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Abstract
Under the assumption of gentle behavior of higher cumulants or correlation

moments, we discuss how the multiplicity distributions approach the Gaussian
(normal) or approximately Gaussian distribution at high energy. This is an ana-
logue of the central limit theorem. A detailed comparison with experiment is made
based on this formalism and shows that such an approach may be useful. It is
pointed out that if the 2-prong inelastic cross section in the pp reaction is identified
with the lower end point of the multiplicity distribution, then a deviation from the

Gaussian form is necessary at the present energy. The asymptotic relation
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is well satisfied by experimental data, where (. and y stand for the maximum of

the topological cross sections and the width of the limiting Gaussian form, respec-
tively. If the ratio of the width v and the modal multiplicity m approaches a non-
vanishing value at infinite energy, then we obtain a scaling of the distribution function,
the scaling function being of approximately Gaussian form with the scaling variable

n/m.

*Work supported by the U. S. Atomic Energy Commission.
tPermanent address.

(Submitted to Phys. Rev.)



I. INTRODUCTION

For a long time, the Poisson distribution has been a favorite model of phys-
icists for describing the high energy multiplicity distribution. Recent experi-
ments, ! however, indicate a departure from it by exhibiting nonvanishing corre-
lation moments. It has been pointed out, in fact, that the asymptotic multiplicity
distribution seems to approach a normal distribu’cionz_4 as energy increases.
Such a phenomenon resembles the central limit theorem in statistics and was
proved by Haldane some time ago in the case of a continuous distribution on the
interval (-c0, c0). The assumption that leads to this result is that the higher
cumulants do not grow too fast, a condition which is met by multiperipheral
models, 5 field theoretical models, 6 and a gas model. 7

In this article, we elaborate on the Haldane theorem and present it in a
form suitable for analyzing'experimen‘tal data. In Section II, the cen'tral limit
theorem is exhibited for the Poisson.d‘istribution §0"as to be useful for discus-
sions of the later sections. | Section I presents the definition of various moments
and their relationships. In Section IV, we prove the Haldane theorem for a dis-
crete distribution on the interval (0, 00) and derive the asymptotic expansion
formula. Based on the result of Section IV, we discuss the asymptotic limit of
the distribution function and various asymptotic relations among the parameters
which describe the distribution function. A possibility of scaling of the distri-
bution function is pointed out (Section V). Comparison with experimental data

and discussion follow in Sections VI and VII.



II. THE POISSON DISTRIBUTION AND ASYMPTOTIC FORM

It is a result of the central limit theorems’ 9 that the Poisson distribution
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approaches the normal form in the limit a — o0. In order to see this more

explicitly, we transform Eq. (2.1) into the form

Do
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This can be done by using the asymptotic expansion of the Gamma funcgtion
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Leaving the details of the calculation to Appendix A, we write down the

asymptotic solution for the parameters,
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The coefficients a, are related to bk and given by
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Equations (2.2), (2.3), and (2.9) - (2.12) give us an idea of how the limiting
normal distribution is approached as the average value a increases.

The normalized cross section Pn has the maximum value 1/+/27 B at
n =m, which is called the mode or modal multiplicity. 10 The width parameter

y and g have the same limit ~/a, but v approaches the limit faster than g does.

IIT. MOMENTS AND CUMULANTS
A statistical system with correlations is conveniently discussed in terms of

various moments. They are defined through the characteristic function, c.f.,
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where B =00, K, Fk = n(n-1)- (n-k+1), fk and dk = (n-n) are
moments, cumulants, 9 factorial moments, correlation moments, 11 and dis-

. 12 X
persion moments, ~ respectively.



All these moments are related to each other. Some useful relations are

given below:
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It follows from Eq. (3.3) that the first two cumulants are positive definite. The

correlation moments fk are cumulants of the factorial moments F, , and therefore

k

the relationship between Fk and fk is identical to that between Py and & The

ko

latter is given in Ref, 9.



