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00014 University of Helsinki





HELSINGIN YLIOPISTO—HELSINGFORS UNIVERSITET—UNIVERSITY OF HELSINKI

Tiedekunta/Osasto — Fakultet/Sektion — Faculty/section Laitos — Institution — Department

Faculty of Science Department of Physics
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Chapter 1

Introduction

Particle physics is a branch of physics in which the behavior of elementary (fun-
damental) and composite particles is studied and observed. Elementary particles
do not have any substructure, whereas composite particles are made from com-
bination of elementary particles. During the history of particle physics, different
elementary particles have been discovered in experiments or theoretically (i.e.,
special theory predicts the existence of an elementary particle) which might be
seen in the future in laboratories such as newly discovered Higgs boson or
have not been observed yet like graviton.

In particle physics, some particles have integer spin, i.e., they obey the Bose-
Einstein statics and are called bosons such as photon, while the semi-integer spin
particles obey the Fermi-Dirac statics and are called fermions such as electron,
proton, quarks etc1. The known fundamental fermions are

Leptons: three charged leptons (electron (e), muon (µ), tau (τ)) as well as
three neutral leptons or neutrinos form the flavors of leptons. We set
lepton number (Le, Lµ, Lτ ) +1e,µ,τ for leptons.

Quarks: there are six types of quarks, known as flavors (up (u), charmed (c),
top (t), down (d), strange (s) and bottom (b)), up and down quarks are the
lightest ones. Top quark is the heaviest one, in general the heavier quarks
are unstable and rapidly decay to up and down quarks. Up, charmed and
top quarks have electric charge +2/3, while down, strange and bottom
have electric charge −1/3.
Quarks carry color charges: red, green and blue, as well as electric charge,
this is the basic assumption of the color theory. Therefore when the behav-
ior of the quarks is studied, we should consider quantum chromodynamics
(QCD) instead of quantum electrodynamics (QED) in which existing par-
ticles carry, exclusively, electric charge.

1 The wave functions of identical bosons are symmetric under the exchange of any pair of
them or in other words any two identical bosons can occupy the same quantum state. In the
case of the fermion, the wave functions of two identical fermions are antisymmetric. This fact
is called the Pauli exclusion principle.

1



CHAPTER 1. INTRODUCTION 2

The antiparticles of the fundamental fermions: for every particle there
is an antiparticle with the same mass and lifetime, but opposite charge2.
Hence, antiquarks and antileptons (we set lepton number −1e,µ,τ for an-
tileptons) are also among the elementary fermions.

The known fundamental bosons are

Gluons (g): eight massless, spin one bosons which mediate the strong force.
They are electrically neutral although carry color charges like quarks and
so the corresponding theory will be QCD.

Photon (γ): massless, spin one particle which is its own antiparticle.

W± and Z0 bosons: they are spin one and massive particles, W+ and W−

are each other’s antiparticles, while Z0 is its own antiparticle.

Higgs boson (H): as it was said, Higgs boson is recently discovered [50], [9]
in CERN, it is neutral, spin zero and very massive.

Quarks and gluons form the bound three-quark systems called baryons3 which
are fermions and quark-antiquark pairs are called mesons, they are bosons. The
nucleons (protons and neutrons) are the lightest baryons. Pions (π±, π0) are
examples of mesons. Baryons and mesons are also called hadrons.

The top quark is too unstable to form observable hadrons. Great efforts have
been done to observe isolated free quarks (not in hadrons), however, the result
has been fruitless. Color confinement or simply confinement states that color
charged particles such as quarks can exist only when confined in hadrons and
cannot be isolated. Therefore they cannot be directly observed [3].

There are four fundamental interactions or forces in particle physics: strong,
electromagnetic, weak and gravitational. Each of these interactions has differ-
ent ranges and strengths4 when they are measured at a typical energy scale of
1 GeV [6].

For each of these interactions, there is a mediator. In the language of quan-
tum field theory (QFT), when one electron is repelled by another electron,
these two particles have exchanged a photon (the mediator) and this photon
is responsible for the repulsion. Photon is the mediator of the electromagnetic
interaction. The range of this interaction is infinite, while the strength of it is
determined by the fine structure constant α where α ≈ 10−2 [6]. This interac-
tion is responsible for electrically charged particles and is very well described
by QED.

When we go inside the atomic nuclei in which there are only nucleons, this
force becomes very weak and the behavior of the nucleons is described by the

2This can be misleading, since some particles are neutral but their antiparticles are different
(we will see later) although there are neutral particles which are their own antiparticles such
as photon or neutral pion.

3We set baryon number (B) +1 for all baryons and −1 for all antibaryons and 0 for the
rest.

4The field strengths of these interactions over a distance reduce from left to right.
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strong force. This is the reason why the electromagnetism governs much of
macroscopic physics.

The strong force, which is mediated by gluons, is independent of the electric
charge and is responsible for binding protons and neutrons to form the nucleus
of an atom (strong interaction is also called strong nuclear force) or keeping
quarks together to form hadrons. The range of the strong interaction is about
a fermi, i.e., 10−15 m [6].

The weak interaction is responsible for radioactive decays such as beta de-
cay. It has a range of 10−17 m [6]. Photon and gluons do not experience weak
interaction but other particles (such as leptons) do. We know that W± and
Z bosons are mediators of the weak interaction. The term weak is due to the
fact that in comparison to the strong and electromagnetic interactions, weak
processes are much weaker.

These three interactions are unified in the Standard Model of particle physics
(SM). As for the gravitation, we do not have a quantum theory yet, but only a
macroscopic one, i.e., General Relativity (GR). However in the frame of QFT,
the graviton is a hypothetical elementary particle that mediates the gravita-
tional interaction but it has never been observed5 [1], [3], [4].

In this thesis, we are going to speak about neutrinos. Neutrinos are neu-
tral elementary particles with three different flavors which interact weakly with
matter. They have very large penetration length, which is much larger than pho-
ton penetration length [1]. Very small cross section of the neutrino interaction
with matter is not the only difference between neutrino and other fundamental
fermions. The other one is the mass of neutrinos. In fact neutrino mass is one
of the crucial questions for neutrino physicists.

The idea of the existence of neutrino was first discussed after the Ellis and
Wooster experiment [1]. The experiment was β decay in which we have electron
or positron emission from a radioactive nucleus when it is transformed into a
slightly lighter nucleus.

For instance if potassium went to calcium

40
19K → 40

20Ca + e−, (1.1)

without a third neutral particle (see (1.1)), this reaction would definitely violate
the energy conservation. As a result, the existence of a neutral particle which
avoids this violation is necessary and reaction (1.1) is forbidden. This particle
was first postulated by Wolfgang Pauli and called neutron (since it must be
neutral) in 1930, and then in 1933 Enrico Fermi called it neutrino6 [1].

By 1950, the existence of the neutrino had been proved theoretically, al-
though it had not been observed. In fact, as neutrinos interact weakly with
matter, they do not leave any footprint. This reason made neutrino detection
very complicated.

To detect neutrinos, we needed an extremely intense source. In the mid-1950s

5Gravity has an infinite range but a low energy coupling about 10−38 [6].
6After discovering of the neutron (the particle which forms an atom with electrons and

protons) in 1932 by James Chadwick, there were two particles with the same name. Thus,
Enrico Fermi changed the name neutron (for the particle released in beta decay) to neutrino.
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Clyde Cowan and Frederick Reines, through inverse beta-decay of neutron, con-
firmed the existence of antineutrino for the first time. This experiment became
famous as the Cowan-Reines neutrino experiment. Neutron (n) beta-decay to
proton (p+) is

n → p+ + e− + ν, (1.2)

where ν is the predicted antineutrino7. The inverse beta-decay will be

ν + p+ → n+ e+. (1.3)

Cowan and Reines set up an intense source of protons in front of antineutrinos
created in a nuclear reactor by beta decay. The resulted neutron and positron
confirmed the existence of the antineutrinos and consequently, neutrino experi-
mentally8.

Later on, by experiment it was proved that neutrinos have two other flavors
besides electron one. They are muon (muonic) neutrino (νµ) which comes with
µ+ or µ− and tau (tauic) neutrino (ντ ) that appears with τ+ or τ−. These
three flavors differ from each other, and states corresponding to the neutrino
flavors must be orthogonal,

〈να |να′ 〉 = δαα′ , (1.4)

where α and α′ refer to the neutrino flavors e, µ, τ [1]. Each charged lepton with
its corresponding neutrino (for instance electron and electron neutrino) form the
three generations of the leptons.

The Sun produces electron neutrinos. It is seen that some of these electron
neutrinos change to other flavors. This phenomenon which is known as neutrino
oscillations [1], [2], [3], [4] shows that neutrinos must be massive. Massive
neutrino goes beyond the SM, since according to the SM neutrinos must be
massless.

Another significant issue is the existence of antineutrino because neutrinos
are neutral. Davis and Harmer put this question to a test. The Cowan-Reines
experiment verified that (1.2) works, hence the crossed reaction, i.e.,

ν + n→ p+ + e−, (1.5)

must also occur. If neutrinos and antineutrinos were the same, we would have

ν + n→ p+ + e−. (1.6)

Davis and Harmer found that the above reaction would not happen and so
neutrinos and antineutrinos are different. If we give lepton number L = 1 to

7Cowan and Reines did not know that they had detected antineutrino (not neutrino).
Actually, due to the conservation of lepton number in (1.2), antineutrinos must appear, the
fact which became known later on. Hence, they thought this particle had been neutrino.

8The newly discovered particle was called neutrino, however, in fact it was electron an-
tineutrino (as it will be seen). There are also other types of neutrinos which are different from
electron one but at that time this fact was not discovered yet. Electron neutrino is also called
electronic neutrino.
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the leptons and L = −1 to the antileptons and L = 0 for the rest of particles, it
can clearly be seen that reaction (1.6) violates the lepton number conservation.
Therefore, the law of conservation of lepton numbers was suggested by them9.

Thus, the difference between a neutrino and antineutrino is lepton number
which can be determined in a laboratory. This is worth emphasizing that the
definition of antiparticles does not just reduce to electric charge.

Strategy of this thesis. The thesis has been written in two parts. The first
part consists of chapters 2, 3 and 4 in which the physics of neutrino is discussed.

We start chapter 2 by some short explanation of fermion fields, as well as
electromagnetic and weak charges before the SM. In chapter 3, the SM is dis-
cussed briefly and we see that neutrinos are massless in the SM. Moreover, we
describe how other flavors of neutrinos (i.e., muon and tau) are observed

Then in the next chapter, the experiments which show neutrino oscillations
are presented. The Dirac and Majorana neutrinos are discussed and we find the
mixing matrix of neutrinos.

In the second part, i.e., chapters 5 and 6, neutrino oscillations phenomenon
is explained theoretically. In this thesis, we do not discuss neutrino oscillations
experimentally and just use the results or explain very briefly if needed.

In chapter 5, we have neutrino oscillations in quantum mechanics. This
chapter contains the first theories by which scientists explained oscillations. We
find the oscillation phase and probability amplitude in the standard oscillation
as well as wave-packet treatment. However, this is not the end of story. The
chapter finishes with the problems of the quantum mechanical approach.

Chapter 6 describes neutrino oscillations from the QFT point of view. It is
seen how the problems are solved. The simplest model in QFT with the plane
wave particles is presented. The external wave-packet model is discussed in de-
tail and we solve the amplitude integral to find the probability in three different
regimes. Furthermore, stationary boundary conditions are explained.

9In fact, the SM does not allow any violation of the lepton flavor number, but we will see
that this sentence is not correct when we go beyond the SM. Moreover, the answer to the
question of the existence of antineutrinos is not just yes. As we go ahead, in the case of the
Majorana neutrino, neutrinos and antineutrinos become the same and there will not be any
lepton number conservation in that case.



Chapter 2

Before the standard model

2.1 Fermions

2.1.1 The Dirac field

The quantity S, called action, which is defined as

S =

∫
Ldt =

∫
L (φ, ∂µφ) dt, (2.1)

is very important in field theory. Here, L is the Lagrangian and L is the La-
grangian density. Lagrangian density is a function of fields φ and their deriva-
tives.

According to the principle of least action, a system evolves in a way that the
action is extremum. So, the variation of S, i.e., δS must vanish. The solution
of δS = 0, results in the Euler-Lagrange equation of motion as follows

∂µ

(
∂L

∂ (∂µφ)

)
− ∂L
∂φ

= 0. (2.2)

As for the spin 1/2 particles such as neutrinos (or other fermions) we should
take the Dirac Lagrangian into consideration1

L0 = ψ (x) (iγµ∂µ −m)ψ. (2.3)

Here ψ, which is spinor, is the classical Dirac fermion field (i.e., not quantized),
γµ are the Dirac matrices

γ0 =

(
12 02

02 −12

)
and γk =

(
02 τk

−τk 02

)
, (2.4)

1In this case we cannot apply the Klein-Gordon Lagrangian since it describes exclu-
sively spin-0 particles.

6
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where τk are the Pauli matrices and ψ = ψ†γ0. Furthermore, we define γ5 as

γ5 = iγ0γ1γ2γ3 =

(
−1 0
0 1

)
. (2.5)

Regarding (2.2) and (2.3), the Dirac equation (i.e., equation of motion for
spinors) becomes

(6 ∂ −m)ψ(x) = 0, (2.6)

where 6 ∂ = γµ∂µ. The Dirac equation can be solved for a plane wave. In the
case of particles we obtain

ψ(x) = u(p) exp (−ip · x) ,

and antiparticles
ψ(x) = v(p) exp (+ip · x) ,

where u(p) and v(p) are the Dirac spinors2,

u(s) =

( √
p · τζs√
p · τζs

)
and v(s) =

( √
p · τζ−s

−
√
p · τζ−s

)
, s = 1, 2, (2.7)

where taking the Pauli matrices as a three-vector (~τ), here τµ and τ̄µ are sup-
posed to be a four-vector, i.e.,

τµ ≡ (1, ~τ) , τ̄µ ≡ (1,−~τ)

Here ζs is a two-component spinor basis. They can be ζ1 =

(
1
0

)
and ζ2 =(

0
1

)
. In general (with radial angles θ and φ) we have

ζ (↑) =

(
cos θ2

eiφ sin θ
2

)
, ζ (↓) =

(
−e−iφ sin θ

2

cos θ2

)
. (2.8)

In addition we define

ζ−s = −iτ2 (ζs)
∗

= (ζ (↓) ,−ζ (↑)) . (2.9)

The quantized Dirac field operator (the above ψ (x) is not quantized) becomes

ψ̂ (x) =

∫
d3p

(2π)
3

1√
2Ep

∑
s

(
âspu

s (p) e−ip·x + b̂s†p v
s (p) eip·x

)
, (2.10)

where Ep =

√
m2 + |p|2. Here âsp annihilates a fermion (contrary to âs†p which

creates one) while b̂s†p creates one antifermion (contrary to b̂sp which annihilates
one). By taking hermitian conjugate from the above equation one can easily

find ψ̂.

2By taking square root of a matrix, we mean taking the positive root of each eigenvalue.
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2.1.2 Helicity and chirality

Now let us write the field ψ as the 2−dimensional representations ψL and ψR
as follows

ψ =

(
ψL
ψR

)
. (2.11)

These two-component representations are called left- and right-handed Weyl
spinors. In the case that ψL and ψR equal ζ1 or ζ2, they become eigenstates
of the helicity operator h, defined as

h ≡
→
τ ·p
2 |p|

, (2.12)

where p is along the z axis. Hence there are two eigenvalues, i.e., h = 1/2
which corresponds to right-handed particles (spin is in the same direction as
the momentum) or h = −1/2 which corresponds to left-handed particles (spin
is in the opposite direction as the momentum).

While helicity is a property of the 2−component spinors, chirality is a prop-
erty of the 4−component spinors. We define the projector operators PR and PL
as

PR =
1 + γ5

2
, PL =

1− γ5

2
⇒ (2.13)

PLPR = 0, (2.14)

which project a spinor onto the right- and left-handed spinors, respectively. So,

ψL = PLψ
ψR = PRψ

}
⇒ ψL = PRψ

ψR = PLψ

}
, (2.15)

and then (with regard to (2.3)) the free Dirac Lagrangian becomes

L0 = ψ (x) (iγµ∂µ −m)ψ = ψL (x) (iγµ∂µ)ψL + ψR (x) (iγµ∂µ)ψR

−m
(
ψLψR − ψRψL

)
. (2.16)

It is seen that the mass term of the Lagrangian must contain both left- and
right-handed spinors.

Contrary to the charged leptons which are both left- and right-handed, neu-
trinos are only left-handed. Thus, we can have left-handed lepton doublets as
follows

ψeL =

(
νeL
eL

)
, ψµL =

(
νµL
µL

)
, ψτL =

(
ντL
τL

)
. (2.17)

The right-handed lepton singlets are

eR, µR, τR. (2.18)

It should be remarked that:
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e −
e
−

γ

µ
− µ −

Figure 2.1: The electromagnetic interaction.

• according to the SM, there are (right)left-handed (anti)neutrinos. Actu-
ally, at present, we know that (left)right-handed (anti)neutrinos cannot
be predominant and if they exist, they interact with matter much weaker
than the weak interaction of the (right)left-handed (anti)neutrinos. This
is the reason why νL and νR are called sterile or inert (anti)neutrinos.

• In doublets (2.17), it is seen that each lepton, e.g., e−L comes with the
corresponding neutrino, i.e., (in this case) νeL. This stems from the fact
that (as it was briefly discussed above and will be fully discussed later)
neutrinos are different and a charged lepton from one generation does not
appear with a neutrino from another generations.

• Although the sterile neutrinos do not take part in the weak charges (they
do not couple to the weak W± and Z0 bosons), as we shall see later,
they can play important roles in the case of neutrino mass generation and
neutrino oscillations. In this case, we have gone beyond the SM since
we are dealing with massive neutrino [1]. When we go beyond the SM,
(left)right-handed (anti)neutrinos may be used.

2.2 Currents

2.2.1 The electromagnetic current

The vertex of the electromagnetic (EM) interaction is (−ieγν), where e is the
coupling constant, i.e., the electric charge of the electron. For instance in the
electromagnetic interaction (see Fig (2.1))

e−µ− → e−µ−, (2.19)

one can write (from the Feynman rules) for the electron-electron and muon-
muon currents

jνe = −ueγνue and jνµ = −uµγνuµ. (2.20)

In general there are three charged leptons (l = e−, µ−, τ−), let us define ul ≡ l,
then

jµEM (x) =
∑
l

−l (x) γµl (x) . (2.21)
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e − ν e

W
−

ν e
e −

Figure 2.2: Charged weak interaction.

2.2.2 Weak currents

Weak interaction can be present in three different processes:

1. Non-leptonic processes in which no leptons are present (only hadrons are
present) in the initial and final states.

2. Semileptonic processes in which both hadrons and leptons take part.

3. Leptonic processes in which only leptons take part, e.g.,

νµe
− → νµe

−, or νµe
− → νeµ

−. (2.22)

If the charges of initial and final particles in a weak interaction differ by one
unit, it is called the charged current (CC) and is mediated by W±. The vertex
of this interaction is

−ig
2
√

2
γµ (1− γ5) . (2.23)

For instance in the weak interaction (see Fig (2.2))

e−νe → νee
−, (2.24)

the charge difference between e− and νe is one, so it is a charge current. One
can write

jµe−µe = uνe

(
−ig
2
√

2
γµ (1− γ5)

)
ue,

(2.25)

jµµee− = ue′−

(
−ig
2
√

2
γµ (1− γ5)

)
uν′e .

We know that uνeγ
µue transforms as a 4−vector while uνeγ

µγ5ue transforms
as an axial 4−vector. Hence, the spacetime structure of the charged-current is
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ν
µ ν µ

Z
0

e
− e −

Figure 2.3: Neutral weak interaction.

vector-axial vector or V − A. Moreover, in general the charged current can be
written as

jµ = ψ

(
−ig
2
√

2
γµ (1− γ5)

)
ψ =

−ig√
2
ψLγ

µψL, (2.26)

where in the last equality we used

1− γ5 =
1

2
(1− γ5)

2
; [γµ, γ5] 6= 0. (2.27)

Eq. (2.26) shows that the charged current is similar to (2.21) with the difference
that in the CC, only left handed particles can take part. In addition to the
charged weak current, there is neutral weak current which is mediated by Z0

boson. The discovery of the neutral weak current happened in two different
types of events.

1. Elastic scattering of νµ or νµ with electrons [11]. Muon neutrinos are
invisible, they come and interact with electrons in liquid, but in the final
state there is no µ−. Since we cannot have νµ and e− at one vertex, it is
concluded that this interaction indicates a neutral current (Fig (2.3)).

νµe
− → νµe

−. (2.28)

2. Neutrinos can scatter from a nucleus N ,

νµ/νµ +N → νµ/νµ + hadrons. (2.29)

It is seen that in the final state there is no µ−/µ+. So, it shows that (2.29)
happens through neutral currents, i.e., invisible neutrinos come, interact,
go invisibly again and we are left with a hadron [2].

2.3 Symmetry and parity violation

Symmetry is a transformation under which equation of motion (2.2) remains
invariant. This happens only if the action S is invariant under the field trans-
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formations

φ (x)→ φ′ (x) = φ (x) + α∆φ (x) , (2.30)

where α is an infinitesimal parameter and ∆φ (x) is a deformation of the field
configuration.

According to Noether’s theorem, symmetries under continuous transforma-
tions lead to conservation laws [5]. For instance, the gauge group U (1) is a
group of phase transformations. Under the global transformations of U(1) the
Dirac Lagrangian is invariant (see section (3.2.1)). As a result of Noether’s the-
orem, the conserved quantity is the electric charge. Thus, no matter we are in
what interaction, the sum of electric charges of initial and final particles, taking
part in a reaction, must be equal.

Symmetries corresponding to the gauge group such as U (1) or SU (2) (we
shall discuss later) are called fundamental symmetries. This means that the
conserved quantity must be absolutely invariant in all interactions (as a result
of Noether’s theorem) and this fact cannot be violated at all unless the symme-
try is broken by some reason.

On the other hand, there are quantities such as baryon and lepton numbers3,
quark4 and lepton flavors5 which must not be necessarily conserved [2].

We have other symmetries such as parity P that sends a particle in a state
(t,x) to the state (t,−x), time reversal T which sends (t,x) to (−t,x) and
charge conjugation C that exchanges particles with their antiparticles. These
symmetries are not conserved by all interactions. Only experiments tell us
whether these symmetries are conserved or violated by an interaction.

Under double parity transformations we come back to the first state, so
P̂ = P̂−1. The angular momentum (l) contribution to parity of a particle in

spherically symmetric potential is (−1)
l
. As well as this contribution, we define

intrinsic parity. The creation (and similarly annihilation) operators for fermions
and antifermions under intrinsic parity transformations become

P̂ â†pP̂ = â†−p, P̂ b̂†pP̂ = b̂†−p. (2.31)

As for space and momentum states, under parity transformations we have

P̂ |r〉 = |−r〉 ,
P̂ |p〉 = |−p〉 , (2.32)

while angular momentum (such as spin) state |J〉 becomes

P̂ |J〉 = |r × p〉 = |J〉 . (2.33)

3Baryon and lepton number conservations, in the Standard Model of particle physics, are
called accidental global symmetries. All the know interactions conserve baryon and lepton
numbers [2]. However, in the future, the violation of them is possible to be observed [5].

4Quark flavors are assumed to be conserved in the strong interactions.
5Lepton flavor violation, for instance muon to electron conversion is forbidden by the Stan-

dard Model [49]. Nonetheless, there are some phenomena in contradiction with the Standard
Model. To be able to discuss them, we should go beyond the Standard Model [49].
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Hence, parity inverts momentum whereas keeps angular momentum direction.
In other words, parity changes (right)left-handedness to (left)right-handedness.

Electromagnetic and strong interactions conserve parity while weak interac-
tion does not. As a result, we observe only νL and νR take part in reactions. A
reaction such as

π+ → µ+νL, (2.34)

under parity becomes
π+ 6→ µ+νR, (2.35)

hence it can be concluded that weak interaction violates parity.

Parity violation. It is worth saying some word about parity violation. Tsung-
Dao Lee and Chen-Ning Yang surveyed the experimental information on parity
conservation and reached the conclusion that in weak interactions, parity con-
servation neither can be accepted nor refuted. However, through the beta decay
experiment of (spin aligned) cobalt-60 (60

27Co) to nickel-60 (60
28Ni) (suggested by

them and conducted by physicist Chien-Shiung Wu) i.e.,

60
27Co → 60

28Ni + e− + ν + 2γ, (2.36)

the parity non-conservation was finally ascertained in the weak interaction.
This experiment became famous as the Wu experiment6. If parity is conserved,
it is expected that distribution of the detected electrons at angle (θ) is approxi-
mately proportional to the distribution at angle (π − θ) or in other words, under
parity (θ → π − θ) we have similar distribution of detected electrons.

Furthermore, the photons released from the return of nickel to its ground
state is an EM reaction. We know that EM conserves parity and so it is ex-
pected an approximately symmetric distribution of photons in both angles after
counting the photon numbers. The same symmetry is expected in the number
of detected electrons if and only if parity is conserved in beta decay.

After carrying out the experiment, the symmetry in the photon numbers (as
expected) was seen whereas there was asymmetry in the electron distribution.
This means that electrons with a definite spin (since cobalt was spin aligned)
are emitted in one direction. Thus, experiment states that parity is violated in
weak interactions [29].

Charge conjugation. As already mentioned, under charge conjugation op-
erator particles and antiparticles are exchanged. Under double action of charge
conjugation, we come back to the particle again, so Ĉ = Ĉ−1. For the annihila-
tion (and similarly creation) operators under charge conjugation we have

ĈâspĈ = b̂sp; Ĉb̂spĈ = âsp. (2.37)

6In fact, cobalt-60 decays by beta decay to nickel-60, electron and antineutrino. The
produced nickel is excited, it comes back to its ground state by emitting two photons.
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Whereas strong and electromagnetic interactions conserve charge conjugation,
weak interaction violates it. This fact can be easily seen from (2.34), under
charge conjugation it becomes

π− 6→ µ−νL, (2.38)

which is not correct due to presence of the left-handed antineutrino. However,
reaction (2.34) is conserved under CP, i.e.,

π− → µ−νR. (2.39)

Electromagnetic and strong interactions conserve CP. Weak interaction does
not conserve it, for example in processes such as kaon decays [1], [12] or kaon
mixing [5] in which CP is violated. All the fundamental interactions conserve
CPT [5].



Chapter 3

The standard model for
leptons

3.1 Introduction

Neutrino oscillations phenomenon goes beyond the SM. So, first one should be-
come familiar with the SM.

In perturbation theory when we go to higher orders, divergent integrals ap-
pear (loop integrals). As these divergences happen in higher orders, they are
called ultraviolet divergences and cause a big problem because the reactions
happen in reality but solving the loop integrals will result in infinity. Therefore
we have to be able to get rid of these divergences, in fact they can be removed
systematically. In QED with the help of renormalization methods, one can re-
move divergences [5].

Until the end of the sixties the only renormalizable theory was QED, the
search for a renormalizable weak interaction theory ended in unification of the
electromagnetic and weak interactions1. A single gauge theory U(1) × SU(2)
which is simply called the electroweak interaction.

