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Abstract. We analyze a class of qubit maps displaying diagonal unitary and orthogonal
symmetries. For unital maps we characterize all covariant maps satisfying an operator
Schwarz inequality. In particular well known Pauli maps are completely characterized.
Going beyond the unital case we consider recently proposed generalizations of Schwarz
inequality and provide the corresponding necessary and sufficient conditions for the entire
class of covariant maps.

1 Introduction
A linear map ® : M,,(C) — M, (C) (with M, (C) being an algebra of n x n complex matrices) is covariant
w.r.t. a subgroup G of U(n) if

Ud(X)UT =UXU"), (1)

for all X € M, (C) and all elements U € G (in what follows we identify G with its n-dimensional unitary
representation). Recall, that ® is positive whenever ®(X) > 0 for all X > 0 and completely positive
whenever the extended map id,, ® ® is positive (id,, stands for the identity map in M, (C)) [1, 2, 3]. Both
positive and completely positive maps play important role in quantum physics. In particular completely
positive trace-preserving maps provide mathematical representation for quantum channels — key objects
in quantum information theory [4, 5]. On the other hand maps which are positive but not completely
positive provide basic tool for entanglement detection [6, 7, 8]. Covariant maps (in particular covariant
channels) were analyzed by many researchers (see e.g. [9, 10, 11, 12, 13, 14, 15]).

In this paper we consider maps which interpolate between positive and completely positive maps. A
map is called unital if ®(1,,) = 1,, (1, is an identity matrix in M, (C)). A unital map ® satisfies an
operator Schwarz inequality if [16, 17, 18] (see also [1, 2, 3])

o(XTX) > o(X)Te(X), (2)

for all X € M,(C). In what follows we call such ® a Schwarz map. It turns out that any completely
positive unital map is necessarily a Schwarz map. However, there are Schwarz maps which are not
completely positive [18]. Note, that (2) implies that any Schwarz map is necessarily positive. However,
there are unital positive maps which are not Schwarz. A prominent example is provided by a transposition
map. Interestingly, any unital positive map satisfies (2) for Hermitian X [16]. Interestingly, it was
observed by Choi [17, 18] that any positive unital map satisfies (2) for normal matrix X. Recall, that
any positive trace-preserving map is a contraction in the trace norm in M, (C), i.e.

[@(X)[l < [ X1, (3)

where || X||; = Tr|X|. Similarly, any trace-preserving Schwarz map is a contraction in the Hilbert-Schmidt
norm
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12(X)[lus < [|X|us, (4)
where || X||? = Tr(XTX). Indeed, one has

12(X) s = Tr(@(X)T2(X)) < Trd(XTX) = Te(XTX) = || X]fis. (5)

Any completely positive map is characterized by its Kraus representation

O(X) =) K XK], (6)
4

and if the map is unital the Kraus operators K satisfy >, K. gKg = 1,,. Neither positive nor Schwarz maps
admit simple Kraus-like representation which makes the problem of characterization and classification
of positive and Schwarz maps very difficult. In M5(C) all positive maps are decomposable, i.e. can be
represented as

¢:@1+@20T, (7)

where ®; and ®, are completely positive and T stands for a transposition. In this paper we analyze
linear maps ® : M>(C) — M5(C) which are covariant w.r.t. a diagonal unitary matrices and diagonal
orthogonal matrices [19, 20]. In particular we characterize covariant Schwarz maps which were recently
analyzed in [21]. Moreover, we consider recently proposed generalizations of Schwarz maps beyond unital
scenario and provide necessary and sufficient conditions for a covariant map to satisfy the generalized
Schwarz inequality.

