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Preface

Guide for the reader

This doctoral thesis is based on the scientific endeavors undertaken by myself and
my collaborators over the past four years. Two main lines of research can be
distinguished, which are presented in the two parts of this thesis. Even though
these lines of research are largely independent, the reader will also find that there
is an intimate entanglement between the two parts.

This thesis is written from the first person plural (we) perspective, which is com-
mon practice in the field of theoretical physics. The only exceptions to this con-
vention are this preface, the chapter discussing my contributions to previously
published work and the acknowledgments, where I write in first person singu-
lar. The work presented in this thesis was done in collaborations. My individual
contribution to these published works will be clarified after the bibliography.

In the sub-fields that correspond to the two parts of this thesis, the commonly
used conventions are different. At the first page of each part, the conventions used
in that part will be clarified.

The level of exposition in this thesis is such that a starting PhD-candidate should
be able to read and understand it. The introductory chapters of part I and part IT
are suitable for those who have at least some familiarity with the topics at hand.
In these chapters I will refer to lecture notes that give a more extensive treatment
of the introductory topics.
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Introduction

This thesis consists of two parts. The first part is dedicated to topics in holography
and the second part is devoted to topics in cosmology. Both parts will have their
proper introductions. The purpose of this introduction is hence not to explain
concepts in either of these fields. In this introduction we first give a general
context of these two fields. Subsequently we make the reader aware of the overlap
between the two parts.

The first model of gravity appeared in 1687 in Newton’s famous Philosophize-
Naturalis Principia Mathematica. It was superseded a hundred years ago, with
Einstein’s article Die Feldgleichungen der Gravitation. In the same period of time,
quantum mechanics was being discovered. The combination of special relativity
and quantum mechanics led to the development of quantum field theory and the
standard model of particle physics. A quantum theory of general relativity proved
to be much harder to construct. So far, string theory, which originally emerged
from the study of hadronic interactions, is the only theory that successfully incor-
porates gravity and quantum mechanics.

The study of black holes, which are special solutions of general relativity, made
apparent that black holes have an entropy that scales with the area of the surface
that encloses it. This led to the conjecture that the number of physical degrees
of freedom in a volume of space in a theory of gravity does not scale with the
volume, but with the area of the surface that encloses it. This realization led to
the formulation of the holographic principle: in a theory of gravity, the degrees
of freedom associated to a volume of space can be described by a model with
one dimension less. The study of string theory gave an explicit realization of
holography, by means of the AdS/CFT-correspondence. Holography allows the
study of gravity from a different perspective; that of the holographic screen. In
part I we discuss topics in the field of holography.

The study of general relativity led, in combination with the observation of cosmo-
logical redshifts, to the idea of an expanding universe. Friedmann realized that
general relativity admits solutions that describe an expanding universe. For a
number of reasons, which we elaborate on in part II, it is believed that our uni-
verse went through a period of accelerated expansion, or inflation. The classical
evolution of a simple model involving just the metric and a single scalar field
already admits the phenomenon of inflation. Quantization of the perturbations
around the classical evolution of such a model brought forth a set of predictions
that are remarkably well in accordance with observations. In part II we discuss
topics in the field of cosmological inflation.
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Apart from the fact that general relativity and quantum field theory form the
building blocks of both parts of this thesis, there are many other similarities.
For example, quantum entanglement appears as an important concept in both
parts. If the entanglement between two boundary regions is removed, then the
corresponding bulk space tends to pinch of [5] (we will not go into the details here,
see chapter 1 of Part I). This seems to be related to another phenomenon: when
one tries to define a vacuum state for the Rindler wedge, the energy momentum
tensor becomes divergent at the boundary of the Rindler wedge (see chapter 1 of
Part I and chapter 5 of Part II for details). Something similar appears when we
try to define a vacuum state for the hyperbolic patch of de Sitter spacetime, as
described in chapter (5) of part II.

The spacetimes we consider in part I and part II also show similarities; they are
both maximally symmetric solutions of the Einsteins equations with a cosmogical
constant and they are related to each other by a double analytic continuation. In
part I we consider Anti de Sitter (AdS) spacetime in the context of the AdS/CFT-
correspondence, whereas in part II we consider de Sitter (dS) spacetime in the
context of inflation. In fact, attempts have been made to construct a dS/CFT-
correspondence, but much remains to be clarified in this topic.

We invite the reader to discover these and other links in the next chapters.
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Notes for the reader

Conventions
Planck units h=c=1
Minkowski metric nuy=diagonal(-1,+1,...,41)
Bulk indices capital letter indices M, N, ...
Boundary indices Greek letter indices pu, v, ...
Number of bulk dimensions D=d+1

Number of boundary dimensions d

Anti de Sitter radius L,,s: in chapter (1) we will consistently write L ,,5 where
it is appropriate, since this is an introductory chapter. In chapters and we
will not explicitly write L,qs and quantities with unit length should be considered
to be stated in units of L ..

Published work

This part of the thesis is based on (parts of) our work presented in the following
articles:

[4] B. Freivogel and B. Mosk
Properties of Causal Holographic Information
JHEP 1309, 100 (2013), arXiv:1304.7229 [hep-th].

[2] B. Freivogel, R. A. Jefferson, L. Kabir, B. Mosk and I. S. Yang
Casting Shadows on Holographic Reconstruction
Phys.Rev.D D 91, 086013 (2015), arXiv:1412.5175 [hep-th].

In particular, elements of [4] will be presented in chapter (3)), (sub-) sections (3.1)),

(3-5) and (3.6)). Elements of [2] can be found in chapters (2)) and (3)), (sub-) sections
(12.2), (2.3) and (3.4). Chapter is introductory and does not contain products

of our scientific endeavors.






Chapter 1

Introducing holography

1.1 The holographic principle and the AdS/CFT-
correspondence

In this section we will introduce the holographic principle, the conjecture that un-
der certain conditions the degrees of freedom in a volume of space, “the bulk”,
can be described by a theory defined on a surface with one dimension less, “the
boundary”, where the bulk degrees of freedom include gravity, whereas the bound-
ary degrees of freedom do not. Holography provides an example of a duality. A
duality is the equivalence of two different models, which describe the same physi-
cal system. In recent years, a particular realization of such a holographic duality
has been of central interest in theoretical physics: the AdS/CFT-correspondence.
We will describe the key ingredients of this conjectured duality. The AdS/CFT-
correspondence relates a conformal field theory (CFT) living on a d dimensional
spacetime to a theory of gravity in a (d + 1)-dimensional spacetime. The infor-
mation of the gravitational dynamics are hence encoded in the non-gravitational
description of the CFT, which allows us to study gravity from a completely dif-
ferent perspective. We will first describe the developments that led to the idea
of holography and then we will give a heuristic derivation of the most famous
example of the AdS/CFT-correspondence.

In the seventies it was realized for the first time that black holes can emit radiation
and that this radiation exhibits a thermal spectrum [6H9], where the temperature is
proportional to the surface gravity of the black hole. Furthermore, an entropy can
be assigned to a black hole, which satisfies laws similar to those of thermodynamics



1. Introducing holography

[10H12]. The black hole entropy was found to be proportional to the area of the

event horizon Ag: ,

Sy = ToAHE (1.1)

4Gh

where G is Newton’s gravitational constant, k; is Boltzmann’s constant, ¢ is the
speed of light in vacuum and h is Planck’s constant. Naively, one would expect
the entropy to behave extensively and to scale with system volume. However, for
black holes the entropy is proportional to the area of the event horizon. The area
of the event horizon of a black hole was shown to satisfy the area law or second

law of black hole thermodynamics:

dAg
— >0 1.2
1, (12)
where Ay is the size of the black hole horizon. This suggests that the black hole
entropy (|1.1]) can increase only by increasing the size of the black hole.

The generalized second law states that the total entropy (black hole entropy and
matter entropy) increases with time. If the total entropy is not allowed to decrease
by dropping matter into the black hole, then the entropy of matter enclosed by
a surface should not be allowed to exceed , thus providing a bound on the
maximum entropy of a system [13,/14].

The covariant entropy bound, put forward in [15], provides a more concrete formu-
lation of the entropy bounds that were formulated in the context of black holes.

Covariant entropy bound [15,/16]
Let Ap be the area of an arbitrary d-dimensional spatial surface B
(which need not be closed). A D-dimensional hyper surface L is called
a light-sheet of B if L is generated by light rays which begin at B, extend
orthogonally away from B, and have non-positive expansion,

<0, (1.3)

everywhere on L. Let S be the entropy on any light-sheet of B. Then
Ap
S<—. 1.4
< 42 (14
The observation that entropy scales with area instead of volume led to the holo-

graphic principle. The holographic principle as formulated by Susskind and ’t
Hooft (based on unitarity) can suggestively be formulated:

The combination of quantum mechanics and gravity requires the three
dimensional world to be an image of data that can be stored on a two
dimensional projection much like a holographic image [14).

6



1.1.  The holographic principle and the AdS/CFT-correspondence

In the nineties a new conjecture provided a realization of the holographic princi-
ple. The AdS/CFT-correspondence states that under certain conditions, a gravita-
tional theory on a (d+ 1)-dimensional (asymptotically-) Anti de Sitter background
can be described by a conformal field theory (CFT) on a d-dimensional background
(without gravity) and vice-versa.

The AdS/CFT-correspondence arises naturally in the context of string theory.
In particular, the most important realization of the AdS/CFT-correspondence
is the equivalence of Type IIB string theory on AdSs x S® and N' = 4 super-
symmetric U(N) Yang Mills theory in (3 + 1) dimensions |17]. Certain types of
supersymmetric string theories contain stable objects called Dp-branes, which are
(p+1)-dimensional objects on which open strings can end [18-20]. Type IIB string
theory, a maximally supersymmetric string theory in (9 + 1) dimensions, contains
D3-branes. A stack of N D3-branes can have open strings that end either on the
same brane, or on different branes.

Type IIB string theory with a stack of D3-branes contains open strings that end on
the D3-branes and closed strings. We consider the low energy limit in combination
with two different limits, gsIV < 1 and g;N > 1, where g, is the string coupling.

At small gs N < 1, the low energy description decomposes into two decoupled sec-
tors: the massless excitations of the closed strings far away from the branes and the
massless excitations of the open strings, which have a (perturbative) description
in terms of a N'=4, U(N) SYM gauge theory on the branes.

An alternative description, in terms of closed strings can be given at large gsN > 1
and low energies. The massless excitations of the closed strings “far away from the
branes” decouple again. The D3-branes have a large backreaction, couple to closed
string modes and deform the spacetime into a “throat”, which can be thought of
as a potential well. Now the massive closed string modes deep inside the deformed
“throat” also survive the low energy limit.

In both the gsN < 1 and g5V > 1 the closed string modes far away decouple,
leaving us with A/ = 4, U(N) SYM gauge theory in (3 + 1) dimensions for
gsIN < 1 and Type IIB string theory on the “near horizon” region, which can
be shown to have AdSs x S° geometry. These observations led to the conjecture
that Type IIB string theory on AdSs x S° is dual to N' =4, U(N), SYM gauge
theory in (3 4+ 1) dimensions.

The classical supergravity description of the theory on AdSs x S° is good for large
N (small g; < 1) and large gs N, which corresponds to large coupling in the gauge
theory. In this thesis we will assume a strong version of the conjecture, where the
duality holds for all g; N and not exclusively in the N — oo limit. The combination
gsIN = X is also called the 't Hooft coupling and is the effective coupling in the

7



1. Introducing holography

gauge theory. The supergravity description is well known and can teach us about
the description of strongly coupled gauge theories. Vice-versa, the gauge theory
description at weak coupling can teach us about non-perturbative string theory.

But first we need to know how laws of physics and physical quantities in one
theory translate to the dual theory, that is, we need to develop a dictionary. A lot
of work has been done in recent years to make this holographic dictionary. The
fundamental statement of the duality is

Zcrr|do(x)] = ZuB string|Po()], (1.5)

where Zcpr is the CFT partition function. The sources ¢g serve as boundary
conditions for the string theory partition function Zip string, as will be explained
in the next section. In the supergravity limit g;N > 1,95 < 1, a saddle point
approximation of the string partition function can used and the statement
becomes

W(po(z)] = —SsUGRA on shell [P0 ()], (1.6)

where W = log Z is the generating functional of connected CFT correlation func-
tions, also known as the quantum effective action with a source and Ssygra,ads
is the 1B on shell supergravity action.

1.2 Elements of the dictionary

In this section we will introduce elements of the holographic dictionary necessary in
later chapters. First, we introduce Anti de Sitter (AdS) spacetime. Subsequently
we will make the fundamental statement more precise for the toy model of a
single bulk scalar field. Then we will discuss Wilson loops on the boundary and its
holographic bulk dual. Lastly, we will introduce boundary entanglement entropy
and its holographic dual, which is a crucial ingredient for chapter and .

1.2.1 AdS spacetime

In this subsection we introduce Anti de Sitter (AdS) spacetime. Anti de Sitter
(AdS) spacetime is a maximally symmetric spacetime with negative constant cur-
vature. Anti de Sitter spacetime can be embedded in flat space with signature
(= —4---+). The embedding equation is given by

d—1
_Xg - Xc2l+1 + ZXE = _Lids (L.7)
i=1

8



1.2. Elements of the dictionary

d
ds® = —dX§ —dX3,, + Y _dX}. (1.8)

=1

The embedding equation (1.7 as well as the metric (1.8)) are invariant under
0(2,d) transformations. The pullback of the metric (1.8) onto the surface defined
by (L.7) gives an AdS spacetime.

AdS spacetime is a solution of the Einstein equations with negative cosmological
constant. The Einstein Hilbert action with cosmological constant is given by:

1

S T

/dd“x\/fg (R—A). (1.9)

The Einstein equations that follow from extremizing the Einstein Hilbert action
with cosmological constant ([1.9) are given by

R A
Rpu - Egul/ = _5.9;“/- (110)

There exists a maximally symmetric solution of (1.10)), with vanishing Weyl tensor.
In a (d + 1)-dimensional maximally symmetric spacetime, the Riemann tensor is
given by:

R

Ryvpe = m (Gup9vo = Juo9ve) - (1.11)

From the Einstein equations (1.10]) it follows that

(d+1)A

= 1.12
R="— (1.12)
The curvature in terms of L, is given by
d(d+1)

AdS

Two coordinate charts for the (d + 1)-dimensional subspace defined by (|1.7) are
frequently used in this thesis: Poincaré coordinates and global coordinates.

9



1. Introducing holography

Poincaré patch

Poincaré coordinates only cover a part of Anti de Sitter space, the Poincaré patch.
A set of coordinates on the Poincaré patch is given by

Xo = 2<1+ (Ads+2x >>

Laust
(1.14)
L .
X, = 22T i d—1,
z

w2 (14 (s,

which brings the metric into the form

d2®  datdatn,,
ds® = L2, (;era;n“) (1.15)

z

The conformal boundary, defined by lim,_,q22ds? is d-dimensional Minkowski
space.

Global AdS

There are several commonly used global coordinate systems for the global cover of
AdS spacetime, here we present one that is used in later chapters. The coordinates
are defined by

72 t
Xo=1L sin
0 AdS Lids LAdS
X Lot |14 == ! (1.16)
d = COS .
+1 AdS L%ds LAdS
d
>x=r
=1

where the last line implicitly defines a set of d —1 angular coordinates. The metric
in global coordinates defined by (|1.16) is given by:

L2 L2

AdS AdS

r2 2\~
ds* = <1 + > dt® + (1 + ) dr® 4 r2dQ3_,. (1.17)
This coordinate set is sometimes called the “hyper-polar” coordinate set.

10



1.2. Elements of the dictionary

Causal structure of AdS

Another set of coordinates for global AdS makes the causal structure explicit. The
defining equation are given by:
Xo = Lqscoshpcost

X1 = Lagscosh psint
(1.18)

d
Z XzQ = LQAdS sinh? P,
i=1

where the last line implicitly defines (d — 1) angular coordinates on S¢~1. The
pullback of the metric on surface (|1.7) in these coordinates is given by

ds* = L7 o (— cosh? pdt? + dp? + sinh? pdQ_y) . (1.19)

Now a coordinate transformation sinh p = tan R with R € [0, 5] brings the metric
(1.19) in the form

2

L
ds® = S5 (—dt? + dR? + R*dQj_,) (1.20)

which makes the conformal structure of global AdS explicit. The metric d3? =
L2 cos® Rds? is that of a solid cylinder (R, 61,t) where every point still represents
a (d — 2)-sphere. In figure the conformal structure of global AdS is illustrated.

Asymptotically AdS-spaces

Asymptotically Anti de Sitter (AAdS) spacetimes have a conformal structure sim-
ilar to AdS spacetime. For a formal definition, see [22], or 23] for a pedagogical
discussion. The metric of an AAdS spacetime can be written as [24}25]

ds®> = GyundXMdx N

dz? 1
— —|—Zf29,w(z,x)dx"da:”

2
gur(2:2) = g0 (@) + 2292 (@) + .+ 2 (gl (@) + 10 2 by (@) + O(47),
(1.21)
gfg,) (z) is the metric on the conformal boundary:
lim 22ds® = g(0) datdx". (1.22)

z——0

In Einstein gravity with cosmological constant 1) the g,(?,,i) 1<i< g —1) and

hy, are fully determined in terms of gfﬁ% by the gravitational equations of motion

(T.10).

11



1. Introducing holography

Figure 1.1: The conformal structure of global AdS is that of a solid cylinder. In this picture,
the planar patch is a wedge covering only part of the cylinder. Planar AdS can
be thought of as the part of AdS that is accessible to certain accelerated observers
(indicated). A planar patch of AdS can also be associated to a point on the conformal
boundary (P), consisting of the points that are spacelike separated from P. Source:

21).

AdS-Schwarzschild

A particular AAdS metric is the AdS-Schwarzschild, which has the conformal
structure of AdS spacetime, but with a black hole in the centre. The Schwarzschild
black hole metric in (d 4 1) dimensions is given by

ds? = —f(r)dt* + ar +r2dQ3
f(r) (1.23)
2GM '
f(r)=1- a2

The metric of the AdS-Schwarzschild black hole in (d + 1) dimensions is given by

ds? = —frae + 4 2403
f(r) v
2 GM
flr)y=1+ 12 pd-2 (1.24)

AdS

d—2
14 r? e (1 2
- L2 rd—2 L2 ’

AdS Ads

The AdS-Schwarzschild black hole in (2 + 1) dimensions is called the static BTZ
black hole . It is special because one does not recover pure AdSoy1 as GM — 0.
The geometry with —1 < GM < 0 corresponds to a geometry with a conical defect
at the origin.

12



1.2. Elements of the dictionary

1.2.2 Emergence of the radial direction

Now that we have introduced several coordinate sets for AdS spacetime, we can
present an intuitive argument for the emergence of the radial (bulk) dimension in
the AdS/CFT-correspondence. Subsequently, we will briefly discuss the idea that
the radial (bulk) direction can be seen as the RG-scale of the boundary theory.

The first argument is heuristic and it is based on the matching of the bulk and
boundary symmetries. We already noted that AdS spacetime has a SO(2,d)-
symmetry group . Furthermore, it can be shown that the conformal group
in d dimensions is also given by SO(2,d). A particular conformal transformation,
the scaling of the boundary coordinates a* — Az# can be associated to a SO(2, d)-
transformation of the bulk. In the Poincaré coordinates given by ,
the corresponding isometry is given by z* — Ax*, z — Az. This allows an
identification of the (inverse) radial direction as the energy scale:

7 l=uxE. (1.25)

If this interpretation is to be taken seriously, then the near-boundary region would
describe the full UV-complete boundary theory, while the Poincaré horizon z — oo
would correspond to the deep IR-sector of the boundary theory.

These ideas have been made precise in [27H29], where it is shown that, in the super-
gravity limit, the radial direction can be interpreted as the renormalization group
(RG) scale of the theory. The renormalization group equations describe how the
theory behaves as a function of the energy scale. In the bulk, the radial evolution
of the fields is specified by the (gravitational) equations of motion, whereas the
renormalization group behavior in the boundary theory is determined by the RG
or Callan-Symanzik equations. These two prescription are shown to be equivalent.

1.2.3 Scalar field

The analysis of a single bulk scalar field and its dual boundary operator exem-
plifies the underlying principles of the AdS/CFT-correspondence. Generally, the
equations of motion for a bulk scalar field couple to the gravitational equations of
motion through the energy momentum tensor, but in this case the gravitational
equations decouple near the boundary [30] such that we can study the Klein Gor-
don equation solely. We assume large N and a classical geometry. The Euclidean
action for a massive free bulk scalar field is given by

1

573

/ A2y /G (5N (04 0) (O P) + m2P?) (1.26)
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1. Introducing holography

In Poincaré coordinates ((1.14]1.15)) the equation of motion is
220,0,® — (d — 2)20,® + 2°n* 9,0, = m*L3 @ (1.27)

Ads &

The ansatz ®(z,z") = 2z can be solved by

d d\>
A(A—d)=m?L?,,, Ai = 5+ \/(2> +m2L2 . (1.28)

These two solutions capture the leading near boundary behavior of the scalar field.
The A, solution is normalizable, that is, we can calculate its Klein Gordon norm.
The A_ mode is non-normalizable and is associated to the source of the boundary
operator Og that is dual to the bulk field <I>E|

The near boundary behavior of a general solution of the equation of motion (1.27])
is given by

®(2,2) = ¢4 (2)25 (1 + 0(2)) + o (2)2° (1 + O(2)), (1.29)

where ¢_(z) is interpreted as a boundary source; in equation (|1.6)) we can make
the identification ¢y = ¢_:

WM)—] = *ZAdS,on shell[¢—]

., 1.30
= (eI HeOwen), e

where Og is the boundary dual operator of the bulk field ®.

Below, we will further illustrate the AdS/CFT-correspondence by deriving the
two-point function of an (primary) operator Og in a CFT calculation as well as
with a bulk calculation via its dual field ®. The derivation will be heuristic: for
the sake of simplicity we will not work out all the details. A detailed treatment
can be found in [23].

Two point functions in a CFT

First we will “derive” an expression for the two-point function of a primary opera-
tor in a conformal field theory. If a theory is invariant under conformal transforma-
tions, then its two-point functions must be invariant under these transformations;
this requirement constrains the correlation functions in a conformal field theory.
A conformal transformation is a coordinate transformation #(z) such that the line
element ds? transforms as

ds* = Q*(z)ds*. (1.31)

LThe choice where ¢_ (z) has the interpretation of source is called the “standard” boundary
condition. One can also consider the “alternate” boundary condition where the roles of ¢_ and
¢4 are reversed [31].

14



1.2. Elements of the dictionary

These transformations are generated by translations, scaling, Lorentz transforma-
tions and special conformal transformations. A conformal field theory is a field
theory that is invariant under such transformations.

We will consider two-point functions of primary operators. A primary operator O
with dimension A transforms under scaling © — Ax as

O(\z) = \20(x). (1.32)

Now consider the two-point function

(O(2)0(y)) = f(x,y). (1.33)

Invariance under translations requires f(z,y) = f(|z—y|). Invariance under scaling
requires that

(O(z)O(y)) o Ty (1.34)

Conformal invariance completely fixes not just the coordinate dependence of the
two-point functions, but also of the one and three point functions in the CFT, given
the spectrum {O;, A;}, which is the set of primary operators and their dimensions.

Bulk to boundary propagator

Below we will try to recover the CFT result for the two-point function of a primary
operator , using the bulk field ® that is dual to @. The bulk field with
nonzero source can be reconstructed in terms of a bulk to boundary propagator
K(z,z —y) [32] |33]:

ba,2) = [ dyK (o - y)o-(a), (1.35)

where K has to satisfy the equation of motion. One can show that the SO(2,d)
transformation z — =— 2" — z‘fﬁ of the A solution 8)) yields the
bulk to boundary propagator:

z T[AL]

Ay
_— , ca, = 1.36
22+ (x— y)2> ST rinA, - 4 (1.36)

K(Z,ﬂf—y):Cmr(

In the small z — 0 limit we can compare (1.29) and (1.35) order by order. At

order z2+ we find:

7) = ca, / s 0-(0), (137)



1. Introducing holography

Using the fundamental statement (1.30]) and the identification of the source ¢(5) =
¢_, we can calculate connected n-point functions using the on shell gravitational
action:

(71)n+16n
59_(@1) .- 06— (2n)

_ (—1)nom
= 5o (ar).. 0o (an) Aasion shenld-

<O(5171) cee On>connected =

Wip-]
(1.38)

The on shell action Sads.on shen[¢—] is divergent for z — 0 and must be regulated
by a small parameter z = €. The regulated action can be evaluated on the equation
of motion:

1 DI,
S=-3 /dd+1x\/§<l> (O-m?) @+ L9} /z=€ dda —i

D9, D
e /z =

We really should have added counter terms to the action to make it finite, but
the result obtained by using the finite part of (1.39) turns out to be proportional
to the answer obtained by properly renormalizing the action. Substituting (1.29)

into (|1.39) and keeping the finite part, we obtain using (1.37)

|2AJr

a=e (1.39)

zZ=€

FI‘OIII lhlS resu“ we ﬁnd
<O(1')> - 73 X (b+(m)
connec 5 A S,on S )

2 . (1.41)

(O(2)O(Y)) connected = mSAdS,on shell ¢ m

Note that the two-point function of the operator dual to ® satisfies the constraints
of the conformal group . The CFT analysis and the bulk calculation give the
same result, illustrating that the holographic dictionary allows us to do calculations
in either the boundary theory, or the bulk theory. Also note that we have

<O(x)>connected =0 (142)

from the first line of (1.41)) when the source term is set to zero. From the point of
view of the CFT, this is required by translation invariance.
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1.2. Elements of the dictionary

1.2.4 Wilson loop

The ADS/CFT-correspondence is sometimes called a gauge-gravity duality, be-
cause the examples derived from string theory involve boundary gauge theories.
In a gauge theory, the gauge invariant operators are the so called Wilson loops.
For a loop C, the wilson loop W¢ for a gauge field A in representation R is given

by
1

N

where P stands for “path ordered” and A is a normalization constant. The trace

We Trr{Ple*fc 4]}, (1.43)

is taken over the representation of the gauge group. Note: in the context of
N =4 SYM theory the Wilson loop also involves the scalar fields X! [34], which
also transform in the adjoint representation.

The bulk dual of the expectation value of a Wilson loop W(C) evaluated in the
supergravity limit is proposed to be [341[35]:

W) ~e® (1.44)

where S is the proper area of a fundamental string ending on the boundary loop

C (see figure[L.2).

(a) (b)

Figure 1.2: Circular (a) and (long) rectangular (b) Wilson loops C and their corresponding world
sheets. In these pictures, the bulk is the area “on the left” of the boundary surface
at U — oo. The coordinate U is associated to the Poincaré coordinate z by U = z~1
and the Poincaré horizon, indicated by the gray planes at U = Uy correspond to
z — oo. The deepest point to which the world sheets reach is indicated by Us.
(Source: [36])

The expectation value of a rectangular Wilson loop extending far into the past
and future, is associated to the potential of a quark anti-quark pair with the same
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1. Introducing holography

separation. The action of a fundamental string, S, ending on a loop C on the
boundary is divergent, where the leading divergence is proportional to the length
of the loop C. The divergence is interpreted as the unrenormalized self energy of
massive quarks. Proper renormalization is necessary, but simple subtraction of
the area of a string world sheet that goes “straight” into the bulk yields finite
results [34].

1.3 Entanglement entropy

In this section, we will introduce holographic entanglement entropy and its bulk
dual, which are crucial ingredients for chapter and . First we will introduce
the Von Neumann entropy. Then we will explain what the entanglement entropy
of a subregion is, in the context of quantum field theory. Subsequently we will
discuss several proposals for the bulk dual of boundary entanglement entropy.

1.3.1 Von Neumann entropy and entanglement

A quantum system can be described by a density matrix p, which is a linear
operator on the Hilbert space. A density matrix is hermitian, semi-positive definite
and has Tr{p} = 1. The expectation value of an operator O can be calculated by
evaluating:

(O) = Tr{pO}. (1.45)

When the system is in a pure state |1), the density matrix has the form

p =) (Y], (1.46)

which implies that the eigenvalue spectrum contains A = 1 with multiplicity one
and the other eigenvalues are all zero. Non-pure states are called mixed. For
a pure state p = [¢)(¢|, the expectation value of an operator O (|1.45) simply
reduces to:

(0) = Te{p0} = Y ([} (¥|Oln) =Y _(¥|On){nl) = (HIOW),  (1.47)

n n

where we have used that the trace is over a complete basis of orthonormalized
states, such that ) |n)(n| =1L

A general density matrix can be diagonalized and decomposed with respect to an
orthonormalized eigenbasis:

p= Zmli)(ih (ilj) = 6i;. (1.48)
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1.3. Entanglement entropy

The Von Neumann entropy is a measure for the mixedness of a Stateﬂ

Svn = —Tr{plogp}. (1.49)

When we decompose p as in ([1.48)), we find:

Svx ==Y pilogp;, (1.50)
i
which is always positive by virtue of the semi-positive definiteness of the density
matrix and the property Tr{p} = 1, because all eigenvalues are in the range [0, 1].
For a pure state the eigenvalue spectrum is {1,0,...} and the Von Neumann
entropy vanishes.

If a quantum system consists of two (or more) separable parts A and B and if we
can decompose the Hilbert space as

H=Ha®MNz, (1.51)

then we can define a reduced density matriz pa:

pa = Try,{p}. (1.52)

The reduced density matrix reproduces all expectation values of operators that
have support on H 4. The Von Neumann entropy is now called the entanglement
entropy and is a measure of entanglement. It can be proved that the entanglement
entropy satisfies the following properties [37](pages 515 — 521):

Saup < Sa+ SB subadditivity (1.53)
SauBuc +SB < Saup + Spuc  strong subadditivity. '
Related quantities are the mutual information and the relative entropy. The mu-
tual information of two subsystems A and B is given by

I(A,B) =S4+ S — Saun (1.54)

and satisfies
I(A,B)>0 (1.55)

by virtue of the subadditivity of the Von Neumann entropy. The mutual informa-
tion also sets an upper bound for correlations between operators O 4 and Op with
support on A and B respectively [38]:

<OAOB> B <OA><OB> 2
( 10AN1O5] > <2I(4,B). (1.56)

2Sometimes, the Von Neumann entropy is defined with the base two log,. We will use the
the natural logarithm log throughout this thesis, which differs by a multiplicative factor of log 2.
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1. Introducing holography

The quantum relative entropy is a measure of the difference between two states.
For two density matrices py and p; the quantum relative entropy is defined as:

S(p1lpo) = Tr{p1log p1} — Tr{p1log po}. (1.57)

It can be be shown to satisfy the following property [39](page 511-513):

S(p1|p0) >0 Vpl,po, (158)

which is called the positivity of relative entropy. One can show that for a small
change of the state parametrized by A, of the form py = p+ Adp with dp traceless
(up to order O())),

S(palp) = O(X). (1.59)

We will use property (1.59)) in the statement of the first law of entanglement
entropy (|1.62)), but first we need to define the modular Hamiltonian. The modular
Hamiltonian Hy of pg is defined by

e~ Ho
= 1.60
Using (|1.60]), the quantum relative entropy can be written as:
S(p1lpo) = A(Ho) — AS, (1.61)

where A(Hy) = Tr{Ho(p1 — po)} and AS = S(p1) — S(po). Using the positivity
of the quantum relative entropy and (1.59) we find up to first order:

§S = §(H). (1.62)

This is called the first law of entanglement entropy [40]. Indeed, when the density
matrix is thermal, we find the first law of thermodynamics.

1.3.2 Entanglement entropy in field theory

In the previous subsection we introduced the concept of entanglement entropy
for quantum systems. Consider a quantum field theory defined on a (globally
hyperbolic) spacetime M. A spacelike Cauchy surface ¥ now comprises the “full
system” and a subset A C X can be considered as a “subsystem”. For A, a reduced
density matrix can be constructed by tracing over the degrees of freedom in the
Hilbert space H 4c of A€, the complement of A in X:

pa = Trn A} (1.63)
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1.3. Entanglement entropy

Here we will derive a formal expression for the reduced density matrix p4 in terms
of wave functionals and path integrals, in the vacuum state of the “full system”, for
the simple setup with a quantum field theory on (1+ 1)-dimensional flat space and
with A equal to half-space: A = {(x,t) : @ > 0t = 0}. The techniques used in this
example generalize to more complicated setups. The material covered below can
be found largely in [41,142]. We will use coordinates (z,t) with ds? = —dt? + dx?
or in Euclideanized coordinates (z, 7 = it), ds? = dr? + dz?.

First we will introduce the replica trick, a trick used to simplify the calculation of
entanglement entropy:

S(p) = —Tr{plog p}

64
== (%Tr{p”} o

n=1
Another version of the replica trick, that also works for non-normalized p is given
by

S(p) = = lim (nd, —1)Tr{p"}. (1.65)

If the replica trick can be used, then the computation of the entanglement entropy
reduces to the computation of Tr{p™}. The replica trick can be used under the
assumption that the analytic continuation n — R is correct. To check whether the
answers obtained with the replica trick are correct, one can compare the obtained
results to a lattice calculation in the limit where the lattice size goes to zero.

We assume that the replica trick can be used, and proceed to the calculation of
Tr{p"}, for which we will derive a formal expression below.

For a theory with a scalar field ¢(x) a complete set of states is given by

{16,1) : ()|, 1) = S(@)|6, 1)}, (1.66)

where the operator ¢(x) is time independent and the time dependence is carried
by the states (Schrodinger picture). The wave functional for a general state |¥)
can formally be defined as

U(o,t) = (6, t|¥). (1.67)
The Euclidean wave functional of the vacuum state is given by:

U(p,7) = /¢(T)_¢D[q3]e—5[¢3]. (1.68)

——00

Now we divide the z-axis into two “subsystems” with the origin as boundary:
A = {(x,7) : © > 0,7 = 0}. Supposing that we can further decompose the
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1. Introducing holography

eigenstates of ¢ 1)
¢, 7) ~ |or,T) @ |PR,T), (1.69)

where L (R) refers to the interval z < 0 (z > 0), we can see that the components
of the reduced density matriz for the region x > 0 can be obtained by integrating
over all field configurations on the “left” (z < 0):

(PR+,04] p |¢R,—,0-) = (PR, +, 0| ¥)(¥|pr,—,0-)

5 dr(0)=dr+  _ R 1.70
= / Dior] / Dgrjesuen, T

$r(0-)=dr,—
An alternative and equivalent formulation of equation (1.70)) is given by [43]
<¢R,+a OJr‘ P |¢R,77 0*> = <¢R,+a O+|\II><\II|¢R,7aO*>

- /Tﬁoo Digle 59,00 (8(04) — 6.4 ) 8 (9(0-) = 6. ) -

— 00

(1.71)

The expressions and contain path integrals with fixed field values
along the cut x > 0,7 = 0, with ¢ = ¢r + as constraint value at 7 = 0£. The
“product” of n reduced density matrices can be constructed by matching the field
values of ¢iR7 4 with qﬁgi, followed by integration over the matched field value
(this is the analog of matrix multiplication for density matrices of Hilbert spaces

with finite dimension):

<¢R,+70+ |p2|¢R,—70—> 0.8
(PR,+,0 + W) (V[W)(V]pp,—,0-) =

B 5 r(0+)=0r, + ~ - N P (0+H)=¢r B -
/ D[gx] / Digs] / Diggle¥ / DIg,] / Dlgrle51

$r(0-)=¢r PR (0-)=¢n, -

(1.72)

Repeating this “sewing” procedure and taking an overall trace, one obtains a path
integral over a conical defect space with a defect angle of 27w(n — 1).

Hence, calculating Tr{p™} amounts to the calculation of the partition function Z,
on the conical defect space. In the above discussion we did not take into account
the normalization of p in order to make sure that Tr{p} = 1. The full expression
for Tr{p"} is given by

Zn

Tr{p"} = Z (1.73)

where Z,, is the partition function on the conical defect space and Z; is the par-
tition function on %2

3This is a matter of debate, but for a theory on a lattice it is certainly true.

22



1.3. Entanglement entropy

Example: Rindler wedge

We just derived an important expression that allows us to calculate the entan-
glement entropy of a subregion by calculating the partition function on a conical
defect space (if the replica trick can be used). Now we will use a slightly different
technique to derive an expression for the reduced density matrix of half-space, for
a field theory on (1+1)-dimensional Minkowski spacetime. This is an important
example, that has many applications in later chapters.

First we introduce the Rindler wedge, the subset {(z,t) : |t| < z,z > 0} of
Minkowski space. This wedge can be covered by Rindler coordinates T', R defined
by
= RcoshT,
t = RsinhT, (1.74)
ds® = —R*dT? + dR*.
An observer at fixed R can be associated to an accelerated observer in Minkowski

space. Consider the example of a scalar field in (1 4+ 1) dimensions.

Half-space, {(z,t) : * > 0,t = 0}, is a Cauchy surface for the Rindler wedge.
In Lorentzian signature, boosts are generated by & = x0; + td,. One can check
that observers with constant acceleration a, that come in from infinity and turn
at x = é and go back to infinity, move on trajectories generated by &, satisfying

€'V ,,8 = ag”. (1.75)

The boosts generated by & are a symmetry of a Lorentz invariant theory and the
generator is given by

K= / dSIT,, ¢, (1.76)
>

where T is the energy momentum tensor and ¥ is a Cauchy slice.

In the Euclidean picture 7 = it, £ becomes the generator of rotations:
20 + 10, — —i (:vl@T — 7'81) ) (1.77)

The expression for the components of pg is given in the Euclidean picture
and is a path integral with fixed field values along the cut > 0,# = 0. The path
integral can be calculated by slicing the Euclidean plane in angular sections. But
the Euclideanized theory is invariant under rotations which are generated by the

Euclideanized K (|1.76):

Sr(0+)=dr,+

@0+ ) WIon 0 = [ Dl6) [ Digale Bt

= (¢r,+,0+ e > |pr,_,0_).
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1. Introducing holography

We conclude that

e—27rK

p.A = Tr{€727rK} 9

where K is the generator of Euclidean boosts. This is an example of a thermal
density matrix. The associated temperature depends on the normalization of K,
or equivalently, it depends on the choice of accelerated observer. For an observer
with constant acceleration a, translations in proper time are generated by K = a K

(1.79)

and the density matrix is thermal with T" = 3-:

N

K

B Tr{e-TK}

PR (1.80)

1.3.3 A bulk dual for entanglement entropy

Ryu-Takayanagi proposal and beyond

The boundary entanglement entropy of a subregion A of a Cauchy slice ¥ has
been conjectured to be equal to the area of a surface € 4, which is a bulk extremal
surface with minimal area that ends on d.A and is homologous to A [44,/45]:

_ Ac,

= 1.81
S.A 4G ( )

where G is Newton’s gravitational constant. This formula is referred to as the
HRT formula or HRT proposal (Hubeny, Rangamani, Takayanagi). The expression
is thought to hold to leading order in % Recently a limited proof for static
spacetimes of was given in [46]E| There is also surmounting evidence for the
HRT formula; it gives results that are consistent with field theory calculations and
it also automatically satisfies nontrivial properties such as strong subadditivity

(1.53)), which we discuss below.

The formula was originally formulated by Ryu and Takayanagi for static
spacetimes. In a static spacetime, one can consider a constant time slice ¥; in
the bulk. When the boundary entanglement surface d.A lies on (the boundary
restriction of) the constant time slice, the extremal surface ending on 9.A lies

completely on the bulk constant time slice and is simply the minimal surface on
DI

The Ryu-Takayanagi prescription is believed to hold at leading order in large N.
In the AdSs x S example, this means the formula (1.81)) holds at order N2. The

4Fursaev made an early attempt to prove (1.81) [47], but in [48] it was argued that this proof
is incorrect.

24



1.3. Entanglement entropy

subleading correction in N~! is proposed to be given by the bulk entanglement
entropy across the bulk extremal surface defined by (1.81)) [49]:
Ag,

S.A = @ + Sbulk(éA)a (182)

where the leading order contribution is given by (1.81) and Spuk(€.4) is the bulk
entanglement entropy across the extremal surface €4 defined by (1.81]). Another
proposal was given by Wall and Engelhardt [50]:

A
Sa= 5+ Suun(B.a). (1.83)

where § 4 is determined by extremizing the sum of both terms in instead of
just the term corresponding to . The surface § 4 is called a quantum extremal
surface. Note that both quantities involve counter terms necessary to
normalize the bulk entanglement entropy. Details can be found in [49}[50].

Strong subadditivity

The strong subadditivity property is an important feature of the Von Neumann
entropy. The holographic entanglement entropy satisfies the strong subadditivity
property. The fact that it does is nontrivial and provides evidence for the HRT
proposal . Below we briefly illustrate the strong subadditivity property of
holographic entanglement entropy in the case of static spacetimes and constant
time slices, following [51].

