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Phénomenologie de modèles au-delà du modèle de Concordance

Résumé en Français

Introduction

Les observations des dernières décennies ont fait émerger un modèle standard en cosmologie, appelé mo-

dèle de concordance. Le paradigme qui s’est imposé grâce aux observations aux échelles cosmologiques est

celui d’un univers contenant deux phases d’expansion accelerée. La première permet d’expliquer l’origine

des galaxies et amas de galaxies que l’on observe de nos jours, tandis que la deuxième rend compte de

l’expansion accelérée actuelle, confirmée par de nombreuses observations. Le mécanisme physique à l’origine

de cette expansion accelérée reste une des plus grandes questions ouvertes en physique. Néanmoins, des

observations provenant du rayonnement fossile cosmologique (Cosmic microwave background - CMB),

des oscillations acoustiques baryoniques (Baryon Acoustic Oscillations -BAO), des supernovae du type

Ia (SNeIa) et de nombreuses autres observations, semblent en accord avec l’introduction d’une constante

cosmologique Λ dans les équations du champ de la gravitation (les équations d’Einstein). Par ailleurs, une

composante de matière “sombre” (noire) froide (non-relativiste) -appélée Cold Dark Matter ou CDM- est

un ingrédient nécéssaire pour expliquer la croissance et la formation des grandes structures dans l’Univers.

Ce modèle repose aussi sur des hypothèses concernant les fluctuations cosmologiques primordiales (sup-

posées d’origine inflationaire). En fait, le modèleΛCDM de base est entièrement caractérisé par 6 paramètres

libres. On arrive ainsi au modèle ΛCDM - appelé aussi “modèle de concordance”. Ce dernier est à ce jour,

le modèle le plus simple pour décrire notre Univers. C’est pour cette raison, qu’il est devenu le modèle

de référence. Malgré son énorme succès, le modèle de concordance reste un modèle phénomenologique,

dans lequel 95% de son contenu est dans un secteur “sombre” - dont la nature nous échappe. De plus,
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l’introduction d’une telle constante cosmologique pose un problème majeur du point de vue théorique.

Son interprétation en tant qu’énergie du vide en théorie des champs est problématique du fait de sa pe-

titesse, comparé aux valeurs planckiennes attendues dans une telle théorie. De plus, comme nous le rap-

pelerons plus tard, les théories des hautes énergies supersymétriques préfèrent une constante cosmologique

négative, plutôt que positive. Or pour être en accord avec les observations, il faut une constante cosmologique

positive. Il est à noter que le modèle ΛCDM rencontre également des difficultés pour rendre compte de

certaines observations aux petites échelles cosmologiques, en particulier aux échelles galactiques (“small-

scale crisis”). C’est pour toutes ces raisons, aussi bien théoriques qu’observationelles, qu’il est nécessaire

d’explorer d’autres mécanismes physiques qui pourraient également rendre compte de cette deuxième phase

d’expansion accélérée, tout en étant en accord avec l’ensemble des observations.

Dans le cadre de cette thèse, nous allons étudier la phénoménologie de plusieurs modèles au-delà deΛCDM .

Nous nous concentrerons notamment sur une observable qui permet de distinguer les modèles d’énergie

noire du modèle ΛCDM , en l’ocurrence l’indice de croissance (growth index) γ des perturbations. Cet in-

dice de croissance γ est un outil efficace pour distinguer les modèles d’énergie noire en gravitation modifiée

et ceux formulés dans le cadre de la relativité générale, dont le modèle ΛCDM . En effet, dans les théories

de gravité modifiée, la croissance des perturbations est modifiée. Cela montre l’intêret essentiel d’inclure

les observations relatives aux perturbations cosmologiques dans l’ensemble des observations lorsque l’on

cherche à contraindre les modèles théoriques d’énergie noire. Remarquons que bien que pour des raisons

historiques, on appelle cette quantité “indice” de croissance γ, il s’agit en realité d’une fonction du temps,

et même des echelles cosmologiques quand il s’agit de modèles d’énergie noire en gravitation modifiée.

Dans la première partie de cette thèse, nous comencerons naturellement par une introduction à la cosmolo-

gie moderne, en mettant l’accent sur les différentes contraintes observationelles existantes (et à venir).
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Phénomenologie des modèles d’énergie noire et croissance des perturbations.

Dans la deuxième partie de cette thèse, nous nous intéresserons à l’étude de la croissance des perturba-

tions de matière dans le régime linéaire, en particulier à travers la dynamique de son indice de croissance (

growth index) γ ≡ ln f/ ln Ωm - où f = d ln δm
d ln a est appelée growth function (fonction de croissance). Après

avoir brièvement introduit les éléments nécéssaires à l’étude des perturbations et leur lien avec les quantités

observables dans le Chapitre 3, nous allons ensuite introduire quelques extensions du modèle de concor-

dance dans le Chapitre 4. Nous appliquerons par la suite le formalisme du growth index pour étudier leur

phénomenologie et proprietés globales en termes de la variable Ωm. Nous considérerons en particulier des

modèles d’énergie noire où le comportement de γ est très different de celui de ΛCDM . En effet, dans le

cadre de ΛCDM (et des modèles à l’interieur de la relativité générale avec un w ̸= −1 constant ), l’indice

de croissance γ est une fonction monotone et décroissante. Ce comportement, peut être drastiquement

modifié dans des théories de gravité modifiée et dans d’autres extensions du modèle ΛCDM - faisant de

γ un outil extrêmement précieux pour détecter des déviations du modèle de concordance. La prochaine

génération de relevés de galaxies, dont Euclid, permettra peut-être une mesure assez précise de l’indice de

croissance γ0 ≡ γ(z = 0) et de sa derivée γ1 ≡
dγ
dz

∣
∣
z=0.

Nous poursuivons l’analyse par une extension de ΛCDM , i.e. une équation d’état variable parametrisée

par wDE(a) = w0 + wa(1 − a) (CPL). Pour les valeurs de parametres (w0,wa) que l’on considère, le

comportement de γ reste essentiellement similaire à celui de ΛCDM (quasi-constant avec γ ∼ 0.55),

sauf dans le futur asymptotique (Ωm → 0) où l’on trouve une valeur asymptotique γ∞ = 1
2 alors que

γΛCDM
∞ = 2

3 . D’un point de vue observationel, cependant, ces modèles seront difficilement distinguables

de ΛCDM à l’époque actuelle. La situation est différente lorsqu’on étudie des modèles du type f(R) ou

des modèles en dimensions supplementaires, comme le modèle Dvali-Gabadadze-Porrati (DGP). En effet,
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dans le régime linéaire et pour les modes d’intérêt cosmologique, les modifications dans le secteur gravita-

tionnel se traduissent par une modification de la constante “effective” de couplage Geff(z, k) dans l’équation

de Poisson − k2
a2Φ = 4πGeff(z, k)ρmδm (i.e. dans le terme de source pour les perturbations). Par exemple,

les modèles du type f(R) prédisent une évolution de Geff(z) dans le temps, et en particulier, Geff(z) ≥ G,

pouvant atteindre Geff =
4
3G - où G est la constante de Newton. Dans une approche phénoménologique,

nous modélisons ces comportements à l’aide d’un “bump” ou d’un “dip” dans la quantité g(z) ≡ Geff(z)/G

et nous obtenons des solutions numériques pour γ. Le modèle DGP est un example parfait de la puis-

sance de γ, et de l’ avantage d’étudier son comportement (global) en fonction de Ωm. Nous dérivons ex-

plicitement l’origine de sa valeur γDGP−∞ = 11/16 dans le passé asymptotique, differente de la valeur attendue

γDGP−∞ = 9/16 puisque gDGP(Ωm = 1) = 1. Cela découle du fait que g′(Ωm)
∣
∣
Ωm=1 ̸= 0. La dynamique

de γ dans ces modèles est differente à celle de ΛCDM . Sa valeur aujourd’hui γDGP0 ≃ 0.68 est facilement

distinguable de γΛCDM
0 ≃ 0.55.

Un autre système physique intéressant à considérer est celui incluant une composante de matière qui ne

s’agglutine pas, comme par exemple les neutrinos massifs après leur transition dans le regime non-relativiste.

On pourrait aussi penser à d’autres particules, comme les particules de type axion. Nous avons donc un

système avec de la matière qui s’agglutine, une composante de matière (x) qui ne s’agglutine pas et de

l’énergie noire, avec Ωx + Ωm + ΩDE = 1. On introduit Ωtot
m = Ωm + Ωx et ε ≡ Ωx/Ωtot

m . Nous

étudions la dynamique de γ dans ce modèle, et on trouve en particulier la valeur asymptotique dans le

passé γε−∞ = 3
5 +O(ε). On donne le développement de γε−∞ jusqu’au troisième ordre en ε. On remarque

que γε−∞ ne dépend pas de la valeur w−∞ dans le passé asymptotique. Il n’est donc pas possible de retrou-

ver la valeur γ−∞ quand la composante x est absente (ε → 0). Ceci est possible, car comme on le montre,

il existe une discontinuité dans les variables (ε,Ωtot
m ), i.e. les limites Ωtot

m → 1 et ε → 0 ne commutent pas.
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Une constante cosmologique négative?

Finalement, motivés par des idées de la physique des hautes énergies, nous considérerons la possibilité

d’avoir une constante cosmologique négative, que nous appelons λ, dans le secteur sombre de notre Univers.

Clairement, une constante cosmologique négative ne peut être à l’origine de l’expansion accélérée suggérée

par les observations des SNeIa. Pour assurer la viabilité de ces modèles (i.e. en accord avec une expansion

accélérée actuelle) nous considérerons aussi la présence d’une composante “X”. Cette composante serait

responsable de l’expansion accélérée actuelle. Par conséquent, nous nous intéresserons à la phénoménolo-

gie d’un secteur sombre “composé” (i.e. ΩDE = ΩX + Ωλ, avec Ωλ < 0) en considérant plusieurs com-

portements de la composante X. Une question immédiate, est de se demander si ces modèles pourraient

éventuellement soulager ce que l’on appele “la tension de Hubble” 1. Pour quantifier la viabilité de ces mo-

dèles, nous combinons des mesures provenant du CMB, des BAO et des Supernovae. Plus concrètement,

nous nous intéressons à l’influence de λ, et supposons que l’univers primordial reste inchangé – l’horizon

du son (sound horizon) rs est fixé à sa valeur dans ΛCDM – et nous explorons la possiblité de changer la

physique à bas redshifts z avec plusieurs comportements de wX(z).

Une façon élégante de comparer différents modèles avec différents degrés de liberté, est au moyen des mé-

thodes (Bayesiennes)Markov-ChainMonte-Carlo, du type “Nested-Sampling”. En prenant en compte les ob-

servations mentionées précédemment, nous comparons ainsi les différents modèles considérés à l’hypothèse

nulle qui est ΛCDM . Parmi les differents modèles que l’on considère, nous trouvons plusieurs modèles

avec Ωλ ̸= 0 qui sont viables, certains scénarios étant favorisés par rapport à ΛCDM . C’ est vrai en parti-

culier pour ceux où les déviations de wX par rapport wX = −1 se passent à haut-redshift (z ≳ 1), là où les

données sont moins contraignantes. Quant au rôle de H0, nous étudions son impact dans une analyse sé-

1Une difference de ∼ 5σ dans la mesure du parametre de Hubble H0 entre différentes sondes cosmologiques à hauts et bas
redshifts.
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parée, en incluant un “prior” Gaussien centré sur la valeur de H0 = 73.3± 4.0 km.s−1.Mpc−1 mesurée par

HST-Mira. Même si l’inclusion de λ permet d’obtenir des valeurs de H0 plus élevées (H0 ∼ 70) que pour

ΛCDM avec les données de Planck , ceci n’est pas suffissant pour retrouver les mesures locales (H0 ∼ 73).

Nous concluons qu’une valeur substantiellement plus élevée que H0 ≃ 70 serait un test crucial pour la

viabilité de ces modèles.

Conclusion

L’un des plus grands mystères de la cosmologie moderne est celui de l’origine de l’expansion accélérée de

l’Univers. Comme nous l’avons vu, le modèle de concordance offre une solution simple et élégante mais

n’est pas sans problèmes. Dans le cadre de cette thèse, il a été question de caractériser la phénoménologie

de modèles au-delà du modèle de concordance notamment en considérant l’évolution des perturbations

de matière (dans le régime linéaire). Malgré sa simplicité, l’indice de croissance γ se révèle être un outil ex-

trêmement puissant, et potentiellement capable de distinguer parmi les différents modèles d’énergie noire.

Nous avons considéré par ailleurs, un modèle avec un secteur d’énergie noire “composite”, contenant une

constante cosmologique négative λ. Dans les années à venir les prochains relevés de galaxies, en complé-

ment avec les observations d’ondes gravitationelles, nous permettront de mieux cerner l’origine de cette

expansion, et de placer de fortes contraintes sur les modèles viables au-delà du modèle de concordance.
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Phenomenology of models beyond the standard ΛCDM paradigm

Abstract

The prevailing paradigm in Cosmology is that of General Relativity with a cosmological constant Λ - ac-

counting for the late-time accelerated expansion of the Universe - and some form of non-relativistic (Cold)

Dark Matter, responsible for seeding the potential wells at early times. Hence the ΛCDM - or Concordance

Model of Cosmology. This (phenomenological) model is in remarkable agreement with a wide variety of

observational probes - over many different scales and epochs in the cosmic history. Because of its simplic-

ity, a positive cosmological constant Λ is quite appealing, but nevertheless poses the problem of its small

value from a fundamental standpoint. In recent years, increasingly precise cosmological observations have

reported a few statistically significant curiosities within the ΛCDM paradigm. The most interesting ex-

amples being the (∼ 5σ) discrepancy in the value of H0 and the (∼ 2σ) discrepancy in the amplitude of

matter fluctuations σ8, as inferred by early and late-time probes. Due to this, many extensions to the simple

Λ picture have been proposed over the years, these go by the name of Dark Energy models.

In this thesis, having high energy physics considerations in mind, we explore various extensions to the stan-

dard ΛCDM paradigm and asses the viability of such models in light of recent and future observations.

Our approach is rather phenomenological, aimed at capturing various types of behaviors while focusing on

tools that can efficiently discriminate between the wide variety of Dark Energy and Modified Gravity mod-

els. One potential smoking gun is the growth index of density perturbations γ. We study in detail the global

behaviour of γ(Ωm), focusing on models that could lead to a change in its slope - in sharp contrast with the

monotonically decreasing ΛCDM case. These include, an f(R)-inspired bump in Geff(z), a varying wDE(z),

or more intricate (higher-dimensional) models, such as the Dvali-Gabadadze-Porrati (DGP) model. We

also study its behaviour in the presence of an Axion-like (unclustered) component during matter domina-
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tion and derive interesting (mathematical) properties.

Finally, we explore the possibility of having a negative cosmological constant-dubbed λ- in the dark sector. For

these models to be viable, and accelerate the Universe at late-times, the dark sector should also contain an

additional (effective) degree of freedom -dubbed X - such thatΩDE = ΩX+Ωλ. We consider various types

of behaviours in the X-component, parametrized by a varying EoS wX(a). We further test the viability of

these models through a nested-sampling of the parameter space, and use Bayesian techniques to compare

them to ΛCDM for model selection. We also comment on the implications of introducing a high-H0 prior

in separate runs. Although we find no decisive evidence forΩλ,0 ̸= 0, its presence remains viable as it hides

behind an effective (positive) Λ with wX ∼ −1. Models with higher evidence are found to be those with new

physics (wX ≤ −1) appearing at large-z. A value of H0 substantially higher than H0 ∼ 70 km.s−1.Mpc−1

would be a decisive test of their viability.
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“Physics is like sex: sure, it may give some practical results, but
that’s not why we do it.”

Richard Feynman

0
Overview/Introduction

Over the last century, and due to tremendous efforts in both the experimental and theoretical physics com-
munities, our understanding of the Universe we live in has been dramatically revolutionized. Astronomical
observations have revealed the dynamical nature of space-time, while microscopic observations have un-
veiled the quantum nature of reality. Our current understanding of nature is mainly based on two well-
accepted theories. Namely, Quantum Mechanics (QM) describing the microscopic world, and General Rel-
ativity (GR) describing interactions on the largest of scales. Theoretically, these are both heavily relying
on beautiful and well-established principles in physics, such as symmetry and conservation laws, yielding ex-
tremely precise predictions that are now at the very core of all human technologies. Despite their great
(experimental and technological) success, these are facing deep issues at the fundamental level, that have
been puzzling physicist for more than 50 years.

1



The Standard Model of Particle Physics

On one hand, the Standard Model (SM) of particle physics provides a remarkable description of interac-
tions up to the ∼ TeV scale[205], as probed by the current experiments such as the Large Hadron Collider
(LHC) at CERN. It is undoubtedly the most successful theoretical accomplishment of Human kind. The
SM is a gauge theory based on a SU(3)c×SU(2)L×U(1)Y symmetry group at high energies, which is spon-
taneously broken - via the Brout-Englert-Higgsmechanism[94, 112] - into a SU(3)c responsible for the strong
nuclear force, SU(2)L responsible for weak interactions and U(1)e.m accounting for the well-known electro-
magnetic interactions at low-energies. Despite its enormous theoretical success, the SM - in its vanilla form
- fails to include a viable Dark Matter candidate, capable of explaining observations- and required in the
cosmological structure formation context. Furthermore, it does not tackle the hierarchy or neutrino masses
problems, nor explains the origin of the clear matter/anti-matter asymmetry we observe in the Universe to-
day; But more importantly for us, it does not provide an explanation for dark energy, nor includes a spin-2
field (massless particle) in its field content which would be responsible for long-range gravitational inter-
actions - the so-called graviton. Thus, the SM provides an accurate enough (at low energies), but most
definitely effective description of a more fundamental theory. The recent confirmation of a 20 year old
(∼ 4σ) discrepancy between the SM prediction and observed values of the anomalous magnetic dipole
moment of the muon (the so called g-2 anomaly) by the Fermilab collaboration is both proof of its enor-
mous success and might as well be the very first failure of the SM [6]. At the same time, a (statistically)
less-significant (∼ 2σ) deviation from the SM prediction has been observed at the LHCb experiment[68] .
Thus supporting the evidence for new physics.

The Standard Model of Cosmology

On the other hand, General Relativity (GR) provides an equally good description of gravitational inter-
actions. According to Einstein, gravity would be nothing more than the manifestation of the curvature
of spacetime, in the presence of matter/energy. Moving bodies would then naturally follow geodesics
(straight lines) in a curved space-time. Technically speaking, GR is said to be invariant under diffeomor-
phisms. In practice, this implies that the laws of physics should remain unchanged when changing the co-
ordinate system. This has profound (sometimes counter-intuitive) implications1, as we shall later discover

1Such phenomena include length contraction, time dilation or the bending of light near massive objects. The most famous
one being the Perihelion precession of Mercury.
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in this thesis. Since the time of Einstein, countless theoretical - general relativistic - predictions have been
experimentally verified. Without GR ever failing a single one of these tests. When applied to the Universe
as a whole, the field of Cosmology, Einstein quickly realized the Universe cannot be static, if described by
the laws of GR2. In the late 1920’s, E. Hubble discovered that distant galaxies where receding away from
us, with a speed proportional to their distance - the so-called Hubble’s law v = H0 d - which ultimately
implied that the universe was indeed expanding[120]. Another crucial implication of allowing for a dy-
namical spacetime, is the existence of gravitational waves (GW). These are ripples in the fabric of spacetime
that can propagate freely throughout the universe. The existence of these waves was the last major predic-
tion by Einstein’s theory of GR. The discovery of the former over a century after the theory’s prediction
by the LIGO/VIRGO collaborations[3]was the ultimate test of General Relativity. Due to its tremendous
success, GR remains the most widely accepted framework for describing gravitational interactions.

Nonetheless, in order to accommodate observations on the largest (cosmological) scales, GR requires
a mysterious form of (what appears to be constant) energy density across space and time - with equal in
magnitude, but opposite in sign, pressure wDE = P

ρ ≃ −1. What is commonly referred to as Dark Energy.
Indeed, by the end of the twentieth century, observations from two independent teams using 42 distant
supernovae revealed that the expansion of the universe had been accelerated for the past 5 billion years.
The urge to understand the reason for this acceleration has driven the field of precision cosmology for the
last decades and remains today one of the biggest open questions in fundamental physics. Hence, the pre-
vailing paradigm in cosmology is that of an expanding Universe; In which the late-time accelerated stage
of expansion is driven by a cosmological constant Λ. However, the mismatch between observed and pre-
dicted values for Λ - from the otherwise successful SM framework - is 120 orders of magnitude away, when
interpreted as vacuum energy in a Quantum Field Theory (QFT) context. Making it the biggest failure in the-
oretical physics. Moreover, ordinary matter, as described by the SM of particle physics, only accounts for
∼ 20% of the matter density needed for galaxies and clusters of galaxies to form. The remaining ∼ 80%
would be in a form of non-relativisitic (cold) and non-interacting (dark) matter - the so-called Cold Dark
Matter (CDM). This model is known as the ConcordanceModel, or ΛCDM and it is the best and most widely
accepted model describing the universe today.

2Upon which, he introduced a constant Λ in his field equations, to ensure the Universe remains unchanging.
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Fundamental and Observational Issues

At the fundamental level, there are many reasons to go beyond Einstein’s theory of gravity. It is well known
that GR suffers from a singularity at early times (where QM plays a crucial role). Within the standard
QFT prescription, Classical Physics emerges as constructive interference of probability amplitudes given in
terms of Feynman Diagrams (in the path integral approach). GR however is a purely classical (geometrical)
theory. At high-energies, the theory breaks down. A quantum description of gravitational interactions is
needed to describe such high-energies - what is commonly referred to as Quantum Gravity. It has proven
to be an incredibly difficult challenge to reconcile these two theoretical giants into a unified framework.
Similarly, even if we decided to postpone or ignore the problem of the initial singularity (at the Big Bang),
there is now irrefutable evidence for the existence of Black Holes (BH), objects where we know GR fails
3[180].

Moreover, aside from theoretical issues, as experimental and theoretical precision have rapidly increased,
the concordance Model of cosmology might be starting to show some of its very first cracks. Suggesting that
perhaps the simple Λ is just an effective description, and that we might need to go beyond this simple and el-
egant -although phenomenological- framework. The most interesting example being the discrepancy in the
value of H0 as inferred from early universe observables such as the Cosmic Microwave Background (CMB),
assuming ΛCDM and local (late-time) measurements using calibrated Type Ia Supernovae (SNeIa), and as
reported by various other (low-z) observational probes. A milder, but longstanding tension also exists in
the amplitude of matter fluctuations σ8 (or more recently S8 ≡ σ8

√

Ωm/0.3) - as measured by weak lensing
(WL) surveys[67, 111] and the one inferred using CMB observations[69] - characterizing the smoothness
or clumpiness in the (matter) density field in the late-universe. In the last couple of years, a lot of effort has
gone in trying to address and come up with solutions to these tensions [83, 84, 184].