IV. ASYMPTOTIC EXPANSION IN TEMPERATE CORRELATION MODELS

Inverting Eq. (3.1), we obtain

1
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where the abbreviation
o)
D = dn

is used. Obviously, such a formal manipulation is not permissible for an
arbitrary distribution Pn orac.f. ¢(t). Very roughly speaking, it should be
allowed for a distribution which is sufficiently smooth and vanishes sufficiently
fast as n — c0. The latter condition is also necessary for all moments or
cumulants to exist. In any event, we retrict ourselves to a class of distribu-
tions which permit this manipulation. For practical application in physics,
this restriction does not seem a serious hazard. In particular, in the case

of multiplicity distributions, conservation of energy requires a cut-off of the

distribution forn > N & Js.
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Now the integral in the last term of Eq. (4.1) is computed as follows:

T
1 Kztz
x(n)zﬂ [exp —i(n—fcl)t———z—— dt

T

2 T 2
(n—fcl) 1 [ Kz /t i(n—fcl)\ ]
= exp 5 exp |- o (t+ / t
2K, | 2m ] 2 \ N
-7
K, in-k_)
RE ( il 1)
R 2 2
1 (n—xl)-\ 1 —t2
= expl - o e dt

Jr
_ [Kz / i(n—fcl)\
2 - kg
R (n“-".l)

5
exp ————————J L i : '
= ("2 ] Re{Erf \E 7r+———-——————1(2 Kl)))} . (4.3)
\ 2 /

J2WK2

where the error function is defined by
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Thus we have the asymptotic form for X(n):
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Notice that the second term in the brackets of Eq. (4.5) vanishes exponentially

in the limit «_——c0 as long as the condition

2
n -k
< (4.6)
K
! 2
is satisfied.
From Eq. (4.1), (4.3), and (4.5), it then follows that

x |1+0 4.7
[ = J

The first term of Eq. (4.7) \is of the form used by Haldane in his analysis of the
mode and median of a nearly normal distribution with given cumulants, 13 and
is an exact formula for a continuous distribution in the interval (- %, o). In
other words, the problem of obtaining the asymptotic distribution function in
terms of cumulants for the case of discrete distribution in the range (0, o0) is
identical to that for the continuous distribution in the range (- %0, o0 ), apart
from the terms that vanish exponentially, for the range of n which satisfies the

condition (6).



If, moreover, we assume that

k/2 " 0(€k—2) ) k >3, (B)

with € a small number, we can derive an asymptotic expansion for Eq. (4.7),
following the method of Haldane. 13 We may refer to the assumption (B) as

temperate correlation models. We further divide the models into two cases:

If

"k

e are bounded, (k 2> 3), (A)
2

so that

€ ~ —0 as k., — o , (4.8)

we may call thém weak correlation models, while those which satisfy the con-

dition (B) with a small but f‘mite € may be called moderate correlation models.

6-8

A special case of the former is the so-called short correlation models,
the name which originates from the behavior of correlations in rapidity variables.

In such models, energy dependence of cumulants or correlation moments are
k= £, =0(ms) . (4.9)

On the other hand, long correlation models lead to

k
K fk=0<(£ns) ) , (4.10)
i.e.,
“x
Y o= /2 are bounded . (4.11)
2

The condition (B) further requires that Yk be successively smaller as k increases.
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Assuming the condition (A) or (B), we use O(¢) and O(K; 1/2>synonymous1y,
unless otherwise stated explicitly, since the asymptotic expansion formulas are
the same for both the cases. The rates of convergence are different, however.

Then, using the definition of the Hermite polynomials,
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Equation (4. 13) enables us to derive an asymptotic form which is similar

to Eq. (2.2) and (2.3). Or, alternatively, we may use the expression
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which can be easily understood from the way formula (4.7) was derived, or

from the identities,

exp(aD) f(n) = f(n+a) (4.16)
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and

2

2
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exp<2D>exp —3 50 3— hio SXP %—2(b+c)% ,¢ >0, btc >0.

[Equation (4.16) is a formal expression of the Taylor expansion and Eq. (4.17)

can be proved by taking the Fourier transform of both sides.] In Eq. (4.15), m

and 72 can be arbitrary, but later we will identify them as the mode and the

correct width.