QCD is the theory which describes the strong interaction, it is a gauge the-
ory SU(3). QCD and electroweak together, i.e., U(1) × SU(2) × SU(3) form
the Standard Model of fundamental interactions. In this chapter we are going
to briefly discuss the SM for leptons, the mass generation predicted by it, the
reason why the SM is not able to answer all questions and finally the chapter is
going to be finished by some information about different neutrino flavors. This
chapter is mainly following Ref. [1].

1The fact that this unification leads to a renormalizable theory was proved by t’Hooft and
Veltman [39].

15
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3.2 Gauge transformations

3.2.1 Covariant derivative

The group U(1) is a group of phase transformations

U(1) = exp

(
iΛ

1

2

)
, (3.1)

where Λ is an arbitrary real number. If Λ is constant, (3.1) is the global trans-
formations and if we have Λ (x), it becomes the gauge transformations. This
group is clearly Abelian since the group elements commute.

In general, SU(n) groups are represented by n×n complex, unitary matrices
(UU† = 1n) with determinant one. The number of group generators is n2 − 1
and an element of SU(n) is written as

U = exp (iΛaXa) with a = 1, ..., n− 1, (3.2)

where Xa are the group generators and Λa are real parameters2. For the special
case SU(2), we have three generators, they are (τj/2), where τj are the three
Pauli matrices. Under the global transformations of U(1) and SU(2) the Dirac
Lagrangian is invariant while gauge transformations of U(1) and SU(2) ruin
this invariance [1].

To have an invariant Lagrangian in the gauge transformations, an interacting
vector field is considered and the covariant derivative Dµ is formed. Thus, we
obtain for U(1) and SU(2) the covariant derivatives

∂µ → Dµ =

(
∂µ + ig

1

2
Bµ (x)

)
, (3.3)

∂µ → Dµ =

(
∂µ + ig′

1

2

→
τ .Aµ (x)

)
, (3.4)

where Bµ (x) and Aµ (x) are U(1) and SU(2) vector gauge fields, respectively.
Moreover, g and g′ are dimensionless coupling constants of the gauge fields with
the spinors. After these changes we see that the fields Bµ and Aµ go under
these transformations

Bµ (x)→ B′µ (x) = Bµ (x)− 1

g
∂µΛ(x), (3.5)

Aµ (x)→ A′µ (x) = Aµ (x)− 1

g
∂µ~Λ(x)− ~Λ(x)×Aµ (x) . (3.6)

Hence, instead of (2.3), the Lagrangian becomes

L = ψ (x) (iγµDµ −m)ψ. (3.7)

2Again here we have global and gauge transformations regarding the dependence of Λa on
x, exactly such as U(1) case.
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Adding any mass term in the form of m2BµB
µ or m2AµA

µ to the above La-
grangian will ruin its invariance since the mass terms are not invariant under
(3.5) and (3.6) transformations. As a result, particles corresponding to the fields
A and B must be massless.

As for the U(1) symmetry, this result is correct since the particle correspond-
ing to this symmetry (i.e., photon) is massless but in the case of SU(2) there are
three massive bosons. This fact causes a serious problem which can be solved
with the help of the spontaneous symmetry breaking of SU(2) in a mechanism
called the Higgs mechanism [40], [41].

3.2.2 Again weak charges, but this time with the SM for-
mulation

From the Lagrangian which is invariant under the local SU(2) transformations,
we can find the conserved current3 jµk (according to Noether’s theorem) as

LI (x) = −g′ψ(x)γµ
1

2
τkA

k
µψ (x)⇒ jµk = ψ(x)γµ

1

2
τkψ (x)

= −g′jµk (x)Akµ (x) . (3.8)

It should be noted that jµk with k = 1, 2, 3 are conserved and are not the only
solutions, but, any combinations of them can also be solutions. Let us define
the new quantities τ± and W±µ as follows

τ± = τ1 ± iτ2 and W±µ =
1√
2

(
A1
µ ∓ iA2

µ

)
, (3.9)

then, by using the SU(2) doublets (2.17) (e.g., electron doublet) we will have
the conserved currents corresponding to τ+ and τ−, i.e., jµ+ and jµ− as follows

jµ+ = 2νeLγ
µeL, jµ− = 2eeLγ

µνeL. (3.10)

The charge difference of the two elements (electron and neutrino electron) in jµ+
is (+1), hence this current changes the charges of particles by one and conse-
quently, the particle corresponding to the W+ field must have an electric charge
equal to (+1). With the same reasoning for the jµ−, it is concluded that W−

field corresponds to a particle with electric charge (−1). In general all three
neutrinos take part in the charged current, so regarding all three doublets, the
charged current may be written as

jµCC+ = 2
∑

l=e,µ,τ

νlLγ
µlL, or jµCC− = 2

∑
l=e,µ,τ

lLγ
µνlL. (3.11)

Moreover, the current jµ3 becomes

jµ3 =
1

2
(νeLγ

µνeL − eLγµeL) . (3.12)

3This conserved current corresponding to the invariance of the Lagrangian under the gauge
transformations of SU(2) is called isovector current.
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This current does not change the charges and so the particle corresponding to
A3
µ must be neutral, it is called Z0 boson. In general jµ3 reads

jµ3 =
1

2

 ∑
l=e,µ,τ

νlLγ
µνlL −

∑
l=e,µ,τ

lLγ
µlL

 . (3.13)

With respect to (3.8), (3.9), (3.11) and (3.13), the Lagrangian LI (x) can be
written as

LI (x) =

(
− g′

2
√

2
jµCCWµ + h.c.

)
− g′jµ3A3

µ, (3.14)

where
jµCC = 2

∑
l=e,µ,τ

νlLγ
µlL. (3.15)

3.2.3 Electroweak unification

As we saw, there is an interaction between the SU(2) doublet and field Aµ. We
define weak isospin IW or simply isospin I as a quantity that corresponds to
SU(2). Each member of a doublet has the same I but different I3, where I3 is
the third component of the isospin.

The SM unifies the electromagnetic and weak interaction. As already said,
electromagnetism conserves parity while weak interaction does not. So, the uni-
fication of these two interactions cannot be done on the basis of SU(2) gauge
transformations, or in other words we need to enlarge our gauge group.

The group representation of the electromagnetism is U(1) and for the weak
interaction is SU(2), so the minimal group of the electroweak (the unified form)
is SU(2)×U(1). This symmetry group includes both electromagnetic and weak
interactions and hosts three and one (3 + 1) gauge fields.

We have defined isospin as the quantity corresponding to SU(2), additionally
we need to find some quantity corresponding to U(1). In each doublet there are
particles with different charges, we define weak hypercharge YW or in brief hyper-
charge Y as the quantity related to U(1) which is the group of hypercharge. The
hypercharge is connected to the electric charge Q by the Gell-Mann-Nishijima
relation

Q = I3 +
1

2
Y. (3.16)

Our Lagrangian must be invariant under this enlarged gauge transformations, so
the partial derivative in the free Lagrangian must be replaced by the covariant
derivative. Then, in the case of the left-handed doublets we have

∂µψlL → DµψlL =

(
∂µ + ig

1

2
Y lep
L Bµ (x) + ig′

1

2

→
τ .Aµ (x)

)
ψlL. (3.17)

Since the right-handed leptons are SU(2) singlets, then their covariant derivative
is

∂µlR → DµlR =

(
∂µ + ig

1

2
Y lep
R Bµ (x)

)
lR. (3.18)
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For the doublet we have I = 1/2, and so the neutrino’s third component of
isospin becomes +1/2 and for the charged leptons it is −1/2. Therefore from
(3.16), we see that Y lep

L = −1. The isospin of the singlets is zero and so their

third isospin is zero too. Thus (3.16) says that Y lep
R = −2. Now, the total

Lagrangian (left- and right-handed) can be written as follows (see (3.14))

LI (x) = − g′

2
√

2

(
jµ+W

+
µ + jµ−W

−
µ

)
− g′jµ3A3

µ−

g

−1

2

 ∑
l=e,µ,τ

νlLγ
µνlL +

∑
l=e,µ,τ

lLγ
µlL

− ∑
l=e,µ,τ

lRγ
µlR

Bµ.

(3.19)

Let us add and subtract this term

− 1

2
gBµ

∑
l=e,µ,τ

lLγ
µlL

from the second line of (3.19). Then,

LI (x) = − g′

2
√

2

(
jµ+W

+
µ + jµ−W

−
µ

)
− g′jµ3A3

µ − g
1

2
jµYBµ,

where 1/2jµY

1

2
jµY = −

∑
l=e,µ,τ

lLγ
µlL −

∑
l=e,µ,τ

lRγ
µlR = jµEM − j

µ
3 , (3.20)

is the neutral current after unification of the electromagnetic and weak interac-
tions.

3.3 Higgs mechanism

3.3.1 The boson masses

The gauge U(1)×SU(2) symmetry is valid only when the fields Aµ and Bµ are
massless, while we know that W± and Z0 are massive. These particles become
massive after the spontaneous symmetry breaking during which the fields Aµ
and Bµ interact with the scalar Higgs boson. Since we are in U(1)× SU(2), so
the Higgs field4 φ (x) must have the U(1) × SU(2) transformations properties
and consequently, we suppose that it is an SU(2) doublet. So,

φ (x) =

(
φ± (x)
φ0 (x)

)
, (3.21)

4The origin of the scalar field mass is unclear [10].
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where φ± and φ0 are scalar complex fields of particles with electric charges ±1
and 0, respectively. In fact the symmetry violation happens when the scalar
field φ (x) acquires a vacuum expectation value5 (VEV). From the conservation
of the electric charge, the vacuum expectation value of the charged field φ± is
zero. Additionally, if we choose the potential part of the Lagrangian as

V (φ) = −µ2φ∗φ+ λ (φ∗φ)
2
, (3.22)

where µ and λ are positive constants, for µ2 > 0 the field φ0 acquires an expec-
tation value. The minimum of the potential V (φ) occurs at〈

φ0 (x)
〉

=
v√
2
, (3.23)

where v =
(
µ2/λ

)1/2
, and so the Higgs doublet at the minimum potential for

breaking the symmetry becomes

〈φ〉 =
1√
2

(
0
v

)
. (3.24)

After the Higgs interaction and breaking the symmetry, the three W± and Z0

receive their mass (their speeds become less than one) whereas photon still stays
massless because it does not interact with the Higgs. The Higgs interaction with
the boson fields results in the mass terms of W± and Z0 in terms of the coupling
constants, i.e.,

mW = g′
v

2
; mZ =

√
g′2 + g2

v

2
. (3.25)

Through various experimental data, the value of these coupling constants can
be calculated, and so we are left with [42]

mZ = (91.1876± 0.0021)GeV; mW = (80.385± 0.015)GeV. (3.26)

3.3.2 The fermion masses

One may ask whether the Higgs mechanism can be responsible for the mass
generation of fermions such as quarks, charged and neutral leptons as well as
bosons. If the answer is positive, for instance, in the case of a lepton such as
electron we can write the mass generation Lagrangian (the Yukawa Lagrangian
for electron Le) with the left- and right-handed lepton fields6 as follows

LlepY = −
∑
l,l′

λlepY ψlLM
lep
ll′ ll′Rφ, (3.27)

5Vacuum expectation value 〈φ (x)〉 occurs when the scalar field potential V (φ) becomes
minimum.

6The reason why we need the left- and right-handed lepton fields in the mass Lagrangian
is due to the fact that Higgs is a doublet. We set on the left of it the lepton field doublet (in
the form of the hermitian conjugate ψeL) and on the right of it, the lepton field singlet eR.
Additionally, only in this form hypercharge and isospin are both conserved.
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where Mlep is a complex matrix and λ
lep
Y is the Yukawa coupling. To find the

mass terms we should diagonalize this matrix. After doing so, for instance, for
the electron Lagrangian [5] we have

Le = −λeψeLφeR + h.c. = − 1√
2
λeveLeR + h.c.⇒

me =
1√
2
λev. (3.28)

The above relation indicates that the mass of an electron is proportional to the
Yukawa coupling. The SM does not put any constraint on the Yukawa coupling
(unlike the bosonic case as it was discussed above) and so the mass term (3.28)
is a free parameter in the SM. In addition, since neutrinos are not right-handed,
then they must be massless in the Standard Model. However, what about the
experiment? Are really neutrinos massless?

In fact, in three different types of experiments, we are looking for neutrino
masses. First: cosmological observations, second: search for neutrino-less dou-
ble beta decay, and third: direct determination of the neutrino mass by kine-
matics (model-independent) such as tritium beta decay which puts limit7 on
the neutrino mass [18].

Therefore, how can we theoretically describe neutrino mass? Let us suppose
that there are inert right-handed neutrinos, then the SM can generate neutrino
mass through the interaction of the leptons and conjugated Higgs field8 in the
Yukawa Lagrangian

LνY =
∑
l,l′

λνY ψlLM
ν
ll′νl′Rφ̃, (3.29)

where Mν is a complex matrix and λνY is the Yukawa coupling for neutrinos.
Again after diagonalizing this matrix we can find neutrino mass but it is pro-
portional to the Yukawa coupling. Hence, there is the same problem that we
had in the case of electron. Due to this fact, it can be said that in general, it
is unnatural that the Higgs mechanism is responsible for the mass generation
of the charged and neutral leptons since unlike the boson masses, the Higgs
mechanism does not put any constraint on the fermion masses and so they are
free parameters [1]. The question about neutrino mass will be discussed in the
next chapter.

7Different β spectrum of tritium near its endpoint has resulted in a variety of the mass
limits for neutrinos. These experiments and their references can be seen in [19].

8If neutrinos interact with the Higgs field, hypercharge and isospin will not be conserved,
and also the SM cannot generate any mass term for the neutrinos. As a result, we define the
conjugated Higgs field as

φ̃ = iτ2φ
∗ =

1
√

2

(
v
0

)
.
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Figure 3.1: The pion decay through weak interaction.

3.4 Discovery of the muon neutrino

Now let us finish this chapter with discussing the reason why neutrinos appear
in three different flavors. Before starting, again, it should be emphasized that
since neutrinos hardly interact with matter, the scientists have to apply very
special methods to detect them (such as in the case of the discovery of the
electron neutrino).

3.4.1 The first grounds for the existence of muon neutrino

Neutrinos interact only with very massive W± and Z0 bosons. These massive
bosons are unstable. For instance, the lifetime of W is less than 10−17 s [26],
the existence of W± is identified through their decays to lepton (or antilepton)
and neutrino (or antineutrino) [26].

In pion (π+ = ud) decay, which is mediated by W+, we understand the
existence of the virtual9 W+ from its decay to antimuon (µ+) and να′

10 (see
Fig. (3.1))

π+ → µ+ + να′ . (3.30)

Beta decay (as explained above) for an atom with Z protons is

Z → (Z − 1) + e+ + να. (3.31)

Again this process is mediated by W+ which now decays to positron and να.
The important question is whether να = να′ or not. If the answer to this
question is negative, then we must have at least two types of neutrino. Now let
us consider the muon decays reactions. The ordinary muon decay is

µ → e+ ν + ν. (3.32)

Hence, on the one hand, from (3.30) and (3.31) we are faced with a W boson
decaying into a charged lepton and a neutrino (when there is one charged lepton
such as electron or muon we have just one neutrino) while on the other hand, in
the ordinary neutrino decay (3.32), when both electron and muon are present

9The word virtual means that a particle is off-shell. An on-shell particle obeys energy-
momentum conservation rule, E2−p2 = m2, while for an off-shell one, the energy-momentum
conservation is violated. Particles in propagators (i.e., mediators) are off-shell.

10We shall understand the reason of α′ very soon.
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there is a pair of neutrinos. From this comparison, the fact that the neutrino
appearing with muon is totally different with the one coming with electron, can
be correct. Moreover, there is an exotic muon decay as

µ → e+ γ. (3.33)

The absence of the above process may lead to the fact that neutrinos coupled
to muons are different from the ones coupled to electrons11 [27].

According to this explanation, we can be doubtful about the fact which
states να = να′ in (3.30) and (3.31). In other words, the neutrino coupled to
the (anti)muon and produced in the pion decay is not the neutrino coupled to
the (anti)electron in beta decay. This is not the final result and only is accepted
if an experiment confirms it.

3.4.2 The final confirmation of the existence of muon neu-
trino

The possibility of the existence of at least two types of neutrino was tested in
an experiment at the Brookhaven AGS in which the interaction of high-energy
neutrinos produced in pion decay reaction (3.30) with matter was observed.
Pions are produced from 15-BeV protons striking a target of beryllium, the re-
sulting flux strikes an iron shield wall. Neutrino interactions are observed in an
aluminum spark chamber behind this shield [25].

In this experiment single track events were observed. The distinction be-
tween single high-energy muon tracks (produced after pion decay to muon and
neutrino) of pµ > 300 MeV and single high-energy electron track (produced at
the accelerator Cosmotron) with a mean energy greater than 400 MeV is clear.
Produced neutrinos were exposed to the high-energy electrons and the number
of electron events were counted and compared with the muon events. If νe = νµ,
then from 29 single muon events received12, 2

3 × 29 electron shower or events13

were expected. However there were only 6 electron events.
This result tells that the electrons do not coupled to the produced neutrinos

in the pion decay (while electrons or positrons couple to the neutrinos or an-
tineutrinos produced in beta decay), these neutrinos tend to couple with muons.
Hence, we must have at least two types of neutrino, i.e., νe 6= νµ.

But what about those 6 shower events? Did these 6 electrons couple to the
neutrinos or not. Actually not, these events were due to the background neu-
trons or electron muon coupling or other sources but not neutrinos produced in
the pion decay [25]. Our final conclusion for this part becomes:

neutrinos or antineutrinos produced with electrons or positrons, i.e., νe, νe are
completely different from the neutrinos or antineutrinos produced with muons

11We do not discuss it here, the detailed discussion can be found in [27], [48].
12In fact 34 single muon events were observed, however 5 of them were supposed to be due

to the cosmic-ray background [25].
13Since electrons had greater energy than muons, the cross section of electron events became

more than muon events.
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Figure 3.2: The charged current of the tau neutrino interaction.

or antimuons, i.e., νµ, νµ. Electron neutrinos do not couple with muons
and vice versa.

3.5 Neutrino tau discovery

The existence of two neutrinos which appear with their corresponding charged
leptons was proved. As there are three charged leptons, the question may be
asked if there must be another neutrino flavor coming with the third generation
of charged lepton τ or not. If it exists, it must be called tau neutrino(ντ ).

The DONUT experiment (Fermilab E872) was designed to detect the tau
neutrino through its charged current by identifying the lepton τ . In this ex-
periment, a beam of neutrinos14 interacted with emulsion targets15. If a tau
neutrino interacted with the target, it would be expected to have a tau lepton
charged current (see Fig (3.2)).

This is because the number of charged currents of muon and electron neu-
trinos (νµW

+µ− and νeW
+e−) were calculated in this experiment16. Hence, if

a tau lepton existed it would show itself in a charged current with a tau lepton.
Therefore the goal was looking for tau leptons.

At the neutrino energies in this experiment, the created τ lepton decayed
within 2 mm of its creation and so the scientists expected a track with a kink
for the signature of the tau lepton (if it existed). Among all of the candidates
for tau leptons, four events met all the requirements and so the charged cur-
rent interaction for the tau lepton was also observed. The fact confirmed the
existence of the third neutrino flavor, so in summary it can be said that

there are three neutrinos corresponding to the three charged leptons. Each
neutrino or antineutrino couples to the corresponding charged or anti-charged

lepton and avoids coupling to another charged or anti-charged leptons.

14These neutrinos were produced from collision of high energy (800 GeV [28]) proton (deu-
terium) with antiproton which resulted in charmed meson (D meson) pair DD, D meson
contains charm quark whose decay leads to neutrinos with different flavors.

15A nuclear emulsion target is a photographic plate which records the tracks of the charged
particles passing through.

16As it was said, the high-energy protons gave a beam of neutrinos with different flavors and
consequently two charged currents from electron and muon and one (if it existed) for tau were
expected. Muons and electrons were detected by different methods and the existence of their
charged currents was confirmed. In this experiment, after corrections, there were (94± 17)
muon neutrino charged currents and (61± 14) electron neutrino ones [28].



Chapter 4

Neutrino mixing

4.1 Birth of new physics for the neutrino

In this section we are going to observe that neutrinos oscillate, i.e., if a neutrino
is produced in one flavor (e.g., electron), during its travel from the production
region to the place where we detect it, this neutrino can change to other flavors
(e.g., muon or tau). This phenomenon is called neutrino mixing or oscilla-
tions. Let us speak about observations which show this mixing. As a result
of these experiments, a new theory about neutrinos in physics was born. This
chapter follows mainly from Ref. [1].

4.1.1 Natural observations

Among these experiments, some of them are natural, i.e., neutrinos that are
observed have not been produced in laboratories, but, we receive them from
neutrino sources in our Universe, i.e.,

- Solar neutrinos.

- Atmospheric neutrinos.

Let us start from the solar neutrinos.

Solar neutrinos. The first experiment was done by Davis Jr., who detected
the solar neutrinos [7], [8] i.e., the Homestake experiment1. We know that
there are a number of neutrino-producing reactions in the Sun. They can be
categorized into two groups, the first group (called proton-proton chain (pp)
which produces 98.5% of the solar neutrinos [16]) initiated by p+p → d+e++νe
and continues. This group has three phases, in phase I for instance we have these
reactions:

p+ p → d+ e+ + νe, p+ e− + p → d+ νe, etc, (4.1)

1The Homestake is a gold mine at Lead, South Dakota, 4850 ft underground.

25
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where d means deuterium 2H. Phase II contains

7Be + e− → 7Li + νe, etc, (4.2)

and phase III includes

8B → 7Be∗ + e+ + νe, etc. (4.3)

In the second group we have carbon-nitrogen cycle (CNO) which produces 1.5%
of the solar neutrinos2 [16]. In total it can be said that in the Sun, four hydrogen
nuclei called protons convert into a helium nucleus (4He), two antielectrons and
two electron neutrinos, i.e.,

4p → 4He + 2e+ + 2νe. (4.4)

In the above reactions we see that only electron neutrinos are produced (the
Sun is a source of electron neutrinos). Moreover, due to the fact that neutrinos
interact weakly with matter, we can expect that these electron neutrinos escape
from the Sun easily. On earth our detectors are ready to count the number of
these neutrinos.

In the Homestake experiment, the total flux of high energy neutrinos are
tested. These neutrinos are produced either from electron capture on 7Be (4.2)
or from beta decay of 8B (4.3) which both result in high energy neutrinos (above
0.814 MeV) [15]. A radiochemical technique based on the inverse beta decay
is used for detecting electron neutrinos. In fact, neutrinos are detected from
the number of radioactive argon atoms 37Ar produced in a large tank of 390000
liters tetrachloroethylene (C2Cl4) containing 520 tons 37Cl [22], i.e.,

νe + 37Cl → 37Ar + e−. (4.5)

Now our duty is to remove the produced 37Ar from tetrachloroethylene and
observe the decay of 37Ar with half-life of 35 days. It was done through some
processes and the result stated that the solar neutrino flux was 3× 10−36 sec−1

per 37Cl atoms [22] or 3 SNU (solar-neutrino units) where a solar neutrino unit
is one interaction per 1036 target atoms sec−1 [15], [16].

On the other hand, theoretically, the number of neutrinos produced in the
Sun can be calculated. The number of detected solar neutrinos in the experi-
ment was around one third of the neutrinos predicted by theories, the fact which
became famous as the solar neutrino problem or mystery of the missing neu-
trinos [8], [15].

There were three possibilities, 1- error in the theoretical calculations, 2- the
experiment was done wrongly, 3- one should have searched for new physics for
the neutrinos. After checking again and doing a series of tests, it became clear
that there was no error in neither theoretical nor experimental issues [8], [15].
Therefore only the third possibility stayed.

Additionally, in another experiment called Kamiokande II (Kamioka Nucleon

2To see a list of all of the nuclear reactions in the Sun, see Ref. [15].
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Decay Experiment in its second version) solar neutrino problem was tested.
Again, for high energy neutrinos but this time exclusively neutrinos from beta
decay (4.3).

Kamiokande II is an imaging water Cherenkov detector located 1000 m un-
derground containing 2142 metric tons of water in which the energetic solar
neutrinos coming from the Sun collide with the water’s electrons in an elastic
scattering νee→νee.

Cherenkov radiation means that if a charged particle (e.g., an electron) moves
in a dielectric medium (e.g., water) at a speed greater than the speed of light
in that medium3 we will have a blue glow.

This is because the charged particle interacts with the medium and excites
the molecules. When the excited molecules return to the ground state, they
release energy with emitting a photon. The intensity of the photon is not con-
siderable. However, since our charged particle moves faster than the speed of
light in that medium, behind the charged particle a light cone forms where the
intensity of light becomes very high (as an aircraft moving at the speed greater
than the sound speed) and we receive a blue radiation.

In Kamiokande II, energetic neutrinos (coming from the Sun) give their en-
ergy to the electrons and the result of this exchange of energy will be Cherenkov
radiation. With the help of the photomultiplier tubes (PMT’s), the intensity
of this radiation is measured4 and the result, in comparison to the theoretical
calculation, confirms the solar neutrino problem [16].

In fact, in this experiment, solar neutrino flux was measured based on 1040
days of data collection, 450 days from January 1987 until May 1988 for Ee > 9.3
MeV and 590 days from June 1988 until April 1990 for Ee > 7.5 MeV. The ra-
tios of the experimental data to the theoretical calculation from SSM for both
energy threshold cases were

Data/SSM = 0.46± 0.05(stat)± 0.06(syst) Ee > 9.3,
Data/SSM = 0.70± 0.08(stat)± 0.09(syst) Ee > 7.5.

(4.6)

Since the ratios are not around one, the solar neutrino problem was confirmed
[16]. Here (stat) and (syst) refer to the statical and systematic uncertainties.

All of the above experiments have confirmed the Solar neutrino problem for
high-energy neutrinos. This phenomenon has also been observed for the low-
energy neutrinos (produced in the (pp) reactions) in the gallium experiments
GALLEX5 [17] and SAGE6 [23]. In both experiments the rates of the detected
neutrinos are well below the SSM predictions [17], [23].

3According to the relativity no particle can move faster than light, but as light passes
through a medium its speed reduces. Here, we mean that a particle moves at a speed greater
than light in that medium but still less than light in vacuum.

4The angle of the incident neutrinos coming from the Sun with our detectors is important
and must be taken into account.

5GALLEX II received neutrinos from 19 August 1992 until 22 June 1994, before that we
had GALLEX I which started its detection from 14 May 1991 until 29 April 1992. In [17] the
results of the GALLEX II experiment and analysis of the received data in GALLEX I can be
found.

6In both of these experiments (GALLEX and SAGE), very low-energy neutrinos with
energy threshold 233 KeV are monitored through counting of the germanium (Ge) in the



CHAPTER 4. NEUTRINO MIXING 28

Atmospheric neutrinos. Cosmic rays are highly energetic particles such as
protons or atomic nuclei in our Universe. These high-energy particles collide
with the earth’s atmosphere, the result of this impact being showers of hadrons
(baryons and mesons). The hadrons decay and produce atmospheric neutrinos.
For instance a process such as

π+ → µ+ + νµ, (4.7)

followed by
µ+ → e+ + νµ + νe, (4.8)

produce neutrinos. In reaction (4.7), there is a pion (meson) π+ which results in
muonic (4.7) and electronic (4.8) neutrinos. The ratio of the number of muon-
like (µ−like) to electron-like (e−like) events (µ/e) has been calculated both from
the received data and Monte Carlo (MC) simulation (a method for calculating
theoretically), i.e.,

R ≡ (µ/e)DATA / (µ/e)MC .

