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Preface

Guide for the reader

This doctoral thesis is based on the scientific endeavors undertaken by myself and

my collaborators over the past four years. Two main lines of research can be

distinguished, which are presented in the two parts of this thesis. Even though

these lines of research are largely independent, the reader will also find that there

is an intimate entanglement between the two parts.

This thesis is written from the first person plural (we) perspective, which is com-

mon practice in the field of theoretical physics. The only exceptions to this con-

vention are this preface, the chapter discussing my contributions to previously

published work and the acknowledgments, where I write in first person singu-

lar. The work presented in this thesis was done in collaborations. My individual

contribution to these published works will be clarified after the bibliography.

In the sub-fields that correspond to the two parts of this thesis, the commonly

used conventions are different. At the first page of each part, the conventions used

in that part will be clarified.

The level of exposition in this thesis is such that a starting PhD-candidate should

be able to read and understand it. The introductory chapters of part I and part II

are suitable for those who have at least some familiarity with the topics at hand.

In these chapters I will refer to lecture notes that give a more extensive treatment

of the introductory topics.
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Introduction

This thesis consists of two parts. The first part is dedicated to topics in holography

and the second part is devoted to topics in cosmology. Both parts will have their

proper introductions. The purpose of this introduction is hence not to explain

concepts in either of these fields. In this introduction we first give a general

context of these two fields. Subsequently we make the reader aware of the overlap

between the two parts.

The first model of gravity appeared in 1687 in Newton’s famous Philosophiæ-

Naturalis Principia Mathematica. It was superseded a hundred years ago, with

Einstein’s article Die Feldgleichungen der Gravitation. In the same period of time,

quantum mechanics was being discovered. The combination of special relativity

and quantum mechanics led to the development of quantum field theory and the

standard model of particle physics. A quantum theory of general relativity proved

to be much harder to construct. So far, string theory, which originally emerged

from the study of hadronic interactions, is the only theory that successfully incor-

porates gravity and quantum mechanics.

The study of black holes, which are special solutions of general relativity, made

apparent that black holes have an entropy that scales with the area of the surface

that encloses it. This led to the conjecture that the number of physical degrees

of freedom in a volume of space in a theory of gravity does not scale with the

volume, but with the area of the surface that encloses it. This realization led to

the formulation of the holographic principle: in a theory of gravity, the degrees

of freedom associated to a volume of space can be described by a model with

one dimension less. The study of string theory gave an explicit realization of

holography, by means of the AdS/CFT-correspondence. Holography allows the

study of gravity from a different perspective; that of the holographic screen. In

part I we discuss topics in the field of holography.

The study of general relativity led, in combination with the observation of cosmo-

logical redshifts, to the idea of an expanding universe. Friedmann realized that

general relativity admits solutions that describe an expanding universe. For a

number of reasons, which we elaborate on in part II, it is believed that our uni-

verse went through a period of accelerated expansion, or inflation. The classical

evolution of a simple model involving just the metric and a single scalar field

already admits the phenomenon of inflation. Quantization of the perturbations

around the classical evolution of such a model brought forth a set of predictions

that are remarkably well in accordance with observations. In part II we discuss

topics in the field of cosmological inflation.
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Apart from the fact that general relativity and quantum field theory form the

building blocks of both parts of this thesis, there are many other similarities.

For example, quantum entanglement appears as an important concept in both

parts. If the entanglement between two boundary regions is removed, then the

corresponding bulk space tends to pinch of [5] (we will not go into the details here,

see chapter 1 of Part I). This seems to be related to another phenomenon: when

one tries to define a vacuum state for the Rindler wedge, the energy momentum

tensor becomes divergent at the boundary of the Rindler wedge (see chapter 1 of

Part I and chapter 5 of Part II for details). Something similar appears when we

try to define a vacuum state for the hyperbolic patch of de Sitter spacetime, as

described in chapter (5) of part II.

The spacetimes we consider in part I and part II also show similarities; they are

both maximally symmetric solutions of the Einsteins equations with a cosmogical

constant and they are related to each other by a double analytic continuation. In

part I we consider Anti de Sitter (AdS) spacetime in the context of the AdS/CFT-

correspondence, whereas in part II we consider de Sitter (dS) spacetime in the

context of inflation. In fact, attempts have been made to construct a dS/CFT-

correspondence, but much remains to be clarified in this topic.

We invite the reader to discover these and other links in the next chapters.
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Notes for the reader

Conventions

Planck units ~ = c = 1

Minkowski metric ηµν=diagonal(-1,+1,...,+1)

Bulk indices capital letter indices M,N, ...

Boundary indices Greek letter indices µ, ν, ...

Number of bulk dimensions D=d+1

Number of boundary dimensions d

Anti de Sitter radius LAdS: in chapter (1) we will consistently write LAdS where

it is appropriate, since this is an introductory chapter. In chapters (2) and (3) we

will not explicitly write LAdS and quantities with unit length should be considered

to be stated in units of LAdS.

Published work

This part of the thesis is based on (parts of) our work presented in the following

articles:

[4] B. Freivogel and B. Mosk

Properties of Causal Holographic Information

JHEP 1309, 100 (2013), arXiv:1304.7229 [hep-th].

[2] B. Freivogel, R. A. Jefferson, L. Kabir, B. Mosk and I. S. Yang

Casting Shadows on Holographic Reconstruction

Phys.Rev.D D 91, 086013 (2015), arXiv:1412.5175 [hep-th].

In particular, elements of [4] will be presented in chapter (3), (sub-) sections (3.1),

(3.5) and (3.6). Elements of [2] can be found in chapters (2) and (3), (sub-) sections

(2.2), (2.3) and (3.4). Chapter (1) is introductory and does not contain products

of our scientific endeavors.
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Chapter 1

Introducing holography

1.1 The holographic principle and the AdS/CFT-

correspondence

In this section we will introduce the holographic principle, the conjecture that un-

der certain conditions the degrees of freedom in a volume of space, “the bulk”,

can be described by a theory defined on a surface with one dimension less, “the

boundary”, where the bulk degrees of freedom include gravity, whereas the bound-

ary degrees of freedom do not. Holography provides an example of a duality. A

duality is the equivalence of two different models, which describe the same physi-

cal system. In recent years, a particular realization of such a holographic duality

has been of central interest in theoretical physics: the AdS/CFT-correspondence.

We will describe the key ingredients of this conjectured duality. The AdS/CFT-

correspondence relates a conformal field theory (CFT) living on a d dimensional

spacetime to a theory of gravity in a (d + 1)-dimensional spacetime. The infor-

mation of the gravitational dynamics are hence encoded in the non-gravitational

description of the CFT, which allows us to study gravity from a completely dif-

ferent perspective. We will first describe the developments that led to the idea

of holography and then we will give a heuristic derivation of the most famous

example of the AdS/CFT-correspondence.

In the seventies it was realized for the first time that black holes can emit radiation

and that this radiation exhibits a thermal spectrum [6–9], where the temperature is

proportional to the surface gravity of the black hole. Furthermore, an entropy can

be assigned to a black hole, which satisfies laws similar to those of thermodynamics

5



1. Introducing holography

[10–12]. The black hole entropy was found to be proportional to the area of the

event horizon AH :

SBH =
kbAHc

3

4G~
, (1.1)

where G is Newton’s gravitational constant, kb is Boltzmann’s constant, c is the

speed of light in vacuum and ~ is Planck’s constant. Naively, one would expect

the entropy to behave extensively and to scale with system volume. However, for

black holes the entropy is proportional to the area of the event horizon. The area

of the event horizon of a black hole was shown to satisfy the area law or second

law of black hole thermodynamics:

dAH
dt
≥ 0, (1.2)

where AH is the size of the black hole horizon. This suggests that the black hole

entropy (1.1) can increase only by increasing the size of the black hole.

The generalized second law states that the total entropy (black hole entropy and

matter entropy) increases with time. If the total entropy is not allowed to decrease

by dropping matter into the black hole, then the entropy of matter enclosed by

a surface should not be allowed to exceed (1.1), thus providing a bound on the

maximum entropy of a system [13,14].

The covariant entropy bound, put forward in [15], provides a more concrete formu-

lation of the entropy bounds that were formulated in the context of black holes.

Covariant entropy bound [15,16]

Let AB be the area of an arbitrary d-dimensional spatial surface B

(which need not be closed). A D-dimensional hyper surface L is called

a light-sheet of B if L is generated by light rays which begin at B, extend

orthogonally away from B, and have non-positive expansion,

θ ≤ 0, (1.3)

everywhere on L. Let S be the entropy on any light-sheet of B. Then

S ≤ AB
4G

. (1.4)

The observation that entropy scales with area instead of volume led to the holo-

graphic principle. The holographic principle as formulated by Susskind and ’t

Hooft (based on unitarity) can suggestively be formulated:

The combination of quantum mechanics and gravity requires the three

dimensional world to be an image of data that can be stored on a two

dimensional projection much like a holographic image [14].

6



1.1. The holographic principle and the AdS/CFT-correspondence

In the nineties a new conjecture provided a realization of the holographic princi-

ple. The AdS/CFT-correspondence states that under certain conditions, a gravita-

tional theory on a (d+1)-dimensional (asymptotically-) Anti de Sitter background

can be described by a conformal field theory (CFT) on a d-dimensional background

(without gravity) and vice-versa.

The AdS/CFT-correspondence arises naturally in the context of string theory.

In particular, the most important realization of the AdS/CFT-correspondence

is the equivalence of Type IIB string theory on AdS5 × S5 and N = 4 super-

symmetric U(N) Yang Mills theory in (3 + 1) dimensions [17]. Certain types of

supersymmetric string theories contain stable objects called Dp-branes, which are

(p+1)-dimensional objects on which open strings can end [18–20]. Type IIB string

theory, a maximally supersymmetric string theory in (9 + 1) dimensions, contains

D3-branes. A stack of N D3-branes can have open strings that end either on the

same brane, or on different branes.

Type IIB string theory with a stack of D3-branes contains open strings that end on

the D3-branes and closed strings. We consider the low energy limit in combination

with two different limits, gsN � 1 and gsN � 1, where gs is the string coupling.

At small gsN � 1, the low energy description decomposes into two decoupled sec-

tors: the massless excitations of the closed strings far away from the branes and the

massless excitations of the open strings, which have a (perturbative) description

in terms of a N = 4, U(N) SYM gauge theory on the branes.

An alternative description, in terms of closed strings can be given at large gsN � 1

and low energies. The massless excitations of the closed strings “far away from the

branes” decouple again. The D3-branes have a large backreaction, couple to closed

string modes and deform the spacetime into a “throat”, which can be thought of

as a potential well. Now the massive closed string modes deep inside the deformed

“throat” also survive the low energy limit.

In both the gsN � 1 and gsN � 1 the closed string modes far away decouple,

leaving us with N = 4, U(N) SYM gauge theory in (3 + 1) dimensions for

gsN � 1 and Type IIB string theory on the “near horizon” region, which can

be shown to have AdS5 × S5 geometry. These observations led to the conjecture

that Type IIB string theory on AdS5 × S5 is dual to N = 4, U(N), SYM gauge

theory in (3 + 1) dimensions.

The classical supergravity description of the theory on AdS5×S5 is good for large

N (small gs � 1) and large gsN , which corresponds to large coupling in the gauge

theory. In this thesis we will assume a strong version of the conjecture, where the

duality holds for all gsN and not exclusively in the N →∞ limit. The combination

gsN ≡ λ is also called the ’t Hooft coupling and is the effective coupling in the

7



1. Introducing holography

gauge theory. The supergravity description is well known and can teach us about

the description of strongly coupled gauge theories. Vice-versa, the gauge theory

description at weak coupling can teach us about non-perturbative string theory.

But first we need to know how laws of physics and physical quantities in one

theory translate to the dual theory, that is, we need to develop a dictionary. A lot

of work has been done in recent years to make this holographic dictionary. The

fundamental statement of the duality is

ZCFT[φ0(x)] = ZIIB string[φ0(x)], (1.5)

where ZCFT is the CFT partition function. The sources φ0 serve as boundary

conditions for the string theory partition function ZIIB string, as will be explained

in the next section. In the supergravity limit gsN � 1, gs � 1, a saddle point

approximation of the string partition function can used and the statement (1.5)

becomes

W [φ0(x)] = −SSUGRA,on shell[φ0(x)], (1.6)

where W = logZ is the generating functional of connected CFT correlation func-

tions, also known as the quantum effective action with a source and SSUGRA,AdS

is the IIB on shell supergravity action.

1.2 Elements of the dictionary

In this section we will introduce elements of the holographic dictionary necessary in

later chapters. First, we introduce Anti de Sitter (AdS) spacetime. Subsequently

we will make the fundamental statement (1.6) more precise for the toy model of a

single bulk scalar field. Then we will discuss Wilson loops on the boundary and its

holographic bulk dual. Lastly, we will introduce boundary entanglement entropy

and its holographic dual, which is a crucial ingredient for chapter (2) and (3).

1.2.1 AdS spacetime

In this subsection we introduce Anti de Sitter (AdS) spacetime. Anti de Sitter

(AdS) spacetime is a maximally symmetric spacetime with negative constant cur-

vature. Anti de Sitter spacetime can be embedded in flat space with signature

(−−+ · · ·+). The embedding equation is given by

−X2
0 −X2

d+1 +

d−1∑
i=1

X2
i = −L2

AdS
(1.7)

8



1.2. Elements of the dictionary

ds2 = −dX2
0 − dX2

d+1 +

d∑
i=1

dX2
i . (1.8)

The embedding equation (1.7) as well as the metric (1.8) are invariant under

O(2, d) transformations. The pullback of the metric (1.8) onto the surface defined

by (1.7) gives an AdS spacetime.

AdS spacetime is a solution of the Einstein equations with negative cosmological

constant. The Einstein Hilbert action with cosmological constant is given by:

S =
1

16πG

∫
dd+1x

√−g (R− Λ) . (1.9)

The Einstein equations that follow from extremizing the Einstein Hilbert action

with cosmological constant (1.9) are given by

Rµν −
R

2
gµν = −Λ

2
gµν . (1.10)

There exists a maximally symmetric solution of (1.10), with vanishing Weyl tensor.

In a (d + 1)-dimensional maximally symmetric spacetime, the Riemann tensor is

given by:

Rµνρσ =
R

d(d+ 1)
(gµρgνσ − gµσgνρ) . (1.11)

From the Einstein equations (1.10) it follows that

R =
(d+ 1)Λ

d− 1
. (1.12)

The curvature in terms of LAdS is given by

R = −d(d+ 1)

L2
AdS

. (1.13)

Two coordinate charts for the (d + 1)-dimensional subspace defined by (1.7) are

frequently used in this thesis: Poincaré coordinates and global coordinates.

9



1. Introducing holography

Poincaré patch

Poincaré coordinates only cover a part of Anti de Sitter space, the Poincaré patch.

A set of coordinates on the Poincaré patch is given by

X0 =
z

2

(
1 +

1

z2

(
L2

AdS +
∑
i

x2
i − t2

))
,

Xd+1 =
LAdSt

z
,

Xi =
LAdSxi
z

for i = 1, . . . , d− 1,

Xd =
z

2

(
1− 1

z2

(
L2

AdS −
∑
i

x2
i + t2

))
,

(1.14)

which brings the metric into the form

ds2 = L2
AdS

(
dz2

z2
+
dxµdxνηµν

z2

)
. (1.15)

The conformal boundary, defined by limz→0 z
2ds2 is d-dimensional Minkowski

space.

Global AdS

There are several commonly used global coordinate systems for the global cover of

AdS spacetime, here we present one that is used in later chapters. The coordinates

are defined by

X0 = LAdS

√
1 +

r2

L2
AdS

sin
t

LAdS

Xd+1 = LAdS

√
1 +

r2

L2
AdS

cos
t

LAdS

d∑
i=1

Xi = r2,

(1.16)

where the last line implicitly defines a set of d−1 angular coordinates. The metric

in global coordinates defined by (1.16) is given by:

ds2 = −
(

1 +
r2

L2
AdS

)
dt2 +

(
1 +

r2

L2
AdS

)−1

dr2 + r2dΩ2
d−1. (1.17)

This coordinate set is sometimes called the “hyper-polar” coordinate set.

10



1.2. Elements of the dictionary

Causal structure of AdS

Another set of coordinates for global AdS makes the causal structure explicit. The

defining equation are given by:

X0 = LAdS cosh ρ cos t

Xd+1 = LAdS cosh ρ sin t

d∑
i=1

X2
i = L2

AdS sinh2 ρ,

(1.18)

where the last line implicitly defines (d − 1) angular coordinates on Sd−1. The

pullback of the metric on surface (1.7) in these coordinates is given by

ds2 = L2
AdS

(
− cosh2 ρdt2 + dρ2 + sinh2 ρdΩ2

d−1

)
. (1.19)

Now a coordinate transformation sinh ρ = tanR with R ∈ [0, π2 ] brings the metric

(1.19) in the form

ds2 =
L2

AdS

cos2R

(
−dt2 + dR2 +R2dΩ2

d−1

)
, (1.20)

which makes the conformal structure of global AdS explicit. The metric ds̃2 =

L−2
AdS cos2Rds2 is that of a solid cylinder (R, θ1, t) where every point still represents

a (d− 2)-sphere. In figure 1.1 the conformal structure of global AdS is illustrated.

Asymptotically AdS-spaces

Asymptotically Anti de Sitter (AAdS) spacetimes have a conformal structure sim-

ilar to AdS spacetime. For a formal definition, see [22], or [23] for a pedagogical

discussion. The metric of an AAdS spacetime can be written as [24,25]

ds2 = GMNdX
MdXN

=
dz2

z2
+

1

z2
gµν(z, x)dxµdxν

gµν(z, x) = g(0)
µν (x) + z2g(2)

µν (x) + ...+ zd
(
g(d)
µν (x) + log z hµν(x)

)
+O(zd+1).

(1.21)

g
(0)
µν (x) is the metric on the conformal boundary:

lim
z−→0

z2ds2 = g(0)
µν dx

µdxν . (1.22)

In Einstein gravity with cosmological constant (1.9), the g
(2i)
µν (1 ≤ i ≤ d

2 − 1) and

hµν are fully determined in terms of g
(0)
µν , by the gravitational equations of motion

(1.10).
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1. Introducing holography

Figure 1.1: The conformal structure of global AdS is that of a solid cylinder. In this picture,

the planar patch is a wedge covering only part of the cylinder. Planar AdS can

be thought of as the part of AdS that is accessible to certain accelerated observers

(indicated). A planar patch of AdS can also be associated to a point on the conformal

boundary (P), consisting of the points that are spacelike separated from P. Source:

[21].

AdS-Schwarzschild

A particular AAdS metric is the AdS-Schwarzschild, which has the conformal

structure of AdS spacetime, but with a black hole in the centre. The Schwarzschild

black hole metric in (d+ 1) dimensions is given by

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

d−1,

f(r) = 1− 2GM

rd−2
.

(1.23)

The metric of the AdS-Schwarzschild black hole in (d+ 1) dimensions is given by

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

d−1,

f(r) = 1 +
r2

L2
AdS

− GM

rd−2

= 1 +
r2

L2
AdS

− rd−2
H

rd−2

(
1 +

r2
H

L2
AdS

)
.

(1.24)

The AdS-Schwarzschild black hole in (2 + 1) dimensions is called the static BTZ

black hole [26]. It is special because one does not recover pure AdS2+1 as GM → 0.

The geometry with −1 < GM < 0 corresponds to a geometry with a conical defect

at the origin.
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1.2. Elements of the dictionary

1.2.2 Emergence of the radial direction

Now that we have introduced several coordinate sets for AdS spacetime, we can

present an intuitive argument for the emergence of the radial (bulk) dimension in

the AdS/CFT-correspondence. Subsequently, we will briefly discuss the idea that

the radial (bulk) direction can be seen as the RG-scale of the boundary theory.

The first argument is heuristic and it is based on the matching of the bulk and

boundary symmetries. We already noted that AdS spacetime has a SO(2, d)-

symmetry group (1.7,1.8). Furthermore, it can be shown that the conformal group

in d dimensions is also given by SO(2, d). A particular conformal transformation,

the scaling of the boundary coordinates xµ → λxµ can be associated to a SO(2, d)-

transformation of the bulk. In the Poincaré coordinates given by (1.14,1.15),

the corresponding isometry is given by xµ → λxµ, z → λz. This allows an

identification of the (inverse) radial direction as the energy scale:

z−1 ≡ u ∝ E. (1.25)

If this interpretation is to be taken seriously, then the near-boundary region would

describe the full UV-complete boundary theory, while the Poincaré horizon z →∞
would correspond to the deep IR-sector of the boundary theory.

These ideas have been made precise in [27–29], where it is shown that, in the super-

gravity limit, the radial direction can be interpreted as the renormalization group

(RG) scale of the theory. The renormalization group equations describe how the

theory behaves as a function of the energy scale. In the bulk, the radial evolution

of the fields is specified by the (gravitational) equations of motion, whereas the

renormalization group behavior in the boundary theory is determined by the RG

or Callan-Symanzik equations. These two prescription are shown to be equivalent.

1.2.3 Scalar field

The analysis of a single bulk scalar field and its dual boundary operator exem-

plifies the underlying principles of the AdS/CFT-correspondence. Generally, the

equations of motion for a bulk scalar field couple to the gravitational equations of

motion through the energy momentum tensor, but in this case the gravitational

equations decouple near the boundary [30] such that we can study the Klein Gor-

don equation solely. We assume large N and a classical geometry. The Euclidean

action for a massive free bulk scalar field is given by

S =
1

2

∫
dd+1x

√
g
(
gMN (∂MΦ)(∂NΦ) +m2Φ2

)
. (1.26)
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1. Introducing holography

In Poincaré coordinates (1.141.15) the equation of motion is

z2∂z∂zΦ− (d− 2)z∂zΦ + z2ηµν∂µ∂νΦ = m2L2
AdSΦ. (1.27)

The ansatz Φ(z, xµ) = z∆ can be solved by

∆ (∆− d) = m2L2
AdS, ∆± =

d

2
±
√(

d

2

)2

+m2L2
AdS. (1.28)

These two solutions capture the leading near boundary behavior of the scalar field.

The ∆+ solution is normalizable, that is, we can calculate its Klein Gordon norm.

The ∆− mode is non-normalizable and is associated to the source of the boundary

operator OΦ that is dual to the bulk field Φ.1

The near boundary behavior of a general solution of the equation of motion (1.27)

is given by

Φ(z, x) = φ+(x)z∆+(1 +O(z)) + φ−(x)z∆−(1 +O(z)), (1.29)

where φ−(x) is interpreted as a boundary source; in equation (1.6) we can make

the identification φ(0) = φ−:

W [φ−] = −ZAdS,on shell[φ−]

= 〈e−
∫
ddxOΦφ−〉,

(1.30)

where OΦ is the boundary dual operator of the bulk field Φ.

Below, we will further illustrate the AdS/CFT-correspondence by deriving the

two-point function of an (primary) operator OΦ in a CFT calculation as well as

with a bulk calculation via its dual field Φ. The derivation will be heuristic: for

the sake of simplicity we will not work out all the details. A detailed treatment

can be found in [23].

Two point functions in a CFT

First we will “derive” an expression for the two-point function of a primary opera-

tor in a conformal field theory. If a theory is invariant under conformal transforma-

tions, then its two-point functions must be invariant under these transformations;

this requirement constrains the correlation functions in a conformal field theory.

A conformal transformation is a coordinate transformation x̃(x) such that the line

element ds2 transforms as

ds̃2 = Ω2(x)ds2. (1.31)

1The choice where φ−(x) has the interpretation of source is called the “standard” boundary

condition. One can also consider the “alternate” boundary condition where the roles of φ− and

φ+ are reversed [31].
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1.2. Elements of the dictionary

These transformations are generated by translations, scaling, Lorentz transforma-

tions and special conformal transformations. A conformal field theory is a field

theory that is invariant under such transformations.

We will consider two-point functions of primary operators. A primary operator O
with dimension ∆ transforms under scaling x→ λx as

O(λx) = λ∆O(x). (1.32)

Now consider the two-point function

〈O(x)O(y)〉 ≡ f(x, y). (1.33)

Invariance under translations requires f(x, y) = f(|x−y|). Invariance under scaling

requires that

〈O(x)O(y)〉 ∝ 1

|x− y|2∆
. (1.34)

Conformal invariance completely fixes not just the coordinate dependence of the

two-point functions, but also of the one and three point functions in the CFT, given

the spectrum {Oi,∆i}, which is the set of primary operators and their dimensions.

Bulk to boundary propagator

Below we will try to recover the CFT result for the two-point function of a primary

operator (1.34), using the bulk field Φ that is dual to O. The bulk field with

nonzero source can be reconstructed in terms of a bulk to boundary propagator

K(z, x− y) [32] [33]:

Φ(x, z) =

∫
ddyK(z, x− y)φ−(x), (1.35)

where K has to satisfy the equation of motion. One can show that the SO(2, d)

transformation z → z
z2+xνxν

, xµ → xµ

z2+xνxν
of the ∆+ solution (1.28) yields the

bulk to boundary propagator:

K(z, x− y) = c∆+

(
z

z2 + (x− y)2

)∆+

, c∆+
=

Γ[∆+]

π
d
2 Γ[∆+ − d

2 ]
. (1.36)

In the small z → 0 limit we can compare (1.29) and (1.35) order by order. At

order z∆+ we find:

φ+(x) = c∆+

∫
ddy

1

|x− y|2∆+
φ−(y). (1.37)
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1. Introducing holography

Using the fundamental statement (1.30) and the identification of the source φ(0) =

φ−, we can calculate connected n-point functions using the on shell gravitational

action:

〈O(x1) . . .On〉connected =
(−1)n+1δn

δφ−(x1) . . . δφ−(xn)
W [φ−]

=
(−1)nδn

δφ−(x1) . . . δφ−(xn)
SAdS,on shell[φ−].

(1.38)

The on shell action SAdS,on shell[φ−] is divergent for z → 0 and must be regulated

by a small parameter z = ε. The regulated action can be evaluated on the equation

of motion:

S = −1

2

∫
dd+1x

√
gΦ
(
�−m2

)
Φ + Ld−1

AdS

∫
z=ε

ddx
Φ∂zΦ

zd−1

∣∣∣∣
z=ε

= Ld−1
AdS

∫
z=ε

ddx
Φ∂zΦ

zd−1

∣∣∣∣
z=ε

.

(1.39)

We really should have added counter terms to the action to make it finite, but

the result obtained by using the finite part of (1.39) turns out to be proportional

to the answer obtained by properly renormalizing the action. Substituting (1.29)

into (1.39) and keeping the finite part, we obtain using (1.37)

S ∝
∫
ddx

∫
ddy

φ−(x)φ−(y)

|x− y|2∆+
. (1.40)

From this result we find

〈O(x)〉connected =
−δ

δφ−(x)
SAdS,on shell ∝ φ+(x),

〈O(x)O(y)〉connected =
δ2

δφ−(x)δφ−(y)
SAdS,on shell ∝ 1

|x− y|2∆+
.

(1.41)

Note that the two-point function of the operator dual to Φ satisfies the constraints

of the conformal group (1.34). The CFT analysis and the bulk calculation give the

same result, illustrating that the holographic dictionary allows us to do calculations

in either the boundary theory, or the bulk theory. Also note that we have

〈O(x)〉connected = 0 (1.42)

from the first line of (1.41) when the source term is set to zero. From the point of

view of the CFT, this is required by translation invariance.
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1.2. Elements of the dictionary

1.2.4 Wilson loop

The ADS/CFT -correspondence is sometimes called a gauge-gravity duality, be-

cause the examples derived from string theory involve boundary gauge theories.

In a gauge theory, the gauge invariant operators are the so called Wilson loops.

For a loop C, the wilson loop WC for a gauge field A in representation R is given

by

WC =
1

N TrR{P [ei
∮
C A]}, (1.43)

where P stands for “path ordered” and N is a normalization constant. The trace

is taken over the representation of the gauge group. Note: in the context of

N = 4 SYM theory the Wilson loop also involves the scalar fields XI [34], which

also transform in the adjoint representation.

The bulk dual of the expectation value of a Wilson loop W(C) evaluated in the

supergravity limit is proposed to be [34,35]:

W(C) ∼ e−S (1.44)

where S is the proper area of a fundamental string ending on the boundary loop

C (see figure 1.2).

U=U
h

U → ∞

t

x

U
*

L

U → ∞U
*

L

t

x

τ

C C

(a) (b)

Figure 1.2: Circular (a) and (long) rectangular (b) Wilson loops C and their corresponding world

sheets. In these pictures, the bulk is the area “on the left” of the boundary surface

at U →∞. The coordinate U is associated to the Poincaré coordinate z by U = z−1

and the Poincaré horizon, indicated by the gray planes at U = Uh correspond to

z → ∞. The deepest point to which the world sheets reach is indicated by U∗.
(Source: [36])

The expectation value of a rectangular Wilson loop extending far into the past

and future, is associated to the potential of a quark anti-quark pair with the same
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1. Introducing holography

separation. The action of a fundamental string, S, ending on a loop C on the

boundary is divergent, where the leading divergence is proportional to the length

of the loop C. The divergence is interpreted as the unrenormalized self energy of

massive quarks. Proper renormalization is necessary, but simple subtraction of

the area of a string world sheet that goes “straight” into the bulk yields finite

results [34].

1.3 Entanglement entropy

In this section, we will introduce holographic entanglement entropy and its bulk

dual, which are crucial ingredients for chapter (2) and (3). First we will introduce

the Von Neumann entropy. Then we will explain what the entanglement entropy

of a subregion is, in the context of quantum field theory. Subsequently we will

discuss several proposals for the bulk dual of boundary entanglement entropy.

1.3.1 Von Neumann entropy and entanglement

A quantum system can be described by a density matrix ρ, which is a linear

operator on the Hilbert space. A density matrix is hermitian, semi-positive definite

and has Tr{ρ} = 1. The expectation value of an operator O can be calculated by

evaluating:

〈O〉 = Tr{ρO}. (1.45)

When the system is in a pure state |ψ〉, the density matrix has the form

ρ = |ψ〉〈ψ|, (1.46)

which implies that the eigenvalue spectrum contains λ = 1 with multiplicity one

and the other eigenvalues are all zero. Non-pure states are called mixed. For

a pure state ρ = |ψ〉〈ψ|, the expectation value of an operator O (1.45) simply

reduces to:

〈O〉 = Tr{ρO} =
∑
n

〈n|ψ〉〈ψ|O|n〉 =
∑
n

〈ψ|O|n〉〈n|ψ〉 = 〈ψ|O|ψ〉, (1.47)

where we have used that the trace is over a complete basis of orthonormalized

states, such that
∑
n |n〉〈n| = I.

A general density matrix can be diagonalized and decomposed with respect to an

orthonormalized eigenbasis:

ρ =
∑
i

pi|i〉〈i|, 〈i|j〉 = δij . (1.48)
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1.3. Entanglement entropy

The Von Neumann entropy is a measure for the mixedness of a state:2

SVN = −Tr{ρ log ρ}. (1.49)

When we decompose ρ as in (1.48), we find:

SVN = −
∑
i

pi log pi, (1.50)

which is always positive by virtue of the semi-positive definiteness of the density

matrix and the property Tr{ρ} = 1, because all eigenvalues are in the range [0, 1].

For a pure state the eigenvalue spectrum is {1, 0, . . . } and the Von Neumann

entropy vanishes.

If a quantum system consists of two (or more) separable parts A and B and if we

can decompose the Hilbert space as

H = HA ⊗HB , (1.51)

then we can define a reduced density matrix ρA:

ρA = TrHB{ρ}. (1.52)

The reduced density matrix reproduces all expectation values of operators that

have support on HA. The Von Neumann entropy is now called the entanglement

entropy and is a measure of entanglement. It can be proved that the entanglement

entropy satisfies the following properties [37](pages 515− 521):

SA∪B ≤ SA + SB subadditivity

SA∪B∪C + SB ≤ SA∪B + SB∪C strong subadditivity.
(1.53)

Related quantities are the mutual information and the relative entropy. The mu-

tual information of two subsystems A and B is given by

I(A,B) = SA + SB − SA∪B (1.54)

and satisfies

I(A,B) ≥ 0 (1.55)

by virtue of the subadditivity of the Von Neumann entropy. The mutual informa-

tion also sets an upper bound for correlations between operators OA and OB with

support on A and B respectively [38]:( 〈OAOB〉 − 〈OA〉〈OB〉
‖OA‖‖OB‖

)2

≤ 2I(A,B) . (1.56)

2Sometimes, the Von Neumann entropy is defined with the base two log2. We will use the

the natural logarithm log throughout this thesis, which differs by a multiplicative factor of log 2.
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1. Introducing holography

The quantum relative entropy is a measure of the difference between two states.

For two density matrices ρ0 and ρ1 the quantum relative entropy is defined as:

S(ρ1|ρ0) = Tr{ρ1 log ρ1} − Tr{ρ1 log ρ0}. (1.57)

It can be be shown to satisfy the following property [39](page 511-513):

S(ρ1|ρ0) ≥ 0 ∀ρ1, ρ0, (1.58)

which is called the positivity of relative entropy. One can show that for a small

change of the state parametrized by λ, of the form ρλ = ρ+ λδρ with δρ traceless

(up to order O(λ)),

S(ρλ|ρ) = O(λ2). (1.59)

We will use property (1.59) in the statement of the first law of entanglement

entropy (1.62), but first we need to define the modular Hamiltonian. The modular

Hamiltonian H0 of ρ0 is defined by

ρ0 =
e−H0

Tr{e−H0} . (1.60)

Using (1.60), the quantum relative entropy can be written as:

S(ρ1|ρ0) = ∆〈H0〉 −∆S, (1.61)

where ∆〈H0〉 = Tr{H0(ρ1 − ρ0)} and ∆S = S(ρ1) − S(ρ0). Using the positivity

of the quantum relative entropy and (1.59) we find up to first order:

δS = δ〈H〉. (1.62)

This is called the first law of entanglement entropy [40]. Indeed, when the density

matrix is thermal, we find the first law of thermodynamics.

1.3.2 Entanglement entropy in field theory

In the previous subsection we introduced the concept of entanglement entropy

for quantum systems. Consider a quantum field theory defined on a (globally

hyperbolic) spacetime M. A spacelike Cauchy surface Σ now comprises the “full

system” and a subset A ⊂ Σ can be considered as a “subsystem”. For A, a reduced

density matrix can be constructed by tracing over the degrees of freedom in the

Hilbert space HAc of Ac, the complement of A in Σ:

ρA = TrHAc {ρ}. (1.63)
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1.3. Entanglement entropy

Here we will derive a formal expression for the reduced density matrix ρA in terms

of wave functionals and path integrals, in the vacuum state of the “full system”, for

the simple setup with a quantum field theory on (1+1)-dimensional flat space and

with A equal to half-space: A = {(x, t) : x ≥ 0 t = 0}. The techniques used in this

example generalize to more complicated setups. The material covered below can

be found largely in [41, 42]. We will use coordinates (x, t) with ds2 = −dt2 + dx2

or in Euclideanized coordinates (x, τ = it), ds2 = dτ2 + dx2.

First we will introduce the replica trick, a trick used to simplify the calculation of

entanglement entropy:

S(ρ) = −Tr{ρ log ρ}

= − ∂

∂n
Tr{ρn}

∣∣∣∣
n=1

.
(1.64)

Another version of the replica trick, that also works for non-normalized ρ is given

by
S(ρ) = − lim

n→1
(n∂n − 1)Tr{ρn}. (1.65)

If the replica trick can be used, then the computation of the entanglement entropy

reduces to the computation of Tr{ρn}. The replica trick can be used under the

assumption that the analytic continuation n→ R is correct. To check whether the

answers obtained with the replica trick are correct, one can compare the obtained

results to a lattice calculation in the limit where the lattice size goes to zero.

We assume that the replica trick can be used, and proceed to the calculation of

Tr{ρn}, for which we will derive a formal expression below.

For a theory with a scalar field φ(x) a complete set of states is given by

{|φ̃, t〉 : φ̂(x)|φ̃, t〉 = φ̃(~x)|φ̃, t〉}, (1.66)

where the operator φ(x) is time independent and the time dependence is carried

by the states (Schrödinger picture). The wave functional for a general state |Ψ〉
can formally be defined as

Ψ(φ, t) = 〈φ, t|Ψ〉. (1.67)

The Euclidean wave functional of the vacuum state is given by:

Ψ(φ, τ) =

∫ φ̃(τ)=φ

τ→−∞
D[φ̃]e−S[φ̃]. (1.68)

Now we divide the x-axis into two “subsystems” with the origin as boundary:

A = {(x, τ) : x > 0, τ = 0}. Supposing that we can further decompose the
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1. Introducing holography

eigenstates of φ̂ (1.66)3

|φ, τ〉 ∼ |φL, τ〉 ⊗ |φR, τ〉, (1.69)

where L (R) refers to the interval x < 0 (x > 0), we can see that the components

of the reduced density matrix for the region x > 0 can be obtained by integrating

over all field configurations on the “left” (x < 0):

〈φR,+, 0+| ρ |φR,−, 0−〉 = 〈φR,+, 0+|Ψ〉〈Ψ|φR,−, 0−〉

=

∫
D[φ̃L]

∫ φ̃R(0+)=φR,+

φ̃R(0−)=φR,−

D[φ̃R]e−S[φ̃L,φ̃R].
(1.70)

An alternative and equivalent formulation of equation (1.70) is given by [43]

〈φR,+, 0+| ρ |φR,−, 0−〉 = 〈φR,+, 0+|Ψ〉〈Ψ|φR,−, 0−〉

=

∫ τ→−∞

τ→∞
D[φ̃]e−S[φ̃]Πx>0δ

(
φ̃(0+)− φR,+

)
δ
(
φ̃(0−)− φR,−

)
.

(1.71)

The expressions (1.70) and (1.71) contain path integrals with fixed field values

along the cut x > 0, τ = 0, with φ = φR,± as constraint value at τ = 0±. The

“product” of n reduced density matrices can be constructed by matching the field

values of φiR,+ with φi+1
R,−, followed by integration over the matched field value

(this is the analog of matrix multiplication for density matrices of Hilbert spaces

with finite dimension):

〈φR,+, 0 + |ρ2|φR,−, 0−〉 ∝
〈φR,+, 0 + |Ψ〉〈Ψ|Ψ〉〈Ψ|φR,−, 0−〉 =∫

D[φ̄R]

∫
D[φ̃L]

∫ φ̃R(0+)=φR,+

φ̃R(0−)=φ̄R

D[φ̃R]e−S[φ̃]

∫
D[φ̃′L]

∫ φ̃′R(0+)=φ̄R

φ̃′R(0−)=φR,−

D[φ̃R]e−S[φ̃′]

(1.72)

Repeating this “sewing” procedure and taking an overall trace, one obtains a path

integral over a conical defect space with a defect angle of 2π(n− 1).

Hence, calculating Tr{ρn} amounts to the calculation of the partition function Zn
on the conical defect space. In the above discussion we did not take into account

the normalization of ρ in order to make sure that Tr{ρ} = 1. The full expression

for Tr{ρn} is given by

Tr{ρn} =
Zn
Zn1

, (1.73)

where Zn is the partition function on the conical defect space and Z1 is the par-

tition function on R2.

3This is a matter of debate, but for a theory on a lattice it is certainly true.
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1.3. Entanglement entropy

Example: Rindler wedge

We just derived an important expression that allows us to calculate the entan-

glement entropy of a subregion by calculating the partition function on a conical

defect space (if the replica trick can be used). Now we will use a slightly different

technique to derive an expression for the reduced density matrix of half-space, for

a field theory on (1+1)-dimensional Minkowski spacetime. This is an important

example, that has many applications in later chapters.

First we introduce the Rindler wedge, the subset {(x, t) : |t| ≤ x, x ≥ 0} of

Minkowski space. This wedge can be covered by Rindler coordinates T,R defined

by
x = R coshT,

t = R sinhT,

ds2 = −R2dT 2 + dR2.

(1.74)

An observer at fixed R can be associated to an accelerated observer in Minkowski

space. Consider the example of a scalar field in (1 + 1) dimensions.

Half-space, {(x, t) : x > 0, t = 0}, is a Cauchy surface for the Rindler wedge.

In Lorentzian signature, boosts are generated by ξ = x∂t + t∂x. One can check

that observers with constant acceleration a, that come in from infinity and turn

at x = 1
a and go back to infinity, move on trajectories generated by ξ, satisfying

ξµ∇µξν = aξν . (1.75)

The boosts generated by ξ are a symmetry of a Lorentz invariant theory and the

generator is given by

K =

∫
Σ

dΣµTµνξ
ν , (1.76)

where T is the energy momentum tensor and Σ is a Cauchy slice.

In the Euclidean picture τ = it, ξ becomes the generator of rotations:

x∂t + t∂x → −i
(
x1∂τ − τ∂x

)
. (1.77)

The expression for the components of ρR (1.70) is given in the Euclidean picture

and is a path integral with fixed field values along the cut x > 0, t = 0. The path

integral can be calculated by slicing the Euclidean plane in angular sections. But

the Euclideanized theory is invariant under rotations which are generated by the

Euclideanized K (1.76):

〈φR,+, 0 + |Ψ〉〈Ψ|φR,−, 0−〉 =

∫
D[φ̃L]

∫ φ̃R(0+)=φR,+

φ̃R(0−)=φR,−

D[φ̃R]e−S[φ̃L,φ̃R]

= 〈φR,+, 0 + |e−2πK |φR,−, 0−〉.
(1.78)
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1. Introducing holography

We conclude that

ρA =
e−2πK

Tr{e−2πK} , (1.79)

where K is the generator of Euclidean boosts. This is an example of a thermal

density matrix. The associated temperature depends on the normalization of K,

or equivalently, it depends on the choice of accelerated observer. For an observer

with constant acceleration a, translations in proper time are generated by K̃ = aK

and the density matrix is thermal with T = a
2π :

ρR =
e−

2π
a K̃

Tr{e− 2π
a K̃}

. (1.80)

1.3.3 A bulk dual for entanglement entropy

Ryu-Takayanagi proposal and beyond

The boundary entanglement entropy of a subregion A of a Cauchy slice Σ has

been conjectured to be equal to the area of a surface EA, which is a bulk extremal

surface with minimal area that ends on ∂A and is homologous to A [44, 45]:

SA =
AEA

4G
, (1.81)

where G is Newton’s gravitational constant. This formula is referred to as the

HRT formula or HRT proposal (Hubeny, Rangamani, Takayanagi). The expression

(1.81) is thought to hold to leading order in 1
N . Recently a limited proof for static

spacetimes of (1.81) was given in [46].4 There is also surmounting evidence for the

HRT formula; it gives results that are consistent with field theory calculations and

it also automatically satisfies nontrivial properties such as strong subadditivity

(1.53), which we discuss below.

The formula (1.81) was originally formulated by Ryu and Takayanagi for static

spacetimes. In a static spacetime, one can consider a constant time slice Σt in

the bulk. When the boundary entanglement surface ∂A lies on (the boundary

restriction of) the constant time slice, the extremal surface ending on ∂A lies

completely on the bulk constant time slice and is simply the minimal surface on

Σt.

The Ryu-Takayanagi prescription is believed to hold at leading order in large N .

In the AdS5 × S5 example, this means the formula (1.81) holds at order N2. The

4Fursaev made an early attempt to prove (1.81) [47], but in [48] it was argued that this proof

is incorrect.
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1.3. Entanglement entropy

subleading correction in N−1 is proposed to be given by the bulk entanglement

entropy across the bulk extremal surface defined by (1.81) [49]:

SA =
AEA

4G
+ Sbulk(EA), (1.82)

where the leading order contribution is given by (1.81) and Sbulk(EA) is the bulk

entanglement entropy across the extremal surface EA defined by (1.81). Another

proposal was given by Wall and Engelhardt [50]:

SA =
AFA

4G
+ Sbulk(FA), (1.83)

where FA is determined by extremizing the sum of both terms in (1.83) instead of

just the term corresponding to (1.81). The surface FA is called a quantum extremal

surface. Note that both quantities (1.82,1.83) involve counter terms necessary to

normalize the bulk entanglement entropy. Details can be found in [49,50].

Strong subadditivity

The strong subadditivity property is an important feature of the Von Neumann

entropy. The holographic entanglement entropy satisfies the strong subadditivity

property. The fact that it does is nontrivial and provides evidence for the HRT

proposal (1.81). Below we briefly illustrate the strong subadditivity property of

holographic entanglement entropy in the case of static spacetimes and constant

time slices, following [51].

The Von Neumann entropy of subsystems A,B,C always satisfies the highly non-

trivial strong subadditivity property (1.53):

SA∪B∪C + SB ≤ SA∪B + SB∪C . (1.84)

In a quantum field theory we can recast the strong subadditivity property for

subregions A,B as

SA∪B + SA∩B ≤ SA + SB . (1.85)

For static bulk spacetimes, we can introduce constant time slices. If A and B

are both subregions of the boundary restriction of a constant timeslice, then their

associated minimal surfaces EA and EB also lie on that constant timeslice. A

pictorial argument now shows that the surface EA ∪ EB can be decomposed into

a surface that ends on ∂(A ∪ B) and a surface that ends on ∂(A ∩ B). If these

happen to coincide with the minimal surfaces ending on ∂(A ∪ B) and ∂(A ∩ B)

respectively, then (1.53) is satisfied and the bound is saturated. If these surfaces

do not correspond to the minimal surfaces ending on ∂(A∪B) and ∂(A∩B), then

the associated entanglement entropies will satisfy (1.53), since the true minimal
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1. Introducing holography

surfaces ending on ∂(A ∪ B) and ∂(A ∩ B) will yield a smaller area and hence

smaller associated entanglement entropy [51].