While the physical mechanism for the late-time accelerated expansion of the universe remains an open
question, its phenomenology is known with ever increasing accuracy. Cosmology is said to be living in its
Golden Era, where precise measurements allows us to rule-out or at least tightly constrain many alternative
cosmological scenarios. Any viable beyond-ΛCDM candidate must therefore be able to, in some sense,
reproduce the ΛCDM phenomenology (at the background level at least). The urge to try and solve these
“discrepancies” has launched a huge theoretical (model-building) program, and many extensions to the
simple ΛCDM picture have been proposed over the years. Because of its simplicity - and in view of Occam’s

3Sir. Roger Penrose showed that singularities are unavoidable in GR, which got him the 2020 Nobel Prize in Physics.
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razor - the ΛCDM remains the preferred model by observations, and has proven to be extremely robust to
any changes in its content.

Possible Extensions and The Road Ahead

It is therefore quite natural (and very much needed) to explore modifications of the gravitational sector
beyond General Relativity. Although this idea has attracted a lot of interest in the last decades, GR turns
out to be the unique theory [155] one can write in 4 dimensions, yielding second order equations of motion
- the Einstein Field Equations. In practice, this implies that if one is to modify the gravitational sector, one
has to give up or relax some of its assumptions.

While the particle physics of Inflation is still unknown, observations of the CMB and LSS seems to fa-
vor a Gaussian nearly adiabatic, nearly scale-invariant primordial spectrum of fluctuations. This is typically
achieved by invoking a slowly-rolling scalar field - the inflaton φ. While interestingly, the Starobinsky infla-
tionary model is a modified gravity of the form f(R) = R + αR2 which provides a very good fit to current
CMB data. Such theories are also interesting as they can naturally lead to an accelerated expansion of the
Universe because of the presence of the αR2-term (with α > 0). Furthermore, f(R)models are well-known
to be conformally equivalent to Scalar-Tensor theories of gravity - which can be thought-of as low-energy
descriptions of more fundamental (high-energy) theories. Another “expected” -and highly motivated- DM
candidate are axions, or axion-like particles (ALP). These were first considered by Peccei and Quinn to solve
the CP problem in the theory of strong interactions (QCD) [174, 175]. The last missing piece in the SM
of particle physics - the Higgs boson - predicted in the sixties by P. Higgs, F. Englert and R. Brout was indeed
observed more than 5 decades later at the LHC[2]. It is the first experimental evidence for a fundamen-
tal scalar (spin-0)-field in nature[61, 112]. Many extensions to the SM of particle physics, and to the SM
of cosmology involve a scalar field. Scalar fields are also quite natural and expected from a high-energy
perspective.

Recent technological progress has made possible to study theories beyond Einstein’s GR with gravita-
tional waves. These place stringent constraints on alternative theories of gravity. More specifically, the fact
that electromagnetic and gravitational radiation travel at the same speed [4, 5] ruled-out a gigantic class of
MG theories (see e.g. [75, 95, 125]). Furthermore, next generation of LSS surveys such as Euclid, Nancy
Grace Roman Space Telescope (former WFIRST), Vera Rubin Observatory (former LSST) are going to
collect enormous amounts of data and are expected to constrain cosmological parameters at the same level
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of accuracy as CMB experiments currently do. In the next decades, in combination with space and ground-
based 3G Gravitational Waves observatories such as the Laser Interferometer Space Antenna (LISA), Einstein
Telescope (ET) or Cosmic Explorer (CE) and many more, we will probing the dark side of the Universe to
unprecedented precision.

Outline

In this thesis, following high-energy physics considerations, we will explore various extensions to the stan-
dard ΛCDM paradigm and asses the viability of such models in light of recent observations. Our approach
is rather phenomenological, aimed at capturing various types of behaviors while focusing on tools that
can efficiently discriminate between the wide variety of Dark Energy and Modified Gravity models, as
for the growth index of density perturbations γ. We shall naturally start by reviewing the standard cos-
mological picture (that of an expanding, homogeneous and isotropic universe) in Chapter 1 and explore
its deep connection to an accelerated stage of expansion during the very-early Universe in Chapter 2. In
Chapter 3, we briefly review the linear formalism of perturbation theory and derive the basic observables
needed throughout this thesis. Chapter 4 is devoted to modified theories of gravity and other extensions
to the ΛCDM paradigm. In particular, we discuss a large family of models belonging to the Horndeski class
and briefly review current observational constraints - specifically, those coming from recent gravitational
wave observations- and further motivate higher-dimensional theories of gravity. We will then apply the
formalism developed in Chapter 3 to the (linear) growth of matter perturbations in Chapters 5 and 6. In
particular, we shall focus on the dynamics of the growth index γ using dynamical system techniques, con-
sidering simple extensions to the standard paradigm (Λ) e.g. a varying EoS wDE(a), a phenomenological
f(R)-like bump/dip in Geff(z), in the presence of an unclustered (axion/neutrino-like) component during
matter domination and in braneworld models, such as the Dvali-Gabadadze-Porrati model[89]. Finally, in
Chapter 7, following the aforementioned (high-energy physics) considerations, we investigate the possi-
bility that the dark sector of our Universe contains a negative cosmological constant, dubbed λ. We explore
the impact of introducing λ and further asses the viability of such models when incluiding Baryon Acoustic
Oscillations(BAO), SNeIa and (geometrical) CMB data. We performed a Nested sampling of the parameter
space, thus obtaining the (Bayesian) evidence needed for model selection.
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Part I

Foundations ofModern Cosmology
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”It seems that scientists are often attracted to beautiful theories
in the way that insects are attracted to flowers—not by logical
deduction, but by something like a sense of smell.”

Steven Weinberg

1
Cosmology in aNutshell

The Homogeneous Universe: A Review. The aim of this chapter, is to provide the reader with a peda-
gogical, self-contained introduction to the material needed throughout this thesis. We will review the very
basics of what is now well-established, textbook material in Cosmology -i.e. an isotropic and homogeneous
spacetime- focusing on the derivation of the observables we will be needing in this work. The reader familiar
with these concepts is invited to proceed to the next chapters.
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peculiar motions vpec ≡ aẋ. Notice we have explicitly introduced the Hubble parameter H ≡ ȧ
a . This is

an extremely important quantity in cosmology, as it encodes the rate at which the universe expands with
time. Its value today is called the Hubble constant H0, it has units of inverse time and allows to determine
the age and size of the Universe, as it sets a fundamental time and thus length scale d ∼ H−1

0 in spacetime.
Measuring this quantity is crucial in cosmology. Notice also how by ignoring the contribution from the
peculiar motion vpec, we recover the famous Hubble law v = H0d [120]. Nonetheless, the study of peculiar
velocities turns out to be extremely useful for constraining the growth of structure in the largest of scales,
and therefore to probe the underlying laws of gravity, as we shall discuss in Chapters 3, 4 and 5.

1.1.2 From Einstein to Friedmann

In GR, the fundamental (spin-2) field is the metric gμν. The Einstein Field Equations (EFE) can (some-
what elegantly) be obtained by varying the Einstein-Hilbert action SEH ≡

∫
d4x

√−gR w.r.t the inverse
metric gμν.

δSEH = δ
∫

Ω
d4x
√
−gR =

∫

d4x{(δ
√

−g)R +
√
−gδR} , (1.4)

where g is the determinant of the metric gμν, which stems from the fact that the volume element d4x is
not invariant under diffeomorphisms but transforms as d4x → |J|d4x′, where |J| is the determinant of the

Jacobian Matrix |J| =
√

−g′
√−g . Thus the combination

√−gd4x becomes the relevant invariant quantity. The
first term in Eq (1.4) gives a famous result worth remembering from GR, we will extensively use this result
on the following chapters. Namely

δ
√

−g = − 1
2
√

−ggμνδgμν (1.5)

The second term in the integral (1.4) can easily be evaluated using the definition of the Ricci scalar

δR = δ(Rμνgμν) = δ(Rμν)gμν

︸ ︷︷ ︸

=0

+Rμν δgμν . (1.6)

The first term in Eq.(1.6) vanishes in account for Gauss theorem, it corresponds to a boundary term and can
be written as a total derivative and integrated out by impossing that the variations of the metric vashishes
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at the boundary, i.e. δgμν|∂Ω = 0. Then, by imposing Eq (1.4) = 0, we finally get

∫

d4x(
√

−g ){Rμν −
1
2
gμνR} = 0 . (1.7)

The terms in the brackets are the Field Equations in vacuum, or the so-called Einstein tensor Gμν. In order
to include any form of energy (matter) we need to modify Eq. (1.4) to include an action Sm describing
the matter fields. This is done by writting δS = δSEH + δSm and defining the Energy-Momentum tensor for
matter Tμν as

Tμν = − 2√−g
δ(
√−gLm)

δgμν . (1.8)

In which case, the full Einstein Field Equations in the presence of any form of matter simply reads

Gμν ≡ Rμν −
1
2
gμνR = κTμν (1.9)

where κ ≡ 8πG/c4 is the coupling of matter to the geometry2 and is chosen such that in the weak-field
limit, the equations reduce to that of Newtonian gravity.

Uniqueness of GR

It turns out that the only possible modification we can do3 to Eq. (1.4) is to include a constant Λ in the
action such that

S =
M2

pl

2

∫

Ω
d4x
√

−g (R − 2Λ) , (1.10)

leading to the modern version of the Einstein equations

Rμν −
1
2
gμνR + Λgμν =

8πG
c4

Tμν (1.11)

We shall come back to the different ways one can extend the gravitational sector - beyond the simple Λ - in
Chapter 4.

2We have explicitly reintroduced the speed of light c ≃ 3 · 108 m.s−1, showing how we need gigantic amounts of energy
densities, such as two merging Black Holes, to generate disturbances in the geometry of the Universe (gravitational waves)-
Because of the factor c4 in the denominator.

3This has been proven in [155] and goes by the name of Lovelock’s Theorem.
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1.1.3 The geometry of FLRW universes

As discussed earlier, the Einstein field equations relate the energy content of the universe encoded in the
Stress-Energy tensor Tμν to its geometrical properties encoded in the Einstein tensor Gμν through the rela-
tion Gμν = κTμν. We have to calculate the geometrical properties that characterizes the FLRW universe.
In other words, we have to calculate the Christoffel connections associated with (1.1), from which we will
derive all the rest. For this, it is convenient to rewrite Eq. (1.1) as:

ds2 = −dt2 + a2(t)γ ijdx
idxj , (1.12)

where we have isolated the spatial components γ ij of the metric gμν, the so-called induced metric (c.f. Fig.
1.1.2). The Christoffel connections associated with gμν are as usual given by

Γρ
μν =

1
2
gρσ(∂μgνσ + ∂νgμσ − ∂σgμν) . (1.13)

In a FLRW universe, all the off-diagonal elements of gμν are zero. From this, we immediately see that
Γ000 = 0 since the only contribution would be coming from the σ = ρ = 0, where g00 = constant. The sum
of derivatives of the metric in parenthesis vanishes. Similarly, because we assumed space to be isotropic,
we can conclude that Γi

00 = Γ0i0 = Γ00i = 0 since having any single one of these connections different from
zero would imply a preferred direction, therefore violating the isotropy assumption. The remaining (non-
vanishing) Christoffel symbols are given by4:

Γi
j0 = Γi

0j =
ȧ
a
δi
j , Γ0ij = Γ0ji = aȧγ ij ≡ a2Hγ ij , (1.14)

Γi
jk =

1
2
γ il(∂jγkl + ∂kγ jl − ∂lγ jk) , (1.15)

Where γ ij is the spatial part of the RW metric and we have introduced the Hubble parameter H ≡ ȧ
a . For the

sake of simplicity, we will derive the Friedmann equations in a Flat Universe where k = 0 and so γ ij = δij

and thus Γi
jk = 0, but keep in mind that in general, these connections do not vanish. We now have the

4We have used the fact that for a Torsion-free metric, which is assumed throughout this work, the connection is symmetric
in their lower components Γα

νμ = Γα
μν .
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ingredients to calculate the Riemmann Curvature Tensor :

Rα
βμν ≡ 2∂[μΓα

ν]β + 2Γα
σ[μΓ

σ
ν]β , (1.16)

From which we obtain the Ricci tensor

Rμν ≡ Rσ
μσν = ∂σΓσ

μν − ∂νΓσ
σμ + Γσ

σρΓ
ρ
μν − Γσ

νρΓ
ρ
σμ , (1.17)

and Ricci scalar (also called Scalar Curvature) defined as R = Rμνgμν = Rμ
μ. Again, using the symmetries

of the metric we can easily conclude that R0i = 0. We are left with the (00)-component of the Riemman
Tensor

R00 = −∂t(3H)− 3H2 = −3(Ḣ + H2) , (1.18)

and the spatial components Rij of the Riemann tensor yield

Rij = ∂t(a2δijH) + 3a2δijH2 − 2a2δijH2 = a2δij(Ḣ + 3H2) . (1.19)

Ultimately leading to the Ricci scalar R = 6(H2 + ä/a). The geometrical picture being complete, i.e. the
LHS of (1.9) defined, we need to further specify the matter (or energy) content of our Universe. Once
again, and from simple symmetry arguments we can already deduce that the stress-energy tensor Tμν must
be a diagonal tensor, since any non-zero component outside the diagonal would again imply a preferred
direction. Thus, we can stipulate:

T00 = ρ(t), T0i = 0 and Tij = gijP(t) . (1.20)

In FLRW universes, we will use (comoving) perfect fluids, whose energy-momentum tensor Tμν is given
by5

Tμν = (ρ + P)uμuν + gμνP, (1.21)

where uμ = (1, 0, 0, 0) is the four-velocity of a comoving fluid and gμνu
μuν = −1. Taking (1.21) together

5In general, for a real fluid, the stress-energy takes the same form Tμν = (ρ + P)uμuν + gμνP + Πμν - Where Πμν is the
anisotropic-stress, encoding the deviations from a perfect fluid. It is well known that neutrinos, because of their free-streaming,
induce a small but non-vanishing anisotropic stress. In the remaining of this thesis, we shall neglect this effects and set Πμν = 0.

15



with (1.18) and (1.19) (with k = 0) leads to

H 2 ≡
(

ȧ
a

)2

=
8πG
3

ρ(t) and
ä
a
= −4πG

3
(ρ + 3P) . (1.22)

We have derived the Einstein Equations for a flat FRLW metric, if we allow for an arbitrary curvature term
k, one finds that the Friedmann Equations can be written as :

H 2 ≡
(

ȧ
a

)2

=
ρ

3M2
pl
− k

a2
(1.23)

Where M−2
pl ≡ 8πG and G is the usual newtonian gravitational coupling constant

ä
a
= H 2 + Ḣ = − 1

6M2
pl
(ρ + 3P) (1.24)

By defining a critical density ρcr ≡ 3H2M2
pl, we can rewrite equation (1.23) in terms of the fractional energy

density Ω ≡ ρ
ρcr

to give

Ω − 1 =
ρ

3H2M2
pl
− 1 =

k
a2H2 ≡ Ωk . (1.25)

The critical energy density today ρcr,0 has been measured to be[224]

ρcr,0 = 3M2
pl H

2
0 = 1.878 340(4)× 10−29 h2 g cm−2 . (1.26)

Where we have introduced the reduced Hubble parameter h, which characterizes our ignorance on the
measure of the Hubble constant H0 through the relation

H0 = 100 h km/s/Mpc and h ≃ 0.67 . (1.27)

The “true” value of h is a highly debated topic in the literature, but quite likely lies within the range0.67 <
h < 0.76 . We shall later see in Chapter 7, how this discrepancy in the measurement of H0 might be
interpreted as a sign of new physics, beyond the standard ΛCDM picture. Already at this stage, we see
once again the direct relation stated by Eq. (1.1) between k and the geometry of the universe. It turns out
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that Eq.(1.25) is an unstable fixed point for the dynamical system, as we will later discuss in chapter 2. For
now, let us just state that the universe had to have the exact amount of energy density ρcr in order to stay
flat. Which requires a gigantic amount of fine-tunning (see 2). From now on, we shall consider k = 0,
as geometrical probes (BAO+CMB) suggest the universe is extremely close to being flat6. One important
quantity in observational cosmology is the Hubble Radius

RH =
1

H(t)
, (1.28)

which has units of length. The co-moving Hubble Radius is thus given by (aH)−1. We will see in Chapter
2 the crucial role played by the comoving Hubble radius during the inflationary epoch. It is closely related
to the curvature Ωk, as can be seen from (1.25).

Stress-Energy and Conservation laws

In order to relate the physical quantities accessible today, and compare them to the theoretical predictions
at a certain epoch in the cosmic history, we need to determine how these quantities evolve with time. As a
consequence of the Bianchi Identities (∇μGμν = 0) we get:

∇μTμν = 0 (1.29)

The ν = 0 component yields the conservation of energy

ρ̇ + 3
ȧ
a
(ρ + P) = 0 (1.30)

It is of common practice at this stage to introduce the equation of state parameter w ≡ P/ρ. Rewriting in

6Planck’s satellite found Ωk,0 ≃ 0.0007[69]. See also recent discussions on spatial curvature in [229]
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terms of w and using the fact that H = ∂t ln a, Eq. (1.30) becomes7:

ρ̇ = −3H(1+ w)ρ ⇔ d ln ρ = −3(1+ w)d ln a . (1.32)

Considering a constant equation of state w, the solution to Eq. (1.32) is given by

ρi ∝ a−3(1+wi) (1.33)

We have the following picture:

ρ = ρtot = {ρr ≡ ργ + ρν}+ {ρm ≡ ρb + ρcdm}+ ρΛ (1.34)

Thus, for presureless matter (w = 0) we obtain ρm ∝ a−3 and for radiation, with wr = 1/3we get ρr ∝ a−4.
The vanilla ΛCDM assumes wDE = wΛ = −1. In this work, we will not restrict ourselves to a constant w.
By allowing for a time variation in w(a) we get

ρ(a) ∝ e−3
∫ a
1 (1+w(a′))d ln a′ (1.35)

From this, it follows that the relation Ω = ρ/ρcr can be generalized to any of the above mentioned com-
ponents so that Ωi = ρi/ρi,cr and

Ωtot =
∑

i

Ωi = Ωr +Ωm +ΩΛ = 1− Ωk (1.36)

The Friedmann equations can be cast into the more compact form

H2(a) = H2
0

[

Ωr,0 (
a0
a
)4 + Ωm,0 (

a0
a
)3 +Ωk,0 (

a0
a
)2 +ΩΛ,0

]

(1.37)
7As an analogy, one might see Eq. (1.30) as the first law of thermodynamics, namely TdS = dU + PdV. The internal energy

U can be written as U = ρa3, and volume V as V = a3, therefore obtaining

d(ρa3) + Pd(a3) = 0 ⇔ ρ̇ + 3
ȧ
a
(ρ + P) = 0 (1.31)

and so we see that the expansion is adiabatic (i.e. to a good approximation we have dS = 0). This means the energy density ρ
and pressure P are intrinsically related to one another and justifies our previous assumption of writting P = w · ρ in terms of an
equation of state parameter w.
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1.1.4 Distances and Redshift in Cosmology

As a result of the expansion of the universe, the distance between two events in spacetime is always chang-
ing. For a really longtime, until very recently with the detection of gravitational waves8 [3], the only messen-
ger carrying information about the universe’s past were photons. It is of extreme importance to understand
what happens to light as it travels through an expanding universe if we want to conclude something about
the former, just from cosmological observations. As the universe expands (see Fig. 1.1.3) the wavelength
λ of light is stretched by a linear factor such that λ(t) ∝ a(t), which also implies that photons travelling
through an expanding universe loose energy as E(t) ∝ a−1. If we observe light from distant stars, the ob-
served wavelength is larger than the emmited one, is convenient to introduce the redshift factor z defined
as

z =
λobs − λem

λem
=

λobs
λem

− 1 , (1.38)

which implies
a(t = ttoday)

a(t)
= 1+ z(t) . (1.39)

In this thesis, and as usually done in the literature, we set the value of the scale factor today a0 ≡ a(z =

0) = 1. Measuring distances in an expanding universe can be tricky, but fortunately all physical quantities
can be obtained from the Metric or Comoving Distance. Photons follow null geodesics (ds2 = 0) from (1.1)
and for k = 0, we get the expression for the comoving distance :

r(a) =
∫

dt′

a(t′)
=

∫ 1

a

da′

a′2H(a′)
(1.40)

Luminosity Distance

In the same way we intuitively estimate the distance to e.g. a moving car at night, by looking at its headlights,
we can use the light from distant objects with known luminosity, to infer their distance to us. These are the
so called standard candles. Type Ia Supernovae are such candles9, which ultimately led to the astonishing

8On September 14, 2015 at 09:50:45 UTC, shortly after turning on the two detector located at .. opening a new window to
study the universe - The dawn of multi-messenger astronomy

9These are binary systems involving a white-dwarf accreting matter from some other companion star, until the former exceeds
the Chandrasekar limit of about 1.44 M⊙ and explodes. Releasing a ”standardizable“ amount of photons (Luminosity). Another
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discovery of our Universe’s acceleration[12, 199]. Starting from the flux of light we observe from distant
sources, the (bolometric) flux F received is given by F = L

4πd2 , this then defines the luminosity distance in
a cosmological context[113]

dL =

√
L

4πF
. (1.41)

We finally arrive at the expression for the luminosity distance in a spatially flat FLRW universe:

dL(z) = (1+ z)
c

H0

∫ z

0

dz′

h(z′)
. (1.42)

Where we have introduced the dimensionless Hubble parameter h(z) ≡ H(z)/H0.

Angular Diameter Distance

Another useful way of determining distances in astronomy is by measuring the angle of an object (of known
physical size) in the sky. As its name suggests, it is defined as the ratio between physical size of an object and
its angle subtended in the sky dA = x

θ . In metric theories of gravity, the following relation holds dL(z) =
(1+ z) r(z) = (1+ z)2dA(z) where dA is the angular diameter distance. Yielding

dA(z) =
c

(1+ z)

∫ z

0

dz′

H(z′)
. (1.43)

In the same way objects with known luminosity distance can be used as standard candles to infer distances,
objects with known physical size, can also be used through (1.43) to infer distances. Such objects are called
standard rulers. One of the most powerful probes in modern cosmology is the BAO scale (cf. 1.3.3), which
serves as a standard ruler.