It is expected that R must be one, however, from experimental measurement
one obtains significantly small values for R. Therefore again we encounter the
mystery of the missing neutrinos [14].

4.1.2 Solution

The solution of this problem is described by neutrino oscillations which was
first proposed by Pontecorvo [47]. In fact, neutrinos are created at one especial
flavor for instance electron neutrinos in the Sun, but as they propagate (from
the Sun to the earth), their flavor states can change to muon or tau neutrinos
and so our detectors on earth detect less electron neutrinos [47].

In other words, if we sensitize our detectors to muon and tau neutrinos as
well as electron, it is expected to receive the total flux of neutrinos coming from
the Sun (or everywhere else) because neutrino oscillations theory believes that
we do not miss any neutrino, but, there are just transformations between neu-
trino flavors.

So far, we have discussed that neutrinos have been detected either through
an inverse beta decay (such as the Homestake, GALLEX and SAGE) or elastic
scattering in Kamiokande II. In the case of the inverse beta decay, we are detect-
ing neutrinos through charge current (CC), i.e., (νeW

+e−) and consequently, we
miss other neutrino flavors since they do not take part in the CC with electron.
Hence, to detect other flavors we have to look for the neutral current reactions
(Fig. (4.1)).

A very important point. As it was said in the Kamiokande II experiment,
we use electron neutrino scattering to detect neutrinos and so Fig. (4.1) is pos-
sible. Therefore, elastic scattering (i.e., Kamiokande II experiment) is sensitive

inverse beta decay reaction of 71Ga to electron, electron neutrino and Ge. The target of the
GALLEX experiment is GaCl3 while the target of the SAGE is gallium metal.
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Figure 4.1: The muon and tau neutrino scatterings with electron.

to all flavors of neutrinos.
However, the differential cross section of (νee) is approximately six times

larger than (νµ,τ , e) [20]. As a result, sensitivity of the elastic scattering to
electron neutrino is bigger than muon and tau neutrinos. This leads to this fact
that elastic scattering in Kamikande II experiment still shows the solar neutrino
problem or in other words, the elastic scattering will not give us the total flux
of the coming neutrinos.

In the Sudbury Neutrino Observatory 7 (SNO) the 8B solar neutrinos flux is
measured through the following CC, NC and ES reactions [21]

νe + d → p+ p+ e− (CC)
νx + d → p+ n+ νx (NC)
νx + e− → νx + e− (ES)

(4.9)

where x refers to the three neutrino flavors. The CC reaction is exclusively
sensitive to the electron neutrino but ES is sensitive to all flavors (although the
sensitivity to muon and tau neutrinos are less than electron). Therefore if

φCC (νe) < φES (νx) ,

then it is proved that all neutrinos received at the detectors must not be electron
although they were produced in the Sun in electronic neutrino states. From the
measured 8B neutrino fluxes in SNO for CC and ES we have [21]

φCCSNO (νe) = 1.75± 0.07(stat)+0.12
−0.11syst± 0.05(theor)× 106cm−2s−1, (4.10)

φESSNO (νx) = 2.39± 0.34(stat)+0.16
−0.14syst× 106cm−2s−1, (4.11)

where (theor) refers to the theoretical uncertainty of the CC cross section.
Therefore (4.10) and (4.11) confirm that neutrinos oscillate. Furthermore, re-
garding NC, we obtain [24]

φNCSNO (νx) = 5.09+0.44
−0.43(stat)

+0.46
−0.43syst× 106cm−2s−1, (4.12)

7SNO is an imaging water Cherenkov detector located at a depth of 6010 m of water
equivalent in the INCO, Ltd. Creighton mine near Sudbury, Ontario. It contains 1000 metric
tons of ultrapure D2O with PMT’s to measure produced light intensity, the data have been
reported between November 2, 1999 and January 15, 2001 [21].



CHAPTER 4. NEUTRINO MIXING 30

which again proves the existence of another neutrino flavors on earth although
they are just produced in electron flavors. Neutrino oscillations have also been
observed in the atmospheric neutrinos in the Super-Kamiokande experiment
[14].

4.1.3 What do neutrino oscillations say about the neu-
trino mass?

Without a doubt if neutrinos oscillate (as they do), they must be massive.
Because neutrinos are produced in one special flavor in the Sun or everywhere
else but as they propagate in vacuum, they change to another flavors. In other
words, neutrinos feel time. According to the relativity, if a particle such as
photon moves at the speed of light, it must not feel time whereas neutrinos do.
Therefore, they must propagate at the speed of less than light and are massive,
i.e.,

Neutrino Oscillations→ Massive Neutrino.

4.2 Neutrino behavior

4.2.1 Dirac neutrino

As mentioned in the previous chapter, neutrinos do not receive their mass in
interaction with the Higgs fields. If they are massive, the mass term of the free
Lagrangian for the neutrinos is (see (2.3))

L̂ = −
∑
α′,α

ν̂α′L (x)MD
α′,αν̂αR (x) + h.c., (4.13)

where α and α′ refer to the neutrino flavors, MD is a complex 3 × 3 matrix8

which makes the Lagrangian a scalar and h.c. refers to the hermitian conjugate.
It was shown in (2.16) that the Lagrangian which describes a fermion mass must
include both left- and right-handed fermions.

The Lagrangian (4.13) is a an operator, therefore we can write the matrix
representation of this operator in a basis of eigenvectors. For instance, for flavor
eigenstates as a basis we have

L̂ =

 〈νeL| L̂ |νeR〉 〈νeL| L̂ |νµR〉 〈νeL| L̂ |ντR〉〈νµL| L̂ |νeR〉 〈νµL| L̂ |νµR〉 〈νµL| L̂ |ντR〉
〈ντL| L̂ |νeR〉 〈ντL| L̂ |νµR〉 〈ντL| L̂ |ντL〉

 . (4.14)

This matrix is not diagonal because the non-diagonal terms such as 〈νeL| L̂ |ντR〉
do not vanish, this is due to the non-zero off-diagonal mass terms in the matrix
M .

In fact, interactions between the left- and right-handed neutrino field op-
erators (see (2.10)), i.e., ν̂α′L (x) and ν̂αR (x) with the left- and right-handed

8The superscript D refers to the Dirac neutrino.
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neutrino states, i.e., 〈να′L| and |ναR〉 result in two Dirac deltas which remove
integrals, and then we are left with off-diagonal terms Mα′α. As a result, eigen-
vectors |ναL〉 and |ναR〉 are not the Lagrangian eigenvectors.

Now, let us find the basis in which the Lagrangian matrix becomes diagonal,
i.e., we should diagonalize (4.14). To do so, it is enough to find the basis in
which the matrix M becomes diagonal. Let us denote this basis by |νi〉 for
i = 1, 2, 3. Then,

〈νiL| L̂ |νjR〉 = miδij , (4.15)

where the matrix m is diagonal,

m =

 m1 0 0
0 m2 0
0 0 m3

 . (4.16)

From the completeness relation one can write

|ναL〉 =
∑
i

|νiL〉Uiα; and |ναR〉 =
∑
i

|νiR〉Viα, (4.17)

where Uiα = 〈νiL |ναL 〉 and Viα = 〈νiR |ναR 〉 are unitary mixing matrices9 [1].
These matrix elements are the projections of the basis |νi〉 into |να〉. Now,
regarding (4.17) we obtain

〈ναL| L̂ |νβR〉 = Mαβ =
∑
i,j

U∗αi 〈νiL| L̂ |νjR〉︸ ︷︷ ︸
miδij

Vjβ , (4.18)

or in the matrix form

MD = U†mV. (4.19)

It is clear that, now, |νi〉 are the eigenvectors of Lagrangian (4.13) (contrary
to the flavor eigenstates which are not). By putting (4.19) into (4.13), it is
obtained that

L̂ = −
∑
α′,α

ν̂α′L (x)

∑
i′,i

miU
∗
α′i′δi′iViα

 ν̂αR (x) + h.c. (4.20)

Now since ν̂α′L (x) and ν̂αR (x) are dependent on α′ and α, we can bring them
into the sigma over i′, i. Therefore ν̂i′L (x) and ν̂iR (x) read

ν̂i′L =
∑
α′

ν̂α′LU
∗
α′i′ ⇒ ν̂i′L =

∑
α′

Ui′α′ ν̂α′L (4.21)

9Here, we have supposed that left- and right-handed neutrinos are transformed with dif-
ferent unitary operators U and V , respectively.
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and
ν̂iR =

∑
α

Viαν̂αR. (4.22)

Relations (4.21) and (4.22) can also be written as

ν̂αL (x) =

3∑
i=1

U∗αiν̂iL (x) , (4.23)

and

ν̂αR (x) =

3∑
i=1

V ∗αiν̂iR (x) . (4.24)

The unitarity of the mixing matrices U and V [1] confirms orthogonality of the
mass eigenstates, because for example from (4.17) we have

|νiL〉 =
∑
α

U∗iα |ναL〉 ⇒ 〈νjL |νiL 〉 =
∑
α,α′

U∗iαUα′j 〈να′L |ναL 〉︸ ︷︷ ︸
δαα′

⇒

〈νjL |νiL 〉 = δij . (4.25)

It is obvious that we can derive a similar relation for the right-handed neutrinos.
From (4.21) and (4.22) one can write Lagrangian (4.20) as follows

L̂ = −
∑
i′,i

mi

[
ν̂i′L (x) δi′iν̂iR (x) + ν̂iR (x) δii′ ν̂i′L (x)

]
= −

3∑
i=1

miν̂i (x) ν̂i (x) . (4.26)

Lagrangian (4.13) contains the Dirac mass term, i.e., we have been discussing
the Dirac neutrinos, this is the reason why the superscript D was used. In the
case of the Dirac neutrino, (4.26) is invariant under the global transformations,
i.e.,

νi → ν′i = exp (iΛ) νi, (4.27)

for a constant Λ. The result of this symmetry must be a conserved quantum
number, i.e., lepton number. As already said, if we set neutrino lepton number
1α for (α = e, µ and τ) and −1α for each antineutrino, there must be lepton
number conservation. We will see that in another case (Majorana neutrino)
lepton number is not conserved.

Why do neutrinos oscillate? In fact oscillations stem from the fact that
(4.14) (i.e., the matrix M) is not diagonal in the basis of flavor eigenstates and
becomes diagonal in the basis of |νi〉. Since (4.13) is the free (non-interacting)
Lagrangian, i.e., mass of neutrino is not produced in an interaction10, we call

10Contrary to the bosons that receive their masses in interactions with the Higgs boson
field.
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the eigenstates |νi〉 the propagation eigenstates or mass eigenstates11.
The mass and flavor eigenstates are totally different, and this difference causes
oscillations phenomenon.

As it was said, Lagrangian (4.13) is not the interaction Lagrangian. Flavor
neutrinos are born in a weak interaction. The interaction Lagrangian Lint is

L̂int = ναW
±lα, (4.28)

where W± are the weak boson fields, and lα is the charged lepton field. It is
completely clear that this Lagrangian is diagonal in the flavor basis only if the
neutrino and charged lepton taking part in this interaction have the same flavor.
Exactly what we have in the nature. Hence, if we define a quantum number
called flavor, it is conserved by L̂int while violated by (4.13).

From now on, we call (4.13) the propagation Lagrangian and show it by

L̂propag. These two operators
(
L̂in, L̂propag

)
do not commute with each other

and consequently, they do not share the same eigenstates.
Let us elaborate more on this issue. Flavor neutrinos are produced in an

interaction, this born flavor neutrino is a vector in another Hilbert space whose
components are the mass eigenstates. This means that this vector is the super-
position of the mass eigenstates, i.e.,

|νeL〉 = Ue1 |ν1L〉+ Ue2 |ν2L〉+ Ue3 |ν3L〉 , (4.29)

|νµL〉 = Uµ1 |ν1L〉+ Uµ2 |ν2L〉+ Uµ3 |ν3L〉 , (4.30)

|ντL〉 = Uτ1 |ν1L〉+ Uτ2 |ν2L〉+ Uτ3 |ν3L〉 . (4.31)

Similarly, we can write for the right-handed flavors but with the help of the
matrix V . In chapters 5 and 6, it will be seen how oscillations happen when
neutrinos propagate.

4.2.2 Majorana neutrino

To discuss Majorana neutrino, we should first find charge conjugated Dirac field
ψc, i.e., how the Dirac field (2.10) transforms under the charge conjugation op-
erator. With the help of (2.7), (2.8) and (2.9) we see that the charge conjugated
Dirac field becomes12

us (p) = −iγ2 (vs (p))
∗

vs (p) = −iγ2 (us (p))
∗

}
⇒ ψc = CψC−1 = −i

(
ψγ0γ2

)T
. (4.32)

Now let us define the matrix C as

C = iγ0γ2 ⇒ CT = −C ⇒ ψc = Cψ
T

= Cγ0ψ∗, (4.33)

and also from matrix C definition it is seen that

CγTµC
−1 = −γµ, (4.34)

11Owing to this fact we may show them by |mi〉 as well as |νi〉.
12For the detailed calculation, see Ref. [5].
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while [
C, γ5

]
= 0. (4.35)

Let us denote neutrino field ψ (for each flavor α) by να. Then

(να)
c

= CνTα , (4.36)

and consequently, we have

(ναL)
c

= CνTαL, (4.37)

and

(ναR)
c

= CνTαR. (4.38)

If we write ναL =

(
ναL

0

)
and ναR =

(
0
ναR

)
, then

γ5ναL =

(
−1 0
0 1

)(
ναL

0

)
=

(
−ναL

0

)
⇒ γ5ναL = −ναL (4.39)

⇒ ναLγ
5 = +ναL ⇒ γ5νTαL = +νTαL

⇒ γ5 (ναL)
c

= (ναL)
c
, (4.40)

where (4.35) and (4.37) have been used. With the exactly similar reasoning, it
is obtained that

γ5ναR = ναR ⇒ (4.41)

γ5 (ναR)
c

= − (ναR)
c
. (4.42)

By comparing (4.40) with (4.41) it is understood that (ναL)
c

must be right-
handed component of the charged conjugated neutrino field, whereas from (4.39)
and (4.42) we see that (ναR)

c
must be left-handed component.

This result allows us to form another Lagrangian for the neutrino mass term,
here we enter ναL (i.e., the left-handed field, exactly such as Dirac case) and
(ναL)c (i.e., the right-handed field). The new Lagrangian is called the Majo-
rana Lagrangian13

(
LM
)

LM = −1

2

∑
α′,α

να′LM
M
α′α (ναL)c + h.c., (4.43)

where MM is the complex non-diagonal Majorana mass matrix. If a neutrino
is described by the Majorana Lagrangian, we call it the Majorana neutrino14.

Same as the Dirac mass term, here we should diagonalize MM to find each

13In other words, this Lagrangian is a mixture of the neutrino field and neutrino conjugated
field which may result in the neutrino mass.

14We do not know if neutrinos are Dirac or Majorana yet [1].
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flavor mass. First, it can be easily shown that MM is a symmetric matrix. Since
the Lagrangian is scalar, we then have

LM =
(
LM
)T ⇒ να′LM

M
α′αCν

T
αL = −ναL

(
MM
α′α

)T
CT νTα′L =

− ναLMM
αα′C

T νTα′L = ναLM
M
αα′Cν

T
α′L ⇒MM =

(
MM

)T
, (4.44)

and so, the Majorana mass matrix is symmetric. Here, in the first line one
minus sign was entered, due to the fact that when we transpose the Lagrangian,
νTαL is brought to the left of να′L. Neutrinos are fermions and when the orders
are changed (owing to the anticommutation of fermions) a minus sign appears.
However, in the second line this minus sign vanishes because CT = −C. A
symmetric matrix can be diagonalized with the help of a unitary matrix15 such
as U , i.e.,

MM = UmUT , (4.45)

where the matrix m is the diagonalized matrix

m =

 m1 0 0
0 m2 0
0 0 m3

 . (4.46)

We know that ναL is a 4 × 1 matrix. Let us define a 3 × 1 matrix νL (whose
each component is 4× 1) as

νL =

 νeL
νµL
ντL

 , (4.47)

so, Lagrangian (4.43) can be written as

LM = −1

2
νLM

M (νL)c + h.c. (4.48)

By plugging (4.45) into the above Lagrangian, it becomes

LM = −1

2
νLUmU

T (νL)c + h.c. (4.49)

Now we write
νLU = ν†Lγ

0U, (4.50)

the matrix U is 3× 3, it can be exchanged with γ0, hence

νLU = ν†Lγ
0U = ν†L

(
U†
)†
γ0 =

(
U†νL

)†
γ0 = U†νL. (4.51)

In addition, we can exchange the 4 × 4 matrix C with the 3 × 3 matrix UT ,
therefore

UT (νL)c = UTCνTL = CUT νTL = C (νLU)
T

= C
(
ν†Lγ

0
(
U†
)†)T

= C
((
U†νL

)†
γ0
)T

= CU†νL
T

=
(
U†νL

)
c
. (4.52)

15The detailed calculation has been done in Ref. [1].
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From (4.51) and (4.52), Lagrangian (4.49) reads

LM = −1

2
U†νL m

(
U†νL

)
c

+ h.c.

= −1

2
U†νL m

(
U†νL

)
c
− 1

2
(U†νL)c m U†νL. (4.53)

Now we would like to define νML and νM as

νML = U†νL

νM = νML +
(
νML
)
c

⇒ (4.54)

− 1

2
νMmνM =

− 1

2
U†νL m

(
U†νL

)
c
− 1

2
(U†νL)c m U†νL + νML νML +

(
νML

)
c
νML . (4.55)

From (4.33) we have(
νML
)
c

= Cγ0
(
νML
)∗ ⇒ νML νML +

(
νML

)
c
νML = νML νML −

(
νML νML

)∗
= 0.

(4.56)

We know that νML νML is a real scalar, thus its complex conjugate equals itself.
Therefore, the above result becomes zero and consequently, the last two terms
in (4.55) vanish. Finally, Lagrangian (4.53) takes this form

LM = −1

2
νMmνM . (4.57)

Note. Before continuing, it is worth noting that according to our definition
for νM , we see that it consists of two terms, the first term is left-handed and
the second one is right-handed (as discussed above). Now, we define

νMR =
(
νML
)
c
, (4.58)

and
νM = νML + νMR . (4.59)

In the case of the Majorana neutrino, left- and right-handed components are
connected through (4.59). This is a characteristic of the Majorana neutrino,
because in the Dirac Lagrangian we define right- and left-handed neutrinos in-
dependently16.

Let us come back to our discussion. In the case of the Dirac neutrinos, we
define νi (for i = 1, 2, 3) which are different from να. These two were related

16There will be another difference between the Majorana and Dirac cases which will be
discussed very soon.



CHAPTER 4. NEUTRINO MIXING 37

to each other in (4.21) and (4.22) via unitary matrices U and V . Similarly, in
the case of the Majorana neutrinos we define νi for the field of neutrino with
mass mi. From (4.54), it is seen that how νL goes under a unitary matrix trans-
formations. Thus same as (4.21) and (4.22) the result of these transformations
should bring us the fields of the massive neutrinos, i.e.,

νM = U†νL +
(
U†νL

)
c

=

 ν1

ν2

ν3

⇒ LM = −1

2

3∑
i=1

miνiνi. (4.60)

What is
(
νM
)
c
? To find it we use (4.58) and (4.59), then

νM = νML +
(
νML
)
c
⇒
(
νM
)
c

=
(
νML
)
c

+ νML = νM ⇒ (νi)c = νi. (4.61)

This important result is called the Majorana condition. Let us see what is
the result of this condition in more detail. From the quantized Dirac field (2.10)
for the neutrino we have

νi (x) =

∫
d3p

(2π)
3

1√
2Ep

∑
s

(
aspu

s (p) exp (−ip · x) + bs
†

p v
s (p) exp (+ip · x)

)
,

(4.62)
then regarding (4.33), (νi)c becomes

(νi)c =

∫
d3p

(2π)
3

1√
2Ep

∑
s

(
bspu

s (p) exp (−ip · x) + as
†

p v
s (p) exp (+ip · x)

)
.

(4.63)

From the Majorana condition (4.61), it is concluded that

asp = bsp, (4.64)

which means that the Majorana neutrino and antineutrino are not two distinct
particles, but one particle

Majorana neutrino ≡ Majorana antineutrino. (4.65)

There is still one unanswered question! Does the Majorana Lagrangian satisfy
lepton number conservation? To answer it, we should know whether or not
(4.53) is invariant under the global transformations

νL → ν′L = exp (iΛ) νL, (4.66)

for constant Λ. Under global transformations we have(
U†νL

)
c
→
(
U†ν′L

)
c

= exp (−iΛ)
(
U†νL

)
c

U†νL → U†ν′L = exp (−iΛ)U†νL

⇒ L′M 6= LM , (4.67)

and so, the answer of the above question (conservation of lepton number in the
Majorana case) is NO.
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This result is consistent with what we already said in the introduction chapter.
There, it was said that Davis and Harmer concluded that neutrinos differ with

antineutrinos and so they claimed that we could not have lepton number
violation. But now, we claim that if and only if neutrinos are Dirac, Davis
and Harmer’s claim is acceptable and if we go beyond the Dirac neutrinos, we

expect lepton number violation, in this case there is no difference between
neutrinos and antineutrinos at all.

4.3 Neutrino mixing matrix

4.3.1 Number of angles and phases in the Dirac and Ma-
jorana neutrino mixing

Consider the unitary mixing matrix U . This matrix belongs to U(n) group. As
for an orthogonal matrix O(n) we have

OT (n)O(n) = 1. (4.68)

For instance in the case n = 2, from the above condition we see

O =

(
a b
c d

)(
a c
b d

)
= 1⇒

 a2 + b2 = c2 + d2 = 1

ac+ bd = 0.
(4.69)

While we are left with three equations, there are four quantities and so there is
just one independent quantity. From (4.69) it is seen that this matrix can be
represented by one Euler-type angle (the only independent quantity) θ. In the
general case, we derive the number of independent quantities (i.e., the number
of angles) as follows

nθ =
n (n− 1)

2
. (4.70)

There is the same story for the unitary matrices. Here our condition becomes
UU† = 1. With the help of this condition, for a 2× 2 unitary matrix we derive
again a2 + b2 = 1 but here a and b are complex. Let us write a = reiα and
b = r′eiβ where r and r′ are real. As a result, we reach r2 + r′2 = 1, so again
this matrix can be characterized with one Euler-type angle, and in general the
number of angles are (4.70).

As for the unitary matrices, apart from the so-called Euler-type angles we
have phases. Phases are parameters in a unitary matrix which are not angles.
In section (3.2.1), it was mentioned that in a unitary matrix there are n2 pa-
rameters. Some of these parameters are angles. The rest are the number of
phases, i.e., nφ,

nφ = n2 − n (n− 1)

2
=
n (n+ 1)

2
. (4.71)

For instance in a 2 × 2 unitary matrix, there is one angle and three phases.
However, one can be rid of the phases if the matrix goes under special transfor-
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mations17. Every unitary matrix U ′ can be related to another unitary matrix
U , as

Ujl′ =
∑
i,l

Sjl (β)U ′li (Sl′i (α))
†
, (4.72)

where S (β) and S (α) are both diagonal phase matrices,

Sjl (β) = eiβjδjl; and Sl′i (α) = eiαl′ δl′i. (4.73)

With the help of (4.72) and (4.73), it can be shown that [1] in the case of the
Dirac neutrinos, we can reduce (2n− 1) of the total phases. Thus, the number
of physical phases, which cannot be removed at all, become

nphysicalφ =
n (n+ 1)

2
− (2n− 1) =

1

2
(n− 1) (n− 2) . (4.74)

In the case of the Majorana neutrino, we should take the Majorana condition
(4.61) into consideration. Then, it is found that [1] the Majorana mixing matrix
UM is

UM = USM (α) , (4.75)

where U is the Dirac mixing matrix and

SM (α) = e−iαnS (α) . (4.76)

Additionally, the number of Majorana phases are [1]

nMφ =
n (n− 1)

2
. (4.77)

4.3.2 Constraints on the neutrino mixing matrices under
CP invariance

Now, let us find constraints of the neutrino mixing matrices (Dirac and Ma-
jorana) in the case of the CP invariance. First the Dirac neutrino. The CP
operator is VCP , the charged current Lagrangian LCCI (x)

LCCI (x) = − g√
2

∑
α,i

lL (x) γµUliνiL (x)W †µ −
g√
2

∑
l,i

νiL (x) γµU∗illL (x)Wµ,

becomes LCCI (x′) under CP invariance (under parity we have: x′ = −x). So,

LCCI (x′) = VCPLCCI (x)V −1
CP . (4.78)

Our strategy is to find each of the lepton field under CP transformations. Under
parity and charge conjugation transformations we have

Pl (x)P−1 = ηpγ
0l (x′)

Cl (x) C−1 = ηcCl
T

(x)

⇒ VCP l (x)V −1
CP = ηpcγ

0Cl
T

(x′) , (4.79)

17When a phase can be removed, it means that the phase is not physical.
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where ηp, ηc and ηpc are arbitrary phases. Similarly, one can find the transfor-
mations of the neutrino field as follows

VCP νiL (x)V −1
CP = η′pcγ

0CνTiL (x′) , (4.80)

with arbitrary phase η′pc. Under the CP transformations the vector field of W
boson is transformed as

VCPWµ (x)V −1
CP = −η′′pcδµW †µ (x′) , (4.81)

with arbitrary phase η′′pc. Here, δµ is the sign factor δ = (1,−1,−1,−1). We
assume that due to the arbitrariness of phases

ηpc = η′pc = η′′pc = 1. (4.82)

Hence from (4.78), (4.79), (4.80) and (4.81), we get this result:

VCPLCCI (x)V −1
CP =− g√

2

∑
l,i

lL (x′) γµU∗liνiL (x′)W †µ (4.83)

− g√
2

∑
l,i

νiL (x′) γµUillL (x′)Wµ, (4.84)

and so by comparing the above result with LCCI it is understood that under the
CP invariance, we have

Uil = U∗li. (4.85)

The above equation shows that under CP invariance (as for the Dirac neutrino),
there must not be any phase in the mixing matrix. This situation is different
for the Majorana neutrino. The CP phase factor in this case is not arbitrary,
but, it can be ±i. In addition, it is derived that the Majorana mixing matrix
satisfies the condition

ρiU
M
li = UM∗li ; ρi = ±1, (4.86)

if CP is invariant18.

4.3.3 Standard neutrino mixing parametrization

Let us come back to the mixing matrix U . From (4.70) and (4.74) we see that in
the case of n = 2, there is one angle and zero phase. Thus, in the two-generation
Dirac neutrinos, the mixing matrix U becomes

U =

(
cos θ sin θ
− sin θ cos θ

)
. (4.87)

18The result discussed in this section will be used later on. We have not explained the
process for derivation of these results with detail. The detailed calculations can be found in
Ref. [1].
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This matrix is real since there is no phase in it. So, automatically CP is invari-
ant. If our neutrinos are Majorana, from (4.77) one phase is expected. Then,
regarding (4.75) and (4.76), the Majorana mixing matrix becomes

U =

(
cos (θ) eiα1 sin (θ)
− sin (θ) eiα1 cos (θ)

)
. (4.88)

Under CP invariance, from condition (4.86), it is obtained that

ρ1 = e−2iα1 ; for ρ1 = ±1, (4.89)

and ρ2 = 1.
Now, let us move to the case of three generations, i.e., n = 3. Due to (4.70)

and (4.74), we are left with three angles and one phase. As a result of the
three angles, there must be three rotations around each axis: x = 1, y = 2 and
z = 3. We put each neutrino vector |νi〉 for i = 1, 2, 3 along each axis 1, 2, 3
respectively, so the orthogonality condition (4.25) is satisfied.

