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Abstract

In the present paper we develop the algebraic Bethe ansatz approach to the case of non-skew-symmetric
gl(2) ® gl(2)-valued Cartan-non-invariant classical r-matrices with spectral parameters. We consider the
two families of these r-matrices, namely, the two non-standard rational r-matrices twisted with the help of
second order automorphisms and realize the algebraic Bethe ansatz method for them. We study physically
important examples of the Gaudin-type and BCS-type systems associated with these r-matrices and obtain
explicitly the Bethe vectors and the spectrum for the corresponding quantum hamiltonians in terms of
solutions of Bethe equations.
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1. Introduction
1.1. Classical r-matrices and quantum integrable systems

Quantum integrable systems are of utmost importance for the quantum mathematical physics.
In some sense, the most interesting quantum solvable systems are the ones admitting Lax rep-
resentation, i.e. the so-called Lax-integrable models. These systems can be further divided into
the two classes: the ones for which the relevant Lax algebra is linear and the ones for which
the Lax algebra is quadratic. The commutation relations of linear and quadratic Lax algebras are
determined by classical »-matrices and quantum R-matrices, respectively.

For a long while it was commonly believed that integrable systems associated with linear
Lax algebras are just the artefacts of the integrable systems associated with quadratic algebras
i.e. quantum groups. That is to say that for quantum integrability are pertinent only the skew-

symmetric classical r-matrices r12(u1, u2) € g ® g, such that rip(uy, up) = —rp1 (1, u1), and the
corresponding linear Lax algebras. Here g is (semi)simple Lie algebra or reductive Lie algebra
gl(n).

In the papers of the first author [17,18,21,20] it was shown that one can associate quantum
integrable systems also with more general, non-skew-symmetric, classical r-matrices r12 (1, u2)
satisfying instead of the ordinary classical Yang-Baxter equation the generalized classical Yang-
Baxter equation [7-9]:

[ri2Quy, uz), riz(uy, uz)] = [ras(ua, uz), rio(uy, u2)] — [r32(us, uz), riz(uy, uz)]l.  (1.1)

Notice that the variety of solutions to the equation (1.1) is wider than the variety of solutions
to the ordinary classical Yang-Baxter equation [3,4], in particular, it contains the set of skew-
symmetric classical r-matrices as a subset. It also contains the “twisted” non-skew-symmetric
classical 7-matrices of the following form:

riy @y, uz) =ria(ur, u2) — ooria(uy, u3), (1.2)

where r12(u1, uz) is a skew-symmetric classical 7-matrix such that

ria(ut, uz) = —oroor2(uf, us),

here o is an involutive automorphism of g and u — u? is an involution in C. The variety of
solutions to the equation (1.1) contains also many other non-skew-symmetric classical r-matrices
[16,17,20].

Any solution to the equation (1.1) yields different quantum integrable models, in particular,
the generalized Gaudin models [16—18] and generalized Gaudin models in an external magnetic
field [21], where the role of the “integrable” magnetic field is played by the shift element c(u)
satisfying the following linear equation:

[r12Qu1, u2), c1(u1)] — [ra1(uz, u1), c2(u2)] =0. (1.3)

In the case of the Lie algebra g = g/(2), considered in the present paper, the corresponding
mutually commuting hamiltonians have the following explicit form:

N 2
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+5 > M P + P8 + 3 a8, (1.4
i,j,k,=1 ij=1
; ij )
where rpp(u,v) = ) r”*kl(u,v)X,-j ® Xj is a classical r-matrix, r;,’ (u4,v) =
ijkl=1
2 ij.kl 2
r " (u, 0) X7 ® Xy its regular part, c(u) = c;ii(u)X;; is a shift element, X;;,
0 J g p j j j
ijkl=1 i=1

i, j € 1,2 s a standard basis of g/(2): (Xij)ap = Siadjps 3’,5';) =7™(X;;)and 7™, n €1, N are
representations of the Lie algebra gl(2).

The physical importance of the generalized Gaudin hamiltonians (1.4) is based on the fact that
upon fermionization of the spin operators S ,gl) they produce integrable fermion hamiltonians of
the BCS-Richardson-type used in nuclear physics [2], in the theory of quantum dots and small
metallic grains [11-13] etc. The generalized Gaudin models and non-skew-symmetric classical
r-matrices have attracted considerable interest [33,35,37-40,32,34,36,41].

1.2. Aims of the paper

The aim of this paper is two-fold. The first aim is to continue the study of the general-
ized Gaudin models based on the non-skew-symmetric classical r-matrices, their generalized
Richardson’s counterparts and to specify physically interesting ones. This study was initiated by
the first author in [16,17] for the case of the Gaudin-type models and in [22] for the case of the
Richardson-type models. Moreover, the cases of r-matrices which are diagonal in some natural
basis, have been studied in the papers [22-24,27], including their Richardson-type systems and
corresponding spectral problem. With the present paper we begin the study of the general non-
diagonal, non-Cartan-invariant non-skew-symmetric r-matrices, their Richardson-type models
and their spectra. For this purpose we consider two non-standard rational skew-symmetric r-
matrices written as follows [4,10]:

i Xij ® Xji
ri2(u, v) = L= — +c(v(X11 — X2) ® X21 —uX21 ® (X11 — X22)), (1.52)
2
2 Xij®Xi
ripu, v) = L= +o((X11 — X22) ® X21 — X21 @ (X11 — X22)), (1.5b)

where ¢ is an arbitrary parameter. Furthermore, we construct their twisted counterparts (1.2)
having, up to an equivalence, the following explicit form:

2
> Xij®Xji
-t
sz(”v”)sz-f‘C(Xu — X2) ® Xo1, (1.6a)
2
P, v) = 57— (X1 @ X11 + X2 ® X22) + 57— (X12® Xo1 + X21 ® X12)+

+cv(X11 — X22) ® X271, (1.6b)
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here, again, ¢ is an arbitrary parameter. These r-matrices may also be viewed as two one-
parametric families of non-skew-symmetric, non-Cartan-invariant deformations of standard
skew-symmetric rational and non-skew-symmetric trigonometric r-matrix [24]. The correspond-
ing Richardson-type models will be one-parametric deformations of the Richardson model of the
s-type [2] and py +ipy-type [23,24], [28]. In particular, the r-matrix (1.6b) yields the following
integrable Richardson-type fermion hamiltonian:

N N
T § T i § i i
H= €n (Cn’g/cn,e’ + Cn,gcn,e) +g RV, Enémcmyg/cm,gCn,ecn,e’+

n=1 m,n=1

N N
+eg Y (e atme O cCme) Y entnene, (17)
m=1 n=1
constituting a one-parametric family of deformations of the p, + ip, reduced BCS hamiltonian
[23,24]. Here c,z,e, Cm.el> M, N E 1,N,¢,€ € {4, —} are standard fermion creation-anihilation
operators, €, is a free energy of the n-th fermion and g,,, = g./€,€, is a pairing interaction
strength.

Notice that non-standard rational skew-symmetric r-matrices (1.5a)-(1.5b) have no diago-
nal shift elements satisfying the equation (1.3). Therefore one can not associate with them
Richardson-type hamiltonians possessing the kinetic terms. This confirms the observation of
the first author [27] that non-skew-symmetric classical r-matrices are more pertinent to the con-
structions of the integrable Richardson-type hamiltonians than the skew-symmetric ones.

Now we come to the second aim of our paper, which is to the develop methods for complete
integrability of the quantum systems related to the classical r-matrices.

1.3. Algebraic Bethe ansatz

The exact solvability of the quantum integrable models, i.e. the diagonalization of the cor-
responding Hamiltonian and related integrals of motion, can be obtained by several methods.
For the Lax integrable models the most important method is the algebraic Bethe ansatz. For the
quadratic Lax algebras and Cartan-invariant quantum R-matrices the Bethe ansatz technique was
proposed and developed in the papers of Leningrad school of mathematical physics (see [14,15]
for the reviews), for the linear Lax algebra case and the Cartan-invariant skew-symmetric classical
r-matrices it has been proposed in [1] and developed in [5,6].