1.2 The Concordance (ΛCDM)Model

In the standard ΛCDM picture, we assume GR to be the correct theory describing gravitational interac-
tions on the largest of scales. Furthermore, as we previously discussed in Section 1.1.1, it also relies on the
assumption that on those scales, the Universe is accurately described by the (flat) FLRW metric (i.e. an
isotropic & homogeneous spacetime). The late-time accelerated expansion of the universe is driven by a

important example of such standard candles are Cepheids - stars whose lumonisity is periodic.
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cosmological Λ, whose small value remains a mystery today. This mysterious form of dark energy consti-
tutes ∼ 70% of the energy budget of the Universe. Furthermore, a pressure-less fluid (w = 0) accounting
for ∼ 25% of the energy density is needed for structures to efficiently form at early times. Yet in order to
accommodate observations, this particle needs not to (or weakly) interact -other than gravitationally- with
the rest of the SM. While ordinary (baryonic) matter constitutes the remaining 5% of the energy density in
the universe, the rest is still unknown. This is known as the concordance, or ΛCDM model. It can describe,
to some accuracy, a wide variety of observation in the cosmic history. This model is completely specified
by 6 parameters, from which we can derive all the rest. The values of these parameters are given in Table
1.2.1.

Notation Value Definition Physical Origin

ωb 0.02237± 0.0015 Fraction of baryons Baryogenesis
ωc 0.1200± 0.0012 Fraction of Cold Dark Matter TeV-Scale Physics (?)

100θs 1.04092± 0.00031 Angular Sound Horizon Geometrical
ln (1010As) 3.044± 0.014 Scalar Amplitude Inflation

ns (0.9649± 0.0042) Spectral (Scalar) Index Inflation
τ 0.0544± 0.0073 Optical Depth First Stars

Table 1.2.1: PlanckTT+TE+EE+lowE+lens constraints on the 6 ΛCDM parameters[69]

where the fractional energy densities are typically expressed in terms of physical energy densities

ωi = Ωih2, (1.44)

and where h = H0/100 eludes to the Hubble constant defined in (1.27). This turns out to be an inferred
parameter usingθs, as we shall discuss in Chapter 7. The parametersAs andns in table 1.2.1 are the amplitude
and tilt of (primordial) scalar fluctuations, respectively. τ is dubbed the optical depth and is related to re-
ionization epoch and the birth of the first stars. These are free-parameters to be inferred by observations
within a given model, namely ΛCDM . Because of its simplicity and its remarkable success to cope with
observations, this model provides a benchmark for assessing the viability of more intricate dark energy
models. Nonetheless the ΛCDM remains a phenomenological (toy) model, where most of the energy
budget in the universe remains in a dark sector (ΩCDM, ΩΛ) - whose fundamental nature is yet unknown.
In the next section, we shall go over the most important observational probes, and see how we can constrain
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from Fig.1.3.3. The light we receive from the surface of last scattering, i.e. the CosmicMicrowave Background
(CMB) is a perfect black body by definition. Furthermore, due to expansion of the universe, Tγ ∝ a−1. The
initial temperature of T ≃ 3000K decreases with time, and we observe it as a radiation with temperature
T ∼ 3 K, which explains why Penzias and Wilson[181], detected this very first light in the form of (static
noise) radio waves (at 4080 Hz) in the sixties. The theoretical understanding of the blackbody radiation
by Planck, Einstein and others, ultimately led to the development of Quantum Mechanics. Its application
to the physics of the early Universe - prediciting the spectrum of the CMB - is a major success of modern
Cosmology. The COBE-FIRAS measurement yielded T0 = 2.7255(6)K [100] - perfectly consistent with
an idealized blackbody. Indeed, deviations from the perfect blackbody law allows us to constrain any type
of exotic energy injection in the early Universe[195, 210]. It is always possible to write

T(ν, n) = T0 + ΔT(n)
︸ ︷︷ ︸

Anisotropies

+ ΔT(ν)
︸ ︷︷ ︸

Spectral Distortions

+ δT(ν, n)
︸ ︷︷ ︸

Spectral−Spatial Distortions

(1.46)

where T0 is the average (blackbody) temperature, and n is the direction we observe in the sky. Deviations
from Planck’s law can depend on: (i) on the direction we observe (the well-known CMB anisotropies), (ii)
the frequency (the so-called y/μ - spectral distortions) and (iii) on both (SZ effect)[126] (see e.g. [14, 15]
and references therein). Because of this, and due to the high level of precision of current CMB experiments,
it has proven to be an extremely difficult task to introduce new physics at early times, without spoiling
BBN or CMB constraints. Thus, if something funny happens in the early universe that changes the size of
the sound horizon, it has to happen just prior to recombination, in order to avoid (as much as possible)
current BBN+CMB constraints. This is the motivation behind early-time solutions to the Hubble tension
[24, 132, 194]- to change the size of the sound horizon, by injecting energy just prior to recombination -
effectively changing the distance at which we observe the CMB11. There has been a lot of debate recently
in the literature [24, 123, 132, 193] on whether such (early-time) solutions are actually viable.

1.3.3 Baryon Acoustic Oscillations

Because of the large pressure provided by photons, the initial overdensities set up acoustic (sound) waves
in the photon-baryon fluid that propagate as long as these two are coupled and behave as a perfect fluid. In

11the CMB would appear closer, and therefore we would infer a larger value of H0. Another possibility is to play with the
value of zrec, as discussed in e.g. [122, 209].
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shall later discuss in Chapter 7, the size of the sound horizon plays a crucial role at inferring cosmological
parameters, and is tightly related to the so-called Hubble tension [24, 132]. The BAO scale rs constitutes
one of the most important observational probes of the (late-time) cosmic acceleration. We refer the reader
to Refs. [23, 93, 115, 239] for a more thorough discussion of the physics of BAO.

1.4 Tensions/Anomalies within the ConcordanceModel

In recent years, several analyses coming from different cosmological probes have reported curiosities be-
tween cosmological parameters, as measured in the local (low-z) universe, and high-z, assuming ΛCDM .
Two notable examples are H0 and σ8 “tensions”. Note however, other shortcomings of the ΛCDM at small
(galactic) scales paradigm have been pointed out [54]. The reader is referred to [84, 184, 235] for a recent
and full account of the challenges the ΛCDM paradigm is facing.

Figure 1.4.1 (following page): Compilation of early vs. late-time (local) measurements H0. Figure
taken from [83].
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”... And if inflation is wrong, then God missed a good trick.
But, of course, we’ve come across a lot of other good tricks that
nature has decided not to use.”

Jim Peebles, interview at Princeton (1994)

2
TheEarly Universe

Quantum mechanical seeds during the early Universe. The ΛCDM paradigm relies on the as-
sumption of a nearly adiabatic, and nearly scale-invariant spectrum of primordial fluctuations - as encoded
in the amplitude and tilt parameters As and ns , respectively. In this Chapter, we shall briefly introduce
one of the most commonly investigated mechanisms responsible for generating these primordial seeds1 -
namely Inflation. In Chapter 3 we will see how through gravitational instability, these tiny (quantum) fluc-
tuations grow to form the LSS we observe in the late-universe. Let us also mention that other alternatives
to inflation have been explored in the literature, such as bouncing cosmologies (see e.g. Ref. [47]).

1And solving the horizon and flatness puzzles.

30





The Flatness Problem

Another interesting observation, is to realize the universe is extremely close to flat [69], as we previously
discussed in Chapter 1. If we allow for k ̸= 0, in a universe dominated by a fluid with equation of state w,
it is easy to show from (1.23) and (1.25) that the fractional energy density evolves as

dΩ
d ln a

= (1+ 3w)Ω(Ω − 1) . (2.2)

The case Ω = 1 is an unstable critical point of the dynamical system- i.e. any deviation from exactly Ω = 1
will grow with time - in particular during the standard radiation and matter dominated epochs where the
expansion is decelerated (w = 1/3 and w = 0, respectively). To explain the small value of |Ωk,0| we
observe today, one finds that the universe had to start with Ω(apl) ∼ 1± 10−60 at the planck epoch. Which
represents an unacceptable amount of fine-tunning. Unless of course, w < −1/3 - which implies through
(1.24) ä > 0. If the expansion of the universe is accelerated, the solution Ωk = 0 becomes an attractor
of the system. Inflation is precisely an epoch of accelerated expansion during the early Universe, and as
such, provides a solution to the flatness and homogeneity problems. We should emphasize however, that
Inflation does not affect the overall geometry of the universe. It only does so that locally, the universe seems
to be flat.

2.1 Inflation: a solution to the Big-Bang puzzles

During inflation, the comoving Hubble radius (aH)−1 shrinks, as H is nearly constant and a(t) ∝ exp (Ht).
Figure 2.1.1 shows the behaviour of the (comoving) Hubble radius during inflation, large scales fluctuations
leave the horizon earlier than small scale fluctuations, and they are frozen for k < aH. After inflation stops,
the comoving Hubble radius starts to grow again during the usual radiation and matter dominated epochs,
and scales re-enter the progressively - See Fig. 2.2.1.

2.1.1 Single Field Inflation

The easiest and simplest way to produce a period of accelerated expansion is by supposing that during the
very early universe, the energy density was governed by a scalar field φ. The simplest Lagrangian for a Scalar

32





We can then identify from (1.21) the expressions for the energy density and pressure as

pφ =
1
2
φ̇2 − V(φ) , ρφ =

1
2
φ̇2 + V(φ) . (2.7)

From Eqs. (2.7), and in the limit V(φ) ≫ φ̇2, we immediately see that a scalar field minimally coupled to
gravity behaves like a DE-like fluid with equation of state wφ = pφ/ρφ ≃ −1. We get accelerated expansion
(ä > 0) in slow-roll inflationary models if ε, η ≪ 1, where these are dubbed the “slow-roll” parameters
defined as [148]

ε = −d lnH
dN

= − Ḣ
H2 =⇒ εV =

2
M2

pl

(
V′

V

)2

, (2.8)

η = − φ̈
Hφ

= ε − 1
2ε

dε
dN

=⇒ ηV =
1

M2
pl

V ′′

V
=

V ′′

3H2 . (2.9)

where in the last equality, we assume slow roll and write ε and η in terms of the potential V(φ) and its
derivatives (wrt φ). A plethora of inflationary models have been proposed over the years, we refer the
reader to Refs. [65, 162]

2.2 Generating the primordial seeds

Inflation seems to be driven by the vacuum energy of the Inflation field (in the SR approximation). Due to
its quantum nature, the inflaton φ fluctuates with δφ ≡ φ(x, t)− φ̄(t) and these fluctuations - through the
Einstein equations- lead to fluctuations in the metric and ultimately to fluctuations in the temperature we
observe in the CMB. The perturbed Einstein equations schematically read

δGμν = 8πGδTμν , (2.10)

if the perturbations are small, the full non-linear solution is well approximated by the linear treatment. The
statistical properties of those fluctuations is encoded in the so called correlation function

⟨δ(k)δ∗(k′)⟩ = (2π)3δ(3)D (k − k′)P(k) (2.11)
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of the former into a Black Hole - Primordial Black Holes. So far, the LIGO-VIRGO collaboration has de-
tectedO(50) gravitational wave events from BH binary mergers, most of them in the∼ 30M⊙ mass range.
PBH were first proposed by Hawking [109] in the early seventies. Inflationary models can naturally lead
to the formation of PBH. Nonetheless, CMB constraints makes it hard to produce large enough O(1) fluc-
tuations on small scales. Note however that recent studies using the stochastic inflation (or δN) formalism
[221, 222] suggest that PBH production is a generic feature of inflationary models coming from quantum
diffusion of the inflaton along its potential [97, 233]. The tantalizing possibility that a fraction of the BH
binary mergers events detected by LIGO/Virgo are from primordial origin is not excluded [101]. Excit-
ingly, even the non observation of PBH in those mass ranges could in principle exclude or at least constrain
a wide class of inflationary potentials near the reheating epoch. By gathering more data from current and
next generation of GW observatories, we will be probing the last numbers of e-folds before the end of in-
flation.

2.4 Stochastic GravitationalWave Background

The unexpected gift we get from the inflationary paradigm, is the generation of a primordial (stochastic)
gravitational wave background (SGWB) permeating spacetime. In analogy with its scalar counterpart, we
parametrize the spectrum of tensor modes as

Pt = At

(
k
k∗

)nT

(2.13)

Due to historical reasons, the scale-invariant case is nT=0. One interesting quantity in inflationary cosmol-
ogy is the tensor-to-scalar ratio r

r =
At

As
(2.14)

The simplest inflationary models predict a relation between the tilt of tensor modes and the tensor-to-scalar
ratio r = 16ε = −8nT - known as consistency relation. In the next decade, we might be able to probe physics
up to extremely high-energies with GW observatories. Many (BSM) early-universe scenarios predict a
first-order phase transition (among other mechanisms) that can lead to a detectable SGWB with future
space-based GW observatories, such as LISA [50, 58, 244].
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Figure 2.4.1 (following page): Top-left panels: Observations of clusters of galaxies in redshift space
by the 2dFGRS and SGW surveys. Bottom right: Comparison with numerical N-body simulations
from the Millennium Simulation[216] - This assumes a ΛCDM cosmology - Structure formation will
happen differently in a non-cold DM filled-universe. Simulations in a ΛCDM universe qualitatively
reproduces the structure of the cosmic web. In fact, since observations are done in redshift space,
galaxies appear strechted or squished from their “original” positions. This due to effect of peculiar
velocities (typically of the order ∼ 1000 km s−1), an effect known as the fingers of god. Figure taken
from [216].
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Part II

Phenomenology of Dark Energymodels: The
Growth Index γ
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3
Inhomogeneities around the FLRWbackground

Evolution of cosmic inhomogeneities as a probe of gravity. So far, we have treated the uni-
verse as being perfectly homogeneous and isotropic. This is just a first approximation, which is extremely
accurate at large scales, but far from reality at small-scales - where we evidently see large deviations from ho-
mogeneity. If the universe was perfectly homogeneous and isotropic there wouldn’t be any stars or galaxies
to harvest life. And we humans would not be here to study the cosmos. This part of the thesis is dedicated to
the study of small fluctuations, or perturbations, and their evolution around the FLRW universe we studied
in Part I. In Chapter 2, we explored how an epoch of (rapid) accelerated expansion naturally sets the initial
conditions for our Universe to evolve into the inhomogeneous Universe we observe today. In this chapter,
we review the basics of (linear) perturbation theory needed to relate the former with the Large Scale Struc-
tures (LSS) we observe in the late-universe. Throughout this section, we will limit our discussion to the
linear (quasi-static) regime. This is justified by the fact that at scales of cosmological interest, and in partic-
ular for CMB and LSS studies, the universe can accurately be described by (small) perturbations around
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potential. Similarly, mass conservation yields the famous Continuity Equation

∂tρ = −∇r · (ρu) . (3.3)

The peculiar velocity is tightly related to the density field, as seen from (3.3). The last equation, which will
be of crucial importance when discussing modified theories of gravity is Poisson’s Equation

∇
2
r Φ = 4πGρ (3.4)

Relating the gravitational potential Φ to the energy density ρ. Notice the gradient ∇r with respect to the
physical coordinate r. In an expanding universe, r is related to the comoving coordinates x by the relation
r = a(t)x with a(t) being the scale factor (see Fig.1.1.3). It will be useful to reformulate the problem in the
comoving coordinates [42], remembering

∇r = a−1
∇x,

∂

∂t

∣
∣
∣
r
= ∂t

∣
∣
x −

1
a
v ·∇x = ∂t

∣
∣
x − Hx ·∇x . (3.5)

We apply the procedure (3.1) for all quantities of interest, namely the pressure P, bulk velocity u, density
ρ, and gravitational potential Φ. Assuming that the fluctuations are small, we can linearize Eqs. (3.2),(3.3)
and (3.4) and drop the product of fluctuations (which are negligible if they are small) to obtain

δ̈ + 2Hδ̇ − c2s
a2
∇

2δ = 4πGρ̄δ (3.6)

Where we have introduced the fractional density perturbation, or sometimes called density contrast δ as
well as the speed of sound c2s .

δ ≡ δρ
ρ̄

, c2s ≡
∂P
∂ρ

(3.7)

We explicitly assume here that the perturbations are adiabatic (as predicted by most single-field inflationary
models), which allows us to relate the pressure to energy density via its sound speed cs, effectively removing
the pressure dependence from our equations. Furthermore, it is convenient to work in Fourier space. We
decompose δρ as

δρ(r, t) =
∫

d3k
(2π)3

e−i k·rδρk(t) (3.8)
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This is particularly useful since at the linear level in perturbation theory, Fourier modes decouple and evolve
independently. For each wavenumber k, from (3.6) their evolution is dictated by:

δ̈k + 2Hδ̇k
︸︷︷︸

expansion

= 4πGρδk
︸ ︷︷ ︸

gravity

− c2s
k2

a2
δk

︸ ︷︷ ︸

pressure

(3.9)

From the above equation, we distinguish 2 different regimes, for small scales λ (large k > kJ) below the
Jeans scale λJ(t) = 2π/kJ = cs(t)

√

π/Gρ̄(t) modes oscillate in time with decreasing amplitude. On the
other hand, for scales larger than the Jeans scale (k < kJ), pressure forces cannot longer compensate for
gravitational attraction, and thus the perturbations grows as a power law, as opposed to exponentially in
a static universe (ȧ = 0). The factor 2Hδ̇ - often called Hubble drag - is related to the expansion of the
universe and plays the role of a friction term in the EOM for δ, slowing down the growth of perturbations.

A few words on scales:

A given scale λ is said to cross the horizon when

λ = RH ⇔ 2π
k

a =
1
H

. (3.10)

where RH = 1/H is the Hubble radius defined in (1.28) and the numerical factor (2π) is often left out so we
talk about a scale crossing the Hubble Radius RH when k = aH. Modes with k ≫ aH and k ≪ aH are said
to be sub-horizon and super-horizon modes, respectively. For a more detailed (and pedagogical) treatment
of structure formation and perturbation theory, the reader is referred to e.g. [131].

3.1 Stages of Evolution

Remarkably, the Newtonian approach to cosmological perturbation theory already gives us a huge amount
of information about the evolution of the inhomogeneities in the universe and the underlying theory of
gravity. In this thesis, we will mainly be interested in large-scale perturbations entering the horizon during
Matter domination. From (3.6), considering matter to be accurately described by a pressure-less fluid(c2s =
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0) the gradient term vanishes and we get the master equation for DM perturbations.

δ̈m + 2Hδ̇m − 4πGρmδm = 0 (3.11)

3.1.1 Matter Dominated stage

During matter domination we have H ≃ 2/3t, and thus Eq. (5.1) simply reads

δ̈m +
4
3t

δ̇m − 2
3t 2

δm = 0 (3.12)

By simple substitution of a power law solution of the form δm ∝ t p , we get the following two solutions:

δm ∝







t−1 ∝ a−
3
2 , “decaying mode”

t
2
3 ∝ a, “growing mode”

(3.13)

This is an important result worth remembering. i.e. matter (density) perturbations grow like the scale fac-
tor a(t) during matter domination (Einstein-DeSitter with Ωm = 1). By the time matter dominates, the
decaying mode is no longer present. Therefore we will only consider the growing mode in (3.13), but we
shall later on comment on the decaying mode in Chapters 5 and 6.

3.1.2 Radiation Dominated stage

During the Radiation-Dominated (RD) stage, on scales smaller than the Hubble radius, the growth of per-
turbations was inhibited by the large pressure provided by photons in the photon-baryon plasma. The
competition between the gravitational and pressure forces led to the formation of acoustic waves that prop-
agated through the plasma, and leaved an imprint on the surface of last scattering. We observe this oscilla-
tions in the acoustic peaks of the CMB and in the matter power spectrum Pm(k).
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to show (see e.g.[85]) that the time-averaged density contrast of radiation fluctuations vanishes, whereas
DM perturbations grow logarithmically δm ∝ ln a during the RD stage. A presure-less (dark) fluid is
therefore needed for the perturbations to grow efficiently during the RD stage. This is reflected in the de-
pendence of the acoustic peaks in the CMB on the fractional energy density of DM ωCDM ≡ ΩCDMh2.

Dark matter out weights ordinary matter by a factor of 5, and unlike baryons, it does not interact with
photons, and thus feels no pressure. As DM flowed inwards towards over dense regions, baryons feel an
enormous pressure exerted by the imprisoned photons. After decoupling, baryons fall into the (enhanced)
potential wells and track DM perturbations.

3.1.3 Λ-Dominated stage

By the time matter has been diluted away, the main contribution in the energy density is that of DE. It
seems that DE is described (to a good approximation) by a cosmological constant Λ, which by definition
remains constant across spacetime and therefore does not cluster (δΛ = 0). In a Λ-dominated universe, it
is straightforward to show that the solutions to δ̈ + 2Hδ̇ ≃ 0 are

δm ∝







const.

e−2Ht ∝ a−2
(3.15)

implying that the growth of perturbations is frozen once DE starts to dominate over matter.

3.2 Large Scale StructureObservables

So far, we have explored how the initial seeds evolve during the history of our Universe. Here we will
relate the fluctuations in matter density to actual cosmological observables that we can measure with galaxy
surveys. In the nineties, Peebles, Efstathiou and others used LSS observations to predict the presence of a
Λ-term [90, 178] - before the discovery of the accelerated expansion by SNeIa[185, 199]. LSS has proven
to be extremely useful in constraining the properties of Dark Energy, as it probes the late-time growth of
structures when DE starts to dominate over DM. Recent results from large-scale structure surveys, such as
eBOSS[11] and DES(Y3) [67] show the potential of these to infer cosmological parameters, by cleverly
using and combining different Late-time observables, such as Galaxy Clustering, Weak Lensing, Redshift
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Space Distortions among others.

Ongoing and future LSS surveys have been (or will soon be) measuring the distribution of matter across
a wide variety of scales and redshifts, thus allowing us to contrain the expansion history of the Universe
during DE domination to unprecedented precision, allowing for the inference of cosmological parameters
at the same level of accuracy as CMB analyses currently do. We will soon be able to further test the con-
cordance model of cosmology and probe the nature of Dark Energy. As we already stated previously, the
linear formalism of perturbation theory is thus valid at large (early) enough scales (times), such that the
requirement δm ≪ 1 is satisfied.

The reader is referred to [41, 131] for a more detailed treatment of LSS and Perturbation Theory. Let
us also mention that higher-order statistics beyond the simple power spectrum, (or two-point correlation
function) could potentially yield valuable information about the laws of gravity on the largest of scales,
driving the late-time accelerated expansion as discussed in [146].