To find the mixed vector, the first rotation is around |ν3〉 at the angle θ12.
Then we obtain

|ν1〉′ =

c12︷ ︸︸ ︷
cos θ12 |ν1〉+

s12︷ ︸︸ ︷
sin θ12 |ν2〉 (4.90)

|ν2〉′ = −s12 |ν1〉+ c12 |ν2〉 (4.91)

|ν3〉′ = |ν3〉 , (4.92)

and so |ν1〉′

|ν2〉′

|ν3〉′

 =

 c12 s12 0
−s12 c12 0

0 0 1


︸ ︷︷ ︸

U1

|ν1〉
|ν2〉
|ν3〉

 . (4.93)

The second rotation is around |ν2〉′, the angle will be θ13. As it was said, there
is one phase. Let us define the phase δ and take the rotation at the angle θ13

as well as the phase transformations e±iδ into consideration. Therefore,

|ν1〉′′ = c13 |ν1〉′ + s13e−iδ |ν3〉′ (4.94)

|ν2〉′′ = |ν2〉′ (4.95)

|ν3〉′′ = −s13eiδ |ν1〉′ + c13 |ν3〉′ , (4.96)

and so |ν1〉′′

|ν2〉′′

|ν3〉′′

 =

 c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13


︸ ︷︷ ︸

U2

|ν1〉′

|ν2〉′

|ν3〉′

 . (4.97)



CHAPTER 4. NEUTRINO MIXING 42

It is worth recalling that the non-zero phase δ, represents the CP violation
effects. Finally, the last rotation will be around |ν1〉′′ at the angle θ23, the
rotation results in

|ν1〉′′′ = |ν1〉′′ (4.98)

|ν2〉′′′ = c23 |ν2〉′′ + s23 |ν3〉′′ (4.99)

|ν3〉′′′ = −s23 |ν2〉′′ + c23 |ν3〉′′ , (4.100)

and consequently, |ν1〉′′′

|ν2〉′′′

|ν3〉′′′

 =

1 0 0
0 c23 s23

0 −s23 c23


︸ ︷︷ ︸

U3

|ν1〉′′

|ν2〉′′

|ν3〉′′

 . (4.101)

Now, one can write the mixing matrix U as

U = U1U2U3 = c13c12 c13s12 c13e−iδ

−c23s12 − s23c12s13eiδ c23c12 − s23s12s13eiδ c13s23

s23s12 − c23c12s13eiδ −s23c12 − c23s12s13eiδ c13c23

 . (4.102)

The above relation is the standard parametrization of the 3× 3 mixing matrix.
It is clear that |ν1〉′′′

|ν2〉′′′

|ν3〉′′′

 = U

|ν1〉
|ν2〉
|ν3〉

 . (4.103)

Here, our duty becomes finding the values of these three angles (θ12, θ23, θ13)
and one phase δ. On theoretical grounds, it is not possible and we should seek
them by experiments.

In the case of the Majorana neutrino, from (4.75) and (4.102) we see easily
that

UM =

 c13c12eiα1 c13s12eiα2 c13e−iδ(
−c23s12 − s23c12s13eiδ

)
eiα1

(
c23c12 − s23s12s13eiδ

)
eiα2 c13s23(

s23s12 − c23c12s13eiδ
)

eiα1
(
−s23c12 − c23s12s13eiδ

)
eiα2 c13c23

 ,

(4.104)

where α1 and α2 are the two extra phases in the Majorana case. Under CP
invariance, i.e., condition (4.86), it can easily be seen that the three phases
become

ρ1 = e−2iα1 ; ρ2 = e−2iα2 , and ρ3 = e−2iδ, (4.105)

where ρi = ±1.



Chapter 5

Quantum mechanical
oscillations

Until now, it has been stated that neutrinos are created at t = 0 (e.g., in the
Sun) in an especial flavor state |να〉, but as they travel (e.g., on earth), some of
these neutrinos are received in other flavors, say, β, i.e.,

|να〉 → |νβ〉 where α 6= β. (5.1)

In this section we are going to discuss, theoretically, neutrino oscillations in
quantum mechanics. This means that the transition probability of flavors will
be derived with the help of the quantum mechanics.

5.1 Plane wave treatment

Let us start with the simplest model in QM, i.e., plane wave massive neutrinos.
In this model [30] we assume that the massive neutrinos are created with definite
mass mi and momentum pi. In fact, the mass eigenstates |νi〉 are in the mass
Hilbert space Hmass and momentum states |pi〉 are in the momentum Hilbert
space Hmom. Therefore, the full Hilbert space is

H = Hmom ×Hmass. (5.2)

So a state describing a massive neutrino, |ψi〉, is supposed to be

|ψi〉 = |νi,pi〉 ≡ |νi〉 |pi〉 , (5.3)

and

H |ψi〉 = Ei |ψi〉 , (5.4)

where H is the free neutrino Hamiltonian and Ei is the energy of the ith massive
neutrino. What is the time evolution of the state |ψi〉? To answer this question,

43
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we use time evolution of states in the Schrödinger picture. Therefore

|ψi (t)〉 = e−iEit |νi (0)〉 |pi (0)〉 ⇒ (5.5)

〈x |ψi (t) 〉 = |ψi (x)〉 = exp (−iEit+ ipi · x) |νi〉 , (5.6)

which shows that our eigenstates are plane waves1. Regarding what has been
said, the state vector describing να, i.e., a produced (in a weak interaction)
neutrino at (tp = 0,xp = 0) in a given flavor α can be easily found. This state
vector, denoted by |ψpα〉, must be a superposition of |ψi〉, so

|ψpα〉 =

3∑
i=1

Uαi |ψi〉 . (5.7)

From (5.6) and (5.7), it is seen that at creation (tp = 0,xp = 0), the state |ψpα〉
becomes |να〉.

Oscillations happen due to the interferences of |ψi〉. Do these interferences
happen at the same time? When the interferences occur, the three eigenstates
|ψi〉 reach the same point. If each of these three eigenstates has a different phase
velocity, it is concluded that the interferences must not occur at the same time.
Owing to this fact, we write

〈x |ψpα (t) 〉 = |ψpα (x)〉 =

3∑
i=1

Uαi exp (−iEiti + ipi · x) |νi〉 . (5.8)

From (4.17) we have

|νi〉 =
∑
α′

U∗iα′ |να′〉 , (5.9)

so (5.8) reads

|ψpα (x)〉 =
∑
α′

3∑
i=1

Uαi exp (−iEiti + ipi · x)U∗iα′ |να′〉 . (5.10)

From the above equation, it is understood that |ψpα (x)〉 can be written as a su-
perposition of the flavor states. With respect to (5.10), the transition amplitude
A (να → νβ) can be found as follows

〈νβ |ψpα (x) 〉 = A (να → νβ) = Uαie
−iφiU∗iβ , (5.11)

where

φi = Eiti − pi.x =
√

p2
i +m2

i ti − pi.x. (5.12)

1According to the Heisenberg uncertainty principle, due to the zero momentum uncertainty
the spatial uncertainty becomes infinite. As a result, plane waves are delocalized in space.
This is one of the disadvantages of the plane wave treatment.
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From amplitude (5.11), one can easily find the transition probability P (να → νβ)
as follows

P (να → νβ) = |A (να → νβ)|2 =

∣∣∣∣∣
3∑
i=1

Uαie
−iφiU∗iβ

∣∣∣∣∣
2

(5.13)

=

3∑
i,j=1

e−i(φi−φj)UβjU
∗
jαUαiU

∗
iβ . (5.14)

As a result of (5.14), it is obtained that

∑
β

P (να → νβ) =

3∑
i,j=1

U∗jαeiφj
∑
β

U∗iβUβj︸ ︷︷ ︸
δji

e−iφiUαi

=

3∑
i=1

U∗iαUαi = 1, (5.15)

where we have used unitarity of the matrix U . This result is natural because
the created neutrino at t = 0, either stays at the same or oscillates to other
flavors. Similarly for A (να → νβ), it is derived that2

A (να → νβ) =

3∑
i=1

U∗iαe−iφiUβi ⇒

P (να → νβ) =

3∑
i,j=1

e−i(φi−φj)U∗jβUαjU
∗
iαUβi ⇒ (5.16)

∑
β

P (να → νβ) = 1. (5.17)

By comparing (5.14) with (5.16), it is understood that if U∗αi = Uiα (i.e., CP
invariance condition in the Dirac neutrino case (see (4.85))), then,

P (να → νβ) = P (να → νβ) . (5.18)

Note. What we have found here is the Dirac transition amplitude, if U is the
Dirac mixing matrix. So, let us denote the amplitude by AD (να → νβ) where
superscript D refers to Dirac. As it was said in the previous section, Majorana
matrix elements are

UMαi = Uαie
iᾱi .

2We should follow exactly the same process as A
(
να → νβ

)
, with the difference that

ναL =
3∑
i=1

νiLU
∗
iα,

has been used.
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Then, Majorana transition amplitude AM (να → νβ) becomes

AM (να → νβ) =

3∑
i=1

UMαi e
−iφiUM∗βi =

3∑
i=1

Uαie
−iφiU∗βi = AD (να → νβ) .

(5.19)

Therefore since the Majorana and Dirac amplitudes (and consequently, their
probabilities) are equal, from now on, we just compute the probabilities for the
Dirac neutrinos.

Now let us come back to the transition probability (5.14). Our goal is to
determine the phase difference φi − φj . To do so, we are faced with some prob-
lems as follows.

In neutrino oscillations experiments, propagation time (between when our
neutrino is produced, e.g., in the Sun and when we receive it on earth) is not
measured. However, the distance of the neutrino propagation is obvious (e.g.,
the distance between the Sun and earth). Therefore, it is needed to convert
time into distance to make our calculation much easier.

Additionally, massive neutrinos are not observed. In other words, the only
particles which can be detected are flavor neutrinos which lie in the superposi-
tion of the massive neutrino eigenstates. Hence, we need to relate the massive
neutrinos’ momenta to measured momenta of the flavor.

5.2 Oscillation phase

5.2.1 Standard oscillation phase

Our derived phase (5.12) is

φi = Eiti − pi.x =
√

p2
i +m2

i ti − pi.x. (5.20)

To relate momenta of the mass eigenstates to the flavor’s momentum, let us
Taylor expand the phase around averages p, m. Here, p, m are the momentum
and mass of the flavor. Since we are in the plane wave treatment, the average
momentum must not be very different from pi. The Taylor expansion of the
energy brings us

Ei =
√

p2
i +m2

i = E + v.δpi +
m

E
δmi, (5.21)

where E =
√

p2 +m2, v = p/E, δpi = p− pi and δmi = mi −m. The above
expansion has been done to first orders in the momentum and mass. As for
the momentum, it is acceptable since δpi must be very small in the plane wave
treatment. But, what about the mass? In the ultra-relativistic limit we have
|v| ≈ 1, then from (5.21), it is seen that

δEi − δpi ≈
m

E
δmi, (5.22)
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where δEi = Ei−E. In this limit (ultra-relativistic), we can say that δEi ≈ δpi
and m/E � 1. Accordingly, one can conclude that (although not necessarily)
δmi is not very small. Hence, we are not (necessarily) allowed to ignore higher
orders of δmi in (5.21). If instead of mi, we expand φi around pi and mass
squared , m2

i , the above problem will be solved. This mean that as long as
δm2

i = m2
i −m2 is small with respect to E, the expansion reads

φi ≈ Et− p.x +
δm2

i

2E
t+ (vt− x) .δpi + Eδti, (5.23)

where we have also expanded the phase around the average time t, with δt =
ti − t. As a result,

φi − φj ≈
δm2

ij

2E
+ (vt− x)

(
δpi − δpj

)
+ E (δti − δtj) , (5.24)

with

δm2
ij = m2

i −m2
j . (5.25)

Very important note. Since the eigenstates are approximated by plane
waves, so there are infinite uncertainties on position and time or in other words,
the plane waves are delocalized in space. Hence, the classical relation x = vt,
cannot be used for a delocalized particle (the velocity cannot be defined because
to find it, we should first localize a particle3).

In spite of this fact, in the standard prescription it is supposed that4 x = vt.
This condition is called the classical propagation. Therefore in comparison with
δm2

i t/2E, (x− vt) δpi becomes negligible and since δpi is supposed to be of
order δm2

i , then the classical propagation condition imposes that

|x− vt| � t. (5.26)

Due to the classical propagation condition, the second term in (5.24) vanishes.
Here, it is worth saying that in some papers such as [31] or [35], we apply
the equal momentum prescription in the standard approach. This means that
δpi = 0. This assumption also leads to disappearing of the second term of
(5.24). However, as it will be seen in an experiment in section (5.4), setting
momentum uncertainty equal to zero results in no oscillations5.

The second condition in the standard approach is equal time prescription.
This condition says that interferences between the mass eigenstates only hap-
pen in equal time6, in other words, δti = 0. Equality in time brings with itself

3We shall see that due to the fact, we should move from the plane wave treatment to the
wave packet approach in which the massive neutrinos become localized in space.

4This is one of the drawbacks of the plane wave approach.
5Zero momentum uncertainty or applying classical propagation brings us the same result

although both of them cannot be justified by the plane wave approach. The reason which
pushes us into using the wave packet treatment rather than the plane wave.

6If this prescription is not satisfied, we are in the non-standard oscillation. We are not
going to discuss it in this thesis, see Ref. [13].



CHAPTER 5. QUANTUM MECHANICAL OSCILLATIONS 48

equality in the phase velocities of the massive neutrinos. It should be noted
that due to the delocalization of the massive neutrinos, equal velocity prescrip-
tion cannot be concluded. Furthermore, equality in velocities is not likely [37],

since if vi = vj , then γi = γj , where γ =
(

1− |v|2
)−1/2

. Hence,

E = γm⇒ Ei
Ej

=
mi

mj
. (5.27)

The ratio Ei/Ej (for i 6= j) is approximately one (see (5.21)), so

Ei
Ej
≈ 1⇒ mi ≈ mj ⇒ δm2

ij ≈ 0, (5.28)

where in this case oscillations would be destroyed. Therefore, equal velocity
prescription is not possible. Regarding the standard assumptions, (5.24) reads

φi − φj ≈
δm2

ij

2E
t ≈

δm2
ij

2 |p|
L, (5.29)

where L ≡ |L|, and in the last approximation, again, we have used the classical
propagation condition. The above result is called the standard oscillation
phase . By defining the oscillation length Losc

ij as follows

Losc
ij =

4π |p|
δm2

ij

, (5.30)

relation (5.29) becomes

φi − φj ≈ 2π
L

Losc
ij

. (5.31)

The phase has been expanded around the average momentum p. Since for each
mass eigenstate there is a momentum uncertainty, then the point around which
we expand the phase must have a momentum spread δp. The distance at which
a neutrino of momentum p goes under one oscillations more than a neutrino of
momentum p+ δp is called the coherence length7 Lcoh

ij [38]. So,

Lcoh
ij δm2

ij

2 (p+ δp)
≈
Lcoh
ij δm2

ij

2δp
− 1⇒ Lcoh

ij ≈ Losc
ij

p

δp
. (5.32)

After this length, oscillations vanish because there are not any interferences
between mass eigenstates anymore.

7In Ref. [38], this length has been derived in terms of energy, while here we have obtained
it in terms of momentum.
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5.2.2 Another prescriptions

The phase (5.20) can also be written as (suppose that x and p are in the same
direction)

φi = Eiti − x
√
E2
i −m2

i . (5.33)

By expanding the above phase around averages E and m2, we obtain for the
phase difference, again, (5.29) if equal energy prescription, i.e., δEi = 0, is taken
into consideration. Regarding equal energy prescription, we do not even need to
use the classical propagation condition (although the equal time is still needed).

Equal energy was suggested by Lipkin [43]. In the next chapter (Eq. (6.34))
we shall see that, in principle, this prescription is acceptable. However, experi-
mentally, energy uncertainty is far from being zero [13].

Conservation of energy-momentum at production, is another prescription
which was discussed by Winter [44]. In this case, neither energies nor momenta
of the mass eigenstates are equal.

We use the energy-momentum conservation to find the exact values of the
energy and momentum of the neutrino, e.g., in the pion (π) decay to muon (µ)
and neutrino (π → µν). However, since by this exact computation, we have
found which mass eigenstate has taken part in oscillations, there will be no
quantum interferences anymore and so oscillations vanish (in section (5.4), this
fact is going to be discussed more).

5.2.3 Oscillation probability

Now let us come back to the transition probability (5.14) and apply the standard
oscillation phase (5.31), then

P (να → νβ) =

3∑
i,j=1

e−i(φi−φj)UβjU
∗
jαUαiU

∗
iβ

=

3∑
i,j=1

exp

(
−2iπ

L

Losc
ij

)
UβjU

∗
jαUαiU

∗
iβ . (5.34)

If oscillations happen due to the interferences of relativistic and non-relativistic
massive neutrinos, it is expected to have incoherence at some distance (see
(5.32)). In this case, there is the incoherent probability P inc (να → νβ) as follows

e−i(φi−φj) → δij ⇒ P (να → νβ) =

3∑
i=1

UβjU
∗
jαUαiU

∗
iβ . (5.35)

But in general, relation (5.34) can be explicitly written in this form:

P (να → νβ) =
∑
i(i=j)

UβiU
∗
iαUαiU

∗
iβ +

∑
i 6=j

exp

(
−2iπ

L

Losc
ij

)
UβjU

∗
jαUαiU

∗
iβ .

(5.36)
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The second term of this equation is

∑
i 6=j

exp

(
−2iπ

L

Losc
ij

)
UβjU

∗
jαUαiU

∗
iβ = exp

(
−2iπ

L

Losc
12

)
Uβ2U

∗
2αUα1U

∗
1β︸ ︷︷ ︸

a

+ exp

(
−2iπ

L

Losc
21

)
Uβ1U

∗
1αUα2U

∗
2β︸ ︷︷ ︸

a∗

+ exp

(
−2iπ

L

Losc
13

)
Uβ3U

∗
3αUα1U

∗
1β︸ ︷︷ ︸

b

+ exp

(
−2iπ

L

Losc
31

)
Uβ1U

∗
1αUα3U

∗
3β︸ ︷︷ ︸

b∗

+ exp

(
−2iπ

L

Losc
23

)
Uβ3U

∗
3αUα2U

∗
2β︸ ︷︷ ︸

c

+ exp

(
−2iπ

L

Losc
32

)
Uβ2U

∗
2αUα3U

∗
3β︸ ︷︷ ︸

c∗

, (5.37)

where a, b and c are complex numbers. Therefor, (5.37) becomes

∑
i 6=j

exp

(
−2iπ

L

Losc
ij

)
UβjU

∗
jαUαiU

∗
iβ =

2

Re

∑
i>j

exp

(
−2iπ

L

Losc
ij

)
UβjU

∗
jαUαiU

∗
iβ

 , (5.38)

where (Re) means the real part of a complex number. With a similar calculation,
we derive for the first term of (5.36)

∑
i

UβjU
∗
jαUαiU

∗
iβ = δβα − 2

Re

∑
i>j

UβjU
∗
jαUαiU

∗
iβ

 , (5.39)

and so (5.36) becomes

P (να → νβ) = δαβ − 2

Re

∑
i>j

UβjU
∗
jαUαiU

∗
iβ

(
1− exp

(
−2iπ

L

Losc
ij

))
= δβα +Rβα +

1

2
ACP
βα , (5.40)

where

Rβα = −2
∑
i>j

Re
(
UβjU

∗
jαUαiU

∗
iβ

)(
1− cos

(
2π

L

Losc
ij

))
, (5.41)

and

ACP
βα = 4

∑
i>j

Im
(
UβjU

∗
jαUαiU

∗
iβ

)(
sin

(
2π

L

Losc
ij

))
. (5.42)
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By doing the similar calculations, but this time using (5.16) we obtain

P (να → νβ) = δβα +Rβα −
1

2
ACP
βα . (5.43)

Relations (5.40) and (5.43) result in

Rβα =
1

2
(P (να → νβ) + P (να → νβ))− δβα, (5.44)

and

ACP
βα = P (να → νβ)− P (να → νβ) . (5.45)

Under CP transformations, P (να → νβ) converts into P (να → νβ). Conse-
quently, it is clear that Rβα is CP-even, i.e., Rβα does not change under CP
transformations while ACP

βα gains a negative sign under CP transformations, i.e.,
it is CP-odd. If there is CP invariance, both probabilities are equal as shown
in (5.18) and therefore ACP

βα vanishes. Owing to this fact, ACP
βα is called the CP

asymmetry.
All of the interactions conserve CPT (see introduction). Under time reversal,

we have

ti → −ti and pi → −pi. (5.46)

Hence

T̂A (να → νβ) T̂−1 =

3∑
i=1

Uαie
iφiU∗iβ = A (νβ → να)⇒ (5.47)

T̂P (να → νβ) T̂−1 = P (νβ → να) , (5.48)

where T̂ is the time reversal operator. Then, as a result of the CPT invariance,
for relation (5.45) we have

ACP
βα = −ACP

αβ ⇒ ACP
αα = 0. (5.49)

Furthermore, by subtracting (5.17) from (5.15), it is obtained that∑
β

P (να → νβ)−P (να → νβ) =
∑
β

ACP
βα = 0⇒

ACP
eµ = ACP

τe = −ACP
τµ . (5.50)

From the above relation, it is understood that by finding one CP asymmetry,
the other ones will be derived, i.e., there is only one independent CP asymmetry.
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5.3 Oscillation probability in two- and three-
flavor cases

5.3.1 Two-flavor oscillations

First, let us consider neutrino oscillations in two-flavor case (n = 2), e.g., νe ↔
νµ. The mixing matrix for n = 2 was found in (4.87), i.e.,

UD =

(
cos θ sin θ
− sin θ cos θ

)
. (5.51)

For α 6= β we have

Uβ1U
∗
1αUα2U

∗
2β = − cos2 θ sin2 θ, (5.52)

while

Im
(
UβjU

∗
jαUαiU

∗
iβ

)
= 0. (5.53)

Using (5.40), (5.41), (5.42), (5.52) and (5.53) we obtain

P (να → νβ) =
1

2
sin2 (2θ)

(
1− cos

(
2π

L

Losc
ij

))
, α 6= β. (5.54)

Moreover, very easily we see that

P (να → να) = 1− P (να → νβ)︸ ︷︷ ︸
α 6=β

= 1− 1

2
sin2 (2θ)

(
1− cos

(
2π

L

Losc
ij

))
.

(5.55)

5.3.2 Three-flavor oscillations

In the case of the three-flavor oscillations, if the CP violation phase δ is equal
to zero, i.e., ACP

βα = 0, from (5.40) we have8

P (να → νβ) = δβα − 4Uβ1U1αUα2U2β sin2

(
2π

L

Losc
21

)
− 4Uβ1U1αUα3U3β sin2

(
2π

L

Losc
31

)
− 4Uβ2U2αUα3U3β sin2

(
2π

L

Losc
32

)
. (5.56)

For more discussion on the three-flavor oscillations with relativistic and non-
relativistic mass eigenstates9 see Ref. [36]. Furthermore, for the case in which
δ 6= 0, see Ref. [1].

8This is valid if there are interferences between all three mass eigenstates.
9In this case, the interferences between some of the mass eigenstates are incoherent and

the story becomes different.
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5.4 Problems of the plane wave approach

According to (5.31) we have

φi − φj ≈ 2π
L

Losc
ij

. (5.57)

From the above relation we see that if interferences between two eigenfunctions
i and j happen in L = mLosc

ij (where m ∈ Z), there are constructive interfer-

ences, while in L =
m

2
Losc
ij we have destructive interferences. Therefore, the

oscillation length is the distance between two constructive interferences.
Now, let us compare neutrino oscillations with Young’s double-slit exper-

iment in which the distance between two constructive interferences (bright
fringes) is one wavelength10 λ. The light diffraction happens in the double-
slit experiment if and only if λ & σx, where σx is the spatial uncertainty (or
the length of the slits).

Same as Young’s experiment in which we have interferences of coherent
beams of light, in neutrino oscillations phenomenon (where there are interfer-
ences of the coherent mass eigenstates), it is expected that oscillations happen
if and only if

Losc
ij & σx. (5.58)

Let us see if the above condition is violated in the plane wave treatment or not.
In an experiment [31], we aim at finding neutrino oscillations νµ ↔ νe. The
muon neutrino is produced through pion (in flight and not at rest) decay, i.e.,
π+ → µ+ + νµ. First, when the distance between source to detector L is varied,
the L−dependence of the probability (see (5.54)) is observed.

Second, we add apparatus to find the produced neutrino mass very precisely.
By precisely, it is meant

∆m2
ν <

∣∣m2
1 −m2

2

∣∣ , (5.59)

where ∆m2
ν is the produced neutrino mass uncertainty. In other words, we know

that in an event such as νµ ↔ νe, which mass eigenstates are contributing.
The produced neutrino mass with the above uncertainty is obtained because

our apparatus measures the 3−momenta and energies of the pion and muon with
uncorrelated uncertainties ∆p and ∆E, respectively. Then, from the energy mo-
mentum conservation, the neutrino energy (with uncertainty ∆Eν), momentum
(with uncertainty ∆pν) and consequently, the neutrino mass with uncertainty
∆m2

ν is derived.
As the measurements are done, it is observed that event rates at the detec-

tor do not oscillate with change of L anymore. The reason can be explained as
follows:

1. when with our accurate measurements, we determine which massive neu-
trino state is involved, there is no longer a flavor which is a superposition

10The waves that come from both openings in the double-slit experiment are coherent, so
their wavelengths are equal.
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of the mass states, or in other words there are no interferences between
mass states anymore. Flavor neutrino is set in one of the mass state and
due to the fact oscillations wash out.

2. The accurate measurements of the pion and muon momenta will put infi-
nite uncertainty on their positions. When there is an infinite uncertainty
on the position of pion, consequently there will be an infinite uncertainty
on the neutrino production region.

In the language of mathematics, it can be said that

m2
ν = E2

ν − p2
ν ⇒

∆m2
ν =

[
(2Eν)

2
(∆Eν)

2
+ (2pν)

2
(∆pν)

2
]1/2

<
∣∣m2

1 −m2
2

∣∣⇒
∆pν <

∣∣m2
1 −m2

2

∣∣
2pν︸ ︷︷ ︸

≈(Losc
12 )
−1

⇒ ∆x > Losc
12 , (5.60)

which, of course, contradicts (5.58). So, mass eigenstates with definite momen-
tum results in no oscillations. This is the reason why we go towards the wave
packet, i.e, momentum uncertainty for the mass eigenstates increases to satisfy

∆pν &
(
Losc
ij

)−1
. We should remember that the classical propagation condi-

tion discussed in section (5.2.1) is another problem of the plane wave approach.
These are not the only problems of the plane wave treatment. We shall see
more, later on.