In the papers of the first author the algebraic Bethe ansatz approach was applied on the Lax-
integrable systems governed by Cartan-invariant non-skew-symmetric classical r-matrices: for
the case of Lie algebras g = s/(2), g/(2) in [19,23] and for the case of Lie algebras g = gl(n) in
[25,26]. The Cartan-non-invariant case is investigated much less [32,34]. Thus the second aim of
this paper is to develop the algebraic Bethe ansatz for the Lax-integrable systems with linear Lax
algebras governed by Cartan-non-invariant non-skew-symmetric classical r-matrices r12(u, v).

For the Cartan-invariant case and Lie algebras g = s/(2), g[(2) the algebraic Bethe ansatz is
implemented to the non-skew-symmetric case just in the same manner as in the skew-symmetric
case [5]. In more details, the eigenvectors of the quantum hamiltonians are given by:

[v1, V2, vy Up) = B(1) B(02)....B(var)|0),

where |0) is the vacuum vector such that
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Cw)|0) =0, A@)|0>=A1@)|0), D)|0>=Ar(u)|0), (1.8)
where

Aw)=L"w), Dw)=L"w), Bw=L"@w), Cwu)=L"®w),

~ 2 A
L(u)= Y LY (u)X;; is the Lax matrix and rapidities v; satisfy a set of Bethe-type equations.
i,j=1
In order to apply the algebraic Bethe ansatz for the considered Cartan-non-invariant r-matrices
(1.6a)-(1.6b) we use the approach of the second author to the skew-symmetric classical r-matrix
(1.52)-(1.5b) in [29,30] with the assumption that non-skew-symmetric case is organized analo-
gously. Namely, for the Bethe states we take the vectors of the following from

1, V2, oo Uy) = B1(v1) Ba(v2).... Bag (0 |0),

where the vacuum vector satisfies the conditions (1.8) and the operators ék(vk) are defined as
follows:

Bi(vp) = L* (wp) + (2k — 1) f (vp)1d,

here f(vr) = c in the case of the r-matrix (1.6a) and f(vx) = cvg in the case of the r-matrix
(1.6b).

Moreover, the form of the Bethe equations that guarantee the diagaonalization of the gener-
ating functions of the quantum Hamiltonians for the r-matrices (1.6a)-(1.6b) — as the for the
skew-symmetric r-matrices (1.5a)-(1.5b) — is the same as in the undeformed ¢ = 0 case. Thus
we have that the one-parametric families of the obtained deformed BCS-Richardson’s Hamilto-
nians of s- and p, + ipy-type have the same spectrum as the non-deformed Hamiltonians of the
same type, but their eigenvectors are different and depend on the deformation parameter c.

1.4. The structure of the paper

The structure of the paper is the following: in the Section 2 we outline some general facts
about the quantum integrable systems and non-skew-symmetric classical r-matrices. In the Sec-
tions 3 and 4 we consider the non-skew-symmetric r-matrices (1.6a)-(1.6b) correspondingly,
their Gaudin-type and Richardson-type models and the implementation of the algebraic Bethe
ansatz for them.

2. Quantum integrable systems and classical r-matrices

In this section we will briefly review the relation of the theory of general non-skew-symmetric
classical r-matrices with spectral parameters with the theory of quantum integrable systems [ 16—
19]. Although the constructions presented in this section hold true for any simple (reductive) Lie
algebra, we will state them in the case of the reductive Lie algebra g = g/(2).

2.1. Definition and notations

Let g = gl(2) be the Lie algebra of the general linear group over the field of complex numbers.
Let X;;,i, j =1, 2 be a standard basis in g/(2) with the commutation relations:

[Xij, Xa] =0kj Xis — 81 X 2.1
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Definition 1. A function of two complex variables r(u1, up) with values in the tensor square
of the algebra g = g/(2) is called a classical r-matrix if it satisfies the following generalized
classical Yang-Baxter equation [7,9,8]

[rio(ur, u2), ri3(ur, uz)l =[ra3(ua, uz), rio(uy, u2)| — [r3a(us, u2), riz(ui, uz)l,  (2.2)

p p
where rip(ui,u2) = Y ri M u)X; i @Xu® L, rizunuz)= Y riiM g, u) X ®
i jaei=1 i jai=1

1 ® Xy, etc. and r/-K (4, v) are matrix elements of the r-matrix r (u, v).

Remark 1. In the case of skew-symmetric r-matrices, i.e. when ri2(uy, u2) = —ra1(uz, uy) the
generalized classical Yang-Baxter equation reduces to the proper classical Yang-Baxter equation
[3.4]:

[ri2(ur, uz), ri3(uyr, uz)l = [ra3(ua, uz), riz(uy, uz)| + [r23(uz, u3z), riz(uy, uz)l.  (2.3)

In the present paper we are interested in the meromorphic r-matrices that possess the decompo-
sition:

Q
r(uy, up) = ———— +rouy, uz), 2.4)
Uy — un

2
where ro(u1, uz) is a regular function with values in g/(2) ® g/(2), 2= X;j ® X j; is tensor
i,j=1
Casimir.

For the subsequent we will also need the following definition:

2 ..
Definition 2. A g/(2)-valued function c¢(u) = ) ¢"(u)X;; of one complex variable is called
ij=1
generalized shift element if it satisfies the following equation:

[ri2@ur, u2), ci(ui)] — [r21(u2, u1), c2(u2)] = 0. (2.5)
2.2. The o-twisted classical r-matrices with spectral parameters

Let r12(u1, uz) be a skew-symmetric r-matrix i.e. a non-degenerate meromorphic solution of
the proper classical Yang-Baxter equation (2.3). Let o be an automorphism of g = g/(2) of the
second order: o2 = 1.

Let us assume that the following anti-invariance condition is satisfied:

ria(uy, up) = —6162r12(u1, u2) = —o102r12(ug, u3), (2.6)

where & is an extension of o onto the algebra of meromorphic functions, i.e. o (X (u)) =
o (X (u%))), o :u — u® is a certain involution in C, e.g. u® = —u or u® = u~'. The index
i € 1,2 in o; refers to the component of the tensor product in which the automorphism o acts.

Taking into account the definitions above, it is possible to show [18,19] that the following
tensor

riy(ui, uz) =ria(uy, uz) — oari2(uy, u9) 2.7
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is a solution of the generalized classical Yang-Baxter equation (2.2), i.e. is a non-skew-symmetric
classical r-matrix with spectral parameters. A particular case of such a non-skew-symmetric
classical r-matrices will be the main interest of the present article.

2.3. Lie algebra of Lax operators

In the space of certain g/(2) valued functions of the complex parameter u, using the classical
r-matrix r(u1, uz), it is possible define the tensor Lie bracket [7,9,8]

[L1(u1), Lo(ua)] = [ria(ur, u2), L1@ui)] = [ra1(uz, ur), La(ua)], (2.8)

3
where Li(u1) = Luy) ® 1, Lauz) =1 ® L(uz), L) = Y LUW)X;j, rar(uz,ur) =
i j=1

P1or12(ug, uy) P12, and Ppo is the permutation operator which inte]rchanges the first and second
spaces in the tensor product.

Tensor bracket (2.8) between the Lax matrices 1:1 (u1) and I:z(u2) is a symbolic notation for
the Lie brackets between their matrix entries. Explicitly, in terms of matrix entries the bracket
(2.8) takes the following form

2
(LY ), L )] = D 0" e, v) LY ) = M e, ) L (u)) —

s=1

2
= >R @ B ) = e ) B9 ). (2.9)

s=1

Remark 2. From the explicit form of the Lie bracket (2.9) it follows that the operators (i“(u) —
L22(u)) L12(u) L21(u) span a subalgebra and an ideal in the Lax algebra spanned over the
elements L!! (n), L% (n), le(u) LY (u), independently on the form of the classical r-matrix.