The Von Neumann entropy of subsystems A, B, C' always satisfies the highly non-
trivial strong subadditivity property (1.53):

SauBuc +SB < Saus + Ssuc- (1.84)

In a quantum field theory we can recast the strong subadditivity property for
subregions A, B as
Sau +Sane <S4+ Sp. (1.85)

For static bulk spacetimes, we can introduce constant time slices. If A and B
are both subregions of the boundary restriction of a constant timeslice, then their
associated minimal surfaces €4 and g also lie on that constant timeslice. A
pictorial argument now shows that the surface €4 U &g can be decomposed into
a surface that ends on 9(A U B) and a surface that ends on 9(A N B). If these
happen to coincide with the minimal surfaces ending on d(A U B) and (A N B)
respectively, then is satisfied and the bound is saturated. If these surfaces
do not correspond to the minimal surfaces ending on (AU B) and 0(AN B), then
the associated entanglement entropies will satisfy , since the true minimal
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1. Introducing holography

surfaces ending on 9(A U B) and 9(A N B) will yield a smaller area and hence
smaller associated entanglement entropy [51].

In [52], strong subadditivity is also shown to hold for non-static bulk spacetimes.
The fact that the HRT proposal satisfies the nontrivial strong subadditivity prop-
erty provides evidence for its correctness.
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Figure 1.3: Heuristic visual proof of . The union m 4 Ump of the minimal surfaces m 5
and mp, which are associated to the two partially overlapping boundary subregions
A and B respectively, can be decomposed into two surfaces r ayp and ranp which
end on 0(A U B) and 9(A N B) respectively. The area of the minimal surfaces
maup and manp is generally smaller than or equal to the area of raup and ranp
respectively, with equality if maup = raup and manp = ranp- This implies for
the associated entanglement entropies that S4+Sp > Saup+Sanp. (Source: [51])

‘Wald functional

The expression for holographic entanglement entropy is very similar to the
expression for the black hole entropy . In higher derivative non-Einstein
gravity, the black holes entropy receives a correction to given by the Wald
functional. This suggests that we should also consider the Wald functional for the
holographic entanglement entropy, modifying . Below we will discuss the
Wald entropy, the Wald functional and its application to holographic entanglement
entropy.

Wald showed that the black hole entropy is a conserved charge that corresponds
to the symmetry generated by the Killing vector, for which the black hole event
horizon is the (bifurcate) Killing horizon [53]. This statement remains valid for
black holes in higher derivative gravity theories, but the associated entropy and
conserved charge are given by the Wald functional [53H55]:

W = —27r/ d*avh oL eeq, (1.86)
H

SR
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1.3. Entanglement entropy

where H is the Killing horizon, ¢ its bi-normal and

oL _ oL oL
5Rabcd N 8Iilbcd “ 8va1 Rabcd
oL
.V
OV (4 -+ V) Raved

(1.87)

+(=1)"V(q, - +...,

where L is the gravitational Lagrangian.

A (bifurcate) Killing horizon is a special surface, since its extrinsic curvature van-
ishes by virtue of the Killing equation V&, + V€, = 0. For a minimal surface, the
extrinsic curvature does generally not vanish completely, even though the trace of
the extrinsic curvature does vanish [45]. Tt is not a priori clear that the Wald func-
tional can be used for a generalization of the holographic entanglement entropy
formula.

In [56] it was shown that the Wald functional needs to be modified in order to
yield consistent answers for the holographic entanglement entropy. For Lovelock
gravity, a modification of the Wald functional is proposed in [56]. A more general
formula is given in [57].

Another difference with the black hole entropy is that the holographic entangle-
ment entropy yields divergent answers, while the black hole entropy is finite, due to
the fact that the area of the horizon is finite. Below we will describe the divergence
structure of holographic entanglement entropy.

Structure of divergences

Holographic entanglement entropy is given by the area of a bulk surface that ends
on the boundary . The bulk metric diverges near the asymptotic boundary.
The area of the extremal surface must be regulated by implementing a bulk IR-
cutoff. The leading divergence is proportional to the area of 0.A:

0
SAcxed—“i-l—“-—&-vlog(e)—i—... (1.88)

These divergences are consistent with field theory calculations. From the field the-
ory point of view, the leading area term ([1.88)) can be associated to entanglement
due to the short distance degrees of freedom, across the entanglement surface 0.A.
In the field theory calculation, a short distance or UV cut off must be used to reg-
ulate the divergences. The leading divergence is independent of the details of the
background metric as long as the cutoff scale is much smaller then the curvature
scale.

Power law divergences are generally cutoff dependent. For smooth surfaces 0.4,
in a field theory on a d-dimensional background, there is also a logarithmically
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1. Introducing holography

divergent term for even d. The coefficient of this logarithmically divergent term
is universal for conformal field theories: it does not depend on the cutoff nor the
state. The coefficient does depend on the geometry of the entanglement surface
OA. In (3+ 1) dimensions, the coefficient of the logarithmically divergent part of
the entanglement entropy is given by [5§]

a c 1
- Roa+ —— KO K 4 ZK K 1.89
7207r/3A R T aA( o T3 ) (1.89)

where a and c are the central charges of the theory. Note that these coefficients

are invariant under boundary Weyl transformations g, — €2 g,

Example: the strip

We consider the boundary region A = {(Z,t) : |z1] < 2L L,t = 0} for d > 2,
with a pure AdS bulk metric in Poincaré coordinates (1.14][1.15) ]| The holographic
entanglement entropy is given by (|1.81). We need to minimize the area

LiRr
2L Ads oM 9N
— ADS
A—/d$1[ Lin dxg...dxd_l\/det Dz al'ﬂ GMN
2L Ads

dz\?*1 1 1142
df
:LIRQLAC‘S/CM1 ((dxl) 22+22> <22) ’

where Lig is a boundary IR-cutoff along the spatial coordinates orthogonal to x;.

(1.90)

The Lagrangian does not explicitly depend on x

J <dz>2 +1, (1.91)

so the equation of motion for z(z) can be written in terms of a “conserved quantity”
Zx
2(d—1
9z _ (i) @D _ (1.92)
ox z
. . . 9 . d .
where z, is the “turning point” of the bulk surface: chZl(Z*) =0.

Now we can solve for z, in terms of w:

—1

w :/m}uids dl'/:/Z* dz'dfaj,:/z* i P
2L s 0 0 dz 0 \/Zf(dfl) — 22(d—1)

1 _
xd 1
= 2, dr——.
0 V1 — p2(d-1)
) i
5Here we consider dimensionless coordinates z — LAZ , Tt — #ds’

ds
still equal to (1.15).

(1.93)

for which the metric is
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1.3. Entanglement entropy

The integral (1.93]) can be done and gives

d T 2d—1
= —meer [ggjj (1.94)
V2L sas T[34=2]

With z, (1.94) and the “equation of motion” (1.92)) we can calculate the area:

_w LR 9 i
_ oyd—1 ds 2L ads dxy 1 1 1
A= 2LAds/E dz/_ Lin dxs...drg_1 ((le) ?4_272 =

Lads 2L Ads

() () 3 () ) o

2(d—1)}
(1.95)
The leading divergence is proportional to the area 9.A, which is 2Lfl§ 2 for the
strip. There is no logarithmically divergent term (d > 2), which is in agreement

with (1.89)), since both the intrinsic curvature and the extrinsic curvature of 0.4
vanish everywhere on the strip.
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Chapter 2

Shadows and holographic
reconstruction

In this chapter we first give a non-exhaustive introduction of bulk reconstruction
techniques: techniques that are used to reconstruct the bulk geometry, the bulk
fields and the bulk dynamics from the boundary fields and dynamics. Then we
describe the appearance of bulk regions where at least one of the reconstruction
techniques fail. This does not mean that holography is wrong or incorrect; it is
perfectly possible that we will be able to reconstruct all the bulk physics in the
future, by discovering different “entries” in the holographic dictionary, or different
techniques to make use of them. The necessity of discovering new bulk probes
also motivates the study of causal holographic information, which we will discuss

in chapter .

2.1 Holographic reconstruction

Holographic reconstruction is the construction of quantities on one side of the
holographic duality with knowledge of the state and theory on the other side. The
terminology of “holographic reconstruction” is mostly used in the context of re-
construction of bulk quantities with knowledge of the boundary theory and state.
In this section we will give a non-exhaustive description of reconstruction tech-
niques. Some of these reconstruction techniques already assume a semi-classical
bulk geometry and attempt to reconstruct field values [59-62]. Other techniques
are used to reconstruct the dynamics of the bulk fields [63-65]. The most funda-
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2. Shadows and holographic reconstruction

mental reconstruction techniques do not even assume a spacetime a priori; a point
of spacetime needs to be defined carefully [66].

Note that a subset of these techniques make extensive use of holographic en-
tanglement entropy. One could hypothesize that the bulk is a representation or
geometrization of the entanglement structure of the boundary theory. It is not
immediately clear how this hypothesis relates to the interpretation of the radial
direction as an RG-scale, which we discussed in section , but there are no
apparent contradictions either.

We will first discuss the idea of subregion dualities. Then we will briefly present
techniques that can be used to reconstruct bulk fields, bulk spacetime and bulk
gravity.

2.1.1 Reconstruction & subregion duality

An important question in the context of the AdS/CFT-correspondence is whether
a subregion duality exists. A subregion duality is a duality between a boundary
subregion and a bulk subregion. Given the density matrix of a subregion, how
much of the bulk can one generically reconstruct? This question has been analyzed
in [67H69]. Below we discuss the two main candidates for such a subregion duality.

Causal wedge

The causal wedge 44 is a bulk subregion associated to a boundary subregion
A. Consider an asymptotically AdS manifold M with asymptotic boundary oM.
First we define the boundary causal diamond of A; it is the union of the boundary
future and past domains of dependence of A:

Oa=DF,(A)UDy,(A) . (2.1)

The so called causal wedge 44 of A is the intersection of the bulk future and past
domains of influence of { 4:

= T5(04) N T (0n). (2.2)

In pure AdS spacetime, the causal wedge of a boundary ball on a constant time
slice can be mapped to the AdS-Rindler spacetime. Even though there are difficul-
ties in the construction of the smearing function, a subregion duality is thought to
hold for the AdS-Rindler wedge, because the AdS-Rindler wedge can be mapped
to the exterior of a hyperbolic black hole. The exterior of a black hole is expected
to be reconstructable with the boundary data. Another argument for the propo-
sition that there is a subregion duality between A and its causal wedge 44 is that
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2.1. Holographic reconstruction

a boundary observer could send accelerated observers into the bulk, which could
collect data from the causal wedge 44 and return to the boundary causal dia-
mond ¢ 4. These arguments make a strong case for a subregion duality between a
boundary subregion A and its causal wedge 44 and it is believed that the causal
wedge ¢4 is the minimum subregion that is reconstructable with full knowledge

of PA-

Entanglement wedge

Another candidate for a subregion duality is the boundary subregion A and its
associated entanglement wedge [70]. Consider the boundary subregion A and the
bulk extremal surface € 4 which computes its entanglement entropy . There
exists a spacelike surface R 4, that is part of a bulk Cauchy surface, such that
ORA4 = AU €E4. The entanglement wedge is the bulk causal diamond for this
spacelike surface:

Wa =D}, UDg , (2.3)

where D%A is the bulk future (past) domain of dependence of R 4. In [70] it was
argued that this region should be reconstructable with the information of p AEI

2.1.2 Reconstruction of the fields

In section we discussed the relation between a bulk scalar field ® and its
boundary dual Og and in particular the bulk to boundary propagator which allows
the bulk scalar field ® to be expressed in terms of the boundary source cZ)_E|
Another approach is to reconstruct the unsourced bulk scalar field ®, in the semi-
classical regime, with knowledge of all expectation values (Og) of the boundary
dual operator. This problem has been studied in [59-62], making use of a smearing
function. Below we will briefly discuss the basics of this reconstruction method,
which assumes both large N and large t Hooft coupling.

A free scalar field ® is taken to have normalizable fall-off near the boundary; in
Poincaré coordinates (|1.14}f1.15))

O(z,2) ~ 254 d (), (24)

for small z. The approach here is slightly different from the approach in section
(1.1), which goes under the name “differentiate”, whereas the method that is
presented here is called “extrapolate”. These methods are shown to be equivalent
[72].

'Tn |71] a more precise proposal was made.
2In a theory with bulk interactions the bulk to bulk propagator is also necessary.
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2. Shadows and holographic reconstruction

The aim of [59] is to construct a smearing function K such that
O(z,2) = /ddx'K(x'|z,x)Oq>(x'). (2.5)

Several methods to explicitly construct the smearing function are presented in [59],
but here we will only discuss the “mode-sum approach”.

We can expand the field ® and its normalizable mode ¢, (2.4) in modes labeled
by quantum number k£ and keep the dependence on the radial coordinate z:

O(z,z) = /dd_lka,gFE(z,x) + c.c.
(2.6)
di(x) = /dd_lka,;f,;(z,x) +c.c.,

with Fy = 28+ f» where k is typically associated to conserved quantities and the
set of solutions {fx} is taken to be orthogonal:

/ddflekf(x)f,;, (z) = N(k)6%1(k — k). (2.7)

We can determine the coefficients {a;} by exploiting the orthogonality relations

E7) 1
%=N®/W1U%MAM (2.8)

Now we have, using (2.6) and ([2.8)

O(x,2) = /dd_lkaEFE(%z) +c.c.

— /dd_lkz\le%') (/ dd—lx’fg(x’)¢+(x’)) Fr(z,z) + c.c.

(2.9)

If we can exchange the integrals over «’ and k in (2.9)) we obtain an expression for
the smearing function:

B(z,2) = / i1 ( / ddlszE) f;(a:’)F,;(x,z)> 6. () + c.c.

(2.10)
— [a K @0 @),
with 1
K(2'|z,x) = /ddlkN(E) f2(@) Fy(x,2) + cc. (2.11)

In both the Poincaré patch as well as global AdS, the smearing functions can be
constructed. The smearing function is mot unique. In global AdS patches, the
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2.1. Holographic reconstruction

smearing functions K (a'|z,z) constructed in [59,/60] have support on boundary
points {2’} spacelike separated from the bulk point (z,z). In the Poincaré patch
the smearing function has support on the whole boundary for d even (D odd).

An interesting question is whether a smearing function exists for AdS-Rindler
space and other spacetimes. For pure AdS, corresponding to the vacuum state
of the boundary CFT, the causal wedge associated to a boundary ball can be
mapped to AdS-Rindler spacetime. In subsection we argued that the causal
wedge should be reconstructable with knowledge of the state on its associated
boundary region. An expression in the form of certainly exists for AdS-
Rindler spacetime, but the integral over k is not convergent after exchanging it
with the integral over z’ E| The construction of the smearing function in AdS-
Rindler is thus at least problematic.

Reconstruction of the fields via the smearing function is possible for some bulk
geometries, but not for every bulk geometry. In [73] it is argued that the smearing
function does not exist when there are bulk normal modes with exponentially small
boundary imprint. In [74] it is proposed that continuous bulk reconstruction is
only possible when every null geodesic in a given bulk subregion has an endpoint
on the associated boundary subregion. Note that the reconstuction of bulk fields
using smearing functions has been extended to nonlinear level in [62] [61] and to
gauge fields in [75].

2.1.3 Reconstruction of spacetime

Recently, reconstruction techniques have been developed using a quantity called
differential entropy [66]. In this form of reconstruction, an attempt is made to
define a point in spacetime. The discussion in [66] is limited to AdSo41 spacetime
and quotients of AdSs1 (conical defect and BTZ geometries). At the moment of
writing, it is not clear how to generalize the techniques presented in [66] to higher
dimensional spacetimes [76,/77].

For static spacetimes we can introduce constant time slices. Let 6 € [0,27] be a
coordinate on a constant timeslice of a compact boundary. To any value 6, we can
associate an interval (6 — «(6), 60+ «(0)) on the (1+1)-dimensional boundary. The
differential entropy is given by

2m a
Ela] = 1/0 de dsla]

, (2.12)

2 da a=a(9)

where S[a(#)] is the holographic entanglement entropy associated to an interval
centered around 6 with width 2a(6). In [78] and [66] it is shown that for —1 <

3In [60] an attempt is made to cure this by complexifying the boundary.
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2. Shadows and holographic reconstruction

a/(0) < 1, (2.12) corresponds to the length of a closed bulk curve:

circumference of closed curve associated to «
4G '

Roughly, a point in spacetime is defined in [66] as a function «, where « is such that

Ela] = (2.13)

the corresponding closed bulk curve has zero circumference. Details can be found
in [66], where a more precise definition of bulk points is given. Furthermore, a well
behaved distance function on the set of bulk points is defined in [66]. The definition
of points and relative distance allows the construction of the bulk manifold and
coordinate charts.

The extension of these definitions to the conical defect spacetime and the BTZ
black hole require more bulk probes than just the set of minimal surfaces; non-
minimal extremal surfaces and surfaces spanning between both external regions
of the BTZ black hole are required. Generally, the CFT interpretation of these
surfaces is unclear. For certain (2 + 1)-dimensional conical defect bulk spacetimes,
a CFT interpretation of non-minimal extremal surfaces is given in terms of a
boundary quantity called “entwinement” [79].

2.1.4 Reconstruction of gravity

In order to reconstruct dynamics in the bulk, we must consider dynamics on the
boundary, or in other words, we must consider perturbations of both the bulk
and boundary state and find out how they are related. A different boundary
states corresponds to a different bulk geometry, for example, the CFT vacuum
corresponds to a pure AdS geometry. Another example is a thermal state in the
CFT, which is dual to an AdS-black hole bulk geometry. Below we will briefly
present the techniques used in [65] to construct gravitational dynamics in the bulk
from dynamics in the boundary.

For small perturbations in the quantum state of the boundary, the first law of

entanglement entropy (1.62)) applies. Both sides of the equation (1.62) can be
expressed in terms of bulk duals, which means that the first law of entanglement

entropy gives a bulk condition for every boundary surface A. A subset of these
conditions is shown to be equivalent to the linearized Einstein equations [65] (see
also [64] [63]).

The first law of entanglement entropy (|1.62)) holds to first order in a small change
of the boundary state:
d(H) =48S. (2.14)

For boundary balls B4~! the density matrix and its modular Hamiltonian (1.60))
are known; the modular Hamiltonian for the boundary ball Hp is an integral of a
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local operator [80]:

2 = =2
Hp =2 / ity BBl (2.15)
B(R.zo) 2R

The energy momentum tensor, appearing in (2.15)), can be associated to the bulk
metric via the holographic dictionary [81]:

def?)
T, = —Ads g(d) 2.16
" 160G *¥ ( )

where g,(f,l) is as in expansion 1) In higher derivative gravity [65] argues that
expression (2.16)) holds up to a different coefficient.

The change in entanglement entropy can be found by varying the holographic
entanglement entropy of the sphere (1.81)) with respect to the bulk metric. Both
the bulk surface and the position of the bulk minimal surface change, but the latter
effect is only at second order in the metric perturbation due to the extremality
condition in its definition. The change in the entanglement entropy can hence be
expressed as an integral over the original surface €4 (to first order in 6g,, = hu.).
For theories for which the entanglement entropy is given by the area of the minimal

surface (1.81)) [65],

0SS = LLi;sS / di g 2274 (5’7 — L(xz — i) (2’ — x])> hii(z,to, X)
8G  Jiz-zol<r R? 0 07 A

(2.17)

The holographic dictionary now relates bulk quantities and to the left

and right hand side of , giving a constraint for each boundary ball B~!(R)

as well as for all boundary balls in boosted boundary frames. These constraints

are show to be equivalent to the linearized gravitational equations around AdS,

given certain boundary conditions [63}/65].

In [65], the first law of entanglement entropy is shown to give the linearized
gravitational equations of motion even for higher derivative gravity theories. An
important step in this derivation is the observation that the bulk surface associated
to the entanglement entropy of a boundary ball is the bifurcation two sphere of a
Killing horizon. This is a special property of the entanglement entropy of a bound-
ary ball with the CFT in the vacuum state (AdS). For general states and boundary
subregions A, the Ryu-Takayanagi surface is not the bifurcation two sphere
of a Killing horizon. This limits the potential of the techniques presented in [65].
At the moment of writing, it is unclear how the gravitational equations can be
derived in more general settings and in particular in the “shadow regions” (see
section that some geometries exhibit.
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2. Shadows and holographic reconstruction

2.2 Holographic shadows

In section we discussed several reconstruction techniques and their limita-
tions. Holographic entanglement entropy plays a central role in many recent re-
construction attempts. In [2] we quantified the ability of Ryu-Takayanagi surfaces
to probe the bulk. We also analyzed the ability of Wilson loops to probe the bulk
geometry. Regions that cannot be probed by bulk probes are called shadows. In
this section, we present some general properties, terminology, and theorems that
will prove useful in the analysis of holographic shadows. We will also illustrate the
appearance of shadow regions with the example of the BTZ bulk geometry.

2.2.1 Minimal area surfaces

In section we presented the well known holographic entanglement entropy
formula . The bulk surfaces € 4 associated to the entanglement entropy of a
boundary subregion A play an important role in recent reconstruction techniques.
In pure AdS spacetime, minimal surfaces associated to entanglement entropy of a
certain boundary subregion pass through every point in every (spacelike) direction.
However, in states corresponding to other geometries, like the AdS-Schwarzschild
geometry, certain regions cannot be probed by minimal surfaces, or only partially.
In this section we present the definition of two different degrees of “probe-ability”.
We only consider static spacetimes.

Let 3 be a constant time slice of the bulk, with a natural extension 9% to the
boundary.

The Strong Coverage Property (SCP):
Ve € ¥, Yo € T, %3, 44 C 9% whose dual minimal surface €4 intersects = with
tangent vector along v.

Intuitively, this says that the entire bulk and its tangent bundle are “scanned
over” by the minimal surfaces €4 of all possible boundary regions .A. This is
satisfied by empty AdS, and also holds up to small perturbations thereof. In
(24 1) dimensions, SCP is equivalent to the condition for boundary rigidity [82],
which means that knowing the entanglement entropy for every boundary region .4
uniquely determines the bulk geometry. SCP is also a necessary condition for the
“hole-ographic” reconstruction of |78] (see also [79]). However, the requirement
that one covers the entire tangent bundle is quite strong, and is not a priori
necessary for a successful reconstruction scheme. We will therefore also consider
a weaker property:
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2.2. Holographic shadows

The Weak Coverage Property (WCP):
Vz € ¥, 3A C 9% whose dual minimal surface & 4 intersects x.

This simply means that every bulk point is covered by the minimal surface € 4 of
some boundary region A, but not necessarily scanning over all orientations in its
tangent space. Note that this is not sufficient for boundary rigidity in 2 dimen-
sions, nor for the aforementioned “hole-ographic” reconstruction. Nevertheless,
this should be a minimal requirement for any attempt to reconstruct the bulk
using this particular geometric dual.

It is worth pointing out that in the case of a disjoint boundary region A = |J,; A;
with dual minimal surface €4 = I B; consisting of multiple components B;, there
need not be a direct correspondence between A; and B;. This is illustrated in the
case of two disconnected boundary subregions in figure[2.1] There are two ways for
the two bulk curves to end on the four boundary points that specify 9.4 without
crossing, so there are (at least) two different local minima of their total area. Since
the Ryu-Takayanagi proposal specifies €4 as possessing the smallest area of all
bulk surfaces with € 4 = 0.A, the choice of which of these two bulk possibilities
to employ is determined by comparing their respective areas.

As illustrated in figure as the boundary subregions A; are continuously in-
creased, the components of the bulk dual surface are pushed inwards until, at
some critical point, there is a switchover to the other possible combination of B;,
which are then pushed outwards towards the boundary as the A; continue to grow.
This provides a simple example of a key concept underlying holographic shadows:
rather than mirror the continuous deformation of the boundary, the bulk dual sur-
face may undergo a discontinuous switchover in order to be the global minimum.
This is a phase transition from the boundary point of view [83], but here we will
focus on the bulk implication. This switchover leaves out the middle region, and
thereby limits the region of the bulk that can be probed.

2.2.2 Generalized minimal surfaces

Before proceeding, we shall first introduce a more general formulation of minimal
bulk surfaces. In particular, one can formally take the Ryu-Takayanagi proposal
as a special case of the following general prescription:

e Let B C ¥ be an (n < d)-dimensional surface in the bulk, and define the
geometric quantity

L(B):/B’d"g’ Flgw) - (2.18)
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2. Shadows and holographic reconstruction

Figure 2.1: The left figure shows a disconnected boundary region A = | |; A; (blue) and the
corresponding disjoint minimal surface €, = |_|j B; in the bulk (red). As the
boundary region is continuously increased, the bulk surfaces B; are pushed towards
the dashed curve, at which point € 4 discontinuously switches to the new global
minimum €4 = |_|j B;- shown in the right figure. The region inside the dashed
curves cannot be probed with this particular choice of bulk dual.

Over this surface, we integrate the area element and the function F' which
only depends on the local geometry. This is then a very intuitive probe of
the bulk geometry, as it does not care about the shape of B, but rather only
about how far B reaches into the bulk.

e For an n-dimensional boundary region A (or its boundary d.4), one finds
an observable ) associated with the minimal value of the above geometric
quantity:

Q(A) = Min[L(B)] (2.19)

OB=0A

When n = (d — 1) and F = 1, this reduces to the Ryu-Takayanagi proposal with
L = area and (Q = entanglement entropy. In addition, when n =1 and F = \/—gs,
this reduces to the action of certain Wilson loops. Here, we will also limit ourselves
to quantities with F' > 0 and

lim L(B) =00 . 2.20

Jim L(B) = oo (2.20)
In other words, L(B) is a positive definite quantity which diverges as one deforms
B toward the boundary. It is therefore very natural to expect the minimal surface
to reach into the bulk. This is related to boundary observables which have UV
divergences and need to be regulated.
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2.2. Holographic shadows

We can now study the failure of the coverage properties above, and the correspond-

ing “holographic shadows,”

in a more general manner not limited to minimal area
surfaces vis-a-vis Ryu-Takayanagi. Other holographic duals can suffer from exactly
the same obstacle, namely that the bulk probes fail to cover the entire manifold,
thus placing a geometric limit on such reconstruction efforts. Our generalization
makes it easier to compare different holographic probes and see which one is better,

in the sense of which probe casts the smallest shadow.

2.2.3 Seeking shadows

In this section, we will limit ourselves to O(d) symmetric bulk geometries and
O(n) symmetric, simply connected boundary regions (disks). In such cases we
can specify a bulk point p by its radial distance to the origin (the “centre” of the
bulk), r.. This point will be the O(n) fixed point of a unique, O(n) symmetric
n-dimensional surface B(r.) (modulo the remaining SO(d —n) rotation) such that
the first order variation of (2.18)) is zeroE|

Proceeding from r,, we follow the surface B(r,) to the boundary at r = co to find
the (n —1)-dimensional boundary sphere .4 on which it ends, 0.A = 9B. We define
the interior of A to be the side closer to the initial bulk point p. In other words,
one can deform from B to A without going through r = 0. Denote the radius of
this boundary ball A as 6 (r*)ﬂ We know two special values of this function:
Ooo(00) = 0 and 0,,(0) = 7/2. The first is due to a surface B(oo) that effectively
never leaves the boundary, while the second comes from symmetry: it is basically
the surface that cuts the bulk into two halves.

This function is straightforward to compute (at least numerically), and possesses
a number of useful properties. First of all, there is a condition which guarantees
that a holographic reconstruction scheme will work:

Theorem 1: The set of all simply-connected, O(n) symmetric boundary regions
(balls) satisfies the Strong Coverage Property if 0 (r+) € (0,7/2) is monotonic as
T« goes from O to oo.

Conversely, there is also a condition which guarantees that holographic reconstruc-
tion will fail:

40ne might intuitively treat 7. as the minimal radius reached by this critical surface, but
there is no a priori reason for this identification to hold for an arbitrary positive function F' in
(2.18). We will be very careful not to assume this identification in the proofs that follow.

>There might be cases where some critical surfaces B(ry) do not reach the boundary, so s
is not well-defined. This is exactly what happens when there is a horizon, but such cases may
be more general.
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Theorem 2: If df./dr. > 0 as r. — 0, then the weak coverage property fails
for the set of all simply-connected, O(n) symmetric boundary regions (balls).

In appendix (2.Al), we will prove these two theorems using the following lemmas:

Lemma 1: For a boundary sphere OA, the bulk surface B that minimizes L in
(12.18) with OB = O.A must be spherically symmetric.

Lemma 2: If the boundary anchors OB and OB’ do not cross each other, but
the corresponding bulk surfaces B and B’ do, then B and B’ cannot both be mini-
mal surfaces.

Proofs of these Lemmas will also be given in appendix (2.A).

2.3 Example: shadows for the BTZ metric

In [2] we analyze shadow regions for the AdS-Schwarzschild, the BTZ and AdS-
star geometries. Here we will illustrate the occurrence of shadow regions with
the example of the BTZ bulk metric, investigating its shadow regions for minimal
surfaces and rectangular Wilson loops . Obviously, 0 (r) is undefined if
r, falls within the horizon radius of a black hole, hence from now on r, > rg is
always implied, where 75 indicates the position of the horizon (see also page .

The homology condition in is crucial for the behavior of minimal surfaces
in singular spacetimes. In geometries with a black hole, there exist surfaces B
such that 0B = JA that are not continuously deformable to A. Suppose & 4 is the
minimal surface homologous to A. Then € 4 satisfies 0€ 4 = 0.A°, where A is the
complement of A on a spatial slice of the boundary, but fails to be homologous to
A¢. We can add the horizon area to such a surface, such that it is homologous to
a certain boundary subregion. By changing A, there might be a transition from
a minimal surface that does not include a component that covers the horizon, to
a surface that does. This is another type of switchover, which will happen for
boundary balls when

A(0s) = Al — 00) + ABn (2.21)
where Ay is the area of the component that wraps the black hole horizon.
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2.3.1 Minimal surfaces and shadows for the BTZ metric

A static BTZ black hole is described by the metric (see also section [1.2.1))

ds? = —(r2 —r%) dt* + & + 72 de? (2.22)
= H —']"2 r . .

r2—r3,

To determine the shadow region, it is sufficient to consider constant time slicesﬂ
In d = 2 the boundary is a circle, and the subsystem A an interval on the circle.
The bulk extremal surface associated with the entanglement entropy is then
simply a geodesic anchored at the two-points that comprise d.A. We consider as
a boundary region the interval (—0, ), where the subscript co indicates that
the boundary corresponds to r — oo in our coordinates ([2.22]).

O
35

30
25
20H

15

Figure 2.2: O (r+) for a static BTZ black hole with rg = 1.

The Lagrangian describing such a bulk extremal surface is given by

L=\g s, =5 (229

|
=
=
S

Since the Lagrangian does not depend on 6, there is a conserved momentum due
to translation invariance in 6. Hence:

oL
— ' — L = constant . (2.24)
or’
We may fix the constant by the demanding that the surface reaches its minimal
value r, when ' = 0. This leads to the first-order equation of motion

%:L\/ﬂf?‘f\/rzf@i (2.25)

T

SWe generalize to dt # 0 subregions in appendix and find that these suffer even larger
entanglement shadows.
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which may be integrated to obtain

b dé 1 r2 412
oo = dr— = —cosh™' [ =—£ ) . 2.2
/T* " dr 2ry o8 (r% — r%) (2.26)

This curve is plotted in figure Note that it diverges when r, — rg, and
decreases monotonically with increasing r,.

We may invert (2.26) to obtain:

pe=—H
* " tanh (Ouory) (2.27)

For small enough 7., 6. becomes larger than = (see figure , which means
that the corresponding geodesic circles the black hole at least once. But a surface
that intersects itself cannot correspond to a local minimum of the area functional
(intuitively, the kinks in the intersection can be infinitesimally smoothed out to
reduce the area). Thus for the purpose of identifying the appropriate bulk probe,
we only care about the range 6., < m, since a switchover must occur before 6
reaches this value. The alternative global minimum is then a surface with two
disconnected components: a geodesic connecting the endpoints at +6., on the
opposite side of the black hole, and a separate part that encircles the horizon; see

figure

by

Figure 2.3: Minimal surfaces for boundary intervals of varying size 6, for a black hole of
radius (red circle) rg = 0.1laqs (left) and rg = laqs (right). The switchover to the
disconnected solution (red curves) takes place near 6o = 7/2 for small black holes
(left), and approaches m for large black holes (right).

We denote the critical angle at which this switchover happens by Oswiten, which is

given by (Z21):
l(eswitch) = l(ﬂ- - eswitch> + 27T7"H, (228)
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2.8. FEzxzample: shadows for the BTZ metric

where [(0s) is the length of the geodesic connecting the boundary points +6.,
and 27ry is the length of the curve that wraps the horizon.

We can compute the length [(f,) by integrating the Lagrangian

s [l () o[ it

where we used ( -, with r, given by - The mtegral is divergent, but the
divergent parts on the left- and right-hand side of (2.28]) cancel and the finite parts
yield:

Dawiten = & + —— In (cosh(nry)) . (2.30)
2 2y
For small black holes (rg < Iags) we have that Ogyiten &~ m/2, because the area
contribution from the black hole in is close to zero. Conversely, one sees
that for large black holes (rg > lags), Oswiten = 7. See figure for an explicit
plot of both cases.

Tmin Arg
20~ 0.8~

15
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10 041

05 02

0.0 L L L I TH 0.0 L I TH
0.0 05 10 15 20 0.0 05 10 15 20

Figure 2.4: Shadow radius Ty, as a function Figure 2.5: Relative shadow size Arg as a
of horizon radius ry for a static function of horizon radius ry for
BTZ black hole. a static BTZ black hole.

The shadow radius 7y, within which no extremal surface associated to entangle-
ment entropy can reach, is finally determined by substituting the value of Ogyitcn

into (2.27):
TH rge” "TH

tanh(m“H) + sinh(mry)

Tmin =

(2.31)

This curve is plotted in figure 2.4l However, since the black hole is always within
the shadow region, the shadow may be more conveniently expressed as

2 —TTH
ATy = Tmin — TH = _TL (2.32)
sinh (77

which is plotted in figure When referring to the “size” of the shadow, we shall
implicitly mean the relative quantity (2.32) unless otherwise noted.
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2. Shadows and holographic reconstruction

From either or fig. one sees that the shadow is exponentially small
for large black holes, but remains an order one (AdS radius) distance from the
horizon for small black holes. This behavior is easily explained by considering the
switchover effect: a large black hole incurs a greater cost from the horizon com-
ponent in the area condition , which allows the global minimum to remain
on the original (connected) solution branch for larger values of 6.,

It may seem strange that that the shadow radius rni, does not go to zero for
vanishing horizon radius. This is due to the mass gap in AdSs: letting riz — 0 in
the BTZ metric will not yield the empty AdS3 metric, but a conical defect
geometry.

2.3.2 Wilson loops and shadows for the BTZ metric

Another type of bulk probe is given by the static world sheets arising from rectan-
gular Wilson loops in the boundary CFT (see also section . The bulk dual of
the expectation value of a Wilson loop W(C) evaluated in the supergravity limit
is proposed to be [34]:

W) ~e® (2.33)

where S is the proper area of a fundamental string ending on the boundary loop
C. To simplify our analysis, we will consider rectangular Wilson loops that extend
far into the past and future time-directions. Such a Wilson loop with temporal
“height” T and spatial width 26, can be interpreted as the potential between a
quark and an anti-quark [34,/84]. We assume sufficiently large T that the world
sheet may be considered invariant under time translations. The action for such a
static world sheet is given by

= 2T/ (Bgr) + r2f(r) . (2.34)

Note that in static spacetimes this quantity takes the standard form of (2.18)) with
F « /=g, thus we may treat it as a holographic probe similar to minimal area
surfaces.

The action does not explicitly depend on 6, so there is a conserved quantity
that we shall use to write the equation of motion as a first order differential
equation. We will find it convenient to distinguish two types of solutions to this
equation:

U-shaped world sheets are smooth world sheets anchored on the boundary that
do not reach the black hole horizon, instead turning smoothly such that
dor|,_,, =0 at some finite 7. > g (see figure [2.6)).

46



2.8. FEzxzample: shadows for the BTZ metric

L-shaped world sheets consist of two straight segments that extend from the
boundary to the black hole, joined discontinuously by a third segment that
partially wraps the horizon (see figure [2.6)).

Figure 2.6: World sheets corresponding to Figure 2.7: World sheets corresponding to

different boundary angles for a
BTZ black hole of radius ryg =
0.5lpaqs- The U-shaped world
sheets are rendered in blue; LU-
shaped, in red.

different boundary angles for a
BTZ black hole of radius ryg =
0.2lpaqs- Small black holes in
d = 2 are special, because the
U-shaped world sheet constitutes

the leading saddle point for all
values of 0.

For a given boundary angle 6.,, multiple solutions to the equation of motion
may exist. Evaluation of the area functional is therefore necessary to determine
which world sheet constitutes the leading saddle point. Generally, we find that a
switchover or phase transition occurs from U-shaped to U-world sheets, as illus-
trated in fig. We discuss this behavior in more detail below.

We first consider the smooth U-shaped solutions to the equation of motion. We
can express the conserved charge in terms of the minimal/turning radius r,. This
allows us to find an implicit expression for 6., in terms of r, by integrating the
equation of motion:

! (2.35)

> 1
oir) = | IO

f
r2f(re)

Note that this formula only depends on the number of dimensions via f(r), which
is given f(r) = r? —r% for the BTZ metric. 6 (r.) is plotted for the BTZ metric
(cf. (2.22))) in figure The function is characterized by a single maximum, and
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2. Shadows and holographic reconstruction

decreases monotonically for large r,.. Near the horizon however, df.,/dr, < 0, and
hence by Lemma 3 (see appendix there cannot exist any local minima of the
area functional in this range. The U-shaped world sheets thus suffer a shadow that
extends some finite distance from the horizon, but we postpone further discussion
of shadows until after considering Ll-shaped solutions as well.

6,

25}

20

L L L Loy | L L L L L
0.4 0.6 0.8 1.0 0.6 0.8 1.0 12 14

Figure 2.8: 0 (r+) for Wilson loops for a black hole of radius vy = 0.2laqs (left) and rp, =
0.5la4s (right).

As an aside, we note that for d = 2, 6, can be much larger than 7/2. Using the
equivalence relations 0., ~ 05 + nm and 0o, ~ 7/2 — 0, we can map all values
of 0« > 7 into the range [0, 7/2]; see figure The solutions with 0. > 7/2
correspond to strings that wind one or more times around the black hole (see figure
2.10). However, strings that cross themselves fail to be minimal, so we can discard
these solutions in what follows.

We turn now to the Ll-shaped solutions, which consist of two radial segments
connecting the boundary and the horizon at +6,, and a segment that wraps the
horizon (see figure . The segment that wraps the horizon does not contribute
to the area since the pullback of the metric vanishes. The radial segments have
divergent area, which is associated to the unrenormalized self-energy of a quark-
anti-quark pair. Thus the Wilson loops associated to these U-shaped strings do not
encode information about the bulk. Nonetheless, because these LI-shaped solutions
exist for all boundary angles, evaluation of the area functional is necessary to
determine when the U-shaped solutions constitute the global minimum.

We find that U-shaped solutions have minimal area up to some critical angle Ogyitch,
beyond which U-shaped solutions dominate. In general, this switchover will always
occur for sufficiently large 6., < 5. The only only exception is a small BTZ black
hole, for which the minimal area world sheets are U-shaped for all 6.

Denote the smallest radius to which the U-shaped world sheets reach before the
switchover by rgwitch- Then the switchover angle Ogyitcn and associated switchover
radius rswitcn are determined by the equality of the areas of the U-shaped and
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2.8. FEzxzample: shadows for the BTZ metric

I I I Loy

0.2

0.4 0.6 0.8 10

Figure 2.9: 0o (ry) for a BTZ black hole with ra-

dius rg = 0.1laqs (black). Solutions
with 6o > 7/2 are mapped to the range
[0,7/2] (green). The dashed line is at
0 = 1; every intersection with the
green line corresponds to a solution to
the equation of motion for this value of
0oc. These world sheets are plotted in

fie

LI-shaped solutions:

Su(rswitch) = Sl_l s

900 (Tswitch) = eswitch .

Figure 2.10: Extrema for 6 = 1 for
a BTZ black hole with
horizon radius ry =
0.1lpqs- Only one of
these saddle points —
that with zero winding
number (green) — corre-
sponds to a global mini-
mum of the proper area
of the world sheet.

(2.36)

The U-shaped world sheet corresponding to the largest possible boundary angle
0~ penetrate deepest into the bulk. The switchover angle Ogyitcn is the largest
angle for which the U-shaped solutions have minimal area, so the shadow radius

Tmin 1S determined by:

min = Max [0 (7/2), Tewiten) (2.37)
We can solve for the value of rgyiten by solving the area condition ([2.36]):
/ = = / dr
Tswitch \/1 — 7%‘;’“‘2“ 7}”(?\(,:;0},) rH
(2.38)
o 1
= dr -1 =r¢—rpy .

Tswitch \/1 —_
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2. Shadows and holographic reconstruction

where 7. is a large radial cutoff, necessitated by the fact that both actions are
linearly divergent. The dimensional dependence is encapsulated in f(r). For the
BTZ metric, we can solve (2.38)) exactly by taking rewiten = Mg

oo 1
A—lz/\/ do | —— 1] , (2.39)
R W/

which evaluates to A = 1.38. We emphasize that the BTZ metric is exceptional in
the sense that there is no switchover for small black holes gy < 0.26laqs. In [2]
we show that this does not happen for d > 3. In this case the Ll-shaped world
sheets never constitute the leading saddle point of the area functional, even for
0o > /2, and we find numerically that rpni, ~ lads.