2 Covariant Schwarz maps

The characterization of bistochastic (i.e. unital and trace-reserving) Schwarz maps ® : M3(C) — M (C)
was initiated in [22, 23] (see also [24, 25, 26] for further development). Recall, that any such map can be
represented as follows: for X = z9lly 4+ z - o one has

O(X) =2l + (T2) - o, (8)

where T € M3(R), z € C3, 29 € C and o = (01,09, 03) is a vector of Pauli matrices. Matrix elements
of T' are defined via T;; = Tr(o;®(0;)). Hence, essentially all properties of ® are encoded into the real
matrix T;;. Authors of [22, 23] proved the following result

Theorem 1 A bistochastic hermiticity-preserving map ® : My(C) — My (C) satisfies operator Schwarz
inequality if and only if

1Tzl
IT(2 x E) — Tz x TZ||

(=2 (9)

<
< 2l = 172l (10)

for all z € C? (where a x b stands for the standard vector product in C3 and ||z|*> =Y, |zx[?).
Note, that if z = x € R3, then (10) reduces to (9) and hence one recovers well known result

Corollary 1 A wunital and trace-preserving map ® : Ma(C) — M(C) is positive if and only if | Tx| <
|| for all € R3.

In this paper we relax the condition of bistochasticity, i.e. we do not assume that ® is trace-preserving,
but restrict our analysis to the class of maps satisfying additional symmetry requirements. A linear map
O : My(C) — M3(C) is covariant w.r.t. diagonal orthogonal matrices iff [19, 20]

a11X11 +a12Xo2  AXi2 + X0 >

®(X) = ( AXo1 + pX12 a1 X11 + aze Xoo ()

where X;; are matrix elements of X € M>(C). Moreover, ® is covariant w.r.t. diagonal unitary matrices
if additionally p = 0. Note, that ® enjoys diagonal orthogonal covariance if

0. 2(X)o, = P(0.X0.), (12)
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and diagonal unitary covariance if
e 70D(X)e7:? = P(eT 70 X)), ¢ ER, (13)
and in this case it is often called a phase covariant.

Proposition 1 A family of invertible maps (11) defines a noncommutative group and invertible phase-
covariant maps (i.e. u = 0) define its subgroup.

Identity map correspond~s to aj; = age =1, a12 =as; =0, A =1, and p = 0. Now, if ®’ is parameterized
by a}., X', and p', then ® := &' o ® belongs to (11) and it is parameterized by

ijo
2
dij = ) @i,
k=1
together with
A= 4pui’ , j=Ng +70N.

Finally, the inverse of ® corresponds to the inverse of a;; matrix, together with parameters ¢ and m
defined by

¢ A K
= m=-——-".
A2 —|pl? lu® — A2

Note, that ® is Hermiticity preserving, i.e. ®(XT) = ®(X)T if a;; € R. Moreover, ® is trace-preserving
if >, a;; =1 and unital if 3 a;; = 1. One proves [8, 19]

Proposition 2 A Hermiticity preserving map (11) is positive iff a;; > 0 together with

Al + |p] < Variazz + aiza91, (14)

Moreover, ® is completely positive iff

‘)\| S Vv aii1ag2 and \u| S v/ a12021. (15)

If the map (11) is unital it is convenient to introduce a new parametrization

a1 ai2 _ a l1—a
(o o) (12, 157) . ascin w0
One proves [21]

Proposition 3 A positive unital map (11) is Schwarz iff

D2, P

2 2
NIk
a 1—a

<1 )
<1, and b 15 =

(17)

If the map is doubly stochastic, i.e. both unital and trace-preserving, then a = b and conditions (17)
reduces to a single elliptic condition.

Corollary 2 A unital phase covariant map (11) is Schwarz iff a,b € [0,1] and
Al < min{va, VB}. (18)

Example 1 A first example of a Schwarz map which is not completely positive was proposed by Choi

[18]

1 1
P(X) = T X + 5XT, (19)
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where X* denotes transposed matriz. One finds that this map belongs to (11) with a = b = %, A=0,

and p = % Conditions (17) are satisfied and hence this map is Schwarz. However, it is not completely
positive since (15) is violated. A well known reduction map [6]

®(X) = 1,TrX — X, (20)

corresponds to a = b =0, u =0, and A = —1. It is positive (condition (14) holds), however, it is not
Schwarz since (17) is violated. Similarly, a transposition map corresponds to a = b =1, up =1, and
A = 0. Again, condition (17) is violated.