2.4. Generating functions of quantum integrals

Let us now consider the following linear function on the Lax algebra

From the tensor form of the Poisson brackets (2.8) it follows that it generates commutative sub-
algebra. Moreover, the following Proposition is valid

Proposition 2.1. The function tV(u) is a generating function of the center of the Lax algebra
(2.8) if and only if the following conditions on the components of the r-matrix hold true

2 2
Zriivkk(u, V) = erj’kk(u, v), i,jel,2. (2.11a)
k=1 k=1

2
o r vy =0,  ijel2 i#]. (2.11b)
k=1
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Proof. The statement follows from the brackets (2.9).
By the direct calculation one can also prove the following Proposition

Proposition 2.2. The gl (2) ® gl(2)-valued r-matrices r12(u, v) that satisfy the conditions (2.11)
can be brought to the s1(2) ® sl(2)-valued form by the equivalence transformation’:

ri2(u, v) = ri2(u, v) + 1 ® X (u, v), (2.12)

where X (u, v) takes the value in gl(2).

Let us now consider the following quadratic function on the Lax algebra

ﬂ”m)z%Qﬂ%mi“m)+i”wﬂ?%w+i?%miﬂm)+iﬂaninw». (2.13)

We can state the following Theorem

Theorem 2.1. Let the classical r-matrix r (u, v) satisfy the conditions (2.4) and (2.11). Then
[£® ), TP )] =0. (2.14)

Proof. In order to prove the theorem, we note that in the new notations H (n) = %(i“ (n) —
I:zz(u)), é(u) = I:lz(u), é(u) =712 (u) corresponding to the s/(2) basis the generating function
2@ (u) is re-written in the following way

@) = %(%ﬁz(u) +C)Bw) + Bw)Cw) + %(f“)(u))?

Now we note that under the conditions of the Theorem 7! () is a central element, hence it
commutes with everything and its presence or absence does not influence the relation (2.14).
Moreover, under the conditions of the Theorem by the virtue of the Proposition 2.1 and the
arguments of the previous subsection, the Lax algebra (2.9) is a direct sum of s/(2)-valued Lax
algebra with the generating functions of the basis being H (u), B (u) and ¢ (u) and a center with
the generating function being ) (). Finally, by the virtue of the Proposition 2.2 the r-matrix
r12(u, v) is equivalent to the s/(2) ® sl (2)-valued one. That is why the proof of the commutativity
of the generating functions 7® (1) and 7@ (v) is reduced to the proof of the commutativity of
the generating functions 7 («) and 7 (v), where

N N AL LA A
T(u) = (EHZ(M) + C(u)B(u) + B(u)C(u))
is a quadratic generating function on s/(2)-valued Lax algebra with the s/(2) ® sI(2)-valued r-

matrix. Finally, to prove the theorem we recall that the proof of the commutativity of 7(x) and
7(v) under the condition (2.4) was done in the paper [19].

! The transformation that preserves the Lie brackets (2.8) is called the equivalence transformation.

8
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2.5. Generalized Gaudin models in external magnetic field

2.5.1. Qeneral case
Let Sl.(;ﬁ), i,j=1,2,m=1,2,..., N be linear operators in some Hilbert space that span Lie

algebra isomorphic to g/(2)®" with the commutation relations
(87, 81 = 8" (581" — 8. 2.15)

Let us fix N distinct points of the complex plain v,,, m € 1, N. It is possible to introduce the
following quantum Lax operator [16,17,21]

2 N 2 2
Lay=Y LiwxXi;=Y" > rMe, w8 X+ Y cijwXij. (2.16)

i,j=1 m=11,jk,I=1 i,j=1
2
where c(u) = Y ¢; () X;; is a shift element satisfying the equation (2.5). Using generalized
i,j=1

classical Yang-Baxter equation one can show that it satisfies a linear r-matrix algebra (2.8).
This quantum Lax operator corresponds to the generalized g/(2)-Gaudin system in the external
magnetic field.

As our next step, we apply the results of the previous subsection to the Lax operators of the
generalized Gaudin systems. A direct calculation yields the explicit form of the corresponding
generating functions:

N 2 2
0w =" 3" w80+ ciw). 2.17)
i=1

I=11i,jk=1

Under the conditions (2.11) on the r-matrix the generating function (2.17) is further reduced to
the following form:

N 2 2
£ D) =3O, u) S + 80+ einw),
I=1 k=1 i=1

i.e. it becomes the linear combinations of the linear Casimirs of g/(2).
The second order generating function is given by

N 2
A 1 [ S S
£ (u) = 5 D D e O L R O R
nm=L1i,jkl pg=1

N2
+y. > rij’kl(vm,u)ﬁ,-(f)wk(u)-l-

m=1i,j.kl=1
N2 2
Ik o
+Y 0> RSy + Y cuwenw)).
n=1k,l, p,q=1 k,l=1

Maybe somewhat more transparent are the residues of £ (u) at u = v,:

H,=—Rest®w), nel,N.

u=vy,
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They have the following form

N 2
AR DD DI Tk

m=1,m#ni,jk,I=1

2
1 kl
" 5 Z i (U, vn)(S(")S(n) + Skl)s(")) + Z cij (vn)Sl(j"), (2.18)
i jkl=1 i,j=1

where r(l)] oKL (v, vy) are the matrix elements of the regular part of the classical r-matrix r (u, v) at
the point u = v = v,,. The Hamiltonians (2.18) are the generalized Gaudin Hamiltonians corre-
sponding to the g/(2) ® gl(2)-valued r-matrix [16,17]. By the virtue of the results of the previous
subsection as well as of the general results of [17,21] they mutually commute

[I:ImsI:In]ZO, Vm,nel,N.

2.5.2. The o -twisted case

The non-skew-symmetric classical r-matrices we will consider in the present paper are the
o-twisted classical r-matrices (2.7). The corresponding Lax matrix of the Gaudin-type models
in the external magnetic field can be written as follows

N2 N 2
i(u) = Z Z rij,kl(vm’ u)gl-(;")sz _ Z Z (03 - r)is kz(v”h U)S(nz)Xkl+
m=11i,j,k,I=1 m=1,m#ni,jk,I=1

2
+ Y Xy, (2.19)
i,j=1
In this case, the Gaudin-type Hamiltonians (2.18) have the following form

N 2
Ho= Y > rM @, v 880 - Z Z (02-1) ¥ (v, 07 SV 5

m=1m7énijkl=1 m=1,m#ni,jk,l=1
kl
- Z (@2 1) . S + 88 + Z cijom 8. (2.20)
l]kl 1 i,j=1

where ri/-k! (Vm, u) in the formula (2.20) are the components of the initial skew-symmetric clas-
sical r-matrix from which the r-matrix (2.7) is obtained. By the virtue of all we have stated above
as well as the results of [17,18,21], the Hamiltonians (2.20) mutually commute

[I:ImsI:In]ZO, Vm,nel,N.

Remark 3. In all the applications below we will consider only the case where the involution is
given by v = —v,.

2.6. Integrable fermion models

Base on integrable quantum spin chains it is possible to derive integrable fermion systems. To
this end it is necessary to consider the realization of the corresponding spin operators in terms of

10
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fermion creation-anihilation operators. In other words, it is necessary to obtain the fermionization
of the underlying Lie algebra g/(2)®", where N is the length of the chain.

2.6.1. Fermionization

Here we will consider only the simplest fermionization of the Lie algebra gl(2)®" corre-
sponding to the case when all the Lie algebras g/(2) in the direct sum have the representation
with the lowest weight A = (0, 1).