Matter Power Spectrum

One crucial quantity mentioned before, is the matter power spectrum. We cannot predict the precise value
of δm in any point in space-time, but rather we can predict the statistical properties of these overdensities.
One can define the correlation function as

⟨δm(k)δ∗m(k
′)⟩ = (2π)3δD(k − k′)Pm(k) (3.16)

where δD(x) is the Dirac delta function, and Pm(k) is called the matter Power Spectrum. It is then possible
to write [85]

δ(⃗k, a) = δp(⃗k)×
{

Transfer Function T(⃗k)
}

× {Growth δ(a)} , (3.17)

where δp indicates the initial primordial amplitude for a given mode k and δ(a) accounts for its evolution
as a function of a. The exact computation of the transfer function T(k) is complicated, and is typically done
numerically, as one needs to solve the hierarchy of Boltzmann equations and take into account interactions
between different species, free-streeming effects, etc. Nowadays, many (fast) numerical Boltzmann solvers
for computing the matter power spectrum are readily avaible, such as CLASS [43, 142] or CAMB[143]. The
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basic (qualitative) features of the Power spectrum are nontheless easy to understand. First, it is easy to
see that P(k) ∝ ⟨|δm(k)|2⟩ is always a positive quantity. At larges scales (small k) we must recover the
homogeneity assumption, thus P(k) → 0 for k → 0. We further saw in the previous section that during
matter domination, perturbations grow efficiently (δm ∝ a), whereas during radiation domination, the
e.m. pressure inhibited the growth, so that their growth is logarithmic only δm ∝ ln a. There is a difference
between the growth of perturbations in RD and MD epochs, thus we should expect a preferred scale keq =
aeqHeq distinguishing the two “regimes” of growth (before and after matter-radiation equality aeq) - see
Fig.3.2.1. The transfer function T(k) has the following limits:

T(k) ∝







1, for k ≲ keq = aeqHeq

( k
keq
)−2, for k ≳ keq

(3.18)

The key idea, is that at late-time when matter dominates all fourier modes evolve identically. Before that,
their evolution is essentially determined on whether these modes re-enter the horizon before or after aeq.
Modes satisfying k > keq are suppressed relative to k < keq. The small wavelength modes that enter the
horizon during RD feel their growth suppressed by a factor (k/keq)−2 at late-times1. For larger-wavelengths
that re-enter at the time matter dominates, the transfer function is close to unity, and thus evolve as δ ∝ a.
Numerical calculations can be reasonably well-approximated by the BBKS formula 2[31]

T(k) =
ln (1+ 2.34 q)

2.34 q
[1+ 3.89 q + (16.2 q)2 + (5.47 q)3 + (6.71 q)4]−1/4 , (3.19)

with q ≡ k
Ωmh2Mpc . This approximation assumes a vanishing anisotropic stress (Φ = −Ψ) and ig-

nores baryonic effects, which definitely change the small scale behaviour of the power spectrum. However,
throughout this thesis, we will focus on large-scales, so we can safely neglect these effects.

1Up to a logarithmic correction accounting for the logarithmic growth at early times.
2A simpler, and more accurate approximation for the transfer function was also derived in [92]

Figure 3.2.1 (following page): Top : The Matter Power Spectrum at z = 0. Bottom : Residuals
wrt Planck’s ΛCDM best-fit. We see the remarkable agreement with the wide variety of observational
probes . Notice how at large scales (small k), as probed by Planck, we are limited by cosmic variance.
Figure taken from [60] to which we refer for the details on the data sets under consideration.
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From the Poisson equation(3.4), we see k2Φ(k) ∝ δm(k) which implies the matter power spectrum is a
power law of the form

P(k) ∝ k ns (3.20)

where ns is the spectral tilt, measured to be ns = 0.965 ± 0.004 by CMB experiments [69], which is in
perfect agreement with inflationary predictions. The exact case ns = 1 is known as the Harrison-Zel’dovich
power spectrum.

Weak Lensing & Galaxy Clustering

Observationally speaking, galaxy surveys measure the statistical properties of the distribution of galaxies
(and/or voids3). The galaxy overdensity is related to the usual (dark) matter overdensity via the simple
linear relation

δg = b · δm , (3.21)

where b is the galaxy bias. There is yet another subtlety, we do not observe the galaxy density constrast δg

directly, but rather its density constrast in redshift space δz, which leads to Redshift Space Distortions (RSD)
which we will briefly discuss in the next section. On large scales, where the linear treatment is accurate, one
can safely assume

Pg(k, z) = b2Pm(k, z) . (3.22)

A common way of characterizing the amplitude of the over densities at a given scale is by means of the root
mean squared (RMS) in a sphere of radius R, defined as

σ2R ≡ ⟨δ2R(x)⟩ , (3.23)

where δR(x) ≡
∫

d3x′δ(x′)WR(x− x′) is the smoothed density contrast and W(x) is some window function.
Because of historical reasons, we typically express this in a sphere of radius R = 8Mpc/h4. For more details

3In the same way that galaxy provides a biased tracer of the underlying dark matter overdensities, cosmic voids (underdense
regions) can yield valuable information about the growth of structure in the universe. A particular interesting application is the
cross-correlation of these two datasets, allowing us to test e.g. the isotropic and homogeneous assumptions.

4Although it has been pointed out recently that the use of h−1.Mpc units in cosmology might be responsible for misconcep-
tions regarding the normalization of P(k) encoded in σ8, and is therefore at the heart of the discrepancy in the measure of σ8
[223]
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on galaxy clustering see e.g. [74]

Figure 3.2.2: Weak gravitational lensing in the Abell 2218 galaxy cluster. The shapes of galaxies
appear to be distorted, or elongated in some direction. Advanced Statistical methods can be used to
quantify this effect, and estimate the mass distribution along the line of sight[130, 217]. Figure taken
by the Hubble Space Telescope. Credit: NASA/ESA https://esahubble.org/images/heic0814a/

Morevover, galaxy surveys not only give us information about the positions of galaxies, but also their
shape (cosmic shear measurements [128]- See Fig. 3.2.2) and their cross-correlation. These are the so
callled 3x2pt analyses - because of the three types of 2pt correlation functions: position-position, shear-
shear, shear-position. Such surveys are extremely sensitive to the combination

S8 ≡ σ8,0
√

Ωm/0.3 (3.24)

which effectively removes the degeneracy between Ωm and σ8 and characterizes the smoothness or clumpi-
ness of the DM density field in our Universe. In Fig. 3.2.3 we report the new measurements from the 3-Year
Dark Energy Survey.
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Redshift space distortions

The observed redshift receives contributions from the real redshift, and an additional contribution coming
from the peculiar motion of e.g. galaxies, so that

zobs = zreal +
1
a
v∥
c

(3.25)

where v∥ refers to the line-of-sight component of the peculiar velocity. This ultimately leads to5.

δz = (1+
f
b
μ2k)δg (3.26)

where μk = k·̂z
k is the cosine of the angle between the line-of-sight and the wave-vector k, f ≡ d ln δm

d ln a is
the growth function and b is the bias factor encountered before (3.21). This is the so-called Kaiser effect6

[124]. RSD surveys are sensitive to the combination β ≡ f(z)/b - often called the distortion parameter
(see more in [41, 81]). Eq. (3.26) is telling us that the observed matter power spectrum is modulated by
a factor f(z) ≃ Ωm(z)γ(z), encoding the logarithmic growth of matter perturbations and - as we will see
in Chapters 5 and 6 - is sensitive to the nature of DE. In practice, one prefers to work with the (unbiased)
combination f(z) · σ8(z). By definition we have

f(z) = − d ln δm

d ln(1+ z)
and σ8(z) = σ8,0 ·

δm(z)
δm(z = 0)

(3.27)

From there, it is straightforward to find

fσ8(a) ≡ σ8,0 · a ·
δ′m(a)
δm,0

. (3.28)

This is the actual observable in RSD surveys. We again refer the reader to Ref.[182] for a clear account of
observations done in redshift space.

5See e.g. [41, 81, 124] for a more detailed derivation.
6Although it seems these ideas were first discussed in [206].
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“In Physics we have Heroes, not prophets.”

Steven Weinberg

4
ModifiedGravity

Scalar fields are ubiquitous in High Energy Physics and Cosmology. The “recent” discovery
of the Higgs boson is the very first experimental evidence of a fundamental scalar (spin-0) field in nature.
We further saw in Chapter 2 how the standard ΛCDM paradigm relies on an early stage of quasi-De Sitter
expansion - with nearly constant H- for generating the primordial seeds. While the exact particle physics
of Inflation is still unknown, observations of the CMB and LSS seem to favor a Gaussian - nearly adiabatic,
nearly scale-invariant - primordial spectrum of fluctuations. This is typically achieved by invoking a slowly-
rolling scalar field - the Inflaton φ. Interestingly, one of the most widely accepted (and first) inflationary
models is a modified gravity of the form f(R) = R + αR2 which provides a very good fit to current CMB
data[220]. The discovery of DE in the late 90’s provides further motivations to consider modifications to
Einstein’s GR. Moreover, it is known that scalar degrees of freedom arise quite naturally- as an effective
description- in the context of UV-complete theories of gravity (e.g. the Dilaton in String Theory) . More
generally, many interesting extensions to the SM of particle physics predict new (light) species which are
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very-weakly coupled to ordinary matter, making them very hard to detect on terrestrial experiments. One
such example, are Axion-like Particles (ALP). More specifically, the original QCD axion is the emerging
Nambu-Goldstone boson of a spontaneously broken U(1)PQ (Peccei-Quinn) symmetry[174]. It is one of
the most highly-motivated BSM candidates in particle physics as it solves two of the most important short-
comings in the SM1. More recently, ALP have received a lot of attention in the cosmological community
because of their potential to ease the Hubble tension [166, 194], by effectively reducing the size of sound
horizon at recombination2. A lot of effort has also gone in constructing such models in the context of mod-
ified gravity (see e.g. [27, 28, 245] and references therein for recent works in this direction). It is therefore
quite natural (and insightful!) to study the dynamics of scalar fields in a gravitational context. In this chap-
ter, we shall briefly review recent advances in modified gravity theories, and provide further motivations
for the kind of (phenomenological) features considered in this thesis. The interested reader is referred to
Refs. [1, 66, 96, 125] for a more thorough discussion of modified gravity.

4.1 TheHorndeski Action

The most general action involving a scalar field φ plus the metric gμν leading to second order field equations3

has already been written[114]. It takes the following, rather cumbersome form:

S[gμν, φ] =
∫

d4x
√

−g

[
5∑

i=2

1
8πG

Li[gμν, φ] + Lm[gμν, ψM]

]

. (4.1)

The above action includes a wide variety of dark energy (and inflationary) models with a single degree
of freedom added to the Einstein-Hilbert Action. These include the good-old Quintessence/K-essence
models, Scalar-Tensor (Brans-Dicke) theories, Kinetic Gravity Braiding ,Generalized Galileons and many
more (see e.g. [125]). The Lagrangian densities Li are given by

L2 = G2(φ, X) , L3 = G3(φ, X)□φ , (4.2)

1Namely, the strong CP (θ-term) problem in Quantum Chromo-Dynamics (QCD) and it was soon realized it is also a perfect
Dark Matter candidate. See e.g. Ref.[161] for more details on axions and their relation to cosmology

2Although it has been debated whether LSS observables exclude such models [121, 214]. Indeed, these models suffer from
higher (inferred) values of σ8, in tension with recent WL measurements.

3Theories having higher-order equations of motion as thought to be plagued by the Ortogradsky instability, yielding ghost
degrees of freedom - i.e. particles with M < 0. Recently, a class of theories known as Degenerate Higher-Order Scalar-Tensor
Theories (DHOST)have been found to evade the Ortogradsky instability[138]. See [137, 207] for a review
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L4 = G4(φ, X)R + G4,X(φ, X)
[

(□φ)2 − φ;μνφ
;μν
]

, (4.3)

L5 = G5(φ, X)Gμνφ;μν − 1
6
G5,X(φ, X)

[

(□φ)3 + 2φ;μ
νφ;ν

αφ;α
μ − 3φ;μνφ

;μν□φ
]

, (4.4)

where□φ ≡ gμνφ;μν , X ≡ − 1
2∂μφ∂μφ and Gμν is the Einstein Tensor in (1.9). It is seen from the above La-

grangians the gigantic class of theories that could lead to second order equations of motion (EOM). How-
ever, many of the terms Gi(φ,X) in (4.1) have now been ruled out -or have stringent constraints- by recent
gravitational wave observations. Namely, GW170817 and its electromagnetic counterpart GRB170817A
[4, 5] (see e.g. [72, 75, 95, 125] and references therein). It seems appropriate at this stage to try and classify
the wide variety of DE models contained in (4.1) according to the phenomenological implications for cos-
mological observables. This is indeed along the lines of the Effective FieldTheory formalism of DE [37, 106]
(see e.g. [103] for a pedagogical introduction). In recent years, the correspondence between Horndeski’s
models4 and the EFT description of DE became transparent [37].

4.2 Phenomenology ofModified Gravity

When expanding Horndeski’s action up to second order in perturbations and imposing the symmetries of
the background, there are 4 remaining functions of time αi(t) parametrizing the deviations from GR. These
are: αM denoting the running of the Planck Mass, αK related to the kinetic part of the scalar lagrangian, αB

characterizing the mixing between metric and scalar perturbations and αT which parametrizes the devia-
tions in the tensor speed w.r.t. unity (c = 1). These α-functions can be expressed as combinations of the
functions Gi(φ,X), but their closed-form expressions are irrelevant for our purposes. The reader is referred
to [37, 103, 106]. The key point being that the αi’s encapture the phenomenology of deviations from Gen-
eral Relativity. As an example, one can show that tensor modes (gravitational waves) in modified gravity
theories evolve as

ḧij + (3+ αM)H ḣij + (1+ αT)k2hij = 0 (4.5)

with αT = 1 − c2T encoding the deviations in the tensor speed from unity and αM = d lnM2
∗

d ln a being the run-
ning of the Planck mass. As mentioned before, the tensor speed excess has been measured to be vanishingly

4Beyond-Horndeski theories can also be encaptured by the EFT functions αi, by incluiding an additional function αH.
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small αT ≤ O(10−15)[5]. This severely constrained the landscape of possible DE models in (4.1), as many
predicted cT ̸= c [26, 95] . The parameter αM also enters as a friction term in the equations of motion for
GW, modulating the way in which GW feel the expansion of the Universe and as such, could play a cru-
cial role in determining the nature of DE - through the next generation of GW observations. Another key
(generic) feature of MG models is that their (scalar) density perturbations evolve differently than in GR,
since G → Geff(a, k) which effectively encodes the additional degree of freedom and sources the perturba-
tions through Poisson’s equation. For modes well-within the horizon, their evolution is dictated by

δ̈m + 2Hδ̇m = 4πGeff(a, k)ρmδm (4.6)

where Geff(a, k) is a time and scale dependent effective gravitational coupling. Therefore, from a phe-
nomenological point of view, an interesting place to look for departures from GR is the evolution of cosmic
inhomogeneities. Such a phenomenological tool is the growth index γ of matter perturbations. We shall
come back to this in great depth in Chapters 5 and 6.

4.3 Some examples ofModified Gravity

One of the most natural, and simplest possibilities is to extend the Einstein-Hilbert action (1.4) to include
higher-order contribution in terms of geometrical (covariant) objects, such as the Ricci scalar R, RμνRμν and
so on. In the following, we will consider f(R) theories, as it is one of the few subclass of models in (4.1)
surviving current constraints. These have been classified in e.g. [26, 95, 125].

f(R) Gravity

Throughout this section, we follow the notations of Ref. [1]. One of the minimal extensions to GR is to
promote R to f(R), such that

SEH =
1
2κ2

∫

d4x
√
−g R −→ S =

1
2κ2

∫

d4x
√
−g f(R) (4.7)

where f(R) is a generic function of the Ricci scalar R. By taking the variational derivative with respect to
gμν, we can define the equivalent of the Einstein tensor:

Σμν ≡ F(R)Rμν(g)−
1
2
f(R)gμν −∇μ∇νF(R) +□F(R)gμν = κ2Tμν (4.8)
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where we have introduced F ≡ ∂R f(R) and Tμν is the usual energy-momentum tensor (1.8). Taking the
trace of the above equation (i.e. gμνΣμν) gives

3□F(R) + F(R)R − 2f(R) = κ2T (4.9)

where T ≡ Tμ
μ = gμνTμν is the trace of the energy-momentum tensor. One immediately sees from (4.9),

that there is a propagating (dynamical) degree of freedom- the so-called Scalaron φ ≡ F(R) = ∂f/∂R.
These theories are well-known to be conformally equivalent to the good-old Scalar-Tensor (ST) Theories5

in the Einstein and Jordan Frames. f(R) theories have also been studied in the context of Dark Energy
models6. There are nonetheless general stability conditions this function must satisfy for our theory to be
viable (and ghost-free). These can be summarized as[219]

F ≡ ∂R f > 0 and ∂R F > 0. (4.10)

The viability conditions for f(R) DE models were derived in [18] and many interesting observational
constraints have been studied throughout the years in the literature [34, 49, 98, 165, 198, 230]. In particular,
an important thing to mention is that such theories require screening-mechanisms (due to the coupling of
the scalar to matter) in order to evade solar-system and laboratory constraints[48]. One functional (viable)
form for f(R) has been proposed in [117, 219]

f(R) = R + λRs

[(

1+
R2

R2
s

)−n

− 1

]

(4.11)

The growth of perturbations in such models is modified because of the effective gravitational constant Geff

appearing in (4.6) (see e.g. [104, 227]). It is well-known that in the quasi-static approximation (QSA)[44],
i.e. on subhorizon scales, the modification to effective gravitational constant can be written as

Geff(z, k) =
GN

F

(

1+ 4 k2
a2m

1+ 3 k2
a2m

)

, m ≡ ∂RF
F

. (4.12)

5both at the classical and (one-loop) quantum level [172]
6although it is hard to construct viable theories with the usual decelerated stages of expansion during the radiation and matter

dominated epochs.
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model, to explore the implications of higher dimensions in cosmological observables. The DGP model is
an IR modification to GR, the effective Friedmann equation can be cast in the form

H 2 − H
rc

=
8πG
3

∑

i

ρi(t) , (4.13)

where rc is a critical scale, above which GR is modified to include the effects of the extra dimension.
This model had attracted a lot of interest in the cosmological community, since the (modified) Friedmann
equation above has a (late-time) accelerating solution a(t) ∝ et/rc without the need for a dark energy com-
ponent.

H(t) =
1
2

(

1
rc
±
√

1
r 2
c
+

32πG
3

ρm(t)

)

(4.14)

This can be seen by taking the limit ρm → 0 of (4.14), the so-called self-accelerating branch in the DGP
model. However, it has been pointed out that this branch suffers from a ghost at the linear level [135]
The most interesting aspect of the DGP is that its effective gravitational coupling constant decreases with
the expansion (5.37), and therefore perturbations feel a weaker gravity than in GR. Thus, the growth of
structures in such models is drastically modified, as we will show in Chapter 5. In particular, the growth
index γ(z = 0) in such models has very different values and appears to be excluded by - or is in tension
with - current data. Showing the potential of such phenomenological tool in studying the high-energy world.

The dawn of multi-messenger astronomy has opened up a new window to study the fundamental nature
of DE, and possibly its connection to the high-energy/particle physics content of the models. Although the
tensor speed excess has been measured to be vanishingly small O(10−15), there are many surviving models
satisfying the constraint αT ≃ 0, with viable but potentially detectable cosmological signatures (e.g. [152,
164]). One particularly interesting observable is the modified luminosity distance of tensor perturbations
dGWL (z), which could help further constrain e.g. non-minimally coupled theories [125].
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5
Global properties of the Growth Index γ

Adapted from
R. Calderón, D. Felbacq, R. Gannouji, D. Polarski and A. A. Starobinsky

Global properties of the growth index of matter inhomogeneities in the Universe
Physical Review D - 100, 083503 (2019)[55]

Despite intensive activity in recent years, the late-time accelerated expansion rate of the Universe remains
a theoretical challenge. A wealth of theoretical models and mechanisms were put forward for its solution;
see reviews [71, 145, 173, 179, 202, 203]. Remarkably, the simplest model – GR with a non-relativistic
matter component (mainly a non-baryonic one) and a cosmological constant Λ – is in fair agreement with
observational data, especially on large cosmic scales. Notwithstanding the theoretical problems it raises,
this model provides a benchmark for the assessment of other dark energy (DE) models phenomenology.
One can make progress by exploring carefully the phenomenology of the proposed models and comparing
it with observations [239]. Tools which can efficiently discriminate between models, or between classes of
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models (e.g. [201]) are then needed. The growth index γ which provides a representation of the growth
of density perturbations in dust-like matter, is an example of such phenomenological tool. Its use was pi-
oneered long time ago in order to discriminate spatially open from spatially flat universes [177] and then
generalized to other cases [136]. It was later revived in the context of dark energy [153], with the additional
incentive to single out DE models beyond GR. The growth index has a clear and important signature in the
presence of Λ: it approaches 6/11 for z ≫ 1 and it changes little from this value even up to z = 0. This be-
haviour still holds for smooth non-interacting DE models inside GR with a constant equation of state wDE,
as depicted in Fig5.3.1. A strictly constant γ is very peculiar [189, 191]. On the other hand, this behaviour
is strongly violated for some models beyond GR, see e.g. [104, 165]. Surprisingly, important properties of
the growth index behaviour can be understood by making a connection with a strictly constant γ. Further,
while present observations probe low redshifts z ≲ 2, still as we will see, more insight is gained looking at
the global evolution of γ. Before starting this analysis, we first review the basic formalism for the study of
the growth index γ.