A prominent example of a map (11) is provided by so called Pauli map, that is a map defined by

3
(I)(X) = ZpaGaXo'aa (21)
a=1

where o, are Pauli matrices (as usual oy = 15). This map is Hermiticity preserving if p, € R. It is unital
(and at the same time trace-preserving) if ) po = 1. Note, that Pauli maps belongs to (11) with

a11 =as =po+ps, aiz2=a =p1+p2, A=po—p3, 4 =Dp1— P2
Corollary 3 A Hermiticity preserving unital Pauli map is
e positive iff [po — p3| + [p1 — p2| <1,
e completely positive iff po, > 0,
o Schwarz iff

(po — p3)* L — p2)?

<1 (22)
Dpo +p3 p1+ D2

It is well known that if a Pauli map is positive but not completely positive then only single p,, is negative.
Let pg = —a < 0. The following unital Pauli map

b, (X) = 3 (01Xo1 + 02X 03 + 03X 03 — aX), (23)
-«
is positive iff @ < 1, and Schwarz iff o < % Note, that it corresponds
1—-« 1+«
—b= . A=— -
“ 3—« 3—« a
and hence for a = %7 it leads to
1 1
=b=—-, A=—= =0
a 4) 27 /”[' )

which is essentially equivalent to the Choi Schwarz map (19). Moreover, if & = 1, then it recovers the
reduction map. This simple example clearly shows the difference between positive and Schwarz qubit
maps.

3 Generalized Schwarz maps
Recently, [27] the following generalization of Schwarz maps was proposed: a linear map ® : M, (C) —
M, (C) is called a generalized Schwarz map if

o(l,)  ®(X)
( o(x) oxix) ) =0 (24)

for all X € M, (C). Let us observe that ® is generalized Schwarz if and only if
O(XTX) > (X) 0(1,)F (X)), (25)

where X+ denotes a generalized Moore-Penrose inverse of A [29]. It is clear that if ® is unital, then
®(1,,) = 1,, and hence (25) reduces to (2). One proves [21]
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Proposition 4 A covariant map (11) is generalized Schwarz if and only if a;; > 0 together with

)\2 2 )\2 2
DE LB DR P

S a1 + ai12. (26)
ail ai2 a22 a21

Given a linear map ® : M, (C) — M, (C) one defines its adjoint ®* w.r.t. the Hilbert-Schmidt inner
product

(@H(X)[Y)ns = (X|2(Y))uns, (27)
where (X|Y)us = Tr(XTY). Recall that @ is unital iff ®* is trace-preserving.
Proposition 5 A class of maps (11) defines a unital C*-algebra 2.

The involution is defined by the adjoint w.r.t. the Hilbert-Schmidt inner product. One easily finds that

I _( anXitanXen  AXipp+EXy
') ( AXor +pXi2 a12Xq1 + agaXan (28)

and hence it does belong to (11).
Proposition 6 ® is (completely) positive iff ® is (completely) positive.

Such property is no longer true for Schwarz maps. Note, that if ® is Schwarz then ®* in general is not
unital and hence the operator Schwarz inequality (2) is not even well defined. Let ® from (28) be a
generalized Schwarz map. Is ®* generalized Schwarz? Interestingly, contrary to (complete) positivity the
generalized Schwarz property is not preserved by the adjoint operation. However, one proves [21]

Proposition 7 If ® defined by (11) is bistochastic (i.e. unital and trace-preserving), then ® is Schwarz
if and only if ®* is Schwarz.

Similarly, one proves

Proposition 8 If ® defined by (11) satisfies ®(1y) = ®¥(1y), then ® is generalized Schwarz if and only
if ® is generalized Schwarz.