More explicitly, let ¢ el ci o LJ€L N, €, ¢’ € {+, —} be fermion creation-annihilation op-
erators, then we have

T <Cle +cj, Erc ¢ = 0ce'bijs el ef ,+c T =0, ciecjetcjecie=0. 2.21)

i€ j,e

By dlrect calculation it is possible to show that the following formulae

() ) . /
Slé —C ]e, SZ{ =CjeCjels S11 _cjé,cle, 522 _clec1 i,jel,2,..N, e #¢€,

J.€’
(2.22)

provide realization of the Lie algebra g/ (2)®N with the lowest weight ; =(0,1), j €1, N. Here
i

j e are chosen to create fermion in the state

operators ¢ . are chosen to annihilate, and operators ¢,
J’

Remark 4. Note, that after the restriction to the subalgebra s/(2) and after the identification
S'Er]) = S'l( S g\ =S5, (J ) » 283 W) =S5 (J ) ) §\) we obtain the well-known fermionization of the Lie
algebra sl(2) [11, 12]

2.6.2. BCS-type Hamiltonians

In order to construct some interesting integrable fermion Hamiltonian H of the BCS-type
it is necessary to apply the above fermionization formulae to the certain combination of the
generalized Gaudin Hamiltonians, Casimir functions and, possibly, some linear integrals. The
concrete form of the Hamiltonian H will depend on the underlying classical r-matrix. We will
consider some explicit examples in the next sections.

3. The rational r-matrix
3.1. Twisted non-standard rational r-matrix

Let us consider skew-symmetric rational r-matrix of the following form [10]

2
> Xij®Xji
ij=1

ripu, v) = +c(v(X11 — X2) ® Xo1 —uX21 ® (X11 — X22)).

Furthermore, let o be a trivial automorphism of g/(2): ¢(X) = X and let us also consider the
following involution in C: u® = —u.
Due to the fact that rjp(—u, —v) = —r12(u, v), it immediately follows that

0102 - ria(—u, —v) = —ri2(u, v).

Thus, we can define the following twisted non-skew-symmetric classical r-matrix of the type
2.7

11
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2

Z 2inj ® Xj,'
i,j=1
(U, v) = ria(u, v) — oz - ria(u, —v) = P +2cv(X11 — X22) @ X1
Making the equivalence transformation, namely, dividing this r-matrix by 2v, and changing the

parametrization: u> — u, v> — v we come to the following shifted non-skew-symmetric rational

r-matrix

2
2 Xij®Xji
=
.

rfz(”vv)=l’ +c(X11 — X22) ® Xo1, 3.1

which we will consider in this section. In order to simplify our notation in the following we will
denote it simply by ri2(u, v).
Remark 5. Observe that the r-matrix (3.1) can be viewed as a shifted standard rational r-matrix

ri2(u, v) =ri§ (u —v) + ci2,

with the shift tensor being constant and non-skew-symmetric: c12 = c(X11 — X22) ® X»21.

The r-matrix (3.1) evidently satisfies the condition (2.4) as well as the conditions (2.11).

It is straightforward to show that the r-matrix (3.1) possess the following constant shift ele-
ment

c(u) =c11X11 +cnXon. 3.2)
3.2. Linear Lax algebra and generating functions of the integrals of motion

With the help of the classical »-matrix (3.1) one can define the linear Lax algebra (2.8)

[L1(u), La()] = [r12(u, v), L1 ()] — [r21 (v, u), L2(v)],

. . N N " 2 ...
where L1(u) =L(w) ® 1, Lo(v) =1Q®@ L(v),and L(w) = ) LY (u)X;;.
ij=1
As a consequence of the fact that the r-matrix (3.1) satisfies the conditions (2.11) the function

t D)y =L"w) + L)

generates a center of the linear Lax algebra (2.8). Also, it follows from the Theorem 2.1 the
function

) Loty s U T U
@) = E(Lll(u)L“ ) + L2 @) L% w) + L @) L* () + L* ) L ()
is a generating function of the commuting quantum integrals
[£® @), t® @] =0.

The main task of the subsequent subsections will be to diagonalize this operator function.
For the subsequent it will be convenient to introduce the following notations:

Aw) =L"w), Bw)=L"w), Cw) =L"w), D) =L*w.

In terms of these operators the commutation relations of the considered Lax algebra (2.9) become

12
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[A(), A(w)] = [A®u), D(v)] = [D(u), D(v)] =0, (3.3a)
~ ~ 1 N ~

[A@), Bl = ——(Bw) - Bw)), (3.3b)
~ ~ 1 ~ ~

(D), Bw)=——— (B - B@)), (3.3¢)

[B(u), B(v)] = —2¢(B(u) — B(v)), (3.3d)
N N 1 ~ N

[A@w), @) =———(Cw) - Cv), (3.3¢)
A N 1 N N

(D), C@)]=—(Cw) - Cw)), (3.3f)

[Cw), C()]=0, (3.3g)
~ ~ 1 N N N ~ N

[B(u),C(v)]= m((A(u) — D)) — (A(v) — D(v))) —2cC(v). (3.3h)

Also, the generating functions 7V (1), £ (u) = £ @ (u) are given by
R . 1, A A A A
tV@ =40 +Dw), W =2(Aw+D*w +CwBw + BwCw).
3.3. Algebraic Bethe ansatz

3.3.1. Vacuum vector and Bethe vectors
Let us assume that in a space V of representation of the Lax algebra (3.3) there exists a vacuum
vector |0) such that

Cw)0) =0, A@)|0>=A1@)|0), D)|0>=Az(u)|0). (3.4)

Let us, following the ideas of [29-31], construct the following vectors |vy, v2, ..., V) in the
space V

V1,02, ooy Up1) = Bi (1) By (v2).... By (va)10). (3.5)
where the operators B (u) are defined by the following formula

By (n) = é(u) + 2k — 1)cld. (3.6)
From the commutation relation (3.3d) we have that:

Bi(u) Biy1 (v) = Br(v) Bry1 (). 3.7)
Therefore the vector |vy, va, ..., V) is a symmetric function of its arguments.
3.3.2. The spectrum of the generating functions

In this subsection we seek the spectrum of the generating functions D) and 2@ (1) corre-

sponding to the Bethe vectors |vy, v, ..., vyr) (3.5).
Notice that due to the fact that (! (x) is a Casimir function, the spectrum of t M) is

D@1, v2, ooy va) = (A1) + Ao @) By (v1) Bo(v2).... By (vp)10).

Below we will simplify our notation by 7 (1) = @ (). To calculate the spectrum of 7 (u) we
will need the following Proposition.

13
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Proposition 3.1. The following commutation relations hold”

[£(u), B1 (v1) Bo(v2)..... By (var)] =

M M
A A A A A 1 2
= —B1(v1) B2(v2)....By (o) ((A(w) — D(w)) ; e ,; y m1c1)+
M R R . R R 1 R R M
+ ,; Br(w0) B (v2)-.- B Bew) - By ) 7= ((Awe) = Do) = S:%j#k o )+

+2¢M B (v1)Ba(v2).... By (i) Cw).  (3.8)
Proof. The proof of the proposition is by the mathematical induction. To prove the first step

we calculate the following commutator using the commutation relations (3.3) and the direct
calculation. We obtain that

. . . . 1
[T(w), B(v)]=—(B(v) + cld)(A(u) — D(u))m+
R 1 . . . R
+ (Bu) + cId)m(A(U) — D)) + 2c(B(v) + cld)C (u).

Using the definition of the operator B 1(v) (3.6) the M = 1 case follows directly from the formula
above

(A() — D()+2¢ B (v)C ().