In [52], strong subadditivity is also shown to hold for non-static bulk spacetimes.

The fact that the HRT proposal satisfies the nontrivial strong subadditivity prop-

erty provides evidence for its correctness.

A

r
A

m
A

B

r
B m

B

A B

m
A!B

m
A"B

Figure 1.3: Heuristic visual proof of (1.85). The union mA ∪mB of the minimal surfaces mA
and mB , which are associated to the two partially overlapping boundary subregions

A and B respectively, can be decomposed into two surfaces rA∪B and rA∩B which

end on ∂(A ∪ B) and ∂(A ∩ B) respectively. The area of the minimal surfaces

mA∪B and mA∩B is generally smaller than or equal to the area of rA∪B and rA∩B
respectively, with equality if mA∪B = rA∪B and mA∩B = rA∩B . This implies for

the associated entanglement entropies that SA+SB ≥ SA∪B+SA∩B . (Source: [51])

Wald functional

The expression for holographic entanglement entropy (1.81) is very similar to the

expression for the black hole entropy (1.1). In higher derivative non-Einstein

gravity, the black holes entropy receives a correction to (1.1) given by the Wald

functional. This suggests that we should also consider the Wald functional for the

holographic entanglement entropy, modifying (1.81). Below we will discuss the

Wald entropy, the Wald functional and its application to holographic entanglement

entropy.

Wald showed that the black hole entropy is a conserved charge that corresponds

to the symmetry generated by the Killing vector, for which the black hole event

horizon is the (bifurcate) Killing horizon [53]. This statement remains valid for

black holes in higher derivative gravity theories, but the associated entropy and

conserved charge are given by the Wald functional [53–55]:

W = −2π

∫
H
dd−1x

√
h
δL
δRabcd

εabεcd, (1.86)
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1.3. Entanglement entropy

where H is the Killing horizon, εab its bi-normal and

δL
δRabcd

=
∂L

∂Rabcd
−∇a1

∂L
∂∇a1Rabcd

+ . . .

+ (−1)n∇(a1
. . .∇an)

∂L
∂∇(a1

. . .∇an)Rabcd
+ . . . ,

(1.87)

where L is the gravitational Lagrangian.

A (bifurcate) Killing horizon is a special surface, since its extrinsic curvature van-

ishes by virtue of the Killing equation ∇aξb+∇bξa = 0. For a minimal surface, the

extrinsic curvature does generally not vanish completely, even though the trace of

the extrinsic curvature does vanish [45]. It is not a priori clear that the Wald func-

tional can be used for a generalization of the holographic entanglement entropy

formula.

In [56] it was shown that the Wald functional needs to be modified in order to

yield consistent answers for the holographic entanglement entropy. For Lovelock

gravity, a modification of the Wald functional is proposed in [56]. A more general

formula is given in [57].

Another difference with the black hole entropy is that the holographic entangle-

ment entropy yields divergent answers, while the black hole entropy is finite, due to

the fact that the area of the horizon is finite. Below we will describe the divergence

structure of holographic entanglement entropy.

Structure of divergences

Holographic entanglement entropy is given by the area of a bulk surface that ends

on the boundary (1.81). The bulk metric diverges near the asymptotic boundary.

The area of the extremal surface must be regulated by implementing a bulk IR-

cutoff. The leading divergence is proportional to the area of ∂A:

SA ∝
∂A
εd−1

+ · · ·+ γ log(ε) + . . . (1.88)

These divergences are consistent with field theory calculations. From the field the-

ory point of view, the leading area term (1.88) can be associated to entanglement

due to the short distance degrees of freedom, across the entanglement surface ∂A.

In the field theory calculation, a short distance or UV cut off must be used to reg-

ulate the divergences. The leading divergence is independent of the details of the

background metric as long as the cutoff scale is much smaller then the curvature

scale.

Power law divergences are generally cutoff dependent. For smooth surfaces ∂A,

in a field theory on a d-dimensional background, there is also a logarithmically
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1. Introducing holography

divergent term for even d. The coefficient of this logarithmically divergent term

is universal for conformal field theories: it does not depend on the cutoff nor the

state. The coefficient does depend on the geometry of the entanglement surface

∂A. In (3 + 1) dimensions, the coefficient of the logarithmically divergent part of

the entanglement entropy is given by [58]

− a

720π

∫
∂A

R∂A +
c

720π

∫
∂A

(
−Ka

µνK
aµν +

1

2
KaK

a

)
, (1.89)

where a and c are the central charges of the theory. Note that these coefficients

are invariant under boundary Weyl transformations gµν → e2ωgµν .

Example: the strip

We consider the boundary region A = {(~x, t) : |x1| ≤ w
2 L
−1
AdS, t = 0} for d > 2,

with a pure AdS bulk metric in Poincaré coordinates (1.14,1.15).5 The holographic

entanglement entropy is given by (1.81). We need to minimize the area

A =

∫
dx1

∫ LIR
2LAdS

− LIR
2LAdS

dx2...dxd−1

√
det

∂xM

∂xα
∂xN

∂xβ
GADSMN

= Ld−2
IR LAdS

∫
dx1

√√√√(( dz

dx1

)2
1

z2
+

1

z2

)(
1

z2

)d−2

,

(1.90)

where LIR is a boundary IR-cutoff along the spatial coordinates orthogonal to x1.

The Lagrangian does not explicitly depend on x1

L =
1

zd−1

√(
dz

dx1

)2

+ 1, (1.91)

so the equation of motion for z(x) can be written in terms of a “conserved quantity”

z∗
∂z

∂x
=

√(z∗
z

)2(d−1)

− 1 (1.92)

where z∗ is the “turning point” of the bulk surface: dz
dx1

(z∗) = 0.

Now we can solve for z∗ in terms of w:

w

2LAdS

=

∫ w
2LAdS

0

dx′ =

∫ z∗

0

dz′
dx

dz′
=

∫ z∗

0

dz
zd−1√

z
2(d−1)
∗ − z2(d−1)

= z∗

∫ 1

0

dx
xd−1

√
1− x2(d−1)

.

(1.93)

5Here we consider dimensionless coordinates z → z
LAdS

, xi → xi

LAdS
, for which the metric is

still equal to (1.15).
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The integral (1.93) can be done and gives

z∗ =
dw√
π2LAdS

Γ[ 2d−1
2d−2 ]

Γ[ 3d−2
2d−2 ]

. (1.94)

With z∗ (1.94) and the “equation of motion” (1.92) we can calculate the area:

A = 2Ld−1
AdS

∫ w
2LAdS

ε
LAdS

dz

∫ LIR
2LAdS

− LIR
2LAdS

dx2...dxd−1

√√√√((dx1

dz

)2
1

z2
+

1

z2

)(
1

z2

)d−2

=
2Ld−1

AdS

d− 2

(LIR

ε

)d−2

−
(
LIR

w

)d−2
1

2

(
2
√
πΓ[ d

2(d−1) ]

Γ[ 1
2(d−1) ]

)d−1
+O(ε).

(1.95)

The leading divergence is proportional to the area ∂A, which is 2Ld−2
IR for the

strip. There is no logarithmically divergent term (d > 2), which is in agreement

with (1.89), since both the intrinsic curvature and the extrinsic curvature of ∂A
vanish everywhere on the strip.
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Chapter 2

Shadows and holographic

reconstruction

In this chapter we first give a non-exhaustive introduction of bulk reconstruction

techniques: techniques that are used to reconstruct the bulk geometry, the bulk

fields and the bulk dynamics from the boundary fields and dynamics. Then we

describe the appearance of bulk regions where at least one of the reconstruction

techniques fail. This does not mean that holography is wrong or incorrect; it is

perfectly possible that we will be able to reconstruct all the bulk physics in the

future, by discovering different “entries” in the holographic dictionary, or different

techniques to make use of them. The necessity of discovering new bulk probes

also motivates the study of causal holographic information, which we will discuss

in chapter (3).

2.1 Holographic reconstruction

Holographic reconstruction is the construction of quantities on one side of the

holographic duality with knowledge of the state and theory on the other side. The

terminology of “holographic reconstruction” is mostly used in the context of re-

construction of bulk quantities with knowledge of the boundary theory and state.

In this section we will give a non-exhaustive description of reconstruction tech-

niques. Some of these reconstruction techniques already assume a semi-classical

bulk geometry and attempt to reconstruct field values [59–62]. Other techniques

are used to reconstruct the dynamics of the bulk fields [63–65]. The most funda-
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2. Shadows and holographic reconstruction

mental reconstruction techniques do not even assume a spacetime a priori; a point

of spacetime needs to be defined carefully [66].

Note that a subset of these techniques make extensive use of holographic en-

tanglement entropy. One could hypothesize that the bulk is a representation or

geometrization of the entanglement structure of the boundary theory. It is not

immediately clear how this hypothesis relates to the interpretation of the radial

direction as an RG-scale, which we discussed in section (1.2), but there are no

apparent contradictions either.

We will first discuss the idea of subregion dualities. Then we will briefly present

techniques that can be used to reconstruct bulk fields, bulk spacetime and bulk

gravity.

2.1.1 Reconstruction & subregion duality

An important question in the context of the AdS/CFT-correspondence is whether

a subregion duality exists. A subregion duality is a duality between a boundary

subregion and a bulk subregion. Given the density matrix of a subregion, how

much of the bulk can one generically reconstruct? This question has been analyzed

in [67–69]. Below we discuss the two main candidates for such a subregion duality.

Causal wedge

The causal wedge �A is a bulk subregion associated to a boundary subregion

A. Consider an asymptotically AdS manifold M with asymptotic boundary ∂M.

First we define the boundary causal diamond of A; it is the union of the boundary

future and past domains of dependence of A:

♦A = D+
∂M(A) ∪D−∂M(A) . (2.1)

The so called causal wedge �A of A is the intersection of the bulk future and past

domains of influence of ♦A:

�A = J+
M(♦A) ∩ J−M(♦A). (2.2)

In pure AdS spacetime, the causal wedge of a boundary ball on a constant time

slice can be mapped to the AdS-Rindler spacetime. Even though there are difficul-

ties in the construction of the smearing function, a subregion duality is thought to

hold for the AdS-Rindler wedge, because the AdS-Rindler wedge can be mapped

to the exterior of a hyperbolic black hole. The exterior of a black hole is expected

to be reconstructable with the boundary data. Another argument for the propo-

sition that there is a subregion duality between A and its causal wedge �A is that
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2.1. Holographic reconstruction

a boundary observer could send accelerated observers into the bulk, which could

collect data from the causal wedge �A and return to the boundary causal dia-

mond ♦A. These arguments make a strong case for a subregion duality between a

boundary subregion A and its causal wedge �A and it is believed that the causal

wedge �A is the minimum subregion that is reconstructable with full knowledge

of ρA.

Entanglement wedge

Another candidate for a subregion duality is the boundary subregion A and its

associated entanglement wedge [70]. Consider the boundary subregion A and the

bulk extremal surface EA which computes its entanglement entropy (1.81). There

exists a spacelike surface RA, that is part of a bulk Cauchy surface, such that

∂RA = A ∪ EA. The entanglement wedge is the bulk causal diamond for this

spacelike surface:

WA = D+
RA ∪D

−
RA , (2.3)

where D±RA is the bulk future (past) domain of dependence of RA. In [70] it was

argued that this region should be reconstructable with the information of ρA.1

2.1.2 Reconstruction of the fields

In section (1.1) we discussed the relation between a bulk scalar field Φ and its

boundary dual OΦ and in particular the bulk to boundary propagator which allows

the bulk scalar field Φ to be expressed in terms of the boundary source φ−.2

Another approach is to reconstruct the unsourced bulk scalar field Φ, in the semi-

classical regime, with knowledge of all expectation values 〈OΦ〉 of the boundary

dual operator. This problem has been studied in [59–62], making use of a smearing

function. Below we will briefly discuss the basics of this reconstruction method,

which assumes both large N and large t Hooft coupling.

A free scalar field Φ is taken to have normalizable fall-off near the boundary; in

Poincaré coordinates (1.14,1.15)

Φ(x, z) ∼ z∆+φ+(x), (2.4)

for small z. The approach here is slightly different from the approach in section

(1.1), which goes under the name “differentiate”, whereas the method that is

presented here is called “extrapolate”. These methods are shown to be equivalent

[72].

1In [71] a more precise proposal was made.
2In a theory with bulk interactions the bulk to bulk propagator is also necessary.

33
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The aim of [59] is to construct a smearing function K such that

Φ(x, z) =

∫
ddx′K(x′|z, x)OΦ(x′). (2.5)

Several methods to explicitly construct the smearing function are presented in [59],

but here we will only discuss the “mode-sum approach”.

We can expand the field Φ and its normalizable mode φ+ (2.4) in modes labeled

by quantum number k and keep the dependence on the radial coordinate z:

Φ(z, x) =

∫
dd−1ka~kF~k(z, x) + c.c.

φ+(x) =

∫
dd−1ka~kf~k(z, x) + c.c.,

(2.6)

with F~k = z∆+f~k, where ~k is typically associated to conserved quantities and the

set of solutions {fk} is taken to be orthogonal:∫
dd−1xf∗~k (x)f~k′(x) = N(~k)δd−1(~k − ~k′). (2.7)

We can determine the coefficients {a~k} by exploiting the orthogonality relations

(2.7):

a~k =
1

N(~k)

∫
dd−1xf∗~k (x)φ+(x). (2.8)

Now we have, using (2.6) and (2.8)

Φ(x, z) =

∫
dd−1ka~kF~k(x, z) + c.c.

=

∫
dd−1k

1

N(~k)

(∫
dd−1x′f∗~k (x′)φ+(x′)

)
F~k(x, z) + c.c.

(2.9)

If we can exchange the integrals over x′ and k in (2.9) we obtain an expression for

the smearing function:

Φ(x, z) =

∫
dd−1x′

(∫
dd−1k

1

N(~k)
f∗~k (x′)F~k(x, z)

)
φ+(x′) + c.c.

=

∫
dd−1x′K(x′|z, x)φ+(x′),

(2.10)

with

K(x′|z, x) =

∫
dd−1k

1

N(~k)
f∗~k (x′)F~k(x, z) + c.c. (2.11)

In both the Poincaré patch as well as global AdS, the smearing functions can be

constructed. The smearing function is not unique. In global AdS patches, the
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smearing functions K(x′|z, x) constructed in [59, 60] have support on boundary

points {x′} spacelike separated from the bulk point (z, x). In the Poincaré patch

the smearing function has support on the whole boundary for d even (D odd).

An interesting question is whether a smearing function exists for AdS-Rindler

space and other spacetimes. For pure AdS, corresponding to the vacuum state

of the boundary CFT, the causal wedge associated to a boundary ball can be

mapped to AdS-Rindler spacetime. In subsection (2.1.1) we argued that the causal

wedge should be reconstructable with knowledge of the state on its associated

boundary region. An expression in the form of (2.9) certainly exists for AdS-

Rindler spacetime, but the integral over k is not convergent after exchanging it

with the integral over x′.3 The construction of the smearing function in AdS-

Rindler is thus at least problematic.

Reconstruction of the fields via the smearing function is possible for some bulk

geometries, but not for every bulk geometry. In [73] it is argued that the smearing

function does not exist when there are bulk normal modes with exponentially small

boundary imprint. In [74] it is proposed that continuous bulk reconstruction is

only possible when every null geodesic in a given bulk subregion has an endpoint

on the associated boundary subregion. Note that the reconstuction of bulk fields

using smearing functions has been extended to nonlinear level in [62] [61] and to

gauge fields in [75].

2.1.3 Reconstruction of spacetime

Recently, reconstruction techniques have been developed using a quantity called

differential entropy [66]. In this form of reconstruction, an attempt is made to

define a point in spacetime. The discussion in [66] is limited to AdS2+1 spacetime

and quotients of AdS2+1 (conical defect and BTZ geometries). At the moment of

writing, it is not clear how to generalize the techniques presented in [66] to higher

dimensional spacetimes [76,77].

For static spacetimes we can introduce constant time slices. Let θ ∈ [0, 2π] be a

coordinate on a constant timeslice of a compact boundary. To any value θ, we can

associate an interval (θ−α(θ), θ+α(θ)) on the (1+1)-dimensional boundary. The

differential entropy is given by

E[α] =
1

2

∫ 2π

0

dθ
dS[α]

dα

∣∣∣∣
α=α(θ)

, (2.12)

where S[α(θ)] is the holographic entanglement entropy associated to an interval

centered around θ with width 2α(θ). In [78] and [66] it is shown that for −1 <

3In [60] an attempt is made to cure this by complexifying the boundary.
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α′(θ) < 1, (2.12) corresponds to the length of a closed bulk curve:

E[α] =
circumference of closed curve associated to α

4G
. (2.13)

Roughly, a point in spacetime is defined in [66] as a function α, where α is such that

the corresponding closed bulk curve has zero circumference. Details can be found

in [66], where a more precise definition of bulk points is given. Furthermore, a well

behaved distance function on the set of bulk points is defined in [66]. The definition

of points and relative distance allows the construction of the bulk manifold and

coordinate charts.

The extension of these definitions to the conical defect spacetime and the BTZ

black hole require more bulk probes than just the set of minimal surfaces; non-

minimal extremal surfaces and surfaces spanning between both external regions

of the BTZ black hole are required. Generally, the CFT interpretation of these

surfaces is unclear. For certain (2+1)-dimensional conical defect bulk spacetimes,

a CFT interpretation of non-minimal extremal surfaces is given in terms of a

boundary quantity called “entwinement” [79].

2.1.4 Reconstruction of gravity

In order to reconstruct dynamics in the bulk, we must consider dynamics on the

boundary, or in other words, we must consider perturbations of both the bulk

and boundary state and find out how they are related. A different boundary

states corresponds to a different bulk geometry, for example, the CFT vacuum

corresponds to a pure AdS geometry. Another example is a thermal state in the

CFT, which is dual to an AdS-black hole bulk geometry. Below we will briefly

present the techniques used in [65] to construct gravitational dynamics in the bulk

from dynamics in the boundary.

For small perturbations in the quantum state of the boundary, the first law of

entanglement entropy (1.62) applies. Both sides of the equation (1.62) can be

expressed in terms of bulk duals, which means that the first law of entanglement

entropy gives a bulk condition for every boundary surface A. A subset of these

conditions is shown to be equivalent to the linearized Einstein equations [65] (see

also [64] [63]).

The first law of entanglement entropy (1.62) holds to first order in a small change

of the boundary state:

δ〈H〉 = δS. (2.14)

For boundary balls Bd−1 the density matrix and its modular Hamiltonian (1.60)

are known; the modular Hamiltonian for the boundary ball HB is an integral of a
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local operator [80]:

HB = 2π

∫
B(R,x0)

dd−1x
R2 − |~x− ~x0|2

2R
Ttt. (2.15)

The energy momentum tensor, appearing in (2.15), can be associated to the bulk

metric via the holographic dictionary [81]:

Tµν =
dLd−3

AdS

16πG
d(d)
µν

(2.16)

where g
(d)
µν is as in expansion (1.21). In higher derivative gravity [65] argues that

expression (2.16) holds up to a different coefficient.

The change in entanglement entropy can be found by varying the holographic

entanglement entropy of the sphere (1.81) with respect to the bulk metric. Both

the bulk surface and the position of the bulk minimal surface change, but the latter

effect is only at second order in the metric perturbation due to the extremality

condition in its definition. The change in the entanglement entropy can hence be

expressed as an integral over the original surface EA (to first order in δgµν = hµν).

For theories for which the entanglement entropy is given by the area of the minimal

surface (1.81) [65],

δS =
RLd−3

AdS

8G

∫
|~x−~x0|≤R

dd−1x z2−d
(
δij − 1

R2
(xi − xi0)(xj − xj0)

)
hij(z, t0, ~x) .

(2.17)

The holographic dictionary now relates bulk quantities (2.17) and (2.16) to the left

and right hand side of (1.62), giving a constraint for each boundary ball Bd−1(R)

as well as for all boundary balls in boosted boundary frames. These constraints

are show to be equivalent to the linearized gravitational equations around AdS,

given certain boundary conditions [63,65].

In [65], the first law of entanglement entropy (1.62) is shown to give the linearized

gravitational equations of motion even for higher derivative gravity theories. An

important step in this derivation is the observation that the bulk surface associated

to the entanglement entropy of a boundary ball is the bifurcation two sphere of a

Killing horizon. This is a special property of the entanglement entropy of a bound-

ary ball with the CFT in the vacuum state (AdS). For general states and boundary

subregions A, the Ryu-Takayanagi surface (1.81) is not the bifurcation two sphere

of a Killing horizon. This limits the potential of the techniques presented in [65].

At the moment of writing, it is unclear how the gravitational equations can be

derived in more general settings and in particular in the “shadow regions” (see

section 2.2) that some geometries exhibit.
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2. Shadows and holographic reconstruction

2.2 Holographic shadows

In section (2.1) we discussed several reconstruction techniques and their limita-

tions. Holographic entanglement entropy plays a central role in many recent re-

construction attempts. In [2] we quantified the ability of Ryu-Takayanagi surfaces

to probe the bulk. We also analyzed the ability of Wilson loops to probe the bulk

geometry. Regions that cannot be probed by bulk probes are called shadows. In

this section, we present some general properties, terminology, and theorems that

will prove useful in the analysis of holographic shadows. We will also illustrate the

appearance of shadow regions with the example of the BTZ bulk geometry.

2.2.1 Minimal area surfaces

In section (1.3) we presented the well known holographic entanglement entropy

formula (1.81). The bulk surfaces EA associated to the entanglement entropy of a

boundary subregion A play an important role in recent reconstruction techniques.

In pure AdS spacetime, minimal surfaces associated to entanglement entropy of a

certain boundary subregion pass through every point in every (spacelike) direction.

However, in states corresponding to other geometries, like the AdS-Schwarzschild

geometry, certain regions cannot be probed by minimal surfaces, or only partially.

In this section we present the definition of two different degrees of “probe-ability”.

We only consider static spacetimes.

Let Σ be a constant time slice of the bulk, with a natural extension ∂Σ to the

boundary.

The Strong Coverage Property (SCP):

∀x ∈ Σ, ∀v ∈ TxΣ, ∃A ⊂ ∂Σ whose dual minimal surface EA intersects x with

tangent vector along v.

Intuitively, this says that the entire bulk and its tangent bundle are “scanned

over” by the minimal surfaces EA of all possible boundary regions A. This is

satisfied by empty AdS, and also holds up to small perturbations thereof. In

(2 + 1) dimensions, SCP is equivalent to the condition for boundary rigidity [82],

which means that knowing the entanglement entropy for every boundary region A
uniquely determines the bulk geometry. SCP is also a necessary condition for the

“hole-ographic” reconstruction of [78] (see also [79]). However, the requirement

that one covers the entire tangent bundle is quite strong, and is not a priori

necessary for a successful reconstruction scheme. We will therefore also consider

a weaker property:
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2.2. Holographic shadows

The Weak Coverage Property (WCP):

∀x ∈ Σ, ∃A ⊂ ∂Σ whose dual minimal surface EA intersects x.

This simply means that every bulk point is covered by the minimal surface EA of

some boundary region A, but not necessarily scanning over all orientations in its

tangent space. Note that this is not sufficient for boundary rigidity in 2 dimen-

sions, nor for the aforementioned “hole-ographic” reconstruction. Nevertheless,

this should be a minimal requirement for any attempt to reconstruct the bulk

using this particular geometric dual.

It is worth pointing out that in the case of a disjoint boundary region A =
⋃
iAi

with dual minimal surface EA =
⋃
j Bj consisting of multiple components Bj , there

need not be a direct correspondence between Ai and Bj . This is illustrated in the

case of two disconnected boundary subregions in figure 2.1. There are two ways for

the two bulk curves to end on the four boundary points that specify ∂A without

crossing, so there are (at least) two different local minima of their total area. Since

the Ryu-Takayanagi proposal specifies EA as possessing the smallest area of all

bulk surfaces with ∂EA = ∂A, the choice of which of these two bulk possibilities

to employ is determined by comparing their respective areas.

As illustrated in figure 2.1, as the boundary subregions Ai are continuously in-

creased, the components of the bulk dual surface are pushed inwards until, at

some critical point, there is a switchover to the other possible combination of Bj ,
which are then pushed outwards towards the boundary as the Ai continue to grow.

This provides a simple example of a key concept underlying holographic shadows:

rather than mirror the continuous deformation of the boundary, the bulk dual sur-

face may undergo a discontinuous switchover in order to be the global minimum.

This is a phase transition from the boundary point of view [83], but here we will

focus on the bulk implication. This switchover leaves out the middle region, and

thereby limits the region of the bulk that can be probed.

2.2.2 Generalized minimal surfaces

Before proceeding, we shall first introduce a more general formulation of minimal

bulk surfaces. In particular, one can formally take the Ryu-Takayanagi proposal

as a special case of the following general prescription:

• Let B ⊂ Σ be an (n < d)-dimensional surface in the bulk, and define the

geometric quantity

L(B) =

∫
B

∣∣∣ dn ~B∣∣∣ F (gµν) . (2.18)
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2. Shadows and holographic reconstruction

Figure 2.1: The left figure shows a disconnected boundary region A =
⊔
iAi (blue) and the

corresponding disjoint minimal surface EA =
⊔
j Bj in the bulk (red). As the

boundary region is continuously increased, the bulk surfaces Bj are pushed towards

the dashed curve, at which point EA discontinuously switches to the new global

minimum EA =
⊔
j B′j shown in the right figure. The region inside the dashed

curves cannot be probed with this particular choice of bulk dual.

Over this surface, we integrate the area element and the function F which

only depends on the local geometry. This is then a very intuitive probe of

the bulk geometry, as it does not care about the shape of B, but rather only

about how far B reaches into the bulk.

• For an n-dimensional boundary region A (or its boundary ∂A), one finds

an observable Q associated with the minimal value of the above geometric

quantity:

Q(A) = Min[L(B)]

∣∣∣∣
∂B=∂A

. (2.19)

When n = (d − 1) and F = 1, this reduces to the Ryu-Takayanagi proposal with

L = area and Q = entanglement entropy. In addition, when n = 1 and F =
√−gtt,

this reduces to the action of certain Wilson loops. Here, we will also limit ourselves

to quantities with F > 0 and

lim
B→A

L(B) =∞ . (2.20)

In other words, L(B) is a positive definite quantity which diverges as one deforms

B toward the boundary. It is therefore very natural to expect the minimal surface

to reach into the bulk. This is related to boundary observables which have UV

divergences and need to be regulated.
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2.2. Holographic shadows

We can now study the failure of the coverage properties above, and the correspond-

ing “holographic shadows,” in a more general manner not limited to minimal area

surfaces vis-à-vis Ryu-Takayanagi. Other holographic duals can suffer from exactly

the same obstacle, namely that the bulk probes fail to cover the entire manifold,

thus placing a geometric limit on such reconstruction efforts. Our generalization

makes it easier to compare different holographic probes and see which one is better,

in the sense of which probe casts the smallest shadow.

2.2.3 Seeking shadows

In this section, we will limit ourselves to O(d) symmetric bulk geometries and

O(n) symmetric, simply connected boundary regions (disks). In such cases we

can specify a bulk point p by its radial distance to the origin (the “centre” of the

bulk), r∗. This point will be the O(n) fixed point of a unique, O(n) symmetric

n-dimensional surface B(r∗) (modulo the remaining SO(d−n) rotation) such that

the first order variation of (2.18) is zero.4

Proceeding from r∗, we follow the surface B(r∗) to the boundary at r =∞ to find

the (n−1)-dimensional boundary sphere A on which it ends, ∂A = ∂B. We define

the interior of A to be the side closer to the initial bulk point p. In other words,

one can deform from B to A without going through r = 0. Denote the radius of

this boundary ball A as θ∞(r∗).5 We know two special values of this function:

θ∞(∞) = 0 and θ∞(0) = π/2. The first is due to a surface B(∞) that effectively

never leaves the boundary, while the second comes from symmetry: it is basically

the surface that cuts the bulk into two halves.

This function is straightforward to compute (at least numerically), and possesses

a number of useful properties. First of all, there is a condition which guarantees

that a holographic reconstruction scheme will work:

Theorem 1: The set of all simply-connected, O(n) symmetric boundary regions

(balls) satisfies the Strong Coverage Property if θ∞ (r∗) ∈ (0, π/2) is monotonic as

r∗ goes from 0 to ∞.

Conversely, there is also a condition which guarantees that holographic reconstruc-

tion will fail:
4One might intuitively treat r∗ as the minimal radius reached by this critical surface, but

there is no a priori reason for this identification to hold for an arbitrary positive function F in

(2.18). We will be very careful not to assume this identification in the proofs that follow.
5There might be cases where some critical surfaces B(r∗) do not reach the boundary, so θ∞

is not well-defined. This is exactly what happens when there is a horizon, but such cases may

be more general.
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2. Shadows and holographic reconstruction

Theorem 2: If dθ∞/dr∗ > 0 as r∗ → 0, then the weak coverage property fails

for the set of all simply-connected, O(n) symmetric boundary regions (balls).

In appendix (2.A), we will prove these two theorems using the following lemmas:

Lemma 1: For a boundary sphere ∂A, the bulk surface B that minimizes L in

(2.18) with ∂B = ∂A must be spherically symmetric.

Lemma 2: If the boundary anchors ∂B and ∂B′ do not cross each other, but

the corresponding bulk surfaces B and B′ do, then B and B′ cannot both be mini-

mal surfaces.

Proofs of these Lemmas will also be given in appendix (2.A).

2.3 Example: shadows for the BTZ metric

In [2] we analyze shadow regions for the AdS-Schwarzschild, the BTZ and AdS-

star geometries. Here we will illustrate the occurrence of shadow regions with

the example of the BTZ bulk metric, investigating its shadow regions for minimal

surfaces and rectangular Wilson loops (1.2.4). Obviously, θ∞(r∗) is undefined if

r∗ falls within the horizon radius of a black hole, hence from now on r∗ ≥ rH is

always implied, where rH indicates the position of the horizon (see also page 12).

The homology condition in (1.81) is crucial for the behavior of minimal surfaces

in singular spacetimes. In geometries with a black hole, there exist surfaces B
such that ∂B = ∂A that are not continuously deformable to A. Suppose EA is the

minimal surface homologous to A. Then EA satisfies ∂EA = ∂Ac, where Ac is the

complement of A on a spatial slice of the boundary, but fails to be homologous to

Ac. We can add the horizon area to such a surface, such that it is homologous to

a certain boundary subregion. By changing A, there might be a transition from

a minimal surface that does not include a component that covers the horizon, to

a surface that does. This is another type of switchover, which will happen for

boundary balls when

A(θ∞) = A(π − θ∞) +ABH (2.21)

where ABH is the area of the component that wraps the black hole horizon.
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2.3. Example: shadows for the BTZ metric

2.3.1 Minimal surfaces and shadows for the BTZ metric

A static BTZ black hole is described by the metric (see also section 1.2.1)

ds2 = −(r2 − r2
H) dt2 +

dr2

r2 − r2
H

+ r2 dθ2. (2.22)

To determine the shadow region, it is sufficient to consider constant time slices.6

In d = 2 the boundary is a circle, and the subsystem A an interval on the circle.

The bulk extremal surface associated with the entanglement entropy (1.81) is then

simply a geodesic anchored at the two-points that comprise ∂A. We consider as

a boundary region the interval (−θ∞, θ∞), where the subscript ∞ indicates that

the boundary corresponds to r →∞ in our coordinates (2.22).
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Figure 2.2: θ∞(r∗) for a static BTZ black hole with rH = 1.

The Lagrangian describing such a bulk extremal surface is given by

L =

√
r′2

r2 − r2
H

+ r2 , r′ ≡ dr

dθ
. (2.23)

Since the Lagrangian does not depend on θ, there is a conserved momentum due

to translation invariance in θ. Hence:

δL
δr′

r′ − L = constant . (2.24)

We may fix the constant by the demanding that the surface reaches its minimal

value r∗ when r′ = 0. This leads to the first-order equation of motion

dr

dθ
=

r

r∗

√
r2 − r2∗

√
r2 − r2

H (2.25)

6We generalize to dt 6= 0 subregions in appendix 2.B and find that these suffer even larger

entanglement shadows.
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2. Shadows and holographic reconstruction

which may be integrated to obtain

θ∞ =

∫ ∞
r∗

dr
dθ

dr
=

1

2rH
cosh−1

(
r2
∗ + r2

H

r2∗ − r2
H

)
. (2.26)

This curve is plotted in figure 2.2. Note that it diverges when r∗ → rH , and

decreases monotonically with increasing r∗.

We may invert (2.26) to obtain:

r∗ =
rH

tanh (θ∞rH)
.. (2.27)

For small enough r∗, θ∞ becomes larger than π (see figure 2.2), which means

that the corresponding geodesic circles the black hole at least once. But a surface

that intersects itself cannot correspond to a local minimum of the area functional

(intuitively, the kinks in the intersection can be infinitesimally smoothed out to

reduce the area). Thus for the purpose of identifying the appropriate bulk probe,

we only care about the range θ∞ ≤ π, since a switchover must occur before θ∞
reaches this value. The alternative global minimum is then a surface with two

disconnected components: a geodesic connecting the endpoints at ±θ∞ on the

opposite side of the black hole, and a separate part that encircles the horizon; see

figure 2.3.

θ∞ θ∞

Figure 2.3: Minimal surfaces for boundary intervals of varying size θ∞, for a black hole of

radius (red circle) rH = 0.1lAdS (left) and rH = lAdS (right). The switchover to the

disconnected solution (red curves) takes place near θ∞ = π/2 for small black holes

(left), and approaches π for large black holes (right).

We denote the critical angle at which this switchover happens by θswitch, which is

given by (2.21):

l(θswitch) = l(π − θswitch) + 2πrH , (2.28)
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2.3. Example: shadows for the BTZ metric

where l(θ∞) is the length of the geodesic connecting the boundary points ±θ∞
and 2πrH is the length of the curve that wraps the horizon.

We can compute the length l(θ∞) by integrating the Lagrangian

l(θ∞) = 2

∫ ∞
r∗

√
1

r2 − r2
H

+ r2

(
dθ

dr

)2

= 2

∫ ∞
r∗

r dr√
r2 − r2

H

√
r2 − r2∗

(2.29)

where we used (2.25), with r∗ given by (2.27). The integral is divergent, but the

divergent parts on the left- and right-hand side of (2.28) cancel and the finite parts

yield:

θswitch =
π

2
+

1

2rH
ln (cosh(πrH)) . (2.30)

For small black holes (rH � lAdS) we have that θswitch ≈ π/2, because the area

contribution from the black hole in (2.28) is close to zero. Conversely, one sees

that for large black holes (rH � lAdS), θswitch ≈ π. See figure 2.3 for an explicit

plot of both cases.
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Figure 2.4: Shadow radius rmin as a function

of horizon radius rH for a static

BTZ black hole.
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Figure 2.5: Relative shadow size ∆r0 as a

function of horizon radius rH for

a static BTZ black hole.

The shadow radius rmin, within which no extremal surface associated to entangle-

ment entropy can reach, is finally determined by substituting the value of θswitch

into (2.27):

rmin =
rH

tanh(πrH)
+

rHe
−πrH

sinh(πrH)
. (2.31)

This curve is plotted in figure 2.4. However, since the black hole is always within

the shadow region, the shadow may be more conveniently expressed as

∆r0 ≡ rmin − rH =
2rHe

−πrH

sinh (πrH)
(2.32)

which is plotted in figure 2.5. When referring to the “size” of the shadow, we shall

implicitly mean the relative quantity (2.32) unless otherwise noted.
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From either (2.32) or fig. 2.3, one sees that the shadow is exponentially small

for large black holes, but remains an order one (AdS radius) distance from the

horizon for small black holes. This behavior is easily explained by considering the

switchover effect: a large black hole incurs a greater cost from the horizon com-

ponent in the area condition (2.21), which allows the global minimum to remain

on the original (connected) solution branch for larger values of θ∞.

It may seem strange that that the shadow radius rmin does not go to zero for

vanishing horizon radius. This is due to the mass gap in AdS3: letting rH → 0 in

the BTZ metric (2.22) will not yield the empty AdS3 metric, but a conical defect

geometry.

2.3.2 Wilson loops and shadows for the BTZ metric

Another type of bulk probe is given by the static world sheets arising from rectan-

gular Wilson loops in the boundary CFT (see also section 1.2.4). The bulk dual of

the expectation value of a Wilson loop W(C) evaluated in the supergravity limit

is proposed to be [34]:

W(C) ∼ e−S (2.33)

where S is the proper area of a fundamental string ending on the boundary loop

C. To simplify our analysis, we will consider rectangular Wilson loops that extend

far into the past and future time-directions. Such a Wilson loop with temporal

“height” T and spatial width 2θ∞ can be interpreted as the potential between a

quark and an anti-quark [34, 84]. We assume sufficiently large T that the world

sheet may be considered invariant under time translations. The action for such a

static world sheet is given by

S = 2T

∫ θ∞

0

dθ

√
(∂θr)

2
+ r2f(r) . (2.34)

Note that in static spacetimes this quantity takes the standard form of (2.18) with

F ∝ √−gtt, thus we may treat it as a holographic probe similar to minimal area

surfaces.

The action (2.34) does not explicitly depend on θ, so there is a conserved quantity

that we shall use to write the equation of motion as a first order differential

equation. We will find it convenient to distinguish two types of solutions to this

equation:

∪-shaped world sheets are smooth world sheets anchored on the boundary that

do not reach the black hole horizon, instead turning smoothly such that

∂θr|r=r∗ = 0 at some finite r∗ > rH (see figure 2.6).
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t-shaped world sheets consist of two straight segments that extend from the

boundary to the black hole, joined discontinuously by a third segment that

partially wraps the horizon (see figure 2.6).

Figure 2.6: World sheets corresponding to

different boundary angles for a

BTZ black hole of radius rH =

0.5lAdS. The ∪-shaped world

sheets are rendered in blue; t-

shaped, in red.

Figure 2.7: World sheets corresponding to

different boundary angles for a

BTZ black hole of radius rH =

0.2lAdS. Small black holes in

d = 2 are special, because the

∪-shaped world sheet constitutes

the leading saddle point for all

values of θ∞.

For a given boundary angle θ∞, multiple solutions to the equation of motion

may exist. Evaluation of the area functional is therefore necessary to determine

which world sheet constitutes the leading saddle point. Generally, we find that a

switchover or phase transition occurs from ∪-shaped to t-world sheets, as illus-

trated in fig. 2.6. We discuss this behavior in more detail below.

We first consider the smooth ∪-shaped solutions to the equation of motion. We

can express the conserved charge in terms of the minimal/turning radius r∗. This

allows us to find an implicit expression for θ∞ in terms of r∗ by integrating the

equation of motion:

θ∞(r∗) =

∫ ∞
r∗

dr
1

r
√
f(r)

1√
r2f(r)
r2
∗f(r∗)

− 1
. (2.35)

Note that this formula only depends on the number of dimensions via f(r), which

is given f(r) = r2 − r2
H for the BTZ metric. θ∞(r∗) is plotted for the BTZ metric

(cf. (2.22)) in figure 2.8. The function is characterized by a single maximum, and
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decreases monotonically for large r∗. Near the horizon however, dθ∞/ dr∗ < 0, and

hence by Lemma 3 (see appendix 2.A) there cannot exist any local minima of the

area functional in this range. The ∪-shaped world sheets thus suffer a shadow that

extends some finite distance from the horizon, but we postpone further discussion

of shadows until after considering t-shaped solutions as well.
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Figure 2.8: θ∞(r∗) for Wilson loops for a black hole of radius rH = 0.2lAdS (left) and rh =

0.5lAdS (right).

As an aside, we note that for d = 2, θ∞ can be much larger than π/2. Using the

equivalence relations θ∞ ∼ θ∞ + nπ and θ∞ ∼ π/2 − θ∞, we can map all values

of θ∞ > π
2 into the range [0, π/2]; see figure 2.9. The solutions with θ∞ > π/2

correspond to strings that wind one or more times around the black hole (see figure

2.10). However, strings that cross themselves fail to be minimal, so we can discard

these solutions in what follows.

We turn now to the t-shaped solutions, which consist of two radial segments

connecting the boundary and the horizon at ±θ∞ and a segment that wraps the

horizon (see figure 2.6). The segment that wraps the horizon does not contribute

to the area since the pullback of the metric vanishes. The radial segments have

divergent area, which is associated to the unrenormalized self-energy of a quark-

anti-quark pair. Thus the Wilson loops associated to these t-shaped strings do not

encode information about the bulk. Nonetheless, because these t-shaped solutions

exist for all boundary angles, evaluation of the area functional is necessary to

determine when the ∪-shaped solutions constitute the global minimum.

We find that ∪-shaped solutions have minimal area up to some critical angle θswitch,

beyond which t-shaped solutions dominate. In general, this switchover will always

occur for sufficiently large θ∞ < π
2 . The only only exception is a small BTZ black

hole, for which the minimal area world sheets are ∪-shaped for all θ∞.

Denote the smallest radius to which the ∪-shaped world sheets reach before the

switchover by rswitch. Then the switchover angle θswitch and associated switchover

radius rswitch are determined by the equality of the areas of the ∪-shaped and
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Figure 2.9: θ∞(r∗) for a BTZ black hole with ra-

dius rH = 0.1lAdS (black). Solutions

with θ∞ > π/2 are mapped to the range

[0, π/2] (green). The dashed line is at

θ∞ = 1; every intersection with the

green line corresponds to a solution to

the equation of motion for this value of

θ∞. These world sheets are plotted in

fig. 2.10.

Figure 2.10: Extrema for θ∞ = 1 for

a BTZ black hole with

horizon radius rH =

0.1lAdS. Only one of

these saddle points –

that with zero winding

number (green) – corre-

sponds to a global mini-

mum of the proper area

of the world sheet.

t-shaped solutions:

S∪(rswitch) = St , θ∞(rswitch) ≡ θswitch . (2.36)

The ∪-shaped world sheet corresponding to the largest possible boundary angle

θ∞ penetrate deepest into the bulk. The switchover angle θswitch is the largest

angle for which the ∪-shaped solutions have minimal area, so the shadow radius

rmin is determined by:

rmin = Max
[
θ−1
∞ (π/2), rswitch

]
. (2.37)

We can solve for the value of rswitch by solving the area condition (2.36):∫ rc

rswitch

dr√
1− r2

switch

r2

f(rswitch)
f(r)

=

∫ rc

rH

dr

=⇒
∫ ∞
rswitch

dr

 1√
1− r2

switch

r2

f(rswitch)
f(r)

− 1

 = rs − rH .

(2.38)
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where rc is a large radial cutoff, necessitated by the fact that both actions are

linearly divergent. The dimensional dependence is encapsulated in f(r). For the

BTZ metric, we can solve (2.38) exactly by taking rswitch = λrH :

λ− 1 = λ

∫ ∞
1

dx

 1√
1− 1

x2
λ2−1
x2λ2−1

− 1

 , (2.39)

which evaluates to λ ≈ 1.38. We emphasize that the BTZ metric is exceptional in

the sense that there is no switchover for small black holes rH . 0.26lAdS. In [2]

we show that this does not happen for d ≥ 3. In this case the t-shaped world

sheets never constitute the leading saddle point of the area functional, even for

θ∞ > π/2, and we find numerically that rmin ∼ lAdS.

2.3.3 Shadows and holographic reconstruction

The BTZ geometry forms an example of a geometry with shadow regions for both

minimal surfaces associated to entanglement entropy and world sheets associated

to rectangular Wilson loops. In [2] we also analyze the shadow regions for the AdS-

Schwarzschild geometry and an AdS-star geometry. In higher dimensions (d ≥ 3),

the boundary subregions A can have a complicated geometry, which makes the

analysis of their corresponding bulk minimal surfaces much harder. In [2] we

present evidence that these geometries also exhibit shadows in higher dimensions.

If the radial direction truly emerges as the realization of the entanglement structure

of the boundary theory, then we have to address the issue of shadows. One strategy

is to clarify the role of extremal, but not minimal surfaces, in the boundary theory.

Alternatively, we need to discover other bulk probes in the holographic dictionary

that do probe these regions. In the next chapter we will present a candidate

bulk quantity, called the causal information surface, that is suspected to have a

boundary dual quantity. We investigate its shadow region in section (3.4).

2.4 Summary & outlook

In this chapter we briefly described some bulk reconstruction methods. The known

bulk reconstruction methods are still limited to specific cases and some of them

assume a background bulk geometry in advance. We defined two properties, the

weak and strong coverage properties, that qualitatively describe how well a bulk

probe “covers” the bulk. We highlighted the limitations of known bulk probes to

reach into the bulk, calling the regions that can not be probed “shadows”.
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There are nonetheless arguments that support the claim that reconstruction of the

full bulk must be possible. This would mean that we need to discover new bulk

probes and develop new techniques to use them for reconstruction. A first step in

that direction was made in [79], in which a boundary interpretation was given to

non-minimal extremal surfaces.

An interesting development in the field of bulk reconstruction techniques is the use

of techniques from integral geometry. For example, in [85] the Radon transform,

which we will not explain here, is used to reconstruct certain bulk quantities. In

unpublished (at the moment of writing) work by Czech et al. the Crofton formula,

which we will not explain here, is associated to differential entropy. The relevant

feature about the Radon transform and the Crofton formula is that the strong

coverage property seems to be relevant for these techniques.

In summary, we expect that new bulk probes will be identified in the near future,

potentially casting light on our shadows. We also expect new reconstruction meth-

ods to arise from the application and adaption of methods from integral geometry

to holography.