Using either form, (4.13) or (4.15), we derive the asymptotic form
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The order of magnitude of the coefficients ay and b, is represented by
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which are analogues of Eq. (2.12) and (2.10).
Expressions (4.20) - (4.23) contain the asymptotic forms (2.9) - (2.12) for
the Poisson distribution as a special case, i.e., the former reduces to the lat-

ter if one puts k¥, =a. We notice that the speed of convergence to the limit for

k
the parameter v is not necessarily faster than that for g unless Koy = Kg , in

contrast to the case of the Poisson distribution.
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Finally, we present a simple example which does not satisfy the conditon

(A) or (B). Consider a distribution (continuous, for simplicity),

P = , for0 < n < 2n

n

:l?t’H

=0, forn > 2n . (4.24)

The c.f. is expressed as
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In order to find the cumulants, take the logarithm of Eq. (4.25),
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It is easy to see that the cumulants are

=
Il
B

1
2
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2 3
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“ox = 2k (4.29)
and

et = 0 k21,
and therefore we have
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Kk 2k T ) 0
2
ask — .., - (4.30)
which violates the condition (B). In this example, absence of "smoothness' in
the distribution function is related to the violent behavior of cumulants as shown
in Eq. (4.30).
V. ASYMPTOTIC LIMIT AND SCALING
The assumption (A) or (B) corresponds to very different physical models,
although we can use the similar asymptotic expansion, as was mentioned in the
preceding section. The difference of both the models lies in the behavior of the
parameters as functions of energy.
(a) Weak correlation models
Let us assume that
kK, =n = O{{ns) (5.1)



and consider a little more general case than Eq. (4.9), e.g.,

~ = p
K ™ I o(uzns)), k> 2,
where p is a positive constant.

(i) The asymptotic limit

The asymptotic expansion (4.18) will approach the limiting Gaussian form

2
oxp [ n-m }
Zyz

P = ' s
n 2w B
where
K
— 1 3 =
m n————+OK\1\)~‘
L2 off
and

~v27 “m V2
7“"«/"2

However, the present energy is not sufficiently high to realize such a limit.
This may be understood from the fact that the cross sections for small multi-
plicities are still not small and therefore the condition for using the simplest
asymptotic limit, Eq. (5.3) - (5.6), is not satisfied. As a matter of fact, the
normal distribution (5.3) with condition 8 =+ implies that the distribution is
normalized (automatically) for the range (- o0, oo) but not for the range (0, o« ).
We may notice, however, that the parameters 3 and y approach their limiting

value with different speeds, as is seen from Eq. (4.20). A simple modification,
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keeping the normal distribution, would be to impose the normalization condition,

9
o0 _ n-m
1 22
B =—— e 7 dn
2T
0
"
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where

g(x) = —2’5— (1+Erf(

It is easy to see that the asymptotic form of the function g(x) is

2

x— 0 Ne2T

and the inequality

is satisfied.

The analysis based on Eq. (5.3) and (5.7) was carried out in Ref. 2 - 4, and

shows that a reasonable agreement with experiment is obtained as long as the

two-prong events are neglected.

(ii) Correction to the normal form

The question of how the two-prong events should be treated is a difficult one.
If the total two-prong events are to be included, the Gaussian limit would not fit

the experimental data. This is because the elastic cross section at high energy

-17-
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is mostly of diffractive nature and is too large to be explained by a Gaussian
distribution or any other simple distribution which is supposed to cope with in-
elastic events. It would be more natural to use a model consisting of two com-
ponents, one for the diffractive and the other for the non-diffractive (inelastic)
component, as was elaborated by Quigg and Jackson. 16 The difficulty is, how-
ever, that we do not have a theoretical idea which enables us to make a clear-cut
separation of the elastic amplitude into the diffractive and nondiffractive components.
The simplest possible assumption is to identify the inelastic two-prong cross

section with the term P This would imply that the nondiffractive component

n_=0°
in the elastic amplitude is quite small at high energy. This is compatible with a
remarkable constancy of the elastic cross section in the energy range 50 - 300 GeV
(see Table 1), Adopting this assumption, we see that comparison with experiment
rules out the asymptotic form, Eq. (5.3) and (5.7); the cross section of the two-
pront events is too small to be fitted by a Gaussian distribution. In other words,

an asymmetry around the modal point becomes evident and a correction to the

normal form is definitely needed. In particular, the a_, or b3 term, which is the

3
dominant one in the brackets of Eq. (4.18) or (4.19), should be included. Notice
that 2y = b3 x 1/k ;/2, while the coefficients a, or bk of all the other terms are

at most of the order 1/K2 , according to Eq. (4.21) ~ (4.23). In fact, we would ex-
pect to have a positive value for ags in order to explain a lower value for the two-
prong inelastic cross section.