5.1 Characterizing the growth of perturbations with γ

A particularly useful way of characterizing the evolution and growth of scalar (density) perturbations for
non-relativistic matter is by the means of the growth index γ introduced a while ago [149].In this section,
we will briefly derive the important equations for γ. Our starting point will be Eq. (3.6). For modes well
inside the Hubble radius, their evolution is dictated by

δ̈m + 2Hδ̇m − 4πGρmδm = 0 (5.1)

To do so, we will consider a non-interacting mixture of dust-like matter and DE components, since we
happen to live close to the transition era between a matter dominated and a DE dominated universe. The
dimensionless Hubble function h(z) ≡ H(z)/H0 at z ≪ zeq (long after the radiation dominated epoch)
reads

h2(z) = Ωm,0(1+ z)3 + (1− Ωm,0) exp
[

3
∫ z

0
dz′

1+ wDE(z′)
1+ z′

]

(5.2)

with wDE(z) = PDE(z)/ρDE(z). From this, we can calculate the entire evolution of Ωm(a) through the
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useful relation

Ωm(a) = Ωm,0 a−3 h−2(a) . (5.3)

Moreover, it is easy to show the following relation holds

wDE =
1

3 ΩDE

d ln Ωm

dN
(5.4)

For later convenience, we may want to work with the scale factor a(t) as the main variable. Remembering
that d/dt = aH(d/da) = H(d/d ln a), Eq (5.1) can be written as a non-linear first-order differential
equation in terms of the growth function f (see e.g. [189] and references therein)

df
d ln a

+ f 2 +
(

2+
Ḣ
H2

)

f =
3
2
Ωm(a) (5.5)

Where we have introduced the usual definition for f ≡ d ln δm
d ln a , and used 4πGρm = 3

2H
2 Ωm. Notice how-

ever the definition of Ωm in terms of Newton’s coupling constant G = GN. In general, modified theories
of gravity can (and generically do) have a time-dependent (and even scale-dependent) effective coupling’s
constant Geff(a, k) (see.e.g. [227]).
In many DE models outside GR the modified evolution of matter perturbations is recast into

δ̈m + 2Hδ̇m − 4πGeffρmδm = 0 , (5.6)

where Geff is some effective gravitational coupling appearing in the model. For example, for effectively
massless scalar-tensor models [44], Geff is varying with time but it has no scale dependence while its value
today is equal to the usual Newton’s constant G. Introducing for convenience the quantity

g ≡ Geff

G
, (5.7)

equation (5.6) is easily recast into the modified version of Eq. (5.5), viz1.

df
dN

+ f 2 +
1
2

[

1− d ln Ωm

dN

]

f =
3
2

g Ωm ; g ≡ Geff

G
(5.8)

1See E. Linder’s paper[151] on the different ways we can write this equation and it use in cosmology.
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With N ≡ ln a is the number of e-folds. Clearly f = p if δm ∝ ap (with p constant). In particular, when
the growing mode dominates, f → 1 in ΛCDM for large z and f = 1 in the Einstein-de Sitter universe (we
recover the solutions in (3.13)). In the peculiar situation where the decaying mode dominates, f → − 3

2

in ΛCDM for large z and f = − 3
2 in the Einstein-de Sitter universe. We will return to the consequences

of a non-negligible decaying mode later. Also, if the dependence f(N) is known from observations, the
Hubble function H(z) and finally the scale factor a(t) dependence can be determined unambiguously in
an analytical form [218] (see [158] for implementation of this to recent observational data). Note that we
can easily reconstruct the familiar quantity δm(a) using

δm(a) = δm,i exp
[∫ N

Ni

f(N′)dN′
]

(5.9)

It is well known now that a useful parametrization for the growth function f is given by

f (z) ≡ d ln δm

d ln a
= − d ln δm

d ln (1+ z)
= Ωm(z)γ(z) (5.10)

where γ is dubbed growth index, though in general γ(z) is a genuine function of redshift. It can even depend
on scales for models where the growth of matter perturbations has a scale dependence. The representation
(5.10) has attracted a lot of interest with the aim to discriminate between DE models based on modified
gravity theories and the ΛCDM paradigm. It turns out that the growth index is quasi-constant for the
standard ΛCDM from the past untill today. Such a behaviour holds for smooth non-interacting DE models
when wDE is constant, too [189] - See Figs. (5.1.1)and (5.3.1).

When the growth index γ is strictly constant, it is straightforward to deduce from (5.8) that wDE = w
with

w = − 1
3(2γ − 1)

1+ 2Ωγ
m − 3gΩ1−γ

m

1− Ωm
(5.11)

≡ − 1
3(2γ − 1)

F(Ωm; g, γ). (5.12)

The quantity w(Ωm, γ) defines a function in the (Ωm, γ) plane which will be useful even when γ is not
constant. The case g = 1 reduces to GR and we will simply write

F(Ωm; g = 1, γ) ≡ F(Ωm; γ) . (5.13)
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Below, for any quantity v, v∞, resp. v−∞, will denote its (limiting) value for N → ∞ in the DE dominated
era (Ωm → 0), resp. N → −∞ (generically Ωm → 1). We have in particular from (5.11) for g = 1 (GR)

γ =
3w∞ − 1
6w∞

(5.14)

γ =
3(1− w−∞)

5− 6w−∞
. (5.15)

Here we assume that w < 0 to ensure a matter dominated stage in the past and dark energy dominated stage
in the future. In addition, Eq. (13) requires that w∞ < − 1

3 to have 0 < γ < 1, otherwise w∞ becomes
infinite. As it was found in [191], these relations between a constant γ and the corresponding asymptotic
values w∞ and w−∞ apply also for the dynamical γ obtained for an arbitrary but given wDE. In the latter
case, we obtain for g = 1

γ∞ =
3w∞ − 1
6w∞

(5.16)

γ−∞ =
3(1− w−∞)

5− 6w−∞
, (5.17)

with w∞, respectively w−∞, the asymptotic value of wDE in the future, respectively past. We will return later
to this important property.

5.2 Global analysis in the (Ωm, γ)-plane

It is natural to consider Ωm as the fundamental integration variable. In this case the evolution equation for
γ obtained from (5.8) using (5.10) yields

2αΩm ln(Ωm)
dγ

dΩm
+ α(2γ − 1) + F(Ωm; g, γ) = 0 , (5.18)

where we have defined
α ≡ 3wDE . (5.19)
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where we have defined

F̃(Ωm; γ) ≡ (1− Ωm)F(Ωm; γ) = 1+ 2Ωγ
m − 3Ω1−γ

m . (5.22)

For convenience, we have written the vector field in this way in order to have explicitly regular functions,
so this vector field is well-defined everywhere for (Ωm, γ) ∈ [0, 1]× R. The associated unit vector field is
represented in fig.(5.2.1) for wDE = −1.
The integral curves of this vector field (i.e. the phase portrait), are obtained by solving the autonomous
differential system

dΩm

ds
= 2αΩm(1− Ωm) ln(Ωm)

dγ
ds

= −α(2γ − 1)(1− Ωm)− F̃(Ωm; γ) (5.23)

where s ∈ R
+ is a dummy variable parametrizing the curves.

The vector field corresponding to wDE = −1 is displayed on Fig.5.2.1 and will be considered now for
concreteness. The growth index γ(Ωm) which starts at γ(1) ≡ γ−∞ = 6/11 is the only curve γ(Ωm)

which is finite everywhere. This curve corresponds to the presence solely of the growing mode of eq.(5.1) or
equivalently to the limit of a vanishing decaying mode. Let us consider this point in more details. Generally,
in the presence of two modes δ ≡ δ1 + δ2, we have

f =
δ1
δ
f1 +

δ2
δ
f2 , (5.24)

where f1 > 0, resp. f2 < 0, corresponds to the growing mode δ1, resp. decaying mode δ2. Inspection of
(5.24) shows that f < f1 if δ1δ2 > 0 while f < f1 or f > f1 when δ1δ2 < 0. For concreteness we consider
the situation around today. If both modes are positive we have f < f1 and hence γ > γ1. As we go back in
time (Ωm → 1), f → f2 and so γ → ∞ when f ≈ 0. Let us consider now the situation δ1 × δ2 < 0 with
|δ1| > |δ2| today. Now we have today f > f1 and therefore γ < γ1. When we go backwards, f → ∞ at some
point where the absolute value of both modes become equal, hence in that case γ → −∞. These different
situations are shown on figures (5.2.1) and (6.2.1).

Another interesting point concerns the asymptotic future (Ωm → 0). Inside GR, the solution to eq.
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Figure 5.2.1: The (unit time-oriented) vector field tangent to the solutions γ of Eq.(6.1) is dis-
played for wDE = −1. The red curve corresponds to the solution for γ, with boundary condition
γ(1) ≡ γ−∞ = 6/11. It is the only solution which is finite on the entire Ωm interval, physically it
corresponds to the presence of the growing mode of (5.6) only. The difference can be important in
the far past only. All the other solutions correspond to solutions containing also the decaying mode
solution. As explained in the text, these solutions (if physical) tend to the same value of γ, namely
γ∞ = 2

3 , for Ωm → 0, and they diverge for Ωm → 1.

(6.1) gives γ → γ∞, eq. (5.16), with

f ∝ 1
a2H

∝ a−
1
2 (1−3w∞) → 0 . (5.25)
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The crucial point is that the same asymptotic behaviour is obtained for all cases where the decaying mode
is present, up to a change of the prefactor in (6.5) which depends on the initial conditions and on the
amplitude of the decaying mode with respect to the growing mode. This immediately follows from the fact
that one can neglect the last term in Eq.(5.1) in this regime, so that

δm = δ∞ + const
∫

dt
a2

= δ∞ + const
∫

dN
a2H

. (5.26)

The same occurs for the more general modified gravity eq.(5.6), apart from the case of an anomalously large
growth of Geff in the future. On the other hand we have in the future (w∞ < − 1

3)

Ωm ∼ a3w∞ . (5.27)

Using the definition of γ, eq. (5.10), it is straightforward to obtain

γ =
ln f

ln Ωm
→ γ∞ , (5.28)

for all curves with γ today smaller or larger than the value obtained when we integrate eq.(6.1) with γ(1) =
γ−∞(= 6

11 for wDE = −1). This is somehow complementary to the results obtained in [154] where the
limit of a vanishing decaying mode was considered, however allowing for models beyond GR. Of course,
in standard cosmological scenarios, the decaying mode is negligible already deep in the matter era so this
result is essentially of mathematical interest. This is nicely illustrated with figure (6.2.1) for wDE = −1, all
curves tend to the same limit γ∞ = 2

3 but only one curve, corresponding to the limit of a purely growing
mode, tends to the finite value γ−∞ = 6

11 in the past.

5.3 Global evolution of the slope Γ(Ωm)

In this section we want to consider more closely the slope of γ(Ωm) when γ evolves with time and this will
allow us to find an interesting connection with the constant γ case. It is seen from (6.1) that a solution can
satisfy dγ

dΩm
= 0 in the (γ,Ωm) plane only on the curve Γ(Ωm) defined as

w = wDE , (5.29)
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where wDE is the true equation of state (EoS) of the DE component of the system under consideration,
while w is given in (5.11). We can view w(Ωm, γ) as a given function of both variables Ωm and γ, while wDE

is the EoS of DE given in function of Ωm. Hence in each value of Ωm, the curve Γ(Ωm) takes that value of
γ such that w = wDE, namely

w (Ωm, Γ(Ωm)) = wDE(Ωm) . (5.30)

The fact that Γ(Ωm) is not constant just means that the solution γ(Ωm) of (6.1) is not constant. The curve
Γ(Ωm) defined by (5.29) satisfies by construction in the asymptotic future

w (0, Γ(0)) = w∞ . (5.31)

Hence we have in view of equalities (5.16) and (5.14)

Γ(0) =
3w∞ − 1
6w∞

= γ∞ . (5.32)

Analogously, we get in the asymptotic past

w (1, Γ(1)) = w−∞ , (5.33)

with, using (5.17) and (5.15)

Γ(1) =
3(1− w−∞)

5− 6w−∞
= γ−∞ . (5.34)

It is exactly here that we can use the crucial property reminded at the end of Section 5.1. Indeed, as it was
shown in [191], the solution γ(Ωm)of (6.1) starts at γ−∞ in the past and tends to γ∞ in the future (whence
our choice of notation). In other words the curves Γ(Ωm) and γ(Ωm) meet at their endpoints (see figure
(5.1.1)). It is also seen from (6.1) that all points (γ,Ωm) above the curve Γ(Ωm) satisfy dγ

dΩm
> 0; on the

other hand in the region below Γ(Ωm) we have dγ
dΩm

< 0.

Let us assume that (5.29) represents a monotonically decreasing function of Ωm, hence γ∞ > γ−∞.
This holds for example for all constant EoS of DE inside GR. Then it is clear that γ(Ωm) cannot cross the
curve Γ(Ωm) at some value γ1 with γ−∞ < γ1 < γ∞. If it did, γ(Ωm) would cross with a zero derivative
and have its minimum at γ1. This is in contradiction with γ−∞ < γ1.

71



wDE= -1.1

wDE= -1.1

wDE= -1.0

wDE= -0.9

wDE= -0.8

10-12 10-9 10-6 10-3

0.550

0.575

0.600

0.625

0.650

0.675

Ωm

γ

Figure 5.3.1: The growth index with various constant equations of state wDE. As explained before,
the monotonically decreasing behaviour of γ(Ωm) holds in these models. We have used a logarithmic-
scale in Ωm.

This also shows that a change in the sign of the slope of γ(Ωm) is possible only if Γ(Ωm) is not a monoton-
ically decreasing function of Ωm. Note that the slope of γ(Ωm) does not vanish at Ωm = 1 and Ωm = 0
even though γ(Ωm) and Γ(Ωm) meet there. Actually it even diverges in Ωm = 0 [191]. Indeed, we have
that the prefactor of the first term of (6.1) vanish there leaving the slope a priori unspecified.

For a given growth function f, a lowerΩm implies a lower γ. For a givenΩm on the other hand, a decrease
in f induces an increase in γ. All this is clearly understood from the equality γ = ln f

ln Ωm
. When γ(Ωm) is

monotonically descreasing, and this is the case for generic wDE inside GR, it is the second effect which
prevails.

5.4 Systems with a non-monotonic γ(Ωm)

We can consider now several cases where the growth index is not a monotonically decreasing function of
Ωm - in sharp contrast with ΛCDM .
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5.4.1 Varying equation of state wDE(z)

The first case that comes to one’s mind is an oscillating equation of state wDE. Indeed, it is easy to show that
Γ(Ωm) is no longer monotonically decreasing in this case and that γ may oscillate provided the oscillations
in wDE, and hence in Γ(Ωm), are sufficiently pronounced. Observations however do not seem to favour
such oscillations. We rather want to investigate whether a smoothly varying EoS can lead to a change in
slope of γ. For this purpose we use the parametrization in terms of x ≡ a

a0
[62]

wDE = w0 + wa(1− x) . (5.35)

We consider the cases with
w−∞ = w0 + wa < 0 , wa > 0 . (5.36)

The first inequality is to enforce the domination of matter (and the disappearance of DE) in the past. We
also restrict our attention to wa > 0 in order to have a varying EoS leading to the opposite case in the future,
namely DE domination and disappearance of matter. Also we will not impose the restriction wDE ≥ −1
valid for quintessence (a self-interacting scalar field minimally coupled to gravity) and admit arbitrarily
negative values of wDE.

We consider conservative values 0 < wa ≤ 0.5 and w0 ≈ −1. We obtain that γ(x) is quasi-constant deep
in the matter dominated stage and starts decreasing (with the expansion) in the past typically at z ≃ 10,
this decrease being stronger as wa is larger. In the future, a bump is obtained typically at z ≃ −0.9, which
is higher for lower wa, this bump would essentially disappear for wa = 0.8. Finally in the asymptotic future
γ → 1

2 as we expect for w∞ → −∞.

As a function of Ωm, γ will be increasing deep in the DE domination typically until Ωm ≃ 10−5, then
decreasing until Ωm ≃ 0.7, and finally increasing again for wa ≳ 0.2. To summarize, γ(Ωm) is essen-
tially slowly varying and decreasing from the past to the future in this case covering in particular the range
probed by observations. The significant changes in slope are pushed around Ωm ≈ 0. While this is inter-
esting in itself, from an observational point of view models with wa ≲ 0.2 follow essentially the ΛCDM
phenomenology regarding their growth index. Strong departure from ΛCDM takes place in the remote
future only. These features are shown on figure 5.4.1.
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this is not so due to the non-vanishing derivative

(
dgDGP

dΩm

)

−∞
=

1
3
. (5.39)

In order to find γ(Ωm), we can use the same method as in [191] and write Eq.(6.1) for Ωm → 1. After
some calculation, solving for γ(Ωm) we obtain in the asymptotic past for the finite constant solution γ−∞
for arbitrary modified gravity models

γ−∞ =
3 (w−∞ − 1− d)

6w−∞ − 5
, (5.40)

where we have set
d ≡

(
dg

dΩm

)

−∞
. (5.41)

The GR result is recovered setting d = 0. Note that a similar relation was found between a constant γ
corresponding to w−∞ = w−∞ in an arbitrary modified gravity model [191]. We finally obtain for the
DGP model

γDGP
−∞ =

11
16

. (5.42)

So the (finite) γ−∞ corresponding to w−∞ = − 1
2 has the value γDGP

−∞ = 11
16 for a DGP model instead of 9

16

for GR. The derivation given here relies solely on the properties of the DGP model, eq. (5.37), and exhibits
the origin of this anomalous value in an explicit way (see [153],[119] for other approaches).

This value for γDGP
−∞ corresponds to the constant γDGP (and g = gDGP) yielding identical equations of state,

w−∞ = wDGP
−∞, in the past. We can summarize this in the following way

γDGP
−∞
(
wDGP
−∞
)
= γ

(
w−∞ = wDGP

−∞
)
. (5.43)

The left hand side corresponds to a varying γ – the true γ obtained for wDGP and gDGP – while the right
hand side corresponds to a constant γ in a modified gravity model with g = gDGP. A similar equality holds
in the future and we have shown it here with the DGP model

γDGP
∞
(
wDGP
∞
)
= γ

(
w∞ = wDGP

∞
)
. (5.44)
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Analogous equalities were found in [191] for GR and imply that the curves Γ(Ωm) and γ(Ωm) meet at
Ωm = 0 and Ωm = 1, a property that we have used in the previous section. We have generalized this result
to a class of modified gravity models including DGP models. As a corollary, we have the following impor-
tant result: any modified gravity model with g(1) = 1, i.e. tending to GR in the past, however in a smooth
way satisfying d = 0, will have the same limit γGR

−∞(w−∞) as in GR. As can be seen from Fig. (5.4.4), the
curve ΓDGP(Ωm) and γDGP(Ωm) intersect indeed at Ωm = 0 and Ωm = 1. In contrast to generic models in-
side GR, here we have γDGP

∞ = 2
3 < γDGP

−∞ = 11
16 . Hence Γ(Ωm) cannot be monotonically decreasing, at best

it would be monotonically increasing. If that were the case, γDGP(Ωm) would be monotonically increasing
as well, always lying above ΓDGP. Actually this is what happens between Ωm ≃ 10−3 and Ωm = 1. It is only
in the far future, Ωm ≲ 10−3, that the slope of γDGP(Ωm) is negative (i.e. γDGP increases with expansion)
and that the behaviour is similar to ΛCDM.

5.5 Summary and conclusions

The growth index γ allows to distinguish efficiently the phenomenology of dark energy (DE) models and
has been used extensively for this purpose (see e.g. [7, 25, 29, 33, 36, 52, 78, 86, 107, 140, 159, 160, 167–
169, 237, 238, 240]). In this work we have performed an analysis of the growth index evolution from deep
in the matter era till the asymptotic future. In this way global properties are exhibited. While from an
observational point of view the main focus lies in the low-redshift behaviour of the growth index γ still,
a global analysis yields some interesting insight and results. Some of the properties found here become
transparent when we perform a global analysis of the growth index evolution. We have shown that when the
growth index had a bump, resp. dip, in the recent past while the background evolution is similar to ΛCDM,
today it is substantially lower, resp. larger, than 0.55 with a negative, resp. positive, slope dγ

dΩm
reflecting

that the gravitational coupling Geff of the underlying modified gravity model is already decreasing, resp.
increasing, with the expansion. The behaviour with a bump is a schematic representation of many f(R)
models [104, 165], the second case was considered in e.g. [105].

Using results valid for a constant growth index, we suggest a condition giving the global sign of the slope
dγ

dΩm
: when the curve Γ(Ωm) introduced in Section 5.3 is monotonically decreasing then we have globally

dγ
dΩm

< 0. This is the case in particular for models inside GR with a constant equation of state wDE =

constant. Another interesting point concerns the value of the growth index for a given cosmological model
at a given time. Actually the growth index γ can take a range of values. What is really meant by the value of
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γ(Ωm)which corresponds to a given model is its value when the decaying mode of the perturbations mode
tends to zero. We show that while the presence of a substantial decaying mode does not change the value of
γ in the asymptotic future, this leads (as expected) to a divergence in the asymptotic past. It is only in the
limit of a vanishing decaying mode that γ takes a finite value from γ−∞ in the asymptotic past (Ωm → 1)
– 6

11 for ΛCDM – up to γ∞ in the asymptotic future (Ωm → 0) – 2
3 for ΛCDM.

We have studied further the global behaviour of γ for the DGP model. In contrast to generic models in
GR, we have γDGP

−∞ = 11
16 > γDGP

∞ = 2
3 with wDGP

−∞ = − 1
2 and wDGP

∞ = −1. While gDGP → 2
3 in the future,

we have γDGP
∞ = γΛCDM

∞ , so we get the same relation as in GR between γDGP
∞ and wDGP

∞ = −1. Interestingly,
while gDGP → 1 in the past so this model tends to GR in the past, γDGP

−∞ ̸= 9
16 , the value expected in GR

for w−∞ = − 1
2 . This is because the DGP model does not tend to GR in a way which is “smooth enough”.

Indeed, it satisfies dgDGP

dΩm −∞ = 1
3 ̸= 0. As a corrolary we find that any modified gravity model which tends

to GR in the past yields a γ−∞ which is the same function of w−∞ as in GR provided dgDGP

dΩm −∞ = 0. Finally
we find that γDGP(Ωm) is monotonically increasing from the past until the far future (Ωm ≈ 10−3) where
it crosses the curve Γ(Ωm) in accordance with the condition mentioned above. The results presented in
this work indicate that a measurement of γ on a significant part of the expansion could give interesting
constraints and a deeper insight into the physics governing the Universe dynamics.
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6
TheGrowth Index γ: Mathematical Aspects and

Physical Relevance

Adapted from
R. Calderón, D. Felbacq, R. Gannouji, D. Polarski and A. A. Starobinsky

Global properties of the growth index: Mathematical aspects and physical
relevance

Physical Review D - 101, 103501 (2020)[56]

The present accelerated expansion rate of the Universe remains an outstanding challenge for theoretical
cosmology. Despite intensive ongoing activity, the nature of dark energy (DE) driving the present acceler-
ated expansion stage (physical, geometrical, or both) and its relation to known particles and fields remain
unsettled [71, 145, 173, 179, 203, 204]. Many DE models inside, as well as outside, general relativity (GR)
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were suggested for this purpose. While the increasing accuracy of observations allow to rule out many of
them, a large number still remains viable. Among the successful DE models, ΛCDM has a very particu-
lar place due to its remarkable simplicity: it is based on GR with cold non-relativistic matter as a source,
and requires only the addition of a (cosmological) constant Λ into the Einstein field equations. However,
the attempt to interpret Λ in terms of ’vacuum energy’ of quantum fields requires understanding why its
effective energy density is so small compared to all other known substances. On the other hand, from the
classical point of view, the ΛCDM is intrinsically consistent and its phenomenology serves as a benchmark
for the interpretation of observational data and comparison to other DE models. Future observations will
strongly constrain surviving models [19, 53, 239]. It is therefore important to have tools characterizing
their phenomenology (see e.g. [201]). One such tool is the growth index γ.

The growth index has a nice property valid for ΛCDM and more generally for non-interacting smooth
DE models inside GR [189]: up to a small correction depending on Ωm,0, its value today γ0 is well con-
strained, γ0 ≈ 0.55. In addition, at higher redshifts it is quasi-constant, as depi5.3.1 (see also [191]). For
example, in the presence of a cosmological constant Λ, γ tends to 6

11 for z ≫ 1 and it departs little from that
value even up to the present time. Its discriminative power is therefore limited for these models. However
modified gravity DE models can exhibit a strong departure from this behaviour [153],[104], [165]. The
growth index offers therefore the possibility to discriminate between DE models inside and outside GR,
motivating its study in the context of DE models. Hence, while the growth index was initially introduced in
order to characterize the growth of matter perturbations for open Universes [177], and later generalized to
other models inside GR [136], interest in the growth index was revived recently [153] for the assessment
of DE models.