2.A Proofs

In this appendix, we present proofs of the two lemmas and the two theorems

presented in section (2.2). Note that Lemma 1 is not limited to globally regular

geometries, while the form of Lemma 2 in the main text is. However, we will prove

a more general version of Lemma 2 that is applicable to geometries with horizons

and/or singularities. We also introduce and prove a third lemma, from which the

coverage properties are independent, but which finds utility in the main text.

Lemma 1:

For a boundary sphere ∂A, the bulk surface B that minimizes L in (2.18) with

∂B = ∂A must be spherically symmetric.

Proof:

If the minimal surface B is not spherically symmetric, one can rotate it to get a

degenerate minimum B′ of the same boundary region, with ∂B = ∂B′ = ∂A. As

shown in the left panel of fig. 2.11, B and B′ must intersect, but it follows from

the uniqueness theorem that their normal vectors cannot agree at the intersection.

Thus they must intersect with a “kink”. We assume for simplicity that this kink
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2. Shadows and holographic reconstruction

separates the surfaces into two regions each, but the generalization to multiple

intersections is straightforward. Let B be separated into regions 1 and 2, and B′
into 3 and 4 as depicted in fig. 2.11. By symmetry, regions 1 and 3 contribute

the same amount to the geometric quantity L in (2.18), which we denote L13.

Similarly, we denote the contribution from regions 2 and 4 by L24.

If L24 > L13, then we could construct a new surface from regions 1 and 3 with

the same boundary, thereby contradicting the assumption that both B and B′ are

minima. Similarly for L13 > L24. If instead L13 = L24, then both of the newly

constructed surfaces have the same L as B and B′. But these new surfaces will not

be smooth due to the kink at the intersection, so neither can be a local minimum

of L. This again contradicts our assumption. QED

1

2

3

4
1

2

3

4

5

6

Figure 2.11: The left panel shows two non-spherically symmetric bulk surfaces, b = (1 + 2) and

b′ = (3 + 4), ending on the same spherical boundary, ∂b = ∂b′ = ∂a. The right

panel shows two intersecting bulk surfaces, b = (1 + 2 + 3) and b′ = (4 + 5 + 6),

whose corresponding boundary anchors do not intersect.

Lemma 2:

If the boundary anchors ∂B and ∂B′ do not cross each other, but the corresponding

bulk surfaces B and B′ do, and at least one connected region between B and B′
does not contain a geometric obstruction, then B and B′ cannot both be minimal

surfaces.
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2.A. Proofs

Proof:

For this proof, we define a geometric obstruction as any object, defined purely

by the metric, through which a bulk surface cannot be deformed without leaving

a disconnected piece that wraps the obstruction; this wrapping piece should fur-

thermore have a nonzero contribution to L in (2.18). (In other words, they are

essentially generalizations of the black hole horizon in the case of minimal area

surfaces.)

Refer to right panel of figure 2.11. Let B = (1+2+3), B′ = (4+5+6), and assume

there is no geometric obstruction within the volume enclosed between 2 and 5. We

denote the contribution of region 5 as L5, and the contribution of region 2 as L2.

If L2 > L5, then surface (1+2+3) fails to be the minimum since surface (1+5+3)

has even smaller L. Similarly for L5 > L2. If L2 = L5, the uniqueness theorem

again guarantees that the surface (1+5+3) is not smooth, and thus we still arrive

at a contradiction. Hence both B and B′ cannot be global minima. QED

Lemma 3:

If dθ∞/ dr∗ > 0, then the surface B(r∗) cannot be a local minimum.

Proof:

By continuity, if B(r∗) is a local minimum, there must be an infinitesimal δr such

that B(r∗ + δr) is also a local minimum. Since dθ∞/ dr∗ > 0, the corresponding

boundary regions A(r∗ + δr) and A(r∗) intersect exactly as in the right panel of

fig. 2.11. Applying Lemma 2 to these two surfaces then implies that they cannot

both be local minima. QED

Proof of Theorem 1

Theorem 1: The set of all simply-connected, O(n) symmetric boundary regions

(balls) satisfies the Strong Coverage Property if θ∞ (r∗) ∈ (0, π/2) is monotonic as

r∗ goes from 0 to ∞.

Monotonicity of the boundary angle implies that every B(r∗) is the unique global

minimum for the boundary ball A of radius θ∞(r∗). Lemma 1 then implies that

the bulk can be foliated by a family of non-intersecting minimal surfaces anchored

on the corresponding family of concentric boundary spheres, as illustrated in fig.

2.12. Note that this is sufficient to satisfy WCP; for the strong coverage property,

we need also demonstrate coverage of the bulk tangent bundle.
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2. Shadows and holographic reconstruction

Consider a sphere with finite radius R in the bulk. As shown in fig. 2.12, it inter-

sects B(0) at an angle of π/2 between their normal vectors. As r∗ increases, B(r∗)
will eventually stop intersecting this sphere. If we follow the intersection point

during this process, the angle between the two normal vectors must continuously

drop to 0. Thus B(r∗) can cover the full tangent space of a point at radius R.

Since R is arbitrary, we have covered the full tangent bundle. QED

Figure 2.12: The left figure shows a continuous foliation of minimal n-dimensional surfaces (red)

on an (n+ 1)-dimensional equatorial slice of the bulk. The right figure shows how

the angle between an n-sphere (blue circle) in the bulk and the foliation surfaces

changes continuously from 0 to π/2. Note that although the rightmost red surface

is tangent to the blue circle at precisely r∗ in this plot, the proof does not rely on

this.

Note that the inverse of Theorem 1 is not generally true. That is, a non-monotonic

θ∞(r∗) does not guarantee the violation of SCP.7 But this is not so concerning. We

have stipulated SCP as a sufficient condition for a successful holographic recon-

struction scheme; violating SCP does not necessarily imply that all schemes will

fail. Thus, the more physically meaningful “inverse” statement is rather our The-

orem 2, about the violation of WCP. Insofar as WCP is a necessary condition, this

indeed rules out holographic reconstruction (using the set of all boundary disks).

Also note that Theorem 2 provides a sufficient condition to violate WCP. While

WCP might be violated by other conditions, the condition Theorem 2 provides

seems to be the most natural.

7The inverse of Theorem 1 can be proved if we use the additional assumption that r∗ is the

minimal radius reached by the surface B(r∗), which happens to be true in many examples.
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2.B. Entanglement surfaces for dt 6= 0

Proof of Theorem 2

Theorem 2: If dθ∞/dr∗ > 0 as r∗ → 0, then the weak coverage property fails

for the set of all simply-connected, O(n) symmetric boundary regions (balls).

If dθ∞/ dr∗ > 0 when r∗ → 0, then since θ∞(0) = π/2 we can find some r′ > 0

such that θ∞(r∗) ≥ π/2 for all 0 ≤ r∗ ≤ r′. According to Lemma 2, none of the

critical surfaces B(r∗) in this range can be the global minimum of the corresponding

boundary sphere ∂B, because they always intersect their own mirror image.

If for all minimal surfaces B(r∗), r∗ is the minimal radius reached, then no minimal

surfaces can probe the region r < r′. On the other hand, if a point p ∈ B(r∗) with

radius rp < r∗ is allowed, one still cannot allow rp → 0. As shown in fig. 2.13,

such a surface can be pinched-off to one with smaller L, which contradicts the

assumption that the original surface is a global minimum. Thus in this case there

must be a lower bound r′′ with 0 < r′′ < r′ beyond which these minimal surfaces

cannot probe. QED

Figure 2.13: A minimal surface (red) with its symmetric point sitting at a finite radius r∗ cannot

have other points approach arbitrarily close to r = 0. Otherwise, a pinched-off

version (blue) will have even smaller area.

2.B Entanglement surfaces for dt 6= 0

In this appendix, we consider an entanglement surface with spacelike separated

boundary points at (−t∞,−θ∞) and (t∞, θ∞). The bulk geodesics between these
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endpoints are given by:

r2(θ) = r2
H

(
sinh2(rHθ∞)

sinh2(rHθ∞)− sinh2(rHt∞)

)
× cosh2(rHθ∞)

sinh2(rHθ∞) cosh2(rHθ)− sinh2(rHθ) cosh2(rHθ∞)
,

r2(t) = r2
H

(
1 +

cosh2(rHt∞)

sinh2(rHt∞) cosh2(rHt)− sinh2(rHt) cosh2(rHt∞)

× sinh2(rHt∞)

sinh2(rHθ∞) cosh2(rHt∞)− sinh2(rHt∞) cosh2(rHθ∞)

)
.

(2.40)

For a given boundary region, the minimal radius reached by this geodesic is given

by:

r2
∗ =

r2
H cosh2(rHθ∞)

sinh2(rHθ∞)− sinh2(rHt∞)
, (2.41)

which clearly shows r∗ is smallest for t∞ = 0.

The length of the geodesics (2.40) is given by:

l(θ∞, t∞) = 2 ln

(
2rc
rH

)
+ ln

(
sinh2(rHθ∞)− sinh2(rHt∞)

)
+O

(
r−2
c

)
, (2.42)

where rc is a radial cut off. As in the case of the constant-time slice analysis, we

may determine the switchover angle θswitch by the matching condition (2.28):

θswitch =
π

2
+

1

2rH
ln (cosh(πrH))− 1

2rH
ln (cosh(2rHt∞)) . (2.43)

Thus θswitch is indeed smallest for t∞ = 0.
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Chapter 3

Causal Holographic

Information

In chapter (1) we introduced holography and elements of the holographic dictio-

nary. In chapter (2) we discussed techniques to reconstruct the bulk geometry,

fields and dynamics given the boundary description, emphasizing the limitations

of the known techniques and the necessity to further explore the holographic dic-

tionary. This sets the stage for the study of causal holographic information, a bulk

quantity originally identified in [69]. In this chapter we will discuss causal holo-

graphic information and some of its properties. We also discuss possible boundary

duals of causal holographic information.

In section (3.1) we give the (bulk) definition of causal holographic information

and in section (3.2) we further motivate the reasons to study it. In section (3.3)

we discuss some of its known properties. In section (3.4) we identify shadow

regions of causal holographic information surfaces and compare these shadows to

those of other bulk probes for the BTZ geometry. In section (3.5) we discuss the

structure of divergences of causal holographic information. Finally, we discuss

possible boundary duals for causal holographic information in section (3.6).

3.1 A bulk definition

Given a co-dimension one spacelike surfaceA on the boundary ∂M of an asymptot-

ically AdS-spacetimeM, one can naturally associate it to two covariantly defined

co-dimension two surfaces in the bulkM. The first surface is the extremal surface
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3. Causal Holographic Information

that ends on ∂A (1.81). The surface area is divergent, but can be regulated. The

regulated surface area in Planck units of the extremal surface is proposed to be

the dual quantity of the entanglement entropy (1.81):

SA =
AEA

4G
. (3.1)

The second covariantly defined co-dimension two bulk surface is the causal infor-

mation surface.1 First we define the boundary causal diamond of A; it is the union

of the boundary future and past domains of dependence (see also section 2.1):

♦A = D+
∂M(A) ∪D−∂M(A) . (3.2)

A
∂A ∂A

D+
∂M (A)

D−∂M (A)

Figure 3.1: Visualization of the region A and the boundary ∂A (left) on a (1+1)-dimensional

boundary and the construction of the causal diamond ♦A (shaded area) consisting

of the union of the future and past domains of dependence D+
∂M (A) and D−∂M (A)

(right).

The causal diamond ♦A of A is fully determined by ∂A. We will refer to the

set of points on the “top” and on the “bottom” of the causal diamond as C±
respectively. To be more precise, C+ is the set of points p in ♦A such that the

intersection between the future lightcone of p and ♦A only includes p itself. C−
is defined similarly. We will refer to points in C± as future and past “caustics”

respectively.

The so called causal wedge �A of A is the intersection of the bulk future and past

domains of influence of ♦A (see also 2.2):

�A = J+
M(♦A) ∩ J−M(♦A). (3.3)

The co-dimension two bulk surface we are interested in is the intersection of the

bulk boundaries of the bulk future and past domains of influence of the causal

1In principle, there are more covariantly defined bulk surfaces associated to some boundary

subregion A. For example, one could extremize a different geometric quantity of the bulk surface.

The extremal surface with minimal area is the simplest in this class.

58



3.1. A bulk definition

∂A

C+

x1

x2

t

Figure 3.2: Visualization of the boundary causal diamond ♦A in case of a (2+1)-dimensional

boundary. The set of future “caustics” C+ is indicated by the blue line.

diamond ♦A (see figure 3.3):

ΞA = ∂J+
M(♦A) ∩ ∂J−M(♦A). (3.4)

Causal holographic information is defined in a way similar to the entanglement

entropy (3.1):

χA =
AΞA

4G
, (3.5)

where ΞA is the causal information surface as defined in (3.4) [69].

The causal information surface has a surface area that is in general larger than or

equal to the surface area of the extremal surface, when both surfaces are regularized

in a consistent way. If the bulk spacetime is static and one picks A to be on

a constant time slice, the extremal surface and the causal information surface

both lie in the same bulk constant time slice. In this case the causal information

surface either coincides with the minimal surface or it is located closer to the

boundary [69].2

Causal holographic information does not satisfy the strong subadditivity property

[69] whereas the holographic entanglement entropy does [51]. Also, for a pure state

we can find examples with χA 6= χAc [69], where Ac is the boundary complement

of A.

2This does not mean that the minimal surface is bulk probe with a smaller shadow region

than the causal information surface. For the analysis of shadow regions we must take into account

switchover effects, as discussed in section (2.2). We will come back to the analysis of shadows

for the causal information surface in section (3.4).
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3. Causal Holographic Information

Figure 3.3: Left: the causal information surface ΞA (blue) for a boundary subregion A (red),

in planar AdS. Right: the causal information surface ΞA (blue) for a boundary

subregion A (red), in global AdS. Source: [86].

3.2 Why causal holographic information is inter-

esting

Why would one be interested in this co-dimension two bulk surface ΞA? First of

all, the causal holographic information surface ΞA is covariantly (coordinate inde-

pendent) defined. The area of other covariantly defined co-dimension two surfaces

like the minimal (extremal) surface EA (1.81) and bifurcate Killing horizons in the

bulk are associated to important boundary quantities. Secondly, light sheets play

an important role in the so called Bousso bound (page 6) which is thought to be a

deep statement underlying the principle of holography. Thirdly, for a complete re-

construction of the bulk minimal (extremal) surfaces do not seem to be sufficient

(see section 2.2). The causal information surface has a smaller shadow region,

which we will discuss in section (3.4). Lastly, it is believed that the causal wedge

�A associated to a boundary subregion A can be reconstructed with full knowl-

edge of ρA; it is thought to be the most conservative candidate for a subregion

duality (see section 2.1).
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3.3 Properties of the causal information surface

3.3.1 Topology of the causal information surface

The causal information surface ΞA can have a nontrivial topology. It can consist

of disconnected pieces even if the boundary region A is connected. Examples of

boundary regions which correspond to causal information surfaces that consist of

disconnected pieces, can be found in the AdS-Schwarzschild bulk geometry [87] and

soliton bulk geometries [88]. In this subsection we will illustrate the occurrence

of causal information surfaces with nontrivial topology in the case of an AdS-

Schwarzschild bulk geometry, as described in [87].

First we will heuristically motivate the occurrence of causal information that con-

sist of different disconnected components. Consider pure AdS in global coordi-

nates and a large boundary subregion A at t = 0 that almost completely covers

the boundary. The intersection of the causal wedge �A with the bulk (t = 0)-plane

almost completely covers the (t = 0)-plane. Now introduce a small black hole in

the centre rH � LAdS. The causal wedge cannot enter a black hole, because no

causal curve can leave the black hole (per definition). However, the causal wedge

is largely unaffected since the geometry is still close to the global AdS geometry

further away r � rH . Note that null rays can “bend” around a black hole and

terminate on the “other” side of the black hole onto other null rays. This suggests

that the causal information surface can split up into two disconnected parts: a

part similar to the causal information surface in the global pure AdS metric, plus

a part that encloses the black hole horizon.

Numerical analysis of the causal information surface for the BTZ and

AdS-Schwarzschild geometries has been done by the authors of [87]. For the non-

rotating BTZ black hole, the causal information surface remains connected, but

for the AdS-Schwarzschild geometries it becomes indeed disconnected for large

enough boundary regions (see figure 3.4).

The observation that the causal information surface becomes disconnected in some

cases, puts constraints on the topology of Ryu-Takayanagi surfaces (1.81). In

[50, 50] it is shown that the Ruy-Takayanagi surface EA lies further away from A
than the causal information surface ΞA. This implies that the Ruy Takayanagi

must also become disconnected when parts of the causal information surface “pinch

off”, in the case of the AdS-Schwarzschild geometry and large enough boundary

subregions A.
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Causal wedge can have “holes”

A⌅A
A⌅A

Xt=0

Figure 3.4: Causal information surfaces for boundary balls in the AdS-Schwarzschild geometry

(d > 2). For large enough opening angle θ∞, the causal information surface becomes

disconnected (right). (Source: [87])

3.3.2 Causal information surfaces in time dependent back-

grounds

The causal information surface Ξ has been studied in time-dependent situations

in [86], of which we will give a short summary below. The behavior of the causal

holographic information χ is found to be highly nontrivial in time-dependent ge-

ometries, which gives important restrictions on proposals for a boundary dual

quantity of causal holographic information.

An example of a non-static, non-stationary time dependent asymptotically AdS

geometry is the the Vaidya-AdS geometry. In [86], causal information surfaces

and causal holographic information are studied in the context of the Vaidya-AdS

geometry:

ds2 = 2 dv dr − f(r, v) dv2 + r2 dΣ2
d−1,K ,

f(r, v) = r2

(
1 +

K

r2
− m(v)

rd

)
,m(v) = m0 θ(v − ts) ,

(3.6)

where dΣ2
d−1,K is the volume element of a spatial slice of the boundary. This

metric describes the collapse of a thin spherical shell of “dust” which eventually

forms an AdS-Schwarzschild black hole. The boundary state starts undergoing a

transition from the vacuum state to a thermal state at t = ts, which corresponds

to bulk geometry with a shell that starts falling in at t = ts. For boundary balls

(strips) A = Bd−1 with radius (width) a, the boundary causal diamond has past

and future caustics with “height” a. When the boundary ball (strip) “sits” at

t = tA, one can consider four qualitatively different cases:
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(1) tA < ts − a �A completely in AdS region

(2) ts − a < tA < ts �A both in AdS-Schwarzschild and AdS regions

(3) ts < tA < ts + a �A both in AdS-Schwarzschild and AdS regions

(4) ts + a < tA < ts − a �A completely in AdS-Schwarzschild region

.

Cases 2 and 3 are interesting, because in both cases part of the boundary causal

wedge �A sits in the AdS regime of the bulk metric and part of �A is in the AdS-

Schwarzschild part of the metric, changing the geometry of the bulk causal wedge

and the causal information surface non-trivially. In these cases we can expect the

causal holographic information to be time dependent.

In [86] it is shown that for d = 2 the causal holographic information does not

depend on time in regime 2, even though ΞA is modified compared to the pure

AdS regime. In region 3, χA is time dependent. For d > 2, the causal holographic

information does depend on time even in regime 2, which means that the causal

holographic information χA “feels” the shell before it starts falling in. Causal

holographic information is called “mildly teleological” because it only “senses”

the change in the state an order O(a) in advance, where a is the typical length

scale of A.

Figure 3.5: An in-falling shell forms a black hole. Left: tA < ts < tA+a, so only the upper part

of the causal wedge �A gets deformed. Right: tA − a < ts < tA, so the geodesics

from the both the past and future caustic of �A are affected by the shell encounter.

(Source: [86])
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3.4 Causal information surfaces as bulk probe

In this section, we return to the point of “shadows” as discussed in chapter (2).

Generally, the extremal surface EA associated to the entanglement entropy of a

given boundary region A reaches deeper into the bulk than the causal informa-

tion surface ΞA [50, 69]. However, the extremal surface associated to entangle-

ment entropy exhibits nontrivial “switchover behavior” (see chapter 2), such that

the shadow region for causal information surfaces is smaller than the shadow

region for the extremal surface associated to entanglement entropy. Below we

analyze the shadow regions for causal information surfaces, in particular in the

AdS-Schwarzschild geometry. Subsequently, we will compare the full and par-

tial shadow regions of the causal information surface, the Wilson loops and the

entanglement entropy for the BTZ geometry.

3.4.1 Causal information shadows

The causal information surface ΞA differs qualitatively from the extremal surfaces

associated to entanglement entropy (1.81) and the string world sheets associated

to Wilson loops in two ways. Firstly, its boundary CFT interpretation is unclear,

although suggestions have been made (see section 3.6). Secondly, it does not take

the general form we described in section 2.2.2 as a minimal geometric object.

Nevertheless, it is still natural to define θ∞(r∗) for this probe. Thus we can study

this probe alongside those above, and later make a comparison of their respective

shadows.

Here we analyze the “full shadow” region for causal information surfaces in static,

spherically symmetric spacetimes. In particular, we consider bulk geometries of

the form

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

d−1, (3.7)

of which the AdS-Schwarzschild geometry is an example.

The boundary causal diamond ♦A and the bulk causal wedge �A for a ball A on

the boundary are both generated by two caustics: a past and a future caustic.

For a ball on a constant time slice (t = 0), the “height” of the caustic along the

time direction is simply equal to the radius of the ball. The deepest bulk point to

which a causal information surface reaches is determined by the intersection of the

past and future directed radial null geodesics from the future and past caustics

respectively. So given a boundary subregion with typical size θ∞, we can identify

a maximal penetration depth r∗.
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Vice-versa, we can start from a point in the bulk at radial coordinate r∗, and

construct the two radially outgoing light rays to the future and past. These will

end on two boundary points, p±A, past and future caustics that generate a boundary

causal diamond ♦r∗ = D+(p−A)∪D−(p+
A). The waist of the diamond ♦r∗ is exactly

a boundary ball of radius θ∞ that sits on the same timeslice as the initial bulk

point. The width θ∞(r∗) can be determined by calculating the “height” of the

causal diamond ♦r∗ , which we can do by following the radial null geodesics from

the bulk point with r = r∗:

θ∞(r∗) =

∫ ∞
r∗

dr

∣∣∣∣ dtdr
∣∣∣∣ =

∫ ∞
r∗

dr

√
−grr
gtt

=

∫ ∞
r∗

dr

f(r)
. (3.8)

For θ∞ ≥ π, the boundary ball covers the entire asymptotic boundary, and its

domain of dependence is the entire spacetime. For the AdS-Schwarzschild geom-

etry, the causal information surface for a ball with θ∞ ≥ π would correspond to

the black hole horizon. We are interested in the causal information surface cor-

responding to the largest possible ball that does not cover the whole boundary.

This is the causal information surface which reaches deepest into the bulk and has

θ∞ = π − ε, for ε arbitrarily small.3 The shadow radius is given by

rmin = θ−1
∞ (π) , (3.9)

if this inverse exists. Otherwise there is no shadow.

In spacetimes with a horizon at rH , f(r) → 0 linearly as r → rH , thus θ∞ → ∞.

Such spacetimes will always show shadows, since there are no probes for the part

of the bulk that would correspond to boundary subregions with θ∞ ∈ (π,∞). For

example, for the BTZ geometry with f(r) = r2 − r2
H , we have (3.8)

π =

∫ ∞
rmin

dr

r2 − r2
H

=
1

rH
arccoth

(
rmin

rH

)
=⇒ rmin =

rH
tanh(rHπ)

. (3.10)

Note that this is precisely the first term of (2.31). In light of the earlier work

by Hubeny [69], this similarity is not surprising. In the BTZ background, the

causal information surface ΞA coincides with the extremal surface for a given

boundary subregion. The only difference between their respective shadows is that

the minimal area surfaces encounter a phase transition at some θ∞ < π determined

by the area matching condition (2.21). In particular, the phase transition for

minimal area surfaces with a small black hole occurs when θ∞ ∼ π/2, which makes

a significant difference from the causal information surfaces. For large black holes,

the minimal surface transition occurs at θ∞ . π, so these two probes agree with

each other in this limit.

3For our purposes, we can simply take θ∞ = π.
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The geometry of the causal information surfaces is more complicated in higher

dimensions [87], but the minimal radius rmin = min{r∗} can still be determined

by (3.8) and (3.9). For d ≥ 3 the integral in (3.8) is slightly more involved, but

since we are primarily interested in knowing how close the surface gets to the black

hole, a near-horizon approximation will suffice. Thus we assume r∗ − rH � 1 and

expand the integrand of (3.8) in terms of (r−rH). For large black holes (rH � 1),

the near horizon contribution dominates the integral for θ∞ = π:

π ≈
∫ rmin+a

rmin

dr

f ′(rH)(r − rH)
=

1

f ′(rH)
ln

(
rmin − rH + a

rmin − rH

)
. (3.11)

where a . rH is some constant, and f(r) is given by

f(r) = r2 + 1− rd−2
H

rd−2
(r2
H + 1) (3.12)

for the AdS-Schwarzschild metric. Solving for rmin, we find

rmin ≈ rH + ae−dπrH . (3.13)

Thus for large black holes, the causal information surfaces probe exponentially

close to the horizon.

For small black holes (rH � 1), there is also a contribution of approximately π
2

to the integral in (3.8) from the range where f ≈ fAdS. The solution is then

approximately:

rmin ≈ rH + ae
−π(d−2)

2rH . (3.14)

Thus causal surfaces probe exponentially close to small black holes, which is dra-

matically better than minimal area surfaces in this limit [2]. In [2] we provided

evidence for the statement that for small rH � 1 minimal surfaces associated to

entanglement entropy only reach upto an order O(rH) away from the horizon at

r = rH .

3.4.2 Comparison to other probes: the BTZ geometry

In section (2.3.1) of chapter (2) we analyzed the shadow regions for rectangular

Wilson loops and the entanglement entropy of boundary intervals for the BTZ

geometry. The analysis of shadows in (2 + 1)-dimensional geometries is simpler

than that of higher dimensional geometries, because the subregions on the (1+1)-

dimensional boundary can simply only be intervals. This simplification allows

us to determine not only the region of full shadow, but for every bulk point we

66



3.4. Causal information surfaces as bulk probe

can also determine the portion of the tangent space that can be probed. In this

subsection we present these (numerical) results.

In figure 3.6 (left panel) rmin is plotted as function of the black hole radius rH ,

for all three investigated probes. As noted earlier, the shadow persists even when

rH = 0 due to the mass gap in AdS2+1. The horizon radius is related to the ADM

mass by r2
H = GM − 1, so a vanishing horizon does not recover empty AdS. In

the right panel of figure 3.6, we extend the parameter range below the mass gap

to include the conical defect. Then as GM → 0, all shadows indeed disappear.

0.2 0.4 0.6 0.8 1.0
r
H

0.2

0.4

0.6

0.8

1.0

1.2

1.4

rmin

Figure 3.6: Shadow radius rmin as a function of the black hole radius rH (left) and mass GM

(right) for the different bulk probes: entanglement entropy (black), Wilson loops

(red), and causal information (blue). The kink in the Wilson loops curves are due

to the transition from ∪-shaped to t-shaped world sheets. The kink in the minimal

area surface curve in the right panel is exactly at the horizon rH = 0, at which

point the phase transition angle becomes fixed at π/2.

We can see clearly that causal information surfaces almost always leave the smallest

shadow. This conclusion appears to hold in higher dimensions as well, as indicated

by our numerical results and approximations for both small and large black holes

as presented in [2].

It is interesting to note that for a point at radius rmin, it may be that a given

probe can only reach it with a specific orientation, implying a restriction on the

accessibility of the bulk tangent space. Empty AdS space satisfies the Strong

Coverage Property that the entire tangent space of any point is covered, and

indeed this property is necessary for certain reconstruction schemes [78, 79]. It

is thus interesting to ask how much of the tangent space once loses due to the

presence of a black hole.

In the BTZ geometry, this question is easy to answer. The deepest probe in any

particular family, b(rmin), also passes through points with r > rmin at the steepest

angle. Therefore, we need only calculate the slope of this surface to determine the

coverage of the tangent space. These “partial shadows” are plotted in figure 3.7.
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3. Causal Holographic Information

Somewhat surprisingly, although Wilson loops probe less deeply in general, they

exhibit the smallest partial shadows throughout most of the bulk.
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r0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Angle

Figure 3.7: The shaded region above each curve represents the part of the tangent space acces-

sible by the associated bulk probe (entanglement (black), Wilson (red), and causal

(blue)) as a function of the radial coordinate r. π/2 is purely tangential, and 0

is purely radial. The horizon radius, rH = 0.1lAdS (left) and rH = lAdS (right),

is indicated by the vertical line. Note that in the right panel, the blue and black

curves almost overlap, reflecting the agreement of minimal and causal information

surfaces in the large black hole limit.

3.5 Subleading divergences

3.5.1 Structure of divergences

Causal holographic information of a boundary subregion A is equal to the area of

a bulk co-dimension two surface that ends on ∂A, just like the extremal surface

associated to entanglement entropy. To leading order, causal holographic informa-

tion and entanglement entropy both exhibit an area law : the leading divergence

is proportional to the area of ∂A (d > 2). The subleading divergences differ.

Example: the strip

Consider the boundary strip A = {x : x1 ≤ w
2 , t = 0} in Poincaré coordinates

(1.14,1.15) for pure AdS spacetime. The boundary causal diamond ♦A has past

and future caustics at x1 = 0, t = ±w2 . The causal information surface ΞA is then
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3.5. Subleading divergences

given by z2 + x2
1 = (w2 ) [69] and the area is given by

AΞA =

∫ +
LIR

2

−LIR
2

dd−2x

∫ w
2

ε

dz

√
det

∂xM

∂xα
∂xN

∂xβ
GADSMN

= 2

∫ +
LIR

2

−LIR
2

dd−2x

∫ w
2

ε

dz

√√√√((dx1

dz

)2
1

z2
+

1

z2

)(
1

z2

)d−2

=

(
2LIR

w

)d−2
2

d− 2

√
1−

(
2ε

w

)2

2F1

[
1

2
,
d

2
,

3

2
, 1−

(
2ε

w

)2
]
.

(3.15)

For d odd, (3.15) contains a logarithmically diverging term. For d = 4, we have

A =

(
2LIR

w

)2(
w2

8ε2
− 1

2
log

ε

w
+ . . .

)
. (3.16)

Note that the causal holographic information for the strip has different sublead-

ing divergences from those of the holographic entanglement entropy (1.95). The

leading divergences do correspond (1.95).

Non-locality of subleading divergences The example of the strip in d = 4

shows that the coefficient of the logarithmically divergent term of causal holo-

graphic information cannot be expressed as just an integral over ∂A of local ge-

ometric quantities. For A the strip in a flat background, both the intrinsic and

extrinsic curvatures of ∂A vanish. The coefficient of the logarithmically divergent

term of the causal holographic information for the strip (d=4) is proportional

to
L2
IR

w2 [69], where LIR is an IR-regulator in the directions x2 and x3. For the

strip there is no local geometric quantity on ∂A (the two “plates” at x1 = ±w2 )

that depends on the separation distance w. This means that we cannot write the

coefficient of the logarithmically divergent term in χA as the integral of a local

quantity, which is possible for the coefficient of the logarithmically divergent term

in entanglement entropy (1.89).

3.5.2 Causal holographic information for general surfaces

Caustics of the boundary causal diamond

The causal diamond ♦A is generated by null rays emanating normally from ∂A [69].

For each point x(ξ) on ∂A there are two unique null normal vectors (up to a sign).

The inward-pointing null geodesics that emanate orthogonally from this point

terminate in past and future caustics x∨ ∈ C− and x�A ∈ C+ respectively. Given
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3. Causal Holographic Information

a point on ∂A, we need information about other points on ∂A to determine where

the null geodesics will intersect for the first time with null geodesics emanating

from another point on ∂A. The location of this intersection point is determined

by one or more other points on ∂A.

Entering the bulk

We focus in our discussion on the case of d = 4 boundary dimensions; however, a

logarithmically divergent term can be present in the causal holographic information

whenever the number of boundary dimensions is even. For d even and d > 2 the

asymptotically AdS-metric can be put in Fefferman Graham form [24] [25]:

ds2 = GMNdX
MdXN

=
dz2

z2
+

1

z2
gµν(z, x)dxµdxν

gµν(z, x) = g(0)
µν (x) + z2g(2)

µν (x) + ...+ zd
(
g(d)
µν (x) + log z hµν(x)

)
+O(zd+1).

(3.17)

Here g
(0)
µν (x) is the boundary metric, g

(2i)
µν (1 ≤ i ≤ d

2 − 1) and hµν are determined

by g
(0)
µν and g

(d)
µν encodes information about the state.

Close to the boundary, points on the causal information surface ΞA can be mapped

to points on ∂A. We expand the embedding function close to the boundary around

points on ∂A:

xµbulk(z, ξ1, ξ2) = xµboundary(ξ1, ξ2) + yµ(ξ1, ξ2)z2 +O(z4). (3.18)

Generally, the component of yµ that is tangent to ∂A does not give a contribution

to the logarithmically diverging term in the area of the bulk surface. We can

express the normal component of yµ in terms of the boundary normal vectors

{Nµ
a } of ∂A:

yµ = yµ‖ + yµ⊥ = yµ‖ + λaNµ
a . (3.19)

For any such surface, the surface area that is regulated by a radial z = ε cutoff for

an asymptotically AdS-space is:

A =
1

2

A∂A
ε2

+ log

(
1

ε

)
1

2

∫
d2ξ
√
g̃
(

4λaλbpab + 2λaKa + hµνg(2)
µν

)
+ finite,

(3.20)

where Nµ
aN

ν
b g

(0)
µν = pab, hµν = g

(0)
µν − Na

µN
b
νp
ab, Ka is the trace of the extrinsic

curvature, and an expression for g
(2)
µν is given later (3.41).
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3.5. Subleading divergences

Smooth surfaces on a flat boundary

For entanglement entropy, the normal component of y (3.18,3.19) is fixed by the

extremality condition to λa = −Ka

4 . For the causal information surface the λa(x)’s

in the expansion (3.18,3.19) do not just depend on local geometric quantities of

∂A, as can be seen in the example of the strip.

We first analyze the simpler case where the entangling surface lies on a constant

time slice, then the more general case of an arbitrary spacelike surface embedded

in flat Minkowski spacetime.

Constant time slice case In the case of a static spacetime with a flat boundary,

the analysis is easier if we pick the surface ∂A to be on a constant time slice.

Boundary normal null geodesics emanating from ∂A are simply straight null rays

proportional to the null normal vectors of ∂A. When ∂A is on a constant time slice

t = 0, the causal information surface should also be on the t = 0 slice by symmetry

considerations; both the bulk causal wedge and the boundary causal diamond are

symmetric in the t = 0 plane. Points on the causal information surface are on the

bulk boundaries of the bulk future and past domains of influence of the boundary

causal diamond ♦A (3.4).

The object A on the boundary will “shrink” as one moves deeper into the bulk

along the radial coordinate. In appendix (3.A) we determine how this happens as

a function of the radial Poincaré coordinate z.

If the future caustic that is separated from x(ξ) on ∂A by the null normal ema-

nating from x(ξ) is located at t = τ and the spacelike normal vector in the t = 04

plane in x(ξ) is given by n̂(ξ)5, then the embedding function can be written in

terms of τ (Appendix 3.A):

~xbulk(ξ, z) = ~x∂A(ξ) +
z2

2τ(ξ)
n̂(ξ)− z2

2τ(ξ)
bα ~Tα(ξ) +O(z4). (3.21)

Expression (3.20) simplifies in this case to

A =
1

2

A∂A
ε2

+
1

2

∫
∂A

d2ξ
√
g∂A

(
1

τ2
+
K

τ

)
log

1

ε
+ finite. (3.22)

4The quantity τ can be thought of as the affine parameter distance between a point on ∂A
and its corresponding future (past) caustic. This explanation is clarified in for the more general

case in section (3.5.2)
5We used n̂ to be the inward pointing normal together with the conventionsKµν = +hρµ∇ρNν

and K = +hµνKµν for extrinsic curvatures and expansions respectively, where h is an induced

metric and N is a normal vector.
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3. Causal Holographic Information

∂A

C+

τ

τ

Figure 3.8: Visualization of the quantity τ . Note that that for each point on ∂A there is a

unique point on C+ separated by a vector that is proportional to the future directed

inward pointing null normal vector. For a surface ∂A that does not lie on a constant

time slice, a single function τ is not sufficient.

General spacelike region Now dropping the assumption that ∂A lies on a

constant timeslice, but remaining in Minkowski space, the separation in time of

a point p on ∂A and its caustics on the causal diamond may be different for the

past and future caustics.

The past caustic xµ�A and the future caustic xµ∨ for a point xµ(ξ) on ∂A are

separated from xµ(ξ) by null normal vectors:

xµ�A(ξ) = xµ(ξ) + λ↑(ξ)N
µ
↑ (ξ)

xµ∨(ξ) = xµ(ξ) + λ↓(ξ)N
µ
↓ (ξ)

(3.23)

where Nµ
↑ (ξ) and Nµ

↓ (ξ) are the null normal vectors in xµ(ξ) where we choose to

normalize them such that Nµ
↑ (ξ)Nν

↓ (ξ)ηµν = 1. In appendix (3.B) we argue that

we can still expand the embedding function similarly to (3.21):

xµbulk(z, ξ) = xµ(ξ) +
z2

2

(
Nµ
↑ (ξ)

λ↓(ξ)
+
Nµ
↓ (ξ)

λ↑(ξ)

)
+

z2

2λ↑(ξ)
bαt (ξ)Tµα +O(z4) (3.24)

The divergent part of the area is now simply:

A =
1

2

A∂A
ε2

+
1

2
log

1

ε

∫
d2ξ
√

det g∂A

(
2

λ↑λ↓
+
K↑
λ↓

+
K↓
λ↑

)
+ finite. (3.25)

Equation (3.23) defines λ↑ and λ↓, which can be thought of as being the affine

parameter distances between x(ξ) and xµ�A(ξ) and xµ∨(ξ) respectively. The null
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3.5. Subleading divergences

normal vectors can be scaled simultaneously with λ↑ and λ↓, subject to the con-

dition N↑ ·N↓ = 1, but all terms in (3.25) are invariant under this rescaling. The

absolute value of the distance between the future and past caustics related to a

point x(ξ) on ∂A by (3.23) is equal to
√

2λ↑(ξ)λ↓(ξ).

3.5.3 Modification of the causal information formula

A candidate for the holographic entanglement entropy is obtained by applying

the Wald entropy formula (1.86) to surfaces that end on the entanglement surface

∂A. The entanglement entropy is then given by the surface that extremizes this

quantity.

SWald = −2π

∫
horizon

dd−1x
√
h

δL
δRabcd

ε̂abε̂cd (3.26)

As discussed in section (1.3), a modification of the Wald functional (1.86) is nec-

essary in the context of holographic entanglement entropy [56], due non-vanishing

extrinsic curvature of a general minimal surface. For Lovelock gravity, a concrete

modification is proposed in [56], where the modification can be written as a bound-

ary term. A more general modification of the Wald functional is given in [57]. This

modification does not affect the log-term, so for our purposes we propose to gen-

eralize causal holographic information by the evaluation of the Wald functional

on the causal information surface, modulo some boundary terms. For causal holo-

graphic information in the context of Gauss-Bonnet gravity this becomes:

χA =
1

4G
(5)
N

∫
ΞA

dd−1x
√
σΞA

(
1 + λL2RΞA

)
+ boundary term, (3.27)

where σΞA is the induced metric on the bulk surface Ξ associated to A and RΞA

is the intrinsic curvature.

The intrinsic curvature for a surface in an asymptotically AdS spacetime, for which

the embedding function can be expanded as in (3.18) is given by:

RΞA = −6 + z2
(
R∂Σ + 2hµνg(2)

µν + 4λaKa + 8λaλa

)
+O(z4), (3.28)

where R∂A, Ka and h are boundary quantities.

The coefficient of the logarithmically diverging term is now proportional to:

a

∫
∂A

d2ξ
√
g̃

(
−R∂A

4

)
+ c

∫
∂A

d2ξ
√
g̃

(
R∂A

4
+

1

2
hµνg(2)

µν + λaKa + 2λaλa

)
.

(3.29)

We can evaluate this expression for the case of a static spacetime with a flat

boundary. When ∂A is on a constant time slice, we can use (3.21) in order to get

the coefficient of the logarithmically diverging term:
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− a

720π

∫
d2ξ
√
g̃R∂A +

c

720π

∫
d2ξ
√
g̃

(
R∂A + 2

(
1

τ2
+
K

τ

))
. (3.30)

Now considering a spacelike surface ∂A that is not necessarily on a constant time

slice, we can apply (3.24) and find for the coefficient of the logarithmically diverging

term:

− a

720π

∫
d2ξ
√
g̃R∂A +

c

720π

∫
d2ξ
√
g̃

(
R∂A + 2

(
2

λ↑λ↓
+
K↑
λ↓

+
K↓
λ↑

))
.

(3.31)

3.5.4 Universality of the log-term

In this section, we show that the coefficient of the logarithmically divergent term,

which we have focused on, is universal. It is independent of the regulator, and also

independent of the state. Our result is more general than the particular causal

information surface: the same will be true for any covariantly defined surface6

The discussion will take place in a setting with a (d = 4)-dimensional boundary,

but we believe similar arguments hold for d = 2n with n > 2.

Regulator independence This subsection is to a large extent based on work

from Schwimmer and Theisen [89,90]. We briefly review the relevant parts of their

work and argue that any covariantly defined co-dimension two bulk surface that

can be expanded as in (3.18) yields a universal log-divergence coefficient.

Our strategy for showing the regulator independence is to relate a change in reg-

ulator to a change of coordinates in the bulk that leaves the metric in Fefferman

Graham form. The regulated area of the surface is computed up to a cutoff value

of the new radial coordinate. Such a bulk change of coordinates acts as a con-

formal transformation on the boundary, so showing the regulator independence of

the log term is equivalent to showing that it is Weyl invariant.

In more detail, to define the regulated area, one first puts the metric in Fefferman

Graham form [24,25]:

ds2 = GMNdX
MdXN =

dρ2

4ρ2
+

1

ρ
gµν(ρ, x)dxµdxν (3.32)

6It is important that the shape of the surface near the boundary allows an expansion like

(3.18).
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3.5. Subleading divergences

For d even, we can expand gµν(ρ, x) as

gµν(ρ, x) = g(0)
µν (x) + ρg(2)

µν (x) + ...+ ρ
d
2

(
g

( d2 )
µν (x) + log ρ hµν(x)

)
+O(ρ

d
2 +1).

(3.33)

One can take a finite cut off in the radial coordinate ρ in order to regulate the

surface area of a bulk surface that ends on ∂A. The ambiguity in choice of cutoff

arises because there is not a unique way to choose coordinates such that the bulk

metric is in Fefferman Graham form.

To see how the area changes, consider an infinitesimal diffeomorphism that leaves

the metric in the Fefferman Graham form. Such a transformation is parametrized

by a vector field (ξρ, ξµ) such that [89,90]:

(LξG)ρµ = 0

(LξG)ρρ = 0.
(3.34)

Such a PBH-transformation (Penrose-Brown-Hennaux-transformation) corresponds

to a Weyl transformation of the boundary metric g
(0)
µν and can be parametrized by

a function ω(x).

The infinitesimal coordinate transformation

ρ = ρ̃e−2ω(x̃) ' ρ̃ (1− 2ω(x̃))

xµ = x̃µ + aµ(x̃, ρ̃)
(3.35)

corresponding to ξρ = −2ω and ξµ = aµ satisfies the requirement (3.34) and the

condition aµ(ρ = 0) = 0 if [90]:

∂ρa
µ =

1

2
g(0)µν∂νω

aµ(ρ, x) =
1

2

∫ ρ

0

dρ̃ gµν(ρ̃, x)∂νω(x) +O(ω2)

=
ρ

2
g(0)µν(x)∂νω(x) +O(ρ2) +O(ω2).

(3.36)

If the embedding function of the causal information surface can be expanded as

in (3.18);

xµbulk(ρ, ξ1, ξ2) = xµboundary(ξ1, ξ2) + yµ(ξ1, ξ2)ρ+ ..., (3.37)

we can make use of the covariant definition of the causal information surface by

applying the coordinate transformation (3.35):

x̃µbulk +
ρ̃

2
g(0)µν∂νω + ... = xµboundary + yµρ̃ (1− 2ω) + ... (3.38)
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Collecting powers of ρ̃ we conclude that y transforms in the following way:

ỹµ = yµ − 2ωyµ − 1

2
g(0)µν(x)∂νω(x) + ...

⇒ ỹµ = e−2ω

(
yµ − 1

2
g(0)µν∂νω

)
.

(3.39)

The normal components λa = Nµ
a y

νg
(0)
µν of y transform as:

λ̃a = e−ω
(
λa −

1

2
Na · ∂ω

)
. (3.40)

The coefficients in the logarithmically diverging terms (3.20) and (3.29) are in-

variant under such a transformation, given that the other boundary quantities are

subject to a conformal transformation. Taking a different cut off does not change

these coefficients.

This shows that for any covariantly defined bulk surface with d = 4 boundary

dimensions, the coefficient of the logarithmically divergent term is universal, as

we expect from field theory intuition. It would be interesting to ask if there are

any additional covariantly defined bulk surfaces associated to a region, since they

would define new conformal invariants.

In (d = 4) boundary dimensions (3.40) can be solved by λa = −Ka

4 , where Ka is

the trace of the extrinsic curvature for the normal vector Na. This corresponds to

the result that is obtained by extremizing (3.20) with respect to y. The remarkable

thing about the causal information surface is that the logarithmically divergent

term cannot be constructed from just local geometric quantities as can be seen in

the case of the strip.