L A (I
[T(u), Bi(v)] =—Bi1(v)(A(u) — D(u)) ——+Bi(u)
u—v u—v
3.9
Now let us assume that the formula (3.8) is valid for M. We have to prove that it is also valid

for M + 1. Using the Leibnitz rule for the commutator we have
[£(), By (1) By (v2).... By 1 (vpg41)] = [£ ), Bi(v1) Ba(v2)..... Byt (van)1 Bug 1 (Vg +1)+

+ Bi () Ba(v2).... By () [£ ), By 1 (o)1 (3.10)

Using further the formulae (3.8) and (3.9) we obtain

[£(u), B1 (v1) Ba(v2).... By 1 (pr 1)1 =

~ ~ ~ ~ ~ ~ 1
=—B1(v1)By(v2).... By (V) Bi (vp41) (A(u) — D(u))—u o
— UMy

~ ~ ~ ~ 1 ~ ~
+ B1(v1) B2(v2).... By (vyr) B1 (u) ———(A(vp+1) — D(vy+1))+
U—VUpm+1
+2¢B1(v1) B2(v2)..... By (var) By (1) C (1)

1

u — v;

M
— Bi(w)Bo(v2)....Bu (van) (A(w) = D)) )
i=1

2 Check over the operator ék (vr) means that it is omitted in the corresponding product.

14
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M

2 n
- Z —————————)Bu1(m+ )+
i=1,j=2.i<j (u —vi)(u —vj)
M A . A A 1 A A
+ ZBl(UI)BZ(UZ)““B"(vk)Bk(”)'“BM(UM)m((A(vk) ~ Dlu)—
k=1
M
2 N
- Z Uk — v ) Bu+1 (1) +
s=1,s#k k s

+2¢M By (v1) Ba(v2).... By (vpr) C () Bag 1 (wpr41). - (3.11)

In order to obtain the desired formula we have to pass the operator I§M+1 (vp+1) to the left of
the operators A(u), D(u), C(u), A(vk), D(vg) on the rhs of the formula (3.11). To this end we
use

~ ~ ~ 2 ~ ~
[A(w) — D), By+1(vy+1)1 = ————Bp+1(W) — By+1(vp+1)), (3.12a)
U—UpM+1
~ ~ ~ 2 ~ ~
[A(v) — D(vk), Bu+1(wp41)] = ———(By+1 (k) — By+1(vp+1)), (3.12b)
Uk — UM+

(Awm+1) — D) — (A@w) — D)) + 2¢C (u).
(3.12¢)

A A 1
[Cu), By1(vpy+D)] = m(

The careful analysis shows that the additional terms obtained from the commutators (3.12) trans-
form the right hand side of (3.11) to the form (3.8) with M — M + 1. To show this we have used
the operator identity

Bi (). Br(u) B () ... By (var) Br1 (ve) = B1(v1)... B (i) .. By (vag) Brg1 (),
the definition of B m+1(v) and the following identity:
1 1 1 1 1

U—Vk U—Up41  Vk— UpM41 U— UM+ Vk — Up41

Therefore the proposition is shown.
Now we can formulate the following Theorem

Theorem 3.1. Let the rapidities vy, k € 1, M satisfy the following set of Bethe equations
u 2
Ai) = Ag(wp) = Y ————=0. (3.13)

Lk (Vg — vy)

Then the Bethe vectors |vy, V2, ..., Uy) are eigenvectors of the generating functions of the inte-
grals

Tu)|vr, v2, ..., o) = Au, v1, v2, ..., um)| V1, V2, . Up)

with the following eigenvalues A (u, vy, v2, ..., Up)

15
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Au, v, v, ..., vM)——(A () + A3() — = (8uA1(u)—3qu(u))+

M

> ; (3.14)

i=1,j=2.i<j (= vi)(u —v;)

1
+ (A1 (w) —Az(u))Z —
i=1

i
Proof. The statement of the theorem follows from the previous Proposition. Indeed, we have

2W)|v1, v2, ..., vy) = B1(v1) B2 (v2).... By (uar) T (1) |0) +
+[2 ), Bi(v) B2 (v2)....Bpr (va)]1]0).
On the other hand we have that

(u) = (Az(u)+D2(u) — BuAW) — 3, D)) +2Bw)C(w)),

where we have used the commutation relations (3.3h) in the limit v — u. Then, using the relations
(3.4) we obtain

. 1 5 2 1
T(u)|0) = (E(A1(M) + A5(u)) — 5(3u1\1(u) — 0, A2()))0).

Now, making use of the Proposition 3.1 we obtain that, by the virtue of the conditions (3.4),
for the rapidities v; that satisfy Bethe equations (3.13) the following equality holds true:

[£(), Bi(v1) B2 (v2).... By (oa)]10) = (A1 () — Az (w)) Z

_Ul

M

- Z ;)Ivl,vz,...,v/w)
(u —vi)(u—vy)

i=1,j=2,i<j
This completes the proof of the Theorem.
Remark 6. It is of interest to notice that the spectrum and the Bethe equations of the models

associated with the r-matrix (3.1) coincide with that in the standard rational case, when ¢ =0
[5]. But, as we have shown, when ¢ # 0, the Bethe vectors have different form.

3.4. Corresponding generalized Gaudin models
3.4.1. Lax matrix and Gaudin-type Hamiltonians

Let us now consider the Lax algebra of the Gaudin-type models. In the case when r-matrix is
(3.1) the corresponding Lax matrix (2.16) has the following form

2 (m)
L) = Z(Z U + (S(m) Sérzn))le)-l—Can +cnXn. (3.15)
m=1 i,j=1 Vm

The mutually commuting quantities it produces with the help of the generating functions 7V (u),
@ (u) are linear and quadratic Casimirs of the direct sum gl (2)ON

A 1 At~ A(m) A A(m) A A(m) A
A =S+ S CR= SIS+ SR ST+ S5

16
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as well as the following Gaudin-type Hamiltonians (2.18) in an external magnetic field

N 2 (m) ()

v_
m=1,m#n i,j=1 mn

+ 88" — 3y 118 4+ endS . (3.16)

3.4.2. Algebraic Bethe ansatz

Let us apply the construction of the previous subsection to the case of the Lax operators of
the generalized Gaudin models. Let us consider a finite-dimensional irreducible representation
of the algebra gI(2)®" in some space V. Due to the fact that any irreducible representation
of the direct sum of the Lie algebras is a tensor product of irreducible representations of their
components, we will have V = VM @ V2 Q... ® VM, where V* is an irreducible finite-
dimensional representation of the k-th copy of g/(2) with the lowest weight A; = (k(k) A;k)),

with A§k>, )Lgk) € N. Each representation V* contains the lowest weight vector v;, such that

S0 =1, S =280, .17
§My,, =o0. (3.17b)

Therefore, the whole space V** is spanned by the vectors VTk = (S‘ f?)”’wk, m €0, (A;k) — A%k)).

The Casimir function C 152)

6152) — _(S(k)S(k) + Szg)S(k) + S(k)S(k) (k)S(k))

acts on each vector v}! € V¢ in the usual way C(Z)v;"k =1 (()»(1))2 + ()\(2))2 + ()»(2) (1)))VTk.