2.3.3 Shadows and holographic reconstruction

The BTZ geometry forms an example of a geometry with shadow regions for both
minimal surfaces associated to entanglement entropy and world sheets associated
to rectangular Wilson loops. In [2] we also analyze the shadow regions for the AdS-
Schwarzschild geometry and an AdS-star geometry. In higher dimensions (d > 3),
the boundary subregions A can have a complicated geometry, which makes the
analysis of their corresponding bulk minimal surfaces much harder. In [2] we
present evidence that these geometries also exhibit shadows in higher dimensions.

If the radial direction truly emerges as the realization of the entanglement structure
of the boundary theory, then we have to address the issue of shadows. One strategy
is to clarify the role of extremal, but not minimal surfaces, in the boundary theory.
Alternatively, we need to discover other bulk probes in the holographic dictionary
that do probe these regions. In the next chapter we will present a candidate
bulk quantity, called the causal information surface, that is suspected to have a
boundary dual quantity. We investigate its shadow region in section .

2.4 Summary & outlook

In this chapter we briefly described some bulk reconstruction methods. The known
bulk reconstruction methods are still limited to specific cases and some of them
assume a background bulk geometry in advance. We defined two properties, the
weak and strong coverage properties, that qualitatively describe how well a bulk
probe “covers” the bulk. We highlighted the limitations of known bulk probes to
reach into the bulk, calling the regions that can not be probed “shadows”.
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There are nonetheless arguments that support the claim that reconstruction of the
full bulk must be possible. This would mean that we need to discover new bulk
probes and develop new techniques to use them for reconstruction. A first step in
that direction was made in [79], in which a boundary interpretation was given to
non-minimal extremal surfaces.

An interesting development in the field of bulk reconstruction techniques is the use
of techniques from integral geometry. For example, in [85] the Radon transform,
which we will not explain here, is used to reconstruct certain bulk quantities. In
unpublished (at the moment of writing) work by Czech et al. the Crofton formula,
which we will not explain here, is associated to differential entropy. The relevant
feature about the Radon transform and the Crofton formula is that the strong
coverage property seems to be relevant for these techniques.

In summary, we expect that new bulk probes will be identified in the near future,
potentially casting light on our shadows. We also expect new reconstruction meth-
ods to arise from the application and adaption of methods from integral geometry
to holography.

2.A Proofs

In this appendix, we present proofs of the two lemmas and the two theorems
presented in section . Note that Lemma 1 is not limited to globally regular
geometries, while the form of Lemma 2 in the main text is. However, we will prove
a more general version of Lemma 2 that is applicable to geometries with horizons
and/or singularities. We also introduce and prove a third lemma, from which the
coverage properties are independent, but which finds utility in the main text.

Lemma 1:

For a boundary sphere 0A, the bulk surface B that minimizes L in (2.18]) with
0B = 0A must be spherically symmetric.

Proof:

If the minimal surface B is not spherically symmetric, one can rotate it to get a
degenerate minimum B’ of the same boundary region, with 9B = 0B’ = 0.A. As
shown in the left panel of fig. B and B’ must intersect, but it follows from
the uniqueness theorem that their normal vectors cannot agree at the intersection.
Thus they must intersect with a “kink”. We assume for simplicity that this kink
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2. Shadows and holographic reconstruction

separates the surfaces into two regions each, but the generalization to multiple
intersections is straightforward. Let B be separated into regions 1 and 2, and B’
into 3 and 4 as depicted in fig. By symmetry, regions 1 and 3 contribute
the same amount to the geometric quantity L in , which we denote Lq3.
Similarly, we denote the contribution from regions 2 and 4 by Loy.

If Loy > Li3, then we could construct a new surface from regions 1 and 3 with
the same boundary, thereby contradicting the assumption that both B and B’ are
minima. Similarly for Li3 > Lo4. If instead L3 = Loy, then both of the newly
constructed surfaces have the same L as B and B’. But these new surfaces will not
be smooth due to the kink at the intersection, so neither can be a local minimum
of L. This again contradicts our assumption. QED

Figure 2.11: The left panel shows two non-spherically symmetric bulk surfaces, b = (14 2) and
b = (3 +4), ending on the same spherical boundary, b = Ob' = da. The right
panel shows two intersecting bulk surfaces, b = (1+ 2+ 3) and b/ = (44 5+ 6),
whose corresponding boundary anchors do not intersect.

Lemma 2:

If the boundary anchors OB and OB’ do not cross each other, but the corresponding
bulk surfaces B and B' do, and at least one connected region between B and B’
does not contain a geometric obstruction, then B and B' cannot both be minimal
surfaces.
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2.A. Proofs

Proof:

For this proof, we define a geometric obstruction as any object, defined purely
by the metric, through which a bulk surface cannot be deformed without leaving
a disconnected piece that wraps the obstruction; this wrapping piece should fur-
thermore have a nonzero contribution to L in . (In other words, they are
essentially generalizations of the black hole horizon in the case of minimal area
surfaces.)

Refer to right panel of figure .11} Let B = (1+2+3), B’ = (445+6), and assume
there is no geometric obstruction within the volume enclosed between 2 and 5. We
denote the contribution of region 5 as L5, and the contribution of region 2 as L.
If Ly > L5, then surface (1+2+3) fails to be the minimum since surface (1+5+3)
has even smaller L. Similarly for Ls > Lo. If Ly = Ls, the uniqueness theorem
again guarantees that the surface (14 5+ 3) is not smooth, and thus we still arrive
at a contradiction. Hence both B and B’ cannot be global minima. QED

Lemma 3:

If A0/ dry > 0, then the surface B(r.) cannot be a local minimum.

Proof:

By continuity, if B(r,) is a local minimum, there must be an infinitesimal dr such
that B(r. 4 6r) is also a local minimum. Since df/dr. > 0, the corresponding
boundary regions A(r, + 0r) and A(r,) intersect exactly as in the right panel of
fig. Applying Lemma 2 to these two surfaces then implies that they cannot
both be local minima. QED

Proof of Theorem 1

Theorem 1: The set of all simply-connected, O(n) symmetric boundary regions
(balls) satisfies the Strong Coverage Property if 0o (r«) € (0,7/2) is monotonic as
T« goes from O to oo.

Monotonicity of the boundary angle implies that every B(r,) is the unique global
minimum for the boundary ball A of radius 0 (7). Lemma 1 then implies that
the bulk can be foliated by a family of non-intersecting minimal surfaces anchored
on the corresponding family of concentric boundary spheres, as illustrated in fig.
Note that this is sufficient to satisfy WCP; for the strong coverage property,
we need also demonstrate coverage of the bulk tangent bundle.
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2. Shadows and holographic reconstruction

Consider a sphere with finite radius R in the bulk. As shown in fig. it inter-
sects B(0) at an angle of m/2 between their normal vectors. As r, increases, B(r,)
will eventually stop intersecting this sphere. If we follow the intersection point
during this process, the angle between the two normal vectors must continuously
drop to 0. Thus B(r.) can cover the full tangent space of a point at radius R.
Since R is arbitrary, we have covered the full tangent bundle. QED

Figure 2.12: The left figure shows a continuous foliation of minimal n-dimensional surfaces (red)
on an (n + 1)-dimensional equatorial slice of the bulk. The right figure shows how
the angle between an n-sphere (blue circle) in the bulk and the foliation surfaces
changes continuously from 0 to w/2. Note that although the rightmost red surface
is tangent to the blue circle at precisely T in this plot, the proof does not rely on
this.

Note that the inverse of Theorem 1 is not generally true. That is, a non-monotonic
0o () does not guarantee the violation of SCPD But this is not so concerning. We
have stipulated SCP as a sufficient condition for a successful holographic recon-
struction scheme; violating SCP does not necessarily imply that all schemes will
fail. Thus, the more physically meaningful “inverse” statement is rather our The-
orem 2, about the violation of WCP. Insofar as WCP is a necessary condition, this
indeed rules out holographic reconstruction (using the set of all boundary disks).
Also note that Theorem 2 provides a sufficient condition to violate WCP. While
WCP might be violated by other conditions, the condition Theorem 2 provides
seems to be the most natural.

"The inverse of Theorem 1 can be proved if we use the additional assumption that r is the
minimal radius reached by the surface B(rx), which happens to be true in many examples.
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Proof of Theorem 2

Theorem 2: If df./dr. > 0 as r. — 0, then the weak coverage property fails
for the set of all simply-connected, O(n) symmetric boundary regions (balls).

If d0/dr. > 0 when r, — 0, then since 0,(0) = 7/2 we can find some ' > 0
such that 0 (ry) > 7/2 for all 0 < r, < r’. According to Lemma 2, none of the
critical surfaces B(r,) in this range can be the global minimum of the corresponding
boundary sphere 9B, because they always intersect their own mirror image.

If for all minimal surfaces B(ry), 7« is the minimal radius reached, then no minimal
surfaces can probe the region r < r/. On the other hand, if a point p € B(r,) with
radius 7, < 7, is allowed, one still cannot allow 7, — 0. As shown in fig. [2.13]
such a surface can be pinched-off to one with smaller L, which contradicts the
assumption that the original surface is a global minimum. Thus in this case there
must be a lower bound r” with 0 < 7" < v’ beyond which these minimal surfaces
cannot probe. QED

Figure 2.13: A minimal surface (red) with its symmetric point sitting at a finite radius r« cannot
have other points approach arbitrarily close to r = 0. Otherwise, a pinched-off
version (blue) will have even smaller area.

2.B Entanglement surfaces for dt # 0

In this appendix, we consider an entanglement surface with spacelike separated
boundary points at (—tee, —0oo) and (teo, o). The bulk geodesics between these
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endpoints are given by:
inh? (rpfsc
12(0) = v (e ) )
sinh®(r o) — sinh” (rpteo)
" cosh?(ri6s0)
sinh? (1 g0 ) cosh? (1 6) — sinh? (rg6) cosh? (rgfs0 )

r2(t) = 1% (1 +

2.40
cosh?(rgtsg) (2.40)

sinh?(rgrto ) cosh? (rgt) — sinh® (rt) cosh? (1t so)
sinh? (rgtoo) >
sinh? (rg6s0 ) cosh? (rptay) — sinh? (rgrte) cosh® (rpfs) /)

For a given boundary region, the minimal radius reached by this geodesic is given
by:
2
o 2, cosh (rHﬂo;) , (2.41)
sinh”(rgfs) — sinh”(ryts)

which clearly shows r, is smallest for ., = 0.

The length of the geodesics (2.40) is given by:

(0o, too) =21In <2TC> +1In (sinhz(rHﬂoo) - sinhQ(rHtoo)) +0(r;?) , (242)
TH

where 7. is a radial cut off. As in the case of the constant-time slice analysis, we
may determine the switchover angle gsyiten by the matching condition ([2.28)):

1 1
Oswitch = g + T In (cosh(mry)) — Gy In (cosh(2rpyts)) - (2.43)

Thus Ogwiten 1S indeed smallest for to, = 0.
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Chapter 3

Causal Holographic
Information

In chapter we introduced holography and elements of the holographic dictio-
nary. In chapter we discussed techniques to reconstruct the bulk geometry,
fields and dynamics given the boundary description, emphasizing the limitations
of the known techniques and the necessity to further explore the holographic dic-
tionary. This sets the stage for the study of causal holographic information, a bulk
quantity originally identified in [69]. In this chapter we will discuss causal holo-
graphic information and some of its properties. We also discuss possible boundary
duals of causal holographic information.

In section we give the (bulk) definition of causal holographic information
and in section we further motivate the reasons to study it. In section
we discuss some of its known properties. In section we identify shadow
regions of causal holographic information surfaces and compare these shadows to
those of other bulk probes for the BTZ geometry. In section we discuss the
structure of divergences of causal holographic information. Finally, we discuss
possible boundary duals for causal holographic information in section .

3.1 A bulk definition

Given a co-dimension one spacelike surface A on the boundary OM of an asymptot-
ically AdS-spacetime M, one can naturally associate it to two covariantly defined
co-dimension two surfaces in the bulk M. The first surface is the extremal surface
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3. Causal Holographic Information

that ends on 9.A (1.81). The surface area is divergent, but can be regulated. The
regulated surface area in Planck units of the extremal surface is proposed to be
the dual quantity of the entanglement entropy (1.81)):

_ Ae,

= . 3.1
Sa Ve (3.1)

The second covariantly defined co-dimension two bulk surface is the causal infor-
mation surfaceB First we define the boundary causal diamond of A; it is the union
of the boundary future and past domains of dependence (see also section [2.1]):

04 = D (A)UDjp (A) (3.2)

0A 0A

Figure 3.1: Visualization of the region A and the boundary 0.A (left) on a (1+1)-dimensional
boundary and the construction of the causal diamond { 4 (shaded area) consisting
of the union of the future and past domains of dependence DgM (A) and Dy, , (A)

(right).

The causal diamond ¢4 of A is fully determined by d.A4. We will refer to the
set of points on the “top” and on the “bottom” of the causal diamond as C*
respectively. To be more precise, C* is the set of points p in {4 such that the
intersection between the future lightcone of p and ¢ 4 only includes p itself. C~
is defined similarly. We will refer to points in C* as future and past “caustics”
respectively.

The so called causal wedge 44 of A is the intersection of the bulk future and past
domains of influence of ¢ 4 (see also :

4= J0(04) N T3 (Oa)- (3-3)

The co-dimension two bulk surface we are interested in is the intersection of the
bulk boundaries of the bulk future and past domains of influence of the causal

n principle, there are more covariantly defined bulk surfaces associated to some boundary
subregion A. For example, one could extremize a different geometric quantity of the bulk surface.
The extremal surface with minimal area is the simplest in this class.
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3.1. A bulk definition

Figure 3.2: Visualization of the boundary causal diamond { 4 in case of a (2+1)-dimensional
boundary. The set of future “caustics” Ct is indicated by the blue line.

diamond ¢ 4 (see figure :

Ea = 0J5(04) NOT 3, (Oa). (3.4)

Causal holographic information is defined in a way similar to the entanglement

entropy (3-1):

Az,
= — 3-5
XA 4G ( )

where E 4 is the causal information surface as defined in (3.4) [69].

The causal information surface has a surface area that is in general larger than or
equal to the surface area of the extremal surface, when both surfaces are regularized
in a consistent way. If the bulk spacetime is static and one picks A to be on
a constant time slice, the extremal surface and the causal information surface
both lie in the same bulk constant time slice. In this case the causal information
surface either coincides with the minimal surface or it is located closer to the
boundary [69]F]

Causal holographic information does not satisfy the strong subadditivity property
[69] whereas the holographic entanglement entropy does [51]. Also, for a pure state
we can find examples with x4 # x4c [69], where A€ is the boundary complement
of A.

2This does not mean that the minimal surface is bulk probe with a smaller shadow region
than the causal information surface. For the analysis of shadow regions we must take into account
switchover effects, as discussed in section . We will come back to the analysis of shadows
for the causal information surface in section .
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Figure 3.3: Left: the causal information surface =4 (blue) for a boundary subregion A (red),
in planar AdS. Right: the causal information surface 24 (blue) for a boundary
subregion A (red), in global AdS. Source: .

3.2 Why causal holographic information is inter-
esting

Why would one be interested in this co-dimension two bulk surface =47 First of
all, the causal holographic information surface = 4 is covariantly (coordinate inde-
pendent) defined. The area of other covariantly defined co-dimension two surfaces
like the minimal (extremal) surface €4 and bifurcate Killing horizons in the
bulk are associated to important boundary quantities. Secondly, light sheets play
an important role in the so called Bousso bound (page@ which is thought to be a
deep statement underlying the principle of holography. Thirdly, for a complete re-
construction of the bulk minimal (extremal) surfaces do not seem to be sufficient
(see section [2.2). The causal information surface has a smaller shadow region,
which we will discuss in section . Lastly, it is believed that the causal wedge
¢ associated to a boundary subregion A can be reconstructed with full knowl-
edge of p4; it is thought to be the most conservative candidate for a subregion

duality (see section [2.1]).
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3.3 Properties of the causal information surface

3.3.1 Topology of the causal information surface

The causal information surface =4 can have a nontrivial topology. It can consist
of disconnected pieces even if the boundary region A is connected. Examples of
boundary regions which correspond to causal information surfaces that consist of
disconnected pieces, can be found in the AdS-Schwarzschild bulk geometry [87] and
soliton bulk geometries [88]. In this subsection we will illustrate the occurrence
of causal information surfaces with nontrivial topology in the case of an AdS-
Schwarzschild bulk geometry, as described in [87].

First we will heuristically motivate the occurrence of causal information that con-
sist of different disconnected components. Consider pure AdS in global coordi-
nates and a large boundary subregion A at ¢ = 0 that almost completely covers
the boundary. The intersection of the causal wedge # 4 with the bulk (¢ = 0)-plane
almost completely covers the (¢ = 0)-plane. Now introduce a small black hole in
the centre rgy < Lass. The causal wedge cannot enter a black hole, because no
causal curve can leave the black hole (per definition). However, the causal wedge
is largely unaffected since the geometry is still close to the global AdS geometry
further away r > ry. Note that null rays can “bend” around a black hole and
terminate on the “other” side of the black hole onto other null rays. This suggests
that the causal information surface can split up into two disconnected parts: a
part similar to the causal information surface in the global pure AdS metric, plus
a part that encloses the black hole horizon.

Numerical analysis of the causal information surface for the BTZ and
AdS-Schwarzschild geometries has been done by the authors of [87]. For the non-
rotating BTZ black hole, the causal information surface remains connected, but
for the AdS-Schwarzschild geometries it becomes indeed disconnected for large
enough boundary regions (see figure .

The observation that the causal information surface becomes disconnected in some
cases, puts constraints on the topology of Ryu-Takayanagi surfaces . In
[50,/50] it is shown that the Ruy-Takayanagi surface €4 lies further away from A
than the causal information surface =4. This implies that the Ruy Takayanagi
must also become disconnected when parts of the causal information surface “pinch
off”, in the case of the AdS-Schwarzschild geometry and large enough boundary
subregions A.
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3. Causal Holographic Information

Figure 3.4: Causal information surfaces for boundary balls in the AdS-Schwarzschild geometry
(d > 2). For large enough opening angle 0, the causal information surface becomes
disconnected (right). (Source: [87])

3.3.2 Causal information surfaces in time dependent back-
grounds

The causal information surface = has been studied in time-dependent situations
in [86], of which we will give a short summary below. The behavior of the causal
holographic information x is found to be highly nontrivial in time-dependent ge-
ometries, which gives important restrictions on proposals for a boundary dual
quantity of causal holographic information.

An example of a non-static, non-stationary time dependent asymptotically AdS
geometry is the the Vaidya-AdS geometry. In [86], causal information surfaces
and causal holographic information are studied in the context of the Vaidya-AdS
geometry:

ds* = 2dvdr — f(r,v) dv? +r? dEflfLK,

m(v 3.6
s =r (145" ey w1y, PO

where dngL x is the volume element of a spatial slice of the boundary. This
metric describes the collapse of a thin spherical shell of “dust” which eventually
forms an AdS-Schwarzschild black hole. The boundary state starts undergoing a
transition from the vacuum state to a thermal state at t = 5, which corresponds
to bulk geometry with a shell that starts falling in at ¢ = ¢5. For boundary balls
(strips) A = B?~! with radius (width) a, the boundary causal diamond has past
and future caustics with “height” a. When the boundary ball (strip) “sits” at
t =t 4, one can consider four qualitatively different cases:
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3.3. Properties of the causal information surface

(1) ta<ts—a ¢4 completely in AdS region
(2) ts—a<ty<ts ¢4 both in AdS-Schwarzschild and AdS regions
(3) ts<ta<ts+ta ¢4 both in AdS-Schwarzschild and AdS regions

(4) ts+ta<tg<ts—a @4 completely in AdS-Schwarzschild region

Cases 2 and 3 are interesting, because in both cases part of the boundary causal
wedge # 4 sits in the AdS regime of the bulk metric and part of 44 is in the AdS-
Schwarzschild part of the metric, changing the geometry of the bulk causal wedge
and the causal information surface non-trivially. In these cases we can expect the
causal holographic information to be time dependent.

In [86] it is shown that for d = 2 the causal holographic information does not
depend on time in regime 2, even though = 4 is modified compared to the pure
AdS regime. In region 3, x4 is time dependent. For d > 2, the causal holographic
information does depend on time even in regime 2, which means that the causal
holographic information x4 “feels” the shell before it starts falling in. Causal
holographic information is called “mildly teleological” because it only “senses”
the change in the state an order O(a) in advance, where a is the typical length
scale of A.

Figure 3.5: An in-falling shell forms a black hole. Left: t 4 < ts < t4+a, so only the upper part
of the causal wedge ¢ 4 gets deformed. Right: t4 —a < ts < t 4, so the geodesics
from the both the past and future caustic of ¢ 4 are affected by the shell encounter.
(Source: [86])
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3. Causal Holographic Information

3.4 Causal information surfaces as bulk probe

In this section, we return to the point of “shadows” as discussed in chapter .
Generally, the extremal surface €4 associated to the entanglement entropy of a
given boundary region A reaches deeper into the bulk than the causal informa-
tion surface Z4 [50,69]. However, the extremal surface associated to entangle-
ment entropy exhibits nontrivial “switchover behavior” (see chapter [2)), such that
the shadow region for causal information surfaces is smaller than the shadow
region for the extremal surface associated to entanglement entropy. Below we
analyze the shadow regions for causal information surfaces, in particular in the
AdS-Schwarzschild geometry. Subsequently, we will compare the full and par-
tial shadow regions of the causal information surface, the Wilson loops and the
entanglement entropy for the BTZ geometry.

3.4.1 Causal information shadows

The causal information surface = 4 differs qualitatively from the extremal surfaces
associated to entanglement entropy and the string world sheets associated
to Wilson loops in two ways. Firstly, its boundary CFT interpretation is unclear,
although suggestions have been made (see section . Secondly, it does not take
the general form we described in section [2.2.2] as a minimal geometric object.
Nevertheless, it is still natural to define 6, (7.) for this probe. Thus we can study
this probe alongside those above, and later make a comparison of their respective
shadows.

Here we analyze the “full shadow” region for causal information surfaces in static,
spherically symmetric spacetimes. In particular, we consider bulk geometries of

the form
ar”

7 (:) +r2dQ3_,, (3.7)

of which the AdS-Schwarzschild geometry is an example.

ds* = —f(r)dt* +

The boundary causal diamond {4 and the bulk causal wedge ¢ 4 for a ball A on
the boundary are both generated by two caustics: a past and a future caustic.
For a ball on a constant time slice (¢ = 0), the “height” of the caustic along the
time direction is simply equal to the radius of the ball. The deepest bulk point to
which a causal information surface reaches is determined by the intersection of the
past and future directed radial null geodesics from the future and past caustics
respectively. So given a boundary subregion with typical size 0, we can identify
a maximal penetration depth r,.

64



3.4. Causal information surfaces as bulk probe

Vice-versa, we can start from a point in the bulk at radial coordinate r,, and
construct the two radially outgoing light rays to the future and past. These will
end on two boundary points, pj, past and future caustics that generate a boundary
causal diamond ¢,, = D" (p,)UD~(p}). The waist of the diamond ¢, is exactly
a boundary ball of radius 6., that sits on the same timeslice as the initial bulk
point. The width 6. (r.) can be determined by calculating the “height” of the
causal diamond ¢,.,, which we can do by following the radial null geodesics from

the bulk point with r = r,:
[ee]
0 () :/ ar | 2 / / Grr / d?‘ (3.8)

For 6., > m, the boundary ball covers the entire asymptotic boundary, and its
domain of dependence is the entire spacetime. For the AdS-Schwarzschild geom-
etry, the causal information surface for a ball with 6., > 7 would correspond to
the black hole horizon. We are interested in the causal information surface cor-
responding to the largest possible ball that does not cover the whole boundary.
This is the causal information surface which reaches deepest into the bulk and has

0 = ™ — ¢, for € arbitrarily smallﬂ The shadow radius is given by
Tmin = 9;1 (m) (3.9)

if this inverse exists. Otherwise there is no shadow.

In spacetimes with a horizon at rg, f(r) — 0 linearly as r — 7y, thus 6., — oo.
Such spacetimes will always show shadows, since there are no probes for the part
of the bulk that would correspond to boundary subregions with 6., € (, 00). For
example, for the BTZ geometry with f(r) = r? — %, we have (3.8)

> d 1 min
T = / 27742 = — arccoth (T > — Tmin = o . (3.10)
Tmin | TH  TH TH tanh(rgm)

Note that this is precisely the first term of . In light of the earlier work
by Hubeny [69], this similarity is not surprising. In the BTZ background, the
causal information surface =4 coincides with the extremal surface for a given
boundary subregion. The only difference between their respective shadows is that
the minimal area surfaces encounter a phase transition at some 6., < 7 determined
by the area matching condition . In particular, the phase transition for
minimal area surfaces with a small black hole occurs when 6, ~ 7/2, which makes
a significant difference from the causal information surfaces. For large black holes,
the minimal surface transition occurs at 0., < 7, so these two probes agree with
each other in this limit.

3For our purposes, we can simply take foo = 7.
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3. Causal Holographic Information

The geometry of the causal information surfaces is more complicated in higher
dimensions [87], but the minimal radius rp;, = min{r.} can still be determined
by and . For d > 3 the integral in is slightly more involved, but
since we are primarily interested in knowing how close the surface gets to the black
hole, a near-horizon approximation will suffice. Thus we assume r, —rgy < 1 and
expand the integrand of in terms of (r —rp). For large black holes (rg > 1),
the near horizon contribution dominates the integral for 6., = 7:

Tmin+a R
77;:1/ dr ! 1n(7n““n THJF“). (3.11)

o SrE)r=rE)  f(rE) Tmin — T'H

where a < ry is some constant, and f(r) is given by

Fr)=r2+1- i (r2 +1) (3.12)
rd—2\ H

for the AdS-Schwarzschild metric. Solving for rp,, we find
Tmin & 7g + ae” (3.13)

Thus for large black holes, the causal information surfaces probe exponentially
close to the horizon.

For small black holes (rg < 1), there is also a contribution of approximately 7
to the integral in (3.8) from the range where f &~ faqs. The solution is then
approximately:

_ m(d—2)
Tmin & TH +ae  27H . (3.14)

Thus causal surfaces probe exponentially close to small black holes, which is dra-
matically better than minimal area surfaces in this limit [2]. In [2] we provided
evidence for the statement that for small rg < 1 minimal surfaces associated to
entanglement entropy only reach upto an order O(ry) away from the horizon at
r=rg.

3.4.2 Comparison to other probes: the BTZ geometry

In section of chapter we analyzed the shadow regions for rectangular
Wilson loops and the entanglement entropy of boundary intervals for the BTZ
geometry. The analysis of shadows in (2 + 1)-dimensional geometries is simpler
than that of higher dimensional geometries, because the subregions on the (14 1)-
dimensional boundary can simply only be intervals. This simplification allows
us to determine not only the region of full shadow, but for every bulk point we
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3.4. Causal information surfaces as bulk probe

can also determine the portion of the tangent space that can be probed. In this
subsection we present these (numerical) results.

In figure (left panel) rpi, is plotted as function of the black hole radius rg,
for all three investigated probes. As noted earlier, the shadow persists even when
rg = 0 due to the mass gap in AdSs1. The horizon radius is related to the ADM
mass by r% = GM — 1, so a vanishing horizon does not recover empty AdS. In
the right panel of figure [3.6] we extend the parameter range below the mass gap
to include the conical defect. Then as GM — 0, all shadows indeed disappear.

r
min min

14 20

0.8
0.6
0.4 4
0.5
0.2

[ T GM
0.2 0.4 0.6 0.8 1.0 0.5 1.0 15 2.0 25 3.0

Figure 3.6: Shadow radius Ty, as a function of the black hole radius rg (left) and mass GM
(right) for the different bulk probes: entanglement entropy (black), Wilson loops
(red), and causal information (blue). The kink in the Wilson loops curves are due
to the transition from U-shaped to U-shaped world sheets. The kink in the minimal
area surface curve in the right panel is exactly at the horizon ry = 0, at which
point the phase transition angle becomes fixed at 7/2.

We can see clearly that causal information surfaces almost always leave the smallest
shadow. This conclusion appears to hold in higher dimensions as well, as indicated
by our numerical results and approximations for both small and large black holes
as presented in [2].

It is interesting to note that for a point at radius 7., it may be that a given
probe can only reach it with a specific orientation, implying a restriction on the
accessibility of the bulk tangent space. Empty AdS space satisfies the Strong
Coverage Property that the entire tangent space of any point is covered, and
indeed this property is necessary for certain reconstruction schemes [78,(79]. It
is thus interesting to ask how much of the tangent space once loses due to the
presence of a black hole.

In the BTZ geometry, this question is easy to answer. The deepest probe in any
particular family, b(rmin), also passes through points with r > 7, at the steepest
angle. Therefore, we need only calculate the slope of this surface to determine the
coverage of the tangent space. These “partial shadows” are plotted in figure
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3. Causal Holographic Information

Somewhat surprisingly, although Wilson loops probe less deeply in general, they
exhibit the smallest partial shadows throughout most of the bulk.

L L L L L L )
. r
0.0 0.5 1.0 1.5 2.0 0 1 2 3 4 5

Figure 3.7: The shaded region above each curve represents the part of the tangent space acces-
sible by the associated bulk probe (entanglement (black), Wilson (red), and causal
(blue)) as a function of the radial coordinate r. 7/2 is purely tangential, and 0
is purely radial. The horizon radius, vy = 0.1laqs (left) and rg = laqgs (right),
is indicated by the vertical line. Note that in the right panel, the blue and black
curves almost overlap, reflecting the agreement of minimal and causal information
surfaces in the large black hole limit.

3.5 Subleading divergences

3.5.1 Structure of divergences

Causal holographic information of a boundary subregion A is equal to the area of
a bulk co-dimension two surface that ends on 0.A, just like the extremal surface
associated to entanglement entropy. To leading order, causal holographic informa-
tion and entanglement entropy both exhibit an area law: the leading divergence
is proportional to the area of A (d > 2). The subleading divergences differ.

Example: the strip

Consider the boundary strip A = {z : 1 < ¥,t = 0} in Poincaré coordinates
(1.14J]1.15)) for pure AdS spacetime. The boundary causal diamond ¢ 4 has past
and future caustics at x1 = 0, = £%. The causal information surface = 4 is then
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3.5. Subleading divergences

given by 22 + 27 = (%) [69] and the area is given by

g B OxM 9N
AE.A :/ dd72l‘\/; dZ\/det Oz WG]\A/[[])VS

Lir

2

Lir

+73 ¥ dei\> 1 1 1\%?
=2 =2 / d e ey 3.15
/_ I “ . : dz ) 22 + 22 22 (3.15)
_ (w72 (26 pLds (%)
"\ w d—2 w) P22 w) |
For d odd, (3.15) contains a logarithmically diverging term. For d = 4, we have
2L1R 2 w2 1 €
A= v Lt ). 3.16
( w ) 82 2% * (3.16)
Note that the causal holographic information for the strip has different sublead-

ing divergences from those of the holographic entanglement entropy (|1.95)). The
leading divergences do correspond (|1.95)).

Non-locality of subleading divergences The example of the strip in d = 4
shows that the coefficient of the logarithmically divergent term of causal holo-
graphic information cannot be expressed as just an integral over d.A of local ge-
ometric quantities. For A the strip in a flat background, both the intrinsic and
extrinsic curvatures of d.A vanish. The coefficient of the logarithmically divergent
term of the causal holographic information for the strip (d=4) is proportional
ng [69], where L;g is an IR-regulator in the directions 2% and z®. For the
strip there is no local geometric quantity on d.A (the two “plates” at x! = +7)
that depends on the separation distance w. This means that we cannot write the

to

coefficient of the logarithmically divergent term in x 4 as the integral of a local
quantity, which is possible for the coefficient of the logarithmically divergent term

in entanglement entropy (1.89)).

3.5.2 Causal holographic information for general surfaces

Caustics of the boundary causal diamond

The causal diamond ¢ 4 is generated by null rays emanating normally from 9.4 [69].
For each point (&) on 0.4 there are two unique null normal vectors (up to a sign).
The inward-pointing null geodesics that emanate orthogonally from this point
terminate in past and future caustics xy € C~ and x4, € CT respectively. Given
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3. Causal Holographic Information

a point on 0.A, we need information about other points on 9.A to determine where
the null geodesics will intersect for the first time with null geodesics emanating
from another point on d.A. The location of this intersection point is determined
by one or more other points on 0.A.

Entering the bulk

We focus in our discussion on the case of d = 4 boundary dimensions; however, a
logarithmically divergent term can be present in the causal holographic information
whenever the number of boundary dimensions is even. For d even and d > 2 the
asymptotically AdS-metric can be put in Fefferman Graham form [24] [25]:

ds®> = GyundXMdx N

dz? 1 v
= 272 + ;guu<z, aj)d.%‘l dm
guw(z2) = g0 (@) + 2292 (@) + o+ 2 (gD(@) +log 2 hyu () + O(41),

(3.17)
Here gfg,) (z) is the boundary metric, gl(?yl) (1<i<%—1)and hy, are determined

by ngJ and gfg) encodes information about the state.

Close to the boundary, points on the causal information surface = 4 can be mapped
to points on 0.A. We expand the embedding function close to the boundary around
points on 0A:

Igulk(z’ 51752) = xgoundary(é-l? 52) + yu(gh 52)22 + 0(24) (318)

Generally, the component of y* that is tangent to d.A does not give a contribution
to the logarithmically diverging term in the area of the bulk surface. We can
express the normal component of y* in terms of the boundary normal vectors
{N£} of DA:

Yyt = yl‘f +yf = yl‘f + A*NH, (3.19)

For any such surface, the surface area that is regulated by a radial z = € cutoff for
an asymptotically AdS-space is:

A 1 Apa
2 €2
1\ 1
+ log () 3 /d2£\/§ <4A“)\bpab + 22X K, + hlwgl(ﬁj)) (3.20)
€
+ finite,

where NENY g5 = ay, huw = g5 — NANEp®™, K is the trace of the extrinsic
. 2) .. .
curvature, and an expression for g,/ is given later (3.41).
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3.5. Subleading divergences

Smooth surfaces on a flat boundary

For entanglement entropy, the normal component of y is fixed by the
extremality condition to A* = fKTa. For the causal information surface the A\, (x)’s
in the expansion do not just depend on local geometric quantities of
0A, as can be seen in the example of the strip.

We first analyze the simpler case where the entangling surface lies on a constant
time slice, then the more general case of an arbitrary spacelike surface embedded
in flat Minkowski spacetime.

Constant time slice case In the case of a static spacetime with a flat boundary,
the analysis is easier if we pick the surface d.A to be on a constant time slice.
Boundary normal null geodesics emanating from 9.4 are simply straight null rays
proportional to the null normal vectors of 0.A. When 0.A is on a constant time slice
t = 0, the causal information surface should also be on the ¢ = 0 slice by symmetry
considerations; both the bulk causal wedge and the boundary causal diamond are
symmetric in the ¢ = 0 plane. Points on the causal information surface are on the
bulk boundaries of the bulk future and past domains of influence of the boundary

causal diamond ¢ 4 (3.4)).

The object A on the boundary will “shrink” as one moves deeper into the bulk
along the radial coordinate. In appendix (3.Al) we determine how this happens as
a function of the radial Poincaré coordinate z.

If the future caustic that is separated from z(£) on d.A by the null normal ema-
nating from z(&) is located at ¢ = 7 and the spacelike normal vector in the ¢t = qﬂ
plane in z(§) is given by ﬁ(f)El, then the embedding function can be written in

terms of 7 (Appendix [3.A)):

2 2

z z ~
Tbu = Z, (€) — bT, ). 3.21
Expression (3.20]) simplifies in this case to
144 1 ) 1 K 1 ,
A= = d — + — | log — + finite. .22
5 2 +2/a,4 V904 | —5 + — | log — + finite (3.22)

4The quantity 7 can be thought of as the affine parameter distance between a point on 9.4
and its corresponding future (past) caustic. This explanation is clarified in for the more general
case in section

5We used 7 to be the inward pointing normal together with the conventions Kuy = +hﬁ V,Ny
and K = +h*” K, for extrinsic curvatures and expansions respectively, where h is an induced
metric and N is a normal vector.
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3. Causal Holographic Information

Figure 3.8: Visualization of the quantity T. Note that that for each point on 0A there is a
unique point on Ct separated by a vector that is proportional to the future directed
inward pointing null normal vector. For a surface O.A that does not lie on a constant
time slice, a single function 7 is not sufficient.

General spacelike region Now dropping the assumption that 9.A lies on a
constant timeslice, but remaining in Minkowski space, the separation in time of
a point p on JA and its caustics on the causal diamond may be different for the
past and future caustics.

The past caustic  , and the future caustic z{, for a point z/(£) on 0A are
separated from z*(&) by null normal vectors:

(3.23)

where N{'({) and N|'({) are the null normal vectors in x# (&) where we choose to
normalize them such that N (§)N} (§)n,, = 1. In appendix (3.B]) we argue that
we can still expand the embedding function similarly to (3.21)):

e 2 (MO NEOY 2 .o
xbulk(zag) - (5) + 2 <>\¢(§) + )\T(f) > + 2>‘T(f) bt (g)Toc + O( ) (324)

The divergent part of the area is now simply:

14 2 K K
A=pEty ,1 /d2§\/detgaA < T4 i) + finite.  (3.25)
2 >‘T)‘¢ /\¢ )‘T

Equation ([3.23)) defines A+ and Ay, which can be thought of as being the affine
parameter distances between x(¢) and z§  (§) and z{/(§) respectively. The null
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3.5. Subleading divergences

normal vectors can be scaled simultaneously with A\ and A}, subject to the con-
dition N4 - Ny =1, but all terms in (3.25) are invariant under this rescaling. The
absolute value of the distance between the future and past caustics related to a

point z(§) on A by is equal to /2A4+(&)A ().

3.5.3 Modification of the causal information formula

A candidate for the holographic entanglement entropy is obtained by applying
the Wald entropy formula (1.86]) to surfaces that end on the entanglement surface
0A. The entanglement entropy is then given by the surface that extremizes this

quantity.
oL
Swald = —27‘(‘/ dd_lx\/f»b
horizon JRabcd

As discussed in section ([1.3]), a modification of the Wald functional (1.86]) is nec-
essary in the context of holographic entanglement entropy [56], due non-vanishing
extrinsic curvature of a general minimal surface. For Lovelock gravity, a concrete

modification is proposed in [56], where the modification can be written as a bound-
ary term. A more general modification of the Wald functional is given in [57]. This

ee.q (3.26)

modification does not affect the log-term, so for our purposes we propose to gen-
eralize causal holographic information by the evaluation of the Wald functional
on the causal information surface, modulo some boundary terms. For causal holo-
graphic information in the context of Gauss-Bonnet gravity this becomes:

1

XA=
4GY)

/ d 1, /0=, (1 + )\LQREA) + boundary term, (3.27)
ZEa

where oz, is the induced metric on the bulk surface = associated to A and Rz,
is the intrinsic curvature.

The intrinsic curvature for a surface in an asymptotically AdS spacetime, for which
the embedding function can be expanded as in (3.18)) is given by:

Re, = —6+ 22 (Rag + 20 g2) 4 ANK, + 8»%) 0>, (3.28)
where Rga, K® and h are boundary quantities.

The coefficient of the logarithmically diverging term is now proportional to:
R R 1
“/ PV (= ) +e / PeVG (= Gh g F A KL 20N ).
A 4 0.4 4 20 "
(3.29)

We can evaluate this expression for the case of a static spacetime with a flat
boundary. When 0A is on a constant time slice, we can use (3.21]) in order to get
the coeflicient of the logarithmically diverging term:
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3. Causal Holographic Information

1 K
720 d f\[RaA-f— 720 d2§\/§ (RaA-l-Q (7_2 + 7_)) . (3.30)

Now considering a spacelike surface 0.A that is not necessarily on a constant time
slice, we can apply (3.24)) and find for the coefficient of the logarithmically diverging
term:

> K K
d 26\/§ p e R )
720 £fRaA+m £\/§(RaA+ <AM¢+M+M)>
(3.31)

3.5.4 Universality of the log-term

In this section, we show that the coefficient of the logarithmically divergent term,
which we have focused on, is universal. It is independent of the regulator, and also
independent of the state. Our result is more general than the particular causal
information surface: the same will be true for any covariantly defined surfaceﬁ
The discussion will take place in a setting with a (d = 4)-dimensional boundary,
but we believe similar arguments hold for d = 2n with n > 2.

Regulator independence This subsection is to a large extent based on work
from Schwimmer and Theisen [8990]. We briefly review the relevant parts of their
work and argue that any covariantly defined co-dimension two bulk surface that
can be expanded as in yields a universal log-divergence coefficient.

Our strategy for showing the regulator independence is to relate a change in reg-
ulator to a change of coordinates in the bulk that leaves the metric in Fefferman
Graham form. The regulated area of the surface is computed up to a cutoff value
of the new radial coordinate. Such a bulk change of coordinates acts as a con-
formal transformation on the boundary, so showing the regulator independence of
the log term is equivalent to showing that it is Weyl invariant.