Finally, it should be pointed out that one can use freedom to re-parametrize ∂A
to gauge out the tangential part of y [89]. In fact, we already partially fixed the

freedom to re-parametrize the causal information surface ΞA by choosing one of

the parameters to be z (or equivalently ρ).

State dependence In expansion (3.33), the g
(n)
µν (x) with 0 < n < d are fully

determined in terms of g
(0)
µν (x) [24,25]. Terms of order O(ρ

d
2 ) do not contribute to

the logarithmically diverging term. The coefficient of the logarithmically diverging

term is thus state independent since the g
(n)
µν (x) with 0 < n < d do not depend on

the state. In the case of a (d = 4) dimensional boundary only g
(0)
µν (x) and g

(2)
µν (x)

in expansion (3.33) are relevant for the coefficient of the logarithmically divergent

term. The term g
(2)
µν (x) is determined by the conformal structure of asymptotically

76



3.6. Dual CFT quantity

AdS-spacetime:

g(2)
µν (x) = − 1

d− 2

(
R(0)
µν −

R(0)g
(0)
µν

2(d− 1)

)
. (3.41)

3.6 Dual CFT quantity

The motivation for considering the causal information surface was that it is a

second covariantly defined co-dimension two surface that can be associated to

spacelike co-dimension one boundary regions. The other natural co-dimension

two surface that can be constructed given a spacelike co-dimension one boundary

surface is the extremal surface that ends on ∂A, whose area in Planck units is

believed to be equal to the boundary entanglement entropy for the region A. The

question is hence: what is the boundary dual quantity of the causal holographic

information?

Several boundary quantities have been proposed. In this section, we will discuss

the current status of these proposals. In [4] it was proposed that causal holographic

information of some region A is the entanglement of some coarse grained density

matrix.

A candidate boundary dual quantity of causal holographic information of A should

satisfy that:

1. it depends only on ∂A [69]

2. it violates strong subadditivity in certain cases [69]

3. it can violate χA = Ac, even in pure states [69]

4. χA ≥ SA
5. it should be teleological [86], that is, in certain cases it should be sensitive

to changes to the state in the future of A
6. the “mutual causal information” χA + χB − χA∪B vanishes for spacelike

separated A and B with A ∩ B = ∅ [87]. In other words, causal holographic

information satisfies additivity for non-overlapping spacelike separated A
and B

7. it satisfies subadditivity χA∪B ≤ χA + χB for A ∩ B 6= ∅ [87].

We speculated about possible dual quantities in [4], discussing possible ways to

construct a coarse grained density matrix. Below, we will discuss these proposals

and their current status. Subsequently we will discuss a proposal by Kelly and

Wall [91], which is at the moment of writing still uncontested.
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3.6.1 Entanglement and Wilson loops

In non-Abelian gauge theories, there is more than one natural way to associate

a spatial region A with a part of the whole Hilbert space. Non-Abelian gauge

theories have non-local degrees of freedom associated to Wilson loops. In the

case of an Abelian gauge field, large Wilson loops are equivalent to integrals of

local operators, so we do not need to consider them separately. For non-Abelian

theories, however, a large Wilson loop cannot be rewritten as a product of local,

gauge-invariant operators.7

Because the gauge-invariant degrees of freedom include non-local operators, we

have to decide what to do with these non-local excitations when we define the

Hilbert space associated with a subregion A. One natural choice, the bigger def-

inition of HBA, is to include in HBA open Wilson loops that end on ∂A. With this

definition, the full Hilbert space is a subset of HBA ⊗ HBAc , because both subsets

allow open Wilson loops that end on ∂A, while in the full Hilbert space these loops

must be tied together into a closed Wilson loop. An excellent discussion of these

subtleties in the context of lattice gauge theory is given by Donnelly [93]. To de-

scribe this definition more precisely, HBA is defined by all gauge field configurations

in A modulo gauge transformations that are trivial on ∂A.

One could also make a different choice for how to treat Wilson loops that do

not fit inside A. The simplest possibility is not to allow Wilson loops to end on

∂A; in other words, HSA is defined to be gauge field configurations in A modulo all

gauge transformations, with no requirement that the gauge transformations should

act trivially on ∂A. With this definition, the full Hilbert space of the theory is

not contained in HSA ⊗HSAc ; the full Hilbert space also contains extra degrees of

freedom associated to Wilson loops that do not fit in either side.

Since we are already thinking about what to do with large Wilson loops, there

is another category of Wilson loops that could also be excluded from the Hilbert

space associated with a region. These are Wilson loops that fit in A, but cannot

in principle be measured within the causal diamond associated with A. In other

words, these are loops with the property that no point within the causal diamond

contains the loop in its backward lightcone. For spherical surfaces there are no

such loops, but in general there are; for example, the strip contains long Wilson

loops that are not in the backward lightcone of a single observer.

To summarize the above discussion, in non-Abelian gauge theories, there are sev-

7In conformal field theories, products of operators inserted at different points can be replaced

by their OPE. Similarly one can attempt to construct OPE’s for Wilson loops as in [92]. However,

an OPE does not converge if other operators are inserted within its radius of convergence, so in

general Wilson loops cannot be replaced by local operators.
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eral simple candidates for how to associate a spatial region to a sub factor of the

Hilbert space. Each of these definitions has an associated density matrix and en-

tanglement entropy that may violate strong subadditivity or other properties a

Von Neumann entropy would have. More generally, even in holographic dualities

that do not involve gauge fields, the field theory always has non-local operators

that encode what is happening in the bulk far from the boundary. The presence

of these non-local operators will lead to ambiguity in defining the density matrix

of a spatial region.

There are good reasons to believe that the above definitions of the “small” Hilbert

space associated to a region are still not consistent with the geometric definition of

χ. For example, the “teleological” behavior of χ and the vanishing of the “mutual

causal information” cannot be explained. Suppose we start with the vacuum state

and add a source to the future of the surface A but inside the associated causal

diamond. By construction, the source only changes the state inside its future

lightcone, so it does not affect the state on A. As long as the Hilbert space HSA
is defined in a state-independent way, as it is in all of the suggestions above, then

the entanglement entropy of A must be independent of the source, because by

construction it does not affect the density matrix on A. But one can see from the

bulk definition that such a source does in general change the area χ.

Another argument against these proposals involving Wilson loops is that Wilson

loops are associated to string world sheets in the bulk that reach outside the causal

wedge �A. To be more precise, for some Wilson loops in a subregion A, or in the

causal development ♦A, the corresponding bulk world sheets reach further into the

bulk than the causal information surface. As a consequence, these Wilson loops are

sensitive to perturbations of the bulk metric outside the causal wedge �A, whereas

causal holographic information is not sensitive to these kind of perturbations; this

is an inconsistency.

3.6.2 Linear coarse-graining

Roughly, what we want to do is to do a coarse-graining where we identify states

that cannot be distinguished by correlators of local, gauge-invariant operators.

One method to do a coarse-graining is a linear transformation ρ → ρ̃. Causal

holographic information would then be the Von Neumann entropy of ρ̃. Linear

maps ρ → ρ̃ that are trace-preserving and completely positive can be written

as [39]:

ρ̃ =
∑
i

MiρM
†
i , (3.42)
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where the Mi satisfy
∑
iM
†
iMi = I. One interesting case is a complete set of

projection operators Pi that add up to the identity:∑
i

Pi = I, (3.43)

and given the full density matrix ρ, a density matrix ρ̃ can be defined by

ρ̃ =
∑
i

PiρPi. (3.44)

This procedure ensures that the Von Neumann entropy of ρ̃ is greater than the

Von Neumann entropy of ρ [39], and this fits with the observation that the area of

the causal information surface always has greater area than the extremal surface.

A second interesting implementation of a linear map (3.42), which we do not use

here, is to consider a set of unitary operators:

ρ̃ =
1

n

n∑
i

UiρU
†
i . (3.45)

This ensures that S(ρ̃) ≥ S(ρ) by concavity of Von Neumann entropy [39].

Proposal for simple causal diamonds. Suppose the boundary region A cor-

responds to a simple causal diamond, defined by one future caustic and one past

caustic. Then there is a natural choice for the projection. Typically one can think

of the projectors that project onto the eigenspaces of a particular hermitian opera-

tor. Since we want an operator associated to the causal development of the region

A, and we do not want it to depend on details of the theory, a natural choice is the

time evolution operator U that evolves the state from the “bottom” to the “top”

of the causal diamond. The evolution operator U is unitary, so it can be written

as the exponential of a Hermitian operator A, U = exp(iA). The eigenvectors of

A naturally pick out a set of projection operators that can be used in the above

construction (3.44).

There is one more encouraging observation that this construction may be on the

right track, in addition to the above observation that the coarse-grained entan-

glement entropy is larger. In [69] it is analyzed in which cases the entanglement

entropy and the causal holographic information coincide (χ = S). The two quan-

tities agree whenever the reduced density matrix is thermal. In this special case,

the density matrix is already diagonal in the basis picked out by the Hamiltonian,

so the coarse-graining (3.44) has no effect.8

8A subtlety is that the evolution from the bottom to the top requires t→∞.
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More complicated regions. The simplest boundary causal diamond is one

with just one future caustic and one past caustic, so that in flat space, ∂A is a

sphere. However, for most choices of A, the boundary region will be such that both

C+ and C− contain more than one-point. In this case, there is another natural

procedure for throwing away non-local information. Starting from the full density

matrix ρA, define ρ̃A to be the maximum entropy density matrix that correctly

reproduces the measurements contained in any causal diamond contained within

the boundary region.

This procedure is motivated by considering which bulk region should be described.

It has the advantage that it defines a ρ̃ that agrees with another observation

about χ. Suppose A and B are two spacelike patches on a Cauchy-surface on the

boundary and A ∩ B = 0, then χA + χB − χA∪B = 0. This can be arranged iff

the causal mutual information vanishes: ρ̃A∪B = ρ̃A ⊗ ρ̃B . In this special case,

one can show that the above procedure indeed leads to a density matrix that is a

product.

An argument by Don Marolf [91] compromises the construction above, even for

simple causal diamonds. The argument that the projection (3.44) removes off-

diagonal elements in the density matrix with respect to the basis of projection

operators and effectively takes a time average of the state:

ρ̃ =
∑
i

PiρPi

= lim
T→∞

∫ T
2

−T2
dt ρ(t),

(3.46)

where e−iHt is the evolution operator in the boundary causal diamond ♦A. Now

one could consider some matter, a particle, passing through “tip” of the original

bulk causal wedge �A. The presence of bulk matter would cause null rays to

focus, which changes the causal wedge. Due to the second law of horizons, the

causal information will be smaller than its late time value. But the fact that

the near boundary part of �A is unchanged suggests that the state describing the

corresponding boundary regions (bottom and top of the boundary causal diamond)

is unchanged. The early and late time values of ρ dominate (3.46), in contradiction

to the fact that the causal holographic information does change. This argument

suggests that this proposal can not be correct.

3.6.3 One-point entropy

Kelly and Wall [91] propose a different coarse-graining method, which we will ex-

plain below. This coarse-graining method makes use of a subset of operators, for
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which there are several candidates. In this subsection we will discuss several sub-

sets of operators that can be used with this coarse-graining method. A particular

subset gives rise to the one-point entropy, which is proposed to be the boundary

dual quantity for causal holographic information [91].

The coarse-graining method considered by Kelly and Wall [91] is the map ρ → ρ̃

defined by:

SA(ρA) = sup
τA∈TA

[SA(τA)] (3.47)

where ρA is the reduced density matrix associated with A, SA(τA) is the von

Neumann entropy of τA, and TA(ρA) is the set of all density matrices τA which

satisfy the constraints

Tr{Om τA] = Tr[OmρA} (3.48)

for a set of operators {Om}.
It can be shown that ρ̃ defined by (3.47) is of the form

ρ̃ =
e−

∑
m λmOm

Z
, (3.49)

where the λm are the Lagrange multipliers of the constraint extremization [94].

χ-preserving coarse-grainings Suppose there is a coarse-graining ρ→ ρ̃ such

that

χA = Sρ̃A . (3.50)

Further suppose that two density matrices ρ1, ρ2, that correspond to semi-classical

bulk dual geometries, are mapped to the same coarse grained density matrix ρ̃. If

S is dual to χ, then we must have

χρ1 = χρ2
(3.51)

for all such ρ1, ρ2. Any coarse-graining which maps any two density matrices ρ1,2

to the same coarse-grained ρ̃, that also satisfies (3.51), is called χ-preserving.

In principle, there could be more than one χ-preserving coarse-graining. In [91] it

is argued that χ must correspond to the “strongest” χ-preserving coarse-graining.

For details, see [91]. Note that in [91] it is assumed that the coarse-graining that

corresponds to causal holographic information maps states with a semi-classical

bulk dual geometry to states with a semi-classical bulk dual geometry.

For a coarse-graining associated to a boundary subregion A, there are several

natural options for the set of constraint operators {Om} [91], which we will discuss

below:
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CB Σgeon

A−

A+

ΨA± D[A±]

2

Figure 3.9: Penrose diagram of the geon-geometry. (Source: [91])

1. The set of Wilson loops that can be measured in the causal diamond ♦A

2. The set of one-point functions, or local operators in A

3. The set of one and two-point functions in A

4. The set of one and two-point functions in A that can be measured within

♦A

Wilson loops in A The set of Wilson loops that can be measured within the

causal diamond ♦A is not the most likely candidate, because Wilson loop operators

correspond to minimal surfaces in the bulk that reach beyond the causal wedge.

Two point functions in A In [91], it is argued that any set that includes two-

point functions is also unlikely to correspond to causal holographic information.

The so called geon geometry [95] is a central example in this argument. The

geon-geometry is a modified AdS-Schwarzschild geometry, where the spacetime

is cut in half and opposite points on the bifurcation two sphere are identified

(see figure 3.9). Outside the horizon, the spacetime is isometric to the original

AdS-Schwarzschild geometry. In [91] it is argued that the calculation of CFT

two-point functions would yield different answers for these two geometries due to

non-contractible Witten diagrams that wrap around the nontrivial topology of the

geon-geometry. So if two-point functions would be in the set of constraints (3.48),

then these two geometries would generically yield different SA, whereas the χA
are equal. A similar argument is made for the set of one and two-point functions

in A that can be measured within ♦A [91].
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One point functions The one-point entropy is the coarse grained entropy, with

the set of one-point functions of all all gauge-invariant, local CFT operators with

support on ♦A as constraints (3.48).

In [91] it is argued that this is the “strongest” 4χ-preserving coarse-graining can-

didate. An important property of the one-point entropy is that it is equal to the

entanglement entropy of a thermal state. To be more precise, when ρ ∝ e−βH

where H is (the integral of) a local operator, the one-point entropy and the usual

entanglement entropy are equal. The argument goes as follows: if H is local, then

H ∈ {Om}. The coarse grained density matrix ρ̃ must hence satisfy

Tr{Hρ̃} = Tr{Hρ}. (3.52)

The original density matrix ρ trivially solves (3.52) for all operators in {Om}.
Since there are other constraints from other operators in {Om}, we must have

S
(1)
A ≤ SA. (3.53)

But we also have S
(1)
A ≥ SA by the extremality condition in the definition. Hence

we conclude S
(1)
A = SA and ρA = ρ̃A. This observation corresponds with known

examples where the holographic entanglement entropy is equal to the causal holo-

graphic information [69].

At the moment of writing, there is no definitive counter argument against the

proposal (3.48).9

3.7 Summary & Outlook

In this chapter, we discussed causal holographic information. Causal holographic

information is the area of a co-dimension two bulk surface associated to a bound-

ary subregion. It has similarities with entanglement entropy, but there are also

differences. Generally, it is larger than or equal to the entanglement entropy of a

boundary subregion.

A boundary quantity dual to causal holographic information, which is defined in

the bulk, is not identified yet, although several proposals have been made. All

these proposals associate causal holographic information to the Von Neumann

entropy of a coarse grained density matrix. The proposed “one-point entropy” is

a particularly promising candidate.

9The one-point entropy cannot be equal to causal holographic information in case of boundary

sources [91].
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As a bulk probe, causal holographic information serves better than entanglement

entropy and Wilson loops, at least for d = 2. For a higher number of dimensions,

there is evidence for this statement as well.

Recently, the usefulness of causal holographic information has been discussed in

the context of certain states that are pure, but are locally isometric to the geometry

of a mixed state. To be more precise, one can think of geometries that correspond

to a pure boundary state, that collapse into a black hole. Another example is the

geon-geometry, discussed in section (3.6), which is isometric to AdS-Schwarzschild,

but is topology different and corresponds to a pure boundary state. In [96] it is

argued that a law similar to the first law of entanglement entropy (1.62) is valid

for the one-point entropy, in certain cases.

If the one-point entropy proposal is correct, then the coarse-grained density matrix

associated to causal holographic information would have a local modular Hamilto-

nian. It would be interesting to investigate whether it is possible to reconstruct the

bulk gravitational equations using the dynamics of causal holographic information.

3.A Proof of formula for constant time slice

In this appendix we will derive the near boundary expansion of the embedding

function of the causal information surface (3.4) for an entanglement surface ∂Σ

that lies on a constant time slice on a flat boundary, using a pure AdS bulk metric:

ds2 =
dz2

z2
+

1

z2
ηµνdx

µdxν (3.54)

For the boundary coordinates we will use the following notations interchangeably:

xµ = (t, ~x). (3.55)

For any point xµ(ξ1, ξ2) on ∂Σ there is a unique point on top- and on the bottom of

the causal diamond, x∧(ξ) on C+ and x∨(ξ) on C− respectively. These points are

separated from the base point xµ(ξ) by boundary null geodesics that are normal

to ∂Σ in xµ(ξ). The causal diamond ♦Σ is symmetric in the t = 0 plane, so if the

future caustic x∧(ξ) is in the t = τ plane, the past caustic x∨(ξ) is on the t = −τ
plane. Since t̂ is normal to ∂Σ, we can take the second normal vector n̂(ξ) to be

in the t = 0 plane. This allows us to express xµ∧(ξ) in terms of n̂(ξ) and τ(ξ),

xµ∧(ξ) =
(
x0
∧(ξ), ~x∧(ξ)

)
= (τ(ξ), ~x∂Σ(ξ) + τ(ξ)n̂(ξ))

~x∧(ξ) = ~x∂Σ(ξ) + τ(ξ)n̂(ξ),

(3.56)
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where n̂(ξ) is the unit normal vector in the (t = 0)-plane and τ(ξ) depends (in

general non-locally) on the geometry of ∂Σ. From now on we will not explicitly

write that these are functions of ξ.

We parametrize the embedding function xM = (z, xµbulk) of the causal information

surface (3.4) with z and ξα (α = 1, 2). Given a point xM = (z, xµbulk) on the causal

information surface we would like to identify the point(s) ~x(ξ) on ∂Σ such that

a past directed bulk lightray emanating from xµ∧(ξ) and a future directed bulk

lightray xµ∨(ξ) intersect at xM = (z, xµbulk). For small z, xµbulk and a particular

xµ(ξ) are close together (O(z2)). Since the causal information surface consists of

points that are as far into the bulk as possible while still being intersected by at

least one null ray emanating from C+ and C−. The point ~x(ξ) that generates the

caustics (3.56) from which the bulk point xM = (z, xµbulk) can be reached by null

rays should be such that the distance between xµbulk and xµ∧(ξ) is minimal. The

set of future caustics C+ is piecewise smooth and we construct the normal plane

for a point xµ∧(ξ) in C+. The point ~x(ξ) should be such that:

• xµbulk lies in the intersection of the normal plane of xµ∧(ξ) and the t = 0 plane

• |xbulk − x∧(ξ)|2 = −z2.

One can construct two tangent vectors in x∧(ξ) (or x∨(ξ)) by taking derivatives

with respect to the parameters ξα, α = 1, 2,

Sµα∧ = ∂αx
µ
∧

= (S0
α∧, ~Sα∧)

= (∂ατ, ∂α~x∧)

~Sα∧ = ∂α~x∧

= ∂α~x∂Σ + (∂ατ)n̂+ τ∂αn̂

= ~Tα + (∂ατ)n̂+ τ∂αn̂

(3.57)

where ~Tα = ∂α~x∂Σ. One can construct Sα∨ similarly.

The space orthogonal to the tangent space span {Sµα∧} in x∧ ∈ C+ is (in the most

general case) two-dimensional and contains (1, n̂). It is spanned by (1, n̂) and by a

second linearly independent vector. We construct such a vector V µ∧ by demanding

V∧ · Sα∧ = 0 for α = 1, 2.

V µ∧ = (1, bα) (Ansatz)

V∧ · Sα∧ = 0

= −∂ατ + bβ ~Tβ ~Tα + τbβ ~Tβ · ∂αn̂
= −∂ατ + bβ g̃βα + τbβKαβ

(3.58)
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where g̃αβ = ~Tα · ~Tβ is the induced metric on ∂Σ.

Equation (3.58) is solved by

bα =
(∂ατ)(1 + τK)− τKβ

α(∂βτ)

1 + τK + τ2

2 (K2 −KγδKγδ)
. (3.59)

Intersecting the t = 0 plane with the surface spanned by (1, n̂(ξ)) and V (ξ) iden-

tifies the point ~x(ξ) together with the condition that |xbulk − x∧(ξ)|2 = −z2.

xµbulk = xµ∂Σ + a(0, n̂− bα ~Tα)µ

xµ∧ = xµ∂Σ + τ(1, n̂)µ

|xµbulk − x
µ
∧|2 = −z2

= −τ2 + (a− τ)2 + bαbβ g̃αβ

= a2(1 + b2)− 2aτ.

(3.60)

Solving for a gives:

a =
τ

1 + b2
± τ

1 + b2

√
1− z2(1 + b2)

τ2

=
z2

2τ
+O(z4) (Taking the minus solution).

(3.61)

Giving the near boundary expansion of the embedding function of the causal in-

formation surface:

~xbulk(ξ, z) = ~x∂Σ(ξ) +
z2

2τ(ξ)
n̂(ξ)− z2

2τ(ξ)
bα ~Tα(ξ) +O(z4). (3.62)

3.B Proof of the formula for a flat boundary

Allowing the entanglement surface ∂Σ to be a general spacelike surface in the

Minkowski background and a pure AdS dual removes the mirror symmetry of

the causal diamond in the t = 0 plane we used in Appendix 3.A. Given a point

(z, xµbulk) on the causal information surface, the past and future caustics from

which the bulk null geodesics intersect at (z, xµbulk) might be related to different

points on ∂Σ.

Now we have to find two-points xµt = xµ(ξα) and xµb = xµ(ξα + ∆α) on ∂Σ such

that:

• xµbulk lies in the plane through xµ∧(ξ) orthogonal to C+
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• xµbulk lies in the plane through xµ∨(ξ + ∆) orthogonal to C−

• |xbulk − x∧(ξ)|2 = −z2

• |xbulk − x∨(ξ + ∆)|2 = −z2,

using the definition (3.23).

From now we will interchangeably use the subscript t for quantities that are eval-

uated at ξ and the subscript b for quantities that are evaluated at ξ+∆. So (3.23)

can also be written as:

xµ∧ = xµt + λ↑tN
µ
↑t

xµ∨ = xµb + λ↓bN
µ
↓b.

(3.63)

In both xt and xb the two null normal vectors together with the two tangent

vectors Tµα = ∂αx
µ constitute a basis and we can express xµbulk in terms of these

vectors:

xµbulk = xµt + α↑tN
µ
↑t + α↓tN

µ
↓t + α↓tb

α
t T

µ
αt

= xµb + α↑bN
µ
↑b + α↓bN

µ
↓b + α↑bb

α
b T

µ
αb,

(3.64)

where α↑t, α↑b, α↓t, α↓b, bαt and bαb have to be determined by imposing the condi-

tions listed above.

Imposing the condition that xµbulk lies in the plane through xµ∧(ξ) orthogonal to

C+ is equivalent to extremizing |xbulk − x∧| by varying xt:

0 = ∂α|xbulk − x∧|2

= ∂α|xbulk − xt − λ↑tN↑t|2

⇒ (xµbulk − x
µ
t )ηµν(T ναt − λ↑t∂αNν

↑t − (∂αλ↑t)N
µ
αt).

(3.65)

Similar for |xbulk − x∨|.

Now using the expansion (3.64) we find equations for bαt , α = 1, 2.

0 = −(∂αλ↑t) + bβt g̃αβ − bβtK↑tαβλ↑t, (3.66)

where g̃αβ = ∂αx
µ
t ∂βx

ν
t ηµν .

This equation (3.66) (And similarly for bαb) is solved by:

bαt =
− (1 + λ↑tK↑t) ∂αλ↑t −Kβ

↑tα∂βλ↑t(
1 + λ↑tK↑t +

λ↑tλ↑t
2

(
K2
↑t −K↑tγδK

γδ
↑t

)) . (3.67)
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Another condition can be obtained by demanding:

|xbulk − x∧|2 = −z2

= 2(α↑t − λ↑t)α↓t + α2
↓tb

2
t

⇒ α↓t =
z2

2λ↑t
+O(z4).

(3.68)

Similarly for |xbulk − x∨| giving a similar solution:

α↑b =
z2

2λ↓b
+O(z4). (3.69)

Now using (3.68) and (3.69) and implicitly using (3.67) we can re-express (3.64):

xµbulk = xµt + α↑tN
µ
↑t +

z2

2λ↑t
Nµ
↓t +

z2

2λ↑t
bαt T

µ
αt + ...

= xµb +
z2

2λ↓b
Nµ
↑t + α↓bN

µ
↓b +

z2

2λ↓b
bαb T

µ
αb.

(3.70)

Now we can expand in ∆ using that ∆α∂αx
µ is of order O(z2):

xµbulk = xµ + α↑tN
µ
↑ +

z2

2λ↑
Nµ
↓ +

z2

2λ↑
bαt T

µ
α + ...

= xµ + ∆α∂αx
µ +

z2

2λ↓
Nµ
↑ + α↓bN

µ
↓ +

z2

2λ↓
bαb T

µ
α + ...

(3.71)

We use linear independence to find equation for the coefficients of Tµα , Nµ
↑ and

Nµ
↓ :

z2

2λ↑
bαt = ∆α +

z2

2λ↓
bαb +O(z4)

α↑t =
z2

2λ↓
+O(z4)

z2

2λ↑
= α↓b +O(z4).

(3.72)

Now we can expand the embedding function using xt = x(ξ):

xµbulk(z, ξ) = xµ(ξ) +
z2

2

(
Nµ
↑
λ↓

+
Nµ
↓
λ↑

)
+

z2

2λ↑
bαt T

µ
α +O(z4). (3.73)

And for the relation between we find xt and xb:
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3. Causal Holographic Information

xµt = xµ(ξ)

xµb = xµ(ξ + ∆)

⇒ ∆α =
z2

2

(
bαt
λ↑
− bαb
λ↓

)
+O(z4).

(3.74)
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Notes for the reader

Conventions

Planck units ~ = c = 1

Minkowski metric ηµν=diagonal(-1,+1,...,+1)

Reduced Planck mass set to one 8πG = 1

Number of dimensions 3+1

The de Sitter radius LdS: in chapter (4) we will consistently write LdS where

it is appropriate, since this is an introductory chapter. In chapters (5) and (6) we

will also explicitly write LdS except for section (5.2). In section (5.2) quantities

with units of length should be considered in units of LdS = H−1.

Published work

This part of the thesis is based on (parts of) our work presented in the following

articles:

[1] F.V. Dimitrakopoulos, L. Kabir, B. Mosk, M. Parikh and J.P. van der Schaar

Vacua and correlators in hyperbolic de Sitter space

JHEP 1506, 095 (2015), arXiv:1502.00113 [hep-th].

[3] B. Mosk and J.P. van der Schaar

Chaotic inflation limits for non-minimal models with a Starobinsky attractor

JCAP 1412, 022 (2014), arXiv:1407.4686 [hep-th].

In particular, elements of [1] will be presented in chapter (5). Elements of [3] can

be found in chapter (6). Chapter (4) is introductory and does not contain products

of our scientific endeavors.
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Chapter 4

Introduction

In this chapter we present the basic concepts of cosmology necessary to present

our work in chapters (5) and (6). In section (4.1) we will give a non-technical

introduction into Big Bang cosmology and inflation. In section (4.2) we will in-

troduce the concept of single field inflation, which will provide the framework

for this part of the thesis. In section (4.3) we will present de Sitter spacetime,

which is relevant for the description of our universe during inflation. We proceed

with a more conceptual treatment of quantum field theory in curved spacetime

in section (4.4), which forms the basis for chapter (5). Subsequently we give an

extremely condensed summary of the derivation of the scalar power spectrum in

section (4.5). The detailed derivation of the spectrum is outside the scope of this

thesis and section (4.5) will be largely a summary of [97]. In section (4.6) we ex-

tract the most important parameters of the spectrum, which characterize models

of inflation. These parameters serve an important role in chapter (6).

4.1 Cosmology: a brief history of the universe

This part of the thesis is about inflation, a period of accelerated expansion thought

to have taken place just fractions after the Big Bang. We will briefly give a non-

technical description of the Big Bang scenario and motivate the study of models

of inflation.

Nowadays, the field of cosmology is dominated by the Big Bang scenario in com-

bination with inflation. The Big Bang scenario emerged in the twentieth century.

It was realized by Friedmann that general relativity allows for solutions that cor-
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Figure 4.1: The history of our universe. Source: Particle Data Group.

respond to an expanding universe. Another important observation was the reces-

sion of “spiral nebula” (galaxies), which was incurred from their Doppler shift.

Lemâıtre proposed the idea that this Doppler shift is caused by the expansion of

our universe. It was realized that if one winds back the clock and reverses this

expansion, the matter in our universe would be extremely compact. The descrip-

tion of such a state with general relativity would yield a singularity, a point in

spacetime where geometrical quantities “blow up”.

In the course of the twentieth century a lot of evidence was found in support of

the Big Bang scenario. For example, Hubble’s measurements of galactic redshifts

showed that galaxies are drifting apart. Another important observation was the

measurement of the cosmic microwave background, which we will address later.

The Big Bang, which is thought to have happened some 13.8 billion years ago,

is often referred to as a singularity. However, we do not really know how space-

time behaves under the conditions of extremely high energies and temperatures.

As discussed in Part I, general relativity does not provide a good description at

distances smaller than the Planck scale, where quantum effects become important.

Although we do not really know what happened during the Big Bang and what

caused it, there is a more detailed model of the subsequent epochs. We will briefly

describe a selection of events and epochs of the history of our universe, as far as

they are relevant for this thesis (see also figure 4.1).1

1We will not discuss topics such as grand unification, dark matter, baryogenesis, electroweak

unification, neutrino decoupling, Big Bang nucleosynthesis.
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At a time-scale of 10−34s after the Big Bang, the universe is thought to have

been in a phase of inflation; accelerated expansion. In chapter (4) we give some

motivation for the concept of inflation. Although there is a lot of evidence for an

inflationary epoch, the mechanism behind it is still unclear. Single field inflation

models have been very successful in explaining and predicting observations, such as

the characteristics of the cosmic microwave background, which is described below.

After the Big Bang our universe was in an extreme high energy state, for which

the physics is still poorly understood. Some 10−36 seconds after the Big Bang the

universe enters the period of inflation, a period of accelerated expansion. Quantum

fluctuations during the period of inflation are being “blown up” and constitute the

seeds for the large scale structure of the universe at later times. The temperature

drops dramatically, but at the end of inflation the universe reheats again as a

consequence of the potential energy of the inflaton field being transferred to other

particles. The universe is initially dominated by radiation, but it becomes matter-

dominated as the temperature decreases. Radiation cannot propagate freely in a

plasma with unbound electrons, so radiation cannot propagate until the energies

are low enough for electrons and protons to form hydrogen. When protons and

electrons form hydrogen, the photons decouple. This decoupling, some 380.000

years after the Big Bang allows photons to propagate freely, such that the first

visible radiation is formed. This radiation is still “visible”, but it is highly red-

shifted to the microwave part of the spectrum. This cosmic microwave background

(see figure 4.2) has an approximately thermal spectrum with T ∼ 2.73K and forms

the most important footprint of the physics of inflation. It is also affected by post-

inflationary physics, such as the baryon-acoustic oscillations. Other information

about the early universe can be deduced from the relative abundance of particles,

possibly by the measurement of gravitational waves and by observations of the

large scale structure of the universe.

This thesis will not discuss topics in astroparticle physics or post-inflationary

physics and will be theoretical in nature. In many cases, a simplified model of

inflation will be used in order to study the effects of changing some basic assump-

tions. For example, in chapter (5) we analyze the effects of having a different

initial quantum state. These effects can be discussed qualitatively in a simplified

setup. The actual imprint on observable quantities is outside the scope of this

thesis. In chapter (6) we consider different potentials for the field that describes

a mechanism for inflation.
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Figure 4.2: From ESA/Planck: The anisotropies of the Cosmic microwave background (CMB)

as observed by Planck. The CMB is a snapshot of the oldest light in our Universe,

imprinted on the sky when the Universe was just 380 000 years old. It shows tiny

temperature fluctuations that correspond to regions of slightly different densities,

representing the seeds of all future structure: the stars and galaxies of today. Source:

ESA and the Planck Collaboration (Id 288792).

4.2 Single field inflation

In this section we motivate the concept of inflation and introduce the single field

inflation model. We only discuss the classical dynamics of inflation; the description

of quantum effects will be postponed until section (4.5).

4.2.1 FLRW spacetimes

In order to make a model of the large scale development of the universe, one has

to make a series of assumptions. At large scales, the spatial slices of our universe

look surprisingly homogeneous in all directions and distances.

Homogeneity A manifold M is called homogeneous if for any p, q ∈ M there

exists an isometry f such that f(p) = q.

Spatial homogeneity A spacetime (M, g) is spatially homogeneous it there ex-

ists a group of isometries whose orbits are 3d spacelike surfaces.

A spacetime with spatial homogeneity has a set of preferred observers, called
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4.2. Single field inflation

comoving observers, whose velocity is perpendicular to the surfaces of spatial ho-

mogeneity. If these surfaces of spatial homogeneity look the same in all directions,

then the space is called isotropic.

It can be shown that the metric of a spatially homogeneous and isotropic universe

must be of the Friedmann Lemâıtre Robertson Walker (FRW or FLRW) type:

ds2 = −dt2 + a2(t)

(
dr2

1− κr2
+ r2dΩ2

2

)
, (4.1)

with κ = 0,±1, corresponding to a flat, open or closed universe:

κ =


−1 open universe

0 flat universe

1 closed universe

. (4.2)

Coordinates r,Ω are called comoving coordinates. Physical distances are obtained

by multiplying the distance in comoving coordinates with the scale factor a. The

physical velocity between two observers fixed at comoving coordinates, with a

separation ∆x in comoving coordinates, is given by

ḋ =
d

dt
(a(t)∆x) =

ȧ

a
(a∆x) = Hd, (4.3)

where d = a∆x is the physical distance between the two comoving observers and

H is called the Hubble factor. The Hubble radius H−1 is a physical distance and

the comoving Hubble radius
1

aH
(4.4)

is a comoving scale. If the comoving distance between two observers is larger than

the comoving Hubble radius, then they are out of causal contact by virtue of (4.3).

At large scales, the assumption that the universe can be modeled by a perfect

fluid, is another good approximation. The Einstein equations describe the coupling

between matter and the metric:2

Gµν = 8πGTµν , (4.5)

where Gµν = Rµν − 1
2Rgµν is the Einstein tensor, G is Newton’s constant and Tµν

is the energy momentum tensor.

A perfect fluid can be modeled by a set of comoving observers with velocity u,

such that uµuνgµν = −1. The energy density ρ and the pressure p are given by:

ρ = Tµνu
µuν

p =
1

3
Tµν (gµν + uµuν) .

(4.6)

2From here on we will set 8πG = 1, so that quantities with unit mass should be considered

to be stated in units of the reduced Planck mass.
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The simplest energy momentum tensor satisfying these properties is the energy

momentum tensor of the perfect fluid

Tµν = ρuµuν + p (gµν + uµuν) . (4.7)

The Einstein equations (4.5) couple the energy momentum tensor (4.7) to the

metric. Assuming a FRW metric (4.1), the Einstein equations give at a set of

differential equations for a(t) in terms of ρ and p, called the Friedmann equations:(
ȧ

a

)2

=
1

3
ρ− κ

a2
, (4.8)

ä

a
= −1

6
(ρ+ 3p) , (4.9)

where the dots indicate derivatives with respect to t.

One can combine the Friedmann equations to obtain the continuity equation:

ρ̇+ 3
ȧ

a
(ρ+ p) = 0. (4.10)

Another simplification can be made by assuming a linear equation of state:

p = wρ. (4.11)

For non relativistic matter w = 0, for relativistic matter (radiation) w = 1
3 and

for a cosmological constant w = −1.

4.2.2 Cosmological puzzles

Classical cosmology has been challenged to explain four (three) major problems:

the homogeneity & the horizon problems, the flatness problem and the monopole

problem. These problems were the main motivation to consider inflation (see

subsection 4.2.3).We will briefly describe these problems in classical cosmology.3

Homogeneity & horizon problems

The cosmic microwave background radiation is surprisingly homogeneously dis-

tributed. A priori, there would be no reason for causally disconnected parts of the

universe to show this level of homogeneity, because causally disconnected regions

cannot equilibrate. Moreover, gravitational attraction is a long range force that

3By classical cosmology we mean a Big Bang model without subsequent accelerated expan-

sion. In other words, ä ≤ 0.
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4.2. Single field inflation

magnifies instabilities, so one would expect the inhomogeneities to be even smaller

at earlier times.

The analysis of causal regions in FLRW spacetimes is easiest done using conformal

time, defined as4

η =

∫ t

0

dt′

a(t′)
=

∫ a

0

d ln ã
1

ãH
,

ds2 = a2(η)

(
−dη2 +

dr2

1− κr2
+ r2dΩ2

d−1

) (4.12)

and is also called the comoving horizon or the comoving particle horizon, be-

cause particles whose comoving distance is larger than ∆η cannot have been in

causal contact, whereas particles whose comoving distance is smaller than ∆η can

have been in causal contact. In standard cosmology, the comoving Hubble radius

(aH)−1 is increasing, so from (4.12) we see that the causally connected areas were

smaller in the past. Hence, standard cosmology does not explain the high level

of homogeneity of the universe, because homogeneity is thought to result from an

equilibration process which necessitates causal contact. This is called the horizon

problem.

Flatness problem

The universe is currently very close to flat (κ = 0) [98, 99]. Using the first Fried-

mann equation we can define the critical density ρcrit by

H2(a) =
1

3
ρcrit(a),

⇒ ρcrit = 3H2(a),
(4.13)

such that we have ρ = ρcrit for a flat universe (κ = 0). Rewriting the first

Friedmann equation using (4.13) we have

1− Ω(a) = − κ

3(aH)2
, (4.14)

where Ω(a) = ρ(a)
ρcrit(a) . From (4.14) it is clear that for a flat universe (κ = 0) we

must have Ω(a) ≈ 1. In fact, initially Ω must be very close to one, because the

comoving Hubble radius (aH)−1 is increasing in standard cosmology: it requires

extreme fine-tuning to obtain Ω = 1 at late times.

4Here we write t = 0 as initial time, but later t→ −∞ is more appropriate.
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Monopole problem

In many models of a grand unified theory (GUT), in which the fundamental forces

are unified in a single gauge group which is unbroken above a certain energy level,

magnetic (GUT-) monopoles can be created [100], at least in the early universe

[101–103]. Electric monopoles are well known. Electric charge in a volume V is

given by

QVe =
1

4π

∫
∂V

?F (4.15)

where ? is the Hodge dual and F is the Maxwell field strength. Hodge duality

exchanges ?E = −B and ?B = E, so one could also define a “magnetic charge”

QVm =
1

4π

∫
∂V

F. (4.16)

For a magnetic monopole we would have Qm 6= 0, or in other words, there would

be a magnetic charge ~∇ · ~B = ρm. However, a magnetic monopole Qm 6= 0 has

never been observed. An important question in standard cosmology is hence: if

monopoles can theoretically exist, why have we never seen one?

4.2.3 Inflation

In section 4.2.2 we described some problems with classical cosmology. In this

subsection, we will explain how accelerated expansion in the early universe can

solve these puzzles. We also briefly present the simplest mechanism that can

explain accelerated expansion; single field slow roll inflation.

Accelerated expansion

A crucial insight from the seventies was that accelerated expansion,

ä > 0, (4.17)

where the dots represent derivatives with respect to t (4.1), solves the cosmological

puzzles. Firstly, from (4.17) it follows that the comoving Hubble radius (aH)−1

decreases
d

dt

(
1

aH

)
< 0. (4.18)

Returning to equation (4.14) we now see that the flat universe is in fact an attrac-

tor :
1− Ω(a) = − κ

3(aH)2
. (4.19)

Also, the homogeneity & horizon problem is explained. In [104] it is explained as:
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4.2. Single field inflation

If particles are separated by distances greater than η, they never could

have communicated with one another; if they are separated by distances

greater than (aH)−1, they cannot talk to each other now! This distinc-

tion is crucial for the solution to the horizon problem which relies on

the following: It is possible that η is much larger than (aH)−1 now,

so that particles cannot communicate today but were in causal contact

early on. From equation (4.12) we see that this might happen if the co-

moving Hubble radius in the early universe was much larger than it is

now so that η got most of its contribution from early times. Hence, we

require a phase of decreasing Hubble radius. Since H is approximately

constant while a grows exponentially during inflation we find that the

comoving Hubble radius decreases during inflation just as advertised.

The monopole problem can also be explained by accelerated expansion: even if

monopoles would have been created in the early universe, they would be extremely

diluted now, explaining the fact that they have never been observed.

Voilating the strong energy condition

From the second Friedmann equations (4.9) it follows that for an accelerating

universe we have

ä

a
= −4πG

3
(ρ+ 3p) > 0 ⇒ ρ+ 3p > 0. (4.20)

This implies that the strong energy condition must be violated. The strong energy

condition states that the energy momentum tensor obbeys, for any non-spacelike

vector k (
Tµν −

T

2
gµν

)
kµkν ≥ 0. (4.21)

One can check that for a perfect fluid energy momentum tensor (4.7) this implies

ρ+ 3p > 0, which is clearly violated by (4.20).

In the next subsection, we will present a simple mechanism that can explain the

violation of the strong energy condition and the accelerated expansion of the uni-

verse.
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4.2.4 Scalar field inflation

Violating the strong energy condition

Consider a scalar field φ with potential V (φ), for which the action is given by

S =

∫
dd+1x

√−g
(
R

2
+ Lmatter

)
,

Lmatter = −1

2
gµν∂µφ∂νφ−

1

2
m2φ2 − V (φ).

(4.22)

The energy momentum tensor is given by

Tµν =
2√
g

δSmatter

δgµν
= ∂µφ∂νφ−

1

2
gµνLmatter. (4.23)

If we assume that φ = φ(t), then it follows from (4.23) that:

ρ = T00 =
φ̇2

2
+ V (φ), p =

1

3
T ii =

φ̇2

2
− V (φ). (4.24)

From the equation of state (4.11) it follows that

w =
φ̇2

2 − V (φ)

φ̇2

2 + V (φ)
, (4.25)

so when the potential energy V is much larger than the kinetic energy,

V � φ̇2, (4.26)

the strong energy condition can be violated (w < − 1
3 ).

Slow-roll parameters

A scalar field can drive inflation if the kinetic energy is dominated by the potential

energy (4.26). This condition must be satisfied throughout the period of inflation.

The equation of motion of a scalar field in a FLRW spacetime (4.1) is given by

φ̈+ 3Hφ̇− δV

δφ
= 0 (4.27)

and with p and ρ given by (4.24) the first Friedmann equation becomes:

H2 =
1

3

(
φ̇2

2
+ V

)
. (4.28)

From (4.25) we saw that inflation can only occur when the kinetic energy of the

scalar field is dominated by the potential energy (4.26). Throughout inflation, the
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kinetic term must remain sufficiently small. This requires the smallness of two

parameters. These slow-roll parameters, given below, can be naturally expressed

in terms of the number of e-folds during inflation, which is defined as

N ≡ ln

(
aend

abegin

)
. (4.29)

Some useful equalities for N are given by:

N =

∫ aend

abegin

da

a
=

∫ tend

tbegin

H(t)dt = −
∫ φend

φbegin

H

φ̇
dφ . (4.30)

From (4.8) we see that during inflation H2 ≈ V
3 . Demanding that this remains

true is equivalent to demanding that the relative change of H per e-fold is small.

A necessary condition is given by the smallness of a parameter ε:

ε = −d lnH

N
= − Ḣ

H2
. (4.31)

One can show, using the equation of motion, that we also have

ε =
1

2

φ̇2

H2
. (4.32)

Smallness of ε (ε� 1) is necessary but not sufficient. Another necessary condition

is given by the requirement that ε � 1 during all stages of inflation, or in other

words, that the relative change of ε per e-fold is small. This is guaranteed by the

smallness of

η = ε− 1

2ε

dε

dN
. (4.33)

Using the equation of motion and using dN = Hdt (4.30), we can also write η as:

η =
−φ̈
Hφ̇

. (4.34)

The second slow roll parameter η can also be negative, so the slow-roll conditions

are given by:

ε� 1, |η| � 1. (4.35)

The slow parameters ε and η are given in terms of H and φ and they are called the

Hubble slow-roll parameters. It can be shown that a different set of parameters in

terms of the potential V , the potential slow-roll parameters, are equivalent to the

Hubble slow-roll parameters, in the slow-roll limit:

εV =
1

2

(
V,φ
V

)2

, (4.36)
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ηV =
V,φφ
V

, (4.37)

which are related to the Hubble slow-roll parameters by:

ε ≈ εV, η ≈ ηV − εV. (4.38)

A formalization of these slow roll parameters and a generalization to higher order

parameters is given in [105].