Let us consider the following vacuum vector in the space V

[0) =V, ®Vi, @ ®Vay- (3.18)
From the definition of the Lax matrix (3.15) it follows that
R R N S(Vn) R R N &@m)
Cuy=L"w=) —H—, Aw=L"w=) +ein,
m=1 " - m=1 Vm =
N o(m)
Dwy=L"w =) —2—+on. (3.19)
— Vm —u

Thus, we have the following action of the entries of the Lax matrix on the vacuum vector
Cw)0) =0, Aw)I0)=AnwI0), D@)|0) =Aznw)|0),
where, due to (3.19) and (3.17a)-(3.17b), the eigenvalues are given by
N A(k)

Aii(u) = L i, iel,2.
1 ];])k—u 123

In this case, the creation operators Bi(u) have the following form

)

. S

Bewy =)y 12— +c§ (8 — 80y 4 2k — 1yeld. (3.20)
m= 1

17
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Due to the results of the previous subsection we know that the Bethe vectors are given by

|01, V2, ey ) = B1 (v1) Ba(v2)-.. Bur (v 10),
where the rapidities v; should satisfy the Bethe equations (3.13), which now read

N )L(l) —)\(2) M 2 _
YRR S 2 e kel (3.21)
o ovs— sk (vx — vy)

The spectrum of the generating function 7 (u) is given by

(k) (k)

AR
+6‘11)2+(Z vkz—

N
A, 01,02, ooy Uy) = —((Z

N )\“‘) x(’”

N (k
—<Z ) <Z

) N

)
+C — C E

vk —

u 2
— Z —. (322
i=1,j=2i<] ( —vi)(u— Uj)
Also, the spectrum of the generalized Gaudin Hamiltonians is

N A(k)/\(n) 2 Mo
ey 50 A S —ap 3o o
k — Vn iz Vi — Vn

i=1k=1,k#n i=1

Remark 7. The spectra of the generalized Gaudin Hamiltonians and the Bethe equations are the
same as in the standard rational case, when ¢ = 0. However, for ¢ # O the Bethe states of the
model are different.

3.5. Corresponding BCS-type models

3.5.1. The BCS-type Hamiltonian in the spin and fermion form

Let us consider the following combination of the generalized Gaudin Hamiltonians (3.16) and
the second order Casimir operators:

N N
= Z v Hy, — Z c?. (3.24)
n=1 n=1

More explicitly we have

AL s us -3 3 3 S5

lj 1m,n=1
N N
+e Y S =88 +1) > v 8. (3.25)

Applying the fermionization formulae (2.22) we obtain the following Hamiltonians of the BCS-
type

18
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=cn ZU" Cp.e'Cne +c22 Z VnCn ecn e

n=1

N
1 P i
) (Cm’e/cm eCn,eCn,e’ T Cm,eCm,e'C,, G’Cn )~

N
1 i i i i
3 (Cmﬁ/cm,e’cn’efcn,e’ + Cm,écm,ecn,écn,e)+

m,n=1

N N
§ "
+c Z(Cm’g/cm,e’ - Cm,Gc;n’e +1) Z VnCn,eCn,e’s (3.26)

m=1 n=1

where €,¢’ € 1,2 and e £ ¢€’.

Remark 8. It maybe of interest to discuss briefly the terms of the Hamiltonian (3.26). The first
two terms are the kinetic ones. They acquire the standard form upon setting ¢y = —cy1. The
third term is the s-type pairing interaction. The fifth term is new, non-standard and it is due
to the additional summand in the considered r-matrix. Finally, the fourth term corresponds to

the negative half sum of S2] =( Z S(m))2 and 3‘ = (Z S(m))z. This term is absent in the

A N
standard BCS-Richardson’s Hamiltonian since in the standard rational case Sj; = > § 1('1") and
m=1

. N . A .
Sy = Z] Sé';) are the integrals of motion and one can add 3(S?, + $3,) to the Hamiltonian
m=

A N o
(3.25) without spoiling its integrability. In the ¢ # O case, the operators Sj; = Y SiT) and

m=1
3‘22 Z S are not the integrals of motion and therefore their functions can not be added to

the Hamlltoman (3.25).

3.5.2. The spectra and Bethe equations
In particular case when A(k) =1, A(k) 0, k € 1, N the Bethe equations (3.21) have the fol-
lowing simple form

N M )
> > =cn —c11, kel, M. (3.27)
slvs_vk Topk Uk T Us

S=

The spectra of the generalized Gaudin Hamiltonians is also simple in this case

(3.28)

N
Z —v +c22+2

k=1,k#n i=1

v — 1)n
where the rapidities v; satisfy the Bethe equations (3.27).
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The spectrum of the BCS-like Hamiltonian (3.26), up to the constant, has the following form

M
:ZZ :—MN+(C22_C1])ZUj, (3.29)
n=1i=1 i=1

Vi —Vn

here we have used the definition of H and the Bethe equations (3.27). It is important to notice
that the spectrum of the Hamiltonian H (3.26) is the same as in the standard Richardon’s case
[2,11], but the Bethe vectors are different.

4. The trigonometric r-matrix
4.1. Shifted twisted trigonometric r-matrix

Let us consider another non-standard skew-symmetric rational -matrix of the following form

[4]:

2
> X
i,j=1

P +c((X11 — X22) ® X21 — X21 ® (X11 — X22)).

rio(u —v) =
It is straightforward to check that
o10or12(” —v7) = —rip(u — v),
where u° = —u, v’ = —v and the automorphism o on g = gl/(2) is defined by
o (Xij) = (=D Xj;.
Thus we can define the following non-skew-symmetric classical r-matrix

ris(u, v) =rip(u —v) —oori2(u +v).

By making the equivalence transformation, namely, multiplying this r-matrix by % we come to
the following non-skew-symmetric r-matrix of the type (2.7)

2

v
rfz(u,v)=u (X11®X11+X22®X22)+ (X12®X21+X21®X12)+

+ev(Xi — X22) @ Xo1. - (4.1)
In this section we will focus on this r-matrix and it will be denoted simply by ri2(u, v).
Remark 9. Notice that the r-matrix (4.1) may be also viewed as a shifted trigonometric r-matrix:

r12(u, v) = ri5 8, v) + e (v),

where

trig lu +U

ryp”(u,v) = P 2(Xn®X’11-I-X22®X22)-i- (X12®X21+X21®X12)
with the shift tensor ¢ (v) defined as follows c12(v) = ——(X11 ®X11+X2n®X2»)+cv(X —
X22) ® X21.

20
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The trigonometric parametrization is obtained by the following substitution u = exp (’¢)
v = exp <””> The r-matrix (4.1) satisfies the condition (2.4) in the trigonometric parametriza-

tion, since the r-matrix r]t gig (u, v) satisfies it in this parametrization. Furthermore, is straightfor-
ward to show that the r-matrix (4.1) satisfies the conditions (2.11).

4.2. Linear Lax algebra and generating functions of the integrals of motion

In the standard way the classical 7-matrix (4.1) defines the linear Lax algebra (2.8):
[L1(w), La()] =[ria(u, v), L1 )] = [r21 (v, ), Ly ()],

" " N N N 2 ..
where Li(u) = L) ® 1, Lo(v) =1® L(v),and L(u) = > LY W) Xij.
ij=1
Using the fact that the r-matrix (4.1) satisfies the conditions (2.11) we have that the function

t D) =L"w) + L)

generates a center of the linear Lax algebra (2.8). Also, it follows from the Theorem 2.1, that the
function

A L. A A A A A A A
D) = E(L“(u)L“ ) + L2 @) L?(w) + L @) L* () + L* ) L ()

is a generating function of the commuting quantum integrals of the second order
[£®P @), 1P )]=0

The spectral decomposition of this function will be the main topic of the subsequent subsections.
As in the previous section, it will be convenient to use the following notations

Aw =L"w), Bw=L"w), Cw) =L"w), D) =L*w).