The study of the growth index is also of mathematical interest in its own. A global analysis of its dy-
namics, from deep in the matter era till the future DE dominated stage, often offers a better insight on its
evolution including low redshift behavior probed by observations [55]. We will study in details a system
with partially unclustered dust-like matter (or, DE tracking dust-like matter), showing interesting connec-
tions with results obtained earlier for a strictly constant growth index. We will also study the evolution of
γ using the dynamical system analysis. We first review the basic formalism in the next section, as well as
results and methods from our earlier work [55].
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6.1 The growth index γ

Taking Ωm as the integration variable, the evolution equation for γ obtained from (5.8) using (5.10) yields

2αΩm ln(Ωm)
dγ

dΩm
+ α(2γ − 1) + F(Ωm; g, γ) = 0 , (6.1)

where we introduce for simplicity

α ≡ 3wDE , F(Ωm; g, γ) ≡
1+ 2Ωγ

m − 3 gΩ1−γ
m

1− Ωm
. (6.2)

The solutions to equation (6.1) on the entire Ωm interval is the envelope of its tangent vectors

(

1
dγ

dΩm

)

.

All these tangent vectors define a vector field that can be written

(

2αΩm(1− Ωm) ln(Ωm)

−α(2γ − 1)(1− Ωm)− F̃(Ωm; γ)

)

.

where we have defined

F̃(Ωm; g, γ) ≡ (1− Ωm)F(Ωm; g, γ) = 1+ 2Ωγ
m − 3 gΩ1−γ

m . (6.3)

We write the vector field in this way in order to have explicitly regular functions everywhere for (Ωm, γ) ∈
[0, 1] × R. One obtains the integral curves of this vector field (i.e. the phase portrait) by solving the au-
tonomous differential system

dΩm

ds
= 2αΩm(1− Ωm) ln(Ωm) (6.4)

dγ
ds

= −α(2γ − 1)(1− Ωm)− F̃(Ωm; γ)

where s ∈ R
+ is a dummy variable parametrizing the curves. Clearly, the trajectories γ(Ωm) are not
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unique. Only one integral curve however is finite everywhere: for ΛCDM, it is the curve γ(Ωm) which
starts (in the past) at γ(1) ≡ γ−∞ = 6/11 and ends (in the future) at γ(0) ≡ γ∞ = 2/3. It corresponds to
the presence solely of the growing mode of Eq.(3.13), or equivalently to the limit of a vanishing decaying
mode. For cosmological constraints on DE models, one is essentially interested in that unique trajectory
corresponding to a vanishing decaying mode. It is the only trajectory which has a finite initial condition
γ−∞ at Ωm = 1, for all other trajectories γ will diverge in the past. However, concerning the asymptotic
future (Ωm → 0), inside GR the solution to Eq. (6.1) gives γ → γ∞, Eq. (5.16), with (w∞ < − 1

3)

f ∝ C a−
1
2 (1−3w∞) → 0 . (6.5)

The crucial point is that this asymptotic behaviour is identical for all cases where the decaying mode is
present, up to a change of the prefactor in (6.5) which depends on initial conditions and on the ampli-
tude of the decaying mode with respect to the growing mode. Taking into account that Ωm ∼ a3w∞ , it is
straightforward to obtain from Eq. (5.10) that

γ =
ln f

ln Ωm
→ γ∞ (6.6)

for all curves. This is complementary to the results obtained in [154], where the growing mode for models
beyond GR was considered.

6.2 Dynamical System Analysis

In this section, we will study our equations using the dynamical system approach. While the introduction of
the variable Ωm is natural for a global analysis of the evolution of the growth index γ, we use the integration
variable N ≡ ln a for the dynamical system approach, and we obtain for g = 1 (GR)

2 ln(Ωm)
dγ
dN

+ α(2γ − 1)(1− Ωm) + F̃(Ωm; γ) = 0 . (6.7)
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This is equivalent to the following differential system

dΩm

dN
= α(1− Ωm)Ωm . (6.8)

dγ
dN

= −α(2γ − 1)(1− Ωm) + F̃(Ωm; γ)
2 ln(Ωm)

. (6.9)

We will use these equations in order to find the critical (or stationary) points of our system satisfying dΩm
dN =

0, dγ
dN = 0. Note that Eq.(6.8) is independent of γ and can therefore be integrated independently. When

the function α(a) ≡ 3wDE(a) is known, we can obtain α(Ωm) using (5.4). We find readily from (6.8) that
dΩm
dN = 0 in the following three cases: Ωm = 0, Ωm = 1, α(Ωm) = 0. The stability of a dynamical

system is given by the Hartman-Grobman theorem which asserts that there is a certain 2×2 matrix whose
eigenvalues characterize the behavior of the system around the critical points.
For the critical point corresponding to Ωm = 1

S =
(

Ωm = 1, γ = γ−∞

)

, (6.10)

we find that the eigenvalues of our system are (−2α−∞, 2α−∞ − 5) and therefore the critical point is a
saddle point for α−∞ ≤ 0. For the critical point corresponding to Ωm = 0

A =
(

Ωm = 0, γ = γ∞
)

, (6.11)

the eigenvalues of the linearized system are (α∞, 0) and therefore we conclude that it is an attractor for
α∞ ≤ 0. Notice that the zero eigenvalue does not point to any stability or instability, but a simple centre
manifold analysis allows us to conclude about the stability of the critical point. To study the structure of
the phase space at infinity, we define u = 1/γ. We obtain that u = 0 (γ = ±∞) is also a critical point
and it is easy to show that u = 0 is a repeller. These results of the dynamical system analysis confirm the
asymptotic properties found analytically and numerically in [55] and summarized in Section 5.1.

The remaining critical points correspond to α(Ωm) = 0 and F̃ = 0. Indeed, various critical points
can exist if α(Ωm) has different zeroes. These critical points can have a richer structure. The eigenvalues
associated to this system are (−2Ωγ

m − 1/2,Ωm(1 − Ωm)α′(Ωm)). If dα
dΩm

≡ α′(Ωm) < 0, the critical
point is an attractor, if α′(Ωm) > 0, the critical point is a saddle point. In particular for constant γ, these
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obtains

γ = γ−∞ +
(α−∞ − 2)(α−∞ − 3) + 2α′−∞(2α−∞ − 5)

2(5− 4α−∞)(5− 2α−∞)2
(1− Ωm) +O

(

(1− Ωm)
2
)

. (6.12)

This line is the asymptote of the heteroclinic orbit. Note that (6.12) generalizes the result given in [191] for
constant α. One checks easily that ΛCDM satisfies indeed (6.12). Because we consider a dynamical system
(system of first order differential equations), the trajectories (orbits) in phase space cannot intersect. But
of course other curves which are not orbits of the system can intersect these orbits, e.g. we can consider
the curve for which dγ

dN = 0 everywhere. For α < 0, it satisfies dγ
dΩm

= 0 for 0 < Ωm < 1 and goes through
the endpoints γ−∞, resp. γ∞, at Ωm = 1, resp. Ωm = 0. from eqs.(6.10),(6.11).So it corresponds to the
curve dubbed Γ(Ωm) in [55]. It satisfies w(Ωm, Γ(Ωm) = wDE(Ωm)) and we have indeed Γ(1) = γ−∞
and Γ(0) = γ∞. For arbitrary wDE, γ is not constant and hence Γ(Ωm) is not constant either. As Γ satisfies
by construction dγ

dN = 0 and critical points are defined by ( dγ
dN = 0, dΩm

dN = 0), Γ must intersect the critical
points, but of course it can also intersect orbits at points which are not critical points. We can ask if it is
above or under the heteroclinic orbit that we previously defined because they start and end at the same
points. A global analysis is impossible, but we can at least analyze the behavior around Ωm = 1. We have
already found the tangent to the heteroclinic orbit (see Eq.6.12). We can also calculate the tangent to Γ and
we find around Ωm = 1

Γ = γ−∞ +
(α−∞ − 2)(α−∞ − 3) + 2α′−∞(2α−∞ − 5)

2(5− 2α−∞)3
(1− Ωm) +O

(

(1− Ωm)
2
)

. (6.13)

Therefore Γ lies above the heteroclinic orbit iff

α′−∞ <
(α−∞ − 2)(α−∞ − 3)

10− 4α−∞
. (6.14)

One checks easily that ΛCDM satisfies (6.14). These results can be easily generalized to modified gravity
for which the system becomes
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dΩm

dN
= α(1− Ωm)Ωm (6.15)

dγ
dN

= −α(2γ − 1)(1− Ωm) + F̃(Ωm; g, γ)
2 ln(Ωm)

(6.16)

We recover the same critical points as in GR if g = 1. Note that g−∞ = 1 and
(

dg
dN

)

−∞
= 0 in order to

avoid that w−∞ becomes singular [191]. The coordinate of the critical point at Ωm = 1 changes into

(

Ωm = 1, γ =
α−∞ − 3− 3g′−∞

2α−∞ − 5

)

. (6.17)

As expected, the expression for γ in Eq.(6.17) corresponds to the only finite value in the asymptotic past
found earlier [55]. Finally, we can also find the condition for which the curve Γ starts at Ωm = 1 with an
inclination larger than that of the heteroclinic orbit, viz.

α′−∞ <
(α−∞ − 2)(α−∞ − 3)

10− 4α−∞
+

3
2
g′′−∞(2α−∞ − 5) (6.18)

+ 3g′−∞
33− 28α−∞ + 6α2−∞ − 27g′−∞ + 12α−∞g′−∞ − 6(5− 2α−∞)2g′′−∞

2(2α−∞ − 5)(6g′−∞ + 1)
.

When we apply this equation to the Dvali-Gabadadze-Porrati (DGP) model [89] (g′−∞ = 1
3), it is found

that the inequality (6.19) is satisfied. Hence the heteroclinic orbit in the DGP model is a decreasing func-
tion of Ωm in the neighbourhood of Ωm = 1. This contrasts with the general shape of the heteroclinic orbit
in the DGP model: it is an increasing function of Ωm except for Ωm ≲ 10−3 and Ωm ≳ 0.9, the latter
decrease (in the asymptotic past) is very tiny as compared to the sharp decrease in the asymptotic future
[55].
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6.3 Presence of anUnclusteredDustlike Component

We consider yet another case inside GR where the growth index γ(Ωm) is not monotonically decreasing in
contrast to ΛCDM. Let us note first that in the particular case where Ωm is constant, we readily get from
(5.8)

f ′ + f 2 +
1
2
f − 3

2
C = 0 , (6.19)

and we set Ωm = C to emphasize the constancy of Ωm. Equation (6.19) has two constant solutions

p1 = − 1
4
+

1
4
√
1+ 24C , p2 = − 1

4
− 1

4
√
1+ 24C . (6.20)

For C > 0, we have necessarily p1 > 0 and p2 < 0. In other words, there are two genuinely growing and
decaying modes for δm. When C = 1 we recover the standard results in an Einstein-de Sitter universe.

An interesting situation arises when dust-like matter has some (small) relative fraction Ωx which does
not cluster and only usual matter denoted by Ωm does, with

Ωtot
m ≡ Ωm +Ωx = 1 . (6.21)

Phenomenologically, this unclustered component could be ultra-light dark matter, or DE tracking mat-
ter1 exactly, thought later we will consider the presence of a DE component different from the unclustered
(dustlike) matter component. It can also represent a light relativistic species like massive neutrinos once
they become non-relativistic. Then Eq.(6.19) is obtained with C = Ωm < 1. Let us consider for concrete-
ness the situation with Ωx ≪ 1. From (6.20) the growing mode scales ∝ ap1 with

p1 ≈ 1− 3
5
Ωx ≈ Ω

3
5
m . (6.22)

The last term in (6.22) makes contact with the growth index γ. In the case under consideration, both Ωm

and f = p1 > 0 are constant, hence γ is constant, too, and from (6.22) it is close to 3
5 (see the nice discussion

in [225]). In [191], a family of solutions with constant γ > 3
5 was found corresponding to the roots of

F(Ωm; γ) for Ωm < 1 with w = 0 so that Ωm remains constant. This corresponds to our system with
1i.e. having the effective equation of state wDE = 0 at this stage
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w = wx. For Ωx ≪ 1 it was found [191]

p1 = Ω
3
5(1+

Ωx
25 )

m , (6.23)

when we expand γ up to first order in Ωx. We see that (6.23) refines the result (6.22) (see also [153],
[149]). We now extend these results to a universe where the expansion is driven also by an additional non-
tracking (genuine) dark energy component so that Ωm is no longer constant. The equation for γ in the
presence of a dust-like matter component Ωx that does not cluster simply becomes

[

2 Ωtot
m ln ((1− ε)Ωtot

m )
dγε

dΩtot
m

+ (2γε − 1)
]

α(1− Ωtot
m ) + F̃((1− ε)Ωtot

m ; γε) = 0 , (6.24)

with
ΩDE = 1− Ωtot

m , Ωm = (1− ε)Ωtot
m , Ωx = ε Ωtot

m , (6.25)

obviously satisfying
Ωtot

m +ΩDE = Ωm +Ωx +ΩDE = 1 . (6.26)

We have noted γε(Ωtot
m ) the solution of Eq.(6.24) for ε > 0. In the asymptotic past,ΩDE → 0, this reduces

to

−6 w−∞ ln(1− ε)
dγε

d ln(1− Ωtot
m )

+ F̃(1− ε; γε) = 0 . (6.27)

It is seen from (6.27) that any finite solution γε of (6.24) must tend in the past to the root of F̃(1 − ε; γ),
viz.

F̃(1− ε; γε−∞) = 0 , (6.28)

with γε−∞ ≡ γε(Ωtot
m → 1). Considering the change of variable, X = (1−ε)γ

ε

−∞ , the Eq.(6.28) transforms
into

2X2 + X − 3(1− ε) = 0 (6.29)
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A simple characteristic (polynomial) equation, whose solutions are

X± =
−1±√

25− 24ε
4

(6.30)

Considering only the positive root, we get

γε−∞ =
ln
(

−1+
√
25−24ε
4

)

ln(1− ε)
(6.31)

Expanding this expression in series near ε = 0 leads to

γε−∞ ≡ γε(Ωtot
m → 1) =

3
5
+

3
125

ε+
97
6250

ε2 +
737
62500

ε3 +O(ε4) (6.32)

We recover the first two terms, the root of F̃(1 − ε; γ) to first order in ε[191] mentioned above, (6.23).
Expression (6.32) extends these earlier calculations to third order in ε. We note the intriguing property that
γε−∞ does not depend on any nonzero w−∞. In order to understand this, we consider the corresponding
vector field F [Ωtot

m , γε; ε] tangent to the solutions γε

F [Ωtot
m , γε; ε] =

(

2αΩtot
m (1− Ωtot

m ) ln((1− ε)Ωtot
m )

−α(2γε − 1)(1− Ωtot
m )− F̃((1− ε)Ωtot

m ; γε)

)

(6.33)

and to look for its streamlines as we have done in Section 3. For Ωtot
m ≃ 1 and ε ≃ 0, we can write the

vector field (6.33) to leading order

F [Ωtot
m , γε; ε] ≃

(

(Ωtot
m − 1) ε 6w−∞

(Ωtot
m − 1) [(6w−∞ − 5)γε − 3w−∞ + 3] + ε(3− 5γε)

)

(6.34)

It is seen that the leading order of the upper component
(

dΩtot
m

ds

)

is of order (Ωtot
m − 1) × ε in the small

parameters (Ωtot
m − 1) and ε. In the lower component

(
dγ
ds

)

, we have neglected all higher order terms. For
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ε = 0 (Ωx = 0), in the neighbourhood of Ωtot
m = 1, we obtain to leading order in Ωtot

m (= Ωm)

F [Ωtot
m , γ; 0] ≃

(

0
(Ωtot

m − 1)
[
(6w−∞ − 5)γ−∞ − 3w−∞ + 3

]

)

, (6.35)

with
γ−∞ ≡ γ(Ωtot

m → 1, ε = 0) . (6.36)

To avoid that dγ
dΩtot

m

∣
∣
∣
ε=0

diverges in the neighborhood of Ωtot
m = 1, the lower component of F [Ωtot

m ≃
1, γ; ε = 0] must vanish too and hence we get

γ−∞ =
3w−∞ − 3
6w−∞ − 5

, (6.37)

so we recover the (expected) result, Eq.(5.17). On the other hand, for ε > 0 fixed and however small, from
(6.34) the limit Ωtot

m → 1 gives to leading order in the small parameter ε

F [Ωtot
m → 1, γε; ε] ≃

(

0
ε
(
−5γε−∞ + 3

)

)

. (6.38)

We obtain now 3
5 to lowest order in ε, viz.

γε−∞ = 3/5+O(ε) , (6.39)

in agreement with (6.22), (6.23). Actually, if we take the limit Ωtot
m → 1 in (6.33), without expanding in ε,

we obtain

F [Ωtot
m → 1, γε−∞; ε] =

(

0
−F̃
(
1− ε; γε−∞

)

)

, (6.40)

showing again that γε−∞ must be a root of F̃(1−ε; γ), and the value 3
5 obtained from (6.38) is just the lowest

order of the expansion of γε−∞ in powers of ε.

Interestingly, there is another situation where an identical result appears [191]. Let us assume that we
have a two-component system (ε = 0) with Ωtot

m = Ωm → 1− δ, ΩDE → δ. This is possible only if DE
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After some calculations, detailed in the next subsection 6.3, for α = −3 (wDE = −1) we obtain

γΩ = 3
55ε −

399
30250 − 10161ε

16637500 (6.43)

γΩΩ = 6
55ε2 −

31083
257125ε +

12960073
1202059375 . (6.44)

These results are illustrated with Figure (6.3.1) where we can see that the approximation (6.52) gives an
excellent match to the solution γε(Ωtot

m ) for ε = 0.15, Ωtot
m ≃ 1. Note that we have obtained a double

expansion with respect to both Ωtot
m and ε (neglecting all terms O(ε))

γε(Ωtot
m ) ≃ 3

5
+

[
3
55ε

− 399
30250

]

(Ωtot
m − 1)

+
1
2

[
6

55ε2
− 31083

257125ε
+

12960073
1202059375

]

(Ωtot
m − 1)2 + ... (6.45)

This suggests that, as a function of ε, γε has an essential singularity (i.e. a pole of infinite order) at ε = 0.
These expressions given above show explicitely the discontinuity expressed by (6.42). For ε > 0, γ tends
in the asymptotic past to γε−∞, which has been calculated here up to terms O(ε4), (6.32). For ε = 0 on
the other hand, γ tends to γ−∞ (5.17). While γ−∞ depends on w−∞, γε−∞ doest not and is in this sense
universal. Clearly it would not be possible to recover γ−∞ by taking the limit ε → 0. This is what the
equations above show: while γε−∞ is consistently obtained from (6.45) at Ωtot

m = 1, the limit ε → 0 does
not even exist in the neighborhood Ωtot

m ≃ 1. Note that at Ωtot
m = 1, the limit ε → 0 gives 3

5 .
We will see now other situations were the value 3

5 appears. Until now we were interested in an unclus-
tered component which behaves like dust, hence ε = constant. For such a system we see from (6.45) that
γε(Ωtot

m → 1) → 3
5 . The same limit is obtained if the unclustered component instead of behaving like dust

tends to such a behaviour in the past, in other words if it is a tracking component in the past with ε tending
to some constant value. Finally we note that our results hold for ε < 0, see e.g. [46].

It is also interesting to consider an unclustered component with wDE < wuncl < 0. Specializing to
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wDE = −1, taking only the leading order term in ε at each order of the expansion (6.45), we obtain

γε(ΩDE) =
3
5
+

3
55
ΩDE

ε
+

3
55

(ΩDE

ε

)2
+

3
55

(ΩDE

ε

)3
+ · · · (6.46)

=
3
5

[

1+
1
11

∞∑

k=1

(ΩDE

ε

)k]

+ · · · (6.47)

=
3
5

[

1+
1
11

(

−1+
∞∑

k=0

(ΩDE

ε

)k)]

+ · · · (6.48)

=
6
11
+

3
55

∞∑

k=0

(ΩDE

ε

)k
+ · · · (6.49)

For our system, ΩDE
ε

→ 0 so the sum is well-defined and yields

γε(ΩDE) =
6
11
+

3
55

1
1− ΩDE

ε

+ · · · (6.50)

For ΩDE
ε

→ 0 we obtain again

γε(ΩDE → 0) → 6
11
+

3
55

=
3
5
. (6.51)

Computing the derivative of γε(Ωtot
m )

In order to evaluate the derivative of γε(Ωtot
m ) with respect to Ωtot

m at Ωtot
m = 1, let us assume γε(Ωtot

m ) is
analytic with respect to Ωtot

m and use an expansion at second order in (Ωtot
m − 1), viz.