Perturbation theory

Until now, we assumed the metric to be fixed to the FLRW-metric (4.1) and

we assumed that φ = φ(t). Such a simplified description describes the classical

evolution of the scalar field. A next step to a more realistic model is to consider

perturbations around this classical background evolution:

φ(~x, t) = φbackground(t) + δφ(~x, t)

gµν(~x, t) = gbackground
µν (t) + δgµν(~x, t).

(4.39)

These perturbations can be quantized. A problem with considering perturbations

around a background metric and scalar field is that there is not a unique way to

split the metric and scalar field in a background part and a perturbation part as

in (4.39). Different ways of making this cut are related to each other by “gauge

transformations”. There are however, certain gauge invariant quantities, that can

be constructed with the ADM-formalism.

In [97] it is summarized how, in a particular gauge choice, the actions for the

comoving curvature perturbation R and the tensor perturbation hij can be derived.

The result for the comoving curvature perturbation is given by:

S(2) =
1

2

∫
d4xa3 φ̇

2

H2

(
Ṙ2 − a−2(∂iR)2

)
. (4.40)

The action for the tensor perturbation h looks very similar and is effectively the

action of two scalar degrees of freedom corresponding to the two polarizations of

gravitational waves.

The action (4.40) can be simplified by introducing Mukhanov variables:

v = zR z2 =
a2φ̇2

H2
= 2a2ε,

S(2) =
1

2

∫
dηd3x

(
(v′)2 + (∂iv)2 +

z′′

z
v2

)
,

(4.41)

where η is conformal time (4.12) and primes denote derivatives with respect to η.
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4.3. De Sitter spacetime

4.3 De Sitter spacetime

During inflation, the initial epoch of accelerated expansion, our universe has an ap-

proximate de Sitter geometry. In this section we will introduce de Sitter spacetime

and several coordinate patches on de Sitter spacetime. These coordinate patches

will be used extensively in later chapters.

4.3.1 Embedding

The (3+1)-dimensional de Sitter spacetime can be embedded in (4+1)-dimensional

Minkowski spacetime. The embedding equation is given by:

−X2
0 +

4∑
i=1

X2
i = L2

dS, (4.42)

ds2 = −dX2
0 +

4∑
i=1

dX2
i , (4.43)

where LdS is the de Sitter radius. The embedding equation (4.42) and the metric

(4.43) are both manifestly invariant under SO(1, 4) transformations. The pullback

of the Minkowski metric (4.43) on the hyperboloid (4.42) yields de Sitter spacetime.

De Sitter spacetime is also the maximally symmetric solution to Einsteins equa-

tions with positive cosmological constant. The Einstein Hilbert action with cos-

mological constant is given by:

S =
1

2

∫
d4x
√−g (R− Λ) . (4.44)

The Einstein equations that follow from extremizing the Einstein Hilbert action

with cosmological constant (4.44) are given by

Gµν = Rµν −
R

2
gµν = −Λ

2
gµν . (4.45)

In a 3 + 1 dimensional maximally symmetric spacetime, the Weyl tensor vanishes

and the Riemann tensor obbeys:

Rµνρσ =
R

12
(gµρgνσ − gµσgνρ) . (4.46)

From the Einstein equations (4.45) it follows that

R = 2Λ. (4.47)
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The curvature in terms of LdS is given by

R =
12

L2
dS

. (4.48)

Below we discuss some coordinate charts for the de Sitter spacetime.

4.3.2 Coordinate patches on de Sitter

In chapters (5) and (6) we will use different coordinate patches on de Sitter space-

time. Below we will briefly introduce these coordinate patches and their Penrose

diagrams.

Global coordinates

A set of global coordinates on de Sitter spacetime is defined by:

X0 = LdS sinh

(
t

LdS

)
,

4∑
i=1

X2
i = L2

dS cosh2

(
t

LdS

)
,

(4.49)

where the last line in the equation implicitly defines three angular coordinates

χ, φ, θ on the unit three-sphere. In these coordinates, the metric becomes:

ds2 = −dt2 + L2
dS cosh2 t

LdS

dΩ2
3. (4.50)

These coordinates are called global because they cover all of the de Sitter space-

time. This is an example of a closed universe; the constant time slices have the

geometry of a three-sphere.

A coordinate transformation shows that this metric is conformally R× S3:

η = 2 arctan(e
t

LdS ),

ds2 =
L2

dS

sin2 η

(
−dη2 + dΩ2

3

)
,

(4.51)

where η ∈ [0, π] and χ ∈ [0, π]. The Penrose diagram is given by the (η, χ)-diagram,

where every point represents an S2 (figure 4.3).

Flat slicing

The flat slicing is a coordinate chart for which the constant time slices are flat. This

coordinate chart does not cover the whole de Sitter spacetime, but a subsection
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Figure 4.3: Penrose diagram of de Sitter spacetime. For an observer at χ = 0, the comoving

Hubble radius is indicated in blue. The comoving particle horizon is indicated in

purple. Source: universeinproblems.com.

which is called the planar patch (see figure 4.4). In terms of the embedding

coordinates (4.43,4.42), a set of flat coordinates is given by:

X0 = LdS sinh

(
t

LdS

)
+
r2e

t
LdS

2LdS

X4 = LdS cosh

(
t

LdS

)
− r2e

t
LdS

2LdS

Xi = e
t

LdS xi, for i = 1, . . . , 3 .

(4.52)

In these coordinates, the metric is given by:

ds2 = −dt2 + e
2 t
LdS d~x2 = −dt2 + e2Htd~x2. (4.53)

Alternatively, we can use spherical coordinates for the constant time slices:

ds2 = −dt2 + e
2 t
LdS

(
dr2 + r2dΩ2

2

)
. (4.54)

Hyperbolic slicing

The hyperbolic patch is yet another coordinate patch that does not cover the

whole de Sitter spacetime (see figure 4.5). In fact, two hyperbolic patches can be
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Figure 4.4: Planar patch of de Sitter spacetime. Source: universeinproblems.com.

identified (see figure 5.3). A set of hyperbolic coordinates is defined by:

X0 = LdS sinh
(

t
LdS

)
cosh r (4.55)

X4 = LdS cosh
(

t
LdS

)
(4.56)

3∑
i=1

X2
i = L2

dS sinh2
(

t
LdS

)
sinh2 r, (4.57)

where the last line of the equation implicitly defines two angular coordinates. In

these coordinates the metric is given by:

ds2 = −dt2 + L2
dS sinh2

(
t

LdS

)[
dr2 + sinh2 r dΩ2

2

]
. (4.58)

In chapter (5) we will discuss the hyperbolic patches in more detail. We will also

“derive” the hyperbolic coordinate set in a different manner and we will discuss

a link between flat and hyperbolic coordinates. A hyperbolic coordinate set is

sometimes called an open slicing of de Sitter spacetime, because the spatial slices

are hyperbolic spaces.

Static coordinates

The final coordinate set we will introduce is the static coordinate set. In figure

(4.6) the region of de Sitter spacetime covered by these coordinates is indicated.

There is a timelike Killing vector in the static patch. A set of coordinates covering
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4.4. QFT in de Sitter spacetime

Figure 4.5: Hyperbolic patch of de Sitter. See also figure (5.3). Source: universeinproblems.com.

the static patch is given by:

X0 = LdS

√
1− r2

L2
dS

sinh

(
t

LdS

)

X4 = LdS

√
1− r2

LdS

cosh

(
t

LdS

)
3∑
i=1

X2
i = r2,

(4.59)

where the last line implicitly defines two angular coordinates. In these coordinates,

the metric is given by

ds2 = −
(

1− r2

L2
dS

)
dt2 +

dr2(
1− r2

L2
dS

) + r2dΩ2
d−1. (4.60)

The metric is singular as r → LdS, but this is merely a coordinate singularity; the

metric is smooth in lightcone coordinates. Note that ∂t is a timelike Killing vector.

It is not a global Killing vector of de Sitter spacetime; the static coordinate set

only covers part of de Sitter (see figure 4.6). The coordinate singularity at r = LdS

corresponds with the vanishing of the Killing vector and is hence a Killing horizon.

4.4 QFT in de Sitter spacetime

Quantum field theory in de Sitter spacetime, or curved spacetime in general, is

more complicated than quantum field theory in Minkowski spacetime. Quantum
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4. Introduction

Figure 4.6: Static de Sitter patch. Region I and region III can be covered by static coordinates.

Source: universeinproblems.com.

effects are relevant for the explanation of the spectrum of the CMB, so a good

understanding of quantum field theory in de Sitter spacetime is necessary. In this

section, we will present techniques of quantum field theory in curved spacetime,

that will be used in later chapters. The discussion is partially based on [106,107].

4.4.1 QFT in curved spacetime

Consider a globally hyperbolic Lorentzian manifoldM with metric g and let Σ be

a Cauchy surface with future directed normal vector ξµ. One can think of Σ as a

constant timeslice. Let n ∝ ξ be the future directed normal vector of Σ (n2 = −1)

and let hab = gab + nanb be the induced metric on Σ. The conjugate variable to

the scalar field φ is now defined as

Π =
√
hnµ∂µφ. (4.61)

Choose coordinates {~x} on Σ, such that we can impose canonical commutation

relations

[φ(x),Π(y)] = iδ(x, y), [φ(x), φ(y)] = 0, [Π(x),Π(y)] = 0, (4.62)

where the delta function is defined such that
∫

Σ
d3xδ(x, y)f(x) = f(y) for any

function f on Σ.

The scalar product or Klein Gordon product of two functions f, g is given by

〈f, g〉Σ = −i
∫

Σ

d3x
√
hnµf(x)

←→
∂ µg

∗(x) (4.63)
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4.4. QFT in de Sitter spacetime

If f and g satisfy the equation of motion, the Klein Gordon norm is conserved,

which means that it does not depend on the choice of Σ. This allows us to construct

a complete orthonormal set of solutions {φi, φ∗i } such that

〈φi, φj〉 = δij , 〈φ∗i , φ∗j 〉 = −δij , 〈φ∗i , φj〉 = 〈φi, φ∗j 〉 = 0. (4.64)

Note that when we have a continuous label for the mode functions, then the

Kronecker delta becomes a delta Dirac function. The field φ can be expanded

with respect to this basis and promoted to an operator

φ =
∑
i

(
âiφi + â†φ∗i

)
, (4.65)

where the creation and annihilation operators satisfy

[âi, â
†
j ] = δij , [âi, âj ], â†i , â

†
j . (4.66)

One can check that these commutation relations are guaranteed by the canonical

commutation relations (4.62) and the Klein Gordon normalization of the mode

functions (4.63,4.64).

The vacuum state can now be defined by:

âi|0〉 = 0 ∀i. (4.67)

Unfortunately, the decomposition (4.65) in modes is not unique. One can check

that a different set of modes {φ̃j , φ̃∗j} also constitutes an orthonormalised basis as

long as

φ̃i =
∑
j

(
Ajiφj +Bji φ

∗
j

)
, (4.68)

δij =
∑
k

(
Aki Ā

k
j −Bki B̄kj

)
, 0 =

∑
k

(
AkiB

k
j −Bki Akj

)
, (4.69)

or in matrix notation

AA† −BB† = I, ABT −BAT = 0, (4.70)

where the bar denotes complex conjugation.5 The Aji and Bji are called Bogoliubov

coefficients. As a consequence of this freedom to choose our orthonormal basis of

modes, we can also associate a set of creation and annihilation operators {ãj , ã†j}
to the modes φ̃ and define another vacuum state with respect to these operators.

Hence, there generally is not a unique vacuum state in curved spacetime.

5Invertability of such a rotation of mode functions requires also that A†A − BT B̄ = I and

A†B −BT Ā = 0, as shown in [108] for example.

113



4. Introduction

Even in Minkowski spacetime, one could take normalized linear combinations of

the positive and negative frequency mode functions e±iωkt and define an alternative

vacuum with the creation and annihilation operators associated to these new mode

functions. One way of selecting a unique vacuum is to demand that the mode

functions correspond to plane waves at early times. In Minkowski spacetime this

is equivalent to selecting the positive frequency mode functions. This choice also

guarantees that the vacuum is an eigenstate of the Hamiltonian and the other

conserved charges associated to the energy momentum tensor.

4.4.2 Wightman function

Generally, the vacuum state is not uniquely defined in curved spacetime. A way

to characterize a vacuum state is to consider the Wightman function, a construct

from axiomatic field theory. The Wightman function of a vacuum state |Ω〉is given

by:

W (x, y) = 〈Ω|φ(x)φ(y)|Ω〉. (4.71)

If the field φ can be expanded as (4.65) and the vacuum is defined as (4.67), the

Wightman can be written as:

W (x, y) =
∑
i

φi(x)φ∗i (y). (4.72)

A vacuum state defined by creation and annihilation operators ã, associated to a

different set of mode functions (4.68), will result in a different Wightman function.

A Bogoliubov transformation that is particularly relevant for this thesis, does not

mix modes with different quantum numbers (it is diagonal), but mixes a mode

function φk with its complex conjugate:

φ̃j = Aφk +Bφ∗k, |A|2 − |B|2 = 1. (4.73)

The relation between the Wightman function W for the vacuum state associated to

the mode functions {φk} and the Wightman function W̃ for the vacuum associated

to the mode functions {φ̃k} defined by (4.73) is given by:

W̃ (x, y) = 〈Ω̃|φ(X)φ(Y )|Ω̃〉
= |A|2

∑
i

φi(X)φ∗i (Y ) + |B|2
∑
i

φ∗(X)φ(Y )+

+AB∗
∑
i

φi(X)φi(Y ) +A∗B
∑
i

φ∗i (X)φ∗i (Y ).

(4.74)
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4.4.3 The Bunch-Davies state

In de Sitter spacetime, there is a special vacuum state which we will describe here.

First we will describe the set of de Sitter invariant vacua, then we will further select

one of them, the Bunch-Davies state.

α-vacua

The Wightman function for a vacuum state |Ω〉 is given by (4.71)

W (X,Y ) = 〈Ω|φ(X)φ(Y )|Ω〉. (4.75)

De Sitter spacetime is homogeneous, which means that different points are asso-

ciated to each other by isometries. Hence, the de Sitter invariant vacuum state

should yield a Wightman function which depends only on the de Sitter invariant

distance between two points:6

W (X,Y ) = W (Z(X,Y )). (4.76)

In embedding space (4.43,4.42), the de Sitter invariant distance is given by7

Z(X,Y ) =
1

L2
dS

XaY bηab. (4.77)

The Wightman function should solve the equation of motion in each of it coordi-

nate entries. In terms of Z (4.77), the Klein Gordon equation for a massive scalar

on (3 + 1)-dimensional de Sitter spacetime becomes:((
Z2 − 1

)
∂2
Z + 4Z∂Z +m2L2

dS

)
W (Z) = 0. (4.78)

This equation has two solutions and is solved by hyper-geometric functions. One

can take two solutions such that they are related by Z ↔ −Z and such that

one solution f(Z) is singular in Z = 1 and the other f(−Z) in Z = −1.8 Any

linear combination of these solutions would solve the equation of motion (4.78) as

well and can be associated to a vacuum state with its characterizing Wightman

function:

W (X,Y ) = af(Z) + bf(−Z). (4.79)

The choice b = 0 is special for the following reason. Euclidean de Sitter spacetime

is simply a sphere. On the sphere, there is a unique Greens function and a unique

6Sometimes, the symmetrized Wightman function is used in this argument, for example

see [109].
7The geodesic distance is given by d(X,Y ) = LdS arccosZ(X,Y ).
8The transformation Z ↔ −Z is called the antipodal transformation.
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vacuum. Analytic continuation to Lorentzian de Sitter yields the Wightman func-

tion with b = 0 [110, 111]. This choice is also special because the Wightman

function is not singular for Z = −1. It is called the Bunch-Davies state, or the

Euclidean vacuum, due to its relation to the vacuum state on Euclideanized de

Sitter (the sphere).

Associated to such a vacuum choice, there is a set of mode functions, {φk,BD}.
The vacuum states corresponding to different choices of a, b in 4.79 are associated

by a Bogoliubov transformation of the Bunch-Davies mode functions {φk,BD} of

the type (4.73). A convenient parametrization is given by9

φ̃k,α =
1√

1− eα+α∗
φk,BD +

eα√
1− eα+α∗

φ∗k,BD, (4.80)

and the associated vacua are called alpha or α-vacua, where Re{α} → −∞ corre-

sponds to the Bunch-Davies state.

Another frequently used parametrization of the α-vacua is given by the two real

parameters (α, β):

φ̃k,α = cosh(α)φk,BD + sinh(α)eiβφ∗k,BD. (4.81)

In [110] it is argued that β = 0 for states invariant under time reversal. The

Bunch-Davies state corresponds to α = 0. From different perspectives the non-

Bunch-Davies α-vacua seem to be non-physical: see for example [112,113].

The Euclidean vacuum Wightman function in terms of the de Sitter invariant

distance Z(X,Y ) is given by

W (X,Y ) ∝ 2F1[h, 2− h, 3

2
;

1 + Z

2
], (4.82)

where h is a solution of:

h(h− 2) +m2L2
dS = 0. (4.83)

For the massless scalar field it is not clear that there exists a de Sitter invariant

vacuum state. The Wightman function 4.79 becomes a constant as m → 0 and

f(Z) and f(−Z) are no longer independent solutions to (4.78). A second solution

to (4.78) can be found, but the result is qualitatively different from the massive

case. Strictly speaking, one could conclude that there is no de Sitter invariant

vacuum state for the massless scalar [110]. This issue is a consequence of the

shift symmetry φ → φ + c for the massless scalar field, which gives life to a zero

mode.10 Efforts have been made to construct a de Sitter invariant vacuum state

9See for example [112,113]
10Some authors object to this interpretation, for example see [110]
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4.4. QFT in de Sitter spacetime

for the massless scalar field nonetheless [114,115]. A full discussion of these issues

is outside the scope of this thesis. Below we will define the Bunch-Davies state for

the massless scalar field in a different way, but strictly speaking it is not de Sitter

invariant. We can think of the associated mode functions as being the small mass

limit of the mode functions for the massive case.

Positive frequency modes

In the previous paragraph we discussed the Bunch-Davies state, the de Sitter

invariant vacuum state that can be associated to the unique Euclidean vacuum

on the sphere. The Bunch-Davies state also appears as the natural vacuum of de

Sitter spacetime in a different context. In the flat slicing (4.52) the Bunch-Davies

mode functions can be associated to positive frequency or positive energy mode

functions in the far past.

Consider first the example of Minkowski spacetime with coordinates (t, ~x). Ex-

panding a general solution in terms of momentum modes ~p yields the Klein Gordon

equation (
∂2
t + p2 +m2

)
φ~p(t) = 0, (4.84)

which has general solution

φ~p(t) = αe−iω~pt + βe+iω~pt, ω~p =
√
p2 +m2. (4.85)

The solution with β = 0 is associated to plane waves with positive frequency ω~p.

Particles are associated to (wave-packets of-) plane waves and a natural choice of

mode functions and the associated vacuum in given by the choice β = 0.

In the flat slicing of de Sitter spacetime (4.52), using conformal time (4.12), we can

construct eigenfunctions of the spatial Laplacian, with eigenvalues ~p, the comoving

momentum. In order to select a preferred set of mode functions we demand the

following:

lim
η→−∞

φp(η) ∝ e−iηωp , (4.86)

where ωp = |p| for the massless scalar field. This selects a particular solution to the

Klein Gordon equation with comoving momentum |p|, which can be associated to

“positive frequency” excitations in the far past. It can be shown that this method,

applied to the planar patch, selects the Bunch-Davies state. In chapter (5), we

will also use this condition (4.86) to select a “natural vacuum” in the hyperbolic

patch.

117



4. Introduction

4.5 Inflationary power spectrum

In the introduction we explained how the cosmic microwave background (CMB)

resulted from the decoupling of photons, constituting the first visible radiation in

the universe. The CMB provides important observational data and a model of

the early universe should be consistent with the power spectrum of the cosmic

microwave background. Ideally, a model of inflation should explain features of

the observed spectrum. Recombination11 happened about 380.000 years after the

Big Bang, whereas inflation occurred about 10−34 seconds after the Big Bang.

This means that the CMB is heavily affected by post-inflationary physics, like

the baryon acoustic oscillations. In this thesis we focus on the inflationary epoch

and the effects of having different quantum states and different inflaton potentials.

The post-inflationary physics is outside the scope of this thesis.

In section (4.2) we described how the classical description of a single scalar field

model can explain the accelerated expansion of the primordial universe. Subse-

quently, we considered perturbations around the classical evolution, which lead

to the quadratic action (4.41). These microscopic fluctuations are transformed

into the seeds for the macroscopic structure of the universe at later times. A

fluctuation on a certain comoving sub-horizon scale (λ < (aH)−1) will eventually

exit the comoving Hubble radius (4.4) and becomes super-horizon (λ� (aH)−1).

The super-horizon modes are frozen out; points separated by comoving distances

∆x � (aH)−1 are no longer in causal contact. Only after inflation, when the

comoving Hubble radius increases again, these modes re-enter the horizon. Once

they are subject to causal physics, gravity causes regions of higher density to be-

come even denser. This process ultimately leads to the large scale structure of the

universe. A full discussion of this process is outside the scope of this thesis, but

details can be found in reviews like [97].

Here we will be concerned with the spectrum ∆2
s(p) of the comoving curvature

perturbation, which is defined by:

〈ΩBD|R2(η, ~x)|ΩBD〉 =

∫
d(ln p)∆2

s(p). (4.87)

We can also write the two-point function in terms of comoving momenta:

〈ΩBD|R2(η, ~x)|ΩBD〉 =

∫
d3p

(2π)3

∫
d3p′

(2π)3
〈ΩBD|R~p(η)R~p′(η)|ΩBD〉ei(~p+~p

′ )̇~x,

(4.88)

such that our task at hand is to calculate

〈Rp(x)Rp′(x)〉. (4.89)

11In fact, combination would be a more appropriate name.
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Roughly speaking, the classical evolution of the inflaton field gives rise to a cos-

mological constant. The (quantum-) fluctuations locally change the cosmological

constant, or local energy density, leaving their imprint on the structure of the

universe and the CMB by the mechanisms described above.

In order to determine the spectrum (4.87), we must quantize the perturbations

and determine the appropriate quantum state on which we should evaluate the

field operators. We will give a simplified description of this procedure, taking the

“de Sitter limit” εV → 0 (4.36), which is equivalent to calculating the two-point

function of a quantized scalar field on a fixed de Sitter geometry. This simplified

calculation is sufficient for our analysis in chapter (6). Note that we gave a more

conceptual treatment of quantum field theory in section (4.4), to which we will

refer several times.

First, expand v in terms of comoving momentum modes and promote the field to

an operator:

v(η, ~x) =

∫
d3p

(2π)3

(
â~pv~p(η)ei~p·~p + h.c.

)
, (4.90)

where h.c. stands for hermitian conjugate. The mode functions {v~p} must satisfy

the equation of motion

v′′~p +

(
p2 − z′′

z

)
v~p = 0. (4.91)

If the mode functions {v~p} are properly normalized (4.63), then the canonical

commutation relations for v̂ (4.62) and its conjugate variable imply the canonical

commutation relations for the â~k (4.66):

[â~p, â
†
~p′ ] = (2π)3δ3(~p− ~p′), [â~p, â~p′ ] = 0, [â†~p, â

†
~p′ ] = 0. (4.92)

In the de Sitter limit, εV → 0, we have z′′

z = a′′

a = 2
η2 . We will consider this limit,

in which the scalar density perturbation decouples and the action (4.41) becomes

the action of a massless scalar field on a fixed de Sitter background. The general

solution to the equation om motion is now given by

v~k(η) = αH
e−i|p|η√

2p

(
1− i

|p|η

)
+ βH

ei|p|η√
2p

(
1 +

i

|p|η

)
,

(4.93)

which is of the type (4.73). The normalization |α|2 − |β|2 = 1 (4.73) guarantees

that (4.92) is consistent with the canonical commutation relations for v̂ (4.62).
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To determine α, β for the “natural vacuum”, we consider the limit η → −∞ (4.86):

lim
η→−∞

αH
e−i|p|η√

2|p|

(
1− i

|p|η

)
+βH

ei|p|η√
2|p|

(
1 +

i

|p|η

)
∼ αH e( − i|p|η)√

2|p|
+ βH

e+i|p|η√
2|p|

,

(4.94)

and we recognize that the choice α = 1, β = 0 corresponds to positive frequency

modes in the far past. With this choice, we define the vacuum, the Bunch-Davies

state as in (4.67):

â~p|ΩBD〉 = 0 ∀~p. (4.95)

The two-point function is now given by

〈ΩBD|R~p(η)R~p′(η)|ΩBD〉 = (2π)3δ3(~p− ~p′) |v~p|
2

a2

= (2π)3δ3(~p− ~p′) H
2

2|p|3
(
1 + |p|2η2

)
,

(4.96)

or in position space

〈ΩBD|R2(η, ~x)|ΩBD〉 =

∫
d3p

(2π)3

∫
d3p′

(2π)3
〈ΩBD|R~p(η)R~p′(η)|ΩBD〉ei(~p+~p

′ )̇~x

=

∫
d3p

(2π)3

H2

2|p|3
(
1 + |p|2η2

)
=
H2

4π2

∫ ∞
0

d(ln p)
(
1 + p2η2

)
.

(4.97)

The spectrum ∆2
s(p) is given by the integrand of (4.97):

∆2
s(p) =

H2

4π2

(
1 + |p|2|η|2

)
. (4.98)

At late times, |pη| � 1 the spectrum of the scalar field is approximately

∆2
s(k) =

H2

4π2
, (4.99)

which is scale-invariant. However, we must not forget that we took the de Sitter

limit as we went from the true two-point function of the comoving curvature per-

turbation to the two-point function of the scalar field in de Sitter. If the equation

of motion is not changed to leading order, that is, if the approximation z′′

z ∼ a′′

a

is still good, then we can use (4.99) and modify it in two ways: first we must

multiply the result (4.99) by
(
a
z

)2
=
(
H
φ̇

)2

. Secondly, the comoving curvature
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perturbation remains constant outside the comoving horizon12, so we evaluate the

spectrum at horizon exit p = aH:

∆2
s(p) =

H2

4π2

H2

φ̇2

∣∣∣∣
p=aH

. (4.100)

This is the main result of this section. In the next section, we will use this result

and relate it to two parameters that characterize an inflationary model.

4.6 Parameters of inflation

In section (4.5) presented a simplified derivation of the spectrum of comoving

curvature perturbations. A similar derivation can be given for the tensor mode

perturbations (see for example [97]). The spectrum depends on the inflationary

potential (V (φ)) via the first order slow-roll parameter ε (4.36). In fact, we can

characterize an inflationary model by the two slow-roll parameters ε and η. Below

we will describe how these parameters are related to the spectrum and how they

are related to two other commonly used parameters that characterize a model of

inflation; the scalar spectral index ns and the tensor to scalar ratio r. We will also

discuss the possibility of having a non-zero running of these parameters.

From section (4.5) we have the main result (4.100). For the tensor fluctuations

one can derive the spectrum in similar fashion; here we will state the result:

∆2
t (p) =

2H2

π2

∣∣∣∣
p=aH

. (4.101)

The tensor to scalar ratio is defined as

r =
∆2
t

∆2
s

(4.102)

and using (4.100) and (4.101) we find:

r = 16ε|p=aH . (4.103)

The scalar spectral index ns is defined as:

ns = 1 +
d ln ∆2

s

d ln p
. (4.104)

12We did not discuss this here; it is outside the scope of this thesis. The fact that the

comoving curvature perturbation is constant outside the horizon follows from the treatment

of all perturbations and the construction of gauge invariant scalar perturbations in the ADM-

formalism.
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One can show that (using 4.100):

ns = 1 + 2η|p=aH − 4ε|p=aH . (4.105)

In chapter (6) we will be interested in different potentials V (φ), so it is more conve-

nient to write ns and r in terms of the potential slow-roll parameters (4.36,4.37):13

ns = 1 + 2ηV − 6εV,

= 16εV.
(4.106)

These expressions, together with the definitions (4.36,4.37) of the potential slow-

roll parameters form the basis for chapter (6).

The scalar spectral index ns and the tensor to scalar ratio r can be scale dependent.

The “running” αs is a measure of the scale dependence of ns:

αs =
dns
d ln k

. (4.107)

A large running would spoil the scale-invariance of slow-roll inflation models. In

single field inflation models, the running is an effect that appears at second order

in the slow-roll parameters. If a large running would be measured, then this would

cast doubt on at least some single field inflation models. In this thesis we do not

analyze the running of parameters of the models under consideration.

13From now on we will drop the subscript p = aH.
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Chapter 5

Vacua in hyperbolic de

Sitter

In chapter (4) we introduced inflation and single field inflation models. We dis-

cussed how quantum fluctuations form the seeds of the large scale structures in

the early universe and we derived an important characteristic: the scalar power

spectrum. In section (4.5) we used flat coordinates (4.52,4.53) and assumed that

the appropriate quantum state was given by the Bunch-Davies state (subsection

4.4.3). However, there are reasons to believe that our universe is actually best

described by a hyperbolic patch (4.55,4.58).

In this chapter we investigate how the spectrum would be affected by considering

the natural vacuum of the hyperbolic patch as the initial quantum state. We

will work in a simplified model: we will just consider the two-point function of a

scalar field on a fixed background and compare the Bunch-Davies state with the

hyperbolic vacuum, which is defined below. Although this is a simplification, the

effects of considering different initial states can be analyzed.

We attempt to determine whether we can distinguish the power spectra generated

by these two states. The study of the hyperbolic patch is mainly motivated by

the possibility that we live in a “bubble universe” (see section 5.1). A proper

description of a bubble universe would involve the physics of its nucleation, which

would certainly affect the quantum state. The Bunch-Davies State and the hyper-

bolic vacuum are qualitatively different from each other because from the point of

view of the bubble, the Bunch-Davies state is mixed, or entangled, whereas the

hyperbolic vacuum would be pure.
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5. Vacua in hyperbolic de Sitter

In section (5.1) we will motivate the study of the open universe and the hyper-

bolic de Sitter patch. In section (5.2) we will introduce a relationship between

the planar patch of de Sitter spacetime and the hyperbolic patch of de Sitter

spacetime. Subsequently, we will discuss the hyperbolic vacuum (section 5.3), the

Bunch-Davies state (section 5.4) and the reduced density matrix associated to the

hyperbolic patch in the Bunch-Davies state (section 5.5). In section (5.6) we cal-

culate the power spectra in the two different states and in section (5.7) we analyze

the difference of the energy-momentum tensor evaluated on these two vacua.

5.1 The universe as a hyperbolic patch of de Sit-

ter

In this section we motivate the study of the hyperbolic patch of de Sitter spacetime

and introduce coordinate charts. First we discuss the appearance of the open uni-

verse in the context of bubble universes. Subsequently, we discuss how we obtain

coordinates on the hyperbolic patches by doing an analytic continuation from the

Euclidean space. This discussion supplements the introduction of coordinates on

the hyperbolic patch in section (4.3).

5.1.1 The universe as a bubble

Cosmological observations point to a primordial universe that can be effectively

described by an approximate de Sitter phase. One scenario is that our universe

is actually contained in a bubble which is embedded in a larger space. Pioneering

work on such a scenario describes a single, minimally coupled scalar field with a

potential with two local minima, of which only one is the true global vacuum [116].

The nucleation of a bubble can be interpreted as the tunneling of a region of space

from the false vacuum to the true, global vacuum (see figure 5.1). Such a region

expands approximately with the speed of light.

The probability per unit time per unit volume of a tunneling event is of the form

Γ

V
∝ e−B~ (1 +O(~)) , (5.1)

where B ∝ SE and SE is the Euclidean action evaluated on the “bounce solution”,

the solution of the field φ that interpolates between the false vacuum and the true

vacuum. The transition from the false vacuum to the true vacuum is a quantum

tunneling effect, which can be seen by the appearance of ~ in (5.1).
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5.1. The universe as a hyperbolic patch of de Sitter

Figure 5.1: A potential with a true vacuum, associated to the field configuration φ = φ− and a

false vacuum associated to the field configuration φ = φ+. Source: [116].

The original analysis by Coleman and De Luccia focused on the scenario of a

Minkowski bubble in a de Sitter spacetime and that of an Anti de Sitter bubble in

a Minkowski spacetime [116]. Later, other scenarios of an “open universe” bubble

in de Sitter were studied [117]. In particular, scenarios in which the scalar field tun-

nels onto a slow-roll part of the potential were considered (see for example [118]),

in which a first phase of inflation (old-inflation) corresponds to the false vacuum

configuration of the scalar field and a second phase of inflation (new-inflation)

occurs after tunneling to a slow-roll regime of the potential (see figure 5.2). The

geometry of the bubble is usually of the FLRW-type (4.1), with hyperbolic spatial

slices.

The possibility that our universe emerged as a bubble in a larger space also leads

us to the idea that perhaps our universe is just one realization in a huge landscape

of bubble universes that are continuously being produced as a consequence of a

stochastically varying scalar field during a phase of eternal inflation [120,121].

The general prediction that the spatial sections in our universe should be hyper-

bolic on the largest scales is hard, if not impossible, to verify because the primordial

inflationary expansion typically redshifts the negative curvature scale far beyond

the observable universe [122].

Recently, a rather generic consequence of a bubble universe has been explored

[119, 123–125]. In the context of an inflationary landscape one would expect the

initial vacuum state for quantum fluctuations in a single inflationary bubble to be

entangled with the rest of the universe, leading to a mixed state inside the bubble.

Since the Cosmic Microwave Background temperature anisotropies (as well as the

large scale structure distribution) probe the statistics of these inflationary quantum
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5. Vacua in hyperbolic de Sitter

tunneling

slow-roll

V(φ)

φ
φFφN

Figure 5.2: Potential for single-field open inflation. This scenario entails tunneling from the false

vacuum field-configuration φF to a slow-roll regime of the potential with initial field

configuration φN . Source: [119].

fluctuations, one could imagine uncovering evidence in favor of a mixed initial

state that would support the idea that our universe originated from false vacuum

decay. This idea warrants a careful study of the actual (observational) potential

to constrain departures away from a standard pure initial state for inflationary

quantum fluctuations and how these departures relate to the global vacuum state

of eternal inflation.

In this chapter we present a first step, triggered by some recent work in this

direction [125], in clarifying the connection between the vacuum state of the false,

eternally inflating, vacuum and potential departures from the standard Bunch–

Davies vacuum state in a hyperbolic bubble. We do not consider any bubble

nucleation mechanism in particular, but instead consider a hyperbolic patch of de

Sitter as a “toy bubble”. In this setup, the difference between entangled and pure

states of a scalar field in the bubble can be analyzed relatively easily.

5.1.2 Coordinates in hyperbolic patches

In this section we describe how can obtain coordinates on the hyperbolic patches by

analytical continuation from Euclidean to Lorentzian signature in the embedding

space. We follow [126]. Note that we already discussed the hyperbolic patch in

section (4.3). Here we will show how we obtain two hyperbolic patches and a

“center patch” (see figure 5.3).

126



5.1. The universe as a hyperbolic patch of de Sitter

Euclidean de Sitter spacetime is a four-sphere S4 and is obtained from Lorentzian

de Sitter by the analytic continuation X0 → iX̃0, such that (4.43) and (4.42)

become:

ds2 = dX̃2
0 +

4∑
i=1

dX2
i ,

X̃2
0 +

4∑
i=1

X2
i = L2

dS,

(5.2)

which simply represents a four-sphere embedded in flat Euclidean spacetime.

We will use slightly unusual coordinates for the sphere and then consider the ana-

lytic continuation back to Lorentzian de Sitter. Consider the following coordinates:

X̃0 = LdS cos τ cos ρ

X4 = LdS sin τ,

X1 = LdS cos τ sin ρ cos θ

X2 = LdS cos τ sin ρ sin θ cosϕ

X3 = LdS cos τ sin ρ sin θ sinϕ,

(5.3)

with τ ∈ [−π2 , π2 ] and ρ ∈ [0, π]. In these coordinates the metric is given by

ds̃2 = L2
dS

(
dτ2 + cos2 τ(dρ2 + sin2 ρdΩ2)

)
. (5.4)

The analytic continuation back to Lorentzian de Sitter, X̃0 → iX0, can be done

in three different ways on the level of the intrinsic coordinates τ, ρ, θ and ϕ, which

corresponds to three different patches of de Sitter (see figure 5.3). These three

regions will be referred to as R, C, and L, and their coordinates are related to the

Euclidean coordinates by [126]:{
tR = i(τ − π/2), (tR ≥ 0)

rR = iρ, (rR ≥ 0){
tC = τ, (π/2 ≥ tC ≥ −π/2)

rC = i(ρ− π/2), (∞ > rC > −∞){
tL = i(−τ − π/2), (tL ≥ 0)

rL = iρ, (rL ≥ 0)
(5.5)

and their metrics are given by

ds2
R = L2

dS

(
−dt2R + sinh2 tR(dr2

R + sinh2 rRdΩ2)
)
, (5.6)

ds2
C = L2

dS

(
dt2C + cos2 tC(−dr2

C + cosh2 rCdΩ2)
)
, (5.7)

ds2
L = L2

dS

(
−dt2L + sinh2 tL(dr2

L + sinh2 rLdΩ2)
)
, (5.8)

where L−1
dS = H.
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5. Vacua in hyperbolic de Sitter

p

p

Figure 5.3: The left and right hyperbolic patches (5.8,5.6) and the center patch (5.7) on a

Penrose diagram of de Sitter spacetime. Source: [126]

5.2 A generalized hyperbolic embedding

In this section we will show a relation between the planar patch and the hyperbolic

patches. Already in section (4.3) we noted that the embedding equation of de Sitter

spacetime (4.42,4.43) is invariant under O(1, 4) transformations, corresponding to

the isometry group of dS4.1 In this section we will show that an infinite boost

in the (X0, X4)-plane, in combination with a coordinate transformation, relates

a hyperbolic patch to the planar patch. This map allows us to compare mode-

functions and the respective vacuum states on these different patches. Note that

we set LdS = 1 in this section for notational convenience. We start by restating

the definition of the planar and hyperbolic coordinate sets as discussed in section

(4.3). The planar coordinates presented in (4.52,4.53) are defined by:

X0 +X4 = etp

X0 −X4 =
(
r2
p e

2tp − 1
)
e−tp (5.9)

3∑
i=1

X2
i = r2

p e
2tp .

1From here we will only consider the continuous isometries of de Sitter, captured by SO(1, 4).
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5.2. A generalized hyperbolic embedding

Note that we presented these coordinates in a slightly different way, making explicit

that this patch covers only the part of the hyperboloid with X0 +X4 ≥ 0. We also

added a subscript p (for planar) to distinguish the planar coordinates from the

hyperbolic coordinates in what follows. In these coordinates the metric is given

by (see also 4.53):

ds2 = −dt2p + e2tp
[
dr2
p + r2

p dΩ2
2

]
(5.10)

with −∞ < tp < +∞ and r > 0. Since X0 +X4 ≥ 0 these coordinates only cover

the upper half diagonal part in the (X0, X4)-plane. Besides the obvious SO(3)

isometries, the boost symmetries of the embedding space are realized on the planar

metric as an isometry involving a particular combination of time translation and

spatial scaling2. Because inflation redshifts away any existing spatial curvature

present initially, this coordinate set should be an excellent approximation to derive

the late-time effects of a sustained phase of cosmological inflation. Nevertheless,

one could imagine a situation where our universe has originated from a tunneling

event out of an eternally inflating false vacuum3. The nucleated bubble would have

negatively curved spatial sections [116, 117], leading to the hyperbolic coordinate

set (see also 4.55,4.58):

X0 +X4 = cosh th + sinh th cosh rh

X0 −X4 = − cosh th + sinh th cosh rh (5.11)
3∑
i=1

X2
i = sinh2(th) sinh2(rh) .

In these coordinates, the de Sitter metric is given by:

ds2 = −dt2h + sinh th
2
[
dr2
h + sinh2 rh dΩ2

2

]
(5.12)

where 0 ≤ th < +∞ and rh > 0. The coordinate singularity at th = 0 can

be interpreted in the context of false vacuum decay as the creation of the open

inflationary bubble. Note that th = 0 corresponds to X0 = 0 (and X4 = 1,

Xi = 0 for i = 1, 2, 3): the bubble nucleation time from the point of view of the

embedding space. The spatial sections correspond to constant negative curvature

slices that exhibit an SO(1, 3) isometry. We will in fact be interested in a one-

parameter generalization of this hyperbolic coordinate embedding, obtained by

boosting in the X0–X4 plane of the 5–dimensional embedding space. Combined

with rotations these transformation allow one to move the ‘nucleation’ time of the

hyperbolic bubble to any specific point on the embedding surface. Just performing

2More precisely, it corresponds with the isometry t → t + γ and r → e−γr of the planar de

Sitter metric.
3Moreover, in the nineties models of open inflation were of particular interest, independent

of whether their origin was due to tunneling [118,127].
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5. Vacua in hyperbolic de Sitter

a Lorentz boost in the X0–X4 plane will change the nucleation time (and position

in X1), which yields the following generalized hyperbolic coordinate set

X0 +X4 = e−γ [cosh th + sinh th cosh rh]

X0 −X4 = eγ [− cosh th + sinh th cosh rh] (5.13)
3∑
i=1

X2
i = sinh2 th sinh2 rh

where γ is the boost parameter. This generalized hyperbolic solution of the em-

bedding equation will of course lead to the same induced metric, but the nucleation

time and position of the associated bubble in the embedding space have now shifted

to X0 = − sinh γ and X4 = cosh γ respectively. Moreover, since th ≥ 0 one finds

that X0 +X4 ≥ e−γ , restricting the hyperbolic section to the upper right diagonal

part in the (X0, X4)-plane, which overlaps with, but for any finite γ is smaller

than, the part of de Sitter covered by planar coordinates. This is depicted in

figure 5.4. One can verify that in the limit of infinite γ the planar and hyperbolic

coordinates cover the same region of de Sitter space, which is consistent with the

observation that in this limit the hyperbolic nucleation time in the embedding

space is shifted to X0 → −∞.

Figure 5.4: Conformal diagram of dS4 with the left- and right-hyperbolic patch as the upper-left

resp. upper-right triangles. The dashed line is the unboosted situation γ = 0. For

finite γ (solid line), we see that that nucleation time of the left bubble gets pushed

to earlier times, and vice versa for the right bubble. In the limit of γ → ∞, we

can see that the left bubble will cover the entire upper-left triangle of the conformal

diagram, coinciding with the planar patch.

The generalization of the hyperbolic coordinate set introduced above allows us to

explicitly relate the planar and hyperbolic sections of de Sitter space. Since the
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5.2. A generalized hyperbolic embedding

two coordinate sets cover the same region in the γ →∞ limit, there should exist

a one-to-one mapping between the coordinates in that limit. More precisely, we

would like to introduce a new set of hyperbolic coordinates that are to be kept

fixed in the limit γ → ∞, and that in the limit exactly reproduce the planar

coordinate embedding solution. Note that any (constant) shift or rescaling of the

hyperbolic embedding coordinates is still a solution of the embedding equation,

but will change the expression for the induced metric. Since we expect the range of

the hyperbolic time coordinate to be extended to −∞ and the negative curvature

to be scaled away, we redefine

t̃h ≡ th − γ ; r̃h ≡
1

2
rh e

γ . (5.14)

This leaves us with the following generalized hyperbolic solution to the embedding

equation

X0 +X4 = e−γ
[
cosh (t̃h + γ) + sinh (t̃h + γ) cosh (2r̃h e

−γ)
]

X0 −X4 = −eγ
[
cosh (t̃h + γ)− sinh (t̃h + γ) cosh (2r̃h e

−γ)
]

(5.15)

3∑
i=1

X2
i = sinh2 (t̃h + γ) sinh2 (2r̃h e

−γ)

where −γ ≤ t̃h < +∞. For finite γ the shift in hyperbolic time and the rescaling of

the hyperbolic radius (or equivalently the inverse rescaling of hyperbolic momen-

tum) does obviously not affect any hyperbolic patch observables, but it does allow

one to analyze the infinite boost limit in a simple and useful way. The induced

hyperbolic metric now reads

ds2 = −dt̃2h + sinh (t̃h + γ)
2
[
4e−2γ dr̃2

h + sinh (2r̃he
−γ)

2
dΩ2

2

]
(5.16)

γ→∞
= −dt̃2h + e2t̃h

[
dr̃2
h + r̃2

h dΩ2
2

]
+O(e−γ) .

In the second line we performed the limit γ →∞, keeping t̃h and r̃h fixed, showing

that (5.15) exactly reduces to the planar embedding solution (5.9). Note that all

the γ dependence in the induced metric is removed and one is left with precisely

the planar line-element (5.10) in terms of the coordinates t̃h and r̃h.

