space V of the Lax algebra (4.2) there exists 

a vacuum vector |0〉 such that:

Ĉ(u)|0〉 = 0, Â(u)|0 >= 	1(u)|0〉, D̂(u)|0 >= 	2(u)|0〉. (4.3)

Following the ideas of [29–31], we consider the following vectors |v1, v2, ..., vM 〉 in the space V

|v1, v2, ..., vM 〉 = B̂1(v1)B̂2(v2)....B̂M(vM)|0〉, (4.4)

where the operators B̂k(u) are defined by

B̂k(u) = B̂(u) + (2k − 1)ucId. (4.5)

From the commutation relation (4.2d) we have that:

B̂k(u)B̂k+1(v) = B̂k(v)B̂k+1(u). (4.6)

Therefore the vector |v1, v2, ..., vM 〉 is a symmetric function of its arguments.

4.3.2. The spectrum of the generating functions and Bethe equations
In this subsection we will study the spectra of the generating functions τ̂ (1)(u) and τ̂ (u)

relative to the Bethe vectors |v1, v2, ..., vM 〉 obtained in the previous subsection.
Since τ̂ (1)(u) is a Casimir function, its spectrum on the Bethe vectors (4.4) is

τ̂ (1)(u)|v1, v2, ..., vM 〉 = (
	1(u) + 	2(u)

)
B̂1(v1)B̂2(v2)....B̂M(vM)|0〉.

In order to calculate the spectrum of τ̂ (u) we will need the following Proposition.

Proposition 4.1. The following commutation relation holds3:

[τ̂ (u), B̂1(v1)B̂2(v2)....B̂M(vM)] =

= −B̂1(v1)B̂2(v2)....B̂M(vM)
(
(Â(u) − D̂(u) − Id)

M∑
i=1

u2

u2 − v2
i

−

−
M∑

i=1,j=2,i<j

2u4

(u2 − v2
i )(u

2 − v2
j )

Id
)+

+
M∑

k=1

B̂1(v1)B̂2(v2)....
ˇ̂
Bk(vk)B̂k(u)...B̂M(vM)

uvk

u2 − v2
k

(
Â(vk) − D̂(vk) − Id−

−
M∑

s=1,s �=k

2v2
k

v2
k − v2

s

Id
)+

+ 2cuMB̂1(v1)B̂2(v2)....B̂M(vM)Ĉ(u). (4.7)

3 Check over the operator B̂k(vk) means that it is omitted in the corresponding product.
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Proof. The proof of the Proposition is by an induction procedure. To prove the first step we use 
the commutation relations (4.2) to obtain

[τ̂ (u), B̂(v)] = −(B̂(v) + cvId)(Â(u) − D̂(u) − Id)
uv

u2 − v2 +

+ u2

u2 − v2 (B̂(u) + cuId)(Â(v) − D̂(v) − Id)

+ 2cu(B̂(v) + cvId)Ĉ(u).

Using the definition of the creation operator B̂1(v) (4.5) we obtain the M = 1 case

[τ̂ (u), B̂1(v)] = − uv

u2 − v2 B̂1(v)(Â(u) − D̂(u) − Id)+

+ B̂1(u)
u2

u2 − v2 (Â(v) − D̂(v) − Id) + 2cuB̂1(v)Ĉ(u). (4.8)

Now let us assume that the formula (4.7) is valid for M . We have to show that it is also valid 
for M + 1. Using the Leibnitz rule for the commutator we have

[τ̂ (u), B̂1(v1)B̂2(v2)....B̂M+1(vM+1)] = B̂1(v1)B̂2(v2)....B̂M(vM)[τ̂ (u), B̂M+1(vM+1)]+
+ [τ̂ (u), B̂1(v1)B̂2(v2)....B̂M(vM)]B̂M+1(vM+1). (4.9)

Using further the formulae (4.7) and (4.8) we obtain:

[τ̂ (u), B̂1(v1)B̂2(v2)....B̂M+1(vM+1)] =
= −B̂1(v1)B̂2(v2)....B̂M(vM)B̂1(vM+1)(Â(u) − D̂(u) − Id)

u2

u2 − v2
M+1

+

B̂1(v1)B̂2(v2)....B̂M(vM)B̂1(u)
uvM+1

u2 − v2
M+1

(Â(vM+1) − D̂(vM+1) − Id)+

+ 2cuB̂1(v1)B̂2(v2)....B̂M(vM)B̂1(vM+1)Ĉ(u)