5.5 Intermediate wave packet treatment

5.5.1 Transition probability and decoherence

Contrary to the plane wave approach, in the intermediate wave packet treat-
ment, it is assumed that the massive neutrinos are localized everywhere in space.
This approach has been discussed in Ref. [31] generally. Here, for simplicity,
we follow Ref. [35] and suppose that the mass eigenstates in momentum space,
i.e., ψa (p), are Gaussian11. So

ψa (p) =
(√

2πσp

)1/2

exp

[
− (p− 〈pa〉)2

4σ2
p

]
, (5.61)

where σp is the momentum spread12 and the Gaussian wave packets are sharply
peaked around 〈pa〉. Regarding (5.61), the mass eigenstates in configuration

11It is supposed that the momentum spread is along the propagation direction x. The
orthogonal momentum spreads are ignored and so we do not use the vector symbol.

12Here, it is supposed that the widths at production and detection are equal, i.e., σp. In
[33], the probability is derived for different widths.
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space, ψ̃a (t, x), become
(
E =

√
p2 +m2

)
ψ̃a (t, x) =

∫
dp

2π
ψa (p) e−iEt+ipx

=
(√

2πσx

)−1/2

exp

[
i (〈pa〉x− 〈Ea〉 t)−

(x− vat)2

4σ2
x

]
, (5.62)

where

〈Ea〉 =

√
〈pa〉2 +m2

a; va =
〈pa〉
〈Ea〉

; σxσp =
1

2
. (5.63)

Now, the transition amplitude for a neutrino created at t = 0, x = 0 in flavor
να, and detected on earth, t = T and x = X, as νβ becomes

Aα→β (X,T ) =

3∑
a=1

Uβaψa (X,T )U∗αa ⇒

Pα→β (X,T ) = |Aα→β (X,T )|2 =
1√

2πσx

3∑
a,b=1

UβaU
∗
αaU

∗
βbUαb

× exp [i (〈pa〉 − 〈pb〉)X − i (〈Ea〉 − 〈Eb〉)T ]

× exp

[
− (X − vaT )

2

4σ2
x

− (X − vbT )
2

4σ2
x

]
. (5.64)

In practical experiments, we do not measure time T . Therefore, we take integral
over T from (5.64) to derive the time average of the probability at X, which
is known, e.g., the distance between the Sun and earth13. By completing the
squares inside the exponentials of (5.64) and applying∫ +∞

−∞
e−ax

2

dx =

√
π

a
, (5.65)

it is obtained that

Pα→β (X,T ) =

[
3∑

a′=1

|Uαa′ |2

|va′ |

]−1 3∑
a,b=1

[
2

v2
a + v2

b

]1/2

UβaU
∗
αaU

∗
βbUαb

× exp

{
i

[
(〈pa〉 − 〈pb〉)− (〈Ea〉 − 〈Eb〉)

[
va + vb
v2
a + v2

b

]]
X

}
× exp

[
−X

2

4σ2
x

(va − vb)2

v2
a + v2

b

− (〈Ea〉 − 〈Eb〉)2

4σ2
p (v2

a + v2
b )

]
. (5.66)

13Since we are integrating over time, it has been assumed that each massive neutrino feels
the same time.
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In the above relation, all of the terms have been derived from solving the time
integral except the term [

3∑
a′=1

|Uαa′ |2

|va′ |

]−1

,

which has been put by hand as a normalization factor. The phase can be seen
in the second line of (5.66) in the imaginary exponential. The oscillation length
is defined as follows

Losc
ij =

2π

|〈Ea〉 − 〈Eb〉|

[
va + vb
v2
a + v2

b

− 〈pa〉 − 〈pb〉
〈Ea〉 − 〈Eb〉

]−1

. (5.67)

Therefore, the imaginary exponential becomes

exp

(
2πi

X

Losc
ij

)
. (5.68)

Let us write the term

exp

[
−X

2

4σ2
x

(va − vb)2

v2
a + v2

b

]
in (5.66) as

exp

[
−
(

X

Lcoh
ab

)2
]
, (5.69)

where

Lcoh
ab = 2σx

[
v2
a + v2

b

(va − vb)2

]1/2

. (5.70)

The factor (5.69) is a damping factor, i.e., coherent interferences vanish if X &
Lcoh
ab . This is the reason why Lcoh

ab is called the coherence length. It is clear
that to have oscillations, the coherence length must be much bigger than the
spatial width σx. This condition is satisfied if (see (5.70)) |va − vb| � 1. In
other words, two massive neutrinos must be nearly degenerate14. The term

exp

[
(〈Ea〉 − 〈Eb〉)2

4σ2
p (v2

a + v2
b )

]
,

imposes that to have oscillations, we must have

〈Ea〉 − 〈Eb〉 . σp

√
v2
a + v2

b . (5.71)

14This result, i.e., nearly degenerate massive neutrinos, will be seen as we go to neutrino
oscillations in quantum field theory too.
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Figure 5.1: Decoherence due to the mass eigenstates with different group veloc-
ities. The figure has been taken from Ref. [13].

Let us briefly comment on the origin of the decoherence. We know that oscil-
lations happen due to the interferences of the mass eigenstates. Suppose that
there are two mass eigenstates with different group velocities vi and vj . If
there is no overlap between these two mass eigenstates, i.e., when these two
have crossed each other completely, then there will not be any interferences and
oscillations wash out (Fig. (5.1)).

5.5.2 Wave packet treatment is still problematic

In paper [33], it has been shown that the coherence length must be smaller than
a limit (see equation (14) in [33]). However, an accurate measurement of energy
at detector increases the coherence length [33]. This fact contradicts equation
(14) in [33]. This is one of the problems of the wave packet treatment which
leads to the approach of neutrino oscillations in the framework of quantum field
theory (next chapter).

Another problem of this treatment is that we cannot define a Fock space of
flavor states which are superpositions of the mass eigenstates (unless the massive
neutrinos are extremely relativistic or nearly degenerate) [34]. However, this
problem can be solved by defining weak-process states. In fact neutrinos are
not observed directly, but particles which interact with neutrinos are detected.
In the weak-process states strategy, we write the probability of mixing as a
transition amplitude between observable particles. In the limit of relativistic
or nearly degenerate massive neutrinos, the newly defined states (i.e., weak-
process) reduce to the weak states [34].

In general, we can say that neglecting observable particles or processes of
neutrino creation and detection is a problem of the wave packet treatment15. In
addition, there are more questions which cannot be answered in the wave packet
approach, e.g., unstable neutrino oscillations etc. For a list of these problems,
see [13]. It is also worth noting that there are some quantum mechanical models
which solve some of these problems such as weak-process states or models stated
in [13].

15Of course, whatever is said as problems of the wave packet treatment, should be added
to the plane wave approach problems.



CHAPTER 5. QUANTUM MECHANICAL OSCILLATIONS 58

5.5.3 Equal energy prescription

As a final word in this section, let us say that the wave packet approach tells
us that only interferences between wave packets with the same energy bring us
non-zero probability. This fact can be seen if we write the wave packet (5.61)
as a function of energy in configuration space, i.e.,

ψ̃a (t, x) =

∫
dEaψa (Ea) exp (−iEat+ ipax)⇒

∫
dtψ̃∗a (t, x) ψ̃b (t, x)

=

∫
dtdEadEbψ

∗
a (Ea)ψb (Eb) e−i(Eb−Ea)t ei(pb−pa)x (5.72)

= 2π

∫
dEaψ

∗
a (Ea)ψb (Eb) ei(pb−pa)x. (5.73)

In the second line, we have used the Dirac delta. This delta can be used if the
time interval ∆T in (5.72) is infinite, or in other words, energy uncertainty is
zero. This is the case called the stationary boundary condition which is going
to be explained later on. If ∆T is finite, the result of the time integral in (5.72)
becomes

1

i (Ea − Eb)
exp (∆T (Ea − Eb)) .

By expanding energies around an average momentum and mass squared (same
as before), it is seen that as

∆T � T osc
ij where T osc

ij =
Losc
ij

v
, (5.74)

the infinite ∆T becomes reasonable and (5.73) is accepted.



Chapter 6

Oscillations in quantum
field theory

6.1 Introduction

As it was discussed in the previous chapter, neutrino oscillations in quantum
mechanics is confronted with some problems. For example, it is not possible
(except in the extremely relativistic case) to define flavor operators in quantum
mechanics approach. Here, in this chapter we are going to see how this problem
(and also the others) are going to be addressed in quantum field theory approach.
In this chapter we have followed Ref. [13].

In general, all of the models which describe neutrino oscillations phenomenon
can be grouped into four categories as follows:

1. the external wave-packet models,

2. the stationary boundary-conditions models,

3. the source-propagator models,

4. the Blasone-Vitiello models.

Let us first start from the first category. In the external wave-packet models,
it is supposed that neutrinos are not created in isolation, this means that they
are not free particles. We know that neutrinos are created in a weak interaction
such as beta decay, where this interaction is mediated by W boson as a propaga-
tor. The produced neutrinos are free particles (i.e., they are on-shell or in other
words they obey the energy-momentum conservation rule, p2 = m2) whereas
the W boson which acts as a propagator is not free (it is a virtual particle, i.e.,
off-shell or in other words, it does not obey the energy-momentum conservation
rule).

In the external wave packet models, it is assumed that the oscillating particle
(i.e., neutrino) must be a propagator and not a free particle. By this we mean

59
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that neutrinos are created (as propagators) as a result of interactions of some
fields, then propagate to the earth where our detectors are set up. There, they
interact with the fields of particles in the detector. Hence, production, propa-
gation and detection are, all, considered as one process and intermediate state
which is the oscillating neutrino cannot be observed directly (see Fig. (6.1)).
So, the oscillation process is considered globally.

Actually, neutrino is created (observed) due to the interactions of some par-
ticles at the source (detector). These particles at the source and detector are
described by wave packets and are called external (in comparison to the oscil-
lating particle which is internal). This is the reason why this model is called
the external wave packet model. This model was first proposed by Giunti et al.
[32] for neutrinos.

In the simplest case, the propagating neutrino is stable. This means that
the oscillating particle does not decay during its travel from the source to the
detector. However, it is also possible to analyze an unstable neutrino as the
propagator1.

The second category is the stationary boundary conditions. These models
are, actually, a special case of the external wave packet. In section (6.2.2) we
will discuss the simplest consistent model of this category proposed by Kobzarev
et al. [45]. In the source-propagator models, neutrinos are described by a prop-
agator coupled to the source but not to the detector. This approach results in
the nonstandard oscillation length or recoil oscillations. The last option is the
Blasone-Vitiello models in which completely different way (in comparison with
the first three ones) has been used for analyzing neutrino oscillations. In this
thesis we are going to discuss the first approach (in the stable case) in detail.

6.2 The external wave packet

In quantum field theory, particles are created and annihilated by field operators.
For instance, if a field φ̂ (x) acts on the vacuum state |0〉, the result will be one-
particle state |k〉 which is a state of one particle with momentum k. In general,
a wave packet representing a given state |ψ〉 with mass m can be written as the
superposition of the single-particle states of momentum k, as follows

|ψ〉 =

∫
[dk] |k〉 〈k |ψ 〉 =

∫
[dk]ψ (k) |k〉 , (6.1)

where state |k〉 is taken at time t = 0, ψ (k) is the wave function in momentum
space, again at time t = 0 and

[dk] =
dk

(2π)
3

1√
2E (k)

; E (k) =
√

k2 +m2. (6.2)

1We are not going to discuss this case in this thesis.
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The reason of
√

2E (k) in the above integral is that the normalization of the
free states |k〉 and |p〉 is set as

〈k |p 〉 = 2E (k) (2π)
3
δ3 (p− k) , (6.3)

and hence, since

〈ψ |ψ 〉 = 1⇒
∫

dk

(2π)
3 |ψ (k)|2 = 1. (6.4)

Now, let us write the wave function ψ (k) in configuration space as

ψ̃ (x, t) =

∫
dk

(2π)
3ψ (k) e−iE(k)t+ik·x. (6.5)

If it is assumed that our wave packet is sharply peaked at k = K, then we can
expand ψ (k) around K and ignore the small terms. Hence, (6.5) becomes

ψ̃ (x, t) =

∫
dk

(2π)
3

[
ψ (K) +

∂ψ

∂k
(k−K) +

(
O (k−K)

2
)]

e−iE(k)t+ik·x.

(6.6)

From the above equation it is seen that ψ̃ (x, 0) has a maximum at the point
x = 0 if

ψ (K + k) = ψ (K− k) (6.7)

is satisfied. This is because in this case, the position derivative of ψ̃ (x, 0) at
x = 0 becomes an integral of an odd function and so vanishes. Therefore
regarding condition (6.7), the wave function in momentum space is denoted
by ψ (k,K). If the wave function in configuration space has a maximum in
x0 6= 0 and t0 6= 0, then the wave function in momentum space is denoted by
ψ (k,K,x0, t0). In this case, the wave function in configuration space becomes

ψ̃ (x, t,K,x0, t0) =

∫
dk

(2π)
3ψ (k,K) e−iE(k)(t−t0)+ik·(x−x0). (6.8)

Now according to (6.1), let us assume a wave packet state |PI〉 (which is sharply
peaked at momentum Q and centered at (tp,xp)) by,

|PI〉 =

∫
[dq]ψPI (q,Q,xp, tp) |PI (q)〉 , (6.9)

which represents an incoming particle. This particle interacts with an outgoing
particle represented by another wave packet state |PF 〉 (which is sharply peaked
at momentum K and again centered at (tp,xp)), i.e.,

|PF 〉 =

∫
[dk]ψPF (k,K,xp, tp) |PF (k)〉 . (6.10)
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Figure 6.1: Feynman diagram for neutrino creation, propagation and annihila-
tion. The creation and annihilation points are not only xP and xD, but, we
should sum over all points where this process can occur. This is due to the
superposition principle of quantum mechanics which states that if a process can
happen in different ways (i.e., all the points in the dashed circles, centered in
xP and xD), all the amplitudes should be added together. The figure has been
taken from Ref. [13].

The result of this interaction is creation of a propagator that, here, is the in-
termediate neutrino, i.e., |να〉. Same as the previous chapter, we use the Greek
index for flavor neutrinos. The produced neutrino propagates from its produc-
tion region and reaches our detector on earth in state |νβ〉. Due to the interaction
between this neutrino and a particle at detector, for instance represented by the
wave packet |DI〉 (which is sharply peaked at momentum Q′ and centered at
detection point (tD,xD)),

|DI〉 =

∫
[dq′]ψDI

(
q′,Q′,xD, tD

)
|DI (q′)〉 , (6.11)

we obtain another particle represented by wave packet |DF 〉 (which is sharply
peaked at momentum K′ and centered at (tD,xD))

|DF 〉 =

∫
[dk′]ψDF

(
k′,K′,xD, tD

) ∣∣DF

(
k′
)〉
. (6.12)

All of what has been discussed, can be easily seen in a Feynman diagram (see
Fig. (6.1)). The amplitude, A, for this process is [5]

A = 〈PFDF | T̂
{

exp

(
−ig

∫
d4xLint (x)

)}
− 1 |PIDI〉 , (6.13)

where Lint is the interaction Lagrangian, T̂ is the time ordering operator and g
is the coupling constant. This Lagrangian annihilates |PI〉 whereas creates |PF 〉
and the neutrino |να〉 at spacetime point x. Hence, we show the interaction
Lagrangian operator as the multiplication of the three fields

Lint (x) = −P̂I ν̂αP̂F . (6.14)
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Expanding the amplitude (6.13) to order g2 means that we must have another
interaction but this time at spacetime point x′. In other words, the created
neutrino at point x propagates to the point x′, then it interacts with |DI〉, both
are annihilated and state |DF 〉 is created2. So, the interaction Lagrangian at x′

is an operator as the multiplication of the three fields

Lint (x′) = −D̂I ν̂βD̂F . (6.15)

Now, let us show the amplitude and interactions in this form:

A = 〈PFDF |
1

2!
(−ig)

∫
d4xP̂I ν̂αP̂F (−ig)

∫
d4x′D̂I ν̂βD̂F |PIDI〉.

We call the neutrino field contraction in the above amplitude, propagator. It is
denoted by G (x− x′) as follows

G (x− x′) = ν̂α (x) ν̂β (x′) . (6.16)

It is worth saying a word about the propagator. As we said, the intermediate
flavor state |να (x)〉 is created, at x, by a field operator such as ν̂α (x) which
acts on the vacuum state |0〉, i.e.,

ν̂α (x) |0〉 = |να (x)〉 . (6.17)

Same as the state |να (x)〉, we can have state |νβ (x′)〉 at the spacetime point x′.
The transition amplitude for a particle, which was born in the state |να (x)〉, to
be in the state |νβ (x′)〉 is called the propagator G (x′ − x). Simply, it can be
said that G (x′ − x) is the amplitude for a particle to propagate from x′ to x,
i.e.,

Gαβ (x′ − x) = 〈να (x) |νβ (x′) 〉 = 〈0| ν̂∗α (x) ν̂β (x′) |0〉 if x0 > x′0, (6.18)

and the amplitude for a particle to propagate from x to x′ is

Gβα (x′ − x) = 〈0| ν̂β (x′) ν̂∗α (x) |0〉 if x0 < x′0. (6.19)

Hence, we can write the propagator as

Gαβ (x′ − x) = 〈0|T [ν̂β (x′) ν̂∗α (x)] |0〉 , (6.20)

where T [ν̂β (x′) ν̂∗α (x)] is the so-called time-ordering operator defined as

T [ν̂β (x′) ν̂∗α (x)] =

θ
(
x0 − x′0

)
ν̂∗α (x) ν̂β (x′) + θ

(
x′0 − x0

)
ν̂β (x′) ν̂∗α (x) . (6.21)

2This is the reason why we use T̂ . In fact, time ordering operator puts t and t′ in order.
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Propagator (6.16) is called the mixed propagator. The mixed propagator is non-
diagonal in the basis of flavor eigenstates, because the flavor transformation is
violated, this is the reason of neutrino mixing.

Here, the problem becomes similar to what was done in the quantum mechan-
ical approach. It means that by a unitary transformation on the fields ν̂α, we
obtain new fields, say, ν̂i. Furthermore, another Lagrangian called Lprop which
is diagonal in the mass basis νi and violates flavor transformation is defined.
Propagator (6.16) is built from Lprop and is diagonal in the mass basis. The
process of diagonalization is same as what we did in section (4.2.1). However,
the following points should be considered

1. In the quantum mechanical oscillations, we claimed that first: there are
flavor states which are created with the interaction Lagrangian, and sec-
ond: there are mass eigenstates which are created with the free Dirac
Lagrangian.
It was seen that with regard to these assumptions, the flavor eigenstates
would be ill-defined. In the QFT approach this problem is overcome since
we assume that both the flavor and mass eigenstates are not free or in
other words they cannot be defined in isolation. So, mixing in QFT ap-
plies to fields and not physical states.
To be more exact, in QFT the flavor eigenstate is created with the interac-
tion Lagrangian Lint and the massive neutrinos with Lprop which includes
the mass matrix generated by the Yukawa interactions.

2. Contrary to the quantum mechanical approach in which we supposed that
right- and left-handed neutrinos must take part into the free Lagrangian
(see (4.13)), here in QFT, we just have neutrino fields. So, we use only
one unitary matrix in comparison to (4.13) where two different unitary
matrices U and V were used for left- and right-handed neutrinos, respec-
tively.

Regarding these points3, we can easily diagonalize propagator (6.16) with the
help of the unitary matrix transformation U , i.e.,

ν̂α =

3∑
i=1

U∗αiν̂i ⇒ (6.22)

Gβα (x′ − x) =
∑
i

U∗βiGD,ii (x′ − x)Uiα, (6.23)

where GD,jj (x′ − x) are elements of the diagonalized propagator. The above
relation can also be written in the matrix form as

G (x′ − x) = U†GD (x′ − x)U. (6.24)

3We are not going to repeat the process of diagonalization. It is same as what has been
done in section (4.2.1). Moreover, see Ref. [1] for more detail.
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With the help of the Fourier transformations, one can write the diagonal prop-
agator GD (x′ − x) as

G (x′ − x) =

∫
d4p

(2π)
4 e−ip·(x

′−x)G̃
(
p2
)
, (6.25)

where G̃
(
p2
)

is [5]

G̃
(
p2
)

=
i

p2 −m2
i + iε

. (6.26)

Now, let us stop speaking about the propagator and come back to the interaction
amplitude. We should apply the field operators on their corresponding wave
packet states. For instance for |PI〉 we obtain

P̂I |PI〉 =

∫
[dq]ψPIMP (q) e−iq·x, (6.27)

where MP (q) is a term which includes the polarization (for vector particles) or
spinors (for spin 1/2 particles). The subscript P refers to the production. We
can do the same calculations for the other states, so the amplitude becomes

A =

∫
[dq]ψPI

∫
[dk]ψ∗PF

∫
[dq′]ψDI

∫ [
dk′
]
ψ∗DF×∫

d4xMP (q, k) e−i(q−k)·x
∫

d4x′MD (q′, k′) e−i(q
′−k′)·x′G (x− x′) , (6.28)

where MP (q, k) and MD (q′, k′) are the interaction amplitudes at production
and detection. Performing the changes of variables,

x→ x+ xP ; x′ → x′ + xD, (6.29)

we are going to plug the diagonal propagator (6.25) into (6.28). Then, the
interaction amplitude (for the massive neutrinos as propagator) Aj becomes

Aj =

∫
d4p

(2π)
4ψ
(
p0,p

) i

p2 −m2
j + iε

e−ip·(xD−xP ), (6.30)

where

ψ
(
p0,p

)
=

∫
d4xeip·x

∫
d4x′e−ip·x

′
∫

[dq]ψPI (q,Q) e−iq·x×∫
[dq]ψ∗PF (k,K) eik·x

∫
[dq′]ψDI

(
q′,Q′

)
e−iq

′·x′×∫
[dk]ψ∗DF

(
k′,K′

)
eik
′·x′MP (q, k)MD (q′, k′) . (6.31)
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By using relation (6.23), the transition amplitude for a neutrino created as να
and received, on earth, as νβ , i.e., A (α→ β, T,L) becomes

A (α→ β, T,L) =∑
j

U∗βj

{∫
d4p

(2π)
4ψ
(
p0,p

) i

p2 −m2
j + iε

e−ip·(xD−xP )

}
Ujα. (6.32)

To find the transition amplitude, (6.30) should be solved. In principle, we can
integrate over p0 and p in any order. However, to get rid of the poles, it is
better to first integrate over p0.

The integration over p0 is done by using the Jacob-Sachs theorem [46]. In
this theorem, it is assumed that the energy spectra of all incident particles are
limited to a finite range. As a result of this assumption, the overlap function
ψ
(
p0,p

)
becomes non-zero only if p2 = E2 − p2 (i.e., p0 = E) within certain

bounds for positive energy. Therefor, we may show the overlap function by
ψ (E (p) ,p). Then, according to the Jacob-Sachs theorem we have the following
asymptotic behavior4 (T →∞)∫

dEψ (E (p) ,p)G
(
E,p2

)
e−iET → π

E (p)
ψ (E (p) ,p) e−iE(p)T . (6.33)

Thus, (6.30) becomes

Aj =
π

(2π)
4

∫
d3p

Ej (p)
ψ (Ej (p) ,p) e−iφj(p), (6.34)

where φj (p) = Ej (p)T − p.L.
Now, everything reduces to finding the overlap function ψ (E,p). In other

words, the forms of the wave packets in (6.31) must be determined. In the
following sections, we are going to become familiar with different wave packet
forms and see if they result in oscillations or not.

6.2.1 Plane wave in- and outgoing states

In the simplest case, let us assume that all the external states (in- and outgoing
states) were approximated by plane waves. Then, we would have

ψPI (q,Q) ∼ δ(3) (q−Q) ψPF (k,K) ∼ δ(3) (k−K)

ψDI
(
q′,Q′

)
∼ δ(3)

(
q′ −Q′

)
ψDF

(
k′,K′

)
∼ δ(3)

(
k′ −K′

)
. (6.35)

By plugging (6.35) into (6.31), we obtain

ψ
(
p0,p

)
∼

δ(4) (P −Q+K) δ(4) (K ′ −Q′ − P )MP (Q,K)MP (Q′,K ′) . (6.36)

4For proof of the Jacob-Sachs theorem, see Ref. [46].
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These delta functions say that:

Q = P +K; and P +Q′ = K ′, (6.37)

where these equalities can also be seen from Fig. (6.1). Regarding (6.37), (6.36)
may be written as

ψ
(
p0,p

)
∼

δ(4) (P −Q+K) δ(4) (K +K ′ −Q−Q′)MP (Q,K)MP (Q′,K ′) . (6.38)

By plugging (6.38) into (6.34), it is obtained that

Ai = δ(4) (K +K ′ −Q−Q′) i

(Q−K)
2 −m2

j + iε
e−i(Q−K)·(xD−xP ). (6.39)

It is clear that the above amplitude will not result in oscillations, because there
is no mass in the phase of oscillations. Hence, external states with plane wave
approximation will ruin oscillations. It means that we should look for models
in which the overlap function is not proportional to the Dirac delta.

6.2.2 The simplest consistent model

In a simple model proposed by Kobzarev et al. [45], a neutrino (as a propagator)
is produced at xP due to the interaction of a charged lepton with an infinitely
heavy nucleus. It is assumed that the charged lepton wave function ψPI (q,Q)
is plane wave, i.e., same as the previous section. However, since the infinitely
heavy nucleus is situated at xP , then momentum uncertainty becomes infinite
and so its wave function is constant

ψPF (k,K) ∼ constant. (6.40)

We have the same situation at the detection point, i.e., the incoming neutrino
interacts with another infinitely heavy nucleus, and as a result of this scattering a
charged lepton (approximated with plane wave) ψDF

(
k′,K′

)
is emitted. Hence,

ψDI
(
q′,Q′

)
∼ constant. (6.41)

By substituting (6.40) and (6.41) (for the heavy nuclei) and the delta functions
in (6.35) (for the plane waves ψPI (q,Q) and ψDF

(
k′,K′

)
) into (6.31), the

overlap function reads

ψ
(
p0,p

)
∼
∫

[dq′]

∫ [
dk′
]
δ(4) (p−Q+ k) δ(4) (−p+K ′ − q′)

M (Q, k)×M (q′,K ′) ∼ δ
(
p0 − Ein

)
δ
(
p0 − Eout

)
, (6.42)

where Ein and Eout are defined as follows

Ein = Q0 − k0; Eout = k′0 −Q′0. (6.43)
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Therefore, we must have the condition (as expected)

Ein = Eout. (6.44)

Regarding (6.42) and (6.34), Aj becomes

Aj ∼ δ (Ein − Eout)

∫
d3p

(2π)
3

i

E2
in − p2 −m2

j + iε
eip·L

∼ δ (Ein − Eout)

∫
d3p

(2π)
3

i

p2
j − p2 + iε

eip·L, (6.45)

where pj =
√
E2

in −m2
j . We should note that in the above integral (i.e., in the

propagator), pj 6= p. This integral can be solved with the help of the contour
integration, the result becomes

Aj ∼
1

|L|
δ (Ein − Eout) eipj ·L. (6.46)

As a result of (6.46), the oscillation probability becomes

AiA∗j ∼ ei(pi−pj)·L. (6.47)

This model leads to oscillations because if we expand pj around an average m2

to first order, we obtain

pj =
√
E2

in −m2
j u pm −

δm2
j

2pm
⇒ AiA∗j ∼

δm2
ij

2pm
L, (6.48)

where δm2
ij = m2

i − m2
j and pm =

√
E2

in −m2. We also derived the above
relation in quantum mechanical approach, it was called the standard oscilla-
tions. The difference is that in the QFT approach, the ”classical propagation
condition” has not been used and so, the result becomes consistent. This is the
advantage of this simple QFT model over the standard model in QM. However,
this model cannot be considered as the final model because of the following
issues:

• it cannot describe unstable oscillations, i.e., if a neutrino decays into an-
other particle before reaching the earth. This is because it is not possible
to suppose that neutrinos can decay into an infinitely heavy state during
their travel (before reaching our detectors on earth).