Indeed, condition ®(1y) = ®*(1l,) is equivalent to a;2 = a1, and then conditions (26) are invariant under
swapping ais > as;.

Composition of any two Schwarz maps is again Schwarz due to

(D10 P2)(XTX) = @1 (B2(XTX)) > By (B2(X) P2(X)) > (D1 0 Bo)(X)T (D1 0 B2)(X).

However, a composition of two generalized maps from (11) is no longer generalized Schwarz [28]
Example 2 Indeed, consider two maps: ®1 corresponding to

ann=ag =1, ap =2, ag =1, A\=+2, p =0,

and ®5 corresponding to
a1 =1, a2 =2, a2 =as1 =0, A=v2, p=0.
These two maps are generalized Schwarz. One finds that ®1 o &y corresponds to

a1 =1, axp =2, a2 =4, as1 =1, A=2, u=0,

and violates (26). Hence ®1 o @5 is not generalized Schwarz.

However, one proves

Proposition 9 If &1 and ®o are phase-covariant generalized Schwarz and satisfy ®o(1z) = ‘I)}E(]lg), then
D, 0 Oy is generalized Schwarz.
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Note, that in Example 2 one has & (1) # (Iﬁ(]lg). We conjecture that the above property holds for the
entire class of covariant maps (11).

Recall, that any 2-positive map is necessarily generalized Schwarz [27]. Clearly, composition of two
2-positive maps ®; o ®, is 2-positive and hence generalized Schwarz. One has

(P10 @2)(XTX) > @1(P2(XT) P2 (1)~ @2(X)) = 1 ((Y P2 (X)) (Y 22(X)),
where Y = ®5(1,,)~ /2. Now, any 2-positive map ® satisfies [1]
B(ATA) > ®(ATB)®(BTB)"'®(BTA),
and hence

(@10 P2)(XTX) > &1 ((YP(X))TY @1 (YY) 0y (Y (Y P2 (X)),
which proves that indeed

(@10 B)(XTX) > &1 (Po(XT)) Py (P2(1,)) ' 1 (P2(X)),

that is, &1 o ®5 is generalized Schwarz. Note, however, it is no longer true if ®; is not 2-positive.
Recently, [30] another generalization of Schwarz map was considered, namely

|2l @(XTX) > @(X)TR(X), (29)
where
[®lloc == sup [[®(X)]|oo,
[ Xlleo=1
and || X ||« stands for an operator norm. Recall, that if ® is a positive map then ||®||o = ||®(1,)|loo- If

® is unital one has |®||c = 1 and hence (29) reduces to the original Schwarz inequality. Note, that (25)
implies (29), that is, one has

P(XTX) > o(X) 0(1,)TP(X) > ﬁ@(}(ﬂ@(}(). (30)

One has the following
Proposition 10 A covariant map (11) is generalized Schwarz if and only if a;; > 0 together with

APl AP uf
— + — < |||l + — < [[®]foo- (31)
ail a2 a2 a21

The above results provide generalization of Proposition 4. Interestingly, the following results holds

Proposition 11 If &1 and unital Py satisfy (29) then the composition @1 o Py satisfies (29) as well.

4 Conclusions

We provided a detailed analysis of the class of covariant maps (11). In particular we characterized
maps satisfying an operator Schwarz inequality (so called Schwarz maps). Bistochastic Schwarz qubit
maps we considered recently in [22, 23]. In this paper we go beyond bistochastic maps but restrict our
analysis to the class of covariant maps. In particular the complete characterization of (bistochastic) Pauli
maps was provided. Presented results provide completion of the recent paper [21]. In what followed we
consider recently proposed generalizations of Schwarz inequality and provided necessary and sufficient
condition within a class of covariant maps (11). It would be interesting to generalize our analysis to
higher dimensional matrix algebras M,,(C).
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