In more detail, to define the regulated area, one first puts the metric in Fefferman
Graham form [24}25]:

dp®

ds® = GyndXMdXN = 12

1
+ ng (p, x)dztdx” (3.32)

It is important that the shape of the surface near the boundary allows an expansion like
(13.18).
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3.5. Subleading divergences

For d even, we can expand g, (p, z) as

d g d
9 (0 7) = 90 (@) + pg2 (@) + ..+ p¥ (9l (@) +Togp (@) + O(pFH),
(3.33)

One can take a finite cut off in the radial coordinate p in order to regulate the
surface area of a bulk surface that ends on d.A4. The ambiguity in choice of cutoff
arises because there is not a unique way to choose coordinates such that the bulk
metric is in Fefferman Graham form.

To see how the area changes, consider an infinitesimal diffeomorphism that leaves
the metric in the Fefferman Graham form. Such a transformation is parametrized
by a vector field (£, &*) such that [89}/90]:

P (3.34)

Such a PBH-transformation (Penrose-Brown-Hennaux-transformation) corresponds
to a Weyl transformation of the boundary metric g,(LOV) and can be parametrized by
a function w(z).

The infinitesimal coordinate transformation
p=pe ) = (1 —2w(F)) (3.35)
= i+ a'(z, p) '

corresponding to £ = —2w and &" = o satisfies the requirement (3.34]) and the
condition a*(p = 0) = 0 if [90]:

1
d,at = 59(0)#Vayw

(o) = /O " 45 ¢ (5 0)0uw(x) + OWP) (3.36)

_ gg@wx)a,,w(x) +0(p?) + O(w?).

If the embedding function of the causal information surface can be expanded as

in (3.18);
xgulk(pv &1, 52) = xsoundary (flv 52) + y“ (fla 52):0 T+ (337)

we can make use of the covariant definition of the causal information surface by
applying the coordinate transformation (3.35):

. P (0w N
ot 5g<0>H Oy + oo = Ty + 9P (1= 2w) + .. (3.38)
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3. Causal Holographic Information

Collecting powers of p we conclude that y transforms in the following way:

1
gt =y — 2wyt — ig(o)’“’(x)&,w(x) + ..

1 (3.39)
= gt = e~ 2w (yu _ ,g(O)Wa w)
2 )
The normal components A, = Ng‘y”gl(g,) of y transform as:
~ _ 1
Ao =¥ ()\a - §Na . 8w> . (3.40)

The coefficients in the logarithmically diverging terms and are in-
variant under such a transformation, given that the other boundary quantities are
subject to a conformal transformation. Taking a different cut off does not change
these coefficients.

This shows that for any covariantly defined bulk surface with d = 4 boundary
dimensions, the coefficient of the logarithmically divergent term is universal, as
we expect from field theory intuition. It would be interesting to ask if there are
any additional covariantly defined bulk surfaces associated to a region, since they
would define new conformal invariants.

a

In (d = 4) boundary dimensions can be solved by A\, = —Ii , where K¢ is
the trace of the extrinsic curvature for the normal vector N,. This corresponds to
the result that is obtained by extremizing with respect to y. The remarkable
thing about the causal information surface is that the logarithmically divergent
term cannot be constructed from just local geometric quantities as can be seen in
the case of the strip.

Finally, it should be pointed out that one can use freedom to re-parametrize 0.4
to gauge out the tangential part of y [89]. In fact, we already partially fixed the
freedom to re-parametrize the causal information surface =4 by choosing one of
the parameters to be z (or equivalently p).

State dependence In expansion |D the g,(ﬁ)(ac) with 0 < n < d are fully
determined in terms of g,(ﬁ,) (z) [24.25]. Terms of order O(p?) do not contribute to

the logarithmically diverging term. The coefficient of the logarithmically diverging

term is thus state independent since the gﬁ,ﬁ)(z) with 0 < n < d do not depend on

the state. In the case of a (d = 4) dimensional boundary only g,(,(,),) () and gf?,,) (x)
in expansion (3.33)) are relevant for the coefficient of the logarithmically divergent

term. The term gW) (2) is determined by the conformal structure of asymptotically
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AdS-spacetime:

1 R© 49
(2) - - 0) _ laid
9y (I) d—2 <R/J.l/ 2(d — 1) . (341)

3.6 Dual CFT quantity

The motivation for considering the causal information surface was that it is a
second covariantly defined co-dimension two surface that can be associated to
spacelike co-dimension one boundary regions. The other natural co-dimension
two surface that can be constructed given a spacelike co-dimension one boundary
surface is the extremal surface that ends on 0.4, whose area in Planck units is
believed to be equal to the boundary entanglement entropy for the region A. The
question is hence: what is the boundary dual quantity of the causal holographic
information?

Several boundary quantities have been proposed. In this section, we will discuss
the current status of these proposals. In [4] it was proposed that causal holographic
information of some region A is the entanglement of some coarse grained density
matrix.

A candidate boundary dual quantity of causal holographic information of .4 should
satisfy that:

1. it depends only on 9.A [69]
it violates strong subadditivity in certain cases [69)
it can violate x4 = A°, even in pure states [69)

XA > Sa

gk W N

it should be teleological [86], that is, in certain cases it should be sensitive
to changes to the state in the future of A

6. the “mutual causal information” x4 4+ x5 — Xaup vanishes for spacelike
separated A and B with AN B = [87]. In other words, causal holographic
information satisfies additivity for non-overlapping spacelike separated A
and B

7. it satisfies subadditivity x aus < x4 + x5 for AN B # O [87].

We speculated about possible dual quantities in [4], discussing possible ways to
construct a coarse grained density matrix. Below, we will discuss these proposals
and their current status. Subsequently we will discuss a proposal by Kelly and
Wall [91], which is at the moment of writing still uncontested.
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3. Causal Holographic Information

3.6.1 Entanglement and Wilson loops

In non-Abelian gauge theories, there is more than one natural way to associate
a spatial region A4 with a part of the whole Hilbert space. Non-Abelian gauge
theories have non-local degrees of freedom associated to Wilson loops. In the
case of an Abelian gauge field, large Wilson loops are equivalent to integrals of
local operators, so we do not need to consider them separately. For non-Abelian
theories, however, a large Wilson loop cannot be rewritten as a product of local,
gauge-invariant operatorsm

Because the gauge-invariant degrees of freedom include non-local operators, we
have to decide what to do with these non-local excitations when we define the
Hilbert space associated with a subregion A. One natural choice, the bigger def-
inition of Hﬁ, is to include in ’Hﬁ open Wilson loops that end on 0.A. With this
definition, the full Hilbert space is a subset of HE ® Hﬁc, because both subsets
allow open Wilson loops that end on 0.4, while in the full Hilbert space these loops
must be tied together into a closed Wilson loop. An excellent discussion of these
subtleties in the context of lattice gauge theory is given by Donnelly [93]. To de-
scribe this definition more precisely, Hﬁ is defined by all gauge field configurations
in A modulo gauge transformations that are trivial on d.A.

One could also make a different choice for how to treat Wilson loops that do
not fit inside A. The simplest possibility is not to allow Wilson loops to end on
0A; in other words, Hi is defined to be gauge field configurations in A modulo all
gauge transformations, with no requirement that the gauge transformations should
act trivially on 0.A. With this definition, the full Hilbert space of the theory is
not contained in ’Hi ® Hf‘c; the full Hilbert space also contains extra degrees of
freedom associated to Wilson loops that do not fit in either side.

Since we are already thinking about what to do with large Wilson loops, there
is another category of Wilson loops that could also be excluded from the Hilbert
space associated with a region. These are Wilson loops that fit in A, but cannot
in principle be measured within the causal diamond associated with A. In other
words, these are loops with the property that no point within the causal diamond
contains the loop in its backward lightcone. For spherical surfaces there are no
such loops, but in general there are; for example, the strip contains long Wilson
loops that are not in the backward lightcone of a single observer.

To summarize the above discussion, in non-Abelian gauge theories, there are sev-

"In conformal field theories, products of operators inserted at different points can be replaced
by their OPE. Similarly one can attempt to construct OPE’s for Wilson loops as in [92|. However,
an OPE does not converge if other operators are inserted within its radius of convergence, so in
general Wilson loops cannot be replaced by local operators.
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3.6. Dual CFT quantity

eral simple candidates for how to associate a spatial region to a sub factor of the
Hilbert space. Each of these definitions has an associated density matrix and en-
tanglement entropy that may violate strong subadditivity or other properties a
Von Neumann entropy would have. More generally, even in holographic dualities
that do not involve gauge fields, the field theory always has non-local operators
that encode what is happening in the bulk far from the boundary. The presence
of these non-local operators will lead to ambiguity in defining the density matrix
of a spatial region.

There are good reasons to believe that the above definitions of the “small” Hilbert
space associated to a region are still not consistent with the geometric definition of
x. For example, the “teleological” behavior of x and the vanishing of the “mutual
causal information” cannot be explained. Suppose we start with the vacuum state
and add a source to the future of the surface 4 but inside the associated causal
diamond. By construction, the source only changes the state inside its future
lightcone, so it does not affect the state on A. As long as the Hilbert space ’Hi
is defined in a state-independent way, as it is in all of the suggestions above, then
the entanglement entropy of 4 must be independent of the source, because by
construction it does not affect the density matrix on A. But one can see from the
bulk definition that such a source does in general change the area Y.

Another argument against these proposals involving Wilson loops is that Wilson
loops are associated to string world sheets in the bulk that reach outside the causal
wedge 4.4. To be more precise, for some Wilson loops in a subregion 4, or in the
causal development ¢ 4, the corresponding bulk world sheets reach further into the
bulk than the causal information surface. As a consequence, these Wilson loops are
sensitive to perturbations of the bulk metric outside the causal wedge ¢ 4, whereas
causal holographic information is not sensitive to these kind of perturbations; this
is an inconsistency.

3.6.2 Linear coarse-graining

Roughly, what we want to do is to do a coarse-graining where we identify states
that cannot be distinguished by correlators of local, gauge-invariant operators.
One method to do a coarse-graining is a linear transformation p — p. Causal
holographic information would then be the Von Neumann entropy of p. Linear
maps p — p that are trace-preserving and completely positive can be written
as [39):

S t
p= Z MipM;, (3.42)
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3. Causal Holographic Information

where the M; satisfy ), MZ-TMZ» = Z. One interesting case is a complete set of
projection operators P; that add up to the identity:

Z Pi=1, (3.43)
and given the full density matrix p, a density matrix p can be defined by
p=2_ PirPi (3.44)
i

This procedure ensures that the Von Neumann entropy of p is greater than the
Von Neumann entropy of p [39], and this fits with the observation that the area of
the causal information surface always has greater area than the extremal surface.

A second interesting implementation of a linear map ([3.42)), which we do not use
here, is to consider a set of unitary operators:

o1
p=- > UipUf. (3.45)

This ensures that S(p) > S(p) by concavity of Von Neumann entropy [39].

Proposal for simple causal diamonds. Suppose the boundary region A cor-
responds to a simple causal diamond, defined by one future caustic and one past
caustic. Then there is a natural choice for the projection. Typically one can think
of the projectors that project onto the eigenspaces of a particular hermitian opera-
tor. Since we want an operator associated to the causal development of the region
A, and we do not want it to depend on details of the theory, a natural choice is the
time evolution operator U that evolves the state from the “bottom” to the “top”
of the causal diamond. The evolution operator U is unitary, so it can be written
as the exponential of a Hermitian operator A, U = exp(iA). The eigenvectors of
A naturally pick out a set of projection operators that can be used in the above

construction ([3.44)).

There is one more encouraging observation that this construction may be on the
right track, in addition to the above observation that the coarse-grained entan-
glement entropy is larger. In [69] it is analyzed in which cases the entanglement
entropy and the causal holographic information coincide (x = §). The two quan-
tities agree whenever the reduced density matrix is thermal. In this special case,
the density matrix is already diagonal in the basis picked out by the Hamiltonian,
so the coarse-graining has no eﬁectﬁ

8 A subtlety is that the evolution from the bottom to the top requires t — oo.
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3.6. Dual CFT quantity

More complicated regions. The simplest boundary causal diamond is one
with just one future caustic and one past caustic, so that in flat space, A is a
sphere. However, for most choices of A, the boundary region will be such that both
C* and C~ contain more than one-point. In this case, there is another natural
procedure for throwing away non-local information. Starting from the full density
matrix p4, define p4 to be the maximum entropy density matrix that correctly
reproduces the measurements contained in any causal diamond contained within
the boundary region.

This procedure is motivated by considering which bulk region should be described.
It has the advantage that it defines a p that agrees with another observation
about x. Suppose A and B are two spacelike patches on a Cauchy-surface on the
boundary and AN B = 0, then x4 + xB — xaup = 0. This can be arranged iff
the causal mutual information vanishes: paup = pa ® pp. In this special case,
one can show that the above procedure indeed leads to a density matrix that is a
product.

An argument by Don Marolf [91] compromises the construction above, even for
simple causal diamonds. The argument that the projection removes off-
diagonal elements in the density matrix with respect to the basis of projection
operators and effectively takes a time average of the state:

(3.46)

where e ** is the evolution operator in the boundary causal diamond ¢ 4. Now
one could consider some matter, a particle, passing through “tip” of the original
bulk causal wedge #4. The presence of bulk matter would cause null rays to
focus, which changes the causal wedge. Due to the second law of horizons, the
causal information will be smaller than its late time value. But the fact that
the near boundary part of ¢ 4 is unchanged suggests that the state describing the
corresponding boundary regions (bottom and top of the boundary causal diamond)
is unchanged. The early and late time values of p dominate , in contradiction
to the fact that the causal holographic information does change. This argument

suggests that this proposal can not be correct.

3.6.3 One-point entropy

Kelly and Wall [91] propose a different coarse-graining method, which we will ex-
plain below. This coarse-graining method makes use of a subset of operators, for
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which there are several candidates. In this subsection we will discuss several sub-
sets of operators that can be used with this coarse-graining method. A particular
subset gives rise to the one-point entropy, which is proposed to be the boundary
dual quantity for causal holographic information [91].

The coarse-graining method considered by Kelly and Wall [91] is the map p — p
defined by:

Falpa) = sup [Sa(7a)] (3.47)
TAET A
where p4 is the reduced density matrix associated with A, S4(7.4) is the von
Neumann entropy of 7.4, and T4(p.4) is the set of all density matrices 74 which
satisfy the constraints
Tr{Op, 74] = Tx[Ompa} (3.48)

for a set of operators {O,,}.
It can be shown that p defined by (3.47)) is of the form

e~ T AmOnm

e o 3.49
p " (3.49)

where the A, are the Lagrange multipliers of the constraint extremization [94].

X-preserving coarse-grainings Suppose there is a coarse-graining p — p such
that

XA = Spa- (3.50)

Further suppose that two density matrices p1, p2, that correspond to semi-classical
bulk dual geometries, are mapped to the same coarse grained density matrix p. If
& is dual to y, then we must have

Xp1 = Xp2 (3.51)

for all such p1, p2. Any coarse-graining which maps any two density matrices p; »
to the same coarse-grained p, that also satisfies (3.51)), is called x-preserving.

In principle, there could be more than one x-preserving coarse-graining. In [91] it
is argued that x must correspond to the “strongest” y-preserving coarse-graining.
For details, see [91]. Note that in [91] it is assumed that the coarse-graining that
corresponds to causal holographic information maps states with a semi-classical
bulk dual geometry to states with a semi-classical bulk dual geometry.

For a coarse-graining associated to a boundary subregion A, there are several
natural options for the set of constraint operators {O,, } |91], which we will discuss
below:
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Figure 3.9: Penrose diagram of the geon-geometry. (Source: [91])

1. The set of Wilson loops that can be measured in the causal diamond ¢ 4
2. The set of one-point functions, or local operators in A
3. The set of one and two-point functions in A

4. The set of one and two-point functions in A that can be measured within

QA

Wilson loops in A The set of Wilson loops that can be measured within the
causal diamond ¢ 4 is not the most likely candidate, because Wilson loop operators
correspond to minimal surfaces in the bulk that reach beyond the causal wedge.

Two point functions in A In [91], it is argued that any set that includes two-
point functions is also unlikely to correspond to causal holographic information.
The so called geon geometry [95] is a central example in this argument. The
geon-geometry is a modified AdS-Schwarzschild geometry, where the spacetime
is cut in half and opposite points on the bifurcation two sphere are identified
(see figure . Outside the horizon, the spacetime is isometric to the original
AdS-Schwarzschild geometry. In [91] it is argued that the calculation of CFT
two-point functions would yield different answers for these two geometries due to
non-contractible Witten diagrams that wrap around the nontrivial topology of the
geon-geometry. So if two-point functions would be in the set of constraints ,
then these two geometries would generically yield different .4, whereas the x4
are equal. A similar argument is made for the set of one and two-point functions
in A that can be measured within ¢ 4 [91].
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3. Causal Holographic Information

One point functions The one-point entropy is the coarse grained entropy, with
the set of one-point functions of all all gauge-invariant, local CFT operators with
support on ¢ 4 as constraints (3.48|).

In [91] it is argued that this is the “strongest” 4x-preserving coarse-graining can-
didate. An important property of the one-point entropy is that it is equal to the
entanglement entropy of a thermal state. To be more precise, when p o< e #H
where H is (the integral of) a local operator, the one-point entropy and the usual
entanglement entropy are equal. The argument goes as follows: if H is local, then
H € {O,,}. The coarse grained density matrix p must hence satisfy

Te{Hp} = Tr{Hp}. (3.52)

The original density matrix p trivially solves (3.52) for all operators in {Oy,}.
Since there are other constraints from other operators in {O,,}, we must have

7 <9, (3.53)

But we also have 5{5\1) > S 4 by the extremality condition in the definition. Hence
we conclude YE) =S4 and pyg = p4. This observation corresponds with known
examples where the holographic entanglement entropy is equal to the causal holo-
graphic information [69].

At the moment of writing, there is no definitive counter argument against the

proposal E|

3.7 Summary & Outlook

In this chapter, we discussed causal holographic information. Causal holographic
information is the area of a co-dimension two bulk surface associated to a bound-
ary subregion. It has similarities with entanglement entropy, but there are also
differences. Generally, it is larger than or equal to the entanglement entropy of a
boundary subregion.

A boundary quantity dual to causal holographic information, which is defined in
the bulk, is not identified yet, although several proposals have been made. All
these proposals associate causal holographic information to the Von Neumann
entropy of a coarse grained density matrix. The proposed “one-point entropy” is
a particularly promising candidate.

9The one-point entropy cannot be equal to causal holographic information in case of boundary
sources [91].
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As a bulk probe, causal holographic information serves better than entanglement
entropy and Wilson loops, at least for d = 2. For a higher number of dimensions,
there is evidence for this statement as well.

Recently, the usefulness of causal holographic information has been discussed in
the context of certain states that are pure, but are locally isometric to the geometry
of a mixed state. To be more precise, one can think of geometries that correspond
to a pure boundary state, that collapse into a black hole. Another example is the
geon-geometry, discussed in section , which is isometric to AdS-Schwarzschild,
but is topology different and corresponds to a pure boundary state. In [96] it is
argued that a law similar to the first law of entanglement entropy is valid
for the one-point entropy, in certain cases.

If the one-point entropy proposal is correct, then the coarse-grained density matrix
associated to causal holographic information would have a local modular Hamilto-
nian. It would be interesting to investigate whether it is possible to reconstruct the
bulk gravitational equations using the dynamics of causal holographic information.

3.A Proof of formula for constant time slice

In this appendix we will derive the near boundary expansion of the embedding
function of the causal information surface (3.4) for an entanglement surface 0%
that lies on a constant time slice on a flat boundary, using a pure AdS bulk metric:
B dz? 1

ds* = —r + ;nuudx“dx” (3.54)

For the boundary coordinates we will use the following notations interchangeably:

ot = (¢, 7). (3.55)

For any point z# (&1, &2) on 9% there is a unique point on top- and on the bottom of
the causal diamond, z(£) on C* and zy(£) on C™ respectively. These points are
separated from the base point 2#(€) by boundary null geodesics that are normal
to 0% in x#(&). The causal diamond Oy is symmetric in the ¢ = 0 plane, so if the
future caustic x4 (&) is in the ¢t = 7 plane, the past caustic xy(§) is on the t = —7
plane. Since ¢ is normal to 0%, we can take the second normal vector 7(£) to be
in the ¢t = 0 plane. This allows us to express z/x (£) in terms of n(§) and 7(¢),

= (7(£), Zon (&) + 7(£)n(8)) (3.56)
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where 7(§) is the unit normal vector in the (¢ = 0)-plane and 7(§) depends (in
general non-locally) on the geometry of 9X. From now on we will not explicitly
write that these are functions of &.

We parametrize the embedding function 2 = (2,24, ) of the causal information
surface with z and €% (o = 1,2). Given a point M = (2,2} ) on the causal
information surface we would like to identify the point(s) Z(£) on d% such that
a past directed bulk lightray emanating from z/(£) and a future directed bulk
lightray «f{)(¢) intersect at #™ = (2,2} ;). For small z, z! ,, and a particular
xH(€) are close together (O(22)). Since the causal information surface consists of
points that are as far into the bulk as possible while still being intersected by at
least one null ray emanating from C* and C~. The point Z(£) that generates the
caustics from which the bulk point 2™ = (z,z},,,) can be reached by null
rays should be such that the distance between z} ;. and 2/x(£) is minimal. The
set of future caustics C* is piecewise smooth and we construct the normal plane
for a point 2/ (€) in CT. The point #(£) should be such that:

e 2l . lies in the intersection of the normal plane of 2x (€) and the ¢t = 0 plane

|2 — 2

L4 |=’Ebulk — TA (5)

One can construct two tangent vectors in zx(§) (or zy(£)) by taking derivatives
with respect to the parameters £, a = 1,2,

Sg/\ = acvxl/i
= (53/\, §aA)
= (0aT, 0aTnr)
S;c»c/\ = 8@-7?/\

= 0qZos + (0aT) + TOuN

(3.57)

=T, + (OaT)N + TOa1

where T, = 0,Tys. One can construct S,y similarly.

The space orthogonal to the tangent space span {S4A} in xzx € CT is (in the most
general case) two-dimensional and contains (1,7). It is spanned by (1,7) and by a
second linearly independent vector. We construct such a vector V£ by demanding
Vi San =0 for a=1,2.

(3.58)

= — o7 + VPTsT,, + 70°T5 - Oun
—0aT + VP Gga + TV Kop
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where gop = T, - fﬁ is the induced metric on 0%.

Equation ([3.58) is solved by

B (OaT)(1+7K) —TKQ((%T)
Sl TK + (K2~ K sK0)

(3.59)

Intersecting the ¢ = 0 plane with the surface spanned by (1,7(£)) and V() iden-
tifies the point Z(£) together with the condition that |zyur — 2 (€)]? = —22.

T = T, + (0,7 — b T, )"
ah = alhe + 7(1,n)"
o — Th|? = =22 (3.60)
= 724 (a —7) 2+ 0D Gugs
=a?(1+0b?) — 2ar.

Solving for a gives:

G 1 22(14b%)
1+b2 7 1+02 T2 (3.61)
2
= ; + O(2*) (Taking the minus solution).
-

Giving the near boundary expansion of the embedding function of the causal in-
formation surface:

A(E) — Qj( 5 BT (€) + O(24). (3.62)

z

Tyur (&, 2) = Tox(§) + 6]

3.B Proof of the formula for a flat boundary

Allowing the entanglement surface 9% to be a general spacelike surface in the
Minkowski background and a pure AdS dual removes the mirror symmetry of
the causal diamond in the t = 0 plane we used in Appendix Given a point
(z,2,,) on the causal information surface, the past and future caustics from
which the bulk null geodesics intersect at (z, )., ) might be related to different
points on 9.

Now we have to find two-points z}' = z#(£%) and z} = z(£* + A®) on 9% such
that:

e ' . lies in the plane through z/x (£) orthogonal to C*
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e zi' . lies in the plane through z{ (£ + A) orthogonal to C~

° |$bulk - xA(f)|2 = —2°

o |Tpuk — v (E+ A2 = =22,

using the definition (3.23]).

From now we will interchangeably use the subscript ¢ for quantities that are eval-
uated at £ and the subscript b for quantities that are evaluated at £+ A. So
can also be written as:

xy + /\TthrLt

“w
! (3.63)
.Tg + )‘ibeb'

In both z; and x, the two null normal vectors together with the two tangent
vectors TH = Q" constitute a basis and we can express z,,, in terms of these
vectors:

Ty = T + o NG+ apNj; + ap by Th, (3.64)
= xff + O‘TbN#b + O‘ibeb + OéTbb?T(iLb,

where a4, gy, e, oyp, by and by have to be determined by imposing the condi-
tions listed above.

Imposing the condition that zi,, lies in the plane through z/\(§) orthogonal to
C™ is equivalent to extremizing |Ty,x — zA| by varying z;:

0 = OalTpur — 2a |
= OalTputk — Tt — Mt Npe|? (3.65)
= (xll;tulk: - xf)nHV(Tgt - ATtaaN'?t - (aaATt)Néft)'

Similar for [Ty — zv|.
Now using the expansion (3.64]) we find equations for b, o = 1, 2.
0= —(BaAt) + 00 Gup — b7 KytapAie, (3.66)
where Gapg = Ot O3y Ny -
This equation (3.66) (And similarly for b,s) is solved by:

— (14 M Kpy) Dy — K, 050
bar = o s Y (3.67)
(1 + A K + 2 (Kﬁ — Kpiys K7, ))
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Another condition can be obtained by demanding;:

Zoutk — xn? = —2°
= Q(OéTt — )\Tt)au + aitb? (368)
22
= —+0
oy = Dhre +O(z )
Similarly for |zpyu, — ov| giving a similar solution:
2 o0 (3.69)
oy = —— z%). .
T 22 b

Now using (3.68)) and (3.69)) and implicitly using (3.67)) we can re-express (3.64)):

Ty = T + NG + )\ N” + WbaT
5 (3.70)
Z (0%
:x5+mNﬁ+aibeb 2/\ —bj T“
Now we can expand in A using that A%d,2* is of order O(z?):
52
Ty = o + o NE + N“ + ——bYTH + ..

2/\ 2\ ¢

(3.71)

— rH o H 7” 704N
1‘+Aa$ +2)\N+Oé¢bN +2)\bT+

We use linear independence to find equation for the coefficients of T¥, N# and
N
i

2 e ey e 4 oY

20 2\
52
2
o +0(zh).

Now we can expand the embedding function using z; = (&):

NN 2
ol e (50 =)+ = [ L+ = ) + 2T+ 0. (3.73)
bulk 2 )‘l )‘T 2)‘T t o

And for the relation between we find z; and xz:
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zf = 2H(§)
2 = ah(E + A)
« Z2 b? bl? 4
=4 w(md*om

90
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Notes for the reader

Conventions
Planck units h=c=1
Minkowski metric nuy=diagonal(-1,+1,...,41)
Reduced Planck mass set to one 87rG =1
Number of dimensions 3+1

The de Sitter radius L,s: in chapter we will consistently write L,s where
it is appropriate, since this is an introductory chapter. In chapters (5] and (6]) we
will also explicitly write L,s except for section . In section ([5.2) quantities
with units of length should be considered in units of L,s = H .

Published work

This part of the thesis is based on (parts of) our work presented in the following
articles:

[1] F.V. Dimitrakopoulos, L. Kabir, B. Mosk, M. Parikh and J.P. van der Schaar
Vacua and correlators in hyperbolic de Sitter space
JHEP 1506, 095 (2015), arXiv:1502.00113 [hep-th].

[3] B. Mosk and J.P. van der Schaar
Chaotic inflation limits for non-minimal models with a Starobinsky attractor
JCAP 1412, 022 (2014), arXiv:1407.4686 [hep-th].

In particular, elements of [I] will be presented in chapter (5). Elements of [3] can
be found in chapter @ Chapter is introductory and does not contain products
of our scientific endeavors.

93



94



Chapter 4
Introduction

In this chapter we present the basic concepts of cosmology necessary to present
our work in chapters and (@ In section we will give a non-technical
introduction into Big Bang cosmology and inflation. In section we will in-
troduce the concept of single field inflation, which will provide the framework
for this part of the thesis. In section we will present de Sitter spacetime,
which is relevant for the description of our universe during inflation. We proceed
with a more conceptual treatment of quantum field theory in curved spacetime
in section , which forms the basis for chapter . Subsequently we give an
extremely condensed summary of the derivation of the scalar power spectrum in
section . The detailed derivation of the spectrum is outside the scope of this
thesis and section will be largely a summary of [97]. In section we ex-
tract the most important parameters of the spectrum, which characterize models
of inflation. These parameters serve an important role in chapter @

4.1 Cosmology: a brief history of the universe

This part of the thesis is about inflation, a period of accelerated expansion thought
to have taken place just fractions after the Big Bang. We will briefly give a non-
technical description of the Big Bang scenario and motivate the study of models
of inflation.

Nowadays, the field of cosmology is dominated by the Big Bang scenario in com-
bination with inflation. The Big Bang scenario emerged in the twentieth century.
It was realized by Friedmann that general relativity allows for solutions that cor-
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Figure 4.1: The history of our universe. Source: Particle Data Group.

respond to an expanding universe. Another important observation was the reces-
sion of “spiral nebula” (galaxies), which was incurred from their Doppler shift.
Lemaitre proposed the idea that this Doppler shift is caused by the expansion of
our universe. It was realized that if one winds back the clock and reverses this
expansion, the matter in our universe would be extremely compact. The descrip-
tion of such a state with general relativity would yield a singularity, a point in
spacetime where geometrical quantities “blow up”.

In the course of the twentieth century a lot of evidence was found in support of
the Big Bang scenario. For example, Hubble’s measurements of galactic redshifts
showed that galaxies are drifting apart. Another important observation was the
measurement of the cosmic microwave background, which we will address later.

The Big Bang, which is thought to have happened some 13.8 billion years ago,
is often referred to as a singularity. However, we do not really know how space-
time behaves under the conditions of extremely high energies and temperatures.
As discussed in Part I, general relativity does not provide a good description at
distances smaller than the Planck scale, where quantum effects become important.

Although we do not really know what happened during the Big Bang and what
caused it, there is a more detailed model of the subsequent epochs. We will briefly
describe a selection of events and epochs of the history of our universe, as far as
they are relevant for this thesis (see also figure E]

IWe will not discuss topics such as grand unification, dark matter, baryogenesis, electroweak
unification, neutrino decoupling, Big Bang nucleosynthesis.
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4.1. Cosmology: a brief history of the universe

At a time-scale of 1073%s after the Big Bang, the universe is thought to have
been in a phase of inflation; accelerated expansion. In chapter we give some
motivation for the concept of inflation. Although there is a lot of evidence for an
inflationary epoch, the mechanism behind it is still unclear. Single field inflation
models have been very successful in explaining and predicting observations, such as
the characteristics of the cosmic microwave background, which is described below.

After the Big Bang our universe was in an extreme high energy state, for which
the physics is still poorly understood. Some 10736 seconds after the Big Bang the
universe enters the period of inflation, a period of accelerated expansion. Quantum
fluctuations during the period of inflation are being “blown up” and constitute the
seeds for the large scale structure of the universe at later times. The temperature
drops dramatically, but at the end of inflation the universe reheats again as a
consequence of the potential energy of the inflaton field being transferred to other
particles. The universe is initially dominated by radiation, but it becomes matter-
dominated as the temperature decreases. Radiation cannot propagate freely in a
plasma with unbound electrons, so radiation cannot propagate until the energies
are low enough for electrons and protons to form hydrogen. When protons and
electrons form hydrogen, the photons decouple. This decoupling, some 380.000
years after the Big Bang allows photons to propagate freely, such that the first
visible radiation is formed. This radiation is still “visible”, but it is highly red-
shifted to the microwave part of the spectrum. This cosmic microwave background
(see ﬁgure has an approximately thermal spectrum with T' ~ 2.73K and forms
the most important footprint of the physics of inflation. It is also affected by post-
inflationary physics, such as the baryon-acoustic oscillations. Other information
about the early universe can be deduced from the relative abundance of particles,
possibly by the measurement of gravitational waves and by observations of the
large scale structure of the universe.

This thesis will not discuss topics in astroparticle physics or post-inflationary
physics and will be theoretical in nature. In many cases, a simplified model of
inflation will be used in order to study the effects of changing some basic assump-
tions. For example, in chapter we analyze the effects of having a different
initial quantum state. These effects can be discussed qualitatively in a simplified
setup. The actual imprint on observable quantities is outside the scope of this
thesis. In chapter @ we consider different potentials for the field that describes
a mechanism for inflation.
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Figure 4.2: From ESA/Planck: The anisotropies of the Cosmic microwave background (CMB)
as observed by Planck. The CMB is a snapshot of the oldest light in our Universe,
imprinted on the sky when the Universe was just 380 000 years old. It shows tiny
temperature fluctuations that correspond to regions of slightly different densities,
representing the seeds of all future structure: the stars and galaxies of today. Source:
ESA and the Planck Collaboration (Id 288792).

4.2 Single field inflation

In this section we motivate the concept of inflation and introduce the single field
inflation model. We only discuss the classical dynamics of inflation; the description
of quantum effects will be postponed until section (4.5]).

4.2.1 FLRW spacetimes

In order to make a model of the large scale development of the universe, one has
to make a series of assumptions. At large scales, the spatial slices of our universe
look surprisingly homogeneous in all directions and distances.

Homogeneity A manifold M is called homogeneous if for any p,q € M there
exists an isometry f such that f(p) = q.

Spatial homogeneity A spacetime (M, g) is spatially homogeneous it there ex-
ists a group of isometries whose orbits are 3d spacelike surfaces.

A spacetime with spatial homogeneity has a set of preferred observers, called
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4.2. Single field inflation

comoving observers, whose velocity is perpendicular to the surfaces of spatial ho-
mogeneity. If these surfaces of spatial homogeneity look the same in all directions,
then the space is called isotropic.

It can be shown that the metric of a spatially homogeneous and isotropic universe
must be of the Friedmann Lemaitre Robertson Walker (FRW or FLRW) type:

2

d
ﬁ + rzdﬂg) : (4.1)

ds* = —dt* + d*(t) (1

with Kk = 0,41, corresponding to a flat, open or closed universe:

—1 open universe
k=14 0  flat universe . (4.2)
1 closed universe

Coordinates r, {2 are called comoving coordinates. Physical distances are obtained
by multiplying the distance in comoving coordinates with the scale factor a. The
physical velocity between two observers fixed at comoving coordinates, with a
separation Az in comoving coordinates, is given by
. d a
d= — (a(t)Ax) = —(alAx) = Hd, (4.3)
dt a
where d = aAx is the physical distance between the two comoving observers and
H is called the Hubble factor. The Hubble radius H~! is a physical distance and

the comoving Hubble radius
1

aH
is a comoving scale. If the comoving distance between two observers is larger than
the comoving Hubble radius, then they are out of causal contact by virtue of (4.3).

(4.4)

At large scales, the assumption that the universe can be modeled by a perfect
fluid, is another good approximation. The Einstein equations describe the coupling
between matter and the metricf]

G = 87GT,,, (4.5)

where G, = Ry — %Rgl“, is the Einstein tensor, G is Newton’s constant and 7},
is the energy momentum tensor.

A perfect fluid can be modeled by a set of comoving observers with velocity u,
such that u*u"g,, = —1. The energy density p and the pressure p are given by:

p = Tutu”
1 /w . (4.6)
Pngw(g +ufu”).
2From here on we will set 87G = 1, so that quantities with unit mass should be considered
to be stated in units of the reduced Planck mass.
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The simplest energy momentum tensor satisfying these properties is the energy
momentum tensor of the perfect fluid

Ty = pugtiy + p (Guv + tptiy) - (4.7)

The Einstein equations (4.5)) couple the energy momentum tensor (4.7) to the
metric. Assuming a FRW metric (4.1]), the Einstein equations give at a set of
differential equations for a(t) in terms of p and p, called the Friedmann equations:

')2:; _K (4.8)

a?’

5 (0 +3), (1.9

where the dots indicate derivatives with respect to t.

One can combine the Friedmann equations to obtain the continuity equation:

ﬁ+3g (p+p) = 0. (4.10)

Another simplification can be made by assuming a linear equation of state:

D = wp. (4.11)

For non relativistic matter w = 0, for relativistic matter (radiation) w = 1 and

3
for a cosmological constant w = —1.

4.2.2 Cosmological puzzles

Classical cosmology has been challenged to explain four (three) major problems:
the homogeneity & the horizon problems, the flatness problem and the monopole
problem. These problems were the main motivation to consider inflation (see
subsection ‘We will briefly describe these problems in classical cosmologyﬁ

Homogeneity & horizon problems

The cosmic microwave background radiation is surprisingly homogeneously dis-
tributed. A priori, there would be no reason for causally disconnected parts of the
universe to show this level of homogeneity, because causally disconnected regions
cannot equilibrate. Moreover, gravitational attraction is a long range force that

3By classical cosmology we mean a Big Bang model without subsequent accelerated expan-
sion. In other words, d < 0.
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4.2. Single field inflation

magnifies instabilities, so one would expect the inhomogeneities to be even smaller
at earlier times.

The analysis of causal regions in FLRW spacetimes is easiest done using conformal

time, defined ad7]
t dt/ a 1
= = 1 a——
0= [ iy =, Mo
2

d
ds* = a*(n) (—dn2 I 7”2in1>

(4.12)

1 — kr?

and is also called the comoving horizon or the comoving particle horizon, be-
cause particles whose comoving distance is larger than An cannot have been in
causal contact, whereas particles whose comoving distance is smaller than An can
have been in causal contact. In standard cosmology, the comoving Hubble radius
(aH)~! is increasing, so from we see that the causally connected areas were
smaller in the past. Hence, standard cosmology does not explain the high level
of homogeneity of the universe, because homogeneity is thought to result from an
equilibration process which necessitates causal contact. This is called the horizon
problem.

Flatness problem

The universe is currently very close to flat (k = 0) [98,/99]. Using the first Fried-
mann equation we can define the critical density perit by

1
HZ(@) = gpcm(a),

(4.13)
= Perit = 3H2(a)7
such that we have p = peit for a flat universe (x = 0). Rewriting the first
Friedmann equation using (4.13) we have
K
1-Q(a) = ————
(a) @i’ (4.14)

where Q(a) = pc”“(:l()a). From (4.14) it is clear that for a flat universe (k = 0) we

must have Q(a) = 1. In fact, initially Q must be very close to one, because the
comoving Hubble radius (aH)~! is increasing in standard cosmology: it requires

extreme fine-tuning to obtain 2 = 1 at late times.

4Here we write t = 0 as initial time, but later ¢ — —oo is more appropriate.
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Monopole problem

In many models of a grand unified theory (GUT), in which the fundamental forces
are unified in a single gauge group which is unbroken above a certain energy level,
magnetic (GUT-) monopoles can be created |100], at least in the early universe
[1014103]. Electric monopoles are well known. Electric charge in a volume V is

given by
1
1%
= — F 4.1
Q=g ] (415)
where x is the Hodge dual and F' is the Maxwell field strength. Hodge duality
exchanges xF = —B and *B = FE, so one could also define a “magnetic charge”
v 1
Q F. (4.16)

m_47T v

For a magnetic monopole we would have Q,, # 0, or in other words, there would
be a magnetic charge V-B= pm-. However, a magnetic monopole @,, # 0 has
never been observed. An important question in standard cosmology is hence: if
monopoles can theoretically exist, why have we never seen one?

4.2.3 Inflation

In section we described some problems with classical cosmology. In this
subsection, we will explain how accelerated expansion in the early universe can
solve these puzzles. We also briefly present the simplest mechanism that can
explain accelerated expansion; single field slow roll inflation.

Accelerated expansion

A crucial insight from the seventies was that accelerated expansion,
a >0, (4.17)

where the dots represent derivatives with respect to ¢ (4.1)), solves the cosmological
puzzles. Firstly, from (4.17) it follows that the comoving Hubble radius (aH)~!

decreases p )
— | — . 4.1
dt <aH ) <0 (4.18)

Returning to equation (4.14]) we now see that the flat universe is in fact an attrac-

tor:
1- Q) = ’ﬁ' (4.19)

Also, the homogeneity & horizon problem is explained. In [104] it is explained as:
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4.2. Single field inflation

If particles are separated by distances greater than m, they never could
have communicated with one another; if they are separated by distances
greater than (aH)™?!, they cannot talk to each other now! This distinc-
tion is crucial for the solution to the horizon problem which relies on
the following: It is possible that n is much larger than (aH)™' now,
so that particles cannot communicate today but were in causal contact
early on. From equation we see that this might happen if the co-
moving Hubble radius in the early universe was much larger than it is
now so that n got most of its contribution from early times. Hence, we
require a phase of decreasing Hubble radius. Since H is approzimately
constant while a grows exponentially during inflation we find that the
comoving Hubble radius decreases during inflation just as advertised.

The monopole problem can also be explained by accelerated expansion: even if
monopoles would have been created in the early universe, they would be extremely
diluted now, explaining the fact that they have never been observed.