γε(Ωtot
m ) = γε−∞ +

dγε

dΩtot
m

∣
∣
∣
−∞

(Ωtot
m − 1) +

1
2

d2γε

d(Ωtot
m )2

∣
∣
∣
−∞

(Ωtot
m − 1)2 +O ((Ωtot

m − 1)3) . (6.52)

For simplicity, we denote

γΩ ≡ dγε

dΩtot
m

∣
∣
∣
−∞

, γΩΩ ≡ d2γε

d(Ωtot
m )2

∣
∣
∣
−∞

. (6.53)
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The derivative dγε

dΩtot
m

has therefore the following expansion up to first order

dγε

dΩtot
m

= γΩ + γΩΩ(Ω
tot
m − 1)

Let us use this expansion in F [Ωtot
m , γ; ε] given in (6.34) and compute the ratio of the components, which

then gives the derivative dγε

dΩtot
m

∣
∣
∣
−∞

. We will assume here that α is constant. The first component is

2αΩtot
m (1− Ωtot

m ) ln ((1− ε)Ωtot
m ) ≃ −2α [ln(1− ε)(Ωtot

m − 1) + (ln(1− ε) + 1)(Ωtot
m − 1)2] , (6.54)

while the second component is

−α(2γε − 1)(1− Ωtot
m ) − F̃

(

(1− ε)Ωtot
m ; γε−∞ + γΩ (Ωtot

m − 1) +
1
2
γΩΩ (Ωtot

m − 1)2
)

≡ f0(ε) + f1(ε)(Ωtot
m − 1) + f2(ε)(Ωtot

m − 1)2 + . . . (6.55)

Considering Ωm = 1, it is trivial to find

f0(ε) = −F̃
(
(1− ε); γε−∞

)
= 0, (6.56)

The derivative dγ
dΩtot

m
is therefore given by

f0(ε) + f1(ε)(Ωtot
m − 1) + f2(ε)(Ωtot

m − 1)2

−2α ln(1− ε)(Ωtot
m − 1)− 2α(log(1− ε) + 1)(Ωtot

m − 1)2
, (6.57)

and using Eq.(6.28), we obtain f0(ε) = 0. We have further

f1(ε) =α(2γε−∞ − 1)− 2(1− ε)γ
ε

−∞(γε−∞ + γΩ ln(1− ε))−
3(1− ε)1−γε−∞(γε−∞ + γΩ ln(1− ε)− 1) (6.58)
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f2(ε) =2αγΩ − 3(1− ε)1−γε−∞×
(

γΩ +
1+ (−γε−∞ + γΩΩ log(1− ε))− (−1+ γε−∞ + γΩ log(1− ε))2

2

)

− 2(1− ε)γ
ε

−∞

(

γΩ +
−γε−∞ + γΩΩ log(1− ε) + (γε−∞ + γΩ log(1− ε))2

2

)

(6.59)

If ε > 0, this expression is not singular at Ωtot
m = 1 provided that f0(ε) = 0. That is to say

γε−∞ =
ln
(√

25−24ε−1
4

)

ln(1− ε)
. (6.60)

Expanding this expression in series near ε = 0 leads to

γε−∞ ≡ γε(Ωtot
m → 1) =

3
5
+

3
125

ε+
97
6250

ε2 +
737
62500

ε3 +O(ε4) (6.61)

We recover the first two terms, the root of F̃(1−ε; γ)up to first order inε [189] mentioned above, Eq.(6.23).
We can proceed to the identification

γΩ =
f1(ε)

−2α ln(1− ε)
(6.62)

γΩΩ =
f2(ε)

−2α ln(1− ε)
− f1(ε)(−2α(ln(1− ε) + 1))

(−2α ln(1− ε))2
. (6.63)

We first solve for γΩ, using (7.38)

γΩ =
(1− ε)γ

ε

−∞(2γε−∞(1− ε)γ
ε

−∞ + 3(γε−∞ − 1)(1− ε)1−γε−∞ − α(2γε−∞ − 1))
ln(1− ε)(3ε− 2(1− ε)2γ

ε

−∞ + 2α(1− ε)γ
ε

−∞ − 3)
(6.64)

expanding in series of ε gives

γΩ =
α

5(2α − 5)ε
− 26α2 − 5α + 150

250(2α − 5)2
. (6.65)

Finally, we use this expression in f2 (see Eq. (7.40)) in order to solve for γΩΩ and we obtain the following
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expansion (the close form expression is too complicated to be of interest)

γΩΩ =
2α

5(2α − 5)ε2
− α(504α2 − 1525α + 1250)

125(2α − 5)2(4α − 5)ε

+
61696α5 − 141960α4 + 658150α3 − 2382375α2 + 3413125α − 1818750

18750(2α − 5)3(4α − 5)2
. (6.66)

Let us remark that near Ωtot
m = 1, the derivative is given, up to terms of order O(ε)O(γε−∞) by

dγ
dΩtot

m
≃

(5γε−∞ − 3)ε
2α(1− Ωtot

m ) ln((1− ε)Ωtot
m )

−
α(2γε−∞ − 1) + 3− 5γε−∞

2α ln((1− ε)Ωtot
m )

(6.67)

For ε > 0, this expression is not singular at Ωtot
m = 1 provided that the first term is null, i.e. γε−∞ =

3
5 + O(ε), whereas for ε = 0, the first term is identically zero and the condition for the derivative to be
non singular at Ωtot

m = 1 is γ−∞ = (α − 3)/(2α − 5) as obtained in (6.37).

6.4 Summary andConclusions

The growth index γ is an interesting tool for the study of the evolution of matter perturbations on cos-
mic scales in various cosmological models (see e.g. [7, 25, 29, 33, 36, 52, 78, 86, 107, 140, 159, 160, 167–
169, 237, 238, 240] for its use in different contexts). Though it was introduced in order to characterize
the influence of a non-vanishing spatial curvature on the growth of matter perturbations, interest for its
study was revived in the context of DE models. Indeed, the growth index is a particularly efficient tool
for the assessment of DE models in modified gravity. We are interested in the global dynamics of γ from
the asymptotic past to the asymptotic future. Though only a restricted interval of redshifts is relevant for
observations, a global analysis yields a deeper insight [55]. Using the dynamical system approach we have
found all critical points of the system. That unique trajectory for which the growth index remains finite from
the asymptotic future to the asymptotic past is identified as the heteroclinic orbit connecting the critical
points (Ωm = 0, γ∞) in the asymptotic future and

(
Ωm = 1, γ−∞

)
in the asymptotic past. The critical

point (Ωm = 0, γ∞) is an attractor while the critical point
(
Ωm = 1, γ−∞

)
is a saddle point. These results

confirm our earlier findings [55]. We recall that this unique trajectory corresponds to a vanishing decay-
ing mode. As an additional result, we have refined our earlier results regarding the behaviour of γ(Ωm) in
the DGP model and we find its very tiny decrease in the past, while it is essentially an increasing function
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except in the asymptotic future (Ωm ≲ 10−3).

Finally, we have also considered a system consisting of DE with an effective equation of state having
arbitrary dependence on redshift and partially clustered dust-like matter with some (small) component
of the latter remaining smooth at all scales, and investigated the growth of perturbations in it at scales ex-
ceeding the Jeans (or free-streaming) length of gravitationally clustering matter (but much less than the
Hubble scale). We have shown both analytically and numerically that γε−∞ is the root of F̃(1 − ε; γ) for
Ωm → 1− ε < 1. Interestingly γε−∞ does not depend on wDE which is possible because, as we have shown
limε→0 γε−∞ ̸= γ−∞ where the last quantity corresponds to (usual) clustered dust and depends of course
on wDE. The quantity γε−∞ was found earlier to correspond to the constant growth index corresponding
to tracking DE in the matter era with ΩDE → ε. We find further that dγε−∞

dΩm
∼ 1

ε2
for ε ≃ 0 suggesting

that γε−∞ has an essential singularity at ε = 0. The results presented in this work show that besides its use
for the assessment of DE models, the growth index γ has also interesting mathematical properties reflect-
ing physical properties of the underlying cosmological model, as in the case of an unclustered axion-like
component.
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Part III

ANegative Cosmological Constant in theDark
Sector?
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7
Negative Cosmological Constant in theDark Sector

Adapted from Rodrigo Calderón, R. Gannouji, B. L’Huillier and D. Polarski

Negative Cosmological Constant in the Dark Sector?
Physical Review D - 103, 023526 (2021) [57]

While the physical mechanism behind the late-time accelerated expansion rate of the Universe still re-
mains an open question [71, 173, 179, 202], its phenomenology is known with ever increasing accuracy
[20, 239]. It is interesting that perhaps the simplest model, the Λ Cold Dark Matter (ΛCDM ) model,
where gravity is described by general relativity whereas dark energy (DE) is simply a positive constant Λ,
can account for the data to some accuracy. Hence the concordance model in which the present acceler-
ated expansion rate is driven by a cosmological constant Λ has become the reference cosmological model.
Aside from the theoretical problems, the smallness of Λ compared to expected Planckian values, it is not
clearly established whether this model can successfully cope with all observations especially on small cos-
mic scales (see e.g. [54]). Hence one is still investigating other DE models, both inside and outside gen-
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eral relativity, which are able to roughly reproduce the ΛCDM phenomenology and are therefore viable
with the hope that some specific signature will single them out. Recently the so-called tensions with the
concordance model, and more generally possible discrepancies [197] between early and late time mea-
surements of cosmic quantities, have attracted a lot of interest with a special emphasis on the H0 tension
[40, 144, 211, 234, 235]. This latter tension–a substantial difference at the ∼ 4σ level between the value
of the present Hubble constant H0 derived from the cosmic microwave background (CMB) Planck data
[187] on one hand and from local data on the other hand, when the concordance model is assumed–could
imply that the DE sector is more complicated than in the concordance model. This is one more incentive
to consider models which are more sophisticated than ΛCDM. It is well known on the other hand that the
presence of a positive cosmological constant Λ in superstring models is problematic. These theories prefer
a negative cosmological constant, dubbed here λ, reflecting the embedding of the anti de Sitter rather than
the de Sitter symmetry group. It is therefore interesting to investigate the possibility that our homogeneous
expanding Universe contains a λ term and it may come as a surprise that this is indeed viable. In some sense
this is so as long as the presence of the λ term does not change radically the main properties of the expansion
history of our Universe compared to the concordance model. This requires first of all that the (smooth)
dark sector (which we call here for simplicity the DE sector) contains an additional component, dubbed
here X component, responsible for the late-time accelerated expansion rate (see e.g. [59, 236]). Note that
a transient effective λ switching around recombination to a positive Λ was considered in [241] while [9]
considers the intriguing possibility of such a spontaneous switch at z ∼ 2. Let us mention that a nega-
tive, not necessarily constant, energy component can also appear as a result of the equations of motion like
the negative dark radiation component found in [45]. Among other interesting examples of components
that can have negative energy is the “missing matter” of [232], the dynamical Λ(t) term in [108], or the
reconstructed total dark energy component (see e.g. [88, 192]).

We address in this work the observational viability of models in the presence of a negative λ term for
several behaviors of the dark sector, investigating more specifically the constraint coming from a high H0.
Independently of observations, we study also the future evolution of such universes with constant wX, in
which case a λ term can crucially change the dynamics of our Universe. We address as well the nontrivial
appearance of transient accelerated stages in the past.
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7.1 Cosmic expansionwith a negative cosmological constant

We recall first the basic equations and concepts. We intend to study here a universe containing a negative
cosmological constant λ. Obviously, such a model cannot accelerate the late-time expansion rate of the
Universe in the absence of some additional component in the dark sector. To comply with observations
we add an X component with wX < − 1

3 on very low redshifts. For a spatially flat Friedmann-Lemaître-
Robertson-Walker (FLRW) universe, the evolution of the Hubble parameter as a function of the redshift
z = a0

a − 1 at z ≪ zeq reads

H2(z) = H2
0 [Ωm,0 (1+ z)3 +Ωλ,0 + ΩX,0 fX(z)] , (7.1)

where H(t) ≡ ȧ(t)/a(t) is the Hubble parameter, a is the scale factor and a dot stands for the derivative
with respect to cosmic time t, Ωi ≡ ρi

ρcr
with 3H2 ≡ 8πGρcr, finally fX(z) =

ρX(z)
ρX,0

is given by

fX(z) = exp
[

3
∫ z

0
dz′

1+ wX(z′)
1+ z′

]

, (7.2)

with wX ≡ pX/ρX. When we consider later constraints involving much larger redshifts, we will add radia-
tion and neutrinos. It is crucial that in (7.1) we have

Ωλ,0 < 0 , (7.3)

as we assume the presence of a negative cosmological constant λ < 0. For such a model it is natural to
make the following identification

ΩDE,0 ≡ Ωλ,0 +ΩX,0 ≃ 1− Ωm,0 . (7.4)

The combined dark energy (DE) sector must of course be able to produce the late-time accelerated ex-
pansion of the universe. Its evolution is shown in Fig.7.1.1 as a function of z and wX. While a negative
cosmological constant can hide in the dark sector during the past evolution of our Universe, it can signif-
icantly modify its future evolution. Before considering the asymptotic future it is also very interesting to
study the appearance of accelerated stages in such models.
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universe never accelerated in the past. The maximum value for ä/a is given by

ä
aH2

0

∣
∣
∣
∣
max

= Ωλ,0 −
wXΩm,0

2(1+ wX)

[
ΩX,0(1+ 3wX)(1+ wX)

−Ωm,0

]− 1
wX

, (7.6)

which shows the nontrivial dependence of the acceleration parameter on wX and Ωλ,0. In Fig. 7.1.3, we
extended this analysis to a large range of Ωλ,0 and wX. In white, the universe accelerates today while in
gray the universe decelerates today. The latter is divided in areas (light gray) where the universe never
accelerated until today and situations (darker gray) where the universe had an acceleration in the past but
does not accelerate today.

Figure 7.1.3: Evolution of the universe in the space (wX,Ωλ,0). In white, the universe accelerates to-
day, in light gray, the universe never accelerated until today while in darker gray, we have a transient
situation where the universe accelerated in the past but does not accelerate today. In blue, we have
represented the SNe Ia data constraints at (1σ, 2σ, 3σ). Finally the red and purple lines represent the
(Ωλ,0,wX) values which satisfy Eq. (7.27) for h = 0.74 and h = 0.72 respectively.
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Having in mind the observational constraints which will be addressed more thoroughly later, we have
also represented in the same figure the set of parameters satisfying Eq. (7.27) in red for h = 0.74, and
SNe Ia data constraints in blue. Notice that for SNe Ia, we have marginalized over H0 and assumed for ωm

the CMB best fit value. This is somehow naive and a more rigorous analysis will be performed in the next
section. We see that SNe Ia data exclude any decelerated universe today if wX is constant. Notice also that if
Ωλ,0 = 0, we need wX = −1.2 to obtain h = 0.74 as it was already noticed in [13]. For negative values of
the cosmological constant the required phantomness is milder as we will see in Section III, but we see that
SNe Ia constraints are also tighter and no intersection is possible. The SNe Ia data are marginally consistent
with h = 0.72 at 3σ for any value of Ωλ,0. We conclude therefore that even though a negative cosmological
constant is appealing and easily motivated from string theory, its impact on the Hubble tension is rather
marginal for constant wX, which will be confirmed by our numerical results.

7.1.2 Future asymptotic solutions

Let us consider now the limit in the future where dust-like matter density becomes negligible compared to
the dark sector density. As we have our Universe in mind, we consider the regime in the future for which
Ωm,0

( a0
a

)3 ≪ |Ωλ,0| < ΩX,0. Then, we have to solve the effective Friedmann equation

H 2 = −|α|+ β
ap , (7.7)

where we have set for brevity

α ≡ Ωλ,0 H2
0 < 0

β ≡ ΩX,0 H2
0 ap

0

p ≡ 3(1+ wX) . (7.8)

The exact solution of Eq. (7.7) is

a =

(
β
|α|

) 1
p

sin
2
p

(p
2

√

|α| t + C
)

, (7.9)
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or more explicitly in function of the cosmological parameters

a
a0

=

(
ΩX,0

|Ωλ,0|

) 1
p

sin
2
p

(
p
2

√

|Ωλ,0| H0t + C
)

, (7.10)

where C is an integration constant. We obtain further

H
H0

=
√

|Ωλ,0| cot
(

p
2

√

|Ωλ,0| H0t + C
)

(7.11)

Ḣ
H2

0
=

p
2
|Ωλ,0|

[

−1− cot2
(

p
2

√

|Ωλ,0| H0t + C
)]

(7.12)

If p = 0 (wX = −1), the two terms on the r.h.s. of Eq. (7.7) combine to give an effective positive cosmo-
logical constant. The resulting future evolution is that of ΛCDM. Note that it is possible in this case to give
the exact analytic expression even when dustlike matter is taken into account.

We consider next p > 0, in other words the X-component is not of the phantom type. As its density is
decreasing with expansion, the universe will eventually recollapse. Note that the density of dustlike matter
decreases even more rapidly (∝ a−3) so Eq. (7.7) applies if |Ωλ,0| ≪ ΩDE,0 ≈ 0.7 and wX ≈ −1. Indeed,
we can read off from Eq. (7.10) the condition for the existence of a time interval before the contraction
during which dustlike matter can be neglected, viz.

( |Ωλ,0|
|Ωλ,0|+ ΩDE,0

) 3
p

≪ |Ωλ,0|
Ωm,0

(7.13)

As expected, we verify further with Eqs. (7.11), (7.12), that the expansion is decelerating, ä < 0, (at least)
in the neighbourhood of aM, the maximal value of the scale factor. As expected this is only so for 0 < p < 2
(−1 < wX < − 1

3) otherwise there is no acceleration at all. So even if the universe is accelerating today, it
passes again through ä = 0, from an accelerating to a decelerating expansion rate. When (7.13) is satisfied,
this takes place at

aM

a
≃
(

1+
p
2

) 1
p
, (7.14)

which is close to aM and lies in the regime described by (7.7).
We now turn to p < 0, the phantom case. It is clear that the universe will eventually reach the Big

Rip singularity in a finite time t∞. In some range before t∞, the dust-like component will be negligible
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compared to the negative cosmological constant. In that case, a(t) is given to high accuracy by the solution
(7.9) or (7.10). To ensure the presence of a Big Rip at t∞, we write the integration constant C in a way to
have a Big Rip at t = t∞ and the solution for a(t) then reads

a(t) =
( |Ωλ,0|

ΩX,0

) 1
|p|

a0 sin
− 2

|p|

( |p|
2

√

|Ωλ,0| H0(t∞ − t)
)

. (7.15)

We verify easily that in the limit t → t∞, this solution tends asymptotically to

a(t) ∼ A
(t∞ − t)

2
|p|

, (7.16)

with A given by

A =

( |p|
2
√

ΩX,0 H0

)− 2
|p|

a0 . (7.17)

This is the well-known singular behaviour in the vicinity of t∞, depending solely on the phantom compo-
nent, here the X component. The solution (7.15) gives a nearly exact fit in the regime Ωm,0 ≪ |Ωλ,0| and
improves on (7.17) when t is sufficiently far from t∞.

7.2 Cosmic Relevance of λ and theH0 tension

We now turn to the cosmic relevance of models admitting a negative cosmological constant λ. As for any
cosmological model differing from ΛCDM , an important question to address is how viable the model is if
the measured value of h is substantially higher than 0.67. It is well known that there is a tension between
the value of H0 obtained by Planck and the value obtained with many local (low redshifts) measurements.
This is a very interesting problem which has been widely investigated recently in various ways (see e.g.
[8, 21, 27, 30, 32, 38, 39, 80, 82, 110, 122, 147, 194, 209, 215, 228, 231, 246] for a non exhaustive list). This
tension can be traced back to the measurement of the standard ruler rs, the comoving sound horizon at
recombination time (very close to the drag epoch) relevant for the corresponding angle θs sustended on
the CMB. Refer reader to schematic picture in 1.3.5

rs(z1) =
∫ t1

0
cs

dt
a(t)

=
1
a0

∫ ∞

z1
cs

dz
H(z)

, (7.18)
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where adiabatic primordial fluctuations are assumed. The angle θs is given by

θs =
a1 rs(z1)
dA(z1)

, (7.19)

where dA(z) is the angular-diameter distance out to a redshift z. We finally obtain

θs =
rs(z1)
r(z1)

, (7.20)

with
r(z1) =

c
a0

∫ z1

0

dz
H(z)

. (7.21)

We have reintroduced explicitly the speed of light c and a0 in (7.18), (7.21) (c = 1 and a0 = 1 in this
work but will sometimes be written explicitly). We choose the Planck 2018 TT,TE,EE+LowE+Lensing
constraints (no BAO), with one massive neutrino species [188]. We take the following values

z1 = zrec = 1089.92, θPlancks = 1.04110× 10−2, rPlancks (zrec) = 144.43Mpc (7.22)

see Table 7.2.1. The relative energy density Ωi,0 ≡
ρi,0
ρcr,0

, defined as

Ωi,0 =
8πGρi,0

3H2
0

, (7.23)

suffers from the uncertainty of the value of H0 even if ρi is otherwise known. However, it is often possible
to find observationally the numerical value of the combined quantities

ωi ≡ Ωi,0 h2 , (7.24)

with h ≡ H0
100 km s−1 Mpc−1 . For our models, we have obviously on low redshifts

H(z) = [ωm (1+ z)3 + ωλ + ωX fX(z)]
1
2 × 100 km s−1 Mpc−1. (7.25)

In the standard ΛCDM model, the value of rs(z1) is controled by the quantities ωi contained in the model
with the notable exception of ωΛ . Measuring these quantities yields in turn rPlancks (z1). As the angle θPlancks
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is accurately measured by the Planck collaboration, the numerical value of r(z1) becomes fixed in turn (for
given θs measured by Planck) to its value rPlanck(z1),

rPlanck(z1) = 13 872.8Mpc . (7.26)

Hence, once a cosmological model is adopted which does not change the early-time physics of ΛCDM,
such a model is compelled to give the same r(z1). For ΛCDM this boils down to fix the value ωPlanck

Λ and
therefore the value of H0. The Planck collaboration finds H0 = 67.36 km s−1 Mpc−1 a value substantially
lower than the value measured locally. We refer the interested reader to the excellent account given in [132].
In this work we are interested in models which depart from ΛCDM regarding the universe expansion for
z < z1, however in a way that they satisfy

r(z1) = rPlanck(z1) (7.27)

for a larger H0 value. Used in our theoretical investigations, the constraint (7.27) assumes that both rs and θs

are fixed to their Planck values (see Table 7.2.1). It is obvious from (7.25), (7.20) that a larger H0 requires

ωDE = ωλ + ωX > ωPlanck
Λ , (7.28)

and a phantom behaviour of the X component, hence also an effective phantom behaviour of the DE sec-
tor. This amounts to explore models with wX < −1 at least during part of the late-time expansion. It is
straightforward to obtain the exact equality

ωDE − ωPlanck
Λ = h2 − (hPlanck)2 , (7.29)

It is further clear that our models satisfy (by construction)

Ωm,0 =

(
hPlanck

h

)2

ΩPlanck
m,0 < ΩPlanck

m,0 , ΩDE,0 ≃ 1− Ωm,0 > ΩPlanck
Λ,0 . (7.30)

Since we have to calculate distances up to z = zrec, where radiation is subdominant but not negligible,
we have to properly take into account the effect of photons and neutrinos. At high redshifts (z ≳ 50),
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Eq. (7.25) becomes [133]

H(z)
100 km s−1 Mpc−1 =

[

ωm (1+ z)3 + ωλ + ωX fX(z) + ωγ (1+ z)4
(

1+ 0.2271
Neff

3

∑

i

fν
(

mνi

Tν

)) ] 1
2

,

(7.31)

with ωγ = 2.47 × 10−5 while fν is well fitted with fν(y) ≃ (1 + (Ay)p)1/p with A = 180ζ(3)
7π4 and p = 1.83

[134]. The function fν interpolates between the relativistic behaviour, mν ≪ Tν (Tν ∼ a−1), and the
non-relativistic regime, mν ≫ Tν. Even for mν as light as 0.06eV, the transition occurs rather early around
z ≃ 110. Given these considerations, we fix the early Universe cosmology as in table 7.2.1.

100ωb 100ωc Neff mν rs rd 100θs

(eV) (Mpc) (Mpc)

2.237 12.00 3.046 (0,0,0.06) 144.43 147.09 1.04110

Table 7.2.1: Parameter values as given by the Planck 2018 TT,TE,EE+LowE+lensing results (Ta-
ble 2). rs is the comoving sound horizon at recombination (z1 = 1089.92), and rd at the drag epoch
zd = 1059.94

7.2.1 The Models

When assessing the viability of our models with respect to the low-redshift data and the constraint on their
free parameters coming from a highH0, we will consider various types of equation of state (EoS) parameters
wX and various values of ωλ.