− B̂1(v1)B̂2(v2)....B̂M(vM)
(
(Â(u) − D̂(u) − Id)

M∑
i=1

u2

u2 − v2
i

−

−
M∑

i=1,j=2,i<j

2u4

(u2 − v2
i )(u

2 − v2
j )

)
B̂M+1(vM+1)+

+
M∑

k=1

B̂1(v1)B̂2(v2)....
ˇ̂
Bk(vk)B̂k(u)...B̂M(vM)

1

u − vk

(
(Â(vk) − D̂(vk) − Id)−

−
M∑

s=1,s �=k

2v2
k

v2
k − v2

s

)
B̂M+1(vM+1)+

+ 2cMB̂1(v1)B̂2(v2)....B̂M(vM)Ĉ(u)B̂M+1(vM+1). (4.10)

In order to obtain the desired result we have to pass the operator B̂M+1(vM+1) to the left of 
the operators Â(u), D̂(u), Ĉ(u), Â(vk), D̂(vk) on the right hand side of the formula (4.10). For 
this purpose we use
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[Â(u) − D̂(u), B̂M+1(vM+1)] = 2uvM+1

u2 − v2
M+1

B̂M+1(u) − 2u2

u2 − v2
M+1

B̂M+1(vM+1),

(4.11a)

[Â(vk) − D̂(vk), B̂M+1(vM+1)] = 2vkvM+1

v2
k − v2

M+1

B̂M+1(vk) − 2v2
k

v2
k − v2

M+1

B̂M+1(vM+1),

(4.11b)

[Ĉ(u), B̂M+1(vM+1)] = uvM+1

u2 − v2
M+1

(
(Â(vM+1)−D̂(vM+1))−(Â(u)−D̂(u))

)+2cvĈ(u).

(4.11c)

It can be seen that the additional terms obtained from the commutators (4.11) transform the right 
hand side of (4.10) to the form (4.7) with M → M + 1. In order to show this one also has to use 
that

B̂1(v1)...
ˇ̂
Bk(vk)B̂k(u)...B̂M(vM)B̂M+1(vk) = B̂1(v1)...B̂k(vk)...B̂M(vM)B̂M+1(u),

the definition of the creation operator B̂M+1(v) (4.5) and the following identity

u2

u2 − v2
k

uvM+1

u2 − v2
M+1

− uvk

u2 − v2
k

vkvM+1

v2
k − v2

M+1

= − uvM+1

u2 − v2
M+1

v2
M+1

v2
k − v2

M+1

.

This completes the proof of the proposition.

Now we can state the following Theorem

Theorem 4.1. Let the rapidities vk , k ∈ 1,M satisfy the following Bethe equations

	1(vk) − 	2(vk) −
M∑

s=1,s �=k

2v2
k

v2
k − v2

s

= 1. (4.12)

Then the Bethe vectors |v1, v2, ..., vM 〉 are eigenvectors of the generating function of the integrals 
of motion

τ̂ (u)|v1, v2, ..., vM 〉 = 	(u,v1, v2, ..., vM)|v1, v2, ..., vM 〉
with the eigenvalues

	(u,v1, v2, ..., vM) = 1

2
(	2

1(u) + 	2
2(u)) − u

4
(∂u	1(u) − ∂u	2(u))+

+ (	1(u) − 	2(u) − 1)

M∑
i=1

u2

u2 − v2
i

−
M∑

i=1,j=2,i<j

2u4

(u2 − v2
i )(u

2 − v2
j )

. (4.13)

Proof. The statement of the theorem follows from the previous Proposition. Indeed, we have:

τ̂ (u)|v1, v2, ..., vM 〉 = B̂1(v1)B̂2(v2)....B̂M(vM)τ̂ (u)|0〉+
+ [τ̂ (u), B̂1(v1)B̂2(v2)....B̂M(vM)]|0〉.