Voilating the strong energy condition

From the second Friedmann equations (4.9) it follows that for an accelerating
universe we have

. G
Z:—%(p+3p)>0 = p+3p>0. (4.20)

This implies that the strong energy condition must be violated. The strong energy
condition states that the energy momentum tensor obbeys, for any non-spacelike
vector k

T
<Tu1/ - 2gu1/) ktEY Z 0. (421)

One can check that for a perfect fluid energy momentum tensor (4.7]) this implies
p + 3p > 0, which is clearly violated by (|4.20]).

In the next subsection, we will present a simple mechanism that can explain the
violation of the strong energy condition and the accelerated expansion of the uni-
verse.
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4.2.4 Scalar field inflation

Violating the strong energy condition

Consider a scalar field ¢ with potential V' (¢), for which the action is given by

S = /dd+1x\/jg (]; + Ematter) )

) ) (4.22)
Ematter = _iguuaﬂ(ban) - §m2¢2 - V(¢)
The energy momentum tensor is given by
2 6Sm tter
T;u/ \[ 597“,8 M¢8V¢ g,w matter- (423)
If we assume that ¢ = ¢(t), then it follows from (4.23)) that:
2 1 . 2
p="To = ¢— +V(p), p==-T = ﬂ —V(¢). (4.24)
2 3 2
From the equation of state (4.11)) it follows that
o
w = ;7@), (4.25)
T +V(9)
so when the potential energy V' is much larger than the kinetic energy,
Vo> ¢ (4.26)

the strong energy condition can be violated (w < —%)

Slow-roll parameters

A scalar field can drive inflation if the kinetic energy is dominated by the potential
energy ([4.26]). This condition must be satisfied throughout the period of inflation.
The equation of motion of a scalar field in a FLRW spacetime (4.1)) is given by

%
¢+ 3H$— 55 =0 (4.27)
and with p and p given by (4.24) the first Friedmann equation becomes:
2 _1(é?
H 1% 4.28
3 5+ (4.28)

From (4.25) we saw that inflation can only occur when the kinetic energy of the
scalar field is dominated by the potential energy (4.26]). Throughout inflation, the
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kinetic term must remain sufficiently small. This requires the smallness of two
parameters. These slow-roll parameters, given below, can be naturally expressed
in terms of the number of e-folds during inflation, which is defined as

N=In (ae“d> . (4.29)
Ubegin
Some useful equalities for IV are given by:

end ] tend bena fr
N = e H(t)dt = f/ Zde . (4.30)
Abegin a tbegin Pbegin ¢
From 1D we see that during inflation H? ~ % Demanding that this remains
true is equivalent to demanding that the relative change of H per e-fold is small.
A necessary condition is given by the smallness of a parameter e:

e GH = H (4.31)
N H?
One can show, using the equation of motion, that we also have
)
1¢ (4.32)

“=2m

Smallness of € (¢ < 1) is necessary but not sufficient. Another necessary condition

is given by the requirement that ¢ < 1 during all stages of inflation, or in other

words, that the relative change of € per e-fold is small. This is guaranteed by the
smallness of w
€

—e— — 4.33

T=€7 %eaN (4.33)

Using the equation of motion and using dN = Hdt (4.30)), we can also write 7 as:

n= =0 (4.34)
H¢
The second slow roll parameter 1 can also be negative, so the slow-roll conditions
are given by:
e 1, |n<1. (4.35)

The slow parameters € and n are given in terms of H and ¢ and they are called the
Hubble slow-roll parameters. It can be shown that a different set of parameters in
terms of the potential V', the potential slow-roll parameters, are equivalent to the
Hubble slow-roll parameters, in the slow-roll limit:

1(Ve\®
=_(= 4.36
«=3 (%) (4.30)
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V
= 5% (4.37)

which are related to the Hubble slow-roll parameters by:
ER €y, 1NNy — Ey. (4.38)

A formalization of these slow roll parameters and a generalization to higher order
parameters is given in [105].

Perturbation theory

Until now, we assumed the metric to be fixed to the FLRW-metric and
we assumed that ¢ = ¢(¢t). Such a simplified description describes the classical
evolution of the scalar field. A next step to a more realistic model is to consider
perturbations around this classical background evolution:

qS(:Z", t) _ qbbackground(t) + 5¢(f, t)

- ackgroun - (439)
G (B, 1) = g e (t) + 69, (T, 1)

These perturbations can be quantized. A problem with considering perturbations
around a background metric and scalar field is that there is not a unique way to
split the metric and scalar field in a background part and a perturbation part as
in . Different ways of making this cut are related to each other by “gauge
transformations”. There are however, certain gauge invariant quantities, that can
be constructed with the ADM-formalism.

In [97] it is summarized how, in a particular gauge choice, the actions for the
comoving curvature perturbation R and the tensor perturbation h;; can be derived.
The result for the comoving curvature perturbation is given by:

1 X2 7
Sy = §/d4xad% (R2 — a72(3,-7?,)2) . (4.40)

The action for the tensor perturbation h looks very similar and is effectively the
action of two scalar degrees of freedom corresponding to the two polarizations of
gravitational waves.

The action (4.40) can be simplified by introducing Mukhanov variables:

v=2R 22=-"1- =2d%
1 W (4.41)
S = 5 /dndgx ((1/)2 + (Ov)? + sz) ,

where 7 is conformal time (4.12)) and primes denote derivatives with respect to 7.

106



4.8. De Sitter spacetime

4.3 De Sitter spacetime

During inflation, the initial epoch of accelerated expansion, our universe has an ap-
proximate de Sitter geometry. In this section we will introduce de Sitter spacetime
and several coordinate patches on de Sitter spacetime. These coordinate patches
will be used extensively in later chapters.

4.3.1 Embedding

The (3+1)-dimensional de Sitter spacetime can be embedded in (4+1)-dimensional
Minkowski spacetime. The embedding equation is given by:

4
X3+ Y X =12, (4.42)
1=1
4
ds® = —dX§ + Y _dX7, (4.43)
=1

where Lgg is the de Sitter radius. The embedding equation (4.42) and the metric
(4.43) are both manifestly invariant under SO(1, 4) transformations. The pullback
of the Minkowski metric (4.43)) on the hyperboloid (4.42) yields de Sitter spacetime.

De Sitter spacetime is also the maximally symmetric solution to Einsteins equa-
tions with positive cosmological constant. The Einstein Hilbert action with cos-
mological constant is given by:

S = %/d4x\/jg(R —A). (4.44)

The Einstein equations that follow from extremizing the Einstein Hilbert action
with cosmological constant (4.44]) are given by

R A

“9ur = —5Y9uv- (445)

Gu =Ry —
I (22 2 9

In a 3 + 1 dimensional maximally symmetric spacetime, the Weyl tensor vanishes
and the Riemann tensor obbeys:

R

Rul/po = E (gupgua - guogup) . (446)

From the Einstein equations (4.45)) it follows that

R =2A. (4.47)
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The curvature in terms of L,s is given by

12

R=—.
Lis

(4.48)

Below we discuss some coordinate charts for the de Sitter spacetime.

4.3.2 Coordinate patches on de Sitter

In chapters and @ we will use different coordinate patches on de Sitter space-
time. Below we will briefly introduce these coordinate patches and their Penrose
diagrams.

Global coordinates

A set of global coordinates on de Sitter spacetime is defined by:

t
Xo = Lassinh | —
0 as S (Lds) )
. ¢
ZX? = L2, cosh? ( ) ,
i=1 Las

where the last line in the equation implicitly defines three angular coordinates
X, @, 0 on the unit three-sphere. In these coordinates, the metric becomes:

(4.49)

t

ds® = —dt*> + L2, cosh® —d2. (4.50)
LdS

These coordinates are called global because they cover all of the de Sitter space-

time. This is an example of a closed universe; the constant time slices have the

geometry of a three-sphere.

A coordinate transformation shows that this metric is conformally R x S®:

n=2 arctaun(eﬁ)7
L2 (4.51)

sin®n (7d772 + dQ%) )

ds® =

where n € [0, 7] and x € [0, 7]. The Penrose diagram is given by the (1, x)-diagram,
where every point represents an S? (figure [£.3).

Flat slicing

The flat slicing is a coordinate chart for which the constant time slices are flat. This
coordinate chart does not cover the whole de Sitter spacetime, but a subsection
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Closed de Sitter

[EIE]

=15
3

-

Figure 4.3: Penrose diagram of de Sitter spacetime. For an observer at x = 0, the comoving
Hubble radius is indicated in blue. The comoving particle horizon is indicated in
purple. Source: universeinproblems.com.

which is called the planar patch (see figure . In terms of the embedding
coordinates ([4.43}}4.42)), a set of flat coordinates is given by:

_t

Xo = Ly sinh <Ltds> + TZQLZZS
X4 = Lys cosh (LZS> - TZE::;S (4.52)
X; :e%dsxi, fori=1,...,3.
In these coordinates, the metric is given by:
ds? = —dt? + ¢*Tas d? = —dt? + 272, (4.53)

Alternatively, we can use spherical coordinates for the constant time slices:

ds®> = —dt* + e’ Tas (dr2 + r2dQ§) ) (4.54)

Hyperbolic slicing

The hyperbolic patch is yet another coordinate patch that does not cover the
whole de Sitter spacetime (see figure [4.5)). In fact, two hyperbolic patches can be
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Flat sections of de Sitter
bis big 3x

0 i 3 )

sl

T,
(ST

X

Figure 4.4: Planar patch of de Sitter spacetime. Source: universeinproblems.com.

identified (see figure . A set of hyperbolic coordinates is defined by:

X, = Lyssinh (L%s) coshr (4.55)
X, = Ly cosh (L%) (4.56)
3
SOXZ = L2 sinh? ( Lﬁs) sinh?r, (4.57)
=1

where the last line of the equation implicitly defines two angular coordinates. In
these coordinates the metric is given by:

t

ds® = —dt?* + L2, sinh® (

ds

) [dr? + sinh® r Q23] . (4.58)

In chapter we will discuss the hyperbolic patches in more detail. We will also
“derive” the hyperbolic coordinate set in a different manner and we will discuss
a link between flat and hyperbolic coordinates. A hyperbolic coordinate set is

sometimes called an open slicing of de Sitter spacetime, because the spatial slices
are hyperbolic spaces.

Static coordinates

The final coordinate set we will introduce is the static coordinate set. In figure
(4.6) the region of de Sitter spacetime covered by these coordinates is indicated.
There is a timelike Killing vector in the static patch. A set of coordinates covering
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Open sections of de Sitter
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Figure 4.5: Hyperbolic patch of de Sitter. See also figure ‘ Source: universeinproblems.com.

the static patch is given by:

r2 t
Xo = Lysy |1 — inh
o= b1 g ()
2 ¢
X, = Lysy |1 — ~— cosh ( ) (4.59)
ds LdS

3

2 _ 2
E X7 ="
i=1

where the last line implicitly defines two angular coordinates. In these coordinates,
the metric is given by

2 2
9 T 2 dr 2 2
ds® — — <1 — LQS) dt* + ﬁ +redQy . (4.60)

The metric is singular as r» — Lyg, but this is merely a coordinate singularity; the
metric is smooth in lightcone coordinates. Note that 0; is a timelike Killing vector.
It is not a global Killing vector of de Sitter spacetime; the static coordinate set
only covers part of de Sitter (see ﬁgure. The coordinate singularity at r = Lyg
corresponds with the vanishing of the Killing vector and is hence a Killing horizon.

4.4 QFT in de Sitter spacetime

Quantum field theory in de Sitter spacetime, or curved spacetime in general, is
more complicated than quantum field theory in Minkowski spacetime. Quantum
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Static coordinates of de Sitter

Figure 4.6: Static de Sitter patch. Region I and region III can be covered by static coordinates.
Source: universeinproblems.com.

effects are relevant for the explanation of the spectrum of the CMB, so a good
understanding of quantum field theory in de Sitter spacetime is necessary. In this
section, we will present techniques of quantum field theory in curved spacetime,
that will be used in later chapters. The discussion is partially based on [106}/107].

4.4.1 QFT in curved spacetime

Consider a globally hyperbolic Lorentzian manifold M with metric g and let ¥ be
a Cauchy surface with future directed normal vector £#. One can think of ¥ as a
constant timeslice. Let n oc £ be the future directed normal vector of ¥ (n? = —1)
and let hgp = gap + nanp be the induced metric on 3. The conjugate variable to
the scalar field ¢ is now defined as

T = Vhn'd,¢. (4.61)

Choose coordinates {#} on X, such that we can impose canonical commutation
relations

[0(2), (y)] = id(x,y),  [o(x),¢(y)] =0,  [I(x),1l(y)] =0,  (462)

where the delta function is defined such that [y, d*zd(z,y)f(z) = f(y) for any
function f on X.

The scalar product or Klein Gordon product of two functions f, g is given by
. 3 u Ar~d
(f,g)s = —i | d*xvVhn'f(z) 0 ng" () (4.63)
b
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4.4. QFT in de Sitter spacetime

If f and g satisfy the equation of motion, the Klein Gordon norm is conserved,
which means that it does not depend on the choice of ¥. This allows us to construct
a complete orthonormal set of solutions {¢;, ¢7} such that

(Pi, d5) = 0ijs (b7, 05) = —bis, (97, 95) = (i, ¢;) = 0. (4.64)

Note that when we have a continuous label for the mode functions, then the
Kronecker delta becomes a delta Dirac function. The field ¢ can be expanded
with respect to this basis and promoted to an operator

¢ = Z (aipi +a'ey), (4.65)
where the creation and annihilation operators satisfy
lag,al] =05, las,ag),  af,al. (4.66)

One can check that these commutation relations are guaranteed by the canonical
commutation relations (4.62]) and the Klein Gordon normalization of the mode
functions (4.6314.64]).

The vacuum state can now be defined by:
@;]0) =0 Vi. (4.67)
Unfortunately, the decomposition (4.65) in modes is not unique. One can check

that a different set of modes {(;Sj, é;‘} also constitutes an orthonormalised basis as
long as

di=> (A§¢j + Biﬂﬁ}f) ) (4.68)
J
0ij =) (ATA} - BIBf), 0=) (A'Bf—BIA}), (4.69)
k k
or in matrix notation
AAT - BB =17, ABT — BAT =0, (4.70)

where the bar denotes complex conjugation The Ag and Bg are called Bogoliubov
coefficients. As a consequence of this freedom to choose our orthonormal basis of
modes, we can also associate a set of creation and annihilation operators {a;, EL}}
to the modes q~$ and define another vacuum state with respect to these operators.
Hence, there generally is not a unique vacuum state in curved spacetime.

5Invertability of such a rotation of mode functions requires also that ATA — BT B = T and
ATB — BT A =0, as shown in [108| for example.
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4. Introduction

Even in Minkowski spacetime, one could take normalized linear combinations of

Tiwrt and define an alternative

the positive and negative frequency mode functions e
vacuum with the creation and annihilation operators associated to these new mode
functions. One way of selecting a unique vacuum is to demand that the mode
functions correspond to plane waves at early times. In Minkowski spacetime this
is equivalent to selecting the positive frequency mode functions. This choice also
guarantees that the vacuum is an eigenstate of the Hamiltonian and the other

conserved charges associated to the energy momentum tensor.

4.4.2 Wightman function

Generally, the vacuum state is not uniquely defined in curved spacetime. A way
to characterize a vacuum state is to consider the Wightman function, a construct
from axiomatic field theory. The Wightman function of a vacuum state |Q)is given
by:

W(z,y) = (Qp(x)o(y)[€2). (4.71)

If the field ¢ can be expanded as (4.65)) and the vacuum is defined as (4.67)), the
Wightman can be written as:

W(z,y) = Z di(x) 95 (y). (4.72)

A vacuum state defined by creation and annihilation operators @, associated to a
different set of mode functions , will result in a different Wightman function.
A Bogoliubov transformation that is particularly relevant for this thesis, does not
mix modes with different quantum numbers (it is diagonal), but mixes a mode
function ¢y with its complex conjugate:

¢; = Ady + Boy, AP —|B* =1. (4.73)

The relation between the Wightman function W for the vacuum state associated to
the mode functions {¢y } and the Wightman function W for the vacuum associated
to the mode functions {¢} defined by (4.73) is given by:

Wz, y) = (2(X)g(Y)[)

_ 142 . - 2 *
= |A] ;¢Z(X)¢Z(Y)+|B| Zi:cﬁ (X)o(Y)+ (4.74)

+AB Y S 6i(X)6i(Y) + A'B Y 61 (X)o1(Y).
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4.4. QFT in de Sitter spacetime

4.4.3 The Bunch-Davies state

In de Sitter spacetime, there is a special vacuum state which we will describe here.
First we will describe the set of de Sitter invariant vacua, then we will further select
one of them, the Bunch-Davies state.

a-vacua

The Wightman function for a vacuum state |€2) is given by (4.71))
W(X,Y) = (Qe(X)a(Y)|). (4.75)

De Sitter spacetime is homogeneous, which means that different points are asso-
ciated to each other by isometries. Hence, the de Sitter invariant vacuum state
should yield a Wightman function which depends only on the de Sitter invariant
distance between two pointsﬁ

W(X,Y) = W(Z(X,Y)). (4.76)
In embedding space (4.43[4.42), the de Sitter invariant distance is given byf'|

1
Z(X,Y) = = XY nap. (4.77)
LdS
The Wightman function should solve the equation of motion in each of it coordi-
nate entries. In terms of Z (4.77)), the Klein Gordon equation for a massive scalar
on (3 + 1)-dimensional de Sitter spacetime becomes:

(2% 1) 0% +42Z0; + m*L3,) W(Z) = 0. (4.78)

This equation has two solutions and is solved by hyper-geometric functions. One
can take two solutions such that they are related by Z <> —Z and such that
one solution f(Z) is singular in Z = 1 and the other f(—Z) in Z = ,1E| Any
linear combination of these solutions would solve the equation of motion as
well and can be associated to a vacuum state with its characterizing Wightman
function:

W(X,Y) = af(Z) + bf(~2). (4.79)

The choice b = 0 is special for the following reason. Euclidean de Sitter spacetime
is simply a sphere. On the sphere, there is a unique Greens function and a unique

6Sometimes, the symmetrized Wightman function is used in this argument, for example
see [109].

"The geodesic distance is given by d(X,Y) = Lgsarccos Z(X,Y).

8The transformation Z <+ —Z is called the antipodal transformation.
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vacuum. Analytic continuation to Lorentzian de Sitter yields the Wightman func-
tion with b = 0 [110,/111]. This choice is also special because the Wightman
function is not singular for Z = —1. It is called the Bunch-Davies state, or the
Euclidean vacuum, due to its relation to the vacuum state on Euclideanized de
Sitter (the sphere).

Associated to such a vacuum choice, there is a set of mode functions, {¢x Bp}-
The vacuum states corresponding to different choices of a, b in are associated
by a Bogoliubov transformation of the Bunch-Davies mode functions {¢ gp} of
the type . A convenient parametrization is given byﬂ

1 e

T —earar OuBD T e PhBDs

and the associated vacua are called alpha or a-vacua, where Re{a} — —oo corre-
sponds to the Bunch-Davies state.

Pho = (4.80)

Another frequently used parametrization of the a-vacua is given by the two real
parameters («, f3):

o = cosh(@) by Bp + sinh(a)e ¢ . (4.81)

In [110] it is argued that 8§ = 0 for states invariant under time reversal. The
Bunch-Davies state corresponds to a = 0. From different perspectives the non-
Bunch-Davies a-vacua seem to be non-physical: see for example [112}[113].

The Euclidean vacuum Wightman function in terms of the de Sitter invariant
distance Z(X,Y) is given by

3 1+7

W(X,Y) x oF1[h,2 — h, % T]’

(4.82)
where h is a solution of:

h(h —2) + m?L% = 0. (4.83)

For the massless scalar field it is not clear that there exists a de Sitter invariant
vacuum state. The Wightman function becomes a constant as m — 0 and
f(Z) and f(—Z) are no longer independent solutions to (4.78)). A second solution
to can be found, but the result is qualitatively different from the massive
case. Strictly speaking, one could conclude that there is no de Sitter invariant
vacuum state for the massless scalar [110]. This issue is a consequence of the
shift symmetry ¢ — ¢ + ¢ for the massless scalar field, which gives life to a zero
model® Efforts have been made to construct a de Sitter invariant vacuum state

9See for example [112}[113]
10Some authors object to this interpretation, for example see [110]
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4.4. QFT in de Sitter spacetime

for the massless scalar field nonetheless [114L[115]. A full discussion of these issues
is outside the scope of this thesis. Below we will define the Bunch-Davies state for
the massless scalar field in a different way, but strictly speaking it is not de Sitter
invariant. We can think of the associated mode functions as being the small mass
limit of the mode functions for the massive case.

Positive frequency modes

In the previous paragraph we discussed the Bunch-Davies state, the de Sitter
invariant vacuum state that can be associated to the unique Euclidean vacuum
on the sphere. The Bunch-Davies state also appears as the natural vacuum of de
Sitter spacetime in a different context. In the flat slicing the Bunch-Davies
mode functions can be associated to positive frequency or positive energy mode
functions in the far past.

Consider first the example of Minkowski spacetime with coordinates (¢,Z). Ex-
panding a general solution in terms of momentum modes p'yields the Klein Gordon
equation

(07 +p* +m?) 65(t) = 0, (4.84)

which has general solution

Gp(t) = ae™ ™t 4 Bet it Wy = \/p? +m?. (4.85)

The solution with 8 = 0 is associated to plane waves with positive frequency wp.
Particles are associated to (wave-packets of-) plane waves and a natural choice of
mode functions and the associated vacuum in given by the choice 5 = 0.

In the flat slicing of de Sitter spacetime , using conformal time , we can
construct eigenfunctions of the spatial Laplacian, with eigenvalues p, the comoving
momentum. In order to select a preferred set of mode functions we demand the
following:

(1) oc e, (4.86)
where w, = |p| for the massless scalar field. This selects a particular solution to the
Klein Gordon equation with comoving momentum |p|, which can be associated to
“positive frequency” excitations in the far past. It can be shown that this method,
applied to the planar patch, selects the Bunch-Davies state. In chapter , we
will also use this condition to select a “natural vacuum” in the hyperbolic
patch.
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4.5 Inflationary power spectrum

In the introduction we explained how the cosmic microwave background (CMB)
resulted from the decoupling of photons, constituting the first visible radiation in
the universe. The CMB provides important observational data and a model of
the early universe should be consistent with the power spectrum of the cosmic
microwave background. Ideally, a model of inflation should explain features of
the observed spectrum. Recombinatiorﬂ happened about 380.000 years after the
Big Bang, whereas inflation occurred about 1073* seconds after the Big Bang.
This means that the CMB is heavily affected by post-inflationary physics, like
the baryon acoustic oscillations. In this thesis we focus on the inflationary epoch
and the effects of having different quantum states and different inflaton potentials.
The post-inflationary physics is outside the scope of this thesis.

In section we described how the classical description of a single scalar field
model can explain the accelerated expansion of the primordial universe. Subse-
quently, we considered perturbations around the classical evolution, which lead
to the quadratic action . These microscopic fluctuations are transformed
into the seeds for the macroscopic structure of the universe at later times. A
fluctuation on a certain comoving sub-horizon scale (A < (aH)™!) will eventually
exit the comoving Hubble radius and becomes super-horizon (A > (aH)™!).
The super-horizon modes are frozen out; points separated by comoving distances
Az > (aH)~! are no longer in causal contact. Only after inflation, when the
comoving Hubble radius increases again, these modes re-enter the horizon. Once
they are subject to causal physics, gravity causes regions of higher density to be-
come even denser. This process ultimately leads to the large scale structure of the
universe. A full discussion of this process is outside the scope of this thesis, but
details can be found in reviews like [97].

Here we will be concerned with the spectrum AZ2(p) of the comoving curvature
perturbation, which is defined by:

(Qp|R2 (7, 7)) = / d(Inp) A2(p). (4.87)

We can also write the two-point function in terms of comoving momenta:

20 = _ [ @p [ & i e
(QBD|R*(n, ¥)|BD) = = | o5 (2BD|Ra(n) Ry (n)|sD)e ,

(2m)3 ) (2m)3
(4.88)
such that our task at hand is to calculate
(Rp(2) Ry (). (4.89)

171n fact, combination would be a more appropriate name.
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4.5.  Inflationary power spectrum

Roughly speaking, the classical evolution of the inflaton field gives rise to a cos-
mological constant. The (quantum-) fluctuations locally change the cosmological
constant, or local energy density, leaving their imprint on the structure of the
universe and the CMB by the mechanisms described above.

In order to determine the spectrum , we must quantize the perturbations
and determine the appropriate quantum state on which we should evaluate the
field operators. We will give a simplified description of this procedure, taking the
“de Sitter limit” e, — 0 , which is equivalent to calculating the two-point
function of a quantized scalar field on a fixed de Sitter geometry. This simplified
calculation is sufficient for our analysis in chapter @ Note that we gave a more
conceptual treatment of quantum field theory in section , to which we will
refer several times.

First, expand v in terms of comoving momentum modes and promote the field to
an operator:

3
v(n, T) = / (;lﬁl); (azvs(n)eP? + h.c.), (4.90)

where h.c. stands for hermitian conjugate. The mode functions {vz} must satisfy
the equation of motion

v+ AR P (4.91)
5 p > 5= U. .

If the mode functions {v;} are properly normalized (4.63), then the canonical
commutation relations for ¢ (4.62)) and its conjugate variable imply the canonical
commutation relations for the aj (4.66):

laz,a%] = 2m)°6%(F— 1), lamap] =0,  lalal] =o0. (4.92)
In the de Sitter limit, e, — 0, we have %” = %/ = 17% We will consider this limit,

in which the scalar density perturbation decouples and the action (4.41)) becomes
the action of a massless scalar field on a fixed de Sitter background. The general
solution to the equation om motion is now given by

) He—i\p\n (1 i )
vr(n) = o —— - —
b V2p pln

BHeilpln (1 i )
+BH— 14+ — ),
V2p Ipln

which is of the type (4.73). The normalization |a|? — |3]?> = 1 (4.73)) guarantees
that (4.92)) is consistent with the canonical commutation relations for ¢ (4.62)).

(4.93)
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To determine «, 8 for the “natural vacuum”, we consider the limit 7 — —oo (4.86)):

i He—i\p\n <1 i ) s etlpln (1 i )
m - — + + —
n=—oo /20 pln V2[p) pln
el —ilpln) etilpln

verd V2l

and we recognize that the choice @« = 1,8 = 0 corresponds to positive frequency
modes in the far past. With this choice, we define the vacuum, the Bunch-Davies

state as in (4.67)):

(4.94)
aH

a5Qep) =0 VP (4.95)

The two-point function is now given by

or in position space
, d’p [ & iV
(nlR0.2)0m0) = [ 555 [ (5 CunlRA R ()]} 7
d3p H2
= | G O )

2 2 2
_ A da 1 .
47T2/0 (Inp) (14 p°n?)

(4.97)
The spectrum AZ2(p) is given by the integrand of (4.97):
2 H? 20, (2 4.98
Alp) = 5 (L4 pl*l*) - (4.98)
T
At late times, |pn| < 1 the spectrum of the scalar field is approximately
H2
2 —

NK) = s (1.99)

which is scale-invariant. However, we must not forget that we took the de Sitter
limit as we went from the true two-point function of the comoving curvature per-
turbation to the two-point function of the scalar field in de Sitter. If the equation
of motion is not changed to leading order, that is, if the approximation %N ~ o

a

is still good, then we can use (4.99) and modify it in two ways: first we must

2
multiply the result (4.99) by (%)2 = (;I ) . Secondly, the comoving curvature
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4.6. Parameters of inflation

perturbation remains constant outside the comoving horizor[™?} so we evaluate the
spectrum at horizon exit p = aH:

H? H?

Adp) = == : (4.100)
5 .

4w ¢2 p=aH
This is the main result of this section. In the next section, we will use this result
and relate it to two parameters that characterize an inflationary model.

4.6 Parameters of inflation

In section presented a simplified derivation of the spectrum of comoving
curvature perturbations. A similar derivation can be given for the tensor mode
perturbations (see for example [97]). The spectrum depends on the inflationary
potential (V(¢)) via the first order slow-roll parameter € (4.36). In fact, we can
characterize an inflationary model by the two slow-roll parameters € and 7. Below
we will describe how these parameters are related to the spectrum and how they
are related to two other commonly used parameters that characterize a model of
inflation; the scalar spectral index ns and the tensor to scalar ratio ». We will also
discuss the possibility of having a non-zero running of these parameters.

From section (4.5) we have the main result (4.100). For the tensor fluctuations
one can derive the spectrum in similar fashion; here we will state the result:

2H?
Afp) = —5 (4.101)
p=aH
The tensor to scalar ratio is defined as
AZ
r= A—é (4.102)
and using (4.100f) and (4.101)) we find:
r = 16€|,_ - (4.103)
The scalar spectral index ng is defined as:
2
ne =14+ A (4.104)
dlnp

12We did not discuss this here; it is outside the scope of this thesis. The fact that the
comoving curvature perturbation is constant outside the horizon follows from the treatment
of all perturbations and the construction of gauge invariant scalar perturbations in the ADM-
formalism.
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One can show that (using 4.100):

ne =1+ 20 _op — del_y - (4.105)

In chapter @ we will be interested in different potentials V' (¢), so it is more conve-
nient to write n, and 7 in terms of the potential slow-roll parameters ([4.36]14.37){"]

ns =1+ 2ny — 6ey,

4.106
= 16e,,. ( )

These expressions, together with the definitions (4.36ll4.37) of the potential slow-
roll parameters form the basis for chapter @

The scalar spectral index ns and the tensor to scalar ratio r can be scale dependent.
The “running” «ay is a measure of the scale dependence of ng:

_dns
b= Ak

(4.107)

A large running would spoil the scale-invariance of slow-roll inflation models. In
single field inflation models, the running is an effect that appears at second order
in the slow-roll parameters. If a large running would be measured, then this would
cast doubt on at least some single field inflation models. In this thesis we do not
analyze the running of parameters of the models under consideration.

13From now on we will drop the subscript p = aH.
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Chapter 5

Vacua in hyperbolic de
Sitter

In chapter we introduced inflation and single field inflation models. We dis-
cussed how quantum fluctuations form the seeds of the large scale structures in
the early universe and we derived an important characteristic: the scalar power
spectrum. In section we used flat coordinates (4.52)}4.53)) and assumed that
the appropriate quantum state was given by the Bunch-Davies state (subsection
4.4.3). However, there are reasons to believe that our universe is actually best

described by a hyperbolic patch (4.55[14.58)).

In this chapter we investigate how the spectrum would be affected by considering
the natural vacuum of the hyperbolic patch as the initial quantum state. We
will work in a simplified model: we will just consider the two-point function of a
scalar field on a fixed background and compare the Bunch-Davies state with the
hyperbolic vacuum, which is defined below. Although this is a simplification, the
effects of considering different initial states can be analyzed.

We attempt to determine whether we can distinguish the power spectra generated
by these two states. The study of the hyperbolic patch is mainly motivated by
the possibility that we live in a “bubble universe” (see section . A proper
description of a bubble universe would involve the physics of its nucleation, which
would certainly affect the quantum state. The Bunch-Davies State and the hyper-
bolic vacuum are qualitatively different from each other because from the point of
view of the bubble, the Bunch-Davies state is mixed, or entangled, whereas the
hyperbolic vacuum would be pure.
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5. Vacua in hyperbolic de Sitter

In section we will motivate the study of the open universe and the hyper-
bolic de Sitter patch. In section we will introduce a relationship between
the planar patch of de Sitter spacetime and the hyperbolic patch of de Sitter
spacetime. Subsequently, we will discuss the hyperbolic vacuum (section , the
Bunch-Davies state (section and the reduced density matrix associated to the
hyperbolic patch in the Bunch-Davies state (section . In section we cal-
culate the power spectra in the two different states and in section we analyze
the difference of the energy-momentum tensor evaluated on these two vacua.

5.1 The universe as a hyperbolic patch of de Sit-
ter

In this section we motivate the study of the hyperbolic patch of de Sitter spacetime
and introduce coordinate charts. First we discuss the appearance of the open uni-
verse in the context of bubble universes. Subsequently, we discuss how we obtain
coordinates on the hyperbolic patches by doing an analytic continuation from the
Euclidean space. This discussion supplements the introduction of coordinates on
the hyperbolic patch in section .

5.1.1 The universe as a bubble

Cosmological observations point to a primordial universe that can be effectively
described by an approximate de Sitter phase. One scenario is that our universe
is actually contained in a bubble which is embedded in a larger space. Pioneering
work on such a scenario describes a single, minimally coupled scalar field with a
potential with two local minima, of which only one is the true global vacuum [116].
The nucleation of a bubble can be interpreted as the tunneling of a region of space
from the false vacuum to the true, global vacuum (see figure . Such a region
expands approximately with the speed of light.

The probability per unit time per unit volume of a tunneling event is of the form

r _B
—xe

v (14+O(h)), (5.1)

where B «« Sg and Sg is the Euclidean action evaluated on the “bounce solution”,
the solution of the field ¢ that interpolates between the false vacuum and the true
vacuum. The transition from the false vacuum to the true vacuum is a quantum
tunneling effect, which can be seen by the appearance of & in .
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5.1. The universe as a hyperbolic patch of de Sitter

LU ()

N b,

Figure 5.1: A potential with a true vacuum, associated to the field configuration ¢ = ¢_ and a
false vacuum associated to the field configuration ¢ = ¢4. Source: [116].

The original analysis by Coleman and De Luccia focused on the scenario of a
Minkowski bubble in a de Sitter spacetime and that of an Anti de Sitter bubble in
a Minkowski spacetime [116]. Later, other scenarios of an “open universe” bubble
in de Sitter were studied [117]. In particular, scenarios in which the scalar field tun-
nels onto a slow-roll part of the potential were considered (see for example [118]),
in which a first phase of inflation (old-inflation) corresponds to the false vacuum
configuration of the scalar field and a second phase of inflation (new-inflation)
occurs after tunneling to a slow-roll regime of the potential (see figure . The
geometry of the bubble is usually of the FLRW-type , with hyperbolic spatial
slices.

The possibility that our universe emerged as a bubble in a larger space also leads
us to the idea that perhaps our universe is just one realization in a huge landscape
of bubble universes that are continuously being produced as a consequence of a
stochastically varying scalar field during a phase of eternal inflation [120}121].

The general prediction that the spatial sections in our universe should be hyper-
bolic on the largest scales is hard, if not impossible, to verify because the primordial
inflationary expansion typically redshifts the negative curvature scale far beyond
the observable universe [122].

Recently, a rather generic consequence of a bubble universe has been explored
[119,/123H125]. In the context of an inflationary landscape one would expect the
initial vacuum state for quantum fluctuations in a single inflationary bubble to be
entangled with the rest of the universe, leading to a mixed state inside the bubble.
Since the Cosmic Microwave Background temperature anisotropies (as well as the
large scale structure distribution) probe the statistics of these inflationary quantum
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Figure 5.2: Potential for single-field open inflation. This scenario entails tunneling from the false
vacuum field-configuration ¢ to a slow-roll regime of the potential with initial field

configuration ¢ . Source: .

fluctuations, one could imagine uncovering evidence in favor of a mixed initial
state that would support the idea that our universe originated from false vacuum
decay. This idea warrants a careful study of the actual (observational) potential
to constrain departures away from a standard pure initial state for inflationary
quantum fluctuations and how these departures relate to the global vacuum state
of eternal inflation.

In this chapter we present a first step, triggered by some recent work in this
direction [125], in clarifying the connection between the vacuum state of the false,
eternally inflating, vacuum and potential departures from the standard Bunch—
Davies vacuum state in a hyperbolic bubble. We do not consider any bubble
nucleation mechanism in particular, but instead consider a hyperbolic patch of de
Sitter as a “toy bubble”. In this setup, the difference between entangled and pure
states of a scalar field in the bubble can be analyzed relatively easily.

5.1.2 Coordinates in hyperbolic patches

In this section we describe how can obtain coordinates on the hyperbolic patches by
analytical continuation from Euclidean to Lorentzian signature in the embedding
space. We follow [126]. Note that we already discussed the hyperbolic patch in
section . Here we will show how we obtain two hyperbolic patches and a
“center patch” (see figure .
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5.1. The universe as a hyperbolic patch of de Sitter

Euclidean de Sitter spacetime is a four-sphere S* and is obtained from Lorentzian
de Sitter by the analytic continuation Xy — iX,, such that and -
become: A
ds® = dX§ + ) dX7,
=t (5.2)
XO + Z X2 dS7
i=1

which simply represents a four-sphere embedded in flat Euclidean spacetime.

We will use slightly unusual coordinates for the sphere and then consider the ana-
lytic continuation back to Lorentzian de Sitter. Consider the following coordinates:
XO = L5 cosTcosp
X4 = LygsinT,
X1 = LyscosTsinpcosf (5.3)
Xy = Lyg cosTsin psinf cos ¢

X3 = Lyg cos 7 sin psin 0 sin @,

with 7 € [-F, %] and p € [0, 7]. In these coordinates the metric is given by

ds® = L2, (dr* + cos® 7(dp® + sin® pdQ?)) . (5.4)

The analytic continuation back to Lorentzian de Sitter, X0 iXY, can be done
in three different ways on the level of the intrinsic coordinates 7, p, # and ¢, which
corresponds to three different patches of de Sitter (see figure . These three
regions will be referred to as R, C', and L, and their coordinates are related to the
Euclidean coordinates by [126]:

{ tr = i(t—7/2), (tr > 0)

TR Zpa ( )

{ te = T, (7r/2>tc> —7/2)
= (

rc = i(lp—7/2), 00 > rg > —00)
{ te = i=T-7/2), (L 20) (5.5)
rL = ip, (r, >0)
and their metrics are given by
dsf = L2, (—dt, + sinh® tg (drf + sinh® rpdQ?)) , (5.6)
dsg = L2, (dtg + cos® to(—drg + cosh® rcdQ?)) (5.7)
dst = L3, (—dtf + sinh? 1, (dr + sinh? rp,dQ?)) , (5.8)

where L' = H.
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5. Vacua in hyperbolic de Sitter

Figure 5.3: The left and right hyperbolic patches 1@, and the center patch on a
Penrose diagram of de Sitter spacetime. Source: [126]

5.2 A generalized hyperbolic embedding

In this section we will show a relation between the planar patch and the hyperbolic
patches. Already in section we noted that the embedding equation of de Sitter
spacetime is invariant under O(1, 4) transformations, corresponding to
the isometry group of dS4E] In this section we will show that an infinite boost
in the (Xg, X4)-plane, in combination with a coordinate transformation, relates
a hyperbolic patch to the planar patch. This map allows us to compare mode-
functions and the respective vacuum states on these different patches. Note that
we set Ly = 1 in this section for notational convenience. We start by restating
the definition of the planar and hyperbolic coordinate sets as discussed in section

(4.3). The planar coordinates presented in (4.52]l4.53)) are defined by:

Xo + Xy = €t”
Xo— Xy = (7’2 e’r —1)e ' (5.9)

3

2 2 2t
P& 2 o2
i=1

IFrom here we will only consider the continuous isometries of de Sitter, captured by SO(1,4).

Il
-
®
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Note that we presented these coordinates in a slightly different way, making explicit
that this patch covers only the part of the hyperboloid with X+ X4 > 0. We also
added a subscript p (for planar) to distinguish the planar coordinates from the
hyperbolic coordinates in what follows. In these coordinates the metric is given

by (see also 4.53)):
ds? = —dt? + v [dr? + r2 d03)] (5.10)

with —oco < ¢, < 400 and r > 0. Since Xy 4+ X4 > 0 these coordinates only cover
the upper half diagonal part in the (Xo, X4)-plane. Besides the obvious SO(3)
isometries, the boost symmetries of the embedding space are realized on the planar
metric as an isometry involving a particular combination of time translation and
spatial scalinéﬂ Because inflation redshifts away any existing spatial curvature
present initially, this coordinate set should be an excellent approximation to derive
the late-time effects of a sustained phase of cosmological inflation. Nevertheless,
one could imagine a situation where our universe has originated from a tunneling
event out of an eternally inflating false V&CUUH]H, The nucleated bubble would have
negatively curved spatial sections [1161[117], leading to the hyperbolic coordinate

set (see also |4.55}l4.58]):

Xo+ X4 = coshty +sinhty, coshry
Xo— X4 = —coshty +sinht, coshry, (5.11)
3
Y X7 = sinb®(ty) sinh?(ry,) .
i=1

In these coordinates, the de Sitter metric is given by:
ds* = —dtj + sinht),” [dr} + sinh? 7, Q3] (5.12)

where 0 < ¢, < 400 and 7, > 0. The coordinate singularity at ¢, = 0 can
be interpreted in the context of false vacuum decay as the creation of the open
inflationary bubble. Note that ¢, = 0 corresponds to Xy = 0 (and X4 = 1,
X; =0 for i = 1,2,3): the bubble nucleation time from the point of view of the
embedding space. The spatial sections correspond to constant negative curvature
slices that exhibit an SO(1,3) isometry. We will in fact be interested in a one-
parameter generalization of this hyperbolic coordinate embedding, obtained by
boosting in the Xy—X, plane of the 5—dimensional embedding space. Combined
with rotations these transformation allow one to move the ‘nucleation’ time of the
hyperbolic bubble to any specific point on the embedding surface. Just performing

2More precisely, it corresponds with the isometry t — ¢t +~ and r — e~ 7r of the planar de
Sitter metric.