In these terms the commutation relations of the Lax algebra (2.8) acquire the following form:

[A(), A(v)] = [A(u) D)l =[D), D)1 =0, (4.22)
2
[A(u) B(v)] = B(u) — 2 B(v), (4.2b)
2
[D(u), B(v)] = B(u) +- B(v) (4.2¢)
[B(u), Bv)] = —ZC(vB(u) - uB(v)) (4.2d)
2
[Aw), C(v)] = C(u) t C(v> (4.2¢)
2
[Dw), C(v)] = —— sz(u) - ———Cw), (4.2)
[Cw), C(w)]=0, . 4.2g)
[Cw), B =————((A@w) = Dw) = (A@w) = D)) +2cvC w). (4.2h)

In terms this notation, the generating functions 7" (), 7 () = ©® (u) have the following form:
R R L, A AL A A A
tDw)y=Aw) +Dw), )= E(Az(u) + D*(u) + Cw)B(u) + Bw)C ().
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4.3. Algebraic Bethe ansatz

4.3.1. Vacuum vector and Bethe vectors
As usual, let us assume that in the representation space V of the Lax algebra (4.2) there exists
a vacuum vector |0) such that:

Cw)0)=0, A@)I0>=A1)|0), D@)|0>=Aru)[0). (4.3)
Following the ideas of [29-31], we consider the following vectors |v, v, ..., vy) in the space V

V1,02, ..o Upg) = B1 (1) By (v2).... By (va)10), (4.4)
where the operators ék (u) are defined by

Bi(u) = B(u) + (2k — Ducld. (4.5)
From the commutation relation (4.2d) we have that:

Bi() Biy1 (v) = Br(v) Biy1 (u). (4.6)

Therefore the vector |vy, v, ..., V) is @a symmetric function of its arguments.

4.3.2. The spectrum of the generating functions and Bethe equations

In this subsection we will study the spectra of the generating functions 7 (u) and 7 (i)
relative to the Bethe vectors |vy, v2, ..., vys) obtained in the previous subsection.

Since £V () is a Casimir function, its spectrum on the Bethe vectors (4.4) is

D)1, v2, ey va) = (A1 @) + Ao @) Bi (v1) B2(v2).... B (vp)10).

In order to calculate the spectrum of 7 (u) we will need the following Proposition.

Proposition 4.1. The following commutation relation holds>:

[£(u), B (v1) Bo(v2)..... By (vpr)] =

M 2
A A A A A u
= =B Ba(v2).... By o) (A0 = Dw) = 1d) } =5
i=1 i
M 4
2u
- Y 1d)+
2 a2\(2 42
i=1 i< WS )W —vj)
M X UV
+ Y Bi(v1) By (v2).... Br(vi) B (w)... By (vm) ——— (A(wy) — D(vr) — 1d—
k=1 MZ - vk
M 2
2
- Y )+
vZ —v2
s=1,s#k k s

+2cuM B (v1) B2 (v2).... By (a) C (). (4.7)

3 Check over the operator ék (vr) means that it is omitted in the corresponding product.
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Proof. The proof of the Proposition is by an induction procedure. To prove the first step we use
the commutation relations (4.2) to obtain
R . R A N uv
[2G0), B)] = ~(BW) +cvld)(A@w) = D) —1d) 57—+
u? o N n
+ ﬁ(B(u) + culd)(A(v) — D(v) —1d)
us—v
+2cu(B) + cvld)C ().

Using the definition of the creation operator E‘l (v) (4.5) we obtain the M =1 case

[2w). B1(0)] = ————5 B1 @) (Aw) = Dw) ~ 1)+

2
+ B ”_ (A) — D) —1d) + 2cuB; (V)Cu). (4.8)

u? — 2

Now let us assume that the formula (4.7) is valid for M. We have to show that it is also valid
for M + 1. Using the Leibnitz rule for the commutator we have

[£(u), B (v1) B2(v2).... By1 (V1)1 = B1(v1) Bo(v2).... Byr (o) [ (), Byr1 (vpr41) 14
+ [£(u), B1(v1) B2(v2).... By (vp) 1By (vpg41)- - (4.9)
Using further the formulae (4.7) and (4.8) we obtain:

[£(u), By (v1) Ba(v2)....Bpr41(upr41)] =
2

3 B B B A A u
= —B1(v1) B2(v2).... By (va) B1 (a1 (A() = D(w) = 1d) ————+
U=V
3 B B B UV 2 .
Bi(v1) B2(v2)..... By (van) By (u) ———5—(A(vp+1) — D(opr+1) — Id)+
U= U1
+ 2cu By (v1) B (v2).... Bay (var) B (vpr41) C ()
M 2
B B B A A u
— Bl (UI)B2(U2)BM(UM)((A(I,{) _ D(I/l) _ Id) Z uz - v2 B
i=1 i
% 2u )l} e .
- 2 2y(12 2 M+1(VM+1
i=1,j=2,i<j (s —vi)(u — vj)

M
A A X A A 1 A A
+y Bi(vn) Bo(v2)....Bic(wi) B By (v) 7=~ ((Awe) = Dlwi) — 1)~
k=1

21),% ~
- > 5 5) By (opi)+
s=1,s2k Uk — Us

+2eM By (v1) B2(v2)..... Byt (va) € ) By 1 (Vg 41). - (4.10)

In order to E)btainAthe de§ired r§sult we have to pass the operator §M+ 1(vapr+1) to the left of
the operators A(u), D(u), C(u), A(vk), D(vr) on the right hand side of the formula (4.10). For
this purpose we use
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A A A~ UVM+1 A u2 N
[A(u) — D(u), By+1(vp+1)] = 27231144_1(@ - ﬁBMH(UMH),
U= = Uy U= = Uy
(4.11a)
A A A 2060041 & 2v,% N
[ACv) = D(vk), Bur1(oy+ )] = 5——F—Bu+1(0) — 5—F5—Bu+1(vm+1),
Ve = Vm+1 Ve — VM+1
(4.11b)
A - UVM+1 A A A A A
[C(uw), Bu+1(vm+1)] = W((A(UM+1) —D(p+1)) —(Aw) — D(u)))+2ch(M)'
T YM+1

4.11¢c)

It can be seen that the additional terms obtained from the commutators (4.1 1) transform the right
hand side of (4.10) to the form (4.7) with M — M + 1. In order to show this one also has to use
that

Bi (1) Bk (0) B (). Bu (vy1) By 1 (W) = Bi(01)-- B (W) By (vun) Bug 41 (w),
the definition of the creation operator B M+1(v) (4.5) and the following identity

2 2
u UVM+1 UVk VkUM+1 UVM+1 Uhi+1

2_ 2.2 2 2_ 2.2 2 Ty 2 2 _ 2
u Uk u UM-H u Uk Uk UM—H u vM—i—l l)k vM—i—l

This completes the proof of the proposition.
Now we can state the following Theorem

Theorem 4.1. Let the rapidities vy, k € 1, M satisfy the following Bethe equations

M 202
A — Ao — Y =1 (4.12)
s=1,s2k Uk — Us

Then the Bethe vectors |vy, va, ..., Uy ) are eigenvectors of the generating function of the integrals
of motion

TW)|vi, v2, ..., vy) = A, v1, V2, ..., Up) V1, V2, ooy Vi)

with the eigenvalues

1
A, 01, V2 ooy V) = E(A%(u) +A2(u) — %(aum(u) — By A )+

M2 M 2u*
+ (A1) — Apw) = 1)y = Y - —. (413)
prll Gl i=1,j=2,i<j (u? =) (W —vj)

Proof. The statement of the theorem follows from the previous Proposition. Indeed, we have:

2@W)|v1, V2, ..., vy) = B1(v1) B2 (v2).... By (uar) T (1) |0) +
+[2(u), Bi(v1) B2 (v2).... By (vpn)]0).
On the other hand we have that:
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. I, A 5 u o o o o
T(u) = E(A @) + D) = 5 (0uAW) — 9 D(w) +2Bw)C(w)),

where we have used the commutation relations (4.2h) in the limit v — u. That is why using the
relations (4.3) we obtain that:

- 1 2 2 u
T(w)|0) = (E(A‘ () + A3 (w)) — 1(3,41\1(“) — 3y A2 (u)))]0).

Now, making use of the Proposition 4.1 we obtain that, by the virtue of the conditions (4.3),
and for the rapidities v; that satisfy Bethe equations (4.12), the following formula holds true

[£(u), B1 (v1) Ba(v2)....Bps (uan)1]0) =
2 M

M 2ut
= (MW —Aw—DY 5—=— Y )v1, 02, ... v
i=1

u
u? —v ? —vH(u? - vf)

i i=l,j=2,i<j

This completes the proof of the theorem.