On the other hand we have that:
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τ̂ (u) = 1

2

(
Â2(u) + D̂2(u) − u

2
(∂uÂ(u) − ∂uD̂(u)) + 2B̂(u)Ĉ(u)

)
,

where we have used the commutation relations (4.2h) in the limit v → u. That is why using the 
relations (4.3) we obtain that:

τ̂ (u)|0〉 = (1

2
(	2

1(u) + 	2
2(u)) − u

4
(∂u	1(u) − ∂u	2(u))

)|0〉.
Now, making use of the Proposition 4.1 we obtain that, by the virtue of the conditions (4.3), 

and for the rapidities vi that satisfy Bethe equations (4.12), the following formula holds true

[τ̂ (u), B̂1(v1)B̂2(v2)....B̂M(vM)]|0〉 =

= (
(	1(u) − 	2(u) − 1)

M∑
i=1

u2

u2 − v2
i

−
M∑

i=1,j=2,i<j

2u4

(u2 − v2
i )(u

2 − v2
j )

)|v1, v2, ..., vM 〉

This completes the proof of the theorem.

Remark 10. The spectrum and Bethe equations of the systems associated with the r-matrix (4.1)
coincide with the ones of the non-skew-symmetric trigonometric c = 0 case [24]. But the form 
of the Bethe states is different.

4.4. Corresponding generalized Gaudin models

4.4.1. Lax matrix and Gaudin-type Hamiltonians
Let us consider the universal example of the Lax algebra which yields the Gaudin models. 

The relevant Lax matrix (2.16) has the form

L̂(u) =
N∑

m=1

(

2∑
i,j=1

u2

ν2
m − u2 (Ŝ

(m)
11 X11 + Ŝ

(m)
22 X22) + νmu

ν2
m − u2 (Ŝ

(m)
12 X21 + Ŝ

(m)
21 X12)+

+ cu(Ŝ
(m)
11 − Ŝ

(m)
22 )X21) + c11X11 + c22X22. (4.14)

The commutative quantities it produce with the help of the generating functions τ̂ (1)(u), τ̂ (u) are 
linear and quadratic Casimirs of the direct sum gl(2)⊕N

Ĉ(1)
m = Ŝ

(m)
11 + Ŝ

(m)
22 , Ĉ(2)

m = 1

2
(Ŝ

(m)
11 Ŝ

(m)
11 + Ŝ

(m)
22 Ŝ

(m)
22 + Ŝ

(m)
12 Ŝ

(m)
21 + Ŝ

(m)
21 Ŝ

(m)
12 ),

as well as the following Gaudin-type Hamiltonians (2.18)

Ĥn =
N∑

m=1,m �=n

(
ν2
n

ν2
m − ν2

n

(Ŝ
(m)
11 Ŝ

(n)
11 + Ŝ

(m)
22 Ŝ

(n)
22 ) + νmνn

ν2
m − ν2

n

(Ŝ
(m)
12 Ŝ

(n)
21 + Ŝ

(m)
21 Ŝ

(n)
12 )+

+cνn(Ŝ
(m)
11 − Ŝ

(m)
22 )Ŝ

(n)
21 )− 1

2
(Ŝ

(n)
11 Ŝ

(n)
11 + Ŝ

(n)
22 Ŝ

(n)
22 )+ c

2
νn((Ŝ

(n)
11 − Ŝ

(n)
22 )Ŝ

(n)
21 + Ŝ

(n)
21 (Ŝ

(n)
11 − Ŝ

(n)
22 ))+

+ c11Ŝ
(n) + c22Ŝ

(n)
. (4.15)
11 22
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4.4.2. Algebraic Bethe annsatz
Let us apply the construction of the previous subsection to the case of the Lax operators of the 

generalized Gaudin models. Let us consider a finite-dimensional irreducible representation of the 
algebra gl(2)⊕N in some space V , just as we have done in the subsection 3.4.2. As we have seen 
already, any irreducible representation of the direct sum of the Lie algebras is a tensor product of 
irreducible representations of their components. That is to say that V = V λ1 ⊗ V λ2 ⊗ · · ·⊗ V λN , 
where V λk is an irreducible finite-dimensional representation of the k-th copy of gl(2) with the
lowest weight λk = (λ

(k)
1 , λ(k)

2 ) with λ(k)
1 , λ(k)

2 ∈ N . Each representation V λk contains the lowest 
weight vector vλk

such that

Ŝ
(k)
11 vλk

= λ
(k)
1 vλk

, Ŝ
(k)
22 vλk

= λ
(k)
2 vλk

, (4.16a)

Ŝ
(k)
21 vλk

= 0, (4.16b)

and the whole space V λk is spanned by vm
λk

= (Ŝ
(k)
12 )mvλk

, m ∈ 0, (λ
(k)
2 − λ

(k)
1 ).