3Moreover, in the nineties models of open inflation were of particular interest, independent
of whether their origin was due to tunneling [118}|127].
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5. Vacua in hyperbolic de Sitter

a Lorentz boost in the X(—X4 plane will change the nucleation time (and position
in X7), which yields the following generalized hyperbolic coordinate set

Xo+ Xy = e 7 [coshty + sinhty coshry]
Xo— X4 = € [—coshty + sinht, coshry] (5.13)
3
Z XZ-2 = sinh®¢, sinh®r),
=1

where v is the boost parameter. This generalized hyperbolic solution of the em-
bedding equation will of course lead to the same induced metric, but the nucleation
time and position of the associated bubble in the embedding space have now shifted
to Xo = —sinhvy and X4 = coshy respectively. Moreover, since ¢, > 0 one finds
that Xo+ X4 > e™7, restricting the hyperbolic section to the upper right diagonal
part in the (Xo, X4)-plane, which overlaps with, but for any finite « is smaller
than, the part of de Sitter covered by planar coordinates. This is depicted in
figure One can verify that in the limit of infinite « the planar and hyperbolic
coordinates cover the same region of de Sitter space, which is consistent with the
observation that in this limit the hyperbolic nucleation time in the embedding
space is shifted to Xg — —oo0.

Figure 5.4: Conformal diagram of dS4 with the left- and right-hyperbolic patch as the upper-left
resp. upper-right triangles. The dashed line is the unboosted situation v = 0. For
finite v (solid line), we see that that nucleation time of the left bubble gets pushed
to earlier times, and vice versa for the right bubble. In the limit of v — oo, we
can see that the left bubble will cover the entire upper-left triangle of the conformal
diagram, coinciding with the planar patch.

The generalization of the hyperbolic coordinate set introduced above allows us to
explicitly relate the planar and hyperbolic sections of de Sitter space. Since the
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5.2. A generalized hyperbolic embedding

two coordinate sets cover the same region in the v — oo limit, there should exist
a one-to-one mapping between the coordinates in that limit. More precisely, we
would like to introduce a new set of hyperbolic coordinates that are to be kept
fixed in the limit v — oo, and that in the limit exactly reproduce the planar
coordinate embedding solution. Note that any (constant) shift or rescaling of the
hyperbolic embedding coordinates is still a solution of the embedding equation,
but will change the expression for the induced metric. Since we expect the range of
the hyperbolic time coordinate to be extended to —oo and the negative curvature
to be scaled away, we redefine

- 1
th =tn —7; fhzirhe'y. (5.14)

This leaves us with the following generalized hyperbolic solution to the embedding
equation

Xo+ X4 = €7 [cosh(t, +7) + sinh (£, + ) cosh (27, e~ 7)]
Xo— X4 = —¢" [cosh(t, +v)—sinh(f, +7) cosh (2F e )] (5.15)
3
Z X% = sinh® (i, + ) sinh? (27, e77)
i=1

where —y < ), < 4+00. For finite  the shift in hyperbolic time and the rescaling of
the hyperbolic radius (or equivalently the inverse rescaling of hyperbolic momen-
tum) does obviously not affect any hyperbolic patch observables, but it does allow
one to analyze the infinite boost limit in a simple and useful way. The induced
hyperbolic metric now reads

ds2 = —dB +sinh (i +9)° [4527 di2 + sinh (27,e )’ dﬂg} (5.16)
VI AR+ e [diE 473 dO2] 4+ O(e7T).

In the second line we performed the limit v — oo, keeping ¢j, and 7, fixed, showing

that (5.15)) exactly reduces to the planar embedding solution (5.9)). Note that all

the v dependence in the induced metric is removed and one is left with precisely
the planar line-element ((5.10)) in terms of the coordinates #;, and 7.

For any finite boost parameter « global de Sitter space is covered by two (adja-
cent) hyperbolic sections, see figure The other hyperbolic embedding can be
obtained by changing the sign of X4, resulting in the interchange of the expressions
for Xo + X4 and Xy — X4 in . Acting with the same boost on this second
hyperbolic embedding results in the opposite effect, moving the nucleation time to
Xo — +00. The opposite minus infinity boost should instead reduce to another
planar section (with Xy + X4 and Xy — X4 in interchanged), suggesting that
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5. Vacua in hyperbolic de Sitter

the redefined coordinates in this case should read
- _ 1 _
thzthqt’y;rhzirhe v. (5.17)

Putting this together we obtain for the adjacent hyperbolic section the following
generalized embedding

Xo+ X4 = —e 7 [cosh(t, — ) — sinh ({, — ) cosh (27 €7)]
Xo— X4 = € [cosh(t, —)+sinh (¢, — ) cosh (27, €7)] (5.18)
2
Z X% = sinh® (i, —v) sinh® (27, 7)
i=1

where now v < f, < +00. The induced hyperbolic metric in this case is obtained
by just replacing v with —v in . By construction the limit v — oo should
instead collapse and in a sense remove the adjacent hyperbolic section. Clearly, in
the opposite v — —oo the roles of the two hyperbolic sections are reversed.

Having established this explicit relation between hyperbolic and planar coordi-
nates, we can now use it to better understand and connect their respective vacua,
which should be different for any finite value of . In particular, the planar Bunch—
Davies state is known to be equivalent to the unique and de Sitter invariant Eu-
clidean vacuulrﬂ On the other hand, any pure hyperbolic vacuum state is defined
on a negatively curved spatial slice that is not a de Sitter Cauchy surface. This
means that the Bunch—Davies state in a single hyperbolic patch can only be de-
scribed by an appropriately defined mixed state; see figures and The
mixed state defined on one of the two (conjugate) hyperbolic sections reproducing
the Bunch-Davies state was first constructed in [126] and was subsequently used
in [128] to compute the reduced density matrix and the corresponding entangle-
ment entropy for a single hyperbolic section (see also section .

One application of the one-parameter family of hyperbolic de Sitter foliations is
that one can confirm that the natural choice for a hyperbolic vacuum reduces to
the planar Bunch—Davies state in the limit v — co. Secondly, one could attempt
to generalize the entangled expression for wave-functions of the Bunch—Davies
state, with support on both the left and right hyperbolic section, and work out
its dependence on the embedding boost parameter. In the v — oo limit this
should reduce to the pure planar Bunch—Davies state, implying that the reduced
density matrix carries some non-trivial v dependence to make sure the associated
entanglement entropy vanishes in the strict ¥ — oo limit (see also section .

4The invariance of the Bunch-Davies vacuum under de Sitter isometries strictly speaking
fails for massless fields, but since this subtlety does not affect our results we will ignore it from
now on.
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R
)

BD

Figure 5.5: Conformal diagram of dSs with

the left- and right-hyperbolic
patch shown. As neither patch
contains a Cauchy slice of the full
dSy, restricting the Bunch-Davies
vacuum to one of them will yield
a mixed state.

o,

Figure 5.6: An observer confined to live in

the left-hyperbolic patch (a bub-
ble universe) can define his own
pure hyperbolic vacuum. This
state will differ significantly from
the mixed state resulting from a
restriction of the Bunch-Davies

state to this bubble.

To summarize, we established that the infinite boost limit of a hyperbolic de
Sitter patch (and as a consequence also its corresponding vacuum state) reduces
to the planar de Sitter patch (and the Bunch—Davies vacuum). This appears to
be similar to an observation made in [129] where the static vacuum, understood
as the empty state for a corresponding free-falling observer, was also argued to
reduce to the Bunch-Davies state in the infinite boost limit. Note that to each
hyperbolic patch one can associate a free-falling observer in one of the two center
regions in between the hyperbolic patches that never intersects either one of them.
These time-like curves are indeed connected to each other by the same embedding
space boosts [130]. To complete the argument one needs to confirm that the static
vacuum state associated to this free-falling observer is connected to the hyperbolic
vacuum state. Note that (for v = 0) the center region in between the hyperbolic
patches is usually covered by coordinates that are obtained from the hyperbolic
coordinates as follows t;, = i(tc — ) and rj, = r¢ + 7%, resulting in the following
center region metric

ds® = dtg, + costc? [—drg + coshrc?dQ?] | (5.19)

where r¢ is now a time-like coordinate. Each of the two center regions clearly
identifies a causal diamond belonging to the free-falling observer of interest (see
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5. Vacua in hyperbolic de Sitter

figures and .

5.3 The hyperbolic vacuum

After having established a limit to obtain the planar embedding and coordinates,
let us now remind the reader of the standard positive frequency modes on a single
hyperbolic patch [126], as if it were the entire universe (see figure . The scalar
wave equation for the hyperbolic patch of de Sitter reads

1 1
—— 0y sinh® t9; — ——5— Vi + m*L% | ¢ =0 (5.20)
sinh” ¢ sinh” ¢

where we defined the Laplacian on the three-hyperboloid
1 1
V25 = ———0,(sinh® 78, ) + ———V2,. 5.21
T ginh?r (sinh™r5) sinh?r ( )

A natural set of solutions to the hyperbolic equations of motion (5.20) is given by

1 .
pr h(t))Y, Q .22

i Pty (cosh(6) Yy () (522)

where it is customary to define v = \/% — ;’}—2 The quantum numbers [, m label

the usual SO(3) irreps, and together with the continuous quantum number p
it completely specifies the hyperbolic momentum. Furthermore, PZ{ 3 are the
associated Legendre functions of the second kind and the Yy, are the orthonormal
eigenfunctions of the hyperbolic Laplacian

V3 Yyt (1, Q) = —(1+ ) Vi (1, ). (5.23)

For v > 1, there is in fact a supplementary set of solutions with p = i(v— 3) [126].
These so-called “super-curvature modes” will not be of interest for the purposes
that are considered here, where our main focus will be on potential signatures in
the large (“sub-curvature) momentum limit. We refer to |[131] for an interesting
account on the role and interpretation of these super-curvature modes.

Switching to conformal time 7 we can write the metric of the hyperbolic slice as
ds® = L2 sinh®(t(n)) (—dn* + dr® + sinh®(r)dQ3) , (5.24)

—tanlhn and —oo < < 0. In
terms of the conformal time n we find that in the far past n — —oo and in the

limit of large momenta p > 1 one obtains

. 1 , i .
P (- R ( P —ipn 2
! < tanhn) > ( ptanhn) e (5.25)
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5.4. The Bunch-Davies vacuum

so we can identify these mode functions with the “natural hyperbolic vacuum?”:
they define a state that is empty in the far past for large momenta (see also
subsection [4.4.3). As expected, in the limit ¥ — oo that we introduced in the
previous section the mode functions reduce to the standard Bunch—Davies
mode functions in flat slicing, explicitly connecting the hyperbolic and planar
patch vacua in this limit

lim P (cosh(f =i (1= Y 5.26
i PP(cosh(E ) oce 7 (1 L) (5.26)

For all the details we refer the reader to the appendix [5.A-3] but it should be clear
that the tildes on the coordinates in the above equation relate to the redefined
hyperbolic coordinates that are kept fixed in the infinite boost limit. The mode

functions 1) must of course be properly normalized, enforcing [i)plmvi);lm]
01 Omm0(p — p’), implying the following Klein-Gordon inner product (see also

section
<¢plma ¢plm>KG = 5ll’6mm’6(p - p/) (527)

giving (see appendix [5.A.2))

N2, = (P, PP)gq
1 2smh(7rp) (5.28)
H? T

With the help of ([5.28)) we can now express the field operator in a single hyperbolic
patch as (keeping in mind that we are ignoring super-curvature modes)

o(t,r, ) /0 dpz Z Npp slnh (bplmp 1 (cosh(t)) Ypim (r, ) +h.c.>

1=0 m
(5.29)
defining the natural hyperbolic vacuum state |Qp) as

bpim|Qm) =0 Vp,1,m. (5.30)

This hyperbolic vacuum state can be understood as a natural choice in an isolated
(stand-alone) open inflationary universe, as described in subsection 7 as it
is empty in the far past and reduces to the planar Bunch—Davies vacuum state in
the infinite boost limit.

5.4 The Bunch-Davies vacuum

In subsection (4.4.3) we described the Bunch-Davies state. It is the de Sitter
invariant vacuum that can be associated to the unique Euclidean vacuum. In
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5. Vacua in hyperbolic de Sitter

subsection we described how the Wightman function characterizes
a vacuum state and how it can be expressed in terms of a sum of modes .
In [126] the set of hyperbolic mode functions that correspond to the Bunch-Davies
vacuum are identified by explicitly checking whether they reproduce the Bunch-
Davies Wightman function . In this section we will review the results of [126].
More details can be found in those papers and in appendix

The most important observation is that mode functions of one of the hyperbolic
patches do not correspond to regular mode functions on the full (Euclidean)
de Sitter space. In [126] the hyperbolic mode functions are analytically continued
to the other hyperbolic patch, allowing them to construct a set of regular mode
functions that can cover all of de Sitter space as follows

" P;’il(z) forz€ R
Xp = = N isin(r(v—1)) ip isin(fr%ip-&-l/—l))e T[v+3+ip] H—ip
sinh(;mr)2 Py—%(z) + sinh(7p) * I‘[l/+§—ip] V—%(z) for z € L
(5.31)

These mode functions do not yet describe the Euclidean or Bunch—Davies vacuum,
which can for instance be concluded by the fact that they are not (anti-)symmetric
under the transformation R <+ L. It turns out that the linear combinations xr £ xr,
correspond to the proper mode functions associated with the Euclidean or Bunch—
Davies vacuum, as was proved by computing the Wightman function [126]. The
(still to be normalized) mode functions are linear combinations of the associated
Legendre functions

% PP (2)+ B2 P P (z) forzeR
xwz{ et . (5.32)

ag PP (2) + 85, PN (2) forzel
) v—3 B v—3

where o = ilﬂ and z = cosh(t); the expressions for the a’s and 5’s are given in
(5.71). We stress that the associated Legendre functions P in do not have to
be analytically continued any furthelﬂ The full field expansion, with creation and
annihilation operators Gopipm, satisfying [@opim, &L,p,l,m,] = 06/ 011 Omm/0(p —p'), is
given by:

st )= [dp ZNl (ptm X (VYpim( D) +h)  (533)

o=%x11m

where N,»o- is the Klein-Gordon norm consistent with the commutation relationtﬂ

55 = +1 is related to the combination XEJL) + XEDR).

SThey are constituents of x1, and xgr, which are already regular everywhere. This is different
from [125].

7Strictly speaking the expression is incomplete, since we should also include the “zero
mode”. For our purposes this will however not affect the results.
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5.4. The Bunch-Davies vacuum

In appendix we show that the normalization N,»- is given by

Nipa = <Xp,0Yplm7Xp,aYplm>KG

= " (05,85, — 8.5, N3 (5:34)
q=L,R

where @, 3 denote the complex conjugates of a, 8. We conclude that the Bunch-
Davies vacuum state, is defined asﬁ

&U'lelQBD> =0 va7p7l7m' (535)

Now let us describe the relation between the creation and annihilation operators
of the modes and the creation and annihilation operators of hyperbolic
modes . Both field expansions (5.33) and are linear combinations of
associated Legendre functions. We can find the relation between the Gypim and
the i)qplm (¢ = L, R) by comparing the coefficients

7 Npr o~ RO A
bapim = 3 v (OF qitopim + BE4b ) - (5.36)

o=£1 " Xpo

Given (5.3415.36)), they enforce

|:&Uplm; a’l"p’l’m’:| = 5(p — p’)(SM/émm/(S”,
=4
[&o‘plm’ do-lp/llm/} = 0
b pt / (5.37)
{bqplma bq/p’l’m’] = (5(]) —p )6mm,61l,6qq,

[l;qplmv Bq/p’l’m/] = O

For more details we refer to [126] and the appendices. The above relationship
confirms that the normalizations and are consistent and in particular
that the right normalization for the hyperbolic mode functions is given by .
This will be of importance when comparing the predictions for the power—spectrum
of the two different states under consideration: the pure hyperbolic vacuum and
the Bunch-Davies state (as we will do in section [5.6). The latter is a mixed
state from the point of view of a single hyperbolic patch, due to the entanglement
between the two hyperbolic patches in the Bunch—Davies vacuum.

Let us here remind the reader that we would like to compare the predictions for
the expectation values of (scalar field) quantum fluctuations in the two different

8 As before we ignore the super-curvature modes.

137



5. Vacua in hyperbolic de Sitter

states that were introduced above. A priori different initial states give different
predictions for the cosmic microwave background temperature anisotropies and
the large scale structure distribution. We should stress that we are technically not
considering an actual bubble nucleation event, where more intricate and model-
dependent bubble wall physics could lead to additional effects [132,[133], see also
[134]. Instead, we will work under the assumption that the two states that were
introduced capture an essential difference that is generic: the entangled nature of
the Bunch—Davies vacuum implies a mixed initial state, whereas the hyperbolic
vacuum corresponds to a pure state on a single hyperbolic section.

We should add that one might anticipate the differences between the two states to
only become visible at small hyperbolic momentum p < 1, i.e. scales comparable
to the hyperbolic curvature. However, even small curvature suppressed changes
in the initial state might be enhanced in the (nonlinear) bi—spectrum, as has been
pointed out and analyzed in [135,|136] and for a certain generic type of mixed
state in [123]. This motivates the computation of the bi-spectrum. In [1], we do
consider the bi-spectrum, but the calculation of the bi-spectrum is not part of
this thesis.

5.5 Pure and entangled states

In sections and we discussed the hyperbolic vacuum and the Bunch-
Davies state respectively, and the mode functions associated with these states.
From the point of view of a single hyperbolic patch, the Bunch-Davies state is
mixed, entangled state. In this section we will derive the reduced density matrix
for a hyperbolic patch in the Bunch-Davies state. This will be a summary of [128].

For a detailed introduction of entanglement entropy, see section (|1.3)) of Part I of
the thesis. Here we will repeat the basics. If a quantum system can be divided
into two parts, A and B, such that the Hilbert space factorizes as

H=Ha® HB; (538)

then we can define a reduced density matrix. If the density matrix p describes the
full system A U B, then the reduced density matrix pa of A is defined as:

pa = Try,{p} (5.39)

where the trace is taken over the Hilbert space associated to subsystem B. The
expectation values of operators that have support on A and are trivial on B can
be calculated with p4. The entanglement entropy, a measure of entanglement, is
given by:

Sa=—Try,{palogpa}. (5.40)
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5.5. Pure and entangled states

For our purposes, (spacelike Cauchy surfaces in-) the left (L) and right (R) hyper-
bolic patches serve as our “subsystems”. If the state of the “full system” is the
Bunch-Davies state, then the density matrix is given by:

p = |28p)(2BD|. (5.41)

In order to determine the entanglement entropy, we must find a suitable basis of
states to trace over. The hyperbolic vacuum and its excitations constitute
good bases for the left and right hyperbolic patches. Relation allows us to
write the state with respect to these bases, which we will illustrate below.
Here we will only consider the limited case of the massless scalar field, for which
the analysis simplifies considerably. For a description of the entanglement entropy
in the case of a massive scalar field, we direct the reader to [128]. Also note that
we discard the super-curvature modes in this discussion, because there is no clear
way to decompose their associated excitations as in E| The super-curvature
mode corresponds to a particular imaginary value p = iv’ of the comoving momen-
tum. The density matrix should respect the remaining SO(1,3) symmetry of the
hyperbolic patches, so it is diagonal in p and the super-curvature mode will not
be entangled with sub-curvature modes. Also note that the set of super-curvature
modes, labeled by p = iv’ and [, m, has measure zero, compared to the continuous
part of the spectrum with real valued p.

A natural basis to trace over in the left and right hyperbolic patches, are the
“number states”

A,‘_ n
{lnL)t  with  |np) = (f/L% 1Qm,L),

R n
(i)
vn!
where the subscripts p, [, m are suppressed for simplicity. The full Hilbert space
is the tensor product of these Fock spaces for the left and right hyperbolic patch

(5.38]). Before we can can trace out degrees of freedom, we need to know ([5.41)) in
terms of these bases.

(5.42)

{|TLR>} With "I”LR> =

|QH,R>7

In [128] an ansatz is made for the Bunch-Davies state |{dpp) as an excitation of
the left- and right hyperbolic vacua:

|Q28p) o e3mblb] QL) ® |QuR),
i3 3 L (512 RR (it )> LR}t o 7t (5.43)
miTbiby = mH (b)) + m®R (B )" + 2m' 8] @ bf.

9In the context of bubble nucleation, it is argued that at least a subset of super-curvature
modes correspond to pure gauge degrees of freedom [137}/138|. Here we consider a scalar field on
a fixed background, so such an argument does not apply to our toy model of a bubble.
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5. Vacua in hyperbolic de Sitter

The coefficients {m®} can be determined by demanding that the state is anni-
hilated by the Bunch-Davies annihilation operators . We can use relation
between the Bunch-Davies creation and annihilation operators {ak, a+} and
the hyperbolic creation and annihilation operators {BTL IR IA)L7 r}- In fact, this rela-

tion gives ISL/R in terms of the {dl, G+ }. The relation 1' needs to be inverted,
which is equivalent to inverting a four by four matrix. This problem has a (linear-)
solution,

as = au (B bbb ) (5.44)
for which an explicit expression can be found in [128]. The general idea is that
the coefficients {m®} must solve the following equations:

0=a+|Qsp)
= a4 (6£a8L7BL>BR> |BD) (5.45)
it i dmiiae
= s (0L BB ) 470 001) © ).

For the massless case, the matrix {m®} simplifies to a diagonal matrix and Bunch-
Davies state can be expressed as:

|QBp) 676£®B;|QH,L> ® |Qur)
_ ’Yn o n X n
=2 n! (bL) © (bR> [Qe.0) @ [Qnr) (5.46)
=3y ) ® Inw),
where v depends on the comoving momentum p and is given by:

vp = te” P, (5.47)

The reduced density matrix for the left hyperbolic patch can be found by tracing
over the degrees of freedom in the right hyperbolic patch ([5.39):

pr = Try {p}
=Y (nrlplnr)

(5.48)
o) (ng| [e”’*@f’;lﬂm ® [Qur) Q| ® <QH,R|€W*BL®BR} InR)
nR
Now we use the ([5.46)):
pr o< > > (nr|y™ mL @ me) (i, ® k| (v) [ng)
moboms (5.49)

= Z|7|2m|mL><mL|,
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where we remind the reader that we suppressed the label p (and the labels I, m)
in the above discussion. The full reduced density matrix py, is diagonal in p, 1, m.
It is given by the tensor product:

AL X ®plm Z |’Y‘2nplm |nL,plm><nL,plm| . (550)

Nplm

Alternatively, the density matrix with labels (p,l,m) (5.49) can also be written
as: X R
62 In |, ‘zbl,plmbL,plm

TrpL, pim (5.51)

_ (1 _ 6727{-1))e_gﬂpl’;{,plynEL,pl'rn.

PL,plm =

This density matrix looks “thermal” in comoving momentum space, with temper-
ature % or (2mLas)~t, but p is not the energy associated to a timelike Killing
vectorm A pure state has a density matrix with eigenvalue spectrum {1,0,...}.
Clearly, the density matrix ((5.49lI5.51)) is not pure, it represents a mixed or entan-
gled state: from the point of one hyperbolic patch, the Bunch-Davies state is an

entangled state.

In [128], the entanglement entropy of one hyperbolic patch of de Sitter is calculated,
given the Bunch-Davies state. The entanglement is divergent, which is a common
feature of entanglement entropy in quantum field theory, as described in section
(1.3) of part I. The leading divergence is usually proportional to the entanglement
surface, a sphere in this case.

In section we will use the density matrix to calculate the scalar field spectrum.
In appendix we construct the “inverse” of the density matrix; that is, we
compute the components of |Qf, ® Qr)(Q, ® Qr| in the basis of excitations of the
Bunch-Davies state:

it e at
Qn,1L) ® [Qur) oc e 7l 38 n1Qpn), (5.52)

5.6 Correlators in hyperbolic de Sitter space

Making use of the previously established relations between the de Sitter invariant
Bunch—Davies vacuum and the hyperbolic vacuum state, we will compute both the
Bunch—Davies and the hyperbolic vacuum power—spectra of scalar field quantum
ﬁuctuationﬁ The Bunch—Davies result can also be calculated using a reduced

10For the massless scalar field, p is associated to a conformal Killing vector.
1See [139] for related work on the response of Unruh detectors.
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density matrix formalism in the hyperbolic patch. Let us from the outset empha-
size that within our basic de Sitter set-up, even though the Bunch-Davies state is
mixed from the hyperbolic patch perspective, all hyperbolic Bunch—Davies corre-
lators should match the (hyperbolic coordinate transformed) planar Bunch—Davies
correlators. As a consequence one can rule out large deviations of Bunch—Davies
hyperbolic correlators at late time and large momenta (when the hyperbolic co-
ordinates reduce to planar coordinates) as compared to the planar Bunch-Davies
correlators. That leaves the (pure) hyperbolic vacuum as the potentially more
interesting state to consider, as far as enhanced initial state effects compared to
the planar Bunch—Davies state.

Let us start by pointing out that the field operator ¢, evaluated on points in the
left hyperbolic patch is trivial in the right hyperbolic patch

op(x) = ¢ p(x) ®Ig for z € L. (5.53)

As a consequence, de Sitter n-point functions of fields ¢, in the Bunch-Davies
state, evaluated on points in the left hyperbolic patch, can be calculated ei-
ther using the full global description or by using a reduced density matrix p;, =
Troy {I98D)(Qasp |}, and their results should agree. This is shown explicitly in
appendix By defining the lAJqum as in , we can write the field operator
for arbitrary values of p, [, m as

~ 1 i
(bplm (:L') = prlmipyli%7LYplm + h.C.

A Nlpp A (5.54)
+ bRplmNippP;Zi%,RYplm +h.c.,
where .
Pﬁ’i; - { Pyéé(t) forte L (5.55)
2> 0 fort e R
and vice versa for Pip Although these functions are not mode functions on a

full Cauchy slice coverlng the de Sitter space, we are allowed to express the field
in terms of them. Note that the by, and bR operators mutually commute. To make
explicit that the field operator decomposes in the left and right hyperbolic patches,
we write

v

. 1
¢plm(x) = prlmip Zil LYplm + h.c. ) ®1Ir
NP;n 2
1 (5.56)
NimpzziéyRYp“n + hC) .
Note that the expansion of a scalar field in Minkowski spacetime in terms of left
and right Rindler wedge modes is similar (see for instance [140]). The restriction
of the operator (5.56]) to points in the left hyperbolic patch is by definition equal

+ IL X <8Rplm
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5.6. Correlators in hyperbolic de Sitter space

to the full operator evaluated on points in the left hyperbolic patch. Note that if
the field operator evaluated on points in the left hyperbolic patch would also have
support on the right hyperbolic patch, it would not make sense to do a density
matrix calculation as done above.

Clearly therefore Bunch—Davies scalar field correlators should be the same, inde-
pendent of whether one uses hyperbolic or planar coordinates. Of course, since the
de Sitter invariant length is expressed differently in terms of planar or hyperbolic
coordinates, the functional dependence of the equal (hyperbolic) time correlators
will look different. Since the difference between planar and hyperbolic coordi-
nates vanishes in the late time and large momentum limit, the planar and the
hyperbolic Bunch—Davies correlators match in that limit and small modifications
are suppressed in the hyperbolic curvature scale. We conclude that hyperbolic
Bunch—Davies correlators can be computed either using a global de Sitter descrip-
tion (for which the Bunch—Davies state is a pure initial state) or by considering
a single de Sitter hyperbolic patch (for which the Bunch—Davies state equals a
mixed initial state).

After these important preliminaries let us now proceed by computing the power
spectrum of a massless scalar field in a hyperbolic coordinate patch in the hy-
perbolic vacuum and Bunch—Dayvies initial state respectively, as a function of the
hyperbolic momentum p.

5.6.1 Power—spectrum results

For most of the details we refer to the appendix Here we will just quote the
main results. For the two point function in the hyperbolic vacuum state we find

H? P cosh?(t) + p?
sinh?(t) 472 p? +1

(Qu|ppdy,|Qu) = d(p —p') (5.57)
where we have used the completeness relation of the eigenfunctions of the hy-
perbolic Laplaciaﬂ and the commutation relations. At late times ¢ — oo this
approaches

(6,10 > (5.59)
HIVpPplH 472 (p? + 1) '
and the appropriately normalized power spectrum (at late times) equals
H2 p2
A2 == 5.59
¢,H(p) 472 pg +1 ( )

12Zlm |Yplm|2 = %
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5. Vacua in hyperbolic de Sitter

The same (hyperbolic coordinate patch) two point function in the Bunch-Davies
vacuum is instead found to be equal to

H? P cosh?(t) + p?

th(mp). 5.60
sinh?(t) 4w p? + 1 coth(mp) (5.60)

<QBD|¢p¢p/|QBD> = 5(}7 - p/)

This result can either be obtained from a direct calculation using the global Bunch—
Davies vacuum construction and restricting to one of the hyperbolic coordinate
patches [126], or from a (mixed) density matrix calculation in a single hyperbolic
coordinate patch, using the explicit expression for the density matrix as reported
in |128], as we confirm in appendix As alluded to earlier, the reason for this
expression to not exactly reproduce the scale-invariant planar coordinate result
for the scalar field power spectrum in the Bunch—Davies vacuum is that different
coordinates are used. As the hyperbolic and planar coordinates are the same at
late times and for small distances, the late-time power spectra at large momentum
should be the same as well. At late times ¢ — oo we find

H?p

(2BD|9pdy [2BD) — mcoth(wp). (5.61)

Correspondingly, the power spectrum (at late times) is given by

H2 p2

Ai,BD(P)
Looking at these power spectra we indeed find that for p > 1, when cothmp =~
1 and p? + 1 ~ p?, the hyperbolic vacuum as well as the hyperbolic Bunch—
Davies result matches the standard scale invariant planar Bunch—Davies result
g. They only start to differ from each other and the standard planar Bunch—
Davies expression for sufficiently small momenta p < 1 (see figure (5.7))). Note
that although the corresponding wavelengths are expected to lie far outside our
observable window, given the fact that they correspond to length scales longer
or comparable to the hyperbolic curvature scale, for both hyperbolic states the
power is suppressed as compared to the standard planar Bunch—Davies result. As
these departures from the standard planar result become evident, one should keep
in mind that the difference found in the hyperbolic Bunch—Davies result can be
attributed to a coordinate change, whereas (part of) the change in the hyperbolic
vacuum power spectrum is related to an initial state modification.

We conclude that, independent of the particular initial state under consideration,
any power—spectrum signatures of an open inflationary universe are confined to
the curvature scale, which has to be several orders of magnitude larger than the
largest observable length scale in the universe. Although the initial hyperbolic
state is mixed when assuming a (globally defined) planar Bunch—Davies state, the
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5.6. Correlators in hyperbolic de Sitter space
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Figure 5.7: The power spectra (logarithmic scale) for the hyperbolic vacuum (blue) and the
Bunch-Davies vacuum (red), as function of the hyperbolic momentum p with H = 1.

2
The dashed line indicates the scale-invariant planar Bunch—Davies result f?.

power—spectrum results in this admittedly basic set-up in which all bubble wall
physics is ignored, do not show large deviations, as should be expected. In fact, this
statement is true for general hyperbolic n-point correlators in the Bunch-Davies
vacuum. Potentially enhanced bi—spectrum results due to initial state excitations,
as compared to the standard planar Bunch—Davies result, can therefore only be
expected assuming the pure hyperbolic vacuum as the initial state in the hyperbolic
patch.

In 1] we investigate the bi-spectrum. The study of the bi-spectrum in the Bunch-
Davies state and the hyperbolic vacuum is not part of this thesis, but we will
state the results. The bi-spectrum in the hyperbolic vacuum does not seem to
produce interesting enhancements that make it distinguishable from the Bunch-
Davies state. This conclusion is in fact corroborated by an approximate construc-
tion of the hyperbolic vacuum as an excited state on top of the (global) planar
Bunch—Davies vacuunﬂ The relevant Bogoliubov coefficients are suppressed ex-
ponentially in momentum, ensuring that these effects will not be observable. Even
though the hyperbolic vacuum can be effectively thought of as an excited state
with respect to standard planar Bunch—Davies vacuum, it is not of a type that
gives rise to large (enhanced) corrections in the bi—spectrum as compared to the

13Formally, the (reduced) Bunch Davies state and hyperbolic vacuum are not contained in
the same Hilbert space. The Bunch Davies state is a Hadamard state whereas the hyperbolic
vacuum is not; see appendix @ for details and discussion.
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5. Vacua in hyperbolic de Sitter

standard planar Bunch—Davies result.

5.7 Vacua and the energy momentum tensor

In this section we discuss the behavior of the energy momentum tensor. First we
motivate why we expect to find something interesting, by comparing the hyperbolic
patch of de Sitter spacetime to the Rindler wedge.

Note that for a flat Rindler wedge in lightcone coordinates (u, v), there is a horizon

at u = 0 and the Fulling-Rindler vacuum |[Qrg) corresponds to the empty state in

a single wedge. In that case the T, component of the energy momentum tensor

(with the usual UV-divergence removed by subtracting the UV-divergent expecta-

tion value of Ty, in the Minkowski vacuum |05s)) diverges as one approaches the
11

horizon: (Tuu)rr — (Tuu) M = —g5- 7z in (1 + 1) dimensions for u > 0 (for a nice

derivation of this result see [140]).

A similar analysis can be done for the energy momentum tensor in the hyperbolic
de Sitter patch, where the global de Sitter invariant vacuum state is now the
Bunch-Davies vacuum |[Qpp). The obvious difference with the Rindler wedge is the
absence of a timelike Killing vector. In addition, the ¢t = 0 surface is a (light-) cone,
so a better analogy is with Milne space, to which the de Sitter hyperbolic section
reduces for small ¢. In any case, we will use the same regularization procedure,
restricting to the minimally coupled massless case v = % The most convenient
method to calculate components of the energy momentum tensor makes use of the
Wightman function G (z,2’,t,t') and specifically we will look at the following

contribution

<(8a¢>2(x’t)> = lim 804’804G($7m/7t7tl)' (5.63)

z/ t'—x,t
The Wightman function for the Bunch-Davies state is well known, but here we use
the expression in terms of an integral over the hyperbolic momentum p as given
in [126]. This allows us to consistently regulate the UV-divergence of (T},,,) in the
two states of interest. In appendixwe show that the difference (T3)u — (T3+)BD
is UV-finite and diverges as t — 0

(Tud ~ (Ti)op = 520535 +O (;) . (5.64)
So we conclude that the hyperbolic vacuum |Qy1) has singular properties that are
completely analogous to the Minkowski Fulling-Rindler, Milne and de Sitter static
vacuum, see also [139]. The energy momentum tensor diverges in the limit ¢ — 0,
so infinite energy seems to be required to prepare the state at the (singular) origin.
A complete description all the way until ¢t = 0 is therefore obviously inconsistent,
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5.8. Conclusions and outlook

but strictly speaking that does not need to be fatal in a cosmological setting, in
the sense that in a stand-alone open universe this might be interpreted as the Big
Bang singularity. Also, in a realistic setup, we should allow the scalar field to
backreact on the geometry. An analysis of this situation would be an interesting
topic for future study.

The problem of having divergent components of the energy momentum tensor
at the boundary of a causal patch on a fixed background geometry, when one
tries to define a pure, non-entangled state for this causal patch, has a remarkable
interpretation in holography. If the entanglement between a boundary region and
its complement is removed, then the corresponding bulk space tends to pinch of |5],
since the corresponding Ryu-Takayanagi surface shrinks to zero size.

5.8 Conclusions and outlook

Before summarizing our results, let us remind the reader once more that our
motivation was to carefully study the relation between the hyperbolic and pla-
nar coordinate patches and their corresponding states in (mostly) pure de Sitter
space. We believe these results to be of interest, and partially applicable, in the
context of de Sitter false vacuum decay, but it is also clear that in that case a
more complete analysis should include (model-dependent) wall physics that will
affect the details. Instead we concentrated on a general and qualitative difference
between two examples of initial states on a hyperbolic section of de Sitter space:
the pure hyperbolic vacuum and the (entangled) de Sitter invariant Bunch-Davies
state, corresponding to a mixed state. We noted that the pure hyperbolic vacuum
is formally inconsistent, due to the energy momentum tensor becoming singular
at the null boundary of the hyperbolic section. This issue should plague all pure
hyperbolic states.

We stressed that the hyperbolic vacuum can be approximated by an excitation of
the Bunch-Davies vacuum. This is an effective description, because the Bunch
Davies state and the hyperbolic vacuum do formally not live in the same Hilbert
space. It can be used for the computation of the bi—spectrum and for the analysis
of possibly enhanced features as compared to the standard Bunch-Davies results.
Using the hyperbolic coordinate embedding we explicitly constructed a family of
hyperbolic solutions that reduces to the planar coordinates in the infinite boost
limit, as such providing a limiting relation between the hyperbolic vacuum and
the planar Bunch—Davies vacuum. As a corollary we also argued that the hyper-
bolic vacuum can be mapped to a specific static vacuum, implying that the static
vacuum should also reduce to (a sector of) the Bunch-Davies state in the infi-
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5. Vacua in hyperbolic de Sitter

nite boost limit, as was first noted in [129]. Again, this limiting behavior implies
that in the late time and large momentum limit, the bi—spectrum results for the
hyperbolic vacuum should agree with the standard planar Bunch-Davies result.
Unfortunately, on the basis of our analysis here and in [1], we should conclude that
no detectable signals of an open inflationary universe in the fluctuation statistics
is expected on small sub-curvature scales.

To summarize the two hyperbolic states introduced, one of them mixed (Bunch—
Davies) and the other one pure (hyperbolic vacuum), make almost identical pre-
dictions in the late time sub-curvature limit. In fact, in the infinite boost limit
the states become formally identical to the planar Bunch—Davies vacuum. For the
mixed Bunch—Dayvies state this seems to imply that the density matrix pgp should
depend on the boost parameter . Correspondingly, the associated von Neumann
entropy Tr(—ppp In ppp) of the mixed Bunch-Davies state on the hyperbolic sec-
tion should depend on the boost parameter v to ensure that the entropy vanishes
in the infinite boost limit.

It would be of interest to consider the generalization for non-zero boost parameter
~. Although one might think the density matrix and corresponding entropy to be
boost invariant, this is not entirely obvious and the above observation does indeed
suggest it might not be, perhaps in some subtle (singular) way. The dependence on
the boost parameter should be such that it is invariant under v — —~, effectively
interchanging the two hyperbolic sections. Since the boost dependence can be
implemented through a simple rescaling on the left hyperbolic momenta (and a
time shift) and the inverse rescaling on the right hyperbolic momenta (and
a time shift) it should be possible to trace the boost dependence of the Bunch—
Davies state in terms of the left and right hyperbolic modes. It should then be
straightforward to construct the corresponding density matrix and confirm that
the density matrix and corresponding entropy become trivial in the infinite boost
limit.

5.A Mode functions

5.A.1 Solutions to the hyperbolic equation of motion

The metric for both the left and right hyperbolic patch is given by:

1

d82:ﬁ(

—dt* + sinh® ¢ (dr® + sinh® r dQ3)) (5.65)

148



5.A. Mode functions

where the coordinates ¢,7,¢,0 are dimensionless and ¢ = 1. The action for a
massive non-interacting minimally coupled scalar field ¢ is given by:

—% / V—g d*z (9" 0,00, 0 + m2¢2) ) (5.66)

The action of a conformally coupled scalar field can be written in the Einstein
frame with effective mass m? = 2H?2. The equation of motion is given by

0_(1 ) R N Ve S 2)¢>
~ \sinh®(¢) 0t Ot sinh?(t) 2

9
0
(5.67)
1 d . .5,.0 1 9 9 2)
=| —5—5sinh’({) s — —5-Vis + - —v
(sinh3(t) RO sinh?() "© 4 ¢
where v is defined as v = % H2 and VH3 is the Laplacian on the hyperboloid

H3. We will use v/ = v — 57
to the massless minimally coupled case and v/ = 0 corresponds to the massless
conformally coupled case for which the effective mass is m? = 2H?2.

consistent with [126], such that v/ = 1 corresponds

The eigenfunctions Yy, of the Laplacian V%S on the hyperboloid H?, that are
regular in r = 0, are given by [126]:

_v’2H3Yle = (p2 + 1>Yplm
Yoim(r, €)= fu(r)Yim ()
fpl(r) — (Zp +1+ 1) p P.7l71/2 (COSh T‘)

L(ip+1) +/sinhr P72
2 T(—ip+1) . d sin pr
= (-1 l\/> h 5.68
(=1) 7 D(—ip+1+1) i rd(coshr)l sinh r (5.68)

where Y},,,(Q) is the normalized spherical harmonic function on the unit two-

sphere, I'(z) is the Gamma function and Py (z) is the associated Legendre function
of the first kind [141].