We are thus led to use a modified asymptotic form

) 2
1 §n-m) 3)
P = e 2\ 7 {1+a3(n"m ) (5.11)
v ]y

-18-



or

2 3
_ 1 1 n-m) (n—m)
P = -5 s 5.12

instead of Eq. (5.3). Around the modal point, both the formulae, Eq. (5.11) and
(5.12), give roughly the same prediction, while away from the modal point, they
may differ from each other. That will be reflected in the determination of aq
when experimental data are fitted with these formulae. Which of these two should
be used is a question of efficiency to reproduce the data, since they are equiva-
lent if one takes into consideration the infinite terms.

There are —some advantages to using formula (5.12): (a) It is clearly pos-
itive definite, and (b) convergence may be more efficient, as may be indicated
from the comparison of Eq. (4.22) and (4.23), should a few more terms be in-
cluded. Nevertheless, we will use formula (5.11) in our analysis of the experi-
mental data for the following reasons: ~ (a) This is the way the formula has been
derived (see Appendix B), (b) 2q is small and the accuracy of the present ex-

periment is not sufficient to select either form, and (c) it is easy to handle the

normalization condition which reads

a 2 _lr_nz_
i — S Y fps ™) 2 Y
- g( >+ 2+ 5 |e . 5.

(iii) The asymptotic limit of the ratio y/m

Let us define the quantity

S —m oo M S - e

lim y _ lim N2 _
- :
1
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If we use the normalization equation (5.7) or (5.13), we would be led to conclude

that
d =0, (5.15)

since at infinite energy, we have § =+ and ag = 0, and the equation, x = g(x),
has the unique solution, x = 0. Equation (5.15) restricts the value of the ex-
ponent p in Eq. (5.2) to

0<p< 2. (5. 16)

This is a somewhat surprising result, in view of the fact that our asymptotic
expansion should satisfy the normalization condition automatically (it is built
in) and we have—used neither such a condition nor Eq. (5.16) in its derivation.

It is possible that because of several limiting processes involved and ap-
proximations made in the discussion of the preceding section, we may be forced
to a false conclusion. In fact, the precise normalization condition is a discrete
sum2 of a finite number of terms (due to energy conservation). It is also worth
noting that the contact of the function y = g(x) and y = x is of infinite order at

the origin x = 0, and Eq. (5.7) and the asymptotic relation 8 — v are asymp-

totically compatible as long as

[N
1%
[y

(5.17)

If d is nonvanishing, we have a scaling of the distribution function, as will be
discussed in the next subsection.

(b) Moderate correlation models

(i) The asymptotic limit

In this case, the asymptotic expansions which are to be compared with

experiment read

-20-
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P =—1 ¢ 2y l+a (n‘m)3+0(e2)} (5.18)
n \/5—7’_1'6 3\ vy
m = K, -;3;— (1+0(e2)) (5.19)
2
B = J@<1+0(€2)> (5. 20)

y= [k (1 + O(€2)> (5. 21)

- K3

=375 <1+O(€2)> , etc. (5. 22)
2

These are the same formulae as in weak correlation models, but have a very
different meaning. (1) All the asymptotic relations (5.4) - (5.6) are valid only

approximately even at infinite energy. (2) In particular, a, is small (order ¢€)

3

but does not vanish as s—-c0, and most importantly (3)

K
— 3 _
n-m-= sz =0(€) /Kz —— 0. (5.23)

In weak correlation models, the quantity corresponding to Eq. (5.23) approaches
a constant. Although we use the same formula for analyzing experimental data,
the behavior of various parameters decides which of the models is the correct
one, as was pointed out earlier. Incidentally, we remark that Eq. (5.17) should

be valid as long as € is small.
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(ii) Scaling of the distribution function

In moderate correlation models, the limit

K
lim vy _  lim —————Z—K-—— <1+O(€2))=d
S —» o m S —3 © « _____3
1 2/<2

need not vanish.

If that is the case, we obtain a scaling law

NET
2 m / a \3
mp = —1 e 2 1+ 2 L1 +0(e?
21 b l a’ :
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[ 2 a 3
/
= _1_ exp ————17 El-l +_§/_1r1—11__1 +O(€2)
/2T b | 2d d !
where '

lim é—n=d(1+0(€2)) .