For any finite boost parameter γ global de Sitter space is covered by two (adja-

cent) hyperbolic sections, see figure 5.4. The other hyperbolic embedding can be

obtained by changing the sign of X4, resulting in the interchange of the expressions

for X0 + X4 and X0 − X4 in (5.11). Acting with the same boost on this second

hyperbolic embedding results in the opposite effect, moving the nucleation time to

X0 → +∞. The opposite minus infinity boost should instead reduce to another

planar section (with X0 +X4 and X0−X4 in (5.9) interchanged), suggesting that
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5. Vacua in hyperbolic de Sitter

the redefined coordinates in this case should read

t̃h ≡ th + γ ; r̃h ≡
1

2
rh e

−γ . (5.17)

Putting this together we obtain for the adjacent hyperbolic section the following

generalized embedding

X0 +X4 = −e−γ
[
cosh (t̃h − γ)− sinh (t̃h − γ) cosh (2r̃h e

γ)
]

X0 −X4 = eγ
[
cosh (t̃h − γ) + sinh (t̃h − γ) cosh (2r̃h e

γ)
]

(5.18)

2∑
i=1

X2
i = sinh2 (t̃h − γ) sinh2 (2r̃h e

γ)

where now γ ≤ t̃h < +∞. The induced hyperbolic metric in this case is obtained

by just replacing γ with −γ in (5.16). By construction the limit γ → ∞ should

instead collapse and in a sense remove the adjacent hyperbolic section. Clearly, in

the opposite γ → −∞ the roles of the two hyperbolic sections are reversed.

Having established this explicit relation between hyperbolic and planar coordi-

nates, we can now use it to better understand and connect their respective vacua,

which should be different for any finite value of γ. In particular, the planar Bunch–

Davies state is known to be equivalent to the unique and de Sitter invariant Eu-

clidean vacuum4. On the other hand, any pure hyperbolic vacuum state is defined

on a negatively curved spatial slice that is not a de Sitter Cauchy surface. This

means that the Bunch–Davies state in a single hyperbolic patch can only be de-

scribed by an appropriately defined mixed state; see figures 5.5 and 5.6. The

mixed state defined on one of the two (conjugate) hyperbolic sections reproducing

the Bunch–Davies state was first constructed in [126] and was subsequently used

in [128] to compute the reduced density matrix and the corresponding entangle-

ment entropy for a single hyperbolic section (see also section 5.5).

One application of the one-parameter family of hyperbolic de Sitter foliations is

that one can confirm that the natural choice for a hyperbolic vacuum reduces to

the planar Bunch–Davies state in the limit γ → ∞. Secondly, one could attempt

to generalize the entangled expression for wave-functions of the Bunch–Davies

state, with support on both the left and right hyperbolic section, and work out

its dependence on the embedding boost parameter. In the γ → ∞ limit this

should reduce to the pure planar Bunch–Davies state, implying that the reduced

density matrix carries some non-trivial γ dependence to make sure the associated

entanglement entropy vanishes in the strict γ →∞ limit (see also section 5.5).

4The invariance of the Bunch–Davies vacuum under de Sitter isometries strictly speaking

fails for massless fields, but since this subtlety does not affect our results we will ignore it from

now on.

132



5.2. A generalized hyperbolic embedding

|ΩBD>
L R

Figure 5.5: Conformal diagram of dS4 with

the left- and right-hyperbolic

patch shown. As neither patch

contains a Cauchy slice of the full

dS4, restricting the Bunch-Davies

vacuum to one of them will yield

a mixed state.

|ΩH>

Figure 5.6: An observer confined to live in

the left-hyperbolic patch (a bub-

ble universe) can define his own

pure hyperbolic vacuum. This

state will differ significantly from

the mixed state resulting from a

restriction of the Bunch-Davies

state to this bubble.

To summarize, we established that the infinite boost limit of a hyperbolic de

Sitter patch (and as a consequence also its corresponding vacuum state) reduces

to the planar de Sitter patch (and the Bunch–Davies vacuum). This appears to

be similar to an observation made in [129] where the static vacuum, understood

as the empty state for a corresponding free-falling observer, was also argued to

reduce to the Bunch–Davies state in the infinite boost limit. Note that to each

hyperbolic patch one can associate a free-falling observer in one of the two center

regions in between the hyperbolic patches that never intersects either one of them.

These time-like curves are indeed connected to each other by the same embedding

space boosts [130]. To complete the argument one needs to confirm that the static

vacuum state associated to this free-falling observer is connected to the hyperbolic

vacuum state. Note that (for γ = 0) the center region in between the hyperbolic

patches is usually covered by coordinates that are obtained from the hyperbolic

coordinates as follows th = i(tC − π
2 ) and rh = rC + iπ2 , resulting in the following

center region metric

ds2 = dt2C + cos tC
2
[
−dr2

C + cosh rC
2dΩ2

]
, (5.19)

where rC is now a time-like coordinate. Each of the two center regions clearly

identifies a causal diamond belonging to the free-falling observer of interest (see
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5. Vacua in hyperbolic de Sitter

figures 5.3 and 4.6).

5.3 The hyperbolic vacuum

After having established a limit to obtain the planar embedding and coordinates,

let us now remind the reader of the standard positive frequency modes on a single

hyperbolic patch [126], as if it were the entire universe (see figure 5.6). The scalar

wave equation for the hyperbolic patch of de Sitter (5.12) reads[
1

sinh3 t
∂t sinh3 t∂t −

1

sinh2 t
∇2
H3 +m2L2

dS

]
φ = 0 (5.20)

where we defined the Laplacian on the three-hyperboloid

∇2
H3 =

1

sinh2 r
∂r(sinh2 r∂r) +

1

sinh2 r
∇2
S2 . (5.21)

A natural set of solutions to the hyperbolic equations of motion (5.20) is given by

1

sinh(t)
P ip
ν− 1

2

(cosh(t))Yplm(r,Ω) (5.22)

where it is customary to define ν =
√

9
4 − m2

H2 . The quantum numbers l,m label

the usual SO(3) irreps, and together with the continuous quantum number p

it completely specifies the hyperbolic momentum. Furthermore, P ip
ν− 1

2

are the

associated Legendre functions of the second kind and the Yplm are the orthonormal

eigenfunctions of the hyperbolic Laplacian (5.21)

∇2
H3Yplm(r,Ω) = −(1 + p2)Yplm(r,Ω). (5.23)

For ν > 1
2 , there is in fact a supplementary set of solutions with p = i(ν− 1

2 ) [126].

These so-called “super-curvature modes” will not be of interest for the purposes

that are considered here, where our main focus will be on potential signatures in

the large (“sub-curvature) momentum limit. We refer to [131] for an interesting

account on the role and interpretation of these super-curvature modes.

Switching to conformal time η we can write the metric of the hyperbolic slice as

ds2 = L2
dS sinh2(t(η))

(
−dη2 + dr2 + sinh2(r)dΩ2

2

)
, (5.24)

where η = ln(tanh( t2 )), or equivalently cosh t = − 1
tanh η and −∞ < η < 0. In

terms of the conformal time η we find that in the far past η → −∞ and in the

limit of large momenta p� 1 one obtains

P ip1

(
− 1

tanh η

)
∝ e−ipη

(
1− i

p tanh η

)
→ e−ipη, (5.25)
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5.4. The Bunch-Davies vacuum

so we can identify these mode functions with the “natural hyperbolic vacuum”:

they define a state that is empty in the far past for large momenta (see also

subsection 4.4.3). As expected, in the limit γ → ∞ that we introduced in the

previous section (5.17) the mode functions reduce to the standard Bunch–Davies

mode functions in flat slicing, explicitly connecting the hyperbolic and planar

patch vacua in this limit

lim
γ→∞

P ip1 (cosh(t̃+ γ)) ∝ e−ip̃η̃
(

1− i

p̃η̃

)
. (5.26)

For all the details we refer the reader to the appendix 5.A.3, but it should be clear

that the tildes on the coordinates in the above equation relate to the redefined

hyperbolic coordinates that are kept fixed in the infinite boost limit. The mode

functions (5.22) must of course be properly normalized, enforcing [b̂plm, b̂
†
plm] =

δll′δmm′δ(p − p′), implying the following Klein-Gordon inner product (see also

section 4.4)

〈φplm, φplm〉KG = δll′δmm′δ(p− p′) (5.27)

giving (see appendix 5.A.2)

N2
Pp ≡ 〈P ip, P ip〉KG

=
1

H2

2 sinh(πp)

π
.

(5.28)

With the help of (5.28) we can now express the field operator in a single hyperbolic

patch as (keeping in mind that we are ignoring super-curvature modes)

φ(t, r,Ω) =

∫ ∞
0

dp

∞∑
l=0

l∑
m=−l

1

NPp

1

sinh(t)

(
b̂plmP

ip

ν− 1
2

(cosh(t))Yplm(r,Ω) + h.c.
)

(5.29)

defining the natural hyperbolic vacuum state |ΩH〉 as

b̂plm|ΩH〉 = 0 ∀p, l,m. (5.30)

This hyperbolic vacuum state can be understood as a natural choice in an isolated

(stand-alone) open inflationary universe, as described in subsection (4.4.3), as it

is empty in the far past and reduces to the planar Bunch–Davies vacuum state in

the infinite boost limit.

5.4 The Bunch-Davies vacuum

In subsection (4.4.3) we described the Bunch-Davies state. It is the de Sitter

invariant vacuum that can be associated to the unique Euclidean vacuum. In
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5. Vacua in hyperbolic de Sitter

subsection (4.4.2) we described how the Wightman function (4.71) characterizes

a vacuum state and how it can be expressed in terms of a sum of modes (4.72).

In [126] the set of hyperbolic mode functions that correspond to the Bunch-Davies

vacuum are identified by explicitly checking whether they reproduce the Bunch-

Davies Wightman function (4.82). In this section we will review the results of [126].

More details can be found in those papers and in appendix 5.A.

The most important observation is that mode functions of one of the hyperbolic

patches (5.22) do not correspond to regular mode functions on the full (Euclidean)

de Sitter space. In [126] the hyperbolic mode functions are analytically continued

to the other hyperbolic patch, allowing them to construct a set of regular mode

functions that can cover all of de Sitter space as follows

χ(R)
p =

 P ip
ν− 1

2

(z) for z ∈ R
i sin(π(ν− 1

2 ))

sinh(pπ) P ip
ν− 1

2

(z) +
i sin(π(ip+ν− 1

2 ))e

sinh(πp)

Γ[ν+ 1
2 +ip]

Γ[ν+ 1
2−ip]

P−ip
ν− 1

2

(z) for z ∈ L
(5.31)

These mode functions do not yet describe the Euclidean or Bunch–Davies vacuum,

which can for instance be concluded by the fact that they are not (anti-)symmetric

under the transformation R↔ L. It turns out that the linear combinations χR±χL

correspond to the proper mode functions associated with the Euclidean or Bunch–

Davies vacuum, as was proved by computing the Wightman function [126]. The

(still to be normalized) mode functions are linear combinations of the associated

Legendre functions

χp,σ =

{
ασp,RP

ip

ν− 1
2

(z) + βσp,RP
−ip
ν− 1

2

(z) for x ∈ R
ασp,LP

ip

ν− 1
2

(z) + βσp,LP
−ip
ν− 1

2

(z) for x ∈ L (5.32)

where σ = ±15 and z = cosh(t); the expressions for the α’s and β’s are given in

(5.71). We stress that the associated Legendre functions P in (5.32) do not have to

be analytically continued any further6. The full field expansion, with creation and

annihilation operators âσplm satisfying [âσplm, â
†
σ′p′l′m′ ] = δσσ′δll′δmm′δ(p− p′), is

given by:

φ(t, r,Ω) =

∫
dp
∑
σ=±1

∑
l,m

1

Nχpσ
(âσplmχp,σ(z)Yplm(r,Ω) + h.c.) (5.33)

where Nχpσ is the Klein–Gordon norm consistent with the commutation relations7.

5σ = ±1 is related to the combination χ
(L)
P ± χ(R)

P .
6They are constituents of χL and χR, which are already regular everywhere. This is different

from [125].
7Strictly speaking the expression (5.33) is incomplete, since we should also include the “zero

mode”. For our purposes this will however not affect the results.
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5.4. The Bunch-Davies vacuum

In appendix 5.A.2 we show that the normalization Nχpσ is given by

N2
χpσ ≡ 〈χp,σYplm, χp,σYplm〉KG

=
∑
q=L,R

(
ασp,qᾱ

σ
p,q − βσp,qβ̄σp,q

)
N2
Pp

(5.34)

where ᾱ, β̄ denote the complex conjugates of α, β. We conclude that the Bunch–

Davies vacuum state, is defined as8

âσplm|ΩBD〉 = 0 ∀σ, p, l,m. (5.35)

Now let us describe the relation between the creation and annihilation operators

of the modes (5.32) and the creation and annihilation operators of hyperbolic

modes (5.22). Both field expansions (5.33) and (5.29) are linear combinations of

associated Legendre functions. We can find the relation between the âσplm and

the b̂qplm (q = L,R) by comparing the coefficients

b̂qplm =
∑
σ=±1

NPp

Nχp,σ

(
ασp,qâσplm + β̄σp,qâ

†
σpl−m

)
. (5.36)

Given (5.34,5.36), they enforce[
âσplm, â

†
σ′p′l′m′

]
= δ(p− p′)δσσ′δmm′δll′

[âσplm, âσ′p′l′m′ ] = 0

⇔
[
b̂qplm, b̂

†
q′p′l′m′

]
= δ(p− p′)δmm′δll′δqq′[

b̂qplm, b̂q′p′l′m′
]

= 0

.

(5.37)

For more details we refer to [126] and the appendices. The above relationship

confirms that the normalizations (5.28) and (5.34) are consistent and in particular

that the right normalization for the hyperbolic mode functions is given by (5.28).

This will be of importance when comparing the predictions for the power–spectrum

of the two different states under consideration: the pure hyperbolic vacuum and

the Bunch–Davies state (as we will do in section 5.6). The latter is a mixed

state from the point of view of a single hyperbolic patch, due to the entanglement

between the two hyperbolic patches in the Bunch–Davies vacuum.

Let us here remind the reader that we would like to compare the predictions for

the expectation values of (scalar field) quantum fluctuations in the two different

8As before we ignore the super-curvature modes.
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5. Vacua in hyperbolic de Sitter

states that were introduced above. A priori different initial states give different

predictions for the cosmic microwave background temperature anisotropies and

the large scale structure distribution. We should stress that we are technically not

considering an actual bubble nucleation event, where more intricate and model-

dependent bubble wall physics could lead to additional effects [132, 133], see also

[134]. Instead, we will work under the assumption that the two states that were

introduced capture an essential difference that is generic: the entangled nature of

the Bunch–Davies vacuum implies a mixed initial state, whereas the hyperbolic

vacuum corresponds to a pure state on a single hyperbolic section.

We should add that one might anticipate the differences between the two states to

only become visible at small hyperbolic momentum p . 1, i.e. scales comparable

to the hyperbolic curvature. However, even small curvature suppressed changes

in the initial state might be enhanced in the (nonlinear) bi–spectrum, as has been

pointed out and analyzed in [135, 136] and for a certain generic type of mixed

state in [123]. This motivates the computation of the bi–spectrum. In [1], we do

consider the bi–spectrum, but the calculation of the bi-spectrum is not part of

this thesis.

5.5 Pure and entangled states

In sections (5.3) and (5.4) we discussed the hyperbolic vacuum and the Bunch-

Davies state respectively, and the mode functions associated with these states.

From the point of view of a single hyperbolic patch, the Bunch-Davies state is

mixed, entangled state. In this section we will derive the reduced density matrix

for a hyperbolic patch in the Bunch-Davies state. This will be a summary of [128].

For a detailed introduction of entanglement entropy, see section (1.3) of Part I of

the thesis. Here we will repeat the basics. If a quantum system can be divided

into two parts, A and B, such that the Hilbert space factorizes as

H = HA ⊗HB , (5.38)

then we can define a reduced density matrix. If the density matrix ρ describes the

full system A ∪B, then the reduced density matrix ρA of A is defined as:

ρA = TrHB{ρ}, (5.39)

where the trace is taken over the Hilbert space associated to subsystem B. The

expectation values of operators that have support on A and are trivial on B can

be calculated with ρA. The entanglement entropy, a measure of entanglement, is

given by:

SA = −TrHA{ρA log ρA}. (5.40)
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5.5. Pure and entangled states

For our purposes, (spacelike Cauchy surfaces in-) the left (L) and right (R) hyper-

bolic patches serve as our “subsystems”. If the state of the “full system” is the

Bunch-Davies state, then the density matrix is given by:

ρ = |ΩBD〉〈ΩBD|. (5.41)

In order to determine the entanglement entropy, we must find a suitable basis of

states to trace over. The hyperbolic vacuum (5.30) and its excitations constitute

good bases for the left and right hyperbolic patches. Relation (5.36) allows us to

write the state (5.41) with respect to these bases, which we will illustrate below.

Here we will only consider the limited case of the massless scalar field, for which

the analysis simplifies considerably. For a description of the entanglement entropy

in the case of a massive scalar field, we direct the reader to [128]. Also note that

we discard the super-curvature modes in this discussion, because there is no clear

way to decompose their associated excitations as in (5.38).9 The super-curvature

mode corresponds to a particular imaginary value p = iν′ of the comoving momen-

tum. The density matrix should respect the remaining SO(1, 3) symmetry of the

hyperbolic patches, so it is diagonal in p and the super-curvature mode will not

be entangled with sub-curvature modes. Also note that the set of super-curvature

modes, labeled by p = iν′ and l,m, has measure zero, compared to the continuous

part of the spectrum with real valued p.

A natural basis to trace over in the left and right hyperbolic patches, are the

“number states”

{|nL〉} with |nL〉 =

(
b̂†L

)n
√
n!
|ΩH,L〉,

{|nR〉} with |nR〉 =

(
b̂†R

)n
√
n!
|ΩH,R〉,

(5.42)

where the subscripts p, l,m are suppressed for simplicity. The full Hilbert space

is the tensor product of these Fock spaces for the left and right hyperbolic patch

(5.38). Before we can can trace out degrees of freedom, we need to know (5.41) in

terms of these bases.

In [128] an ansatz is made for the Bunch-Davies state |ΩBD〉 as an excitation of

the left- and right hyperbolic vacua:

|ΩBD〉 ∝ e
1
2m

ij b̂†i b̂
†
j |ΩH,L〉 ⊗ |ΩH,R〉,

mij b̂ib̂j = mLL
(
b̂†L

)2

+mRR
(
b̂†R

)2

+ 2mLRb̂†L ⊗ b̂†R.
(5.43)

9In the context of bubble nucleation, it is argued that at least a subset of super-curvature

modes correspond to pure gauge degrees of freedom [137,138]. Here we consider a scalar field on

a fixed background, so such an argument does not apply to our toy model of a bubble.
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5. Vacua in hyperbolic de Sitter

The coefficients {mij} can be determined by demanding that the state is anni-

hilated by the Bunch-Davies annihilation operators (5.35). We can use relation

(5.36) between the Bunch-Davies creation and annihilation operators {â†±, â±} and

the hyperbolic creation and annihilation operators {b̂†L/R, b̂L,R}. In fact, this rela-

tion gives b̂L/R in terms of the {â†±, â±}. The relation (5.36) needs to be inverted,

which is equivalent to inverting a four by four matrix. This problem has a (linear-)

solution,

â± = â±
(
b̂†L, b̂

†
R, b̂L, b̂R

)
, (5.44)

for which an explicit expression can be found in [128]. The general idea is that

the coefficients {mij} must solve the following equations:

0 = â±|ΩBD〉

= â±
(
b̂†L, b̂

†
R, b̂L, b̂R

)
|ΩBD〉

= â±
(
b̂†L, b̂

†
R, b̂L, b̂R

)
e

1
2m

ij b̂†i b̂
†
j |ΩH,L〉 ⊗ |ΩH,R〉.

(5.45)

For the massless case, the matrix {mij} simplifies to a diagonal matrix and Bunch-

Davies state can be expressed as:

|ΩBD〉 ∝ eγb̂
†
L⊗b̂

†
R |ΩH,L〉 ⊗ |ΩH,R〉

=
∑
n

γn

n!

(
b̂†L

)n
⊗
(
b̂†R

)n
|ΩH,L〉 ⊗ |ΩH,R〉

=
∑
n

γn|nL〉 ⊗ |nR〉,

(5.46)

where γ depends on the comoving momentum p and is given by:

γp = ie−πp. (5.47)

The reduced density matrix for the left hyperbolic patch can be found by tracing

over the degrees of freedom in the right hyperbolic patch (5.39):

ρL ≡ TrHR{ρ}
=
∑
nR

〈nR|ρ|nR〉

∝
∑
nR

〈nR|
[
eγb̂
†
L⊗b̂

†
R |ΩH,L〉 ⊗ |ΩH,R〉〈ΩH,L| ⊗ 〈ΩH,R|eγ

∗b̂L⊗b̂R
]
|nR〉

(5.48)

Now we use the (5.46):

ρL ∝
∑
m

∑
l

∑
nR

〈nR|γm|mL ⊗mR〉〈lL ⊗ lR|(γ∗)l|nR〉

=
∑
m

|γ|2m|mL〉〈mL|,
(5.49)
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5.6. Correlators in hyperbolic de Sitter space

where we remind the reader that we suppressed the label p (and the labels l,m)

in the above discussion. The full reduced density matrix ρL is diagonal in p, l,m.

It is given by the tensor product:

ρL ∝ ⊗plm

∑
nplm

|γ|2nplm |nL,plm〉〈nL,plm|

 . (5.50)

Alternatively, the density matrix with labels (p, l,m) (5.49) can also be written

as:

ρL,plm =
e2 ln |γp|2b̂†L,plmb̂L,plm

TrρL,plm

= (1− e−2πp)e−2πpb̂†L,plmb̂L,plm .

(5.51)

This density matrix looks “thermal” in comoving momentum space, with temper-

ature H
2π or (2πLdS)−1, but p is not the energy associated to a timelike Killing

vector.10 A pure state has a density matrix with eigenvalue spectrum {1, 0, . . . }.
Clearly, the density matrix (5.49,5.51) is not pure, it represents a mixed or entan-

gled state: from the point of one hyperbolic patch, the Bunch-Davies state is an

entangled state.

In [128], the entanglement entropy of one hyperbolic patch of de Sitter is calculated,

given the Bunch-Davies state. The entanglement is divergent, which is a common

feature of entanglement entropy in quantum field theory, as described in section

(1.3) of part I. The leading divergence is usually proportional to the entanglement

surface, a sphere in this case.

In section (5.6) we will use the density matrix to calculate the scalar field spectrum.

In appendix (5.D) we construct the “inverse” of the density matrix; that is, we

compute the components of |ΩL ⊗ΩR〉〈ΩL ⊗ΩR| in the basis of excitations of the

Bunch-Davies state:

|ΩH,L〉 ⊗ |ΩH,R〉 ∝ e−|γp| â
†
+⊗ â†− |ΩBD〉. (5.52)

5.6 Correlators in hyperbolic de Sitter space

Making use of the previously established relations between the de Sitter invariant

Bunch–Davies vacuum and the hyperbolic vacuum state, we will compute both the

Bunch–Davies and the hyperbolic vacuum power–spectra of scalar field quantum

fluctuations11. The Bunch–Davies result can also be calculated using a reduced

10For the massless scalar field, p is associated to a conformal Killing vector.
11See [139] for related work on the response of Unruh detectors.
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5. Vacua in hyperbolic de Sitter

density matrix formalism in the hyperbolic patch. Let us from the outset empha-

size that within our basic de Sitter set-up, even though the Bunch–Davies state is

mixed from the hyperbolic patch perspective, all hyperbolic Bunch–Davies corre-

lators should match the (hyperbolic coordinate transformed) planar Bunch–Davies

correlators. As a consequence one can rule out large deviations of Bunch–Davies

hyperbolic correlators at late time and large momenta (when the hyperbolic co-

ordinates reduce to planar coordinates) as compared to the planar Bunch–Davies

correlators. That leaves the (pure) hyperbolic vacuum as the potentially more

interesting state to consider, as far as enhanced initial state effects compared to

the planar Bunch–Davies state.

Let us start by pointing out that the field operator φp evaluated on points in the

left hyperbolic patch is trivial in the right hyperbolic patch

φp(x) = φL,p(x)⊗ IR for x ∈ L. (5.53)

As a consequence, de Sitter n-point functions of fields φp in the Bunch–Davies

state, evaluated on points in the left hyperbolic patch, can be calculated ei-

ther using the full global description or by using a reduced density matrix ρ̂L =

TrHR {|ΩBD〉〈ΩΩBD |}, and their results should agree. This is shown explicitly in

appendix 5.B.2. By defining the b̂qplm as in (5.36), we can write the field operator

for arbitrary values of p, l,m as

φplm(x) = b̂Lplm
1

NPp
P ip
ν− 1

2 ,L
Yplm + h.c.

+ b̂Rplm
1

NPp
P ip
ν− 1

2 ,R
Yplm + h.c.,

(5.54)

where

P ip
ν− 1

2 ,L
=

{
P ip
ν− 1

2

(t) for t ∈ L
0 for t ∈ R

(5.55)

and vice versa for P ip
ν− 1

2 ,R
. Although these functions are not mode functions on a

full Cauchy slice covering the de Sitter space, we are allowed to express the field

in terms of them. Note that the b̂L and b̂R operators mutually commute. To make

explicit that the field operator decomposes in the left and right hyperbolic patches,

we write

φplm(x) =

(
b̂Lplm

1

NPp
P ip
ν− 1

2 ,L
Yplm + h.c.

)
⊗ IR

+ IL ⊗
(
b̂Rplm

1

NPp
P ip
ν− 1

2 ,R
Yplm + h.c.

)
.

(5.56)

Note that the expansion of a scalar field in Minkowski spacetime in terms of left

and right Rindler wedge modes is similar (see for instance [140]). The restriction

of the operator (5.56) to points in the left hyperbolic patch is by definition equal
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5.6. Correlators in hyperbolic de Sitter space

to the full operator evaluated on points in the left hyperbolic patch. Note that if

the field operator evaluated on points in the left hyperbolic patch would also have

support on the right hyperbolic patch, it would not make sense to do a density

matrix calculation as done above.

Clearly therefore Bunch–Davies scalar field correlators should be the same, inde-

pendent of whether one uses hyperbolic or planar coordinates. Of course, since the

de Sitter invariant length is expressed differently in terms of planar or hyperbolic

coordinates, the functional dependence of the equal (hyperbolic) time correlators

will look different. Since the difference between planar and hyperbolic coordi-

nates vanishes in the late time and large momentum limit, the planar and the

hyperbolic Bunch–Davies correlators match in that limit and small modifications

are suppressed in the hyperbolic curvature scale. We conclude that hyperbolic

Bunch–Davies correlators can be computed either using a global de Sitter descrip-

tion (for which the Bunch–Davies state is a pure initial state) or by considering

a single de Sitter hyperbolic patch (for which the Bunch–Davies state equals a

mixed initial state).

After these important preliminaries let us now proceed by computing the power

spectrum of a massless scalar field in a hyperbolic coordinate patch in the hy-

perbolic vacuum and Bunch–Davies initial state respectively, as a function of the

hyperbolic momentum p.

5.6.1 Power–spectrum results

For most of the details we refer to the appendix 5.B. Here we will just quote the

main results. For the two point function in the hyperbolic vacuum state we find

〈ΩH|φpφ′p|ΩH〉 = δ(p− p′) H2

sinh2(t)

p

4π2

cosh2(t) + p2

p2 + 1
(5.57)

where we have used the completeness relation of the eigenfunctions of the hy-

perbolic Laplacian12 and the commutation relations. At late times t → ∞ this

approaches

〈ΩH|φpφ′p|ΩH〉 →
H2p

4π2(p2 + 1)
(5.58)

and the appropriately normalized power spectrum (at late times) equals

∆2
φ,H(p) =

H2

4π2

p2

p2 + 1
. (5.59)

12
∑
lm

∣∣Yplm∣∣2 = p2

2π2 .
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The same (hyperbolic coordinate patch) two point function in the Bunch–Davies

vacuum is instead found to be equal to

〈ΩBD|φpφp′ |ΩBD〉 = δ(p− p′) H2

sinh2(t)

p

4π2

cosh2(t) + p2

p2 + 1
coth(πp). (5.60)

This result can either be obtained from a direct calculation using the global Bunch–

Davies vacuum construction and restricting to one of the hyperbolic coordinate

patches [126], or from a (mixed) density matrix calculation in a single hyperbolic

coordinate patch, using the explicit expression for the density matrix as reported

in [128], as we confirm in appendix 5.B.2. As alluded to earlier, the reason for this

expression to not exactly reproduce the scale-invariant planar coordinate result

for the scalar field power spectrum in the Bunch–Davies vacuum is that different

coordinates are used. As the hyperbolic and planar coordinates are the same at

late times and for small distances, the late-time power spectra at large momentum

should be the same as well. At late times t→∞ we find

〈ΩBD|φpφp′ |ΩBD〉 →
H2p

4π2(p2 + 1)
coth(πp). (5.61)

Correspondingly, the power spectrum (at late times) is given by

∆2
φ,BD(p) =

H2

4π2

p2

p2 + 1
coth(πp). (5.62)

Looking at these power spectra we indeed find that for p � 1, when cothπp ≈
1 and p2 + 1 ≈ p2, the hyperbolic vacuum as well as the hyperbolic Bunch–

Davies result matches the standard scale invariant planar Bunch–Davies result
H2

4π2 . They only start to differ from each other and the standard planar Bunch–

Davies expression for sufficiently small momenta p . 1 (see figure (5.7)). Note

that although the corresponding wavelengths are expected to lie far outside our

observable window, given the fact that they correspond to length scales longer

or comparable to the hyperbolic curvature scale, for both hyperbolic states the

power is suppressed as compared to the standard planar Bunch–Davies result. As

these departures from the standard planar result become evident, one should keep

in mind that the difference found in the hyperbolic Bunch–Davies result can be

attributed to a coordinate change, whereas (part of) the change in the hyperbolic

vacuum power spectrum is related to an initial state modification.

We conclude that, independent of the particular initial state under consideration,

any power–spectrum signatures of an open inflationary universe are confined to

the curvature scale, which has to be several orders of magnitude larger than the

largest observable length scale in the universe. Although the initial hyperbolic

state is mixed when assuming a (globally defined) planar Bunch–Davies state, the
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Figure 5.7: The power spectra (logarithmic scale) for the hyperbolic vacuum (blue) and the

Bunch–Davies vacuum (red), as function of the hyperbolic momentum p with H = 1.

The dashed line indicates the scale–invariant planar Bunch–Davies result H2

4π2 .

power–spectrum results in this admittedly basic set-up in which all bubble wall

physics is ignored, do not show large deviations, as should be expected. In fact, this

statement is true for general hyperbolic n-point correlators in the Bunch–Davies

vacuum. Potentially enhanced bi–spectrum results due to initial state excitations,

as compared to the standard planar Bunch–Davies result, can therefore only be

expected assuming the pure hyperbolic vacuum as the initial state in the hyperbolic

patch.

In [1] we investigate the bi-spectrum. The study of the bi-spectrum in the Bunch-

Davies state and the hyperbolic vacuum is not part of this thesis, but we will

state the results. The bi–spectrum in the hyperbolic vacuum does not seem to

produce interesting enhancements that make it distinguishable from the Bunch-

Davies state. This conclusion is in fact corroborated by an approximate construc-

tion of the hyperbolic vacuum as an excited state on top of the (global) planar

Bunch–Davies vacuum13. The relevant Bogoliubov coefficients are suppressed ex-

ponentially in momentum, ensuring that these effects will not be observable. Even

though the hyperbolic vacuum can be effectively thought of as an excited state

with respect to standard planar Bunch–Davies vacuum, it is not of a type that

gives rise to large (enhanced) corrections in the bi–spectrum as compared to the

13Formally, the (reduced) Bunch Davies state and hyperbolic vacuum are not contained in

the same Hilbert space. The Bunch Davies state is a Hadamard state whereas the hyperbolic

vacuum is not ; see appendix 5.D for details and discussion.
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standard planar Bunch–Davies result.

5.7 Vacua and the energy momentum tensor

In this section we discuss the behavior of the energy momentum tensor. First we

motivate why we expect to find something interesting, by comparing the hyperbolic

patch of de Sitter spacetime to the Rindler wedge.

Note that for a flat Rindler wedge in lightcone coordinates (u, v), there is a horizon

at u = 0 and the Fulling-Rindler vacuum |ΩFR〉 corresponds to the empty state in

a single wedge. In that case the Tuu component of the energy momentum tensor

(with the usual UV-divergence removed by subtracting the UV-divergent expecta-

tion value of Tuu in the Minkowski vacuum |0M 〉) diverges as one approaches the

horizon: 〈Tuu〉FR − 〈Tuu〉M = − 1
48π

1
u2 in (1 + 1) dimensions for u > 0 (for a nice

derivation of this result see [140]).

A similar analysis can be done for the energy momentum tensor in the hyperbolic

de Sitter patch, where the global de Sitter invariant vacuum state is now the

Bunch-Davies vacuum |ΩBD〉. The obvious difference with the Rindler wedge is the

absence of a timelike Killing vector. In addition, the t = 0 surface is a (light-) cone,

so a better analogy is with Milne space, to which the de Sitter hyperbolic section

reduces for small t. In any case, we will use the same regularization procedure,

restricting to the minimally coupled massless case ν = 3
2 . The most convenient

method to calculate components of the energy momentum tensor makes use of the

Wightman function G+(x, x′, t, t′) and specifically we will look at the following

contribution
〈(∂αφ)2(x, t)〉 = lim

x′,t′→x,t
∂α′∂αG(x, x′, t, t′). (5.63)

The Wightman function for the Bunch-Davies state is well known, but here we use

the expression in terms of an integral over the hyperbolic momentum p as given

in [126]. This allows us to consistently regulate the UV-divergence of 〈Tµν〉 in the

two states of interest. In appendix 5.C we show that the difference 〈Ttt〉H−〈Ttt〉BD

is UV-finite and diverges as t→ 0

〈Ttt〉H − 〈Ttt〉BD = − 11

240π2

1

t4
+O

(
1

t2

)
. (5.64)

So we conclude that the hyperbolic vacuum |ΩH〉 has singular properties that are

completely analogous to the Minkowski Fulling-Rindler, Milne and de Sitter static

vacuum, see also [139]. The energy momentum tensor diverges in the limit t→ 0,

so infinite energy seems to be required to prepare the state at the (singular) origin.

A complete description all the way until t = 0 is therefore obviously inconsistent,
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but strictly speaking that does not need to be fatal in a cosmological setting, in

the sense that in a stand-alone open universe this might be interpreted as the Big

Bang singularity. Also, in a realistic setup, we should allow the scalar field to

backreact on the geometry. An analysis of this situation would be an interesting

topic for future study.

The problem of having divergent components of the energy momentum tensor

at the boundary of a causal patch on a fixed background geometry, when one

tries to define a pure, non-entangled state for this causal patch, has a remarkable

interpretation in holography. If the entanglement between a boundary region and

its complement is removed, then the corresponding bulk space tends to pinch of [5],

since the corresponding Ryu-Takayanagi surface shrinks to zero size.

5.8 Conclusions and outlook

Before summarizing our results, let us remind the reader once more that our

motivation was to carefully study the relation between the hyperbolic and pla-

nar coordinate patches and their corresponding states in (mostly) pure de Sitter

space. We believe these results to be of interest, and partially applicable, in the

context of de Sitter false vacuum decay, but it is also clear that in that case a

more complete analysis should include (model-dependent) wall physics that will

affect the details. Instead we concentrated on a general and qualitative difference

between two examples of initial states on a hyperbolic section of de Sitter space:

the pure hyperbolic vacuum and the (entangled) de Sitter invariant Bunch–Davies

state, corresponding to a mixed state. We noted that the pure hyperbolic vacuum

is formally inconsistent, due to the energy momentum tensor becoming singular

at the null boundary of the hyperbolic section. This issue should plague all pure

hyperbolic states.

We stressed that the hyperbolic vacuum can be approximated by an excitation of

the Bunch–Davies vacuum. This is an effective description, because the Bunch

Davies state and the hyperbolic vacuum do formally not live in the same Hilbert

space. It can be used for the computation of the bi–spectrum and for the analysis

of possibly enhanced features as compared to the standard Bunch-Davies results.

Using the hyperbolic coordinate embedding we explicitly constructed a family of

hyperbolic solutions that reduces to the planar coordinates in the infinite boost

limit, as such providing a limiting relation between the hyperbolic vacuum and

the planar Bunch–Davies vacuum. As a corollary we also argued that the hyper-

bolic vacuum can be mapped to a specific static vacuum, implying that the static

vacuum should also reduce to (a sector of) the Bunch–Davies state in the infi-
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nite boost limit, as was first noted in [129]. Again, this limiting behavior implies

that in the late time and large momentum limit, the bi–spectrum results for the

hyperbolic vacuum should agree with the standard planar Bunch–Davies result.

Unfortunately, on the basis of our analysis here and in [1], we should conclude that

no detectable signals of an open inflationary universe in the fluctuation statistics

is expected on small sub-curvature scales.

To summarize the two hyperbolic states introduced, one of them mixed (Bunch–

Davies) and the other one pure (hyperbolic vacuum), make almost identical pre-

dictions in the late time sub-curvature limit. In fact, in the infinite boost limit

the states become formally identical to the planar Bunch–Davies vacuum. For the

mixed Bunch–Davies state this seems to imply that the density matrix ρBD should

depend on the boost parameter γ. Correspondingly, the associated von Neumann

entropy Tr(−ρBD ln ρBD) of the mixed Bunch–Davies state on the hyperbolic sec-

tion should depend on the boost parameter γ to ensure that the entropy vanishes

in the infinite boost limit.

It would be of interest to consider the generalization for non-zero boost parameter

γ. Although one might think the density matrix and corresponding entropy to be

boost invariant, this is not entirely obvious and the above observation does indeed

suggest it might not be, perhaps in some subtle (singular) way. The dependence on

the boost parameter should be such that it is invariant under γ → −γ, effectively

interchanging the two hyperbolic sections. Since the boost dependence can be

implemented through a simple rescaling on the left hyperbolic momenta (and a

time shift) 5.14 and the inverse rescaling on the right hyperbolic momenta (and

a time shift) it should be possible to trace the boost dependence of the Bunch–

Davies state in terms of the left and right hyperbolic modes. It should then be

straightforward to construct the corresponding density matrix and confirm that

the density matrix and corresponding entropy become trivial in the infinite boost

limit.

5.A Mode functions

5.A.1 Solutions to the hyperbolic equation of motion

The metric for both the left and right hyperbolic patch is given by:

ds2 =
1

H2

(
−dt2 + sinh2 t

(
dr2 + sinh2 r dΩ2

2

))
(5.65)
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where the coordinates t, r, φ, θ are dimensionless and c = 1. The action for a

massive non-interacting minimally coupled scalar field φ is given by:

S = −1

2

∫ √−g d4x
(
gµν∂µφ∂νφ+m2φ2

)
. (5.66)

The action of a conformally coupled scalar field can be written in the Einstein

frame with effective mass m2 = 2H2. The equation of motion is given by

0 =

(
1

sinh3(t)

∂

∂t
sinh3(t)

∂

∂t
− 1

sinh2(t)
∇2
H3 +

m2

H2

)
φ

=

(
1

sinh3(t)

∂

∂t
sinh3(t)

∂

∂t
− 1

sinh2(t)
∇2
H3 +

9

4
− ν2

)
φ

(5.67)

where ν is defined as ν =
√

9
4 − m2

H2 and ∇2
H3 is the Laplacian on the hyperboloid

H3. We will use ν′ = ν − 1
2 , consistent with [126], such that ν′ = 1 corresponds

to the massless minimally coupled case and ν′ = 0 corresponds to the massless

conformally coupled case for which the effective mass is m2 = 2H2.

The eigenfunctions Yplm of the Laplacian ∇2
H3 on the hyperboloid H3, that are

regular in r = 0, are given by [126]:

−∇2
H3Yplm = (p2 + 1)Yplm

Yplm(r,Ω) = fpl(r)Ylm(Ω)

fpl(r) =
Γ(ip+ l + 1)

Γ(ip+ 1)

p√
sinh r

P
−l−1/2
ip−1/2 (cosh r)

= (−1)l
√

2

π

Γ(−ip+ 1)

Γ(−ip+ l + 1)
sinhl r

dl

d(cosh r)l

(
sin pr

sinh r

)
(5.68)

where Ylm(Ω) is the normalized spherical harmonic function on the unit two-

sphere, Γ(z) is the Gamma function and P νµ (z) is the associated Legendre function

of the first kind [141].

The mode functions that correspond to the natural hyperbolic vacuum are given

by: {
H

sinh tP
ip
ν′ (cosh t) positive energy modes

H
sinh tP

−ip
ν′ (cosh t) negative energy modes

: p ≥ 0

}
. (5.69)

Mode functions on a Cauchy slice of de Sitter, must be regular and consist of linear

combinations of the hyperbolic mode functions in the left and right hyperbolic

patches [126]. The mode functions that correspond to the Bunch–Davies state are
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given in [126]:

χp,σ =



(
eπp − σe−iπν′

Γ(ν′ + ip+ 1)
P ipν′ (z)−

e−πp − σe−iπν′

Γ(ν′ − ip+ 1)
P−ipν′ (z)

)
for x ∈ R(

σeπp − e−iπν′

Γ(ν′ + ip+ 1)
P ipν′ (z)−

σe−πp − e−iπν′

Γ(ν′ − ip+ 1)
P−ipν′ (z)

)
for x ∈ L

=

{
ασp,RP

ip
ν′ (z) + βσp,RP

−ip
ν′ (z) for x ∈ R

ασp,LP
ip
ν′ (z) + βσp,LP

−ip
ν′ (z) for x ∈ L

(5.70)

where z = cosh t and the constants ασp,q and βσp,q are defined as:

ασp,L = σ e
πp−σe−iπν′
Γ(ν′+ip+1) ασp,R = eπp−σe−iπν′

Γ(ν′+ip+1)

βσp,L = −σ e−πp−σe−iπν
′

Γ(ν′−ip+1) βσp,R = − e−πp−σe−iπν
′

Γ(ν′−ip+1)

. (5.71)

These mode functions must be normalized through the Klein–Gordon normaliza-

tion (see section 5.A.2).

5.A.2 Klein–Gordon normalization

Hyperbolic modes

We normalize the hyperbolic modes on the hyperbolic patch using the variable

z = cosh t and using the orthonormality of the Yplm:

N2
Pp ≡ 〈φplm, φplm〉KG

= i

∫
Σ

dΣµ
(
φplm∂µφ

∗
plm − φ∗plm∂µφplm

)
= i sinh3 t

(
P ipν′ (cosh t)

sinh t
∂t

(
P−ipν′ (cosh t)

sinh t

)
− P−ipν′ (cosh t)

sinh t
∂t

(
P ipν′ (cosh t)

sinh t

))
= i(z2 − 1)

(
P ipν′ (z)∂zP

−ip
ν′ (z)− P−ipν′ (z)∂zP

ip
ν′ (z)

)
.

(5.72)

For the minimally coupled massless case ν′ = 1 we have:

N2
Pp = i(z2 − 1)P ip1 (z)P−ip1 (z)×

(
1

z−ip + ip
2

1
1+z + ip

2
1

1−z−
1

z+ip + ip
2

1
1+z + ip

2
1

1−z

)

=
2p

|Γ[1 + ip]|2

=
2 sinh(πp)

π
.

(5.73)
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In fact, for ν′ 6= 1 this normalization is also valid. In [126] it is shown that one

can expand the mode functions in the t→ 0 regime:

1

sinh t
P ipν′ (cosh t) ≈ 2ip

Γ[1− ip] t
ip−1. (5.74)

Using this expansion in (5.72) also results into the normalization (5.73). This nor-

malization is valid for any t by the properties of the Klein–Gordon normalization.

Bunch–Davies modes

The Bunch–Davies modes are given in terms of linear combinations of the hy-

perbolic modes in (5.70). Schematically we have (using the orthogonality of the

hyperbolic mode functions):

N2
χσ,p = 〈χσ,p, χσ,p〉

=
∑
q=L,R

∑
q′=L,R

〈
(
ασp,qP

p,q + βσp,qP̄
p,q
)
,
(
ασp,q′P

p,q′ + βσp,q′ P̄
p,q′
)
〉KG

=
∑

q,q′=L,R

(
ασp,qᾱ

σ
p,q′〈P p,q, P p,q

′〉KG + ασp,qβ̄
σ
p,q′〈P p,q, P̄ p,q

′〉KG
+ᾱσp,q′β

σ
p,q〈P̄ p,q, P p,q

′〉KG + βσp,qβ̄
σ
p,q′〈P̄ p,q, P̄ p,q

′〉KG

)
= N2

Pp

∑
q=L,R

(
ασp,qᾱ

σ
p,q − βσp,qβ̄σp,q

)
,

(5.75)

where we used:

〈P p,q, P p,q′〉KG = −〈P̄ p,q, P̄ p,q′〉KG = δqq′N
2
Pp ,

〈P p,q, P̄ p,q′〉KG = 〈P̄ p,q, P p,q′〉KG = 0.
(5.76)

Using (5.71) we find:∑
q=L,R

(
ασp,qᾱ

σ
p,q − βσp,qβ̄σp,q

)
=

8 sinhπp (coshπp− σ cosπν′)

|Γ[ν′ + ip+ 1]|2
. (5.77)

So finally we can substitute (5.77) into (5.75):

N2
χσ,p = N2

Pp

∑
q=L,R

(
ασp,qᾱ

σ
p,q − βσp,qβ̄σp,q

)
=

2 sinhπp

π
× 8 sinhπp (coshπp− σ cosπν′)

|Γ[ν′ + ip+ 1]|2

=
16 sinh2 πp (coshπp− σ cosπν′)

π |Γ[ν′ + ip+ 1]|2
.