The mode functions that correspond to the natural hyperbolic vacuum are given
by:

(5.69)

) "7 (cosht)  positive energy modes S 0}

{ SlﬁltP P (cosht) negative energy modes

Mode functions on a Cauchy slice of de Sitter, must be regular and consist of linear
combinations of the hyperbolic mode functions in the left and right hyperbolic
patches [126]. The mode functions that correspond to the Bunch-Davies state are
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5. Vacua in hyperbolic de Sitter

given in [126]:

iy’ imv’

e —oge” ; e ™ —ge” ;

- PP —n—_P )7 fi c€R

v +iop+1) " (2) v —ip+1) * () o
Xp,o = oe™ — e—iﬂ'l// ge” TP _ e—iﬂ'l//

PP =P, f L
v +ip+1) ” () v —ip+1) ¥ () orve

| ag PR () + BT pP,"(2) forzeR
T\ g PP(x) + 85, P, "(z) forzel

(5.70)
where z = cosht and the constants aj , and 37 , are defined as:
o .y
07 = geTmgei 07 . €P—ge=im
o N A e (5.71)
o _ _0_677rp—087””) /BU _ _e—wp_o_e—uru * *
p, L — T (v —ip+1) p,R — T'(v/ —ip+1)

These mode functions must be normalized through the Klein—Gordon normaliza-
tion (see section [5.A.2)).

5.A.2 Klein—Gordon normalization

Hyperbolic modes

We normalize the hyperbolic modes on the hyperbolic patch using the variable
z = cosht and using the orthonormality of the Y,:

N%)p = <¢plm7 ¢plm>KG

= Z/;dz“ (¢plmau¢;lm - ¢;lmau(bplm>
P (cosht) . (P, (cosh P P(cosht) . (PP (cosh
= isinh3t< ,/ (cosht) o, ( - (cos t)) iy (cosht) 8, < 7 (cos t)))

sinh ¢ sinh ¢ sinh ¢ sinh ¢

= i(2 = 1) (PH0PLP() - PP (0.2

(5.72)
For the minimally coupled massless case v’ = 1 we have:
1 ip 1 p 1
. i » Loyl gl
Ny =i(2* — 1) PP(2) P (2) x ( v _|_2Lpl+1 +2i£1 1 )
z+41ip 2 142 21—z
- _® (5.73)
IC[L + ip]|
_ 2sinh(mp)
= - )
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5.A. Mode functions

In fact, for v/ # 1 this normalization is also valid. In [126] it is shown that one
can expand the mode functions in the ¢t — 0 regime:

L pircoshi) 2
P(cosht) ® ——
sinht ¥ T[1 —ip]

Using this expansion in (5.72)) also results into the normalization ((5.73]). This nor-
malization is valid for any ¢ by the properties of the Klein—-Gordon normalization.

tir=t, (5.74)

Bunch—Davies modes

The Bunch—Davies modes are given in terms of linear combinations of the hy-
perbolic modes in (5.70). Schematically we have (using the orthogonality of the
hyperbolic mode functions):

NEU:P = (Xo,p» Xo,p)

S Y (lag PP+ B PP (a5 PP B, PP ) ko
q=L,Rq'=L,R

= Z ag_’ng,q’ <P1ﬁq’ pra >,KG + ag,q 7;_,11’ <P11)q7 ]511711 >,KG
wa=in \ TP APPY PP )G + B o] o (PP, PP )k
o 2 o =0 o Qo
= Np» Z (a;n,qapyq_ P.q zmz)7
q=L,R
(5.75)
where we used:
(PP9, PP g = —(PP, PP ) e = g Npu, (5.76)
(PP9, PP ) e = (PP, PP ) e =0 .
Using (5.71]) we find:
Z (a7, af v 57 ) 8sinh 7p (cosh mp — o cos /') (5:77)
a%p,q ~ Pp.aPp,g) T . 2 5.77
S p.¢%.a = Pp.aPp.q T +ip+1]]
So finally we can substitute ((5.77) into ([5.75):
2 2 o =0 o Qo
Nyow = Npy Z (074054 = B7.4Bp.q)
q=L,R
2sinh7p  8sinh 7wp (cosh mp — o cos /')
= x ( 5 (5.78)

m Pl +ip +1]|
_ 16sinh’ 7p (cosh 7p — o cos /')
D +ip + 1]

This is consistent with [126], but note that we included an extra factor of 2 sinh mp
into the normalization, in order to simplify the expressions ([5.71]). The normalized
mode functions are the same as in [126], of course.
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5. Vacua in hyperbolic de Sitter

5.A.3 Mode functions for the massless scalar field

Since we are mostly concerned with the massless minimally coupled scalar field
(v = 1), we state the normalized mode functions for that case explicitly in hyper-
bolic time coordinate ¢ and in conformal time n = In tanh %:

ip

1 H H t\?
N—,ihtPfP(cosh t) = —— <coth 2) (p csch t +icotht)

p S111

pr S 2p(p? + 1) (5.79)

H )
= ————¢ """ (psinhn —icoshn),

V2p(p? +1)
where we have chosen a convenient phase factor in the normalization, that does
not affect the physics. The conformal time 7 is defined as:

ds® = Vel (—dt? + sinh® ¢ (dr® + sinh® rdQ23))
inh?(t
- “Hw (—dif + dr® + sinh® rd©23)
o (5.80)
== / sinh ¢
t
= Intanh -
ntan 9

Other useful relations between “hyperbolic” time ¢ and “conformal” time 7 are:

sinht = —

Snh cosht = — cothn. (5.81)

At early times n — —oo the mode function for the massless minimally coupled
scalar field (5.79) behaves like a positive energy mode function:

H : Hp+i) -
———¢ """ (psinhn — icoshn) = sinhy ﬂe—zpn +0(e*)
2p(p2 + 1) 2p(p* +1)
H ; ;
~ sinh nﬂeﬂm-
2p(p* + 1)

(5.82)
The infinite boost limit v — oo (5.14)) corresponds to the large ¢ (or small ) and
large momentum limit. In particular in terms of conformal time, the rescaling for
small 7 reads n — ne”7, implying that the combination p7n is invariant in the
limit. This gives

e P (psinhn — i coshn) = psinhne™ "7 (1 - —+0(n )
( ) pn ) (5.83)
~ e P (py — ).
This is exactly the mode function for a massless scalar field in the flat de Sitter
slicing (up to the appropriate normalization).
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5.B Power spectra for the massless field

5.B.1 Direct calculation

Power spectrum in hyperbolic vacuum
The power spectrum in the hyperbolic vacuum can be computed in a straightfor-
ward way

, B plm 'l’
<QH|¢p¢p‘QH> - smh2 Z Z NPPNPp

Im l'm
X <QH| ( plm + bplm l;zp) (b ’l’m/P + b ' U'm / ) |QH>
PlpPﬂp PN
= Y, mLp /m/Vi Qulb mbT, ;9
Smh2 ;NZ Pl 'm ' Np Npp< H|Opim by 1 | €0e1)
=4d(p
NZ,
H2 p2
=d(p-1)

sinh?(¢) 272 N3, '

(5.84)
where we used the completeness relation for the Yj,, in the last step. For the
massless minimally coupled case v/ = 1 we have:

H* p cosh?(t) + p?
sinh?(t) 4w2  (p2 +1)

(Qu|dpd),|Qu) = 8(p — p') (5.85)

and for large t — oo

2

H
(Qutl6py|m) = 50— 1) (pzi ok (5.86)

The power spectrum for the massless minimally coupled scalar field is given by:

(2167 pr) = / dp / dp' (| by, | )

H2 p2
/dl O (5.87)
H2 p2
A2 (p) =1 P
= BonlP) =45
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Power spectrum in Bunch—Davies vacuum
The computation is similar to the previous case:

(8D |dpodp [2BD)

o >y
=7, ~ N
sinh™¢ <= < Xooo NV o

X

<QBD| (dffplmXp-U + d;plmXp,U) (&U’p’l’m’Xp’J’ + dl’p’l’m/il)/ﬁ',) [QBD)

= Xp O'Xp o’ +
B smh2 Z Yoim Yyt Z 7N<QBD|aoplmaa 1prtrme | S2BD)

Iml’'m XP Xp’ o’
=d(p—p') Sifh2 ; ]épﬂ using [aopim dj;"p’l’m’]
= 000/ 011 O O(p — ')
-t g Chge A
smh t 27r = + pN%,,Z L piPpip 4 %EPZ,L pP,Pp;P

(5.88)
In the last step we used the completeness relation for Y}, and the expansion of x
in terms of the associated Legendre polynomials (5.70}f5.71)). Here we will compute
the spectrum for the massless scalar field (' = 1). For the massless minimally
coupled scalar (¢/ = 1) the cross terms involving P? P?? and P~" P~ vanish:

al R0 ™ —7p
p.L0p,1L (e +o)(e”™ +0)
— =0 .
NZvo x ZU: coshmp + o x Xg: 7= (5-89)

g

and similarly for the term involving P~ P~%. So for the massless minimally
coupled case (' = 1) we have:

(28D |Pp¢p [2BD)

Lo L+ﬂ LBy, 2
=olp - /smh2t27rzz< — : )‘Plzp

XPG

2

e + 0)2 + (e—ﬂ'p + 0.)2 .
=4 / ‘PZ:D
- smh2 t 27T2 Z 16 sinh? 7p cosh7p + o !

(5.90)
H? L T cosh(wp)

sinh? ¢ 272 2 sinh? (7p)
H2 pleosh®(t) +p?)

sinh?(t) 4n2(p? +1)

=d(p—17p)

7

=d(p—17p)

coth(7p).
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For large t — oo we have:

H? pcoth(mp)

Ar? P41 (5.91)

<QBD‘¢p¢p/|QBD> = 5(17 - p/)
and

(QBp|¢”|QBD) = /dp/dp'<QBD|¢p¢p/|QBD>
—HQ/d pcothmp
T | P

H? /dl p? coth mp
np ——=
p?+1

+ super-curvature modes (5.92)

=12 + super-curvature modes.
T

The power spectrum is given by

H? p? cothmp

A2 = 5.93
¢,BD(P) Ar? p? 41 ( )

which reduces for p > 1 to an approximately scale invariant spectrum:

H2

- (5.94)

A% (p) ~

5.B.2 Reduced density matrix calculation

In this section we derive the power spectrum in the Bunch-Davies state using an
alternative method. We consider the reduced density matrix that remains after
having traced out the degrees of freedom in the right hyperbolic patch. We find the
same answer as in the direct calculation . The reduced density matrix
for the left hyperbolic patch has been calculated by Maldacena and Pimentel [128]
and is given by:

ﬁL,plm = TTHR {‘QBD><QBD|}

(oo}
n (5.95)
= (1= ) Y 1l s p, 1, m)(n; p,1,m|
n=0
where for the massless scalar field 7, and |n;p,l, m) are given bylﬂ
vp(m =0) =ie” P
(B;lm)n (5.96)

|n;p,l,m) = Q).

Vn!

For the massive scalar field Maldacena and Pimentel apply a Bogoliubov transformation on
the set of by, operators to bring gy, in the form of l|
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For a point in the left hyperbolic wedge « € L the two point function is given by
(15.29):

(QBD|¢pdp [BD) = Trayy, {dpdp L}
H? L
=0(p—p)—5— Y |Yom|*
(= )Sinh2(t) %;| piml N3,

X (1= Y Il (2n+1)

(5.97)
H?  p? cosh®(t) +p* 1 + |y |?
sinh?(t) 272 2p(p2 +1) 1— |2
Sy — p) H22 %coshZ(t) +p?
sinh?(t) 472 (p* +1)
which is equal to the result of the direct calculation .

=d(p—1p)

coth(7p)

5.C Divergence of the energy momentum tensor

As is the case in the Fulling-Rindler vacuum, the energy momentum tensor diverges
at the null boundary of the hyperbolic patch. One could construct lightcone
coordinates u = 7 — r and v = 1 + r in order to calculate T,,. Equivalently, we
consider the leading divergence of T}; in the ¢ — 0 limit, which is more convenient.

Ty = (049)* — %gttgﬂp(aafb)(ap(ﬁ) (5.98)

For the massless case we have:
1
(Ty) = 5((8t¢)2 +97(0:0) + 9% (090)” + g7?(D490)°). (5.99)

One can calculate this directly using the hyperbolic mode functions and the
density matrix for the Bunch-Davies expectation value (T),,)sp. Equiva-
lently, for the leading order term we can use the Wightman functions G*(z, ') as
given in [126]:

((0¢0)?) = lim 0,0 Gt (t,t), (5.100)

and similarly for the other coordinates. Note that the contribution of the super-
curvature modes to the Wightman function only leads to subleading divergenceﬂ

5For v/ > 0 the super-curvature mode contribution to the Wightman function is [126]:
H? 3. sinh(v/
= F[—l// + I]F[l// + e SlIl. (V )C
Ans 2" sinh(

1

’
G (t,t,¢) = (sinh¢sinht/)” 77 .

(5.101)

For the minimally coupled massless case v = % the super-curvature mode becomes time-

independent. The contribution to the energy momentum tensor is of subleading order.
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5.C. Divergence of the energy momentum tensor

The contribution of the sub-curvature modes to the Wightman function for the
massless v/ =1 case is given by [126]:

H? 1
sinh ¢ sinh ¢/ 872

" /°° i sinp{ €™ (cosht+ip)(cosht’ — ip) tanh% v
sinh ¢ sinh 7p 1+ p? tanh £ ’

G (t,t,¢) =

— 00
¢ = coshr coshr’ — sinh 7 sinh 7’ (cos 6 cos @’ + sin 0 sin 6’ cos(¢p — ¢')) .
(5.102)
One can check the following:

2 PFr

1

, , H 1
(007 = m 0006 (1.0.6) = 155 [y + 1) cothimp); +0 ()

7T2 0 t2
2 PF

H 1

2 . ers 2 0
((0-9)°) = Tl,lmr 0,0 GT(t,t,C) = 2 /0 dp p(p® + 1) coth(mp) 2 +0 (t )
((B99)?) = lim 9y0y G (1,1, ()

6’ —0
= sinh® T—Q /pF dp p(p* + 1) coth(n )—1 + 0 (tY)
4n2 [, P PP Py
0p0)?) = lim 0,0, G (t,t,

((Op9)7) ¢,1¢¢¢ (t,t,¢)

— gin2 0 sinh? o [rr 2 1 0
= sin® # sinh Tm/o dp p(p~ +1) coth(7rp)t—2 +0 ().
(5.103)
Note that all these are divergent as ¢ — 0, but they also show the usual UV-
divergence. The UV-divergence is regulated by a cutoff pr. The difference (Ty)m—
(Ty)p will be UV-finite. We combine the components to obtain (T})pp.
The expectation value (T )y is obtained by replacing coth7mp — 1, where we use
the expectation value (b Eplm +1I) in the two different states

plm
Al ml; 1m + I)pp = cothp
< {”T ? (5.104)
<bplmb1)lm +Dy=1.
Finally, we calculate the difference (T3)g — (T3)BD:
HY [ 1 1
<Ttt>H — <Ttt>BD = ﬁ/ dp p(p2 + 1) (1 — COthﬂ'p) t74 + O <t2>
0 (5.105)

11 1 1
——————+0(=).
240 11 (t2>

Note that we took the cutoff pr to infinity and obtain a UV-finite integral.

16We can calculate <I;T

pzmbplm + I) by using the density matrix ([5.95)
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5. Vacua in hyperbolic de Sitter

An important observation is that is divergent on the past horizon of the
hyperbolic patch. This is indicative of the fact the hyperbolic vacuum is a non-
Hadamard state. The (reduced) Bunch-Davies state does satisfy the Hadamard
condition (see [142] for a discussion of the Hadamard condition), which we will
not discuss here. Formally, one could argue that the hyperbolic vacuum and the
(reduced) Bunch-Davies state are not in the same Hilbert space.

5.D The hyperbolic vacuum embedded in the
Bunch—Davies state

From [128] we have for the massless case v/ = 1:
1980) = (@ptme oot o) | 1) @ [ ) (5.106)
or suppressing the indices p, [, m:
Q8p) = LE (O 1) ® | Qi g) (5.107)

with 7 = ¢e~™. The left hyperbolic vacuum |y 1,) is not a state of the full system;
we need information about the state in the right hyperbolic patch as well. The
simplest way to embed the left hyperbolic vacuum in the full Hilbert space, we
can consider the simple and symmetric state |Qy 1,) ® | r). This state is not the
natural vacuum state (the Bunch-Davies state) for the full de Sitter space. Also
keep in mind that the hyperbolic vacuum and the Bunch-Davies state are formally
not part of the same Hilbert space. However, for an effective description and
comparison of the power spectra and bi-spectra a purification of the hyperbolic
vacuum can be described as an excitation of the Bunch-Davies state.
Proposition:

Q1) ® |Qur) oc el 34O aljgppy. (5.108)
Proof:
We will show that the right hand side of vanishes when we act with any
of the I;Llpm annihilation operators. We use the expression for the hyperbolic
annihilation operator I;Llpm in terms of the creation and annihilation for Bunch-
Davies modes , suppressing from now on the labels p, [, m:

. N .
=3 ﬁ (oféo + Brak) . (5.109)

We want to show that i)L acting on the RHS of (|5.108)) vanishes:

0. (5.110)



5.D. The hyperbolic vacuum embedded in the
Bunch—Davies state

Consider the annihilation operator a, acting on :
aieihp |QBD> [di ) e~lelala f} |QBDp)
- [&ﬁ: : \vplaldi} e~hwlakaljgp (5.111)
= —|’yp|&IFe’|7P|d1dT— Q5.

Substituting this result in (5.110f) gives:

+ BE&Z) o—lwlal ®al 1Q5D)

NP ( oA
N 0'
(5.112)

_NPZ(

It is easy to check that the quantity between brackets on the RHS of ((5.112))
vanishes for both ¢ = £1. This finalizes the proof:

N _ AT ot
) ale 1A S 1Opp).
(7'

IA)LefMdIr@&HQBD) =0 Vp, 1, m. (5.113)

The state is pure. Note that the symmetric and antisymmetric modes
corresponding to ¢ = £1 are entangled with each other and their reduced density
matrices are thermal. We reiterate that the hyperbolic vacuum does not satisfy
the Hadamard condition and formally speaking the hyperbolic vacuum and the
(reduced) Bunch-Davies state do not live in the same Hilbert space.
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Chapter 6

Inflationary potentials &
non-minimal coupling

There are many single field inflation models and it would be helpful if we could
make progress towards reducing the number of models, or at least organize them
in an insightful way. In this chapter we will analyze single field inflation models
with non-minimal coupling to gravity, with the purpose of finding special models,
that appear as attractors in the inflationary landscape. An attractor model is
a model that appears as a limiting case of a class of models; we will make this
idea more precise below. In recent work it has been shown that the Starobinsky
inflation model appears as an attractor in several seemingly unrelated classes of
models. We try to explain this from the perspective of general non-minimally
coupled single scalar field models.

In section we introduce the Starobinsky and chaotic inflation models, which
appear as attractor models in later sections. We also discuss how non-minimally
coupled models can be written in the Einstein frame, the frame in which the scalar
field ¢s minimally coupled to gravity. In section we present a non-exhaustive
overview of recently discovered attractor mechanisms. In section we try to
generalize the non-minimally coupled attractor mechanisms presented in section
(6.2). We describe which conditions suffice for attractor behavior and we give a
different perspective on the “fine-tuning” problem. We show, that under certain
conditions, the well known Starobinsky and chaotic inflation models appear in the
opposite strong and weak limits of the non-minimal coupling. We also discuss the
nature of the attractor points.

161



6. Inflationary potentials & non-minimal coupling

6.1 Introducing the attractors

6.1.1 A zoo of models

Many single field inflation models are in accordance with observational data.
Planck data favor models with ny = 0.968£0.006 and with an upper limit » < 0.11
on the tensor-scalar ratio at 95% confidence level [98,/99]. In [143| results emerged
suggesting a large amplitude for the tensor mode fluctuations (r ~ 0.2), but these
results were later revoked after a joint analysis of BICEP2, Keck Array and Planck
Data [144].

Countless inflationary models have been developed; an “encyclopedia” of a subset
of them can be found in [145]. Inflationary models can be (partially-) characterized
by their position in the (ng,r) plane. Clearly, it would be helpful if we could make
progress towards reducing the number of models, or at least organize them in an
insightful way.

A second issue with many of these models is the “fine-tuning problem”. In an
effective field theory description one generally writes down a potential of the form:

V(g) = g™ (6.1)

One argues that terms with n > 4 are irrelevant; their coupling is small at low
energies, or in other words, the higher order terms in the expansion are
suppressed. But in many such models, for example chaotic inflation, the change
of the field value exceeds the Planck mass over the course of inflation: A¢ > M,y,.
In these cases, there is no reason to assume that these terms are small and the
assumption they are is a form of fine-tuning. Generally, the fewer parameters
that need to be fine-tuned, the more natural they are. This provides a second
motivation for investigating non-minimally coupled models; how does the fine-
tuning in the minimally coupled description translate to the non-minimally coupled
description?

In this chapter, we will discuss the emergence of attractor points in the (ng,7)
plane in the context of non-minimally coupled inflation models. Attractor points
correspond to special points in the (ng,r) plane and appear as a limiting case of
a class of models. We will see that one particular model, Starobinsky inflation,
appears as a limit of several different classes of models.

Below, we briefly describe the Starobinsky model and the chaotic inflation model.
Both these models appear as attractor points in sections and . Subse-
quently, we discuss the relation between the Jordan and Einstein frames for scalar
field Lagrangians.
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6.1. Introducing the attractors

6.1.2 Starobinsky inflation

Starobinsky inflation was one of the earliest models of inflation [146]. It arises
naturally in the context of f(R)-gravity. The degrees of freedom of f(R)-gravity
can be decomposed into normal Einstein gravity plus a scalar degree of freedom.
For certain f(R)-models, this scalar degree of freedom has a potential that allows
for inflation to happen. Below, we will briefly illustrate how f(R)-gravity gives
rise to the Starobinsky model.

Consider the gravitational action

5= [ dev=ar), (6.2)

where f(R) is a polynomial of the curvature scalar R. We introduce an auxiliary
field x

s=5 [@vT U0+ 100 @ = 0). (63)

such that (6.3) corresponds to (6.2)) when x is on shell. Now consider the field
redefinition

Y= f,x(X)a
X = x(¥).

In terms of v, we now have a scalar field action with non-minimal coupling to

(6.4)

Einstein gravity:
s= [aev=g (5 -vw).
V() = 3 () — F(®))).

In subsectionwe describe how we can write an action of the type in the
Einstein frame, with canonically normalized kinetic energy term, by doing a Weyl
transformation g,, — 1" 'g,, followed by a field redefinition. Here we simply
state the result:

(6.5)

5= [aev=a (5 -y - Vo))

U@)

(6.6)
e

v - |

So far we have seen how f(R)-gravity can be decomposed into Einstein gravity plus
a scalar degree of freedom, with a scalar potential given by (6.516.6). One might
wonder which types of f(R)-gravity lead to viable single field inflation models.
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6. Inflationary potentials & non-minimal coupling

Inspection of the first order potential slow-roll parameter e, (4.36]), which can be
expressed in terms of f, shows that:

1/Vg\?
~=3(+)
1 (xw)f,X(x(w)) - 2f<x<w>>>2
XL 0@) = Fx@) ) |, _ 5o

-3
Smallness of puts a condition on the polynomial f(R). The first slow-roll
condition (ey < 1) can be satisfied by having a large coefficient of the R? term in
f. In fact, the model originally proposed by Starobinsky is given by:

(6.7)

f(R) = R+ aR?%. (6.8)

The Einstein frame potential for this model is given by:
1 2
V(g)= o (1-eVie) (6.9)
8

To leading order in N1, where N is the number of e-folds (4.29[4.30)), the scalar
spectral index (4.104)) and the tensor to scalar ratio (4.102)) of the Starobinsky-
model are given by:

ne~1—
12
~ m.
The Starobinsky model lies in the “sweet-spot” of the Planck data [98,99,|147]

(see figure[6.1). An estimate of the energy scale of inflation depends on the value
of the slow-roll parameter €, but the COBE normalization indicates an order of

2
N (6.10)

r

magnitude Vi~ 1073 My, which corresponds to large a.

6.1.3 Chaotic inflation

Chaotic inflation was proposed in [148]. It is an example of a large field inflation
model, where the difference between the final and initial value of the scalar field
is large in units of Planck’s mass (A¢ > My;). In chaotic inflation, the scalar field
is minimally coupled to gravity and has monomial potential

V(¢) = A2ng™, (6.11)
where Ag,, is a coupling constant. The number of e-folds is given by (4.29}l4.30):
bena q bena 1/ ¢2 bend ¢2
N%—/ d¢:—/ —dp = —— ~ N (6.12)
on V26 on Vi an |, 4n
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6.1. Introducing the attractors

In terms of N (6.12)), the first two slow roll parameters are given by

n N2n—1

N — ~ 6.13
“EaoN MTE TN (6.13)
This corresponds to a scalar index and tensor to scalar rati(ﬂ
3-5
ne =1+ N” ~0.967 forn=1,
- (6.14)
T:ﬁ ~0.133 forn=1,

where the tensor to scalar ratio is considered to be large, like the tensor to scalar
ratio of other large field inflation models. Such a large tensor to scalar ratio is not
in the “sweet-spot” of the Planck data (see ﬁgure. Interest in chaotic inflation
models rose after a report of a large tensor to scalar ratio, but a more elaborate
analysis did not confirm this conclusion [143}/144].

6.1.4 Switching frames

A general scalar field Lagrangian can have non-minimally coupling to gravity and
a kinetic energy terms that is not canonically normalized. Below we show how we
can rewrite such a general scalar field Lagrangian in terms of a Lagrangian with
minimal coupling to gravity and with a canonically normalized kinetic energy term
(the FEinstein frame). This can be accomplished by doing a Weyl transformation
followed by a field redefinition. The purpose of considering a scalar field La-
grangian in the non-minimally coupled Jordan frame is that a Lagrangian might
look very simple in one frame and very complicated in the other. For example,
fine-tuning in one frame might have a different interpretation in another frame.
However, the physics should be frame-independent.

A general Lagrangian of a theory with a non-minimally coupled scalar field can
be written as:

£=v=g(go0mr- 7

One could do a field redefinition ¢ — x to make the kinetic term canonically
. 2
normalized. Such a field redefinition must satisfy K (x) (6—’() = K(¢).

0¢)? U(¢)) | (6.15)

o¢

A Weyl transformation g,, — 27 'g.s can be used to bring the Lagrangian (6.15))
into the Einstein frame. The curvature scalar in four spacetime dimensions trans-
forms as follows:

R—Q (R +301n(Q) — ;’(aln(m)?) . (6.16)

IWe take N = 60 here.
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6. Inflationary potentials & non-minimal coupling

The second term in [6.16] will result into a boundary term in the Lagrangian. If we
discard this term, the Lagrangian in the Einstein frame is given by:

R (K 3Q%\1,. .., U
=vV-g9l=-|=4+-= 1= - —]. 1
A field redefinition x = x(¢) can be done such that the kinetic energy term is

2 9
X\ _ K 307 (6.18)
36 Q20

In terms of the field x(¢), of which the explicit expression can be found by solving
(6.18)), the Lagrangian takes a simple form

canonically normalized:

£=v=a (5 - 500* - V(). (6.19)
where V(x) is given by
Vix) = T@bo). (6.20)
2%(o(x))

The possibility to switch between the Jordan and Einstein frames will be exten-

sively used in sections (6.2) and (6.3).

6.2 Attractor models

In this section we will present a non-exhaustive overview of attractor mechanisms
that recently appeared in the literature. The first two examples we will discuss,
the universal attractor model and the induced inflation model, form a subset of
the class of non-minimally coupled models. It is this class of non-minimally cou-
pled models that we describe and generalize in section . Here we will focus
on their “Starobinsky attractor point” and in section we will discuss their
“chaotic attractor points”. The third and fourth examples of attractor models, the
(multifield-) conformal attractor model and the a-attractor model are to some de-
gree qualitatively different from universal attractor inflation and induced inflation.
For completeness we briefly describe them here. Their relation to non-minimally
coupled attractor models is described in [149].

6.2.1 Universal attractor inflation

Universal attractor inflation is a non-minimally coupled model. The model was
proposed in [150], of which we will give a brief summary. In the universal at-
tractor model, the coupling of the scalar field to the curvature is regulated by a
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6.2. Attractor models

dimensionless parameter £. In the large £ limit, this model reduces to Starobinsky
inflation.

The action of the universal attractor model is given by:

5= [ atev=a (59008 30,000 V:(0)) . (621)

with
Q(¢) =1+¢f(9),

V() = Af*(9),

where £ and )\ are dimensionless couplings and f(¢) is a function of the field.

(6.22)

A Weyl transformation g, — Qo) ! guv brings the action in the Einstein frame
(16.17):

5= forn= (53 (om0 i) 6

For large &, the kinetic term is dominated by the second part:

1 30(p)
20) <2000

The field redefinition xy = x(¢) that gives the kinetic energy term canonical nor-
malization is, using (6.24)), approximately:

\/5 2(9) _ ox (6.25)
2Q(¢) 69

The potential for x can be recognized as the Starobinsky model :

(6.24)

Via(x) = ?2 (1 - e*\/?X)z. (6.26)

At strong (non-minimal) coupling, the universal attractor model is equivalent to
Starobinsky inflation. Note that this argument does not depend on the specific
form of f(¢). In |151] it is shown that the weak coupling limit effectively yields
chaotic inflation for monomial f.

6.2.2 Induced inflation

Induced inflation is a different non-minimally coupled model. The model is called
induced inflation, because in the Jordan frame the Planck mass is determined
by the expectation value of the scalar field. It was proposed in |152], of which
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6. Inflationary potentials & non-minimal coupling

we will give a brief summary. In the induced inflation model, the coupling to
the curvature is regulated by a dimensionless parameter £. In the large £ limit,
this model resembles Starobinsky inflation. It was proposed in the context of a
general search for non-minimally coupled models that give rise to Starobinsky-like
inflation.

In [152], the starting point is a general Lagrangian of the form (6.15]), with the
assumptions that U — 0 and 2 — 1 at the end of inflation (when ¢ = ¢eng). It is
argued that any Jordan frame potential U of the form

U= \Qp) —1)? (6.27)
leads to Starobinsky-like inflation as long as

'(¢)?
Q(9)

during inflation. Note that universal attractor inflation at strong coupling is a

K(¢) < (6.28)

realization of this mechanism. In [152] a model similar to universal attractor
inflation is proposed, with

Q(¢) =&f(9). (6.29)

This model is motivated by the fact that it is perturbatively unitary, which means
that the Einstein frame potential % does not include an expansion in positive
powers of the large coupling ;

This model is a Starobinsky attractor at strong coupling, but in [151] it is shown
that it is a ¢2-chaotic inflation attractor in the weak coupling limit & — 0. This
observation motivated our research: which non-minimally coupled models have
Starobinsky attractors and which of them have chaotic inflation attractors? These
questions and a more thorough treatment of the weak coupling limit of induced
inflation can be found in section .

6.2.3 Conformal attractors

The (multifield-) conformal attractor model provides a mechanism that naturally
favors Starobinsky-like inflation. It was proposed in [153,/154] and further devel-
oped in [155H158]. We will briefly present the main concepts.

The starting point is a Lagrangian with two fields:

1 2 1 2 A
L=+\—g 20ux0"x + %R(g) — 50u00"¢ — %R(g) ~55F [i] (¢° — XQ)Z} :
(6.30)
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6.3. Non-minimally coupled models

This theory is locally conformal invariant under the following transformations:
gm/ = 6_20(36)9;“/ > X = eo(w)Xv (;NS = ea(m)¢ . (631)

This allows for a “gauge choice” x? + ¢? = 6. The remaining physical degrees of
freedom can be parametrized by writing:

x = V6 cosh %7
VG © (6.32)

= V6sinh —,

’ v

which brings the Lagrangian in the following form:
L=v=g|ir- Lo, 00mp - Pltanh 2] (6.33)
=+v—qg|=-R—- = - nh —]| . .
g 9 2 nPo & /6

The point is that the potential F[tanh %] admits slow-roll inflation for a wide
choice of potentials F. In particular, for F[z] = Ao, 2%" one finds ngs ~ 1 — % and
4% which resembles the Starobinsky model. In fact, the choice F[z] = ﬁ
is exactly equivalent to the Starobinsky model, as shown in [153}{154]. In summary,
a wide range of potentials F' give rise to inflation at the Starobinsky point in the

(ns,r)-plane.

r =

The a-attractor models emerged in the analysis of (multifield-) conformal attractor
models, by considering modifications or generalizations of its supergravity embed-
ding |157/158]. The Lagrangian at single field level is given by:

1 ¢
002 - F | 2| 6.34
TR e (6.34)
Note that this Lagrangian has non-canonically normalized kinetic energy term.
For o = 1 this Lagrangian is equal to (6.33]), which can be seen by doing a field

redefinition.

E=¢w<§—

In [157[158] the behavior of these models is analyzed for different values of .. For
large «, chaotic inflation attractor point are found. For @ = 1, Starobinsky-like
inflation is found, as described above. For o < 1, the models are characterized by
ns ~ 1 — % and r = 1]\2/—‘2" (see figure . Note that there are model dependent
corrections in higher orders of % for all these parameters (ng,r).

6.3 Non-minimally coupled models

In this section we describe the framework of single scalar field models with non-
minimal coupling to Einstein gravity. It has been realized for quite some time that
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Planck TT-+lowP
Planck TT+lowP+BKP
Planck TT+lowP+BKP+BAO
Natural Inflation

Hilltop quartic model

« attractors

Power law inflation
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Figure 6.1: Caption from : Marginalized joint 68 % and 95 % CL regions for ns and 70.002
from Planck alone and in combination with its cross-correlation with BICEP2/Keck
Array and/or BAO data compared with the theoretical predictions of selected infla-
tionary models. Source: .

with the introduction of non-minimal couplings the space of phenomenologically
acceptable theories of inflation can be expanded considerably [159-162], typically
in fact ameliorating the required degree of fine-tuning [163}[164]. We will try to
generalize the appearance of attractor points as described by the non-minimally
coupled models of universal attractor inflation and induced inflation (see section

0.2)).

In subsection we define the ‘flat’ and ‘steep’ conformal limits in the context
of single scalar field models that are non-minimally coupled to Einstein gravity.
In subsection , we identify under which conditions the flat conformal factor
limit leads to slow-roll inflation and we explicitly show the appearance of chaotic
models of inflation in this limit. In subsection we show that the weak
coupling limit of a subset of induced inflation models effectively yields ¢?-chaotic
inflation. In subsection we further generalize and identify another set at-
tractor points that correspond to ¢>?-chaotic inflation.

6.3.1 Non-minimal coupling and its limits

The Lagrangian for a non-minimally coupled scalar field is given by:

c= v (5a0r- S eor - v). (6.35)
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6.3. Non-minimally coupled models

where we require that at the vacuum configuration Q — 1 and U — dﬂ

One can write in the Einstein frame with a canonically normalized kinetic
energy term, by performing a Weyl transformation followed by a field redefinition.
In appendix we give expressions for the Einstein frame potential slow-roll
parameters in terms of the Jordan frame quantities 2 and U. These expressions
greatly simplify if K = €2, which can be accomplished by doing an initial field
redefinition. However, we will choose K = 1, just to be consistent with the
formulation of induced inflation in [152]. After performing a Weyl transformation
Gab — 9 'g,p, the Lagrangian reads:

£=H<§—;<é+g(g) )<a¢>2—gg), (6.36)

where the prime denotes differentiation with respect to the scalar ¢. The kinetic
energy term can be canonically normalized by performing a field redefinition x(¢)

such that
2 N 2
67X = l 4 § & ) (6.37)
op Q 2\0Q

We will analyze these non-minimally coupled models in two limits, in which one
of the two contributions to the Einstein frame kinetic term dominates (6.36[). We
will suggestively call these the flat and steep conformal factor limits respectively:

flat limit steep limit
307 307
2 1 6.38 T s 1. 6.39
s < (6.38) 5 > (6.39)

In these limits, starting from the usual Einstein frame definitions for the infla-
tionary slow-roll parameters |105]|(see appendix , the expressions for the
inflationary slow-roll parameter € and 7, in terms of U and €2 , simplify
considerably. For the first order slow-roll parameter € one arrives at the following

expressions
flat limit steep limit
Qv N\’ 0 (v 2\
~—|—=-2— 6.40 ~ — —2— . 6.41
‘ 2(U Q) (6.40) e 39'2((] Q) (6.41)

The slow-roll conditions can be naturally satisfied by Jordan frame potentials
U that are proportional to Q2 up to terms higher order in the slow-roll approx-
imation, for both the flat and steep limits. Requiring the inflationary model to

2We have set the reduced Planck mass to one. The vanishing of the potential U corresponds
to a small cosmological constant.
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6. Inflationary potentials & non-minimal coupling

be Starobinsky-like in the steep limit in fact determines the Jordan frame poten-
tial [152]
U=\(Q-1)>2 (6.42)

We will refer to these models as asymptotic Starobinsky models. This particular
relation between the conformal factor and the Jordan frame potential allows a
further simplification of the slow-roll parameters in the flat and steep conformal
factor limits

flat limit steep limit
02 1 41

It is important to note, as should also be clear from the above expressions, that
the flat or steep conformal factor limits do not necessarily imply the slow-roll
conditions. They do seem to be sufficient to allow for regions in field space where
the slow-roll conditions are met. From now on we will mostly be interested in
considering the (opposite) flat conformal factor limit of the asymptotic Starobinsky
models. First we identify sufficient conditions for the conformal factor such that
a slow-roll inflationary regime exists in the flat conformal factor limit and, if the
flat limit exists, to what type of inflationary model this leads.

6.3.2 The flat conformal factor limit

In this section we will investigate the flat conformal factor limit of asymptotic
Starobinsky models. We will show that a generic power law implementation of
the flat conformal factor limit is sufficient to make sure that a slow-roll limit can
be satisfied in some region of field space. If we are interested in considering a flat
conformal factor limit that can be satisfied over a large enough field range,
a natural procedure would be to constrain all derivatives of 2 around the vacuum
field value ¢yac to be sufficiently small. Note that for the asymptotic Starobinsky
models that we are considering the vacuum field value is defined by U(¢yac) = 0.
It is straightforward to check that this imposes the following condition on the
derivatives of ) at ¢yac, denoted by Q\(,Zg

o — O ()™, (6.45)

vac

for some small parameter «, such that a(¢ — dyac) <K 1, With ¢yac < ¢ < ¢ where
¢n denotes the field value to allow for N e-folds of slow-roll inflation. In general it
is useful to perform a shift to the field variable ¢ defined as ¢ = ¢ — @yac. After the
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6.3. Non-minimally coupled models

shift the same conditions apply, with ¢ replaced by & and ¢yac = 0. These
conditions on the derivatives of €2 at ¢y, resemble the slow-roll conditions and as
such could be considered as fine-tuning. When we discuss specific examples of the
flat conformal factor limit we will come back to this point.

An expansion of the Einstein frame potential in terms of the canonically normal-
ized field x around Yyac = 0 explicitly shows the relation between the flat
conformal factor condition and the suppression of higher order powers of x,
for the asymptotic Starobinsky model U = \(Q2 — 1)?

U 3
92‘ = >\le2acX2 +A <Q</acQ<//ac - 2931‘3) X3+
$=(x) (6.46)

+ % <—5OQ’ViCQ’V’aC - %Q"‘ + 602 + SQ(,aCQ(,’;C> X'
where it should be understood that the dots not only include higher powers of x
but also corrections to the coefficients higher order in the flat conformal factor
limit . So we conclude that the leading term in the power law expansion
is the x2-term, as long as .. # 0. This is of course recognized as the potential
for (quadratic) chaotic inflation. Note that the slow-roll conditions are violated
for small y, so the field range where the slow-roll conditions apply is smaller than
the field range where the flat conformal factor conditions apply. Higher order
terms are polynomially suppressed by virtue of the flat conformal factor condition
on the higher order derivatives of 2. Smallness of the higher order terms in
the Einstein frame potential of a y2-chaotic inflation model can be interpreted as
the smallness of the variation of the conformal factor €2 in the Jordan frame of a

Lagrangian (6.35)).

From the above expansion we also see that when 2. = 0, but Q. . # 0, then the
first nonzero term in expansion is the y*-term. The higher order terms are
again suppressed by virtue of the flat conformal factor condition . The first
non-zero derivative of  therefore determines the (higher-order) model of chaotic
inflation. Note that although the coefficients are different for different Q (and A),
the slow-roll parameters for chaotic models do not depend on the coefficients and
as such the predictions in the ng versus r plane will be the same, as we will soon
show explicitly. Of course, the scale of inflation is related to the specific value of the
coefficient. To agree with observational constraints, for quadratic chaotic inflation
the COBE normalisation implies that the mass parameter should roughly equal
10~° (in natural units). For a given X this further constrains the first derivative of
the conformal factor. So although these models all give the same predictions for ng
and r, they are observationally distinguished in their prediction for the magnitude
of the density perturbations. This is different from the steep conformal factor
limit, where the scale of inflation is uniquely determined by the parameter \. This
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6. Inflationary potentials & non-minimal coupling

perhaps favors fixing A to a value that agrees with the COBE normalisation in the
Starobinsky limit, but as should be clear from the above discussion this will then
not reproduce the COBE normalisation in the weak non-minimal coupling limit.