S —» o

The energy dependence of Eq. (5.25) and (5.26) appears only through the modal

multiplicity. This is similar to the KNO scaling17 in that the scaling law is
given by

n Pn = ¢ (n/B)
Our scaling law is, instead,

mP
n

@ (n/m) ,

where the scaling function ¢ is approximately Gaussian.

Both of the scaling laws coincide at infinite energy, provided that

lim m
S ~—>» o mn

K
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S —» o \ 2K1K2 ( )//
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is a finite constant. Equation (4.10) is a sufficient condition to realize such a
case. Equation (5.26) is then equivalent to the formula which was used by
Slattery18 in his analysis of the experimental data. Olesen, on the other hand,
used the Gaussian scaling function19 in a similar analysis.

(c) The asymptotic relation at the mode and the Weisberger relation

Equation (5.5) or its original form in Eq. (4.20) may be written in the fol-

lowing form:

2 o
g K K K
P = [ = L (155 -15 5 +0(e? =i—2——. (5.31)
m inel Ver Ky Ky ~var B

On the other hand, using the saddle point method, Weisberger obtained an

asymptotic relation20

. _ 1
lim /Kz PH = Zr (5.32)
S » oo
for the case
Kk « Ins . : (5.33)

Equation (4.20) permits us to calculate a correction term to Eq. (5.32),

2
i, P = —= 1+—é——i——5——§+0(e4) . (5.34)
o 2T K
Using the empirical values of cumulants of the multiplicity distribution for
the 303-GeV pp collision (Table 2 and Ky = 6.0 = 4.8 from Ref. 1), we make an

estimate of correction in Eq. (5.31) and (5.34),

—_ _ 1 _ .
sz P (1 -0.005% 0,03) (5.31")

V2m
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and

1
[k_ P = (1 -0.06=0.05). (5.34")
2 n ors

The asymptotic relation (5.31) is equivalent to the Weisberger relation (5.32) in
weak correlation models, while the latter needs correction terms to be added

in moderate correlation models. Egquations (5.31') and (5.34') may indicate that
the convergence to or the approximation of the asymptotic relation at the mode,

Eq. (5.5), is better than that of the Weisberger relation.

VI. COMPARISON WITH EXPERIMENT
We analyze the experimental data for pp collision with 50 - 300 GeV/c
laboratory momentum based on the formula given by Eq. (5.11) or (5.18) with

or without the constraint

'Pn -0 " the 2-prong inelastic cross section (6.1)

We consider the negative charge multiplicity distribution in order to take care
of charge conservation, (n_= nch/z - 1.

The X 2—fi’c of the data is shown in Fig. 1 and the parameters thus deter-
mined are listed in Table 1. Also given in Table 2 are the values of cumulants
obtained from the experimental data. 1 Figures 2 and 3 and Table 3 are presented
in order to show the energy dependence of some of the parameters and the validity
of the asymptotic relations among them. Case I (II) of Tables 1 and 3 corresponds to
the analysis with (without) the constraint (6.1) and its best fit of the experimental
data is represented by solid (dashed) curves in Fig, 1. Incidentally, we did not
use the normalization condition (5. 13), since it must be approximately satisfied by

the X 2~fitted solution, anyway.
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Summarizing the result of the analysis, it may be said that the asymptotic
form (5.11) well represents the experimental data up to 300 GeV. In particular,
should the 2-prong inelastic cross section be included in the analysis, the neces-
sity of the aq term is evident, as was anticipated. However, an improvement
of the Xz/N ratio for the case II at 69 and 303 GeV might suggest a possibility that
the constraint (6.1) is too stringent. Some portion of the elastic amplitude may
be identified as nondiffractive and be added to the inelastic cross section, although
its magnitude is unknown. An alternative way of decreasing the X 2/ N value is to
introduce a few more correction terms. Should the accuracy be improved in future
experiments, this would be a useful approach. We may point out also that there is
some irregularity in the experimental data at 303 GeV which contributes to a high