(5.78)

This is consistent with [126], but note that we included an extra factor of 2 sinhπp

into the normalization, in order to simplify the expressions (5.71). The normalized

mode functions are the same as in [126], of course.
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5.A.3 Mode functions for the massless scalar field

Since we are mostly concerned with the massless minimally coupled scalar field

(ν′ = 1), we state the normalized mode functions for that case explicitly in hyper-

bolic time coordinate t and in conformal time η = ln tanh t
2 :

1

NPp

H

sinh t
P ip1 (cosh t) =

H√
2p(p2 + 1)

(
coth

t

2

) ip
2

(p csch t+ i coth t)

=
H√

2p(p2 + 1)
e−ipη (p sinh η − i cosh η) ,

(5.79)

where we have chosen a convenient phase factor in the normalization, that does

not affect the physics. The conformal time η is defined as:

ds2 =
1

H2

(
−dt2 + sinh2 t

(
dr2 + sinh2 rdΩ2

2

))
=

sinh2(t(η))

H2

(
−dη2 + dr2 + sinh2 rdΩ2

2

)
⇒ η =

∫
dt

sinh t

= ln tanh
t

2
.

(5.80)

Other useful relations between “hyperbolic” time t and “conformal” time η are:

sinh t = − 1

sinh η
, cosh t = − coth η. (5.81)

At early times η → −∞ the mode function for the massless minimally coupled

scalar field (5.79) behaves like a positive energy mode function:

H√
2p(p2 + 1)

e−ipη (p sinh η − i cosh η) = sinh η

(
H(p+ i)√
2p(p2 + 1)

e−ipη +O(e2η)

)

≈ sinh η
H(p+ i)√
2p(p2 + 1)

e−ipη.

(5.82)

The infinite boost limit γ →∞ (5.14) corresponds to the large t (or small η) and

large momentum limit. In particular in terms of conformal time, the rescaling for

small η reads η → η e−γ , implying that the combination p η is invariant in the

limit. This gives

e−ipη (p sinh η − i cosh η) = p sinh η e−ipη
(

1− i

pη
+O(η)

)
≈ e−ipη (pη − i) .

(5.83)

This is exactly the mode function for a massless scalar field in the flat de Sitter

slicing (up to the appropriate normalization).
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5.B Power spectra for the massless field

5.B.1 Direct calculation

Power spectrum in hyperbolic vacuum

The power spectrum in the hyperbolic vacuum can be computed in a straightfor-

ward way

〈ΩH|φpφ′p|ΩH〉 =
H2

sinh2(t)

∑
lm

∑
l′m′

YplmY
∗
p′l′m′

NPpNPp′

× 〈ΩH|
(
b̂plmP

ip
ν′ + b̂†plmP

−ip
ν′

)(
b̂p′l′m′P

ip′

ν′ + b̂†p′l′m′P
−ip′
ν′

)
|ΩH〉

=
H2

sinh2(t)

∑
lm

∑
l′m′

YplmY
∗
p′l′m′

P ipν′ P
−ip′
ν′

NPpNPp′
〈ΩH|b̂plmb̂†p′l′m′ |ΩH〉

= δ(p− p′) H2

sinh2(t)

∑
lm

|Yplm|2
∣∣∣P ipν′ ∣∣∣2
N2
Pp

= δ(p− p′) H2

sinh2(t)

p2

2π2

∣∣∣P ipν′ ∣∣∣2
N2
Pp

,

(5.84)

where we used the completeness relation for the Yplm in the last step. For the

massless minimally coupled case ν′ = 1 we have:

〈ΩH|φpφ′p|ΩH〉 = δ(p− p′) H2

sinh2(t)

p

4π2

cosh2(t) + p2

(p2 + 1)
, (5.85)

and for large t→∞

〈ΩH |φpφ′p|ΩH〉 → δ(p− p′)H
2

4π2

p

(p2 + 1)
. (5.86)

The power spectrum for the massless minimally coupled scalar field is given by:

〈ΩH |φ2|ΩH〉 =

∫
dp

∫
dp′〈ΩH |φpφ′p|ΩH〉

=

∫
d ln p

H2

4π2

p2

p2 + 1

⇒ ∆2
φ,H(p) =

H2

4π2

p2

p2 + 1
.

(5.87)
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Power spectrum in Bunch–Davies vacuum

The computation is similar to the previous case:

〈ΩBD|φpφp′ |ΩBD〉

=
H2

sinh2 t

∑
lml′m′

∑
σσ′

YplmY
∗
p′l′m′

Nχp,σNχp′,σ′

× 〈ΩBD|
(
âσplmχp,σ + â†σplmχ̄p,σ

)(
âσ′p′l′m′χp′,σ′ + â†σ′p′l′m′ χ̄p′,σ′

)
|ΩBD〉

=
H2

sinh2 t

∑
lml′m′

YplmY
∗
p′l′m′

∑
σσ′

χp,σχ̄p′,σ′

Nχp,σNχp′,σ′
〈ΩBD|âσplmâ†σ′p′l′m′ |ΩBD〉

= δ(p− p′) H2

sinh2 t

∑
lm

|Yplm|2
∑
σ

∣∣∣∣ χp,σNχp,σ

∣∣∣∣2 using [âσplm, â
†
σ′p′l′m′ ]

= δσσ′δll′δmm′δ(p− p′)

= δ(p− p′) H2

sinh2 t

p2

2π2

∑
σ


(
ασp,Lᾱ

σ
p,L

N2
χpσ

+
βσp,Lβ̄

σ
p,L

N2
χp,σ

) ∣∣∣P ipν′ ∣∣∣2
+
ασp,Lβ̄

σ
p,L

N2
χpσ

P ipν′ P
ip
ν′ +

ᾱσp,Lβ
σ
p,L

N2
χpσ

P−ipν′ P−ipν′

 .

(5.88)

In the last step we used the completeness relation for Yplm and the expansion of χ

in terms of the associated Legendre polynomials (5.70,5.71). Here we will compute

the spectrum for the massless scalar field (ν′ = 1). For the massless minimally

coupled scalar (ν′ = 1) the cross terms involving P ipP ip and P−ipP−ip vanish:

∑
σ

ασp,Lβ̄
σ
p,L

N2
χpσ

∝
∑
σ

(eπp + σ)(e−πp + σ)

coshπp+ σ
∝
∑
σ

σ = 0, (5.89)

and similarly for the term involving P−ipP−ip. So for the massless minimally

coupled case (ν′ = 1) we have:

〈ΩBD|φpφp′ |ΩBD〉

= δ(p− p′) H2

sinh2 t

p2

2π2

∑
σ

(
ασp,Lᾱ

σ
p,L + βσp,Lβ̄

σ
p,L

N2
χp,σ

)∣∣∣P ip1

∣∣∣2
= δ(p− p′) H2

sinh2 t

p2

2π2

∑
σ

π

16 sinh2 πp

(eπp + σ)2 + (e−πp + σ)2

coshπp+ σ

∣∣∣P ip1

∣∣∣2
= δ(p− p′) H2

sinh2 t

p2

2π2

π cosh(πp)

2 sinh2(πp)

∣∣∣P ip1

∣∣∣2
= δ(p− p′) H2

sinh2(t)

p(cosh2(t) + p2)

4π2(p2 + 1)
coth(πp).

(5.90)
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For large t→∞ we have:

〈ΩBD|φpφp′ |ΩBD〉 = δ(p− p′)H
2

4π2

p coth(πp)

p2 + 1
(5.91)

and

〈ΩBD|φ2|ΩBD〉 =

∫
dp

∫
dp′〈ΩBD|φpφp′ |ΩBD〉

=
H2

4π2

∫
dp
p cothπp

p2 + 1
+ super-curvature modes

=
H2

4π2

∫
d ln p

p2 cothπp

p2 + 1
+ super-curvature modes.

(5.92)

The power spectrum is given by

∆2
φ,BD(p) =

H2

4π2

p2 cothπp

p2 + 1
(5.93)

which reduces for p� 1 to an approximately scale invariant spectrum:

∆2
φ(p) ≈ H2

4π2
. (5.94)

5.B.2 Reduced density matrix calculation

In this section we derive the power spectrum in the Bunch-Davies state using an

alternative method. We consider the reduced density matrix that remains after

having traced out the degrees of freedom in the right hyperbolic patch. We find the

same answer as in the direct calculation (5.93,5.90). The reduced density matrix

for the left hyperbolic patch has been calculated by Maldacena and Pimentel [128]

and is given by:

ρ̂L,plm = TrHR
{|ΩBD〉〈ΩBD|}

= (1− |γp)|2)

∞∑
n=0

|γp|2n|n; p, l,m〉〈n; p, l,m|
(5.95)

where for the massless scalar field γp and |n; p, l,m〉 are given by14:

γp(m = 0) = ie−πp

|n; p, l,m〉 =
(b̂†plm)n
√
n!
|ΩH〉.

(5.96)

14For the massive scalar field Maldacena and Pimentel apply a Bogoliubov transformation on

the set of b̂plm operators to bring ρ̂L in the form of (5.95).
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For a point in the left hyperbolic wedge x ∈ L the two point function is given by

(5.29):

〈ΩBD|φpφp′ |ΩBD〉 = TrHL
{φpφp′ ρ̂L}

= δ(p− p′) H2

sinh2(t)

∑
lm

|Yplm|2
|P ip1 |2
N2
Pp

× (1− |γp|2)
∑
n

|γp|2n (2n+ 1)

= δ(p− p′) H2

sinh2(t)

p2

2π2

cosh2(t) + p2

2p(p2 + 1)

1 + |γp|2
1− |γp|2

= δ(p− p′) H2

sinh2(t)

p

4π2

cosh2(t) + p2

(p2 + 1)
coth(πp)

(5.97)

which is equal to the result of the direct calculation (5.90).

5.C Divergence of the energy momentum tensor

As is the case in the Fulling-Rindler vacuum, the energy momentum tensor diverges

at the null boundary of the hyperbolic patch. One could construct lightcone

coordinates u = η − r and v = η + r in order to calculate Tuu. Equivalently, we

consider the leading divergence of Ttt in the t→ 0 limit, which is more convenient.

Ttt = (∂tφ)2 − 1

2
gttg

σρ(∂σφ)(∂ρφ) (5.98)

For the massless case we have:

〈Ttt〉 =
1

2
〈(∂tφ)2 + grr(∂rφ)2 + gθθ(∂θφ)2 + gφφ(∂φφφ)2〉. (5.99)

One can calculate this directly using the hyperbolic mode functions (5.22) and the

density matrix (5.95) for the Bunch-Davies expectation value 〈Tµν〉BD. Equiva-

lently, for the leading order term we can use the Wightman functions G+(x, x′) as

given in [126]:

〈(∂tφ)2〉 = lim
t′→t

∂t∂t′G
+(t, t′), (5.100)

and similarly for the other coordinates. Note that the contribution of the super-

curvature modes to the Wightman function only leads to subleading divergences15.

15For ν′ > 0 the super-curvature mode contribution to the Wightman function is [126]:

G+
∗ (t, t′, ζ) =

H2

4π
5
2

Γ[−ν′ + 1]Γ[ν′ +
3

2
]
sinh(ν′)ζ

sinh ζ

(
sinh t sinh t′

)ν′−1
. (5.101)

For the minimally coupled massless case ν = 3
2

the super-curvature mode becomes time-

independent. The contribution to the energy momentum tensor is of subleading order.
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5.C. Divergence of the energy momentum tensor

The contribution of the sub-curvature modes to the Wightman function for the

massless ν′ = 1 case is given by [126]:

G+(t, t′, ζ) =
H2

sinh t sinh t′
1

8π2

×
∫ ∞
−∞

dp
sin pζ

sinh ζ

eπp

sinhπp

(cosh t+ ip)(cosh t′ − ip)
1 + p2

(
tanh t′

2

tanh t
2

)ip
,

ζ = cosh r cosh r′ − sinh r sinh r′ (cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′)) .
(5.102)

One can check the following:

〈(∂tφ)2〉 = lim
t′→t

∂t∂t′G
+(t, t′, ζ) =

H2

4π2

∫ pF

0

dp p(p2 + 1) coth(πp)
1

t4
+O

(
1

t2

)
〈(∂rφ)2〉 = lim

r′→r
∂r∂r′G

+(t, t, ζ) =
H2

4π2

∫ pF

0

dp p(p2 + 1) coth(πp)
1

t2
+O

(
t0
)

〈(∂θφ)2〉 = lim
θ′→θ

∂θ∂θ′G
+(t, t, ζ)

= sinh2 r
H2

4π2

∫ pF

0

dp p(p2 + 1) coth(πp)
1

t2
+O

(
t0
)

〈(∂φφ)2〉 = lim
φ′→φ

∂φ∂φ′G
+(t, t, ζ)

= sin2 θ sinh2 r
H2

4π2

∫ pF

0

dp p(p2 + 1) coth(πp)
1

t2
+O

(
t0
)
.

(5.103)

Note that all these are divergent as t → 0, but they also show the usual UV-

divergence. The UV-divergence is regulated by a cutoff pF . The difference 〈Ttt〉H−
〈Ttt〉BD will be UV-finite. We combine the components (5.103) to obtain 〈Ttt〉BD.

The expectation value 〈Ttt〉H is obtained by replacing cothπp→ 1, where we use

the expectation value 〈b̂†plmb̂plm + I〉 in the two different states 16:

〈b̂†plmb̂plm + I〉BD = cothπp

〈b̂†plmb̂plm + I〉H = 1.
(5.104)

Finally, we calculate the difference 〈Ttt〉H − 〈Ttt〉BD:

〈Ttt〉H − 〈Ttt〉BD =
H4

2π2

∫ ∞
0

dp p(p2 + 1) (1− cothπp)
1

t4
+O

(
1

t2

)
= − 11

240π

1

t4
+O

(
1

t2

)
.

(5.105)

Note that we took the cutoff pF to infinity and obtain a UV-finite integral.

16We can calculate 〈b̂†plmb̂plm + I〉 by using the density matrix (5.95)
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An important observation is that (5.105) is divergent on the past horizon of the

hyperbolic patch. This is indicative of the fact the hyperbolic vacuum is a non-

Hadamard state. The (reduced) Bunch-Davies state does satisfy the Hadamard

condition (see [142] for a discussion of the Hadamard condition), which we will

not discuss here. Formally, one could argue that the hyperbolic vacuum and the

(reduced) Bunch-Davies state are not in the same Hilbert space.

5.D The hyperbolic vacuum embedded in the

Bunch–Davies state

From [128] we have for the massless case ν′ = 1:

|ΩBD〉 =
(
⊗plmeγpb̂

†
Lplm⊗b̂

†
Rplm

)
|ΩH,L〉 ⊗ |ΩH,R〉 (5.106)

or suppressing the indices p, l,m:

|ΩBD〉 = eγb̂
†
L⊗b̂

†
R |ΩH,L〉 ⊗ |ΩH,R〉 (5.107)

with γ = ie−πp. The left hyperbolic vacuum |ΩH,L〉 is not a state of the full system;

we need information about the state in the right hyperbolic patch as well. The

simplest way to embed the left hyperbolic vacuum in the full Hilbert space, we

can consider the simple and symmetric state |ΩH,L〉⊗|ΩH,R〉. This state is not the

natural vacuum state (the Bunch–Davies state) for the full de Sitter space. Also

keep in mind that the hyperbolic vacuum and the Bunch-Davies state are formally

not part of the same Hilbert space. However, for an effective description and

comparison of the power spectra and bi–spectra a purification of the hyperbolic

vacuum can be described as an excitation of the Bunch-Davies state.

Proposition:

|ΩH,L〉 ⊗ |ΩH,R〉 ∝ e−|γp| â
†
+⊗ â†− |ΩBD〉. (5.108)

Proof:

We will show that the right hand side of (5.108) vanishes when we act with any

of the b̂Llpm annihilation operators. We use the expression for the hyperbolic

annihilation operator b̂Llpm in terms of the creation and annihilation for Bunch-

Davies modes (5.36), suppressing from now on the labels p, l,m:

b̂L =
∑
σ

NP
Nχσ

(
ασLâσ + β̄σL â

†
σ

)
. (5.109)

We want to show that b̂L acting on the RHS of (5.108) vanishes:∑
σ

NP
Nχσ

(
ασLâσ + β̄σL â

†
σ

)
e−|γp|â

†
+⊗â

†
− |ΩBD〉 ?

= 0. (5.110)
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5.D. The hyperbolic vacuum embedded in the
Bunch–Davies state

Consider the annihilation operator âσ acting on (5.108):

â±e
−|γp|â†+â

†
− |ΩBD〉 =

[
â± , e

−|γp|â†+â
†
−

]
|ΩBD〉

= −
[
â± , |γp|â†+â†−

]
e−|γp|â

†
+â
†
− |ΩBD〉

= −|γp|â†∓e−|γp|â
†
+â
†
− |ΩBD〉.

(5.111)

Substituting this result in (5.110) gives:∑
σ

NP
Nχσ

(
ασLâσ + β̄σL â

†
σ

)
e−|γp|â

†
+⊗â

†
− |ΩBD〉

= NP
∑
σ

(
− α−σL

Nχ−σ
|γ|+ β̄σL

Nχσ

)
â†σe
−|γp|â†+⊗â

†
− |ΩBD〉.

(5.112)

It is easy to check that the quantity between brackets on the RHS of (5.112)

vanishes for both σ = ±1. This finalizes the proof:

b̂Le
−|γ|â†+⊗â

†
− |ΩBD〉 = 0 ∀p, l,m. (5.113)

The state (5.108) is pure. Note that the symmetric and antisymmetric modes

corresponding to σ = ±1 are entangled with each other and their reduced density

matrices are thermal. We reiterate that the hyperbolic vacuum does not satisfy

the Hadamard condition and formally speaking the hyperbolic vacuum and the

(reduced) Bunch-Davies state do not live in the same Hilbert space.
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Chapter 6

Inflationary potentials &

non-minimal coupling

There are many single field inflation models and it would be helpful if we could

make progress towards reducing the number of models, or at least organize them

in an insightful way. In this chapter we will analyze single field inflation models

with non-minimal coupling to gravity, with the purpose of finding special models,

that appear as attractors in the inflationary landscape. An attractor model is

a model that appears as a limiting case of a class of models; we will make this

idea more precise below. In recent work it has been shown that the Starobinsky

inflation model appears as an attractor in several seemingly unrelated classes of

models. We try to explain this from the perspective of general non-minimally

coupled single scalar field models.

In section (6.1) we introduce the Starobinsky and chaotic inflation models, which

appear as attractor models in later sections. We also discuss how non-minimally

coupled models can be written in the Einstein frame, the frame in which the scalar

field is minimally coupled to gravity. In section (6.2) we present a non-exhaustive

overview of recently discovered attractor mechanisms. In section (6.3) we try to

generalize the non-minimally coupled attractor mechanisms presented in section

(6.2). We describe which conditions suffice for attractor behavior and we give a

different perspective on the “fine-tuning” problem. We show, that under certain

conditions, the well known Starobinsky and chaotic inflation models appear in the

opposite strong and weak limits of the non-minimal coupling. We also discuss the

nature of the attractor points.
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6. Inflationary potentials & non-minimal coupling

6.1 Introducing the attractors

6.1.1 A zoo of models

Many single field inflation models are in accordance with observational data.

Planck data favor models with ns = 0.968±0.006 and with an upper limit r < 0.11

on the tensor-scalar ratio at 95% confidence level [98,99]. In [143] results emerged

suggesting a large amplitude for the tensor mode fluctuations (r ∼ 0.2), but these

results were later revoked after a joint analysis of BICEP2, Keck Array and Planck

Data [144].

Countless inflationary models have been developed; an “encyclopedia” of a subset

of them can be found in [145]. Inflationary models can be (partially-) characterized

by their position in the (ns, r) plane. Clearly, it would be helpful if we could make

progress towards reducing the number of models, or at least organize them in an

insightful way.

A second issue with many of these models is the “fine-tuning problem”. In an

effective field theory description one generally writes down a potential of the form:

V (φ) =
∑
n

λnφ
n. (6.1)

One argues that terms with n > 4 are irrelevant ; their coupling is small at low

energies, or in other words, the higher order terms in the expansion (6.1) are

suppressed. But in many such models, for example chaotic inflation, the change

of the field value exceeds the Planck mass over the course of inflation: ∆φ > Mpl.

In these cases, there is no reason to assume that these terms are small and the

assumption they are is a form of fine-tuning. Generally, the fewer parameters

that need to be fine-tuned, the more natural they are. This provides a second

motivation for investigating non-minimally coupled models; how does the fine-

tuning in the minimally coupled description translate to the non-minimally coupled

description?

In this chapter, we will discuss the emergence of attractor points in the (ns, r)

plane in the context of non-minimally coupled inflation models. Attractor points

correspond to special points in the (ns, r) plane and appear as a limiting case of

a class of models. We will see that one particular model, Starobinsky inflation,

appears as a limit of several different classes of models.

Below, we briefly describe the Starobinsky model and the chaotic inflation model.

Both these models appear as attractor points in sections (6.2) and (6.3). Subse-

quently, we discuss the relation between the Jordan and Einstein frames for scalar

field Lagrangians.
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6.1. Introducing the attractors

6.1.2 Starobinsky inflation

Starobinsky inflation was one of the earliest models of inflation [146]. It arises

naturally in the context of f(R)-gravity. The degrees of freedom of f(R)-gravity

can be decomposed into normal Einstein gravity plus a scalar degree of freedom.

For certain f(R)-models, this scalar degree of freedom has a potential that allows

for inflation to happen. Below, we will briefly illustrate how f(R)-gravity gives

rise to the Starobinsky model.

Consider the gravitational action

S =
1

2

∫
d4x
√−gf(R), (6.2)

where f(R) is a polynomial of the curvature scalar R. We introduce an auxiliary

field χ

S =
1

2

∫
d4x
√−g (f(χ) + f,χ(χ) (R− χ)) , (6.3)

such that (6.3) corresponds to (6.2) when χ is on shell. Now consider the field

redefinition

ψ = f,χ(χ),

χ = χ(ψ).
(6.4)

In terms of ψ, we now have a scalar field action with non-minimal coupling to

Einstein gravity:

S =

∫
d4x
√−g

(
ψR

2
− U(ψ)

)
,

U(ψ) =
1

2
(ψχ(ψ)− f(χ(ψ))) .

(6.5)

In subsection 6.1.4 we describe how we can write an action of the type (6.5) in the

Einstein frame, with canonically normalized kinetic energy term, by doing a Weyl

transformation gµν → ψ−1gµν followed by a field redefinition. Here we simply

state the result:

S =

∫
d4x
√−g

(
R

2
− 1

2
(∂φ)2 − V (φ)

)
,

V (φ) =

[
U(ψ)

ψ2

]
ψ=e

√
2
3
φ
.

(6.6)

So far we have seen how f(R)-gravity can be decomposed into Einstein gravity plus

a scalar degree of freedom, with a scalar potential given by (6.5,6.6). One might

wonder which types of f(R)-gravity lead to viable single field inflation models.
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6. Inflationary potentials & non-minimal coupling

Inspection of the first order potential slow-roll parameter εV (4.36), which can be

expressed in terms of f , shows that:

εV =
1

2

(
V,φ
V

)2

=
1

3

(
χ(ψ)f,χ(χ(ψ))− 2f(χ(ψ))

χ(ψ)f,χ(χ(ψ))− f(χ(ψ))

)2
∣∣∣∣∣
ψ=e

√
2
3
φ

.

(6.7)

Smallness of (6.7) puts a condition on the polynomial f(R). The first slow-roll

condition (εV � 1) can be satisfied by having a large coefficient of the R2 term in

f . In fact, the model originally proposed by Starobinsky is given by:

f(R) = R+ αR2. (6.8)

The Einstein frame potential (6.6) for this model is given by:

V (φ) =
1

8α

(
1− e−

√
2
3φ
)2

. (6.9)

To leading order in N−1, where N is the number of e-folds (4.29,4.30), the scalar

spectral index (4.104) and the tensor to scalar ratio (4.102) of the Starobinsky-

model are given by:

ns ≈ 1− 2

N

r ≈ 12

N2
.

(6.10)

The Starobinsky model lies in the “sweet-spot” of the Planck data [98, 99, 147]

(see figure 6.1). An estimate of the energy scale of inflation depends on the value

of the slow-roll parameter ε, but the COBE normalization indicates an order of

magnitude V
1
4 ∼ 10−3Mpl, which corresponds to large α.

6.1.3 Chaotic inflation

Chaotic inflation was proposed in [148]. It is an example of a large field inflation

model, where the difference between the final and initial value of the scalar field

is large in units of Planck’s mass (∆φ > Mpl). In chaotic inflation, the scalar field

is minimally coupled to gravity and has monomial potential

V (φ) = λ2nφ
2n, (6.11)

where λ2n is a coupling constant. The number of e-folds is given by (4.29,4.30):

N ≈ −
∫ φend

φN

1√
2εV

dφ = −
∫ φend

φN

V

V,φ
dφ = −φ

2

4n

∣∣∣∣φend

φN

≈ φ2
N

4n
. (6.12)
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6.1. Introducing the attractors

In terms of N (6.12), the first two slow roll parameters are given by

εV ≈
n

2N
, ηV ≈

2n− 1

2N
. (6.13)

This corresponds to a scalar index and tensor to scalar ratio1

ns = 1 +
3− 5n

N
≈ 0.967 for n = 1,

r =
8n

N
≈ 0.133 for n = 1,

(6.14)

where the tensor to scalar ratio is considered to be large, like the tensor to scalar

ratio of other large field inflation models. Such a large tensor to scalar ratio is not

in the “sweet-spot” of the Planck data (see figure 6.1). Interest in chaotic inflation

models rose after a report of a large tensor to scalar ratio, but a more elaborate

analysis did not confirm this conclusion [143,144].

6.1.4 Switching frames

A general scalar field Lagrangian can have non-minimally coupling to gravity and

a kinetic energy terms that is not canonically normalized. Below we show how we

can rewrite such a general scalar field Lagrangian in terms of a Lagrangian with

minimal coupling to gravity and with a canonically normalized kinetic energy term

(the Einstein frame). This can be accomplished by doing a Weyl transformation

followed by a field redefinition. The purpose of considering a scalar field La-

grangian in the non-minimally coupled Jordan frame is that a Lagrangian might

look very simple in one frame and very complicated in the other. For example,

fine-tuning in one frame might have a different interpretation in another frame.

However, the physics should be frame-independent.

A general Lagrangian of a theory with a non-minimally coupled scalar field can

be written as:

L =
√−g

(
1

2
Ω(φ)R− K(φ)

2
(∂φ)2 − U(φ)

)
. (6.15)

One could do a field redefinition φ → χ to make the kinetic term canonically

normalized. Such a field redefinition must satisfy K̃(χ)
(
δχ
δφ

)2

= K(φ).

A Weyl transformation gab → Ω−1gab can be used to bring the Lagrangian (6.15)

into the Einstein frame. The curvature scalar in four spacetime dimensions trans-

forms as follows:

R→ Ω

(
R+ 3� ln(Ω)− 3

2
(∂ ln(Ω))2

)
. (6.16)

1We take N = 60 here.
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The second term in 6.16 will result into a boundary term in the Lagrangian. If we

discard this term, the Lagrangian in the Einstein frame is given by:

L =
√−g

(
R

2
−
(
K

Ω
+

3

2

Ω
′2

Ω2

)
1

2
(∂φ)2 − U

Ω2

)
. (6.17)

A field redefinition χ = χ(φ) can be done such that the kinetic energy term is

canonically normalized: (
δχ

δφ

)2

=
K

Ω
+

3

2

Ω
′2

Ω2
. (6.18)

In terms of the field χ(φ), of which the explicit expression can be found by solving

(6.18), the Lagrangian takes a simple form

L =
√−g

(
R

2
− 1

2
(∂χ)2 − V (χ)

)
, (6.19)

where V (χ) is given by

V (χ) =
U(φ(χ))

Ω2(φ(χ))
. (6.20)

The possibility to switch between the Jordan and Einstein frames will be exten-

sively used in sections (6.2) and (6.3).

6.2 Attractor models

In this section we will present a non-exhaustive overview of attractor mechanisms

that recently appeared in the literature. The first two examples we will discuss,

the universal attractor model and the induced inflation model, form a subset of

the class of non-minimally coupled models. It is this class of non-minimally cou-

pled models that we describe and generalize in section (6.3). Here we will focus

on their “Starobinsky attractor point” and in section (6.3) we will discuss their

“chaotic attractor points”. The third and fourth examples of attractor models, the

(multifield-) conformal attractor model and the α-attractor model are to some de-

gree qualitatively different from universal attractor inflation and induced inflation.

For completeness we briefly describe them here. Their relation to non-minimally

coupled attractor models is described in [149].

6.2.1 Universal attractor inflation

Universal attractor inflation is a non-minimally coupled model. The model was

proposed in [150], of which we will give a brief summary. In the universal at-

tractor model, the coupling of the scalar field to the curvature is regulated by a
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dimensionless parameter ξ. In the large ξ limit, this model reduces to Starobinsky

inflation.

The action of the universal attractor model is given by:

S =

∫
d4x
√−g

(
1

2
Ω(φ)R− 1

2
gµν∂µφ∂νφ− VJ(φ)

)
, (6.21)

with
Ω(φ) = 1 + ξf(φ),

VJ(φ) = λf2(φ),
(6.22)

where ξ and λ are dimensionless couplings and f(φ) is a function of the field.

A Weyl transformation gµν → Ω(φ)−1gµν brings the action in the Einstein frame

(6.17):

S =

∫
d4x
√−g

(
R

2
− 1

2

(
1

Ω(φ)
+

3

2

Ω′(φ)2

Ω(φ)2

)
(∂φ)2 − VJ(φ)

Ω2(φ)

)
. (6.23)

For large ξ, the kinetic term is dominated by the second part:

1

Ω(φ)
� 3

2

Ω′(φ)2

Ω(φ)2
. (6.24)

The field redefinition χ = χ(φ) that gives the kinetic energy term canonical nor-

malization is, using (6.24), approximately:√
3

2

Ω′(φ)

Ω(φ)
=
δχ

δφ
(6.25)

The potential for χ can be recognized as the Starobinsky model (6.9):

VE(χ) =
λ

ξ2

(
1− e−

√
2
3χ
)2

. (6.26)

At strong (non-minimal) coupling, the universal attractor model is equivalent to

Starobinsky inflation. Note that this argument does not depend on the specific

form of f(φ). In [151] it is shown that the weak coupling limit effectively yields

chaotic inflation for monomial f .

6.2.2 Induced inflation

Induced inflation is a different non-minimally coupled model. The model is called

induced inflation, because in the Jordan frame the Planck mass is determined

by the expectation value of the scalar field. It was proposed in [152], of which
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6. Inflationary potentials & non-minimal coupling

we will give a brief summary. In the induced inflation model, the coupling to

the curvature is regulated by a dimensionless parameter ξ. In the large ξ limit,

this model resembles Starobinsky inflation. It was proposed in the context of a

general search for non-minimally coupled models that give rise to Starobinsky-like

inflation.

In [152], the starting point is a general Lagrangian of the form (6.15), with the

assumptions that U → 0 and Ω→ 1 at the end of inflation (when φ = φend). It is

argued that any Jordan frame potential U of the form

U = λ(Ω(φ)− 1)2 (6.27)

leads to Starobinsky-like inflation as long as

K(φ)� Ω′(φ)2

Ω(φ)
(6.28)

during inflation. Note that universal attractor inflation at strong coupling is a

realization of this mechanism. In [152] a model similar to universal attractor

inflation is proposed, with

Ω(φ) = ξf(φ). (6.29)

This model is motivated by the fact that it is perturbatively unitary, which means

that the Einstein frame potential U
Ω2 does not include an expansion in positive

powers of the large coupling ξ2

λ .

This model is a Starobinsky attractor at strong coupling, but in [151] it is shown

that it is a φ2-chaotic inflation attractor in the weak coupling limit ξ → 0. This

observation motivated our research: which non-minimally coupled models have

Starobinsky attractors and which of them have chaotic inflation attractors? These

questions and a more thorough treatment of the weak coupling limit of induced

inflation can be found in section (6.3).

6.2.3 Conformal attractors

The (multifield-) conformal attractor model provides a mechanism that naturally

favors Starobinsky-like inflation. It was proposed in [153, 154] and further devel-

oped in [155–158]. We will briefly present the main concepts.

The starting point is a Lagrangian with two fields:

L =
√−g

[
1

2
∂µχ∂

µχ+
χ2

12
R(g)− 1

2
∂µφ∂

µφ− φ2

12
R(g)− λ

36
F

[
φ

χ

]
(φ2 − χ2)2

]
.

(6.30)
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This theory is locally conformal invariant under the following transformations:

g̃µν = e−2σ(x)gµν , χ̃ = eσ(x)χ , φ̃ = eσ(x)φ . (6.31)

This allows for a “gauge choice” χ2 + φ2 = 6. The remaining physical degrees of

freedom can be parametrized by writing:

χ =
√

6 cosh
ϕ√
6
,

φ =
√

6 sinh
ϕ√
6
,

(6.32)

which brings the Lagrangian in the following form:

L =
√−g

[
1

2
R− 1

2
∂µϕ∂

µϕ− F [tanh
ϕ√
6

]

]
. (6.33)

The point is that the potential F [tanh ϕ√
6
] admits slow-roll inflation for a wide

choice of potentials F . In particular, for F [x] = λ2nx
2n one finds ns ≈ 1− 2

N and

r ≈ 12
N2 , which resembles the Starobinsky model. In fact, the choice F [x] = x2

(1+x)2

is exactly equivalent to the Starobinsky model, as shown in [153,154]. In summary,

a wide range of potentials F give rise to inflation at the Starobinsky point in the

(ns, r)-plane.

The α-attractor models emerged in the analysis of (multifield-) conformal attractor

models, by considering modifications or generalizations of its supergravity embed-

ding [157,158]. The Lagrangian at single field level is given by:

L =
√−g

(
R

2
− 1

(1− φ2

6α )2
(∂φ)2 − F

[
φ√
6α

])
(6.34)

Note that this Lagrangian has non-canonically normalized kinetic energy term.

For α = 1 this Lagrangian is equal to (6.33), which can be seen by doing a field

redefinition.

In [157,158] the behavior of these models is analyzed for different values of α. For

large α, chaotic inflation attractor point are found. For α = 1, Starobinsky-like

inflation is found, as described above. For α < 1, the models are characterized by

ns ≈ 1 − 2
N and r ≈ 12α

N2 (see figure 6.1). Note that there are model dependent

corrections in higher orders of 1
N for all these parameters (ns, r).

6.3 Non-minimally coupled models

In this section we describe the framework of single scalar field models with non-

minimal coupling to Einstein gravity. It has been realized for quite some time that
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6. Inflationary potentials & non-minimal coupling

Figure 6.1: Caption from [98]: Marginalized joint 68 % and 95 % CL regions for ns and r0.002
from Planck alone and in combination with its cross-correlation with BICEP2/Keck

Array and/or BAO data compared with the theoretical predictions of selected infla-

tionary models. Source: [98].

with the introduction of non-minimal couplings the space of phenomenologically

acceptable theories of inflation can be expanded considerably [159–162], typically

in fact ameliorating the required degree of fine-tuning [163, 164]. We will try to

generalize the appearance of attractor points as described by the non-minimally

coupled models of universal attractor inflation and induced inflation (see section

6.2).

In subsection (6.3.1) we define the ‘flat’ and ‘steep’ conformal limits in the context

of single scalar field models that are non-minimally coupled to Einstein gravity.

In subsection (6.3.2), we identify under which conditions the flat conformal factor

limit leads to slow-roll inflation and we explicitly show the appearance of chaotic

models of inflation in this limit. In subsection (6.3.3) we show that the weak

coupling limit of a subset of induced inflation models effectively yields φ2-chaotic

inflation. In subsection (6.3.4) we further generalize and identify another set at-

tractor points that correspond to φ2n-chaotic inflation.

6.3.1 Non-minimal coupling and its limits

The Lagrangian for a non-minimally coupled scalar field is given by:

L =
√−g

(
1

2
Ω(φ)R− K(φ)

2
(∂φ)2 − U(φ)

)
, (6.35)

170



6.3. Non-minimally coupled models

where we require that at the vacuum configuration Ω→ 1 and U → 02.

One can write (6.35) in the Einstein frame with a canonically normalized kinetic

energy term, by performing a Weyl transformation followed by a field redefinition.

In appendix (6.A) we give expressions for the Einstein frame potential slow-roll

parameters in terms of the Jordan frame quantities Ω and U . These expressions

greatly simplify if K = Ω, which can be accomplished by doing an initial field

redefinition. However, we will choose K = 1, just to be consistent with the

formulation of induced inflation in [152]. After performing a Weyl transformation

gab → Ω−1gab, the Lagrangian reads:

L =
√−g

(
R

2
− 1

2

(
1

Ω
+

3

2

(
Ω′

Ω

)2
)

(∂φ)2 − U

Ω2

)
, (6.36)

where the prime denotes differentiation with respect to the scalar φ. The kinetic

energy term can be canonically normalized by performing a field redefinition χ(φ)

such that (
δχ

δφ

)2

=
1

Ω
+

3

2

(
Ω′

Ω

)2

. (6.37)

We will analyze these non-minimally coupled models in two limits, in which one

of the two contributions to the Einstein frame kinetic term dominates (6.36). We

will suggestively call these the flat and steep conformal factor limits respectively:

flat limit

3

2

Ω′2

Ω
� 1 (6.38)

steep limit

3

2

Ω′2

Ω
� 1. (6.39)

In these limits, starting from the usual Einstein frame definitions for the infla-

tionary slow-roll parameters [105](see appendix 6.A.1), the expressions for the

inflationary slow-roll parameter ε and η, in terms of U and Ω (6.63,6.64), simplify

considerably. For the first order slow-roll parameter ε one arrives at the following

expressions

flat limit

ε ≈ Ω

2

(
U ′

U
− 2

Ω′

Ω

)2

(6.40)

steep limit

ε ≈ Ω2

3Ω′2

(
U ′

U
− 2

Ω′

Ω

)2

. (6.41)

The slow-roll conditions can be naturally satisfied by Jordan frame potentials

U that are proportional to Ω2 up to terms higher order in the slow-roll approx-

imation, for both the flat and steep limits. Requiring the inflationary model to

2We have set the reduced Planck mass to one. The vanishing of the potential U corresponds

to a small cosmological constant.
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6. Inflationary potentials & non-minimal coupling

be Starobinsky-like in the steep limit in fact determines the Jordan frame poten-

tial [152]

U = λ (Ω− 1)2 . (6.42)

We will refer to these models as asymptotic Starobinsky models. This particular

relation between the conformal factor and the Jordan frame potential allows a

further simplification of the slow-roll parameters in the flat and steep conformal

factor limits

flat limit

ε ≈ 2

(
Ω′2

Ω

)
1

(Ω− 1)
2 (6.43)

steep limit

ε ≈ 4

3

1

(Ω− 1)
2 . (6.44)

It is important to note, as should also be clear from the above expressions, that

the flat or steep conformal factor limits do not necessarily imply the slow-roll

conditions. They do seem to be sufficient to allow for regions in field space where

the slow-roll conditions are met. From now on we will mostly be interested in

considering the (opposite) flat conformal factor limit of the asymptotic Starobinsky

models. First we identify sufficient conditions for the conformal factor such that

a slow-roll inflationary regime exists in the flat conformal factor limit and, if the

flat limit exists, to what type of inflationary model this leads.

6.3.2 The flat conformal factor limit

In this section we will investigate the flat conformal factor limit of asymptotic

Starobinsky models. We will show that a generic power law implementation of

the flat conformal factor limit is sufficient to make sure that a slow-roll limit can

be satisfied in some region of field space. If we are interested in considering a flat

conformal factor limit (6.38) that can be satisfied over a large enough field range,

a natural procedure would be to constrain all derivatives of Ω around the vacuum

field value φvac to be sufficiently small. Note that for the asymptotic Starobinsky

models that we are considering the vacuum field value is defined by U(φvac) = 0.

It is straightforward to check that this imposes the following condition on the

derivatives of Ω at φvac, denoted by Ω
(n)
vac

Ω(n)
vac = O ((α)n) , (6.45)

for some small parameter α, such that α(φ−φvac)� 1, with φvac < φ < φN where

φN denotes the field value to allow for N e-folds of slow-roll inflation. In general it

is useful to perform a shift to the field variable φ̃ defined as φ̃ = φ−φvac. After the
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6.3. Non-minimally coupled models

shift the same conditions (6.45) apply, with φ replaced by φ̃ and φ̃vac = 0. These

conditions on the derivatives of Ω at φvac resemble the slow-roll conditions and as

such could be considered as fine-tuning. When we discuss specific examples of the

flat conformal factor limit we will come back to this point.

An expansion of the Einstein frame potential in terms of the canonically normal-

ized field χ (6.37) around χvac = 0 explicitly shows the relation between the flat

conformal factor condition (6.45) and the suppression of higher order powers of χ,

for the asymptotic Starobinsky model U = λ(Ω− 1)2

U

Ω2

∣∣∣∣
φ=φ(χ)

= λΩ′2vacχ
2 + λ

(
Ω′vacΩ′′vac −

3

2
Ω′3vac

)
χ3+

+
λ

24

(
−50Ω′2vacΩ′′vac +

75

2
Ω′4 + 6Ω′′2vac + 8Ω′vacΩ′′′vac

)
χ4 + . . . ,

(6.46)

where it should be understood that the dots not only include higher powers of χ

but also corrections to the coefficients higher order in the flat conformal factor

limit (6.A.2). So we conclude that the leading term in the power law expansion

is the χ2-term, as long as Ω′vac 6= 0. This is of course recognized as the potential

for (quadratic) chaotic inflation. Note that the slow-roll conditions are violated

for small χ, so the field range where the slow-roll conditions apply is smaller than

the field range where the flat conformal factor conditions apply. Higher order

terms are polynomially suppressed by virtue of the flat conformal factor condition

(6.45) on the higher order derivatives of Ω. Smallness of the higher order terms in

the Einstein frame potential of a χ2-chaotic inflation model can be interpreted as

the smallness of the variation of the conformal factor Ω in the Jordan frame of a

Lagrangian (6.35).

From the above expansion we also see that when Ω′vac = 0, but Ω′′vac 6= 0, then the

first nonzero term in expansion (6.46) is the χ4-term. The higher order terms are

again suppressed by virtue of the flat conformal factor condition (6.45). The first

non-zero derivative of Ω therefore determines the (higher-order) model of chaotic

inflation. Note that although the coefficients are different for different Ω (and λ),

the slow-roll parameters for chaotic models do not depend on the coefficients and

as such the predictions in the ns versus r plane will be the same, as we will soon

show explicitly. Of course, the scale of inflation is related to the specific value of the

coefficient. To agree with observational constraints, for quadratic chaotic inflation

the COBE normalisation implies that the mass parameter should roughly equal

10−5 (in natural units). For a given λ this further constrains the first derivative of

the conformal factor. So although these models all give the same predictions for ns
and r, they are observationally distinguished in their prediction for the magnitude

of the density perturbations. This is different from the steep conformal factor

limit, where the scale of inflation is uniquely determined by the parameter λ. This
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6. Inflationary potentials & non-minimal coupling

perhaps favors fixing λ to a value that agrees with the COBE normalisation in the

Starobinsky limit, but as should be clear from the above discussion this will then

not reproduce the COBE normalisation in the weak non-minimal coupling limit.

After this general discussion, let us now move on to the general expressions for

the slow-roll parameters in this limit and provide some specific examples in which

a non-minimal coupling parameter governs a flow between the flat and steep con-

formal factor limits.

6.3.3 Chaotic fixed points for asymptotic Starobinsky mod-

els

In the previous section we saw that in general, when the flat conformal factor

condition is satisfied, the Einstein frame potential will be that of chaotic inflation.

Here we will first determine the consequences of this general result for the first and

second slow-roll parameters, explicitly using the flat conformal factor condition

(6.45). Subsequently we give some specific examples in which this behavior is

realized.

If the conformal factor Ω satisfies the flat conformal factor limit (6.45), we can

expand Ω as

Ω = 1 +
∑
m=1

Ωmα
mφ̃m, (6.47)

where we extracted the coefficients Ωm that are of order O(1) and again introduced

the small parameter α that should satisfy αφ̃� 1 for 0 < φ̃ < φ̃N .

In appendix (6.A.1) we compute the slow-roll parameters for several different cases.

If Ω1 6= 0, we find (6.75 with n = 1):

ε =
2

φ̃2
+O

(
αφ̃
)
, η =

2

φ̃2
+O

(
αφ̃
)
, (6.48)

which indeed corresponds to leading order to the results of φ2-chaotic inflation.

One could imagine imposing the condition that Ω is an even function. In that

case, for Ω2 6= 0, we find (6.76 with n = 1)

ε =
8

φ̃2
+O

(
(αφ̃)2

)
, η =

12

φ̃2
+O

(
(αφ̃)2

)
, (6.49)

which corresponds to leading order to the results of φ4-chaotic inflation. The ex-

plicit expressions for the subleading parts can be found in appendix (6.A.1).

To illustrate this further and relate the flat and steep conformal limits to a con-

tinuous non-minimal coupling parameter to be able to consider the flow behavior
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6.3. Non-minimally coupled models

as a function of this non-minimal coupling, let us give two examples where the

conformal factor naturally satisfies the flatness limit (6.45). In the first example

we analyze induced inflation models. This agrees with the analysis done in [151].

Example 6.3.1. Induced inflation

Induced inflation3 is a particular subset of asymptotic Starobinsky models, with

Ω(φ) = ξf(φ) and f(0) = 0, where ξ is a coupling parameter.

Monomial: Ω = ξφm

Since we demand that Ω(φvac) = 1, we find φvac = ξ−
1
m . Defining φ̃ = φ − ξ− 1

m

one can write the following expansion of Ω in terms of φ̃:

Ω = ξφm

= ξ
(
φ̃+ ξ−

1
m

)m
= 1 +

m∑
i=1

φ̃iξ
i
m

(
m

i

)
.