Remark 10. The spectrum and Bethe equations of the systems associated with the r-matrix (4.1)
coincide with the ones of the non-skew-symmetric trigonometric ¢ = 0 case [24]. But the form
of the Bethe states is different.

4.4. Corresponding generalized Gaudin models

4.4.1. Lax matrix and Gaudin-type Hamiltonians
Let us consider the universal example of the Lax algebra which yields the Gaudin models.
The relevant Lax matrix (2.16) has the form

Vm

N 2 2
N u N N
Lay=3 (3" G Xu + 33" Xn) +

m=1 i, j=1 ™M

u A ~
S 81 X + 557 X i)+
m

+cuS" — 8N Xo) + 11 X1 + enXa.  (4.14)

The commutative quantities it produce with the help of the generating functions 7V (i), £ (u) are
linear and quadratic Casimirs of the direct sum gI(2)®V

A A A A 1 A~ Al A A () A Al A
D _ ¢lm) (m) 2) _ (m) &(m) (m) &(m) (m) &(m) (m) &(m)
=81 +585, C,(”)_i(S“ Sip 80780  + 815 Sy + 8517 S120)s
as well as the following Gaudin-type Hamiltonians (2.18)

'mVn

— 2
Vn

N 2
7 — v §om g gm) §(m) d §Om) G0 &0m) §(n)
Hi= ), (5 (8181 + 527 5%) + - (S127851" + 55" Sip)+
=l,m#n ™ n

m

Al ~ ~ | PO ) A c ~ ~ ~ An) A ~
+emn (S =880 = S SIS + 8585 + S (B = S8 + 57 i — 550+
+ Cllgﬁ) + szsg). 4.15)
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4.4.2. Algebraic Bethe annsatz

Let us apply the construction of the previous subsection to the case of the Lax operators of the
generalized Gaudin models. Let us consider a finite-dimensional irreducible representation of the
algebra gI(2)®" in some space V, just as we have done in the subsection 3.4.2. As we have seen
already, any irreducible representation of the direct sum of the Lie algebras is a tensor product of
irreducible representations of their components. That is to say that V = VM @ VA2 ® ... Q@ V¥V,
where V¢ is an irreducible finite-dimensional representation of the k-th copy of gl/(2) with the
lowest weight A, = (A(k) )\(k)) with A(k) A(k) € N. Each representation V** contains the lowest
weight vector v;, such that

88, =10v, $Bvi, =2Pv,,, (4.162)
850V, =0, (4.16b)
and the whole space VM is spanned by V;»nk = (S‘fg))’”v;%, m e, (Ag‘) — )»ik)).
The Casimir function C ,EZ)
e — ( §OH | g0 5h | 550 4 50 ) @17

acts on each vector v} € V* in the usual way C,Ez)ka =3 (()L(]))2 + ()L(z))2 + (/\(2) (])))V’)’fk
Also, as we already know, the vacuum vector in the space V is given by

[0) =V, ® Vi, @+ ®Vay- (4.18)
From the definition of the Lax matrix (4.14) we can readout its entries
i X N oy §m Rk No28m
Cwy=L"w=3 =5 Aw=L"w=) —T+e,
Ve —u
m=1 M m=1 Vm
. R N o250
D) =L"w) =) 2 2u2 + . (4.19)
m=1

The action of these operators on the vacuum vector follows from the equations above

Cw)|0) =0, A@)|0)=A11()|0), D(u)|0)= Axn)0), (4.20)
where
N 2 (k)
A,,(u)_z2 Stci,  iel2
M

In this case, the creation operator By (u) has the following form

N o(m)

R Vi S ~
By =" "‘)2'” 2_ 4 cu Z(S(’{” — 80 4 (2k — Dueld. 421
m=1 M m=1

It follows from the results of the previous subsection that the Bethe vectors are given by the
action of the creation operator on the vacuum vector

1, V2, ey VM) = B1 (1) Ba(v2).... Bag (ur)|0),
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where the rapidities v; satisfy the Bethe equations (4.12), which in this case read

N2 (s) _ () M 5
V(AT — A7) 2v

Y A Y =+l kelM. (4.22)

=1 5T % s=ls#k Uk T Us

The spectrum of the generating function 7 (u) is given by

N o2 (k) 2)L(k)
A(u,v1,v2,-.-,vM)—— Z +611)2+(Z - S+ en)?)-
- Vi
N 2.2 N u? (k) N u? (k) u?
1 u Uk (k) (k) )\. )\.
NP Dhrrie Mt )+<Z Z +CH—622—1>Z e
k=1 —1Y
% 2ut 4.23)
= jmiey WP VDR =0l

Furthermore, the spectra of the generalized Gaudin Hamiltonians are

h=y 3 U

i=1k=1,k#n

o +en ) 4 el — ((A§">>2+(x§">)2)—
2

M 2
v
—aw _xg‘”)E . (424)
VTV

Remark 11. Thus we can conclude that the spectra of the generalized Gaudin Hamiltonians
(4.24) and the corresponding Bethe equations (4.22) are the same as in the ¢ = 0 case [24,23].
However, the Bethe vectors of the system are different.

4.5. Corresponding BCS-type models

4.5.1. The BCS-type Hamiltonian in the spin and fermion form
Here we consider the following combination of the generalized Gaudin Hamiltonians (4.15)
and the second order Casimir operators (4.17)

N N
A= Z v 2H, + Z v 20?2, (4.25)
n=1 n=1

In terms of the local g/(2) generators this Hamiltonian is given by
N 2 N
H:C Z 25( n) +C222V 2s(n) Z Z —1 —I(S(m)S(”) +S(m)S(72'))+
n=1 i,j: n=1
+e Z(Sﬁ") S 1) Z v 18 (4.26)
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Using the fermionization formulae (2.22) we obtain the following BCS-type Hamiltonian

—mZv né/cne/“‘CZZZV 2enecy o+

n=1 n=1

N
1 —1,—1,,.7F i oot
+ 3 Z v, v, (cm /Cm.eCn.eCn.e’ +cm,€cm’€/cn’e/cn’€)+
m,n=1
N N
T -1
+c Z(cm’e,cm,e/ — cm,Ec;rn,E +1) Z V, CneCne, (4.27)
n=1

where €, €’ € 1,2 and € # €'. Moreover, it can be shown that, using the fermion anti-commutation
relations, this Hamiltonian takes the form (1.7), up to the term proportional to the identity oper-
ator.

The Hamiltonian (4.27) is a one-parametric deformation of the p + ip BCS Hamiltonian
[23,24]. Indeed, its first two terms are the kinetic ones. They acquire a standard form upon putting
c22 = —c11. The third term is a p + ip the pairing interaction term. Finally, the fourth term is
a new term that is due to the additional term in the considered r-matrix. In the limit ¢ — O the
Hamiltonian (4.27) coincides with the p 4 ip BCS Hamiltonian [23,24].

4.5.2. The spectra
In the case when we specify k(k) =1, A(k) 0,k € 1, N the Bethe equations (4.22) become

N v2 M 202 _

E 3 k 2_ E 3 k 2:622—6‘11—‘;—1, kel,M, (428)
v, —V v, — v

s=1 "k s s=l,s5#k k s

and the spectra of the generalized Gaudin Hamiltonians become

(4.29)

where the rapidities v; satisfy the Bethe equations (4.28). Furthermore, up to the constant, the
spectrum of the BCS-like Hamiltonian (4.27) is given by

n=1i=

=(n—cn+ 1)2 = (4.30)

i=1 Vi

—

where we have used the definition of H (4.25) and the Bethe equations (4.28).
It follows that the spectrum of the Hamiltonian H is the same as in the p, +ip, case [22-24],
but that the Bethe vectors are different.
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