X 2~va,me . ,

If Case II is preferred, then the existence of the aq term becomes inconclu-
sive. Nevertheless, it should ];)e pointed out that even in such a case, a small
value for 2q changes the value of the parameter y significantly. Compare the
values of y in Table 1 and those given in Ref. 4. Let me mention also that the ag
term dominates the first term of Eq. (5.11) in the prediction of high multiplicity
events. Moreover, the values of y obtained in this article are more appealing
than those of Ref. 4 in the sense that (1) they are close to those determined lo-
cally around the modal point and (2) they better satisfy the expected asymptotic
relations. The former point should be taken seriously since the asymptotic ex-
pansion (4.18) or (4.19) is the best approximation around the mode. The latter

point will be discussed in the next section.
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VII. DISCUSSION
We discuss further aspects of our analysis.

(1) Asymptotic relations

Both the asymptotic formulae

B = 1+0(e? (7.1)
“o

and
% = 1+ 0(e2 (7.2)

are in reasonably good accord with those in Table 3. In particular, the conver-
gence of Eq. (7.1) seems much faster, while Eq. (7.2) is satisfied in Case I but
the departure from it is somewhat larger in Case II.

The energy dependence of the parameters 8, vy, and Ko s shown in Fig. 2,

indicates a linear increase in fn s, with a slope of approximately 1/2, i.e.,
K o= L
By Vs \/Kz = - In s+ constant . (7.3)

The asymptotic relation

2K3

lim (n-m)=
S —— 2

(1+0(e2)) (7.4)

is also consistent with the values given in Table 3 or Fig. 2, although larger
errors which originate from those of Ko do not permit us to draw a definite
conclusion,

Figure 3 and Table 3a show the validity of the asymptotic equality

3

ag = 375 <1+O(€2)> , 858 ——~ 00 . (7.5)

6K2
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We may notice that the quantity

is roughly constant over the energy range 50 - 300 GeV. If this constancy per-
sists at higher energy, we will be forced to choose moderate correlation models
over weak correlation models and will have scaling with an approximately Gaussian
scaling function. This is a view consistent with the analysis of Slattery. 18

If that is the case, what is the magnitude of the expansion parameter € ? At

303 GeV, we have
Yo _ "4
Ky g

Unfortunately, this does not tell us much because of the large error which is

€ = =0.39+0.38 . (7.6)

due to that of « 4 We should point out, however, that the convergence is better
than what Eq. (7.6) might indicate, thanks to numerical factors. In order to see
this, the first few coefficients of the asymptotic expansion, Eq. (4.18) and (4.19),

are calculated using Eq. (4.21).

a.=b,= 53— 0.1140.03
3-°37 6 3/2
K
2
a, =b, =-0.047 £ 0.028
a_=b_.= 0,024 0.030
5 ® (7.7
ag =  0.006%0.003
a; = -0.0050.005
a, =  0.0002x0.0001,

where we have neglected the term which contains Ke e
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(2) The analysis with Eq. (5.12)

In order to see a difference between using Eq. (5.11) and (5.12) in our anal-
ysis, we made the Xz—fit of the 303-GeV data with the assumption of Eq. (5.12).
The parameters thus obtained are given in the last column of Table 1 (Case III),
while the best fit curve for the distribution function is almost identical to the
solid curve of Fig. le. As is seen also from Table 1, the fit is not significantly
different from that of Eq. (5.11), except the value of g

In conclusion, asymptotic multiplicity distributions seem to approach an
approximately Gaussian form and suggest that correlations among the produced

particles at high energy are not strong.
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APPENDIX A
ASYMPTOTIC EXPANSION FOR THE POISSON DISTRIBUTION

From Eq. (2.1) and (2.4), it follows that

a_ 1 1 -4 -
ﬂnn ont 12n2 +0(n ™), 0, for n=m. (A.1)

Substituting the solution of the form

o, aq
= + = -2 v e .
m a+cw1 2 + 2+ (A.2)

in Eq. (A.1), we obtain

i a2 a \
1 1 __1_ 1 1
<0‘1+ 2) * <°‘2 2 "% T2t
/ ozS o az 16
- _.1‘._ .~2 _1 _l __1_ -4 =
+ Og =00, + 3 5 + D) + 6 a3+ O(@ ™ =0, (A.3)
which gives
o, = -1 @, = - o= and o, = 0 (A.4)
1 27 2 24’ 3 ’ '