• In this model, two of the external states were approximated by plane
waves. Plane waves are delocalized in space.

• The amplitude is independent of the direction of L.

• Neutrinos are produced and detected with infinitely heavy nuclei whose
spatial uncertainties are zero. This is not physical because it is not possible
to measure the position of a particle more precisely than its Compton
wavelength.
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As a result of these drawbacks, we should choose another overlap function and
again solve (6.34). Until now, we have been working with the external wave
packets whose energy and 3−momentum uncertainties were zero or infinite.
Now, let us work with an overlap function which depends explicitly on the
energy and 3−momentum uncertainty at the source and at the detector.

Giunti, Kim and Lee proposed for the first time [32] Gaussian external wave
packets5. We will see how applying the Gaussian wave packets with width σx
in configuration space leads to a localization term (no oscillations if Losc . σx).
Moreover, in this approach a coherence length (after which oscillations vanish)
is derived. Both of these conditions agree with the intermediate wave packet
treatment in quantum mechanics.

6.3 Gaussian overlap function

A Gaussian wave packet in momentum space, centered around XP and TP is:

ψχ (p; XP , TP , 〈p〉) =[√
2πσpχ

]−3/2

exp

[
− (p− 〈p〉)2

4σ2
pχ

− ip.XP + iE (p)TP

]
, (6.49)

where the subscript χ says that the system is in state |χ〉. The Gaussian wave
packet is peaked around the average momentum 〈p〉,

〈p〉 = 〈χ| p̂ |χ〉 =

∫
d3p

(2π)
3ψχ (p; XP , TP , 〈p〉) pψ∗χ (p; XP , TP , 〈p〉) , (6.50)

and σpχ is width of the wave packet in momentum space, i.e.,

σ2
pχ = 〈χ| (p̂− 〈p〉)2 |χ〉 =

∫
d3p

(2π)
3ψχ (p; XP , TP , 〈p〉)

{
〈χ| p̂2 |χ〉−

[〈χ| p̂ |χ〉]2 ψ∗χ (p; XP , TP , 〈p〉)
}
. (6.51)

Here, for simplicity, we assume that σpχ has the same amount along the three
directions. Now, we define the width σxχ in configuration space. Therefore,
from the Heisenberg uncertainty we have

σpχσxχ =
1

2
. (6.52)

As it will be seen, the spatial uncertainty does depend on time and so, the shape
of the wave packet differs as time goes on or in other words the wave packet
spreads. This fact is called dispersion. In the external wave packets, dispersion

5For simplicity [32] it is assumed that wave packets are Gaussian. It is clear that any other
approximation can be used, however, Gaussian distribution has been chosen since it results
in analytical integrations.
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is ignored.
Now let us write the wave packet in configuration space, then with respect

to (6.8) we have

ψ̃ (x, t; XP , TP , 〈p〉) =[√
2πσpχ

]−3/2
∫

dp

(2π)
3 exp

[
−σ2

xχq2 + ip · (x−XP )− iE (p) (t− TP )
]
,

(6.53)

where q = p− 〈p〉.
Since the integral is Gaussian, i.e., the momentum is peaked around the

average 〈p〉, then we expand the energy to the second order around 〈p〉 and
ignore the higher orders. Hence,

E (p) =
√

p2 +m2 u 〈E〉+ v.q +
1

2 〈E〉

[
q2 − (v.q)

2
]
, (6.54)

where

〈E〉 ≡ E (〈p〉) =

√
〈p〉2 +m2 and v =

〈p〉
〈E〉

. (6.55)

By plugging E (p) from (6.54) into (6.53), we obtain

ψ̃ (x, t ; XP , TP , 〈p〉) =
[√

2πσpχ

]−3/2

exp {i 〈p〉 · (x−XP )− i 〈E〉 (t− TP )}×∫
dp

(2π)
3 exp

{
−σ2

xχΣijqij + iqi

[
(x−XP )

i − ivi (t− TP )
]}

, (6.56)

where

Σij = δij +
(
δij − vivj

) 2i (t− TP )σ2
p

〈E〉
. (6.57)

With regard to the matrix Σ, and using∫ +∞

−∞
e−ax

2

dx =

√
π

a
, (6.58)

the solution of integral (6.56) becomes:

ψ̃ (x, t ; XP , TP , 〈p〉) =(
2πσ2

x

)−3/4

√
detΣ

[√
2πσp

]−3/2

exp {i 〈p〉 · (x−XP )− i 〈E〉 (t− TP )}×

exp

{
−

((x−XP )− v (t− TP ))i
(
Σ−1

)ij
((x−XP )− v (t− TP ))j

4σ2
x

}
.

(6.59)
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With the help of (6.59), the average position 〈x〉 can be easily found as follows

〈x〉 = 〈χ| x̂ |χ〉 =

∫
d3xψ̃χ (x, t; XP , TP , 〈p〉) x ψ̃∗χ (x, t; XP , TP , 〈p〉)

= v (t− TP ) . (6.60)

Additionally, the spatial uncertainty in configuration space6 can be computed
as follows 〈(

∆xi
)2〉

χ
= 〈χ|

(
∆xi

)2 |χ〉 = 〈χ|
(
x̂i −

〈
xi
〉)2 |χ〉 =

σ2
xχ

[(
ReΣ−1

)−1
]ii
. (6.61)

If we assume that the velocity is along the z axis (i.e., x3), then〈(
∆x1

)2〉
χ

=
〈(

∆x2
)2〉

χ
= 1 +

4σ4
pχ (t− TP )

2

〈E〉2
, (6.62)

and 〈(
∆x3

)2〉
χ

= 1 +
4m4

χσ
4
pχ (t− TP )

2

〈E〉6
. (6.63)

From the above relations we see that the spatial uncertainties are time dependent
and so, the wave packet begins to spread. The fact which was spoken about as
we were discussing the momentum uncertainty, and it was said that this time-
dependence of the spatial uncertainties is known as dispersion. Equations (6.62)
show the transversal spreadings i.e., spreadings in the directions transverse to
z axis (as it was assumed that the velocity is along the z axis) begin at

t− TP u
〈E〉
2σ2

pχ

, (6.64)

while longitudinal spreading (spreading in the direction along vẑ) starts at the
later time (see (6.63))

t− TP u
〈E〉3

2m2
χσ

2
pχ

. (6.65)

In spite of (6.64) and (6.65), we neglect dispersion in the external wave packets.
Thus (see relations (6.62) and (6.63)), we approximate

2 (t− TP )σ2
p

〈E〉
u 0⇒ Σij u δij . (6.66)

In the next section, we are going to start discussing the non-spreading wave
packets.

6We have not done the calculations here. It is same as what we did in (6.51), with the
difference that in the case of the spatial uncertainty we should use the position state com-
pleteness, and ψ̃χ (x, t;XP , TP , 〈p〉).

It is worth saying that the reason of ReΣ−1 in relation (6.61) is that the imaginary parts
of ψ̃χ and ψ̃∗χ cancel each other.
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6.4 Non-spreading Gaussian wave packets

6.4.1 The transition amplitude integral

To find the transition amplitude (6.34) for the non-spreading Gaussian wave
packets, we should first find the overlap function (6.31). It is assumed that the
factors MP (q, k) and MD (q′, k′) in (6.31) vary slowly over the widths of the
wave packets and so we approximate them as

MP (q, k) uMP (Q,K) ; MP (q′, k′) uMD (Q′,K ′) , (6.67)

then, they can be taken out of integral (6.31). Moreover, the wave packet (6.49)
and energy expansion (6.54) should be put into the terms such as∫

[dq]ψPI (q,Q) e−iq·x =

∫
d3q

(2π)
3

1√
2EPI (q)

ψPI (q,Q) e−iq·x, (6.68)

in (6.31). Then, the result will be what we derived in (6.59). It should be
remarked that, here, first: we have Σij = δij (see (6.66)) and second: there is

the extra term (2EPI (q))
−1/2

. If the energy expansion (6.54) is plugged into

the expression, (2EPI (q))
−1/2

, (2EPI (Q))
−1/2

is obtained. Actually, the other
terms of (6.54) have been ignored because the energy is in the denominator and
the terms containing (p− 〈p〉) are negligible. Regarding these two points we
have∫

[dq]ψPI (q,Q) e−iq·x = NPI exp

(
−iEPI (Q) t+ iQ · x− (x− vPI )

2

4σ2
xPI

)
,

(6.69)

where NPI =
(
2πσ2

xPI

)−3/4
(2EPI (Q))

−1/2
. By doing similar calculations for

the term
∫

[dk]ψ∗PF (k,K) eik·x in (6.31), an overlap function at the source,

ψP
(
p0,p

)
, is defined as

ψP
(
p0,p

)
=

NP

∫
d4x exp

(
i
(
p0 − EP

)
t− i (p− pP ) · x− x2 − 2vP · xt+ ΣP t

2

4σ2
xP

)
.

(6.70)

Here, NP = NPF
(
2πσ2

xPI

)−3/4
(2EPI (K))

−1/2
, and

EP = EPI − EPF ; pP = Q−K, (6.71)

1

σ2
xP

=
1

σ2
xPI

+
1

σ2
xPF

, (6.72)

vP = σ2
xP

(
vPI
σ2
xPI

+
vPF
σ2
xPF

)
; ΣP = σ2

xP

(
v2
PI

σ2
xPI

+
v2
PF

σ2
xPF

)
. (6.73)
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Note. We call σxP , the spatial uncertainty at production. If we assume that
σxPI > σxPF , from (6.72), it is seen that σxP < σxPF . Here, we approximate7

σxP ≈ σxPF . (6.74)

Therefore, σxP is principally determined by the external particle with the small-
est width. Additionally, momentum uncertainty at production, σpP , is defined
and from the Heisenberg uncertainty principle we have σxPσpP = 1/2. By using
(6.72), the production velocity vP reads

vP =
vPIσ

2
xPF

+ vPF σ
2
xPI

σ2
xPI

+ σ2
xPF

. (6.75)

Regarding (6.74) (i.e., if the spatial width is dominated by the external particle
with the smallest width), we see that vP is nearly equal to velocity of the
external particle with the smallest width, i.e., here vPF . With similar reasoning,
it is obtained for ΣP that

ΣP =
v2
PI
σ2
xPF

+ v2
PF
σ2
xPI

σ2
xPI

+ σ2
xPF

, (6.76)

and using (6.74) we see that ΣP ≈ v2
PF

(i.e., squared of velocity of the external
particle with the smallest spatial width). Hence,

0 ≤ ΣP ≤ 1. (6.77)

Let us come back to our discussion and define the function ψ∗D
(
p0,p

)
. This

function is derived by changing index P (production) to D (detection) in the
complex conjugated form of (6.70). Therefore, the overlap function (6.31) reads

ψ
(
p0,p

)
= NψP

(
p0,p

)
ψ∗D
(
p0,p

)
, (6.78)

where N = NPNDMP (Q,K)MD (Q′,K ′).
The last step becomes integrating over t and x from (6.70) to derive ψP

(
p0,p

)
(and of course, ψ∗D

(
p0,p

)
in a similar process). To do so, first, the variable u

is defined as follows,

u =x− vpt⇒ ψP
(
p0,p

)
=

NP

∫
dt exp

(
t2
(
v2
p − Σp

)
4σ2

xp

+ i
(
p0 − EP −

(
p− pp

)
· vp
)
t

)
×∫

d3x exp

(
− u2

4σ2
xp

− i
(
p− pp

)
· u
)
. (6.79)

The above integral can be easily calculated by completing squares and using
(6.58), so

ψP
(
p0,p

)
= π2σ−3

pP σ
−1
eP exp

(
−fP

(
p0 − p

))
, (6.80)

7This approximation works very well especially when σxPI � σxPF .
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where

σ2
eP = σ2

pP

(
ΣP − v2

P

)
, (6.81)

and

fP
(
p0 − p

)
=

(
p− pp

)2
4σ2

pP

+

(
p0 − EP −

(
p− pp

)
.vp
)2

4σ2
eP

. (6.82)

Similarly for ψ∗D
(
p0,p

)
, we have

ψ∗D
(
p0,p

)
=π2σ−3

pDσ
−1
eD exp

(
−fD

(
p0,p

))
⇒ ψ

(
p0,p

)
=

Nπ4σ−3
pP σ

−1
eP σ

−3
pDσ

−1
eD exp

(
−fj

(
p0,p

))
, (6.83)

where fj (p) = fP
(
p0,p

)
+ fD

(
p0,p

)
. As a result of (6.77) and (6.81), we see

that

σeP,D ≤ σpP,D. (6.84)

With respect to (6.75), (6.76) and (6.81), σ2
eP becomes (we use σxPσpP = 1/2)

σ2
eP =

σ2
xP

4σ2
xPI

σ2
xPF

(vPI − vPF )
2
. (6.85)

If it is supposed that there are more than two external wave packets in the
production process, we should sum over all of them. Then (6.85) becomes

σ2
eP =

∑
α<β

σ2
xP

4σ2
xασ

2
xβ

(vα − vβ)
2
, (6.86)

where α and β refer to all of the external particles. As we know, σxP is domi-
nated by the particle with the smallest spatial width. Thus, the above sum is
dominated by the terms including the two smallest widths unless their velocities
are approximately equal. Let us call the smallest width, σx1 (with the corre-
sponding velocity v1) and the second smallest one, σx2 (with the corresponding
velocity v2). Therefore, (6.86) becomes

σeP ∼
|v1 − v2|
σx2

∼ 1

T overlap
P

, (6.87)

where T overlap
P is time of the production process. The above relation shows

that σeP is proportional to the inverse of time. This means that σeP can be
considered as the energy uncertainty at the source. Similarly, σeD is defined as
the energy uncertainty at the detector.

Now we would like to solve the oscillation amplitude (6.34) with the Gaussian
wave packets. By plugging (6.83) into (6.34), we obtain

Aj = Nπσ−3
pP σ

−1
eP σ

−3
pDσ

−1
eD

∫
d3p

Ej (p)
exp (−fj (E,p)) e−iφj(p). (6.88)
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In section (6.5), the methods of integration from the above integral are going
to be discussed. Before ending the current section, it should be noted that in
the wave packet approach, there is no energy-momentum conservation at each
vertex anymore. By this we mean that

pP,D 6= p; EP,D 6= p0. (6.89)

This non-conservation stems from the fact that we expanded the energy of the
wave packet to the second order around the peak value 〈p〉. Hence, we are not
left anymore with ∫

d4xei(p+k−q)·x = δ (p+ k − q)∫
d4x′ei(k

′−q′−p)·x′ = δ (k′ − q′ − p) , (6.90)

which guarantee the energy-momentum conservation at each vertex. However,
as the propagation is macroscopic, we can assume an average momentum p0,
and energy E0 as follows

pP = pD ≡ p0; EP = ED ≡ E0, (6.91)

and do expansions (around p0 to the second order and around m0 to the first
order). Therefore,

Ej (p) =
√
|p|2 +m2

j =

E0 + v0. (p− p0) +
1

2E0
(p− p0)

a
Rab (p− p0)

b
+
δm2

j

2E0
, (6.92)

where

v0 =
p0

E0
; Rab = δab − va0vb0; δm2

j = m2
j −m2. (6.93)

Expansion (6.92) will be used when the solutions of integral (6.88) is discussed.

6.4.2 Stationary boundary conditions

We are going to end section (6.4) with a discussion about the Stationary bound-
ary limit. This condition is derived when

vP,D → 0. (6.94)

Then, we see that ΣP,D goes to zero too. In this case due to (6.81), we have

σeP,D → 0. (6.95)

It should be noted that σpP,D are not zero. Since vP,D are the velocities of

the production and detection regions and σ−1
eP,D are the temporal duration of

the production and detection, then the ratios (vP,D/σeP,D) are bounded by the
macroscopic sizes of the production and detection regions, SP,D, i.e.,

|vP,D|
σeP,D

. SP,D. (6.96)
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Figure 6.2: The first drawing is related to Laplace’s method, i.e., the phase
(dotted line) varies slowly in comparison to the overlap function (line). The
second drawing corresponds to the stationary phase in which the phase varies
rapidly. The drawings have been taken from Ref. [13].

6.5 The methods of integration

Integral (6.88) cannot be solved analytically. However, in this integral there are
two types of large parameters (inside the exponentials) with the help of which
we can approximate the solutions. These two kinds of parameters are as follows:

1. the large quantities8 σ−2
pP,D and σ−2

eP,D make fj
(
p0,p

)
very large (see

(6.82)).

2. Moreover, when time increases, the large parameters T and L appear in
the phase.

Laplace’s method. Now, the important question is this: how do these large
parameters help approximate the solutions of (6.88)? First, let us start with
the case in which the phase φj (p) varies much more slowly than fj

(
p0,p

)
ap-

pearing in the overlap function (the first drawing in Fig. (6.2)). Under this
circumstance, we see that the function inside integral (6.88) has a maximum
around where fj

(
p0,p

)
is minimum, i.e., pj .

As we go further from this point in any direction, the amplitude of the func-
tion inside the integral will be vanishingly small and consequently, negligible.
Accordingly, we see that for a significantly non-zero amplitude it is sufficient to

8This is due to the so-called assumption that our wave packets are sharply peaked, so
σpP,D and σeP,D are very small.
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expand the very large function fj
(
p0,p

)
, just, to the second order around the

point pj (because expansions to higher orders bring about terms nearly equal
to zero or at least much smaller than significantly non-zero terms).

It was assumed that the phase varies slowly over the bump of the overlap
function. Therefore, we expand the phase around pj too, and keep only the
consistent terms and ignore the rest (it will be seen what consistent terms mean
as we go further). This method is called Laplace’s method.

It is clear that we are allowed to apply Laplace’s approach when the parti-
cle is sufficiently near the source because only in this case T and L are still not
large parameters and the approximation of a slowly-varying phase is acceptable.
Furthermore, since time is small, wave packets have not started to spread9. It
means that Laplace’s method is good when dispersion of the wave packets is
negligible.

The method of stationary phase. As time increases, the parameters T and
L become large and so we are faced with a fast oscillating (in comparison with
the overlap function) phase (see the second drawing in Fig. (6.2)). In this case,
we are in a situation exactly contrary to the previous one, i.e, phase varies much
faster than the overlap function.

As a result, fast oscillating phase (since phase is imaginary) leads to (nearly)
zero amplitude except in a neighborhood around the stationary point pcl,j ,
which brings us a significantly non-zero amplitude. The point pcl,j is the point
where the first 3−momentum derivatives of the phase vanish. The index, cl,
refers to classical and will be explained later on. Same as before, we should
expand the phase to the second order and ignore the rest terms. This method
which is called stationary phase will be applied when dispersion is taken into
consideration.

6.6 No-dispersion regime

6.6.1 The transition amplitude

In this section we are going to solve (6.88) with Laplace’s method. As explained
above, in the first step we need to expand fj (Ej (p) ,p) and the phase around

pj (where fj (Ej (p) ,p) is minimum) to order
(
p− pj

)2
. Here, there is an

important fact.
We call the fraction δm2

j/2E0, ε, where δm2
j = m2

j − m2
0. The point pj

will be derived to O (ε). The transition amplitude is going to be calculated to
O
(
ε2
)

in the real part (i..e, fj (Ej (p) ,p)) and to order O (ε) in the phase (i.e.,
φj (p)). Furthermore, the first derivative of the phase at pj will be computed to

9In section (6.3), it was said that the spatial uncertainties are time-dependent and so there
must be dispersion, although in our calculations we neglected it. However as we go forward, it
will be seen that the wave packets associated to the mass eigenstates start to spread as time
increases.
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order O (ε) and the second derivatives of the phase and fj (Ej (p) ,p) to order10

O
(
ε0
)
.

Let us first find pj . By plugging Ej (p) from (6.92) into fj (Ej (p) ,p) (with
regard to (6.91)), the first derivative of fj (Ej (p) ,p) is

∇fj (Ej (p) ,p) =2
(p− p0)

σ2
p

+ 2 {[(p− p0) .uP ] uP+

[(p− p0) .uD] uD}+

(
uP
σeP

+
uD
σeD

)
δm2

j

2E0
, (6.97)

where

1

σ2
p

=
1

σ2
pP

+
1

σ2
pD

, (6.98)

and

uP,D =
v0 − vP,D

2σeP,D
. (6.99)

From Eq. (6.98), we see that σp must be approximately equal to the smallest
width among the production and detection widths. In addition, σx is defined in
configuration space and we have σxσp = 1/2. By setting (6.97) zero, pj reads

pj = p0 + (αup + βuD)
δm2

j

2E0
+O

(
ε2
)
, (6.100)

where δm2
j = m2

j −m2
0. Moreover, α and β are two dimensionless coefficients

which can be specified by solving ∇fj (Ej (p) ,p) = 0. However, the exact
forms of them are not needed. Now after finding pj , we can easily find fj

(
pj
)

as follows

fj
(
pj
)

=

(
δm2

j

4σ̃mE0

)2

+O
(
ε3
)
, (6.101)

where σ̃m is a parameter with the dimension of width whose exact form is not
needed. It is seen that fj

(
pj
)

is in O
(
ε2
)

(as explained above). Furthermore,
by using (6.100) we can derive Ej to O (ε) as

Ej =
√

p2
j +m2

j = E0 + ρ̃
δm2

j

2E0
, (6.102)

with

ρ̃ = 1 + αv0.uP + βv0.uD. (6.103)

To compute probability, (6.100) and (6.102) will be used.

10We shall understand later why these orders have been chosen.
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Important point. It should be remarked that we have ignored the terms
proportional to O

(
ε2
)

and higher in the phase because they are very small and
negligible. However in the modulus of the amplitude, i.e., in the real part of the
amplitude, (6.101) is the leading term and yields the observability conditions
(as we will see). In other words, since there is a term such as exp

(
−fj

(
pj
))

,

the less fj
(
pj
)

is, the more exp
(
−fj

(
pj
))

becomes and vice versa. This is the
important difference in approximation between the imaginary phase and real
overlap function.

Now, we should find the second derivatives of fj (Ej (p) ,p) at pj . The

Hessian matrix Σab is defined as follows

Σab =
1

2

∂2fj (Ej (p) ,p)

∂pa∂pb
(
pj
)

=
δab

4σ2
p

+ uaPu
b
P + uaDu

b
D. (6.104)

From the above relation, it is seen that each element of the Hessian matrix can
be written as

Σab =
1

4
(
σabp
)2 =

(
σabx
)2
, (6.105)

where in the last equality we have used the Heisenberg uncertainty principle.
In fact, σabp is the momentum uncertainty along the mixed axis ab, e.g.,

(
σ11
p

)
,

is the momentum width along the x direction and so on. We have the same
story as for the spatial widths. As a result, the elements of the matrix Σab

specify the range of x (and consequently, p) for which the overlap function is
non-negligible. In other words, one can write∣∣pab − pabj ∣∣ . σabp . (6.106)

It is seen that the elements of the Hessian matrix in the Cartesian basis is
not diagonal. For simplicity, we would like to diagonalize the Hessian matrix.
However, diagonalizing of a matrix with elements (6.104) is very complicated.

Thus, first let us define a new basis as
(
x̂′, ŷ′, ẑ′

)
where x̂′ is along uP × uD

while ŷ′ and ẑ′ belong to the plane defined by uP and uD. In this new basis,
the Hessian matrix reads

Σ =


(
4σ2

p

)−1
0 0

0
(
4σ2

p

)−1
+
(
u2
P

)2
+
(
u2
D

)2 (
u2
P

) (
u3
P

)
+
(
u2
D

) (
u3
D

)
0

(
u2
P

) (
u3
P

)
+
(
u2
D

) (
u3
D

) (
4σ2

p

)−1
+
(
u3
P

)2
+
(
u3
D

)2
 .

(6.107)

Now by using the symmetry of Σ, we can diagonalize it. The eigenvalue corre-
sponding to the eigenvector along uP × uD, i.e., σ2

x is

σ2
x =

1

4σ2
p

. (6.108)
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Moreover, σ2
x±, i.e., the eigenvalues corresponding to ŷ′ and ẑ′ are

σ2
x± =

1

4σ2
p

+
1

2

(
|uP |2 + |uD|2

)
± 1

2

√(
|uP |2 + |uD|2

)2

− 4 |uP × uD|2.

(6.109)

Now, the conditions (6.106) can be simply written as∣∣∣px′ − px′j ∣∣∣ . σp;
∣∣∣py′ − py′j ∣∣∣ . σp− ;

∣∣∣pz′ − pz′j ∣∣∣ . σp− . (6.110)

From (6.108) and (6.109), we have

σ2
x+ > σ2

x− > σ2
x ⇒ σ2

p > σ2
p− > σ2

p+. (6.111)

Stationary boundary limit again. In the limit |uP | � |uD| (resp. |uP | �
|uD|) the term |uP × uD|2 can be ignored with respect to

(
|uP |2 + |uD|2

)2

,

and so we obtain σx = σx−. If |uP | � 1/4σ2
p (resp. |uD| � 1/4σ2

p), then we see
that the eigenvector corresponding to σx+ becomes aligned with uP (resp. uD).
We have the same situation in the limit of parallel uP and uD. These conditions
are satisfied in the stationary boundary condition discussed in section (6.4.2).
By using (6.94), (6.95), (6.96) and (6.99) we can write

uP =
v0

2σeP
− SP , (6.112)

and

uD =
v0

2σeD
− SD. (6.113)

Here, there are macroscopic regions SP and SD. If we assume that SP is nearly
zero while SD is much bigger than zero, we can easily satisfy |uP | � |uD|.
Thus, in this case the velocity v0 becomes aligned with uP (from (6.112) we see
that uP goes to infinity) and consequently, it is obtained that

vx,y0 ∼ vx,yP,D → 0; σ2
x− → σ2

x; σ2
x+ →

1

4σ2
p

+ u2
P + u2

D →∞. (6.114)

Let us come back to our discussion. All the necessary terms for expansion of
fj (Ej (p) ,p) have been found. It is now the phase’s turn. As already said, this
phase must vary slowly (in Laplace’s method). As a result of this assumption
we expand the phase to the second order around pj , then

φj (p) =

(√
|p|2 +m2

j

)
T − p.L u φj

(
pj
)

+ (vjT − L)
(
p− pj

)
+

T

2E0

(
pa − paj

)
Rab

(
pb − pbj

)
, (6.115)
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where vj = pj/Ej . It should be noted that the first derivative (i.e., the second
term of (6.115)) should be calculated to O (ε), so we expand vj to order O (ε).
On the other hand, the second derivative (the third term) must be computed
to O

(
ε0
)
, so pj = p0 in the third term.