The Casimir function Ĉ(2)
k

Ĉ
(2)
k = 1

2
(Ŝ

(k)
11 Ŝ

(k)
11 + Ŝ

(k)
22 Ŝ

(k)
22 + Ŝ

(k)
21 Ŝ

(k)
12 + Ŝ

(k)
12 Ŝ

(k)
21 ), (4.17)

acts on each vector vm
λk

∈ V λk in the usual way Ĉ(2)
k vm

λk
= 1

2

(
(λ

(1)
k )2 + (λ

(2)
k )2 + (λ

(2)
k −λ

(1)
k )

)
vm
λk

. 
Also, as we already know, the vacuum vector in the space V is given by

|0〉 = vλ1 ⊗ vλ2 ⊗ · · · ⊗ vλN
. (4.18)

From the definition of the Lax matrix (4.14) we can readout its entries

Ĉ(u) = L̂12(u) =
N∑

m=1

uνmŜ
(m)
21

ν2
m − u2 , Â(u) = L̂11(u) =

N∑
m=1

u2Ŝ
(m)
11

ν2
m − u2 + c11,

D̂(u) = L̂22(u) =
N∑

m=1

u2Ŝ
(m)
22

ν2
m − u2 + c22. (4.19)

The action of these operators on the vacuum vector follows from the equations above

Ĉ(u)|0〉 = 0, Â(u)|0〉 = 	11(u)|0〉, D̂(u)|0〉 = 	22(u)|0〉, (4.20)

where

	ii(u) ≡
N∑

k=1

u2λ
(k)
i

ν2
k − u2

+ cii , i ∈ 1,2.

In this case, the creation operator B̂k(u) has the following form

B̂k(u) =
N∑

m=1

uνmŜ
(m)
12

ν2
m − u2 + cu

N∑
m=1

(Ŝ
(m)
11 − Ŝ

(m)
22 ) + (2k − 1)ucId. (4.21)

It follows from the results of the previous subsection that the Bethe vectors are given by the 
action of the creation operator on the vacuum vector

|v1, v2, ..., vM 〉 = B̂1(v1)B̂2(v2)....B̂M(vM)|0〉,
26
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where the rapidities vi satisfy the Bethe equations (4.12), which in this case read

N∑
s=1

v2
k (λ

(s)
1 − λ

(s)
2 )

ν2
s − v2

k

−
M∑

s=1,s �=k

2v2
k

v2
k − v2

s

= c22 − c11 + 1, k ∈ 1,M. (4.22)

The spectrum of the generating function τ̂ (u) is given by

	(u,v1, v2, ..., vM) = 1

2
((

N∑
k=1

u2λ
(k)
1

ν2
k − u2

+ c11)
2 + (

N∑
k=1

u2λ
(k)
2

ν2
k − u2

+ c22)
2)−

− 1

2

N∑
k=1

u2ν2
k

(ν2
k − u2)2

(λ
(k)
1 − λ

(k)
2 ) + (

N∑
k=1

u2λ
(k)
1

ν2
k − u2

−
N∑

k=1

u2λ
(k)
2

ν2
k − u2

+ c11 − c22 − 1)

M∑
i=1

u2

u2 − v2
i

−

−
M∑

i=1,j=2,i<j

2u4

(u2 − v2
i )(u

2 − v2
j )

. (4.23)

Furthermore, the spectra of the generalized Gaudin Hamiltonians are

hn =
2∑

i=1

N∑
k=1,k �=n

ν2
nλ

(k)
i λ

(n)
i

ν2
k − ν2

n

+ c11λ
(n)
1 + c22λ

(n)
2 − 1

2
((λ

(n)
1 )2 + (λ

(n)
2 )2)−

− (λ
(n)
1 − λ

(n)
2 )

M∑
i=1

ν2
n

v2
i − ν2

n

. (4.24)

Remark 11. Thus we can conclude that the spectra of the generalized Gaudin Hamiltonians 
(4.24) and the corresponding Bethe equations (4.22) are the same as in the c = 0 case [24,23]. 
However, the Bethe vectors of the system are different.