Using Eq. (A.2), (A.4), (2.6), and (2.7), we get the expressions

—%:—115-_13—+ = 2f- 12+0(a’4)\ (A.5)
0% 2m 6m 24 a /
and
1. - 1 PR S -3
3 exp[m!&na <m+ 2)ﬁnm+m a- o + O(m )]
-1 1 -3
= I exp[24a+0(a )] . (A.6)
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The coefficients bk in Eq. (2.3) can be computed using Eq. (2.8):

k _ N . kt+1
b =2 [(_1)k—1 en1, (0%en | 0 +O(m—k—3)]
m 2m 12m

k(k-1) ak/z—l 2 54 a

k-1 r 2
_ 1 [1 Lk, O(a_4)'l[1_ gk—l)z N O(a_4)]
48 a

e [ (Zk-1)(k-2)
3

= -4
k(-1) k/2-1 Sa +0(a )J . (A.T)

It is easy to see that a, are given by Eq. (2.11). In order to obtain the order
of magnitude for ., we observe that the dominant contribution in a is given

| . .
by the term bk—3 b3 or bk—3!lb3 , since b3 is the largest of all the coefficients.

Then, by induction, we can prove Eq. (2.12).
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APPENDIX B
DERIVATION OF THE ASYMPTOTIC FORM, EQ. (4.20 -23)

Defining the quantities,

y=n—m
'Y b
)
D =—7 |,
y 9y
Ko-m _,
Y 17
i 2
Ko =Y
—2——=>\2 , (B.1)
Y
and .
K
k _ .
T k=3
Y
21
we may express Eq. (4.15) as
2
Zoo }‘k("D)k 1 ‘%
P = exp k,y e , (B. 2)
" k=1 . V2T y

where the extra term which vanishes exponentially as & g was dropped.
In Eq. (B.2), m and v should be determined in such a way that Eq. (B.2) coin-

cides with Eq. (4.19). Anticipating that

2 o(y—;) - o<7€%1> , (B.3)



and

v
w

‘ _k
R T

k
22
Eq. (B.2) can be expanded as

2

\

A
3 1 /.2
e [1“‘1111(3’)+ 21 (7‘1+7‘2)H2(Y) *

1

P ==
\/27T’y

1 3 1
+ 5 <7\3+3}\2}\1+)\1)H3(y)+ n (7\4+4?\37\1)H4(y)+

-

1 2 10,2
+ 5!<A5+5)\47\1+107\37\2+ 10Ag A7 HL (7) + 57 A3 H (9) +
1 2
+ oy (85 A A + TN A, H(9) +
280 .3 i}
* 51 A Hg + 0y (B.4)

The assumption Ay = O (y~2), instead of O ('y_l), is justified a posteriori, and is
expected also from the solution for the Poisson distribution. (Otherwise, we would
have to keep a few more terms in Eq. (B.4). Explicit calculation, then, shows that
the assumption is correct.) In order to simplify the algebra, we use this assump-
tion from the outset.

The explicit forms of the relevant Hermite polynomials are given below:

By =y

Hy(y) = 5o -1

Haoly) = g -8y

Hy(y) = y* -6y s (B.5)
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H5(y) = y5 - 10y3 + 15y

H6(y) = y6 - 15y4 + 45y2 - 15

H(y) = y' - 21y° + 1055° - 105y

H8(y) = y8 - 28 y6 + 210y4 - 420 y2 + 105

Hy(y) = v - 36y  +378y° - 1260y° + 945y (B.5)
The condition that the terms linear and quadratic in y are missing in the paren-

theses of Eq. (B.4) leads to two equations:

3 3 2\
A, - {A FINA FA ()\5+57\4}\1+107\37\2+ 103,27 ) -
105 ( \ 280><945 3
- (85,0, + 7022 s A )t Ay =0 (B. 6)
and
1/ 2 6 450 .2 _
5 et AT T AT M +4>\37\1>+ s Ay = 0 . ’ _ ‘ (B.7)
The solutions for )\1 and }\2 which are of the form
A, = ar +bA, + oA FdAZ+er A, FIAS+ O Y (B. 8)
1 3 4 5 3 34 3 Y .
A = bIA 4. +dAZ +eAL A, +EAS + O (yd (B.9)
2 4 5 3 3”4 3 '

are sought by substituting them in Eq. (B.6) and (B.7). We thus obtain

_ 1 _ -1 - 1 f =0
a = 3, b =0, c =-3> d =0, e =g =Y,
1 1
b'=3 c¢=0, d=-3, e=1f=0 (B.10)
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i.e.,