For a slowly varying phase we assume that

(vjT − L)
(
p− pj

)
. 1, (6.116)

and

T

2E0

(
pa − paj

)
Rab

(
pb − pbj

)
. 1. (6.117)

By putting conditions (6.110) into (6.116) and (6.117) we obtain, respectively∣∣∣vx′j T − Lx′ ∣∣∣σp . 1;
∣∣∣vy′j T − Ly′ ∣∣∣σp− . 1;

∣∣∣vz′j T − Lz′ ∣∣∣σp+ . 1, (6.118)

and

T

2E0
σapR

abσbp . 1. (6.119)

From the definition of Rab (see (6.93)), it is seen that

σapR
abσbp =

∑
a

(
σap
)2 −∑

a 6=b

(
σapv

avbσbp
)
6
∑
a

(
σap
)2 ⇒

T

E0

∑
a

(
σap
)2

. 1⇒

T

E0
σ2
p . 1;

T

E0
σ2
p− . 1;

T

E0
σ2
p+ . 1. (6.120)

If

T

E0
σ2
p . 1 (6.121)

is satisfied, then the other terms in (6.120) become automatically satisfied (see
(6.111)). By applying

L u v0T, if σx+ � |L| , (6.122)

from (6.121), it is obtained that

|L| . |p0|
σ2
p

. (6.123)

As we go forward, it will be seen why condition (6.122) is valid. In addition, it
will become clear that Laplace’s method criterion is just (6.121) or equivalently
(6.123). This means that if T . E0/σ

2
p is met, then conditions (6.118) must be
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satisfied, otherwise the amplitude becomes negligible.
In (6.122), we assumed that σx+ � |L| and Laplace’s condition (6.123) was

derived. What about the stationary boundary limit in which σx+ & |L|? In
this case due to zero energy uncertainty (6.95), time becomes indeterminate and
dispersion loses its meaning. However, (6.123) can be derived without applying
(6.121).

From (6.82), it is seen that when (6.94) and (6.95) are satisfied, then E = E0

and so |p| =
√
E2

0 −m2
j . It means that the absolute value of p becomes constant

and we are left with an angular integration in (6.88). As a result, from (p− p0)
2

we just keep the term p.p0 (the other terms are constant and are taken out of
the integral). So in the stationary boundary limit, we should integrate

exp

(
p · p0

2σ2
p

+ ip · L
)
. (6.124)

If condition (6.123) is valid, then variation of the phase (ip.L) is more slowly
with respect to the angular variation of the overlap function in (6.124). There-
fore, Laplace’s method is still useful.

Now, everything which is needed (i.e., the expansions) to solve (6.88) with
Laplace’s method has been obtained. Then, by plugging the exponentials into
(6.88), we reach a Gaussian integral. With respect to (6.58), the amplitude
reads

Aj = Nσpσp−σp+ exp
(
−iEjT + ipj · L− fj

(
pj
)
− Fj (T )

)
, (6.125)

where N absorbs all of the constants and fj
(
pj
)

was found in (6.101). Further-
more, Fj (T ) is

Fj (T ) =
1

4
(vjT − L)

(
Σ + i

T

2E0
R

)−1

(vjT − L) , (6.126)

where Σ and R are matrices (see (6.104) and (6.93)). In the above function there
is the term i (T/E0)R which is time-dependent. The function exp (−Fj (T )) is
the spacetime envelope of the wave packet with mass eigenstate mj . Therefore,
when time increases and the term i (T/E0)R becomes comparable (and not
negligible anymore) with the time-independent term Σ, then the wave packets
start to spread and so we are faced with dispersion11.

Accordingly, as time approaches the threshold (6.121) (i.e., the term i (T/E0)R
becomes comparable with Σ), we are going to have dispersion of the wave pack-
ets or in other words, Laplace’s method is not applicable anymore. Hence, if
we assume that this time-dependent term is negligible with respect to Σ, then
Laplace’s method is useful. This is the reason that when condition (6.121) or
(6.123) is valid, we are in the no-dispersion regime.

11Thus, despite the fact that the dispersion resulted from the time-dependent spatial un-
certainties (see (6.64) and (6.65)) were neglected, again there is spreading of the wave packets
due to the function Fj (T ).
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Why do we expand the first derivative of the phase to O (ε), while
the second derivatives to O

(
ε0
)
? This issue will be understood when we

start discussing transversal and longitudinal dispersions in the following sec-
tions. But, here, we explain very briefly.

In fact, as a result of these orders we obtain a coherence length beyond which
oscillations vanish. However, in the no-dispersion regime there is no coherence
length, in other words, oscillations do not vanish. Thus, in the no-dispersion
regime one may assume that vj = v0 (i.e., the first derivative is also in O

(
ε0
)
)

and write (6.126) as

F (T ) =
(vx0T − Lx)

2

4σ2
x

+
(vy0T − Ly)

2

4σ2
x−

+
(vz0T − Lz)

2

4σ2
x+

. (6.127)

To have an amplitude significantly different from zero, we must have F (T ) .
1. Hence, it is seen that automatically conditions (6.118) are satisfied12. In
addition, if we divide both sides of the third condition in (6.118) by |L|, we
have

|vz0T − Lz| � 1, (6.128)

if σx+ � |L|. Since σx+ is the largest among the widths (see (6.111)), then we
have the same situations for the first and second conditions in (6.118). As a
result, (6.122) is proved. The fact which tells us for a non-zero amplitude, p0

and L must be nearly parallel. As we go ahead, it will be seen that even in the
stationary limit where σx+ � |L| is violated, p0 and L must stay nearly parallel
for a non-zero probability.

6.6.2 The transition probability

From (6.125), the transition probability can be obtained by squaring the am-
plitude and averaging over the macroscopic time T . This is because time is
not observed in the experiment (same as what was discussed in the previous
chapter). Before doing so, we first expand the function F (T ) around T0, the
point where the first T−derivative of F (T ), i.e., F ′ (T ) vanishes. Hence from
(6.127), we have

F ′ (T0) = 0⇒ T0 =
ṽ0.L̃

ṽ2
0

, (6.129)

where

ṽ0 = σx

(
vx0
σx

x̂ +
vy0
σx−

ŷ +
vz0
σx+

ẑ

)
= σx

√
Σ−1v0, (6.130)

12It is worth repeating that if condition (6.121) is valid, then conditions (6.118) must be
satisfied, otherwise we will have nearly zero amplitude.
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and

L̃ = σx

(
Lx

σx
x̂ +

Ly

σx−
ŷ +

Lz

σx+
ẑ

)
= σx

√
Σ−1L, (6.131)

with Σ−1 = diag
(
σ−2
x , σ−2

x−, σ
−2
x+

)
. With respect to (6.130) and (6.131), one can

write (6.127) as

F (T ) =

∣∣∣ṽ0T − L̃
∣∣∣2

4σ2
x

. (6.132)

By using the following identity,∣∣∣ṽ0 ×
(
ṽ0 × L̃

)∣∣∣ =
∣∣∣ṽ0

(
ṽ0.L̃

)
− L̃ṽ2

0

∣∣∣ = |ṽ0|
∣∣∣ṽ0 × L̃

∣∣∣⇒
4σ2

xṽ
2
0

1

4σ2
x

∣∣∣∣∣∣
ṽ0

(
ṽ0.L̃

)
ṽ2

0

− L̃

∣∣∣∣∣∣
2

︸ ︷︷ ︸
F (T0)

=
∣∣∣ṽ0 × L̃

∣∣∣2 ⇒

F (T0) =

(
ṽ0 × L̃

)2

4σ2
xṽ

2
0

. (6.133)

Moreover, the second T−derivative of F (T ), F ′′ (T0), is

F ′′ (T0) =
ṽ2

0

2σ2
x

. (6.134)

Now, if we put the expanded F (T ) into (6.125) and complete the squares, we
obtain ∫

dT ′AiA∗j ∼

exp

[
−iφij (T0)−

(
δm2

i

)2
+
(
δm2

j

)2
16σ̃2

mE
2
0

− (Ei − Ej)2

4F ′′ (T0)
− 2F (T0)

]
×∫

dT ′ exp
[
−F ′′ (T0)T ′2

]
, (6.135)

where

φij (T0) = (Ei − Ej)T0 −
(
pi − pj

)
· L. (6.136)

The time interval ∆T of the above integral is finite and does not go to infinity.
However, one can use (6.58) if (compare (6.135) with a Gaussian integral)

∆T &
2√

F ′′ (T0)
, (6.137)



CHAPTER 6. OSCILLATIONS IN QUANTUM FIELD THEORY 85

because out of the above range the amplitude is nearly zero and thus negligible.
Now, from (6.134) and (6.137) we can write

|v0|∆T & σ̃xeff, (6.138)

where

σ̃xeff =
|v0|
|ṽ0|

σx. (6.139)

The width of the amplitude (6.125) is the width of the overlap function in
Laplace’s method. The width of the squared amplitude is still the width of
the overlap function. So, σ̃xeff (known as effective width) can be interpreted as
the width of the overlap function. Regarding this approximation, one can write
(6.135) as∫

dTAiA∗j =

Ng̃ exp

[
−iφij (T0)−

(
δm2

i

)2
+
(
δm2

j

)2
16σ̃2

mE
2
0

− (Ei − Ej)2

4F ′′ (T0)
− 2F (T0)

]
, (6.140)

where Ng̃ absorbs all of the non-exponential constants (independent of L) inside
itself.

As it was already said for a non-zero probability, F (T0) must be very small.
Therefore, (6.133) imposes that ṽ0 and L̃ are nearly parallel. What about non-
tilted L and v0? In the case σx+ � |L| we saw that L and v0 are nearly parallel.
Due to this parallel, we can write

L =
v0

|v0|
|L|+O (σx+) . (6.141)

Regarding (6.129), (6.130), (6.131) and (6.141), it is derived that

T0 =
|L|
|v0|

+O (σx+) . (6.142)

Now, by using (6.100), (6.102), (6.103) and (6.142), the phase (6.136) reads

φij (T0) =
δm2

ij

2 |p0|
(|L|+O (σx+)) , (6.143)

which is the standard phase (5.29) or (5.31).
The other case is σx+ � σx. This case can be (but not only) stationary

limit boundary. If so, ṽ0 → 0 and L̃
z → 0 (see (6.114), (6.130) and (6.131)).

Accordingly, the point T0 (see (6.129)) becomes indeterminate and we cannot
have any information about v0 and L.

This problem can be overcome if we write F (T0) with regard to v0 and L
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and not tilted quantities. So, first, we find T0 by plugging (6.130) and (6.131)
into (6.129). Then from (6.132), F (T0) reads

F (T0) =
(
σ2
x+ (vy0 )

2
+ (vz0)

2
)

(Lx)
2 − 2σ2

x+v
x
0v

y
0L

xLy − 2vx0v
z
0L

xLz+(
σ2
x+ (vx0 )

2
+ (vz0)

2
)

(Ly)
2 − 2vy0v

z
0L

yLz +
(

(vx0 )
2

+ (vy0 )
2
)

(Lz)
2
. (6.144)

It is important to note that the above equation is not valid only in the stationary
limit, but, it is accepted in all limits.

Actually, F (T0) . 1. At the most, we assume that F (T0) = 1. Therefore,
(6.144) becomes an ellipse in space (Lx, Ly, Lz). Due to the non-quadratic terms
such as LxLy, the diameters of this ellipse might be not aligned with Lx, Ly

and Lz. We should diagonalize the ellipse to find the corresponding eigenvectors
and eigenvalues. This is done if the matrix, whose elements are the coefficients
of LiLj in (6.144), is diagonalized.

By doing so, it is found that there is an eigenvalue s3 = 0 associated to an
eigenvector along v0. The other two eigenvalues are positive s1 and s2 (where
s1 > s2) corresponding to two eigenvectors in the plane Lz = 0. Hence, there is a
cylinder with an axis along v0 and elliptical section. If the stationary boundary
conditions are taken into consideration (see (6.114)), s1 and s2 become

s1 →
1

4σ2
x

,

s2 →
1

4σ2
x

σ2
x (vz0)

2

σ2
x+ (vx0 )

2
+ σ2

x+ (vy0 )
2

+ σ2
x (vz0)

2
.

The ellipse equation in the new basis
(
Lx
′
, Ly

′
, Lz

′
)

becomes(
Lx
′
)2

(1/s1)
+

(
Ly
′
)2

(1/s2)
+

(
Lz
′
)2

(1/s3)
= 1. (6.145)

The ellipse’s diameters along the axes Lx
′
, Ly

′
and Lz

′
are

√
1/s1,

√
1/s2 and√

1/s3, respectively. The diameter along Lz
′

is infinite. Let us assume we are
in the stationary limit (6.114): σx+ → uP → ∞ and vx,y0 ∼ vx,yP . Therefore,√

1/s2 can be written as follows

√
1/s2 = 2 |uP |

√
(vx0 )

2
+ (vy0 )

2

(vz0)
2 . 2 |uP |

|vP |
vz0

. (6.146)

In the stationary limit, we have

σeP =
|v0 − vP |

2 |up|
=
|v0|

2 |uP |
=

vz0
2 |uP |

⇒

|vP |
σeP

= 2 |uP |
|vP |
vz0

. (6.147)
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Hence, by comparing (6.146) with (6.147) we obtain that√
1/s2 .

|vP |
σeP

⇒
√

1/s2 . SP , (6.148)

since (see (6.96))

SP &
|vP |
σeP

. (6.149)

With respect to this fact that s2 6 s1, we must also have√
1/s1 . SP . (6.150)

From (6.148) and (6.150), it is concluded that in the stationary limit, the diam-
eters of the ellipse along Lx

′
and Ly

′
must be smaller than SP,D. This means

that if it is assumed that SP,D are very small, then the components Lx
′

and Ly
′

must be negligible with respect to the diameter along Lz
′

(or v0) which goes to
infinity. As a result of this discussion, the phase reads

φij (T0) =
∆m2

ij

2 |p0|
(|L|+O (SP,D)) , (6.151)

which is again equal to the standard oscillation phase if SP,D � |L| u Lz
′
.

Now, with the help of (6.102) and (6.134) we obtain

(Ei − Ej)2

4F ′′ (T0)
=

(
ρ̃σ̃xeff

δm2
ij

2
√

2 |p0|

)2

. (6.152)

Finally regarding (6.140) and (6.32), substituting F (T0) with (6.133), substi-
tuting φij (T0) with (6.143) or (6.151) (no difference) and applying (6.152), the
probability transition for flavor mixing reads

Pα→β (L) ∼ Ng̃ exp

−
(
ṽ0 × L̃

)2

2σ2
xṽ

2
0

 3∑
i,j=1

UiαUjβU
∗
βiU

∗
αj

× exp

−2πi
L

Losc
ij

−
(
δm2

i

)2
+
(
δm2

j

)2
16σ̃2

mE
2
0

− 2π2

(
ρ̃σ̃xeff

Losc
ij

)2
 , (6.153)

where

Losc
ij =

4π |p0|
δm2

ij

. (6.154)

The factor Ng̃ is a normalization constant which can be easily found as∑
β

∫
L2dΩPα→β (L) = 1, (6.155)

where Ω is the solid angle.
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6.7 Transversal-dispersion regime

6.7.1 Definition

As time increases and violates (6.121), the story becomes different. This means
that φj (p) becomes big and consequently, the function exp (−iφj (p)) oscillates
rapidly over most of the range of integration. Here, by rapidly we mean that in
comparison to the overlap function, i.e., exp (−fj (E,p)), exp (−iφj (p)) varies
more rapidly. Therefore from (6.82), we must have

|p− p0|
2σpP

. 1. (6.156)

Since σpP � 1, then p and p0 must be nearly parallel. In other words, if p and
p0 are nearly parallel, the oscillation amplitude becomes significantly different
from zero.

Due to the fast oscillations, the oscillation amplitude is approximately zero
except in a neighborhood around pcl,j where this point, called stationary point,
is the solution of

∇pφj (p) = 0. (6.157)

As discussed in section (6.5), in this case integral (6.88) is solved with the sta-
tionary phase method in which both fj (p) and φj (p) must be Taylor expanded
around pcl,j to the second order. This is because the other (big) terms become
very distant from pcl,j and then their contributions practically vanish.

Before continuing, let us discuss a little more the dispersion. In the station-
ary limit, i.e., conditions (6.114), we can write (6.126) as

Fj (T ) =

(
vxj T − Lx

)2
4σ2

x + iT/2E0
+

(
vyj T − Ly

)2
4σ2

x− + iT/2E0
+

(
vzjT − Lz

)2
4σ2

x+ + iT/2E0

(
1− |v0|2

) .
(6.158)

The above equation shows that in the direction of p0, i.e., the z axis, there is
the relativistic time contraction 1 − |v0|2. So in this direction, the temporal
term effect appears later, in comparison with the directions transverse to p0.

Furthermore, since σ2
x+ is much bigger than σ2

x (note: σx → σx−), again in
the direction of p0, the effect of σ2

x+ is considerable. Hence, it is understood
that the method of stationary phase is preferred in the transversal directions
(i.e., the x and y axes) rather than the longitudinal direction (i.e., the z axis).

If the stationary boundary limit is not valid, we should diagonalize the matrix
R in (6.126), i.e.,

R =

1 0 0
0 1 0

0 0 1− |v0|2

 . (6.159)
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Thus, in the direction of p0 there is the relativistic contraction 1−|v0|2, whereas
in the transversal directions we do not have this contraction. So, it can be said
that in the directions transverse to p0, we should apply the stationary phase
method to solve integral (6.88) rather than in the longitudinal direction.

When the stationary phase method has been chosen for the transversal di-
rections whereas Laplace’s method has been used for the longitudinal direction,
we are in the transversal-dispersion regime.

But if time increases and crosses the transversal-dispersion regime, i.e., in
spite of the time contraction or very big σx+, the temporal term effect is not
negligible anymore, we must integrate in all directions, transversal or longitu-
dinal, by the stationary phase method. In this case we are in the longitudinal-
dispersion regime which is going to be discussed in section (6.8).

6.7.2 The transition amplitude

Now let us come back to the transversal-dispersion regime. Regarding (6.157)
we have

φj (p) =

(√
|p|2 +m2

j

)
T − p · L⇒ ∇pφj (p) =

(
pcl,j

Ecl,j
T − L

)
= 0, (6.160)

where Ecl,j =
√∣∣pcl,j

∣∣2 +m2
j . Due to (6.160) we see that

pcl,j ‖ L. (6.161)

From (6.156), we understand that p and p0 must be nearly parallel. In (6.161),
it is seen that momentum at pcl,j is parallel with L. Therefore at pcl,j , p0 and
L are nearly parallel. Since we do not go very far away from point pcl,j , then
it can be said that p0 and L are nearly parallel for an amplitude significantly
different from zero.

Suppose that L is along the z axis. Then, from (6.161) it is understood that
the stationary points pxcl,j and pycl,j are zero. So, to integrate along the axes x
and y by stationary phase method, we should expand φj (p) and fj (p) around
pxcl,j = pycl,j = 0, to the second order as follows

φj (px, py) u φj (0, 0) +
1

2

(
p2
xφ

xx
j (0, 0) + p2

xφ
yy
j (0, 0)

)
+ pxpyφ

xy
j (0, 0) ,

(6.162)

fj (px, py) u pxfj (0, 0) + pxf
x
j (0, 0) + pyf

y
j (0, 0) +

1

2

(
p2
xf

xx
j (0, 0) + p2

xf
yy
j (0, 0)

)
+ pxpyf

xy
j (0, 0) , (6.163)

where the superscript x (xx) refers to the first (second) px−derivative of fj (px, py)
or φj (px, py) at pxcl,j = pycl,j = 0. There is the same story for the superscript y.
Now, we should just put the expanded functions (6.162) and (6.163) into (6.88),
and so the integral over px and py will be Gaussian. Hence from (6.58), (6.88)
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becomes (note: pz ≡ p, p0 ≡ pz0, vp ≡ vzp)

Aj =
Ng (l)

T − iµ

∫
dp exp (−iφj (p)− fj (p)) , (6.164)

where N contains the constant (independent of distance). In (6.164), fj (p) =
fjP (p) + fjD (p) with

fjp (p) =
(p− p0)

2

4σ2
pP

+

(√
p2 +m2

j − E0 − (p− p0) vp

)2

4σ2
eP

, (6.165)

where E0 absorbs px0v
x
p + py0v

y
p into itself. Moreover,

g (l) = exp

(
− (p0 × l)

2

4σ2
p

)
with l = L/L, (6.166)

and

φj (p) =
√
p2 +m2

jT − pL. (6.167)

The constant µ in the denominator of (6.164), which is equal to E0/2σ
2
p, guaran-

tees that time must be bigger than µ, i.e., the no-dispersion regime has finished.
In the limit where T � µ, then the denominator becomes approximately T .

To have a significantly different amplitude from zero we must have

|p0 × l|2

4σ2
p

=
|p0|

2

4σ2
p

sin2 (θ) . 1, (6.168)

where θ is the angle between L and p0. In fact, as it was discussed in the previous
section, in the no-dispersion regime the transition probability is significantly
different from zero within a cylinder of axis p0 (remember that p0 ‖ L in the
no-dispersion regime). Now, in the transversal-dispersion regime, an angle θ
appears between p0 and L. Thus, we are left with a cone with the axis along p0

(Fig. (6.3)). However, as already explained p0 and L must be nearly parallel,
i.e., the angle θ must be very small. From (6.168), it is seen that only if

θ . arcsin

(
σp
|p0|

)
,

the transition amplitude is significantly different from zero.
Now, we are left with just one integral over p (recall that p ≡ pz). To

calculate this integral it is needed to know whether dispersion along p0 has
started or not (the longitudinal dispersion is postponed with respect to the
transversal ones). If dispersion has not yet started, then Laplace’s method will
be the best approach. In this case we should follow the steps such as those in
the no-dispersion case.
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Figure 6.3: Probability becomes significantly different from zero within a cylin-
der in the no-dispersion regime and within a cone in the transversal-dispersion
regime. The figure has been taken from Ref. [13].

This means that both function (6.165) and phase (6.167) should be Taylor

expanded around the point pj , for which fj (p) is extremal, to order (p− pj)2
.

Moreover, the phase must be slowly varying13.
For finding pj (to O (ε)), the first derivative of (6.165), f ′j (p), should be set

to zero, i.e.,

f ′j (p) = 0⇒ pj = p0 + (ρ− 1)
δm2

j

2p0
, (6.169)

where

ρ = σ2
peff

(
1

σ2
p

− vp (v0 − vp)
σ2
eP

− vD (v0 − vD)

σ2
eD

)
, (6.170)

with the effective momentum width

1

σ2
peff

=
1

σ2
pP

+
1

σ2
pD

+
(v0 − vp)2

σ2
eP

+
(v0 − vD)

2

σ2
eD

. (6.171)

Then, fj (pj) to O
(
ε2
)

reads

fj (pj) =
1

4σ2
m

(
δm2

j

2E0

)2

+O
(
ε3
)
, (6.172)

with

1

σ2
m

= σ2
peff

[
1

σ2
p

(
1

σ2
eP

+
1

σ2
eD

)
+

(vp − vD)
2

σ2
ePσ

2
eD

]
. (6.173)

Since σeP,D 6 σpP,D (see (6.84)), then σpeff is dominated by the smallest be-
tween σeP and σeD, say σeP . Moreover, there is the same story for σm. So, we

13Recall that we find pj to O (ε) , fj (pj) to O
(
ε2
)
. The first derivative of the phase to O (ε)

and the second derivatives to O
(
ε0
)
.
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have σm ∼ v0σp.
As the next step, f ′′j (pj), i.e., the second derivative of fj (p) at pj should be

derived (to O
(
ε0
)
). So,

1

2
f ′′j (pj) =

1

4σ2
peff

. (6.174)

Now, from (6.172) and (6.174), one can write the expansion of fj (p) as follows

fj (p) = fj (pj) +
(p− pj)2

4σ2
peff

. (6.175)

Since in Laplace’s method the overlap function varies faster than the phase,
so the momentum width of the oscillation process is the width of the overlap
function. This means that with respect to (6.175), the physical meaning of σpeff

is the width of the oscillation process. Same as what we had in (6.110), σpeff in
(6.175) gives a constraint on the range of momentum, i.e.,

|p− pj | . 2σpeff. (6.176)

Furthermore, we define the effective spatial width σxeff and according to the
Heisenberg uncertainty we have σxeffσpeff = 1/2.

The width σm is called mass width. We know that fj (pj) must be less than
one, so from (6.172) it is seen that∣∣δm2

j

∣∣
2E0

. σm ⇒

(∣∣δm2
i

∣∣
2E0

)2

+

(∣∣δm2
j

∣∣
2E0

)2

. 2σ2
m ⇒(

δm2
ij

2E0

)2

. 2σ2
m, (6.177)

where the above result stems from the fact that(∣∣δm2
i

∣∣
2E0

)2

+

(∣∣δm2
j

∣∣
2E0

)2

>

(
δm2

ij

2E0

)2

.

From (6.177), it is easily seen that σm puts a constraint on the mass difference.
This is why σm is called the mass width.

To complete Laplace’s method, we should Taylor expand the phase (6.167)
around pj (following (6.115) with respect to the fact that the non-zero momen-
tum range is along z axis). So,

φj (p) u φj (pj) + (vjT − L) (p− pj) +
m2
jT

2E3
0

(p− pj)2
, (6.178)
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where (6.93) has been used, i.e., R33 = 1 − v2
0 , and v0 = p0/E0. Regarding

(6.176), Laplace’s method can be applied if

|vjT − L| 2σpeff . 1; (6.179)

m2
jT

2E3
0

4σ2
peff . 1. (6.180)

As already shown, the first condition is automatically satisfied if the second one
is met. Thus from (6.180), it is understood that if

T .
E3

0

2m2
jσ

2
peff

, (6.181)

then Laplace’s method should be considered. We define dispersion time T disp
j

as

T disp
j =

E3
0

2m2
jσ

2
peff

, (6.182)

and consequently, dispersion length Ldisp
j as Ldisp

j = v0T
disp
j . Therefore, the

transversal dispersion happens in this distance range:

p0

σ2
p

. L . Ldisp
j . (6.183)

The above range is called the transversal-dispersion regime. Now, it is enough
to put (6.175) and (6.178) into (6.164) and then solve, by applying (6.58), the
Gaussian integral. As a result,

Aj =
Ng (l)σpeff

T
√

1 + iT/T disp
j

×

exp

−iEjT + ipjL−
1

4σ2
m

(
δm2

j

2E0

)2

− 1

1 + iT/T disp
j

(vjT − L)
2

4σ2
xeff

 .
(6.184)

For an amplitude significantly different from zero, the terms inside the expo-
nential must be smaller than one. As for the fourth term, we see that condition
(6.179) must be satisfied if condition (6.180) is met.

6.7.3 The transition probability

To find the oscillation probability, one should time integrate the amplitude
squared. We know that δm2

ij/2E0 � 1. This condition is satisfied if

1. masses mi and mj are roughly degenerate, |mi −mj | � mi,mj .