4.5. Corresponding BCS-type models

4.5.1. The BCS-type Hamiltonian in the spin and fermion form
Here we consider the following combination of the generalized Gaudin Hamiltonians (4.15)

and the second order Casimir operators (4.17)

Ĥ =
N∑

n=1

ν−2
n Ĥn +

N∑
n=1

ν−2
n Ĉ(2)

n . (4.25)

In terms of the local gl(2) generators this Hamiltonian is given by

Ĥ = c11

N∑
n=1

ν−2
n Ŝ

(n)
11 + c22

N∑
n=1

ν−2
n Ŝ

(n)
22 + 1

2

2∑
i,j=1

N∑
m,n=1

ν−1
n ν−1

m (Ŝ
(m)
12 Ŝ

(n)
21 + Ŝ

(m)
21 Ŝ

(n)
12 )+

+ c

N∑
m=1

(Ŝ
(m)
11 − Ŝ

(m)
22 + Id)

N∑
n=1

ν−1
n Ŝ

(n)
21 . (4.26)
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Using the fermionization formulae (2.22) we obtain the following BCS-type Hamiltonian

Ĥ = c11

N∑
n=1

ν−2
n c

†
n,ε′cn,ε′ + c22

N∑
n=1

ν−2
n cn,εc

†
n,ε+

+ 1

2

N∑
m,n=1

ν−1
n ν−1

m (c
†
m,ε′c†

m,εcn,εcn,ε′ + cm,εcm,ε′c†
n,ε′c†

n,ε)+

+ c

N∑
m=1

(c
†
m,ε′cm,ε′ − cm,εc

†
m,ε + 1)

N∑
n=1

ν−1
n cn,εcn,ε′ , (4.27)

where ε, ε′ ∈ 1, 2 and ε �= ε′. Moreover, it can be shown that, using the fermion anti-commutation 
relations, this Hamiltonian takes the form (1.7), up to the term proportional to the identity oper-
ator.

The Hamiltonian (4.27) is a one-parametric deformation of the p + ip BCS Hamiltonian 
[23,24]. Indeed, its first two terms are the kinetic ones. They acquire a standard form upon putting 
c22 = −c11. The third term is a p + ip the pairing interaction term. Finally, the fourth term is 
a new term that is due to the additional term in the considered r-matrix. In the limit c → 0 the 
Hamiltonian (4.27) coincides with the p + ip BCS Hamiltonian [23,24].

4.5.2. The spectra
In the case when we specify λ(k)

2 = 1, λ(k)
1 = 0, k ∈ 1,N the Bethe equations (4.22) become

N∑
s=1

v2
k

v2
k − ν2

s

−
M∑

s=1,s �=k

2v2
k

v2
k − v2

s

= c22 − c11 + 1, k ∈ 1,M, (4.28)

and the spectra of the generalized Gaudin Hamiltonians become

hn =
N∑

k=1,k �=n

ν2
n

ν2
k − ν2

n

+ c22 − 1

2
+

M∑
i=1

ν2
n

v2
i − ν2

n

, (4.29)

where the rapidities vi satisfy the Bethe equations (4.28). Furthermore, up to the constant, the 
spectrum of the BCS-like Hamiltonian (4.27) is given by

h =
N∑

n=1

M∑
i=1

1

v2
i − ν2

n

= (c22 − c11 + 1)

M∑
i=1

1

v2
i

, (4.30)

where we have used the definition of Ĥ (4.25) and the Bethe equations (4.28).
It follows that the spectrum of the Hamiltonian Ĥ is the same as in the px + ipy case [22–24], 

but that the Bethe vectors are different.
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[30] P.P. Kulish, N. Manojlović, M. Samsonov, A. Stolin, Proc. Est. Acad. Sci. 59 (2010) 326–331.
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[36] N. Manojlović, I. Salom, Nucl. Phys. B 923 (2017) 73–106.
[37] Y. Shen, P.S. Isaac, J. Links, Nucl. Phys. B 937 (2018) 28–55.
[38] C. Dimo, A. Faribault, J. Phys. A 51 (32) (2018).
[39] P. Claeys, C. Dimo, S. De Baerdemacker, A. Faribault, J. Phys. A 52 (8) (2019) 09LT01.
[40] V. Caudrelier, N. Crampe, Lett. Math. Phys. 109 (4) (2019) 843–856.
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