2
fa 1 '
4 6

[

1 -
S—&*t 0™

Y Y

These equations can be solved easily; we get

2

K K

Yo o= Ky - %_Ki+ % —g- + o(_fc'2>
Ko

N

and

(B. 11)

(B.12)

(B. 13)

\62) i (B. 14)

From the value for n=m, (y=0), the parameter B is determined as follows:

1 150
B

RimE R R |

f = [Ra
=
FS
b
w o
——

1 1 _ 150 ,2 —4]
1 2>\1+)\2>+8‘((A4+4)\37\1) 6 >\3+O('y )

(B. 15)



The parameters a, are given by the coefficients of yk; explicitly written,

9
K K
1% 1%\ 1 3> 1 2
S N ST A Eognl 4 -~
agil 8 2763 6(7\3+37‘27‘1 A 12("5+5}‘4>‘3+107‘37‘2+1O>‘37‘1)+
9 9
1 2 ) 35 .3
+—- — —
v (35>\4>\3+707\37\1 o
.._1_7\ "—1A +l_.]:.)\)\ __5_)\3
673 " 12 M5 a5 MM T 3603
K K_ K K3
_ 173 17 34 1 5 19 3+O<-5/2
6 3/2 48 7/2 12 5/2 T 72 9/2 2 >
K K K K
2 2 9 2
_ 1 _ 150
3y = 7 <"4+47‘37‘1> 61 3
-1, 1.2
“or M8
2
K K
-1 4 13 -2
24 2 8K3+ O,y )
2 2
1 2\ 21 2" 280 X 378 .3
a =z, <7\5+5>\47\1+107\37\2+10>\37\1> = (35>\4>\3+70>\37\1/+ R
-1 . 1 1.3
=120 5 T 123t 3 s
K K_K K3
.1 5 1734 1 73 +ox'5/2)
120 5/2 12 77z "8 a2+ O07 )
2 2 2
10 2 1 "g 2
=617 =12 3 * Ol ) -
2 (B. 16)
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- 1 2 N
an = 24(}‘4}‘3+27‘37‘1\ 36 3
_ .1 1.3
142 M3 " 73 M3
3
_1 8% 1%y O<K—5/2
144 7/2 48 9/2 2 /)
K K
2 9
~ 2\
2g O("z ’
3
1 3 1 3 -5/2
9~ 1296 s T 1296 5/2 " O("z )
2

which lead to the expression of Eq. (4.21). The dominant term in the parameter

R (k 2 6) is given by }\k—3 )\3 and its general form is shown, by induction, to be

<l 2/2
8394, 30-2, 30 = O Ko ) - (B. 17)

The coefficients bk in Eq. (4.19) are related to ay through the relations in (2.11),

and therefore must behave like

b = O/K;(k/z—l))

. , (B. 18)

at most, otherwise it would upset Eq. (B.17), according to an argument similar

to that given at the end of Appendix A.

(q-e.d.)
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Table 1

Table 2

Table 3

Table Captions

The values for the parameters. Column I(II) corresponds to the
x2 fit by Eq. (5.11) with (without) the 2 prong inelastic cross
section included. The last Column III for the 303 GeV experiment

is obtained under the assumption Eq. (5.12).

Experimental values for cumulants.

The ratio of various parameters

a. Casel

b. Casell
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Figure Captions

Figure 1  The negative charge multiplicity distribution in the pp collision.
The solid line and the dashed line represent the X2 fit with and

without the 2 prong inelastic events, respectively.

a. 50 GeV
b. 69 GeV
c. 102 GeV

d. 205 GeV (The dashed line coincides with the solid line.)

e. 303 GeV

Figure 2  Energy dependence of the parameters in Case I. The asymptotic
equalities read B =y = \/—Kz and n-m = K3/2K2. The solid line is

an eye-fitted linear curve with gradient 1/2.

3/2.

5 (Case I)

Figure 3  Test of the asymptotic equality a, = kg /6K
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