2. The masses are so small (with respect to E0), in other words, mi and mj

must be relativistic.
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Nearly degenerate masses. As for the first option, we can use the ap-
proximation mi ≈ mj ≈ m̃0 (m̃0 is the mass in the degenerate limit) in the
denominator of (6.182). So, it is expected to have nearly one dispersion time
for each mass eigenstate, i.e.,

T disp
i uT disp

j = T disp =
E3

0

2m̃2
0σ

2
peff

⇒

AiA∗j =
N2g2 (l)σ2

peff

T 2

√
1 + (T/T disp)

2
×

exp

[
−iφij (T, L)−

(
δm2

i

)2
+
(
δm2

j

)2
16σ2

mE
2
0

− fij (T, L)

]
, (6.185)

where

φij (T, L) = (Ei − Ej)T − (pi − pj)L−

T

T disp

1

1 + (T/T disp)
2

(viT − L)
2 − (vjT − L)

2

4σ2
xeff

, (6.186)

and

fij (T, L) =
1

1 + (T/T disp)
2

(viT − L)
2

+ (vjT − L)
2

4σ2
xeff

. (6.187)

Now, we should calculate ∫
dT e−iφij(T,L)e−fij(T,L). (6.188)

This integral can be solved by Laplace’s method. To do so, we should expand
fij (T, L) and φij (T, L) around the point Tij , where fij (T, L) is minimum. Same
as before, Tij is derived to order O (ε), fij (T, L) to order O

(
ε2
)
, the first deriva-

tive to order O (ε) and the second derivatives to order O
(
ε0
)
. Let us find Tij ,

dfij (T, L)

dT
= 0⇒

Tij =
L

v0

(
1− vi + vj − 2v0

2v0

)
+O

(
ε2
)
⇒ (6.189)

fij (Tij , L) =
L2

1 + l2
(vi − vj)2

8v2
0σ

2
xeff

, (6.190)

where

l =
L

v0T disp
. (6.191)
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In (6.169), pj to O (ε) was found. Now we would like to find Ej and vj to O (ε),

Ej =
√
p2
j +m2

j = E0 + ρ
δm2

j

2E0
, (6.192)

vj =
pj
Ej

= v0 +
(
ρ
(
1− v2

0

)
− 1
) δm2

j

2p0E0
. (6.193)

where the parameter ρ was defined in (6.170). In view of (6.193), (6.190) be-
comes

fij (Tij , L) =
L2

1 + l2
(vi − vj)2

8v2
0σ

2
xeff

=
E4

0

8σ2
xeffm̃

4
0

l2

1 + l2

(
ρ
m̃2

0

E2
0

− 1

)2
(
δm2

ij

2p0

)2

+O
(
ε3
)
, (6.194)

where we used the approximation

1− v2
0 u m̃2

0/E
2
0 . (6.195)

The second derivative of fij (T, L) at Tij is

1

2

d2fij
dT 2

(Tij , L) =
2v2

0σ
2
xeff

1 + l2
+O (ε) . (6.196)

Using (6.169), (6.189) and (6.192), (6.186) reads

φij (Tij , L) =
δm2

ij

2p0
L+O

(
ε2
)
, (6.197)

and the first derivative becomes

dφij
dT

(Tij , L) = Ei − Ej −
2l

1 + l2
σ2
peff (vi − vj)L

=
ρ
(
m̃2

0/E
2
0

)
+ l2

1 + l2
E0δm

2
ij

2m̃2
0

+O
(
ε2
)
, (6.198)

where in the second line, (6.192), (6.193) and (6.195) have been used. The
second derivative of the phase does not contribute to the transition amplitude
because it is of order ε. By putting (6.194), (6.196), (6.197) and (6.198) into
(6.188), we obtain a Gaussian integral. By applying (6.58), it is derived that∫

dTAiA∗i = v0N
2σ2
peff

g2 (l)

L2
×

exp

−2πi
L

Losc
ij

−
(
δm2

i

)2
+
(
δm2

j

)2
16σ2

mE
2
0

− 2π2

(
ρσ2

xeff

Losc
ij

)2

−

(
L

Lcoh
ij

)2
 ,

(6.199)
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with oscillation length Losc
ij

Losc
ij =

4πp0

δm2
ij

, (6.200)

and coherence length Lcoh
ij

Lcoh
ij =

1√
2π

p0

σpeff
Losc
ij . (6.201)

Note. Same as the exponential factors, we should expand the factor

1

T 2

√
1 + (T/T disp)

2

appearing in (6.185) around Tij . Since in this regime time is bigger than E0/σ
2
p,

then we just keep the term 1/T 2
ij and ignore the others. Because Tij is in the

denominator, from (6.189) we write

1

Tij
=
v0

L
. (6.202)

This is the reason of
(
1/L2

)
in (6.199). This prefactor comes from the spreading

of the wave packets. As for the probability in the no-dispersion regime (i.e.,
(6.153)), there is not this prefactor. As a result, going further from the no-
dispersion regime brings us smaller amplitudes. So, we have bigger amplitudes
when

l =
L

Ldis
� 1. (6.203)

Furthermore, it should be considered that in computing (6.199), the approxima-
tion ∆T →∞ is good if ∆T is larger than the width of the overlap function14,
i.e.,

v0∆T & σxeff. (6.204)

Relativistic masses. Now after discussing the nearly degenerate masses, let
us move to the second option, i.e., relativistic neutrinos with very different
masses15. Suppose

mi � mj ⇒ T disp
i � T disp

j . (6.205)

14Same as what was completely discussed in (6.138).
15If the particles are relativistic, but the masses are nearly degenerate, the result will be

(6.199).
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In this case, decoherence starts before the dispersion length Ldisp
i , because from

(6.182), (6.200) and (6.201) (taking p0 ≈ E0 in the relativistic case) we have

Lcoh
ij

Ldis
i

u 4
√

2
m2
iσpeff

∆m2
ijE0

⇒ if Lcoh
ij . Ldis

i ⇒

δm2
ij

m2
i

&
σpeff

E0
. (6.206)

Since mi � mj , then the above condition will be satisfied because δm2
ij/m

2
i u

1. Hence, decoherence begins before Ldisp
i and oscillations vanish before the

smallest dispersion length. The fact which means that in the relativistic masses
case, we are left with (6.199) too. So, in the transversal-dispersion regime we
have

p0

σ2
p

. L . min
(
Ldisp
i , Ldisp

j

)
. (6.207)

With respect to (6.32), the flavor-mixing transition probability in the transversal-
dispersion regime becomes

Pα→β (L) ∼ v0N
2σpeff

g2 (l)

L2

3∑
i,j=1

UiαUjβU
∗
βiU

∗
αj

× exp

−2πi
L

Losc
ij

−
(
δm2

i

)2
+
(
δm2

j

)2
16σ2

mE
2
0

− 2π2

(
ρσ2

xeff

Losc
ij

)2

−

(
L

Lcoh
ij

)2
 ,

(6.208)

where N is a normalization constant which can be obtained in the same way as
(6.155). From the above probability, it is seen that

ρ
σxeff

Locs
ij

. 1, and
L

Lcoh
ij

. 1. (6.209)

We shall speak about the above relations more.

6.7.4 Exponential terms of the probability

Coherence length. The factor exp
((
L/Lcoh

ij

)2)
appearing in (6.208) is a

damping factor. In other words, oscillations happen only if L . Lcoh
ij . This is

the reason why Lcoh
ij is called the coherence length. Let us elaborate more on it.

The fact that after some length oscillations vanish comes from the different
group velocities of the mass eigenstates, i.e., vi and vj . By this we mean that
if vi 6= vj , so it is expected that after some length these two wave packets cross
each other and so the interferences between them vanish16. This shows that the

16This is exactly the case which was discussed in quantum mechanical oscillations too, see
Fig. (5.1).
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origin of this decoherence comes from function (6.190) (overlap function) and
the first derivative of the phase, i.e., (6.198).

In this section we are in the transversal-dispersion regime, so we discuss17

Lcoh
ij < min

(
Ldis
i , Ldis

j

)
. If l� 1, the main origin of the decoherence comes from

the overlap function rather than (6.198).
Here, the coherence length has been discussed in configuration space. Now,

let us speak about this length from another point of view, i.e., in energy-
momentum space. If we do a coherent measurement in time at detector or
in other words when σeD → 0, then (from (6.171)) σpeff → 0.

This means that Lcoh
ij → ∞ (see (6.201)). This result is obtained while two

mass eigenstates could progressively separate spatially. What does it mean? It
means that

a long coherent measurement in time can revive oscillations18 [38].

Oscillation phase. It is worth stating that under special conditions, the tran-
sition probability (6.208) reduces to the standard equation (5.34) with the ex-
ception of the 1/L2 prefactor.

To show it, we examine each exponential term of (6.208). Let us start the
proof from the phase (6.186) in the limit T � T dis. As a result, (6.186) becomes

φij (T, L) u (Ei − Ej)T − (pi − pj)L, (6.210)

and by using (6.169) and (6.192), (6.210) reads

φij (T, L) u 2π
L

Losc
ij

+ 2πρ
v0T − L
Losc
ij

. (6.211)

By looking at the fourth term inside the exponential (6.184), it is understood
that for a highly non-zero amplitude we should have vjT − L . σxeff. Conse-
quently, v0T − L . σxeff. So, for the second term in (6.211) we have

ρ
v0T − L
Losc
ij

. ρ
σxeff

Losc
ij

. (6.212)

If (see (6.209))

ρ
σxeff

Locs
ij

� 1, (6.213)

then we have

ρ
v0T − L
Losc
ij

� 1⇒ φij (T, L) u 2π
L

Losc
ij

, (6.214)

which is the standard phase (5.31). Phase (6.214) results in oscillations.

17In section (6.8) the case Lcoh
ij > Ldisp will be regarded.

18For more information about increasing the coherence length by accurate energy measure-
ments at the detector, see Ref. [38].
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Localization. According to what was said in section 5.4, if the oscillation
length becomes smaller than the spatial uncertainty, oscillations vanish. Remark
that spatial uncertainty is σxeff (the width of the overlap function), so we must
have

Losc
ij & σxeff. (6.215)

By using (6.200), we see that (6.215) becomes

δm2
ij

p0
. σpeff, (6.216)

which says that if momentum measurements are so exact, then there will be no
interferences and so oscillations disappear (see (5.60)). This is the reason why
(6.215) or (6.216) is an observability constraint.

All of the terms in (6.208) which impose constraint (6.215) are called local-
ization terms. To find the first localization term in (6.208), let us write the
second exponential term in (6.208) as(

δm2
i

)2
+
(
δm2

j

)2
16σ2

mE
2
0

=

(
δm2

ij

)2
32σ2

mE
2
0

+

(
δm2

i + δm2
j

)2
32σ2

mE
2
0

, (6.217)

where the following identity has been used

−2
(
δm2

i

) (
δm2

i

)
=
(
δm2

ij

)2 − (δm2
i

)2 − (δm2
j

)2
.

Each term of (6.217) must be smaller than one. By plugging σm ∼ v0σp (see
the explanation under (6.173)) into the first term of (6.217), a localization term
as follows

Losc
ij & σx, (6.218)

is obtained. The above constraint satisfies (6.215). Because from (6.171), it is
seen that σxeff > σx. The second term of (6.217) does not give any localization
term. It is just an energy-momentum conservation term19.

The second localization term comes from the third term in (6.208), i.e.,

Losc
ij & |ρ|σxeff. (6.219)

An important question is whether (6.219) is stronger than (6.218) or not. In
other words, is |ρ|σxeff � σx? From (6.171), it is seen that in the limit of
zero energy uncertainty at detection (σeD → 0), we obtain σpeff → 0, and
consequently σxeff → ∞. Hence, condition σxeff � σx is satisfied. Maybe
|ρ|σxeff � σx is also valid, let us check it. From (6.170), we have

lim
σeD→0

|ρ|σxeff =
|vD|
σeD

. SD, (6.220)

19Here, we are not going to discuss the reason, see Ref. [13].
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where SD is the size of the macroscopic detection region. So in view of (6.219),
we have

Losc
ij & SD. (6.221)

In the limit of zero energy uncertainty at detection, σpeff → 0. Thus from
(6.201), we see that Lcoh

ij increases. This means that by accurate energy mea-
surement or in other words long coherent measurement in time, the coherence
length can be increased. This is exactly the important fact which was already
said. Furthermore, if approximation (6.213) is taken into consideration, then
(6.221) becomes

Losc
ij � SD. (6.222)

Here, it has been shown that under condition (6.213) (or (6.222)), the proba-
bility transition (6.208) becomes the standard formula derived by the quantum
mechanical approach.

6.8 Longitudinal-dispersion regime

6.8.1 The transition amplitude

When time increases and crosses the dispersion time, integral (6.164) cannot be
solved by Laplace’s method anymore and instead, the stationary phase method
must be applied. As already said, in this approach we should find the point pcl,j

where the phase φj (p) is extremal, i.e.,

dφj (p)

dp
= 0⇒ pcl,j = mj

vcl√
1− v2

cl

, (6.223)

where vcl = L/T . Then, after expanding the phase and function fj (p) to the
second order around pcl,j , we are left with a Gaussian integral whose solution is

Aj =
Ng (l)σpeff

T
√

1 + iT/T disp
j

×

exp

[
−imj

√
T 2 − L2 − fj (pcl,j) + σ2

peff

(
f ′j (pcl,j)

)2
1 + iT/T disp

j

]
. (6.224)

The function fjP,D (pcl,j) is (6.165) at the point pcl,j and f ′jP,D (pcl,j) is its first
momentum derivative, i.e.,

fjP,D (pcl,j) =
(pcl,j − p0)

2

4σ2
pP,D

+
(Ecl,j − E0 − (pcl,j − p0) vp,D)

2

4σ2
eP,D

, (6.225)

f ′jP,D (pcl,j) =
pcl,j − p0

2σ2
pP,D

+ (vcl − vP,D)
Ecl,j − E0 − (pcl,j − p0) vp,D

2σ2
eP,D

, (6.226)
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with

Ecl,j =
√
p2

cl,j +m2
j =

mjT√
T 2 − L2

. (6.227)

In the stationary phase method, the overlap function varies much more slowly
than the phase, i.e., we must have |pcl,j − p0| . σpP,D (see (6.225)). Similarly
for the mass eigenstate mi, we will have |pcl,i − p0| . σpP,D. Then

|pcl,j − p0| . σpP,D
|pcl,i − p0| . σpP,D

}
⇒ |pcl,i − pcl,j | . σpP,D. (6.228)

As a result of the above condition, with respect to (6.223), we have

|δmij |
m

.
σpP,D
p

,

where m and p are defined by p = mL
(
T 2 − L2

)−1/2
. Therefore in view of

the above relation, if masses are nearly degenerate, then the interference AiA∗j
becomes non-zero. So, we can define only one dispersion time T disp, i.e., T disp

i u
T disp
i u T disp. This result was predictable, since in the previous section it was

seen that if masses were not degenerate, decoherence would begin before Ldisp
i ,

i.e., when L & Ldisp
j , due to this decoherence we would have zero amplitude.

6.8.2 The transition probability

Now, to find the probability we should integrate the amplitude squared over
time, i.e.,∫

dTAiA∗j =∫
dT

N2g2 (l)σ2
peff

T 2

√
1 + (T/T disp)

2
exp

(
−iφ̃ij (T, L)− f̃ij (T, L)

)
, (6.229)

with the phase

φ̃ij (T, L) = δmij

√
T 2 − L2 + σ2

peff

T

T disp

(f ′i (pcl,i))
2 −

(
f ′j (pcl,j)

)2
1 + (T/T disp)

2 , (6.230)

where δmij = mi −mj . The function f̃ij (T, L) is also defined as

f̃ij (T, L) = fi (pcl,i) + fj (pcl,j)− σ2
peff

(f ′i (pcl,i))
2

+
(
f ′j (pcl,j)

)2
1 + (T/T disp)

2 . (6.231)

The above integral is going to be solved with Laplace’s method, however, there
is a big difference. Here, we have mj and not m2

j . As it was explained very
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early, δmj = mj − m0 is not necessarily very small (in the relativistic case).
This is the reason why we have been working with the mass squared. Therefore,
expansion around m0 will not work anymore and a new expansion parameter,
i.e., m̃0, is defined as follows

m̃0 = (mi +mj) /2, (6.232)

and

δm̃j = mj − m̃0. (6.233)

The parameter δm̃j is of order ε. It is clear that due to (6.232), we can have

δmij =
δm2

ij

2m̃0
⇒ (6.234)

m̃2
0 (δmij)

2
=

1

4

(
δm2

i − δm2
j

)2
, (6.235)

and (
δm̃2

0

)2
=

1

4

(
δm2

i + δm2
j

)2
. (6.236)

So from (6.235) and (6.236), it is obtained that

2m̃2
0 (δmij)

2
+ 2

(
δm̃2

0

)2
=
(
δm2

i

)2
+
(
δm2

j

)2
. (6.237)

We shall use from (6.234) and (6.237) later on.
Now same as before, first the point T̃0, where f̃ij (T, L) becomes minimum

should be found. This point cannot be calculated exactly. However, by taking
the first time derivative from (6.231), we see if mi = mj = m̃0, then the solution
would be any T satisfying pcl,j = p0.

In the case of nearly degenerate masses, it is expected that the solution will
be any T satisfying pcl,j u p0. As a result, T̃0 will be equal to a term of order

(pcl,j − p0)
0

(i.e., when pcl,j = p0), plus a term of order (pcl,j − p0) and the other

terms of higher orders are neglected. To find T̃0 (to order ε), let us expand time
in (6.227) around pcl,j = p0, and m2

j = m̃2
0. Hence,

T = L

√
p2

cl,j +m2
j

pcl,j

u
Ẽ0L

p0
− L m̃2

0

p2
0E0

(pcl,j − p0) + L
1

2p0E0

(
m2
j − m̃2

0

)
, (6.238)

where Ẽ0 =
√
p2

0 + m̃2
0. In the denominators, Ẽ0 has been approximated by

E0. The first term in (6.238) satisfies pcl,j = p0, and the other terms are
perturbations around p0 and m̃0. Accordingly, T in (6.238) is the point that we
are looking for, i.e., T̃0.
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Since m̃0 = (mi +mj) /2, in the case of the nearly degenerate masses, we
may write

m̃2
0 = m̃0

mi +mj

2
=
m̃0mi

2
+
m̃0mj

2
≈ m̃0mj . (6.239)

Then, let us write the term m2
j − m̃2

0 in (6.238) as follows,

m2
j − m̃2

0 = m2
j − 2m̃2

0 + m̃2
0 ≈ (mj − m̃0)

2︸ ︷︷ ︸
(δm̃j)

2

. (6.240)

Therefore, to order ε, the last term in (6.238) vanishes and we are left with

T̃0 u
Ẽ0L

p0
− L m̃2

0

p2
0E0

(pcl,j − p0) . (6.241)

We know that |pcl,j − p0| . σpP,D. Additionally, it was shown that |pj − p0| .
σpeff, where σpeff 6 σpP,D. Regarding this, we can have |pcl,j − p0| ∼ |pj − p0|,
and so from (6.169) and (6.240), it is obtained that

|pcl,j − p0| = (ρ− 1)
m2
j −m2

0

2p0
= (ρ− 1)

m2
j − m̃2

0 + m̃2
0 −m2

0

2p0

u (ρ− 1)
δm̃2

0

2p0
+O

(
ε2
)
, (6.242)

where δm̃2
0 = m̃2

0 −m2
0. So, (6.241) becomes

T̃0 u
Ẽ0L

p0
− m̃2

0δm̃
2
0

2p3
0E0

(1− ρ)L+O
(
ε2
)
. (6.243)

Now the rest of the process is same as before, i.e., f̃ij

(
T̃0, L

)
should be found

to order ε2:

f̃ij

(
T̃0, L

)
=
m̃2

0 (δmij)
2

+
(
δm̃2

0

)2
8σ2

mE
2
0

+
E4

0

8m̃4
0σ

2
peff

l2

1 + l2

(
ρ
m̃2

0

E2
0

− 1

)2(
m̃0δmij

p0

)2

+O
(
ε3
)
, (6.244)

where l and σm are defined by (6.191) and (6.173), respectively. By applying
(6.234) and (6.237), the above equation becomes

f̃ij

(
T̃0, L

)
=

(
δm2

i

)2
+
(
δm2

j

)2
16σ2

mE
2
0

+
E4

0

8m̃4
0σ

2
peff

l2

1 + l2

(
ρ
m̃2

0

E2
0

− 1

)2
(
δm2

ij

2p0

)2

+O
(
ε3
)
. (6.245)
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It is seen that the first term is fi (pi)+fj (pj) (see (6.172)) and the second term

is (6.194). The second T−derivative of f̃ij (T, L) at T̃0 becomes

1

2

d2f̃ij
dT 2

(
T̃0, L

)
=

2v2
0σ

2
peff

1 + l2
+O (ε) , (6.246)

which is exactly same as (6.196). The phase (6.230) at T̃0, to order ε, is

φ̃ij

(
T̃0, L

)
=
δm2

ij

2p0
L+O

(
ε2
)
, (6.247)

which is (6.197). The first derivative of φ̃ij (T, L) at T̃0 is

dφ̃ij
dT

(
T̃0, L

)
=
ρ
(
m̃2

0/E
2
0

)
+ l2

1 + l2
E0δmij

m̃0
+O

(
ε2
)
, (6.248)

where by applying (6.234), the above relation becomes (6.198). Hence, the
derived equations for the longitudinal-dispersion regime is exactly same as the
transversal-dispersion regime. This means that the transition probability for
L & Ldisp is also (6.208).

6.8.3 Coherence length and temporal ranges

Regarding (6.246), the spatial width of the oscillating particle becomes

spatial width = σxeff

√
1 + l2 u lσxeff =

σpeff

p0

m̃2
0

E2
0

L, (6.249)

where the approximation has been derived in the limit l� 1. The time interval
∆T on which we take the Gaussian integral must go to infinity. To satisfy this
condition, it is supposed that (same as what was did in the previous sections)
v0∆T must be bigger than the spatial width (6.249), i.e.,

v0∆T & lσxeff. (6.250)

Let spatial width be bigger than Losc
ij γ

−2 (γ = E0/m̃0 is the Lorentz factor),
then from (6.249) we have

lσxeff &
m̃2

0

E2
0

Losc
ij ⇒

σpeff

p0

L

Losc
ij

& 1⇒ L

Lcoh
ij

& 1, (6.251)

where we have used (6.201). The above result states that if the coherence length
is larger than the dispersion length, decoherence starts if the spatial width be-
comes bigger than γ−2Losc

ij .

It is important that contrary to the case where Lcoh
ij . Ldisp (already dis-

cussed), in the case Lcoh
ij & Ldisp (for l � 1), we are not going to have any

decoherence due to the different group velocities. This fact can be seen easily
from (6.194) and (6.198) that in the case l � 1, the terms containing group
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Figure 6.4: The first drawing refers to the decoherence that we spoke about
in the transversal-dispersion regime or in quantum mechanical approach, i.e.,
different group velocities lead to the decoherence. In the longitudinal-dispersion
regime, decoherence does not happen anymore due to the different group veloc-
ities, but, it happens when the spatial width becomes bigger than γ2Losc

ij (the
second drawing). The drawings have been taken from Ref. [13].

velocities become very small20 (see Fig. (6.4)).
Let us come back to (6.250). By using (6.249), we obtain

∆T &
σpeff

p0

L

Losc
ij

γ−2T osc
ij , (6.252)

where v0T
osc
ij = Losc

ij . In (6.251), it was proved that if the spatial width becomes

bigger than Losc
ij γ

−2, then (σpeff/p0)
(
L/Losc

ij

)
& 1. In the case of very large

distances, i.e., L � Lcoh
ij , although oscillations vanish, condition (6.252) or

(6.250) violates. Therefore, instead of (6.250), it is enough to assume that

∆T & γ−2T osc. (6.253)

Until now we have found three ranges for ∆T , i.e., no-dispersion regime (6.138),
transversal-dispersion regime (6.204) and longitudinal-dispersion regime (6.253).
Putting together these three conditions (with σ̃xeff ∼ σxeff) we see that

∆T & max

(
σxeff

v0
,
T osc
ij

γ2

)
. (6.254)

6.8.4 Longitudinal-dispersion phase vs standard phase

Finally, let us show that in the limit T � T dis, phase (6.230) is the standard
oscillation phase (5.29) or (5.31). From (6.230), we have

φ̃ij (T, L) u δmij

√
T 2 − L2 for T � T dis (l� 1) . (6.255)

20Although (6.194) and (6.198) were derived in the transversal-dispersion regime, it was
shown that they are still valid in the longitudinal-dispersion regime.
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Now by expanding the phase around T̃0 and using (6.247) and (6.248) (in the
limit l� 1), we have

φ̃ij (T, L) u 2π
L

Losc
ij

+
E0δmij

m̃0

(
T − T̃0

)
. (6.256)

The time range T − T̃0 is constrained by ∆T , i.e.,
∣∣∣T − T̃0

∣∣∣ . ∆T . So, with

respect to (6.252) and using (6.200), (6.201) and (6.234), the second term of
(6.256) becomes

E0δmij

m̃0

(
T − T̃0

)
.

L

Lcoh
ij

. (6.257)

If (see (6.209))

L

Lcoh
ij

� 1, (6.258)

then the second term in (6.256) is negligible and the phase becomes the standard
phase. In general, it can be said that if (6.258) and (6.222) are satisfied, then
(6.208) becomes the standard transition probability (5.34) with the exception
1/L2.

We have not shown that the probability (6.153) derived in the no-dispersion
regime reduces to the standard formula. However with the similar calculations,
it can be shown that if |v0 × L| . |v0|σx and (6.222) are satisfied [13], then
(6.153) reduces to the standard formula. In conclusion, under especial condi-
tions, the probabilities derived in QFT reduce to the standard probability.



Chapter 7

Conclusions

In this thesis we discussed neutrino oscillations. We started to review the physics
of neutrino before and after the SM. It was explained that as a result of the
SM, there is no constraint on the masses of fermions contrary to bosons which
become massive after symmetry breaking and interacting with the Higgs boson.
As for neutrinos, it was observed that they appear in three different flavors and
according to the SM they must be massless.

On the other hand in view of our observations, there was a problem called
the mystery of the missing neutrino. This problem stated that the electron neu-
trinos created in the Sun did not completely reach us on earth. With the help
of the further experiments, it was proved that there are oscillations between
different flavors of neutrino, the fact which was called neutrino oscillations phe-
nomenon and leads to the massive neutrino.

We saw that the Lagrangian which is responsible for the neutrino mass gen-
eration can be written in two different forms, i.e., the Dirac and Majorana
Lagrangians. The difference of these two approaches is that in the Dirac case
there are distinct neutrino and antineutrino while in the Majorana case both of
them become one particle.

In order to explain theoretically neutrino oscillations, we supposed that the
flavor eigenstates are superpositions of the mass eigenstates and relate these
two states with the unitary mixing matrices U and V . At the end, these ma-
trices were found in the case of the Dirac and Majorana neutrinos. It was seen
that the creation (or annihilation) of neutrinos is described by interaction La-
grangian while propagation Lagrangian is responsible for the mass generation.
The difference between these two Lagrangians leads to neutrino oscillations.

Then we started discussing quantum mechanical oscillations with the sim-
plest model, i.e., the plane wave treatment and the oscillation phase and prob-
ability were found. However due to some problems such as delocalization of
plane waves, the wave packet approach was applied to describe neutrino oscil-
lations. As a result, we derived the coherence length after which oscillations
vanish and the fact that there will be no oscillations if the oscillation length
becomes smaller than the spatial uncertainty.

107
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In spite of the success of the wave packet approach, there were still some
problems. For instance, it is not possible to define the flavor eigenstates. Thus,
oscillations were presented in quantum field theory in which neutrinos are cre-
ated in interactions of some fields as propagators, and they are no more free
particles. We solved the transition amplitude integral with Gaussian overlap
function with Laplace’s and stationary phase method. A time-dependent func-
tion, which may lead to dispersion, appeared. Accordingly, the solution of the
integral was divided into three: no-, transversal- and longitudinal-dispersion
regimes.

Consequently, in each case the probabilities were found and it became clear
that the transition probabilities of the transversal- and longitudinal-dispersion
regimes are exactly the same. Additionally, same as the QM wave packet ap-
proach, here, in QFT we obtained the coherence length too. Finally, it was seen
that the oscillation formulas derived in QFT reduced to the standard oscillation
relation.
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