Scenario w: We consider first models with constant equation of state wX = constant. In this case we
obviously have

fX(z) = (1+ z)3(1+wX) . (7.32)

As we have seen earlier, to ease the H0 tension necessarily requires a phantom behaviour and for a constant
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wX the only possible choice is to take wX < −1. We take an EoS of the form

wX = −1+ Δ1 = w0 , Δ1 < 0 , (7.33)

and we obtain immediately
fX(z) = (1+ z)3Δ1 . (7.34)

While a constant wX gives us some insight, it is clearly advisable to explore also models with varying equa-
tions of state.

CPLscenarios: here we adopt the CPL parametrization ofwX corresponding to a smoothly (differentiable)
varying EoS with

wX = w0 + wa(1− a) ≡ −1+ Δ + wa(1− a) (7.35)

which gives [63],[150]
fX(z) = (1+ z)3(Δ+wa) exp−3wa

z
1+z . (7.36)

We consider also two constrained versions: CPLwa, with w0 = −1 while wa is free; and CPLw0, where w0

is free and wa = −1− w0 so that wX → −1 ≡ w∞.

Scenario I: In this scenario, we take a piece-wise constant wX where dark energy is of a phantom type below
some transition redshift zc and a cosmological constant Λ above, with

wX(z) =







−1+ Δ1 = w0, for z ≤ zc Δ1 < 0

−1 = w∞, for z > zc
(7.37)

Here we takeΔ1 < 0 in order to ensure a phantom behaviour and we fix zc = 1. As zc increases, it is easier to
meet the data on small redshifts but it requires stronger phantomness on large redshifts in order to comply
with the observed θs and a higher H0. We note that most of the SN Ia data are in the range zc ≤ 1. In this
scenario, the evolution of the X-component is given by

fX(z) =







(1+ z)3Δ1 , for z ≤ zc

(1+ zc)
3Δ1 , for z > zc

(7.38)
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Scenario II: This scenario has also a piece-wise constant wX, but it is now opposite to the previous scenario,
i.e.

wX(z) =







−1 = w0, for z ≤ zc

−1+ Δ2 = w∞, for z > zc, Δ2 < 0
(7.39)

We have now

fX(z) =







1, for z ≤ zc
(

1+z
1+zc

)3Δ2

, for z > zc
(7.40)

In this case too, we take zc = 1.

Scenario III:

wX(z) =







−1+ Δ1 = w0, for z ≤ zc1, Δ1 < 0

−1, for zc1 < z ≤ zc2

−1+ Δ2 = w∞, for z > zc2, Δ2 < 0

(7.41)

We have in this case

fX(z) =







(1+ z)3Δ1 , for z ≤ zc1

(1+ zc1)
3Δ1 , for zc1 < z ≤ zc2

(1+zc1)3Δ1
(1+zc2)3Δ2

(1+ z)3Δ2 , for z > zc2

(7.42)

For this scenario we take zc1 = 0.1 and zc2 = 1. A significant change in wX on very small redshifts is viable
and we exploit also this possibility here.

Once a specific model is adopted we can find the dependence of h on the model parameters for a model
satisfying (7.27). This gives insight into the phenomenology of these models irrespective of the observa-
tional constraints. For constant wX, we can study its behaviour in terms of the following three free param-
eters: ωλ, wX and h. Indeed the parameter ωX is fixed once ωλ and h are given. From the constraint (7.27)
however, only two free parameters are left. In Figure 7.2.1, we show the value of h in terms of wX, when
ωλ is fixed and as a function of wX and ωλ in a 3-dim plot. In the first case, we confirm the linear relation
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Figure 7.2.1: Parameters (h, ωλ,wX) which satisfy the relation (7.27) for models with constant wX. a)
In the upper panel, ωλ is fixed and we see that an increasing |ωλ| (from left to right) gives the same
h with less phantomness. We note the quasilinear relation, which follows from (7.43) for constant
ωλ. b) In the lower panel all parameters are free. For the latter, we show the lines corresponding to a
constant h when (7.27) is satisfied: continuous line (h = 0.68), long dashed line (h = 0.7) and dashed
line (h = 0.74). They satisfy to good accuracy (7.43).

obtained in [13] (for ωλ = 0), which we have generalized here to

h = 0.673+ (wX + 1)(0.93ωλ − 0.33). (7.43)

At this point we emphasize another interesting aspect of our models which we discuss here for a constant
wX. As we will see later, observations favour models of the phantom type, wX < −1. This implies that
ρDE = ρλ + ρX will necessarily become negative in the past at some redshift zλ and it is straightforward to
find

1+ zλ =

[

1+
h2 − ωm

|ωλ|

]− 1
3(1+wX)

. (7.44)

We have used ωDE ≈ h2 − ωm which is valid to high accuracy. On the other hand, H2(z) is necessarily
positive ∀z > zm with

1+ zm =

[ |ωλ|
ωm

] 1
3

. (7.45)

It is seen from (7.44) that zλ → 0 as |ωλ| is increasing and wX is more phantom. When this is the case
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Figure 7.2.2: We show iso-h curves for scenarios I (left), II (middle), and III with Δ1 = −0.04 (right-
hand panel) in the (Δ1,2, ωλ) parameter plane. The shaded areas correspond to the following H0 values
(in km.s−1.Mpc−1 units): 73.30 ± 4 (HST-Mira) [118]), 74.03 ± 1.42 (SH0ES) [200] and 69.8 ± 1.9
(TRGB) [102].

there might be some parameter values for which H2(z) itself becomes negative for some redshifts in the
range zλ < z < zm, such models are not viable and must be rejected. The condition H2(z) > 0 is easily
translated into

ωm [(1+ z)3 − fX(z)] + h2fX(z) > |ωλ| (1− fX(z)) . (7.46)

This inequality depends on the free parameters wX, ωλ, h. However, we should remember that in our
theoretical analysis once wX and ωλ are given, because of the constraint (7.27) h is no longer free as we
illustrate with Figures 7.2.1 and 7.2.2. We see that a priori, for given wX, large|ωλ| and low h2 values can
lead to a violation of (7.46). Once a two-dimensional surface h(wX, ωλ) is found satisfying (7.46) (see the
lower panel of Figure 7.2.1), the projection in the (wX, ωλ) plane satisfies it automatically too.

7.3 Comparisonwith data: Model Selection and Parameter Estimation

In this section, we are interested in the question of model selection: namely, comparing the different models
to the reference ΛCDMmodel. Let M be the model, D the data, andΘ the parameters of the model. Bayes
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Models Parameter Prior range

All h [0.5, 1]
λ all ωλ [−4, 0]

(λ)w/I/III/CPLw0 w0 [−1.2,−0.8]
(λ)II/III w∞ [−1.2,−0.8]

(λ)CPLwa wa [−0.2, 0.2]

Table 7.3.1: Flat prior range used in the nested sampling. For each model, (λ) denotes both cases
with and without λ

theorem can be written as

Pr(Θ|M,D) =
Pr(D|Θ,M) Pr(Θ|M)

Pr(D|M)
, (7.47)

where P(Θ) = Pr(Θ|M,D) is the posterior distribution, L(Θ) = Pr(D|Θ,M) is the likelihood, π(Θ) =
Pr(Θ|M) is the prior, and Z = Pr(D|M) is the evidence.

For parameter evaluation within a given model, the evidence can be seen as a normalization constant,
and thus ignored. However, in order to perform model selection, the Bayesian evidences of the models have
to be evaluated and compared. Calculating the evidence can be computationally challenging, in particular
when using Monte Carlo Markov Chains. Therefore, in order to calculate the posterior distributions and
the evidence, we use the nested-sampling algorithm [213] as implemented in pymultinest [51, 99]. We
follow the authors’ recommendations and use different sampling efficiencies for evidence evaluation and
parameter estimation (0.3 and 0.8, respectively). We used 1000 live points and a tolerance factor of 1. We
checked that the tolerance factor does not affect too much the results. The priors are shown in Table 7.3.1.
As for h, because of its crucial role in this work, we choose rather wide, uninformative priors. For the other
parameters associated to dark energy, we base our priors on physical properties of existing dark energy
models, for example the difficulty to obtain realistic phantom models with w ≪ −1. Finally, we take the
priors ωλ ∈ [−4, 0]; see Figs. 7.2.1 and 7.2.2 of Sec. 7.2.
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The data

The quantities ωm and ωr are kept to their fiducial Planck value, and thus so are rs and rd. We vary h and the
parameters ωλ, wX associated with dark energy and obtain θs,model for each set of free parameters which is
then compared to θs,Planck and gives us a likelihood for θs.

In addition, we used the 1048 distance modulus measurements from the Pantheon type Ia supernovae
(SNIa) compilation [208], and the BAO from the Baryon Oscillation Spectroscopic Survey (BOSS) and
extended-BOSS (eBOSS) surveys [10, 243]. Since the measurements from the SH0ES project are in ten-
sion with ΛCDM , we instead use a measurement with larger error bars which is not inconsistent [118]. In
general, supernovae show a degeneracy between the absolute magnitude and the Hubble constant. There-
fore, SNIa alone cannot measure H0. However, in this particular study, since we fixed ωm, choosing a certain
value forΩm,0 uniquely fixesh; therefore we can use SNIa data to obtainh. The BAO provide us withH(z)rd
and dA(z)/rd, where dA is the angular diameter distance and the sound horizon at the drag epoch rdis fixed
to its Planck value (Table 7.2.1). The three pairs of data points (dA/rd and H rd) from BOSS are correlated,
and so are the four eBOSS pairs, and the BAO covariance matrix is thus

CBAO =

(

CBOSS 0
0 CeBOSS

)

. (7.50)

θs and H0 are one data point each, and their associated likelihood is thus trivial. We used flat priors as shown
in Table 7.3.1.

Table 7.3.2 summarizes our results for SN+BAO+θs while in Table 7.3.3 the H0 data point from HST-
Mira is added. The quoted central values and error bars correspond to the median and 68% credible inter-
vals around it. We remind the reader that in this analysis, ωm , ωb, Neff, and

∑
mν are fixed to their Planck

value, and thus so are rs and rd (see Table 7.2.1).
Figure 7.3.1 shows the posterior distributions of the parameters for models ΛCDM , III, and λIII (left-

hand panel), and ΛCDM , λCPLwa, and λII (right-hand panel). Model III shows preference for a higher
value of h, and adding a negative λ pushes h even higher, although this is not sufficient to reconcile it with
the SH0ES value. An interesting property of the negative cosmological constant is that it allows to satisfy
the observational constraints with an equation of state which is less phantom. This is clearly seen in partic-
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Table 7.3.2: 68% credible intervals for SN+BAO+θs.

Model 100h w0 w∞ or wa ωλ lnZ K

Λ 67.382+0.107
−0.096 −532.4 1

w 68.62+0.85
−0.83 −1.042+0.028

−0.029 [0] −533.1 0.54
λw 68.66+0.79

−0.75 −1.0102+0.0076
−0.0203 −0.91+0.73

−1.88 −534.7 0.11

CPL 68.60+0.78
−0.84 −1.038+0.032

−0.029 −0.020+0.074
−0.055 [0] −532.6 0.83

λCPL 68.72+0.77
−0.87 −1.007+0.016

−0.028 −0.58+0.43
−1.11 −0.032+0.058

−0.044 −534.1 0.18

CPLw0 68.52+0.83
−0.85 −1.052+0.039

−0.038 [−(1+ w0)] [0] −533.0 0.60
λCPLw0 68.51+0.72

−0.74 −1.014+0.011
−0.021 [−(1+ w0)] −0.84+0.65

−1.57 −534.6 0.12

CPLwa 68.34+0.39
−0.63 [−1] −0.124+0.083

−0.050 [0] −532.1 1.48
λCPLwa 68.63+0.78

−0.75 [−1] −0.034+0.024
−0.057 −1.03+0.78

−1.81 −533.1 0.52

I 68.46+0.82
−0.83 −1.042+0.033

−0.032 [−1] [0] −533.2 0.48
λI 68.41+0.82

−0.75 −1.0092+0.0081
−0.0242 [−1] −0.92+0.76

−1.92 −534.8 0.093

II 67.86+0.21
−0.34 [−1] −1.127+0.090

−0.053 [0] −532.2 1.33
λII 68.58+0.66

−0.59 [−1] −1.059+0.035
−0.070 −1.15+0.75

−1.76 −532.1 1.36

III 67.93+0.47
−0.50 −1.04+0.14

−0.11 −1.128+0.092
−0.049 [0] −532.3 1.20

λIII 68.93+1.03
−0.89 −1.046+0.070

−0.083 −1.090+0.054
−0.068 −0.65+0.43

−0.95 −531.4 2.96
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Table 7.3.3: 68% credible intervals for SN+BAO+θs+H0 (HST Mira).

Model 100h w0 w∞ or wa ωλ lnZ K

Λ 67.386+0.105
−0.099 −533.5 1

w 68.83+0.82
−0.83 −1.049+0.028

−0.027 [0] −533.7 0.82
λw 68.81+0.86

−0.77 −1.0122+0.0086
−0.0251 −0.81+0.66

−1.75 −535.4 0.16

CPL 68.77+0.75
−0.80 −1.044+0.031

−0.028 −0.020+0.072
−0.057 [0] −533.3 1.26

λCPL 68.75+0.84
−0.78 −1.005+0.015

−0.022 −0.035+0.053
−0.042 −0.71+0.52

−1.26 −534.8 0.30

CPLw0 68.71+0.82
−0.83 −1.061+0.038

−0.037 [−(1+ w0)] [0] −533.7 0.87
λCPLw0 68.72+0.83

−0.93 −1.016+0.012
−0.033 [−(1+ w0)] −0.72+0.58

−1.64 −535.3 0.18

CPLwa 68.42+0.35
−0.48 [−1] −0.134+0.063

−0.044 [0] −532.8 1.99
λCPLwa 68.76+0.70

−0.73 [−1] −0.035+0.022
−0.054 −1.12+0.83

−1.69 −533.7 0.81

I 68.67+0.80
−0.82 −1.050+0.032

−0.031 [−1] [0] −533.9 0.69
λI 68.51+1.09

−0.77 −1.0096+0.0076
−0.0272 [−1] −0.96+0.80

−1.92 −535.6 0.13

II 67.89+0.18
−0.30 [−1] −1.137+0.083

−0.044 [0] −533.1 1.53
λII 68.73+0.70

−0.60 [−1] −1.074+0.040
−0.073 −1.09+0.67

−1.24 −532.6 2.54

III 68.09+0.41
−0.50 −1.077+0.131

−0.087 −1.137+0.080
−0.045 [0] −533.1 1.52

λIII 69.28+0.99
−1.00 −1.063+0.062

−0.080 −1.083+0.054
−0.071 −0.74+0.45

−1.18 −533.3 1.31
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ular for scenario w, where the addition of λ shifts the central value of w0 from −1.049 to −1.0122. We note
that given our priors on w0 and w∞, the equation of state is not always constrained, as seen, for instance, for
model III. It is also interesting that the best models λII are those where the phantom behavior, and hence
the departure from ΛCDM, takes place at z ≳ 1. This suggests new physics appearing at these redshifts
rather than at redshifts z ≲ 1 can yield viable models. Models (λ)III fare reasonably well while having an
additional departure from ΛCDM at very low redshifts z ≤ 0.1 but it is clear when we compare them with
models (λ)I that their main advantage comes from their phantomness at z ≳ 1. This seems further sup-
ported by the better evidence for (λ)CPLwa, where w0 = −1 with a phantom behavior at higher redshifts
(wa < 0), compared to (λ)CPLw0 with w tending asymptotically to−1 and departure from−1 takes place
essentially at low redshifts. Note that CPLwa models have the best evidence for λ = 0, while models II
have the highest evidence for λ ̸= 0 (λII). Interestingly, λCPLwa lowers the evidence compared to CPLwa.
As we have said earlier, perhaps with the exception of the models λII, the higher evidence compared to
ΛCDM is not decisive and should be interpreted with caution.

7.4 Summary andConclusion

In this work, we have considered the possibility that the dark energy sector contains a negative cosmological
constant λ. Indeed, theoretical considerations from high energy physics suggest the possible presence of a
negative cosmological constant rather than a positive one. This constitutes a radical change as in that case,
and contrary to a positive cosmological constant Λ, this constant cannot produce the late-time accelerated
expansion rate and a more sophisticated dark sector is required. The Universe acceleration is produced here
by the X component. Clearly the presence of λ can affect the expansion history and we have studied the
viability of these models, also when a high H0 is considered.

While as we have shown some models can achieve a higher H0 when the equation of state of the X com-
ponent wX is of the phantom type–this is of course a generic property not restricted to λ ̸= 0 – we have
investigated whether these models are viable when SNIa and BAO data are taken into account. We find
indeed that most of our models are viable with a fair evidence for the models λII. Taking into account the
H0 value of the HST-Mira experiment reinforces the evidence of the models λII, reaching a value h ≈ 0.7
but not higher. Hence, while these models do alleviate the H0 tension, a value for H0 substantially higher
would rule them out. We note also that the CPLwa models are the best models for λ = 0while the presence
of a nonvanishing λ lowers the evidence for λCPLwa versus CPLwa. It is further interesting that the best
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models λII are equal to ΛCDM on z ≤ 1 and of the phantom type only at higher redshifts.
The constant λ will manifest itself in a very explicit way in another context, namely, the future evolution

of our Universe. Considering for concreteness a constant wX, it is clear that an equation of state −1 <

wX, sufficiently negative in order to produce an accelerated expansion rate today, will necessarily produce
a transient acceleration stage. It will then eventually lead to a recollapsing universe. We have found the
analytical expression for the scale factor a(t) in the regime around the turning point when dustlike matter
is negligible compared to the dark sector. On the other hand if the X component is of the phantom type,
wX < −1, our Universe will end in a Big Rip as expected and we have found here too an analytical fit for
a(t) valid in the asymptotic region when dust-like matter becomes negligible compared to λ while the latter
is not yet negligible compared to the X component.

Suggested by high energy physics, the possibility to have a negative cosmological constant is worth inves-
tigating as it challenges our intuition about the phenomenology of cosmological models. If this negative
cosmological constant is substantial enough to affect the cosmic expansion history like in those models
investigated here, a high value for H0 could be a decisive test.
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”Las Estrellas dicen que nosotros somos los fugaces.”

Macaco

8
Conclusions

It is rather curious -to say the least- to note that the Universe seems to have undergone a De Sitter-like epoch
of accelerated expansion twice already in the cosmic history. Yet it seems very challenging to construct a
(stable) De Sitter vacuum from a more fundamental theory [171]. While the physical mechanism driv-
ing these periods of accelerated expansion remains unknown, supernovae [185, 199], CMB [69] and LSS
observations [183] suggest the universe is currently accelerating, consistent with a simple (positive) cos-
mological constant (Λ), and Cold Dark Matter (CDM). The ΛCDMmodel is in remarkable agreement
with a vast array of cosmological probes throughout the cosmic history. The so-called “tensions” within
the ΛCDM paradigm have shown the robustness of the former, when tested against increasingly precise
cosmological measurements. Throughout this thesis, we explored the phenomenology of various beyond
ΛCDM scenarios. We focus on those particular observables that could allow us to distinguish between the
wide class of dark energy and modified gravity models already existing in the literature. One example is the
growth index γ of matter perturbations.
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We start this thesis with a thorough review of the homogeneous and isotropic (FLRW) expanding uni-
verse in Chapter 1 - focusing on the key observables and assumptions underlying the concordance model
of cosmology (ΛCDM ). We briefly mention some of its shortcomings and/or possible discrepancies.
The inflationary paradigm is then discussed in Chapter 2, as one possible mechanism for generating the
(quantum-mechanical) seeds, that much later on - through gravitational instability - will grow into galax-
ies and clusters of galaxies we observe in the late Universe. We briefly comment on the potential of future
space-based GW observatories to probe new physics, at extremely high-energies. Chapter 3 is devoted to
the study of small perturbations around the FLRW universe, we also comment on the various types of
Large Scale Structure (LSS) probes and see how these observables allow us to probe the nature of DE - in
complementarity with BBN, CMB, SNeIa, BAO and other background probes discussed in Chapter 1. In
Chapter 4 we introduce some modified gravity models, beyond Einstein’s GR. In such models, the growth
of perturbations is modified and one tool to study these modifications is the growth index γ. This is indeed
the main subject of part II.

In Chapter 5, we shall study the global behaviour of γ in various beyond-ΛCDM scenarios, i.e. a varying
EoS wDE(a), an f(R)-like bump/dip in Geff(z) or more intricate DE models such as the Dvali-Gabadadze-
Porrati model. In such models, the behaviour of γ can drastically differ from that of ΛCDM . In particular,
we find that all of the above mention scenarios lead to a change in the slope of γ - in sharp constrast with
the monotonically decreasing ΛCDM case. We derive the asymptotic value in the past for γ−∞ in such mod-
els, and explicitly see the origin of the anomalous γDGP−∞ = 11

16 value in the DGP model. In Chapter 6, we
consider its behaviour in the presence of a (dustlike) unclustered component Ωx and explore interesting
mathematical properties of γ in the asymptotic past.

In Chapter 7, we consider the possibility of having a more intricate Dark Sector. Inspired by high energy
physics, we explore the phenomenology of models containing a negative cosmological constant λ on top of
an additional X-component, responsible for the late-time accelerated stage. More specifically, we assume
the early universe remains unchanged wrt ΛCDM - thereby fixing the value of the sound horizon rsat re-
combination - and asses the viability of such models when including BAO, SNeIa and CMB data. We also
explore the effect of considering a high-H0 prior in separate runs. We perform a nested-sampling of the pa-
rameter space associated with our models, and evaluate the Bayesian evidence needed for model selection.
Although we find no decisive evidence for a non-vanishing Ωλ,0, its presence remains viable as it hides be-
hind an effective (positive) Λ with wX ∼ −1. Models with higher evidence are found to be those with new
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physics appearing at large-z (wX ≤ −1). A value of H0 substantially larger than H0 ∼ 70km.s−1.Mpc−1

could be a decisive test of their viability. If the “true” value of H0 turns out to be H0 ∼ 69km.s−1.Mpc−1,
it would be interesting to further explore the viability of such models at the level of perturbations. As we
have seen in this work, the linear growth of matter perturbations gives stringent constraints on DE models,
and the tools presented in this thesis could be useful for that purpose. This could be the subject of future
work, especially in light of upcoming (LSS) experiments.
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5.4.4 The behaviour of γ in DGP models is shown and compared to that in ΛCDM. We see
that γDGP > ΓDGP and hence γDGP(Ωm) is an increasing function, except for the tiny
interval Ωm ≲ 10−3. While wDGP

−∞ = − 1
2 , γDGP

−∞ = 11
16 and not 9

16 as one would have in GR.
This is because the DGP model does not tend to GR in a smooth enough way, namely
(

dgDGP

dΩm

)

−∞
= 1

3 ̸= 0. In the future however, while DGP does not tend to GR with

gDGP
∞ = 2

3 and wDGP
∞ = −1, the same asymptotic value γDGP

∞ = 2
3 is obtained as in GR for

w∞ = −1 because gravity in DGP is weaker than in GR in the far future. Note that all
four curves tend to 2
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