(6.50)

Expansion (6.50) explicitly shows that induced inflation with f = φm provides a

realization of the flat conformal factor limit (6.45) with the identification α ∼ ξ 1
m

for small ξ. Induced inflation with a monomial conformal factor also guarantees

that Ω′vac 6= 0. This means that (6.50) is of the form (6.47) with Ω1 = m and

Ω2 =
(
m
2

)
and identifying ξ

1
m ∼ α (see also example 6.A.1). Hence for small ξ the

result (6.48) applies; to leading order this model corresponds to quadratic chaotic

inflation. We can verify this directly by computing the Einstein frame potential

V (χ)

V = λm2ξ
2
mχ2 +O(ξ

3
m ). (6.51)

The slow-roll parameters are independent of the mass parameter M2 = 2λm2 ξ
2
m

of this chaotic inflationary potential, but the mass does determine the magnitude

of the density perturbations, which in natural units should roughly equal 10−5 to

be in agreement with the COBE normalisation. The coupling ξ parametrizes a

trajectory in the (ns, r)-plane, connecting the Starobinsky attractor point with the

chaotic attractor point (see figure 6.2). If one fixes the parameter λ along the flow,

then the prediction for the magnitude of the (scalar) density perturbations will

not be in agreement with observation in the strict weak (non-minimal) coupling

limit ξ → 0. Alternatively, one could introduce a rescaled coupling λ̃ killing off

the ξ dependence. However, one would then have a similar problem in the strong

3Originally these models were studied as examples where the spontaneous symmetry breaking

in (non-minimal) induced gravity models would allow for slow-roll inflation [159]. More recently

it was pointed out that the Einstein frame potential does not include power series in terms of ξ

in the large ξ limit. Hence perturbative unitarity is not violated before reaching the Planck scale

in models of induced inflation [152].
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Figure 6.2: (ns, r)-plane with linear and log10-scale on the vertical r-axis, for monomial induced

inflation (6.50) with m = 0.5, 1, 2, 4, 8, from right to left.

coupling limit and moreover, the required rescaling would be different for different

values of m. In contrast, the normalisation in the opposite strong coupling limit

is independent of the power m of the monomial.

In addition to the properties of the fixed points, in figure 6.2 the flow as a function

of the non-minimal coupling ξ is plotted. A notable feature, in contrast to the

strong coupling Starobinsky attractor, is that the approach to the weak coupling

chaotic fixed point is clearly seen to be universal (independent of m), as can be

analytically confirmed by determining the first order corrections in ξ around the

chaotic fixed point.

Finite polynomial: Ω = ξ (· · ·+ φm)

A minimal extension of the monomial conformal factor is to consider the case where

f is a polynomial in φ with a finite number of terms. In this case, the highest

power of φ determines the vacuum value of the field φvac; if f(φ) = · · ·+φm, where

the dots indicate lower powers of φ, then the previous analysis goes through, with

φvac = ξ−
1
m +O(ξ0)

Ω = 1 +mξ
1
m φ̃+O(ξ

2
m )

(6.52)

and we arrive at the same conclusion: the weak coupling limit is described by

quadratic chaotic inflation. Lower powers of φ in the polynomial do affect the

subleading terms in expansion (6.52). The coupling parameter ξ parametrizes a

curve in the (ns, r)-plane, connecting the strong coupling Starobinsky attractor

point with the weak coupling chaotic attractor point.

In an infinite series expansion of the conformal factor (as could be generated by
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6.3. Non-minimally coupled models

quantum corrections) this sensitivity to the highest order term might be consid-

ered problematic. Neglecting that for now, it does imply that all induced inflation

models with a finite number of powers of the field φ reduce to chaotic inflation in

the weak coupling limit.

Exponential: Ω = ξf = ξ
(
eβφ − 1

)
In the previous example we observed that Ω is sensitive to the highest power in

the expansion of f , in the weak coupling limit. In this example we investigate

whether the weak coupling limit of induced inflation still leads to φ2-chaotic infla-

tion if f is an infinite series in φ. If f =
(
eβφ − 1

)
, then φvac = 1

β ln
(

1 + 1
ξ

)
and

Ω = eβφ̃(ξ + 1) − ξ. For large ξ this model will satisfy the steep limit (6.39) and

hence have the Starobinsky model as a strong coupling attractor point. For very

small ξ this model does generally not satisfy the flat limit (6.38), unless β is tuned

for this purpose. So in general the ξ → 0 limit does not correspond to quadratic

chaotic inflation.

In fact the above conclusion that exponential functions generically do not feature

chaotic inflation attractors can be changed by making a different identification of

the coupling parameter. Below we briefly present this case as another example.

Example 6.3.2. Ω = eξφ
m

in weak coupling limit

The conformal factor Ω = eξφ
m

naturally satisfies the flat conformal factor condi-

tion (6.45) for small ξ4. We require that in the vacuum configuration, Ω = 1; this

means that φvac = 0. In the ξ → 0 limit we expand Ω in orders of ξ:

Ω = eξφ
m

= 1 + ξφm +O(ξ2)
(6.53)

If m = 1, then Ω1 6= 0 and we directly recover the result (6.48), corresponding

to φ2-chaotic inflation in the ξ → 0 limit. For general m, we find (see example

6.A.4):

N =
φ2
N

4m
+O(ξ)

ε =
2m2

φ2
N

+O(ξ) ≈ m

2N

η =
2m(2m− 1)

φ2
N

+O(ξ) ≈ 2m− 1

2N

(6.54)

4An expansion of the kinetic term in the Einstein frame, at strong coupling, suggests that

perturbative unitarity is violated before reaching the Planck scale for m > 1, unlike induced

inflation.
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These results correspond to those of φ2m-chaotic inflation.5

To conclude, we have confirmed that the weak coupling limit of some, but not all,

models of induced inflation imply the flat conformal factor limit (6.45), yielding

chaotic inflation attractor points. We also explicitly confirmed that the Einstein

frame potential in this limit depends on the details of the conformal factor, imply-

ing that although the predictions for the spectral index and tensor-to-scalar ratio

are the same for all these models and as such denote a fixed point, the magnitude

of the density perturbations will depend on the details of the function Ω under

consideration. In the opposite strong coupling limit, for the Starobinsky attractor,

the magnitude of the density perturbations is instead independent of the details

of the function Ω, which can be used to uniquely fix λ to agree with the COBE

normalisation in the Starobinsky fixed point. In that sense the strong coupling

Starobinsky fixed point can be considered more universal.

6.3.4 Generalized asymptotic Starobinsky models

A straightforward extension of the asymptotic Starobinsky models (6.42) with

U ∝ Ω2(1− Ω−1)2 is given by the set of Jordan frame potentials:

U = λΩ2(1− 1

Ω
)2n. (6.55)

We will show that the steep conformal factor limit again corresponds to Starobin-

sky inflation, to leading order. We will also point out that the flat conformal factor

limit corresponds to φ2n-chaotic inflation 6.

Steep conformal factor limit In this limit (6.39) the field redefinition(6.37)

simplifies to: (
δχ

δφ

)2

=
3

2

(
Ω′

Ω

)2

⇒ Ω(φ(χ)) = e±
√

2
3χ. (6.56)

The Einstein frame potential that corresponds to the potential (6.55) in terms of

χ now reads

V (χ) = λ
(

1− e−
√

2
3χ
)2n

. (6.57)

5Adding extra terms in the exponent, e.g. eξ(φ
n+βφn+m) would explicitly violate the flat

conformal factor condition (6.45).
6In this subsection we will assume Ω′vac 6= 0 for simplicity
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For n = 1, we recognize the Starobinsky potential. For general n we have a

generalized Starobinsky model which also has, to leading order in N , for all n7:

ε ≈ 3

4N2
, η ≈ − 1

N
, (6.58)

similar to the standard Starobinsky model. In terms of the position in the (ns, r)-

plane of the strong coupling limit of these models, the attractor point coincides

with that of Starobinsky inflation for all n, at least to leading order in N . The

parameter λ should be fixed to agree with the COBE normalisation. Requiring 60

e-folds implies that ε ∼ 10−3 and as a consequence λ is fixed to roughly equal 10−10

(in natural units), i.e. a very small number. A value for λ this small causes an

obvious problem in the opposite weak coupling limit, where the potential depends

on the non-minimal coupling ξ and λ and as a consequence, for small ξ, the

predicted magnitude for scalar density perturbations will be too small.

The flat conformal factor limit In this limit (6.38), the first and second order

slow-roll parameters are given by (see appendix 6.A.1):

ε ≈ 2n2 Ω′2

Ω

1

(Ω− 1)2

η ≈ Ω′2

Ω

2n(2n− 1)

(Ω− 1)2
+

2n

Ω− 1

(
Ω′′

Ω
− 3

2

Ω′2

Ω

)
.

(6.59)

Given that Ω satisfies condition (6.45), we find to leading order in N

ε ≈ 2n2

φ̃2
N

≈ n

2N
(6.60) η ≈ 2n(2n− 1)

φ̃2
N

≈ 2n− 1

2N
. (6.61)

Indeed, for n = 1 we recover φ2-chaotic inflation. In fact, these results correspond

to φ2n-chaotic inflation for all n (see figure 6.3). Chaotic inflation models are fixed

points for flat Ω, whereas Starobinsky inflation is obtained in the opposite steep

conformal factor limit. Looking at figure 6.3, where the flow between fixed points

in the (ns, r) plane is plotted for different values of the parameters m and n, with

Ω = ξφm.

Approaching the chaotic attractor point If the flat and steep limits can

be controlled by a single flow parameter α, like in examples (6.3.1,6.3.2), then α

7For large n of order N the slow-roll conditions can be violated.
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Figure 6.3: (ns, r)-plane with linear and log10-scale on the vertical r-axis, for generalized

asymptotic Starobinsky models (6.55) with n = 1, 1.5, 2 and Ω = ξφm (6.50) with

m = 0.5, 1, 2, 4 for each n, from right to left. The weak coupling limit corresponds

to φ2, φ3 and φ4-chaotic inflation respectively.

parametrizes a trajectory in the (ns, r)-plane, connecting the Starobinsky attrac-

tor point with the chaotic attractor point. The analysis of induced inflation (see

figures 6.2 and 6.3) suggests that the approach of the chaotic attractor point is well

behaved and along a certain universal angle, whereas the approach of the Starobin-

sky attractor point is more chaotic. The slope of the line in the (ns, r)-plane close

to the chaotic attractor point can be determined analytically by dividing dr
dα by

dns
dα . For polynomial induced inflation and polynomial universal attractor infla-

tion, we find a slope of −16
2− 1

n

for generalized asymptotically Starobinsky models

(6.55)8. This suggests that the slope does not depend on the details of Ω, and

only on the number n in the potential (6.55). However, there are explicit counter

examples9.

6.4 Conclusions

We studied non-minimally coupled single scalar field inflation models with a Starobin-

sky attractor point in the strong coupling limit. We have identified the relevant

conditions on the conformal factor, corresponding to the flat and steep conformal

factor limits, and shown how these can be obtained introducing a continuous cou-

pling parameter, for instance in the context of induced inflation models. General

(sufficient) conditions were determined that produce chaotic models of inflation in

the flat conformal factor limit. Employing these general results we have confirmed

8This is in agreement with [150], where (n = 1)
9For example, consider Ω = 1 + ξ2φ2 + ξ3φ3
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the existence of chaotic fixed points for a subset of models that are asymptotically

Starobinsky. As long as the first derivative of the conformal factor is non-zero the

fixed point corresponds to the simplest quadratic model of chaotic inflation. The

fine tuning of higher order powers in the potential of chaotic inflation was shown

to be directly related to the flatness condition of the conformal factor. We also

introduced and studied a straightforward generalization of asymptotic Starobinsky

models, parametrized by a power n, that reduces at weak coupling to a chaotic

inflation fixed point of order n (the leading power of the canonical Einstein scalar

field χ).

One important observation is that this fixed point behavior differs from the Starobin-

sky fixed point at strong coupling due to the explicit dependence of the mass (or

the couplings in higher order chaotic models) on the details of the model under

consideration. This means it should be considered less universal in the sense that

different models in this class, although they all reduce to the same (chaotic) slow-

roll parameters in the weak coupling limit, predict different scales of inflation. A

related consequence is that the COBE normalisation cannot be matched in both

fixed points at the same time. This observation is best illustrated in a three-

dimensional flow plot that would include the predicted magnitude of density per-

turbations as a function of the non-minimal coupling ξ. By appropriately rescaling

the coupling λ to allow for a finite magnitude in the weak coupling limit, one would

find that the weak coupling limit is not a fixed point in this 3-dimensional space

of inflationary parameters, whereas the strong coupling Starobinsky attractor re-

mains a true fixed point.

An important and interesting avenue for future work would be to better understand

the UV embedding and (effective field theoretical) consistency of these classes of

non-minimally coupled models, in particular from the point of view of string theory.

6.A From Jordan frame to Einstein frame

6.A.1 Slow-roll parameters in the Einstein frame

In this subsection we express the Einstein frame potential slow-roll parameters in

terms of the Jordan frame quantities U and Ω. We only use potential slow-roll

parameters10. The potential slow-roll parameters ε and η in terms of the Einstein

10Since we only use potential slow-roll parameters, we will write ε and η instead of εV and ηV

for the first and second potential slow-roll parameters
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frame potential (6.20) are given by11:

ε =
1

2

(
V,χ
V

)2

, η =
V,χχ
V

(6.62)

We can also express the slow-roll parameters in terms of the Jordan frame potential

U(φ), the conformal factor Ω(φ), using the relation between the Jordan frame

potential and the Einstein frame potential (6.20), and the field redefinition (6.18).

The first order potential slow-roll parameter ε is given by:

ε =
1

2

(
V,χ
V

)2

=
1

2

(
δφ

δχ

)2
(

d
dφ

(
U
Ω2

)(
U
Ω2

) )2

= 2
1

K
Ω + 3

2
Ω′2

Ω2

(
U ′

U
− 2

Ω′

Ω

)2

.

(6.63)

The second order potential slow-roll parameter η is given by:

η =
V,χχ
V

=
1

V

δφ

δχ

∂

∂φ

δφ

δχ

∂

∂φ
V

=
Ω2

U

1√
K
Ω + 3

2
Ω′2

Ω2

∂

∂φ

1√
K
Ω + 3

2
Ω′2

Ω2

∂

∂φ

U

Ω2

=
1

(KΩ + 3
2

Ω′2

Ω2 )

[(
U ′′

U
− 4

U ′Ω′

UΩ
− 2

Ω′′

Ω
+ 6

Ω′2

Ω2

)]
+

1

(KΩ + 3
2

Ω′2

Ω2 )2

[(
U ′

U
− 2

Ω′

Ω

)(
−1

2

)(
K ′

Ω
− K

Ω

Ω′

Ω
+ 3

Ω′′

Ω

Ω′

Ω
− 3

Ω′3

Ω3

)]
,

(6.64)

where primes denote derivatives with respect to φ.

Related to our expression for ε, we find for the number of e-folds N :

N =

∫ χN

χend

dχ
V

V,χ

=

∫ φN

φend

dφ

(
δχ

δφ

)2
V

V,φ

=

∫ φN

φend

dφ

(
K(φ)

Ω(φ)
+

3

2

Ω′2(φ)

Ω2(φ)

)
1(

U ′

U − 2Ω′

Ω

)
(6.65)

11In the expressions of slow-roll parameters, the reduced Planck mass has been set to one (e.g.

ε =
m2
pl

16π

(
V,χ

V

)2 → 1
2

(
V,χ

V

)2
)
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6.A.2 Expansion of the Einstein frame potential

For the asymptotic Starobinsky model we have the Jordan frame potential U =

λ(Ω− 1)2. The Einstein frame potential V is given by (6.20)

V (χ) =
U(φ(χ))

Ω2(φ(χ))
. (6.66)

where χ is the canonically normalized field defined by the field redefinition (6.37)(
δχ

δφ

)2

=
1

Ω
+

3

2

Ω
′2

Ω2
. (6.67)

These two relations allow us to expand V in terms of χ around the vacuum value

χvac = 0:

V (χ) =
∑
n

cnχ
n, (6.68)

where cn = 1
n!

δnV
δχn

∣∣∣
χvac

. Using the field redefinition (6.37) we find:

c0 = 0

c1 = 0

c2 =
λΩ′2vac

1 + 3
2Ω′2vac

c3 = λ

(
Ω′′vacΩ′vac − 3

2Ω′3vac − 3
2Ω′5vac

)(
1 + 3

2Ω′2vac

) 5
2

c4 =
1(

1 + 3
2Ω′2vac

)4 λ

48

[
12Ω′′2vac + 63Ω′8vac + 126Ω′6vac + 24Ω

(3)
vacΩ′3vac + 16Ω

(3)
vacΩ′vac+

Ω′4vac(75− 36Ω′′vac)− 4Ω′2vacΩ′′vac(24Ω′′vac + 25)

]
(6.69)

For Ω′2vac � 1 we therefore obtain

V (χ) ≈ λΩ′2vacχ
2 + λ

(
Ω′′vacΩ′vac −

3

2
Ω′3vac

)
χ3+

+
λ

24

(
−50Ω′2vacΩ′′vac +

75

2
Ω′4 + 6Ω′′2vac + 8Ω′vacΩ′′′vac

)
χ4 + . . .

(6.70)

6.A.3 Generalized asymptotic Starobinsky models

We consider the Jordan frame potential U = λΩ2(1 − Ω−1)2n. In the steep con-

formal limit this potential corresponds to the Einstein frame potential V in terms

of the canonically normalized field χ

V (χ) = λ
(

1− e−
√

2
3χ
)2n

, (6.71)
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which is called a generalized Starobinsky model.

The Einstein frame slow-roll parameters and the number of e-folds N can be

expressed in terms of Ω and its derivatives:

ε =
2n2

Ω + 3
2Ω′2

(
Ω′

Ω− 1

)2

(6.72a)

η =
2n(2n− 1)

Ω + 3
2Ω′2

(
Ω′

Ω− 1

)2

+
2n(

Ω + 3
2Ω′2

)2 Ω′

Ω− 1

(
−3

2
Ω′Ω− 3

2
Ω′3 +

Ω′′

Ω′
Ω2

)
(6.72b)

N =
1

n

∫ φN

dφ

(
1 +

3

2

Ω′2

Ω

)(
Ω− 1

2Ω′

)
(6.72c)

Flat limit

In the flat limit 1� 3
2

Ω′2

Ω , (6.72a), (6.72b) and (6.72c) simplify to:

ε ≈ 2n2 Ω′2

Ω

1

(Ω− 1)2
(6.73a)

η ≈ 2n(2n− 1)
1

(Ω− 1)2

Ω′2

Ω
+ 2n

1

Ω− 1

(
Ω′′ − 3

2

Ω′2

Ω

)
(6.73b)

N ≈ 1

n

∫ φN

φend

Ω− 1

2Ω′
dφ (6.73c)

Flat conformal factor condition

If Ω satisfies the flat conformal factor condition (6.45), Ω has the following form,

for φ̃ = φ− φvac:

Ω = 1 +
∑
m=1

Ωmα
mφ̃m, (6.74)

where the Ωm are of order O(1) and αφ̃� 1 for 0 < φ̃ < φ̃N . This form allows us

to evaluate (6.72a,6.72b,6.72c) in orders of α.

Example 6.A.1. Ω1 6= 0,Ω2 6= 0:

ε =
2n2

φ̃2
+ (αφ̃)

2n2

φ̃2

(
2

Ω2

Ω1
− Ω1

)
+O

(
(αφ̃)2

)
(6.75a)

η =
2n(2n− 1)

φ̃2
+ (αφ̃)

2n

φ̃2

(
4n

Ω2

Ω1
− (2n+

1

2
)Ω1

)
+O((αφ̃)2) (6.75b)

N =
φ̃2
N

4n
− (αφ̃N )

6n

Ω2

Ω1
φ̃2
N +O

(
(αφ̃N )2

)
(6.75c)
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6.A. From Jordan frame to Einstein frame

This example illustrates that for generic Ω with non vanishing Ω1, the flat confor-

mal factor attractor point of generalized asymptotic Starobinsky model of degree

2n corresponds to φ2n-chaotic inflation.

Example 6.A.2. Ω1 = Ω3 = 0, Ω2 6= 0,Ω4 6= 0

If we impose Ω to be an even function of φ̃, we find Ωi = 0 for i odd.

ε =
2(2n)2

φ̃2
+ (αφ̃)2 2(2n)2

φ̃2

(
2

Ω4

Ω2
− Ω2

)
+O

(
(αφ̃)4

)
(6.76a)

η =
4n(4n− 1)

φ̃2
+ α2

(
Ω4

Ω2
4n(8n+ 1)− Ω24n(4n+ 1)

)
+O

(
(αφ̃)4

)
(6.76b)

N =
φ̃2
N

8n
− 1

16n

Ω4

Ω2
(αφ̃N )2φ̃2

N +O
(

(αφ̃)4
)

(6.76c)

Example 6.A.3. Ω1 = m,Ω2 =
(
m
2

)
(induced inflation with monomial)

In example (6.3.1) we have shown that we can expand the monomial induced

inflation model Ω = ξφm in terms of φ̃ = φ − φvac with Ω1 = m,Ω2 =
(
m
2

)
. For

the generalized asymptotic Starobinsky (6.55) model we find:

ε =
2n2

φ̃2
− (αφ̃)

2n2

φ̃2
+O((αφ̃)2) (6.77a)

η =
2n(2n− 1)

φ̃2
− (αφ̃)

2n2

φ̃2

(
2 +

1

2

m

n

)
+O((αφ̃)2) (6.77b)

N =
φ̃2
N

4n
− (m− 1)

12n
(αφ̃N )φ̃2

N +O
(

(αφ̃N )2
)

(6.77c)

Example 6.A.4. Ω = 1 + αφm (universal attractor inflation with mono-

mial)

Universal attractor inflation [150] is a class of asymptotic Starobinsky models with

Ω(φ) = 1 + ξf(φ). We consider the monomial case f(φ) = φm, for which φvac = 0

and extend the discussion to generalized asymptotic Starobinsky models (6.55).

We find:

ε =
2(nm)2

φ2
− (αφm)

2(nm)2

φ2
+O(α2φ2m) (6.78a)

η =
2(nm)(nm− 1)

φ2
− (αφm)

m2n(4n+ 1)

φ2
+O((α2φ2m)) (6.78b)

N =
φ2
N

4mn
+O((α2φ2m)). (6.78c)

These results correspond to leading order to φ2mn-chaotic inflation. This illustrates

that if Ω satisfies the flat conformal factor condition (6.45), but with the first m−1

derivatives vanishing, the generalized asymptotic Starobinsky model of order 2n

will lead to φ2mn-chaotic inflation, to leading order.
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6.A.4 Beyond the asymptotic Starobinsky paradigm

If Ω satisfies the flat conformal factor condition (6.45), the generalized asymptotic

Starobinsky models (6.55) have a chaotic inflation attractor point. We could also

consider the much more general class of models satisfying that U → 0 and Ω→ 1

in the vacuum configuration:

U =
∑
n 6=0

an (Ω− 1)
n
, (6.79)

for a set of coefficients {an}. One can check that these general potentials are not

Starobinsky-like in the steep limit (6.39). They can correspond to chaotic inflation

if Ω satisfies the flat conformal factor condition (6.45). If an = 0 for n < m and

am 6= 0, than these models correspond to leading order to φkm-chaotic inflation,

where k is the first nonzero derivative of Ω in the vacuum.

186



Bibliography

[1] Fotios V. Dimitrakopoulos, Laurens Kabir, Benjamin Mosk, Maulik Parikh,

and Jan Pieter van der Schaar. Vacua and correlators in hyperbolic de Sitter

space. JHEP, 06:095, 2015.

[2] Ben Freivogel, Robert Alan Jefferson, Laurens Kabir, Benjamin Mosk, and

I-Sheng Yang. Casting Shadows on Holographic Reconstruction. Phys. Rev.,

D91(8):086013, 2015.

[3] Benjamin Mosk and Jan Pieter van der Schaar. Chaotic inflation limits

for non-minimal models with a Starobinsky attractor. JCAP, 1412(12):022,

2014.

[4] Ben Freivogel and Benjamin Mosk. Properties of Causal Holographic Infor-

mation. JHEP, 1309:100, 2013.

[5] Mark Van Raamsdonk. Building up spacetime with quantum entanglement.

Gen.Rel.Grav., 42:2323–2329, 2010.

[6] James M. Bardeen, B. Carter, and S.W. Hawking. The Four laws of black

hole mechanics. Commun.Math.Phys., 31:161–170, 1973.

[7] S.W. Hawking. Particle Creation by Black Holes. Commun.Math.Phys.,

43:199–220, 1975.

[8] S.W. Hawking. Black hole explosions. Nature, 248:30–31, 1974.

[9] J.D. Bekenstein. Extraction of energy and charge from a black hole.

Phys.Rev., D7:949–953, 1973.

[10] J.D. Bekenstein. Black holes and the second law. Lett.Nuovo Cim., 4:737–

740, 1972.

[11] Jacob D. Bekenstein. Black holes and entropy. Phys.Rev., D7:2333–2346,

1973.

187



Bibliography

[12] Jacob D. Bekenstein. Generalized second law of thermodynamics in black

hole physics. Phys.Rev., D9:3292–3300, 1974.

[13] Jacob D. Bekenstein. A Universal Upper Bound on the Entropy to Energy

Ratio for Bounded Systems. Phys.Rev., D23:287, 1981.

[14] Leonard Susskind. The World as a hologram. J.Math.Phys., 36:6377–6396,

1995.

[15] Raphael Bousso. A Covariant entropy conjecture. JHEP, 9907:004, 1999.

[16] Raphael Bousso. The Holographic principle. Rev.Mod.Phys., 74:825–874,

2002.

[17] Juan Martin Maldacena. The Large N limit of superconformal field theories

and supergravity. Int.J.Theor.Phys., 38:1113–1133, 1999.

[18] Joseph Polchinski. Dirichlet Branes and Ramond-Ramond charges.

Phys.Rev.Lett., 75:4724–4727, 1995.

[19] Joseph Polchinski. Tasi lectures on D-branes. pages 293–356, 1996.

[20] Joseph Polchinski, Shyamoli Chaudhuri, and Clifford V. Johnson. Notes on

D-branes. 1996.

[21] Mark Van Raamsdonk. Comments on quantum gravity and entanglement.

2009.

[22] A. Ashtekar and A. Magnon. Asymptotically anti-de Sitter space-times.

Class.Quant.Grav., 1:L39–L44, 1984.

[23] Kostas Skenderis. Lecture notes on holographic renormalization.

Class.Quant.Grav., 19:5849–5876, 2002.

[24] C. Fefferman and C.R. Graham. Conformal Invariants. Elie Cartan et les
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Summary

THE ENTANGLED UNIVERSE

Context

In the beginning of the 20th century, two fundamentally new concepts in physics

changed our understanding of the universe. The first revolution came with the

advent of Einstein’s theory of general relativity in 1915, which replaced Newton’s

universal law of gravity. General relativity profoundly changed our understanding

of space and time, especially at large scales. The second revolution came with the

conception of quantum mechanics, which changed our understanding of physics at

small scales.

These new ideas gave an enormous boost to the fields of cosmology and particle

physics. General relativity gave insight in the description of the geometry of our

universe. The observation of cosmological redshifts and the theoretical description

of an expanding universe with general relativity formed the basis for the Big Bang

model and the concept of cosmological inflation. The standard model of particle

physics was developed using the concepts of quantum mechanics and special rel-

ativity, resulting in the prediction and discovery of many new particles, such as

recently the Higgs boson.

Although the standard model of particle physics and the theory of cosmological

inflation are extremely successful in predicting and explaining observations, several

questions remain unanswered. Firstly, attempts to reconcile quantum mechanics

and general relativity in a UV-complete theory have been largely unsuccessful.

Secondly, there are many models of cosmological inflation, but which one describes

our universe? Obviously, there are other important open questions that are not

addressed in this thesis, such as the quest for the nature and origin of dark matter

and dark energy.
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Motivation of research

Holography

String theory is an attempt to reconcile quantum mechanics and general relativity;

it is like a marriage between gravity and quantum mechanics. In string theory, par-

ticles can be seen as vibrations on strings. Even though it is questionable whether

string theory describes our universe, it did give birth to a concrete realization of

the concept of holography; the idea that the degrees of freedom in a volume of

space can be described by a model on a holographic screen with one dimension

less.

The peculiar thing about holography is that the model on the holographic screen,

the boundary, does not include gravity, whereas the volume of space it describes,

the bulk, does include gravity. This means that a description of gravity can be

given in terms of a non-gravitational quantum model, at least under certain cir-

cumstances. This opens the door to studying gravity from a completely different

perspective; the perspective of the description on the “holographic screen”.

Holography gives rise to a duality; the exact equivalence of two models in physics,

in this case the bulk model and the boundary model. Models that are dual to

each other might look very different, but they are related by a dictionary that

translates quantities and laws of physics in one model to those in the other model.

The holographic dictionary has not been decoded completely (yet).

The reconstruction of bulk physics, given laws of physics and physical quantities

of the boundary model, is the subject of study in the field of holographic recon-

struction. Part I of this thesis discusses the limitations of known reconstruction

techniques and a possibly “new word” in the holographic dictionary: causal holo-

graphic information.

Cosmology

Observations suggest that our universe went through a phase of accelerated expan-

sion, inflation, during the first fractions after the Big Bang. The cosmic microwave

background (CMB) gives an important observational clue and can be seen as a

footprint of inflation. A successful model of inflation should reproduce the mea-

sured CMB power spectrum.

The classical evolution of the metric and a scalar field, dubbed the inflaton field,

effectively provides a mechanism for inflation. Quantum fluctuations of the degrees

of freedom described by the metric and the inflaton field successfully describe the

observed power spectrum of the cosmic microwave background.

202



Summary

There are several problems with the theory of cosmological inflation. There are

hundreds of different models that explain inflation. Many of them cannot be

excluded by current observational data, although they have been based on different

assumptions. This prompts the question: how can we distinguish different models

with different assumptions in the available observational data? And can we at

least organize these models in a useful way?

Results

Holography

In chapter 2 we discussed bulk reconstruction techniques and their limitations.

We introduced two different qualitative characterizations of a bulk probe’s ability

to cover the bulk: the strong and weak coverage properties. For a subset of bulk

probes, we proved a number of lemmas and theorems, casting light on their ability

to probe bulk regions. We proceeded with the analysis of several bulk probes

for the example of the BTZ-metric, showing that the weak and strong coverage

properties are not satisfied. This implies that at least with these known bulk

probes and techniques, a non-perturbative bulk reconstruction is not possible in

certain regions, which we called “shadows”.

As mentioned above, the holographic dictionary is incomplete and our failure

to fully reconstruct bulk physics is one practical motivation to search for “new

words” in the holographic dictionary. In chapter (3) we discussed properties of

causal holographic information, a bulk construct for which the boundary dual is

unknown. Our most important contribution is that we noted that the subleading

divergences of causal holographic information are generally non-local; they cannot

be written as integrals of local quantities. Secondly, we showed that the coefficient

of the logarithmically divergent term (if present) is universal; it does not depend

on the state or the cutoff procedure. Thirdly, we proposed several dual boundary

quantities, which are all associated to the Von Neumann entropy of a coarse grained

density matrix. An improved proposal of this form was subsequently made by A.

C. Wall and W. R. Kelly.

Cosmology

In chapter (5) we considered the hyperbolic patch of de Sitter spacetime, which

served as a toy model for a “bubble universe”. We compared two different quantum

states and their associated power spectra. We also analyzed the behavior of the

energy-momentum tensor. Our main result is firstly that the power spectrum

for the scalar field in the Bunch Davies must correspond to the power spectrum
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calculated with the reduced density matrix associated to the Bunch Davies state,

clarifying earlier work by S. Kanno. Also, we noted that the difference between

the power spectra associated to these two states is not observable. Subsequently,

we presented a mapping between the hyperbolic and planar patches of de Sitter

spacetime, confirming that the natural hyperbolic vacuum is mapped to the Bunch-

Davies state. Finally we showed that the difference between the expectation values

of the energy momentum tensor in these states is typically UV-finite, but divergent

near the boundary of the hyperbolic patch.

In chapter (6) we came back to the problem of having so many different models

of cosmological inflation. We took a different point of view on the set of single

field inflation models, by considering them in the non-minimally coupled Jordan-

frame. Firstly, we concluded that two types of models appear naturally as attractor

points. In the limits of a flat and steep conformal factor, or weak and strong non-

minimal coupling, these models correspond to chaotic and Starobinsky inflation

respectively. Secondly, we noted that the fine-tuning problem for chaotic inflation

can directly be interpreted in terms of the flat conformal factor limit. Thirdly, we

showed that the Starobinsky attractor is a more universal attractor in the sense

that the energy scale of inflation does not depend on the particular conformal

factor under consideration, as long as the steep conformal factor limit is satisfied.

For the chaotic attractor points, the scale of inflation does depend on the particular

form of the conformal factor under consideration.

Outlook

The quest for new holographic reconstruction techniques continues and promising

results have recently been obtained using methods of integral geometry and quan-

tum information. We hope that we can contribute to the effort of shedding light

on our shadow-regions in future work, with the identification of new bulk probes

and reconstruction techniques.

In the field of cosmology, the interest in chaotic attractor points diminished after

a joint analysis of the BICEP2/Keck Array and Planck groups, which points to a

small tensor to scalar ratio, which is not consistent with chaotic inflation models.

The Starobinsky attractor point is in the sweet spot of models favored by obser-

vations by the Planck satellite. More precise measurements of the tensor to scalar

ratio and of non-Gaussianities in the CMB are crucial to develop a more accurate

model of inflation.
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Samenvatting

THE ENTANGLED UNIVERSE

Context

In het begin van de 20ste eeuw veranderden twee fundamenteel nieuwe concepten

in de natuurkunde ons begrip van het universum. De eerste revolutie werd in-

gezet met de komst van Einsteins algemene relativiteitstheorie in 1915, waarmee

Newtons universele wet van de zwaartekracht werd vervangen. De algemene rela-

tiviteitstheorie veranderde ons begrip van ruimte en tijd. De relativiteitstheorie

geeft een goede beschrijving op grote schalen. De tweede revolutie vloeide voort

uit de ontdekking van de kwantummechanica. De kwantummechanica geeft een

goede beschrijving van de natuurkunde op kleine schalen.

Deze nieuwe ideeën gaven een enorme impuls aan het gebied van de kosmologie

en dat van de deeltjesfysica. De algemene relativiteitstheorie gaf inzicht in de

beschrijving van de geometrie van ons universum. Het waarnemen van de kosmo-

logische roodverschuiving, in combinatie met het ontdekken van de theoretische

beschrijving van een uitdijend heelal met de algemene relativiteitstheorie vormden

de basis voor de modellen van de Oerknal en kosmologische inflatie. Het stan-

daardmodel van de deeltjesfysica werd ontwikkeld met behulp van de concepten

uit de kwantummechanica en de speciale relativiteitstheorie en resulteerde in de

voorspelling en de ontdekking van vele nieuwe deeltjes, zoals recentelijk nog het

Higgs boson.

Hoewel het standaardmodel van de deeltjesfysica en de theorie van kosmologische

inflatie zeer succesvol zijn in het voorspellen en verklaren van observaties, blijft

een aantal vragen onbeantwoord. In de eerste plaats is het verzoenen van de

kwantummechanica en de algemene relativiteitstheorie problematisch. Ten tweede

zijn er vele modellen van kosmologische inflatie, maar welk model geeft een juiste
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beschrijving van ons universum? Daarnaast zijn er nog vele andere open vragen

die niet in dit proefschrift worden behandeld, zoals de zoektocht naar de aard en

herkomst van donkere materie en donkere energie.

Motivatie van het onderzoek

Holografie

Met de ontwikkeling van de snaartheorie is een poging gedaan om de kwantumme-

chanica en de algemene relativiteitstheorie met elkaar te verzoenen; de theorie is als

een huwelijk tussen de zwaartekracht en de kwantummechanica. In de snaartheorie

kunnen deeltjes worden gezien als trillingen op snaren. Ook al is het twijfelachtig

of de snaartheorie de natuurverschijnselen in ons universum verklaart, de theorie

bracht een concrete realisatie voort van het concept van holografie; het idee dat

de vrijheidsgraden in een volume van ruimte kunnen worden beschreven met een

model op een holografisch scherm met één dimensie minder.

Het eigenaardige van holografie is dat het model op het holografische scherm,

de “rand”, geen zwaartekracht kent, terwijl de beschrijving van het volume van

ruimte, de “bulk”, wél zwaartekracht kent. Dit betekent dat een beschrijving van

de zwaartekracht mogelijk is in termen van een quantum mechanisch model zónder

zwaartekracht, althans onder bepaalde omstandigheden. Dit opent de deur om de

zwaartekracht te bestuderen vanuit een heel ander perspectief: het perspectief van

de beschrijving op een “holografisch scherm”.

Holografie geeft een voorbeeld van een dualiteit: een exacte equivalentie van twee

modellen in de natuurkunde. In dit geval betreft het de twee modellen van de bulk

en de rand. Modellen die duaal zijn zien er misschien heel anders uit, maar er is

een woordenboek dat de grootheden en natuurwetten in één model vertaald naar

grootheden en natuurwetten in het andere model. Het holografische woordenboek

is nog incompleet.

Bij een échte dualiteit moet het mogelijk zijn het woordenboek tussen de twee

modellen volledig te ontrafelen. Holografische reconstructie is het vakgebied van

de reconstructie van de bulk fysica, waarbij de natuurwetten en grootheden van

het model op de rand gegeven zijn. In deel I van dit proefschrift wordt ingegaan op

de beperkingen van de bekende reconstructietechnieken en een eventueel “nieuw

woord” in het holografische woordenboek, namelijk de “causale holografische in-

formatie”.
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Kosmologie

Waarnemingen suggereren dat ons universum een fractie na de Oerknal een fase

van versnelde uitdijing (inflatie) doormaakte. De kosmische achtergrondstraling

kan gezien worden als een voetafdruk van de kosmologische inflatie. Het verklaren

van het spectrum van de kosmische achtergrondstraling is dan ook een belangrijke

eigenschap waaraan een model van inflatie moet voldoen.

Een model gebaseerd op de klassieke evolutie van de metriek en een scalair veld,

genaamd het inflaton-veld, voorziet in een effectieve beschrijving van het mecha-

nisme achter inflatie. Quantum fluctuaties verklaren de vorm van het waargeno-

men spectrum van de kosmische achtergrondstraling verbazingwekkend goed.

Er zijn verscheidene problemen met de theorie van kosmologische inflatie. Zo zijn

er bijvoorbeeld honderden verschillende modellen die inflatie kunnen verklaren.

Vele van deze modellen kunnen niet worden uitgesloten op basis van waarnemin-

gen. Desalniettemin zijn die modellen vaak gebaseerd op verschillende aannames.

Dit roept de volgende vraag op: hoe kunnen we verschillende modellen met ver-

schillende aannames onderscheiden in de (toekomstige) waarnemingen? En kunnen

we op zijn minst deze modellen op een nuttige manier organiseren of ordenen?

Resultaten

Holografie

In hoofdstuk 2 werd een aantal bulk-reconstructietechnieken besproken. Bulk-

reconstructie technieken maken gebruik van bulk-sondes; dat zijn objecten in de

bulk, waarvan we idealiter ook weten wat de representatie is in het model op

de rand. Er werden twee verschillende begrippen gëıntroduceerd die kwalitatief

aangeven wat het vermogen van een bulk-sonde is om de bulk te reconstrueren:

de sterke- en zwakke bedekkingseigenschappen. Voor een deelverzameling van

bulk-sondes bewezen we een aantal lemma’s en stellingen, die inzichtelijk maken

hoe “goed” een bulk-sonde is in de context van bulk-reconstructie. Vervolgens

illustreerden wij de beperkingen van bulk-sondes door te kijken naar het voor-

beeld van de BTZ-metriek, waaruit blijkt dat niet aan de sterke bedekkingsei-

genschap wordt voldaan. Dit betekent dat we met de bekende bulk-sondes en

bulk-reconstructietechnieken niet in staat zijn de bulk op een niet-perturbatieve

wijze te reconstrueren. De gebieden waar een niet-perturbatieve reconstructie niet

mogelijk is noemen we “schaduwen”. Zoals hierboven al is beschreven, is het holo-

grafische woordenboek onvolledig. Het feit dat men op dit moment niet in staat is

de bulk helemaal te reconstrueren, motiveert de zoektocht naar “nieuwe woorden”

in het holografische woordenboek.
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In hoofdstuk (3) bespraken we eigenschappen van de causale holografische informa-

tie, een bulk-sonde waarvan niet duidelijk is wat het corresponderende object is in

het duale model op de rand. Onze belangrijkste bijdrage is dat we hebben ontdekt

dat de niet-leidende divergenties van causale holografische informatie in het alge-

meen niet-lokaal zijn; ze kunnen niet worden uitgedrukt in termen van integralen

van lokale grootheden. Ten tweede hebben we laten zien dat de coëfficiënt van de

logaritmisch divergerende term (indien aanwezig) universeel is; deze coéfficiënt is

niet afhankelijk van de kwantum-toestand, of de procedure waarmee de divergentie

wordt gereguleerd. Ten derde hebben we gespeculeerd over de mogelijke kandida-

ten voor een duale representatie van causale holografische informatie in het model

op de rand. Onze voorstellen worden gekenmerkt door het feit dat zij allemaal

de Von Neumann entropie van een grofkorrelige dichtheidsmatrix zijn. Volgend

op onze initiële suggesties, is er recentelijk een verbeterd voorstel van deze aard

gedaan door A. C. Wall en W. R. Kelly.

Kosmologie

In hoofdstuk (5) beschouwden we de hyperbolische sectie van de Sitter ruimtetijd,

die als model diende voor een “bubbel universum”. We vergeleken twee verschil-

lende kwantumtoestanden en de bijbehorende spectra. Ook analyseerden we het

gedrag van de energie-momentum tensor. Ons belangrijkste resultaat is in de eer-

ste plaats dat het spectrum van het scalaire veld in de Bunch-Davies toestand

overeenkomt met het spectrum dat volgt uit de berekening met de gereduceerde

dichtheidsmatrix van de Bunch-Davies toestand. In principe is dat logisch, maar in

recent werk van S. Kanno werd gesuggereerd dat deze twee berekeningen verschil-

lende resultaten geven. Verder concludeerden we dat de Bunch-Davies toestand

en het hyperbolische vacüum niet resulteren in waarneembare verschillen in het

spectrum.

Ook presenteerden we een afbeelding tussen de hyperbolische en vlakke secties

van de Sitter ruimtetijd. Met deze afbeelding laten we zien dat het natuurlijke

hyperbolische vacuüm wordt afgebeeld op de Bunch-Davies toestand van de vlakke

sectie. Vervolgens toonden we aan dat het verschil tussen de energie-momentum

tensoren in deze toestanden UV-eindig is, maar divergeert nabij de horizon van de

hyperbolische sectie.

In hoofdstuk (6) kwamen we terug op het probleem van het grote aantal modellen

van kosmologische inflatie. We namen een ander perspectief op de verzameling

van inflatiemodellen met één scalar veld, door ze in het niet-minimaal gekoppelde

Jordan-raamwerk te bekijken. Ten eerste hebben wij geconcludeerd dat er twee

typen modellen speciaal zijn vanuit dit perspectief; dat zijn zogenaamde aantrek-

kingspunten. In de limiet van een vlakke- en steile conforme factor, ofwel de
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zwakke- en sterke niet-minimale koppeling, reduceren deze modellen respectie-

velijk tot de chaotische- en Starobinsky-inflatiemodellen. Ten tweede zagen we

dat het fijn-afstelingsprobleem (“fine-tuning”) bij chaotische inflatie kan worden

gëınterpreteerd als de vlakke conforme factor limiet. Ten derde toonden we aan

dat het Starobinsky-aantrekkingspunt een universeler karakter heeft dan de chaoti-

sche aantrekkingspunten, omdat de energie-schaal van inflatie bij het Starobinsky-

aantrekkingspunt niet afhangt van de precieze vorm van de conforme factor, zolang

aan de steile conforme factor limiet wordt voldaan. Voor de chaotische aantrek-

kingspunten hangt de schaal van de inflatie wel af van de specifieke vorm van de

conforme factor.

Vooruitblik

In de zoektocht naar nieuwe technieken in het veld van de holografische recon-

structie zijn recentelijk veelbelovende resultaten verkregen door methoden uit de

integraal-geometrie en de kwantuminformatietheorie te gebruiken. We hopen dat

we in de toekomst een bijdrage kunnen leveren aan het belichten van mogelijkhe-

den om de holografische schaduwgebieden in de bulk te reconstrueren, door nieuwe

bulk-sondes en reconstructietechnieken te identificeren.

Op het gebied van de kosmologie is de interesse in de chaotische aantrekkingspun-

ten afgenomen na een gezamenlijke analyse van de BICEP2/Keck Array en Planck

groepen, die wijst op een kleinere tensor-scalar verhouding dan oorspronkelijk ge-

opperd door de BICEP2-groep, wat inconsistent is met chaotische inflatiemodellen.

Het Starobinsky-aantrekkingspunt is juist consistent met de waarnemingen van de

Planck-satelliet. Meer nauwkeurige metingen van de tensor-scalar verhouding en

van de niet-Gaussische afwijkingen in het spectrum van de kosmische microgolf

achtergrond zijn cruciaal om tot een juister model van inflatie te komen.
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