After this general discussion, let us now move on to the general expressions for
the slow-roll parameters in this limit and provide some specific examples in which
a non-minimal coupling parameter governs a flow between the flat and steep con-
formal factor limits.

6.3.3 Chaotic fixed points for asymptotic Starobinsky mod-
els

In the previous section we saw that in general, when the flat conformal factor
condition is satisfied, the Einstein frame potential will be that of chaotic inflation.
Here we will first determine the consequences of this general result for the first and
second slow-roll parameters, explicitly using the flat conformal factor condition
. Subsequently we give some specific examples in which this behavior is
realized.

If the conformal factor € satisfies the flat conformal factor limit (6.45)), we can
expand (2 as

Q=14 Y 20min, o)
m=1
where we extracted the coefficients €, that are of order O(1) and again introduced
the small parameter o that should satisfy a¢ < 1 for 0 < ¢ < ¢n.
In appendix (6.A.1]) we compute the slow-roll parameters for several different cases.
If Q # 0, we find (6.75| with n = 1):
2 ~ 2 ~
€=§+O(CZ¢), nzﬁ—i—()(()@)’ (6.48)

which indeed corresponds to leading order to the results of ¢?-chaotic inflation.
One could imagine imposing the condition that €2 is an even function. In that

case, for Qs # 0, we find (6.76| with n = 1)

€= 52 ) ((aq”s)Z) . = ; i) ((a&)Q) , (6.49)

which corresponds to leading order to the results of ¢*-chaotic inflation. The ex-
plicit expressions for the subleading parts can be found in appendix (6.A.1]).

To illustrate this further and relate the flat and steep conformal limits to a con-
tinuous non-minimal coupling parameter to be able to consider the flow behavior
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6.3. Non-minimally coupled models

as a function of this non-minimal coupling, let us give two examples where the
conformal factor naturally satisfies the flatness limit (6.45)). In the first example
we analyze induced inflation models. This agrees with the analysis done in [151].
Example 6.3.1. Induced inflation

Induced inﬂationﬂ is a particular subset of asymptotic Starobinsky models, with
Q(¢p) = &f(¢) and f(0) = 0, where £ is a coupling parameter.

Monomial: = £¢™
Since we demand that Q(dvac) = 1, we find ¢yac = 5_%. Defining ¢ = ¢ — 5_%
one can write the following expansion of §2 in terms of ¢:

Q=com
—c(d+e )"

=1+ ¢ <T>
i=1

Expansion explicitly shows that induced inflation with f = ¢™ provides a
realization of the flat conformal factor limit with the identification v ~ & =
for small £. Induced inflation with a monomial conformal factor also guarantees
that Q.. # 0. This means that is of the form (6.47) with Q; = m and
Qo = (g") and identifying 7 ~ o (see also example ence for small £ the
result applies; to leading order this model corresponds to quadratic chaotic
inflation. We can verify this directly by computing the Einstein frame potential

V(x)

(6.50)

V = Am2Emy® + O(Em). (6.51)

The slow-roll parameters are independent of the mass parameter M2 = 2Am?2 £m
of this chaotic inflationary potential, but the mass does determine the magnitude
of the density perturbations, which in natural units should roughly equal 10~° to
be in agreement with the COBE normalisation. The coupling £ parametrizes a
trajectory in the (ns, r)-plane, connecting the Starobinsky attractor point with the
chaotic attractor point (see figure . If one fixes the parameter A along the flow,
then the prediction for the magnitude of the (scalar) density perturbations will
not be in agreement with observation in the strict weak (non-minimal) coupling
limit & — 0. Alternatively, one could introduce a rescaled coupling \ killing off
the £ dependence. However, one would then have a similar problem in the strong

3Qriginally these models were studied as examples where the spontaneous symmetry breaking
in (non-minimal) induced gravity models would allow for slow-roll inflation [159]. More recently
it was pointed out that the Einstein frame potential does not include power series in terms of &
in the large £ limit. Hence perturbative unitarity is not violated before reaching the Planck scale
in models of induced inflation [152].
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-

0.960 0965 0970 0975

Figure 6.2: (ns,r)-plane with linear and log;y-scale on the vertical r-axis, for monomial induced
inflation (6.50) with m = 0.5,1,2, 4, 8, from right to left.

coupling limit and moreover, the required rescaling would be different for different
values of m. In contrast, the normalisation in the opposite strong coupling limit
is independent of the power m of the monomial.

In addition to the properties of the fixed points, in figure[6.2] the flow as a function
of the non-minimal coupling £ is plotted. A notable feature, in contrast to the
strong coupling Starobinsky attractor, is that the approach to the weak coupling
chaotic fixed point is clearly seen to be universal (independent of m), as can be
analytically confirmed by determining the first order corrections in £ around the
chaotic fixed point.

Finite polynomial: Q =¢£(---+ ¢™)

A minimal extension of the monomial conformal factor is to consider the case where
f is a polynomial in ¢ with a finite number of terms. In this case, the highest
power of ¢ determines the vacuum value of the field ¢y,¢; if f(¢) = - - -+ ¢™, where
the dots indicate lower powers of ¢, then the previous analysis goes through, with

— e 0
Prac =€ + ?(Nﬁ ) 2 (6.52)
Q=14+m&mop+0E™)

and we arrive at the same conclusion: the weak coupling limit is described by
quadratic chaotic inflation. Lower powers of ¢ in the polynomial do affect the
subleading terms in expansion . The coupling parameter £ parametrizes a
curve in the (ng,r)-plane, connecting the strong coupling Starobinsky attractor
point with the weak coupling chaotic attractor point.

In an infinite series expansion of the conformal factor (as could be generated by
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6.3. Non-minimally coupled models

quantum corrections) this sensitivity to the highest order term might be consid-
ered problematic. Neglecting that for now, it does imply that all induced inflation
models with a finite number of powers of the field ¢ reduce to chaotic inflation in
the weak coupling limit.

Exponential: Q =¢(f =¢ (eﬁq5 — 1)

In the previous example we observed that € is sensitive to the highest power in
the expansion of f, in the weak coupling limit. In this example we investigate
whether the weak coupling limit of induced inflation still leads to ¢2-chaotic infla-

tion if f is an infinite series in ¢. If f = (€B¢ — 1)7 then ¢yac = %ln (1 + % and
Q= 65‘5(5 + 1) — &. For large ¢ this model will satisfy the steep limit |D and
hence have the Starobinsky model as a strong coupling attractor point. For very
small £ this model does generally not satisfy the flat limit , unless 3 is tuned
for this purpose. So in general the £ — 0 limit does not correspond to quadratic
chaotic inflation.

In fact the above conclusion that exponential functions generically do not feature
chaotic inflation attractors can be changed by making a different identification of
the coupling parameter. Below we briefly present this case as another example.

Example 6.3.2. Q = ¢£?” in weak coupling limit

The conformal factor Q = e£¢" naturally satisfies the flat conformal factor condi-
tion (6.45) for small &ﬂ We require that in the vacuum configuration, 2 = 1; this
means that ¢yac = 0. In the £ — 0 limit we expand €2 in orders of &:

Q="
=1+ +0(€%)
If m = 1, then Q; # 0 and we directly recover the result (6.48)), corresponding

to ¢2-chaotic inflation in the & — 0 limit. For general m, we find (see example
6.A.4):

(6.53)

¢2
N = ﬁ + 0(§)
2m? m
_2m(2m—1) _2m—1
n= T +0(E) =~ ON

4An expansion of the kinetic term in the Einstein frame, at strong coupling, suggests that
perturbative unitarity is violated before reaching the Planck scale for m > 1, unlike induced
inflation.
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6. Inflationary potentials & non-minimal coupling

These results correspond to those of $?™-chaotic inﬂationﬂ

To conclude, we have confirmed that the weak coupling limit of some, but not all,
models of induced inflation imply the flat conformal factor limit , yielding
chaotic inflation attractor points. We also explicitly confirmed that the Einstein
frame potential in this limit depends on the details of the conformal factor, imply-
ing that although the predictions for the spectral index and tensor-to-scalar ratio
are the same for all these models and as such denote a fixed point, the magnitude
of the density perturbations will depend on the details of the function Q under
consideration. In the opposite strong coupling limit, for the Starobinsky attractor,
the magnitude of the density perturbations is instead independent of the details
of the function €2, which can be used to uniquely fix A to agree with the COBE
normalisation in the Starobinsky fixed point. In that sense the strong coupling
Starobinsky fixed point can be considered more universal.

6.3.4 Generalized asymptotic Starobinsky models

A straightforward extension of the asymptotic Starobinsky models (6.42)) with
U o Q2(1 — Q71)? is given by the set of Jordan frame potentials:

U=\0*1- é)%. (6.55)

We will show that the steep conformal factor limit again corresponds to Starobin-
sky inflation, to leading order. We will also point out that the flat conformal factor
limit corresponds to ¢2"-chaotic inflation ﬁ

Steep conformal factor limit In this limit (6.39)) the field redefinition(6.37))
simplifies to:

The Einstein frame potential that corresponds to the potential (6.55)) in terms of
X now reads

Vix) = A (1 - e*\/?x)% . (6.57)

5Adding extra terms in the exponent, e.g. eE@"+86™ ™) ould explicitly violate the flat
conformal factor condition |j
61n this subsection we will assume Q. # 0 for simplicity
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For n = 1, we recognize the Starobinsky potential. For general n we have a
generalized Starobinsky model which also has, to leading order in N, for all nﬂ
3 1

N ——, (6.58)

“FINT N

similar to the standard Starobinsky model. In terms of the position in the (ns, r)-
plane of the strong coupling limit of these models, the attractor point coincides
with that of Starobinsky inflation for all n, at least to leading order in IN. The
parameter A should be fixed to agree with the COBE normalisation. Requiring 60
e-folds implies that e ~ 1072 and as a consequence ) is fixed to roughly equal 1010
(in natural units), i.e. a very small number. A value for A this small causes an
obvious problem in the opposite weak coupling limit, where the potential depends
on the non-minimal coupling £ and A and as a consequence, for small £, the
predicted magnitude for scalar density perturbations will be too small.

The flat conformal factor limit In this limit (6.38]), the first and second order
slow-roll parameters are given by (see appendix [6.A.1]):

222 1
QO (Q-1)2
_men ) w0 30n
"o e-1nz Ta-1\a 29 /)

€~ 2n

(6.59)

Given that © satisfies condition (6.45]), we find to leading order in N

2 on 6.60 _2n(2n—1) 2n-1
‘e, TN (6.60) xR R N

(6.61)

Indeed, for n = 1 we recover ¢>-chaotic inflation. In fact, these results correspond
to ¢?"-chaotic inflation for all n (see figure . Chaotic inflation models are fixed
points for flat €2, whereas Starobinsky inflation is obtained in the opposite steep
conformal factor limit. Looking at figure [6.3] where the flow between fixed points
in the (ns,r) plane is plotted for different values of the parameters m and n, with

Q= gom.

Approaching the chaotic attractor point If the flat and steep limits can
be controlled by a single flow parameter «, like in examples (6.3.1}f6.3.2)), then «

"For large n of order N the slow-roll conditions can be violated.
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0965

Figure 6.3: (ns,r)-plane with linear and log;y-scale on the vertical r-axis, for generalized
asymptotic Starobinsky models (6.55) withn =1, 1.5, 2 and Q = £¢™ with
m = 0.5,1,2, 4 for each n, from right to left. The weak coupling limit corresponds
to ¢2, ¢3 and ¢*-chaotic inflation respectively.

parametrizes a trajectory in the (ng,7)-plane, connecting the Starobinsky attrac-
tor point with the chaotic attractor point. The analysis of induced inflation (see
ﬁgures and suggests that the approach of the chaotic attractor point is well
behaved and along a certain universal angle, whereas the approach of the Starobin-
sky attractor point is more chaotic. The slope of the line in the (ng, r)-plane close
to the chaotic attractor point can be determined analytically by dividing j—; by

%. For polynomial induced inflation and polynomial universal attractor infla-
tion, we find a slope of 2__13 for generalized asymptotically Starobinsky models

(6.55)°l This suggests that the slope does not depend on the details of Q, and
only on the number n in the potential (6.55). However, there are explicit counter

example&ﬂ

6.4 Conclusions

We studied non-minimally coupled single scalar field inflation models with a Starobin-
sky attractor point in the strong coupling limit. We have identified the relevant
conditions on the conformal factor, corresponding to the flat and steep conformal
factor limits, and shown how these can be obtained introducing a continuous cou-
pling parameter, for instance in the context of induced inflation models. General
(sufficient) conditions were determined that produce chaotic models of inflation in
the flat conformal factor limit. Employing these general results we have confirmed

8This is in agreement with , where (n = 1)
9For example, consider Q = 1 + £2¢2 + £3¢3
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the existence of chaotic fixed points for a subset of models that are asymptotically
Starobinsky. As long as the first derivative of the conformal factor is non-zero the
fixed point corresponds to the simplest quadratic model of chaotic inflation. The
fine tuning of higher order powers in the potential of chaotic inflation was shown
to be directly related to the flatness condition of the conformal factor. We also
introduced and studied a straightforward generalization of asymptotic Starobinsky
models, parametrized by a power n, that reduces at weak coupling to a chaotic
inflation fixed point of order n (the leading power of the canonical Einstein scalar

field x).

One important observation is that this fixed point behavior differs from the Starobin-
sky fixed point at strong coupling due to the explicit dependence of the mass (or
the couplings in higher order chaotic models) on the details of the model under
consideration. This means it should be considered less universal in the sense that
different models in this class, although they all reduce to the same (chaotic) slow-
roll parameters in the weak coupling limit, predict different scales of inflation. A
related consequence is that the COBE normalisation cannot be matched in both
fixed points at the same time. This observation is best illustrated in a three-
dimensional flow plot that would include the predicted magnitude of density per-
turbations as a function of the non-minimal coupling £&. By appropriately rescaling
the coupling A to allow for a finite magnitude in the weak coupling limit, one would
find that the weak coupling limit is not a fixed point in this 3-dimensional space
of inflationary parameters, whereas the strong coupling Starobinsky attractor re-
mains a true fixed point.

An important and interesting avenue for future work would be to better understand
the UV embedding and (effective field theoretical) consistency of these classes of
non-minimally coupled models, in particular from the point of view of string theory.

6.A From Jordan frame to Einstein frame

6.A.1 Slow-roll parameters in the Einstein frame

In this subsection we express the Finstein frame potential slow-roll parameters in
terms of the Jordan frame quantities U and 2. We only use potential slow-roll
parameterﬂ The potential slow-roll parameters € and 7 in terms of the Einstein

10Since we only use potential slow-roll parameters, we will write € and 7 instead of ey and 7y
for the first and second potential slow-roll parameters
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frame potential (6.20) are given by}

L[V ’ Voo 2
f— Z fr— 2 6.6
€ 2(V> ) 1] v (6.62)

We can also express the slow-roll parameters in terms of the Jordan frame potential
U(¢), the conformal factor (¢), using the relation between the Jordan frame
potential and the Einstein frame potential (6.20)), and the field redefinition (6.18)).
The first order potential slow-roll parameter € is given by:

1 2
(Ve
(%)

:€<gf<ﬁg§2 663

The second order potential slow-roll parameter 7 is given by:

_V,xx

14
_ 1990990

V ox 0¢ dx 0
_92 1 1 o U
U 2 0 2 0 Q2

V% WK T

" 10/ " 12

1 (e e o
(%4-%%2) U U QO 02

b [( ) () (B ]
(K+%Q'2)2 U Q 2 Q QQ QQ Q3 )|’
(6.64)
where primes denote derivatives with respect to ¢.

Related to our expression for €, we find for the number of e-folds V:

XN Vv
N = dx—
Xy

Xend

éN Sy 2y
- (5) 7 6

Y (K(9) | 3Q7%(9) 1
‘/dj d¢(ﬂ<¢) +2ﬂ2<¢>> (Z 22

end

Tn the expressions of slow-roll parameters, the reduced Planck mass has been set to one (e.g.

2
=3 ()7~ 2 (%))
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6.A.2 Expansion of the Einstein frame potential

For the asymptotic Starobinsky model we have the Jordan frame potential U =
A(Q — 1)2. The Einstein frame potential V is given by ((6.20)

U(¢(x))
\%4 = . 6.66
W= @ o0) (0.0
where x is the canonically normalized field defined by the field redefinition (6.37)
2 5]
Oy _ L, 39 (6.67)
3¢ Q 202

These two relations allow us to expand V in terms of x around the vacuum value
Xvac = 0:

V()= X" (6.68)
where ¢,, = % %;Z . Using the field redefinition (6.37]) we find:
XVB,C
Co — 0
Cc1 = 0
)\le
02 — vac
L+ 5%
QH, Q/, _ §Q’?? _ §Q/5
c3 = /\( vac* “vac 2" “vac - 2 vac)
(1+302.)*
o 1 A 12002, + 6303, + 126005, + 24003 + 160800, +
T (1 + %Q(,%C)Al 48 Qific(75 - 36917/3‘0) - 4Q</2aCQ<//ac(24Q<I/aC + 25)
(6.69)
For Q2. < 1 we therefore obtain
3
(6.70)

+ i <_5OQ/2 Q" 4 ?9/4 + 6Q//2 4 8O Q" ) X4 N

vac*® “vac vac vac*® “vac
24

6.A.3 Generalized asymptotic Starobinsky models

We consider the Jordan frame potential U = AQ?(1 — Q~1)2". In the steep con-
formal limit this potential corresponds to the Einstein frame potential V in terms
of the canonically normalized field

Vix) = A (1 - e*\/?X)Qn , (6.71)
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which is called a generalized Starobinsky model.

The Einstein frame slow-roll parameters and the number of e-folds N can be
expressed in terms of Q) and its derivatives:

2n? Q2
= . 2
O+ 302 <Q—1> (6.72a)
m2n—1) / O \° 2 0% Q
SRV U R WA
Q—|—§Q Q-1 (Q+%Q/2) Q-1 Q
(6.72b)
1 [ov 302\ /-1
Flat limit
In the flat limit 1 > 3 Q ) m and ( 72 ) simplify to:
52 1
~2n ——-— .
€ ~ 2n? SR(EIE (6.73a)
1 07 1 3072
~2nm2n —1)—-s— +2 Q- = 6.73b
n = 2n(2n >(Ql)29+n§21( 29) (6.73D)
1 (v Q-1
N ~ ﬁ/ qub (6.73¢)

end

Flat conformal factor condition

If Q satisfies the flat conformal factor condition (6.45)), €2 has the following form,
for ¢ = & — dyac:
Q=143 Qua™d™, (6.74)

where the €, are of order O(1) and ad < 1for 0 < ¢ < ¢y. This form allows us
to evaluate ([6.72all6.72bli6.72¢)) in orders of a.

Example 6.A.1. Q; #£ 0,05 # 0:

2n? 7 Qy ~
-5 + (a ¢) > <2 - Q > ((a¢)2) (6.75%)
_ w 7 Q . 1 e
" G *la ¢)¢2 <4 o, *2)91> +O0((a0)?) (6.75b)
- (agnN> %?&V +0((0on)) (6.75¢)
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This example illustrates that for generic 2 with non vanishing €4, the flat confor-
mal factor attractor point of generalized asymptotic Starobinsky model of degree
2n corresponds to ¢>"-chaotic inflation.

Example 6.A.2. Q1 =Q3=0, Q2 #0,04 #0

If we impose €2 to be an even function of ¢, we find ©; = 0 for i odd.

2(2n)? - 52(2n)2 [y ~
=T+ (ad)? % (2% - Qg) i) ((a¢)4) (6.762)
dn(4n — 1) Q -
n= Tt a? (92471(871 1) — Qodn(dn + 1)) +0 ((m)‘*) (6.76b)
N =8 D i) +0 ((0d)!) (6.760)

Example 6.A.3. Q; =m, Qs = (7}') (induced inflation with monomial)

In example (6.3.1) we have shown that we can expand the monomial induced
inflation model Q = £¢™ in terms of ¢ = ¢ — Gyac With Q1 = m, Qy = (y). For
the generalized asymptotic Starobinsky model we find:

- 2(; ~ (ad) 2; L 0((0d)?) (6.77a)
~ 2n(2n—1) - 2n? 1m ~

= ed g (2 n M) LO((ad?)  (6.77D)

N= 0 D 0503 +0 ((0dn)?) (6.77¢)

Example 6.A.4. Q = 1+ «¢™ (universal attractor inflation with mono-
mial)

Universal attractor inflation [150] is a class of asymptotic Starobinsky models with
Q(p) =1+ £f(¢). We consider the monomial case f(¢) = ¢™, for which ¢yac =0
and extend the discussion to generalized asymptotic Starobinsky models .
We find:

_ 2(nm)? 2(nm)?

¢2 - (a¢m) ¢2 =+ O(O‘2¢2m) (678&)
nm)nm — m2n n
N= % +0((a¢™™)). (6.78¢)

These results correspond to leading order to $>™"-chaotic inflation. This illustrates
that if  satisfies the flat conformal factor condition , but with the first m—1
derivatives vanishing, the generalized asymptotic Starobinsky model of order 2n
will lead to ¢?™"-chaotic inflation, to leading order.
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6.A.4 Beyond the asymptotic Starobinsky paradigm

If Q2 satisfies the flat conformal factor condition , the generalized asymptotic
Starobinsky models have a chaotic inflation attractor point. We could also
consider the much more general class of models satisfying that U — 0 and 2 — 1
in the vacuum configuration:

U=> an(@-1)", (6.79)

n#0

for a set of coefficients {a,}. One can check that these general potentials are not
Starobinsky-like in the steep limit (6.39). They can correspond to chaotic inflation
if ) satisfies the flat conformal factor condition . If a,, = 0 for n < m and
@ # 0, than these models correspond to leading order to ¢*™-chaotic inflation,
where k is the first nonzero derivative of 2 in the vacuum.

186



[1]

Bibliography

Fotios V. Dimitrakopoulos, Laurens Kabir, Benjamin Mosk, Maulik Parikh,
and Jan Pieter van der Schaar. Vacua and correlators in hyperbolic de Sitter
space. JHEP, 06:095, 2015.

Ben Freivogel, Robert Alan Jefferson, Laurens Kabir, Benjamin Mosk, and
I-Sheng Yang. Casting Shadows on Holographic Reconstruction. Phys. Rewv.,
D91(8):086013, 2015.

Benjamin Mosk and Jan Pieter van der Schaar. Chaotic inflation limits
for non-minimal models with a Starobinsky attractor. JCAP, 1412(12):022,
2014.

Ben Freivogel and Benjamin Mosk. Properties of Causal Holographic Infor-
mation. JHEP, 1309:100, 2013.

Mark Van Raamsdonk. Building up spacetime with quantum entanglement.
Gen.Rel. Grav., 42:2323-2329, 2010.

James M. Bardeen, B. Carter, and S.W. Hawking. The Four laws of black
hole mechanics. Commun.Math.Phys., 31:161-170, 1973.

S.W. Hawking. Particle Creation by Black Holes. Commun.Math.Phys.,
43:199-220, 1975.

S.W. Hawking. Black hole explosions. Nature, 248:30-31, 1974.

J.D. Bekenstein. Extraction of energy and charge from a black hole.
Phys. Rev., D7:949-953, 1973.

J.D. Bekenstein. Black holes and the second law. Lett. Nuovo Cim., 4:737—
740, 1972.

Jacob D. Bekenstein. Black holes and entropy. Phys.Rev., D7:2333-2346,
1973.

187



Bibliography

[27]

28]

[29]

Jacob D. Bekenstein. Generalized second law of thermodynamics in black
hole physics. Phys.Rev., D9:3292-3300, 1974.

Jacob D. Bekenstein. A Universal Upper Bound on the Entropy to Energy
Ratio for Bounded Systems. Phys.Rev., D23:287, 1981.

Leonard Susskind. The World as a hologram. J.Math.Phys., 36:6377-6396,
1995.

Raphael Bousso. A Covariant entropy conjecture. JHEP, 9907:004, 1999.

Raphael Bousso. The Holographic principle. Rev.Mod.Phys., 74:825-874,
2002.

Juan Martin Maldacena. The Large N limit of superconformal field theories
and supergravity. Int.J. Theor.Phys., 38:1113-1133, 1999.

Joseph Polchinski. Dirichlet Branes and Ramond-Ramond charges.
Phys.Rev. Lett., 75:4724-4727, 1995.

Joseph Polchinski. Tasi lectures on D-branes. pages 293-356, 1996.

Joseph Polchinski, Shyamoli Chaudhuri, and Clifford V. Johnson. Notes on
D-branes. 1996.

Mark Van Raamsdonk. Comments on quantum gravity and entanglement.
20009.

A. Ashtekar and A. Magnon. Asymptotically anti-de Sitter space-times.
Class. Quant. Grav., 1:1L.39-1.44, 1984.

Kostas Skenderis. Lecture notes on holographic renormalization.
Class. Quant. Grav., 19:5849-5876, 2002.

C. Fefferman and C.R. Graham. Conformal Invariants. FElie Cartan et les
Mathématiques d’Aujourd’hui, 95, 1985.

Charles Fefferman and C. Robin Graham. The ambient metric. 2007.

Maximo Banados, Claudio Teitelboim, and Jorge Zanelli. The Black hole in
three-dimensional space-time. Phys.Rev. Lett., 69:1849-1851, 1992.

Jan de Boer, Erik P. Verlinde, and Herman L. Verlinde. On the holographic
renormalization group. JHEP, 0008:003, 2000.

Emil T. Akhmedov. A Remark on the AdS / CFT correspondence and the
renormalization group flow. Phys.Lett., B442:152—158, 1998.

Vijay Balasubramanian and Per Kraus. Space-time and the holographic
renormalization group. Phys.Rev.Lett., 83:3605-3608, 1999.

188



Bibliography

[30]

[31]

32]

[33]

[34]

[35]

[36]

[39]

[40]

Massimo Bianchi, Daniel Z. Freedman, and Kostas Skenderis. Holographic
renormalization. Nucl. Phys., B631:159-194, 2002.

Igor R. Klebanov and Edward Witten. AdS / CFT correspondence and
symmetry breaking. Nucl. Phys., B556:89-114, 1999.

Edward  Witten. Anti-de  Sitter space and  holography.
Adv. Theor. Math. Phys., 2:253-291, 1998.

S.S. Gubser, Igor R. Klebanov, and Alexander M. Polyakov. Gauge theory
correlators from noncritical string theory. Phys.Lett., B428:105-114, 1998.

J. M. Maldacena. Wilson loops in large N field theories. Phys. Rev. Lett.,
80, 1998. arXiv:hep-th/9803002.

Soo-Jong Rey and Jung-Tay Yee. Macroscopic strings as heavy quarks in
large N gauge theory and anti-de Sitter supergravity. Eur.Phys.J., C22:379—
394, 2001.

Stefano 1. Finazzo and Jorge Noronha. Estimates for the Thermal Width
of Heavy Quarkonia in Strongly Coupled Plasmas from Holography. JHEP,
1311:042, 2013.

Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quan-
tum information. Cambridge University Press, 2000.

M. M. Wolf, F. Verstraecte, M. B. Hastings, and J. I. Cirac. Area Laws in
Quantum Systems: Mutual Information and Correlations. Physical Review
Letters, 100(7):070502, February 2008.

Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quan-
tum information. Cambridge University Press, 2000.

Jyotirmoy Bhattacharya, Masahiro Nozaki, Tadashi Takayanagi, and
Tomonori Ugajin. Thermodynamical Property of Entanglement Entropy
for Excited States. Phys.Rev.Lett., 110(9):091602, 2013.

Jr. Callan, Curtis G. and Frank Wilczek. On geometric entropy. Phys.Lett.,
B333:55-61, 1994.

Pasquale Calabrese and John L. Cardy. Entanglement entropy and quantum
field theory. J.Stat.Mech., 0406:P06002, 2004.

Shinsei Ryu and Tadashi Takayanagi. Aspects of Holographic Entanglement
Entropy. JHEP, 0608:045, 2006.

Shinsei Ryu and Tadashi Takayanagi. Holographic derivation of entangle-
ment entropy from AdS/CFT. Phys.Rev.Lett., 96:181602, 2006.

189


http://arxiv.org/abs/hep-th/9803002

Bibliography

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Veronika E. Hubeny, Mukund Rangamani, and Tadashi Takayanagi. A Co-
variant holographic entanglement entropy proposal. JHEP, 0707:062, 2007.

Aitor Lewkowycz and Juan Maldacena. Generalized gravitational entropy.
JHEP, 1308:090, 2013.

Dmitri V. Fursaev. Proof of the holographic formula for entanglement en-
tropy. JHEP, 0609:018, 2006.

Matthew Headrick. Entanglement Renyi entropies in holographic theories.
Phys.Rev., D82:126010, 2010.

Thomas Faulkner, Aitor Lewkowycz, and Juan Maldacena. Quantum cor-
rections to holographic entanglement entropy. JHEP, 1311:074, 2013.

Netta Engelhardt and Aron C. Wall. Quantum Extremal Surfaces: Holo-
graphic Entanglement Entropy beyond the Classical Regime. JHEP,
1501:073, 2015.

Matthew Headrick and Tadashi Takayanagi. A Holographic proof of the
strong subadditivity of entanglement entropy. Phys.Rev., D76:106013, 2007.

Robert Callan, Jian-Yang He, and Matthew Headrick. Strong subadditiv-
ity and the covariant holographic entanglement entropy formula. JHEP,
1206:081, 2012.

Robert M. Wald. Black hole entropy is the Noether charge. Phys.Rev.,
D48:3427-3431, 1993.

Vivek Iyer and Robert M. Wald. Some properties of Noether charge and a
proposal for dynamical black hole entropy. Phys.Rev., D50:846-864, 1994.

Ted Jacobson, Gungwon Kang, and Robert C. Myers. On black hole entropy.
Phys.Rev., D49:6587-6598, 1994.

Ling-Yan Hung, Robert C. Myers, and Michael Smolkin. On Holographic
Entanglement Entropy and Higher Curvature Gravity. JHEP, 1104:025,
2011.

Xi Dong. Holographic Entanglement Entropy for General Higher Derivative
Gravity. JHEP, 1401:044, 2014.

Sergey N. Solodukhin. Entanglement entropy, conformal invariance and ex-
trinsic geometry. Phys. Lett., B665:305-309, 2008.

Alex Hamilton, Daniel N. Kabat, Gilad Lifschytz, and David A. Lowe. Local
bulk operators in AdS/CFT: A Boundary view of horizons and locality.
Phys.Rev., D73:086003, 2006.

190



Bibliography

[60]

[61]

[62]

[63]

[64]

Alex Hamilton, Daniel N. Kabat, Gilad Lifschytz, and David A. Lowe. Holo-
graphic representation of local bulk operators. Phys.Rev., D74:066009, 2006.

Daniel Kabat, Gilad Lifschytz, and David A. Lowe. Constructing local bulk
observables in interacting AdS/CFT. Phys.Rev., D83:106009, 2011.

Idse Heemskerk, Donald Marolf, Joseph Polchinski, and James Sully. Bulk
and Transhorizon Measurements in AdS/CFT. JHEP, 1210:165, 2012.

N. Lashkari, M. B. McDermott, and M. van Raamsdonk. Gravita-
tional dynamics from entanglement “thermodynamics”. JHEP, 1404, 2013.
arXiv:1308.3716.

Masahiro Nozaki, Tokiro Numasawa, Andrea Prudenziati, and Tadashi

Takayanagi. Dynamics of Entanglement Entropy from Einstein Equation.
Phys.Rev., D88(2):026012, 2013.

Thomas Faulkner, Monica Guica, Thomas Hartman, Robert C. Myers, and
Mark Van Raamsdonk. Gravitation from Entanglement in Holographic
CFTs. JHEP, 1403:051, 2014.

Bartomiej Czech and Lampros Lamprou. Holographic definition of points
and distances. Phys.Rev., D90(10):106005, 2014.

Bartlomiej Czech, Joanna L. Karczmarek, Fernando Nogueira, and Mark
Van Raamsdonk. The Gravity Dual of a Density Matrix. Class. Quant. Grav.,
29:155009, 2012.

Raphael Bousso, Stefan Leichenauer, and Vladimir Rosenhaus. Light-sheets
and AdS/CFT. Phys.Rev., D86:046009, 2012.

Veronika E. Hubeny and Mukund Rangamani. Causal Holographic Informa-
tion. JHEP, 1206:114, 2012.

Matthew Headrick, Veronika E. Hubeny, Albion Lawrence, and Mukund
Rangamani.  Causality & holographic entanglement entropy. JHEP,
1412:162, 2014.

Ahmed Almbheiri, Xi Dong, and Daniel Harlow. Bulk Locality and Quantum
Error Correction in AdS/CFT. 2014.

Daniel Harlow and Douglas Stanford. Operator Dictionaries and Wave Func-
tions in AdS/CFT and dS/CFT. 2011.

Stefan Leichenauer and Vladimir Rosenhaus. AdS black holes, the bulk-
boundary dictionary, and smearing functions. Phys.Rev., D88(2):026003,
2013.

191


http://arxiv.org/abs/1308.3716

Bibliography

[74] Raphael Bousso, Ben Freivogel, Stefan Leichenauer, Vladimir Rosenhaus,
and Claire Zukowski. Null Geodesics, Local CFT Operators and AdS/CFT
for Subregions. Phys.Rev., D88:064057, 2013.

[75] Daniel Kabat, Gilad Lifschytz, Shubho Roy, and Debajyoti Sarkar. Holo-
graphic representation of bulk fields with spin in AdS/CFT. Phys.Rev.,
D86:026004, 2012.

[76] Robert C. Myers, Junjie Rao, and Sotaro Sugishita. Holographic Holes in
Higher Dimensions. JHEP, 1406:044, 2014.

[77] Bartlomiej Czech, Xi Dong, and James Sully. Holographic Reconstruction
of General Bulk Surfaces. JHEP, 1411:015, 2014.

[78] Vijay Balasubramanian, Borun D. Chowdhury, Bartlomiej Czech, Jan
de Boer, and Michal P. Heller. Bulk curves from boundary data in hologra-
phy. Phys.Rev., D89(8):086004, 2014.

[79] Vijay Balasubramanian, Borun D. Chowdhury, Bartlomiej Czech, and Jan
de Boer. Entwinement and the emergence of spacetime. JHEP, 1501:048,
2015.

[80] Horacio Casini, Marina Huerta, and Robert C. Myers. Towards a derivation
of holographic entanglement entropy. JHEP, 1105:036, 2011.

[81] Kostas Skenderis. Asymptotically Anti-de Sitter space-times and their stress
energy tensor. Int.J.Mod.Phys., A16:740-749, 2001.

[82] L. Pestov and G. Uhlmann. Two dimensional compact simple Rieman-
nian manifolds are boundary distance rigid. Ann. Math., 161(2), 2003.
arXiv:math/0305280.

[83] S. Hartnoll. Holographic mutual information and distinguishability of Wilson
loop and defect operators. 2014. jarXiv:1407.8191.

[84] A. Brandhuber et al. Wilson loops in the large N limit at finite temperature.
Phys. Lett. B, 434, 1998. larXiv:hep-th/9803137.

[85] Jennifer Lin, Matilde Marcolli, Hirosi Ooguri, and Bogdan Stoica. Tomog-
raphy from Entanglement. 2014.

[86] Veronika E. Hubeny, Mukund Rangamani, and Erik Tonni. Thermalization
of Causal Holographic Information. JHEP, 1305:136, 2013.

[87] Veronika E. Hubeny, Mukund Rangamani, and Erik Tonni. Global properties
of causal wedges in asymptotically AdS spacetimes. JHEP, 1310:059, 2013.

192


http://arxiv.org/abs/math/0305280
http://arxiv.org/abs/1407.8191
http://arxiv.org/abs/hep-th/9803137

Bibliography

[88]

[89)]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[102]

[103]

[104]

Simon A. Gentle and Mukund Rangamani. Holographic entanglement and
causal information in coherent states. JHEP, 1401:120, 2014.

A. Schwimmer and S. Theisen. Entanglement Entropy, Trace Anomalies and
Holography. Nucl.Phys., B801:1-24, 2008.

C. Imbimbo, A. Schwimmer, S. Theisen, and S. Yankielowicz. Diffeomor-
phisms and holographic anomalies. Class. Quant. Grav., 17:1129-1138, 2000.

William R. Kelly and Aron C. Wall. Coarse-grained entropy and causal
holographic information in AdS/CFT. JHEP, 1403:118, 2014.

David Eliecer Berenstein, Richard Corrado, Willy Fischler, and Juan Martin
Maldacena. The Operator product expansion for Wilson loops and surfaces
in the large N limit. Phys.Rev., D59:105023, 1999.

William Donnelly. Decomposition of entanglement entropy in lattice gauge
theory. Phys.Rev., D85:085004, 2012.

Murray Gell-Mann and James Hartle. Quasiclassical Coarse Graining and
Thermodynamic Entropy. Phys.Rev., A76:022104, 2007.

Peter G. Bergmann and Venzo De Sabbata. Topological Properties and Global
Structure of Space-Time. Springer US, 1986.

William R. Kelly. Deriving the First Law of Black Hole Thermodynamics
without Entanglement. JHEP, 1410:192, 2014.

Daniel Baumann. TASI Lectures on Inflation. 2009.
P.A.R. Ade et al. Planck 2015 results. XX. Constraints on inflation. 2015.
P.A.R. Ade et al. Planck 2015 results. XIII. Cosmological parameters. 2015.

Gerard 't Hooft. Magnetic Monopoles in Unified Gauge Theories. Nucl. Phys.,
B79:276-284, 1974.

Alan H. Guth and S.H.H. Tye. Phase Transitions and Magnetic Monopole
Production in the Very Early Universe. Phys.Rev.Lett., 44:631, 1980.

Martin B. Einhorn, D.L. Stein, and Doug Toussaint. Are Grand Unified
Theories Compatible with Standard Cosmology? Phys.Rev., D21:3295, 1980.

John Preskill. Cosmological Production of Superheavy Magnetic Monopoles.
Phys.Rev. Lett., 43:1365, 1979.

S. Dodelson. Modern Cosmology. Academic Press. Academic Press, 2003.
ISBN: 9780122191411.

193



Bibliography

[105]

[106]

[107]

[108]
[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

Andrew R. Liddle, Paul Parsons, and John D. Barrow. Formalizing the slow
roll approximation in inflation. Phys.Rev., D50:7222-7232, 1994.

Ted Jacobson. Introduction to quantum fields in curved space-time and the
Hawking effect. pages 39-89, 2003.

Marcus Spradlin, Andrew Strominger, and Anastasia Volovich. Les Houches
lectures on de Sitter space. pages 423-453, 2001.

P.K. Townsend. Black holes: Lecture notes. 1997.

Jan de Boer, Vishnu Jejjala, and Djordje Minic. Alpha-states in de Sitter
space. Phys.Rev., D71:044013, 2005.

Bruce Allen. Vacuum states in de sitter space. Phys. Rev. D, 32:3136-3149,
Dec 1985.

J. S. Dowker and Raymond Crichley. Scalar effective lagrangian in de sitter
space. Phys. Rev. D, 13:224-234, Jan 1976.

Ulf H. Danielsson. On the consistency of de Sitter vacua. JHEP, 0212:025,
2002.

Nemanja Kaloper, Matthew Kleban, Albion Lawrence, Stephen Shenker, and
Leonard Susskind. Initial conditions for inflation. JHEP, 0211:037, 2002.

Don N. Page and Xing Wu. Massless Scalar Field Vacuum in de Sitter
Spacetime. JCAP, 1211:051, 2012.

Marco Bertola, Francesco Corbetta, and Ugo Moschella. Massless scalar
field in a two-dimensional de sitter universe. In AnneBoutet de Monvel,
Detlef Buchholz, Daniel Tagolnitzer, and Ugo Moschella, editors, Rigorous
Quantum Field Theory, volume 251 of Progress in Mathematics, pages 27—38.
Birkhuser Basel, 2007.

Sidney R. Coleman and Frank De Luccia. Gravitational Effects on and of
Vacuum Decay. Phys.Rev., D21:3305, 1980.

J.R. Gott. Creation of Open Universes from de Sitter Space. Nature,
295:304-307, 1982.

Martin Bucher, Alfred S. Goldhaber, and Neil Turok. An open universe from
inflation. Phys. Rev., D52:3314-3337, 1995.

Kazuyuki Sugimura and Eiichiro Komatsu. Bispectrum from open inflation.
JCAP, 1311:065, 2013.

Alexander Vilenkin. The Birth of Inflationary Universes. Phys.Rev.,
D27:2848, 1983.

194



Bibliography

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

Leonard Susskind. The Anthropic landscape of string theory. 2003.

Alan H. Guth and Yasunori Nomura. What can the observation of nonzero
curvature tell us? Phys.Rev., D86:023534, 2012.

Ivan Agullo and Leonard Parker. Non-gaussianities and the Stimulated cre-
ation of quanta in the inflationary universe. Phys.Rev., D83:063526, 2011.

Andreas Albrecht, Nadia Bolis, and R. Holman. Cosmological Consequences
of Initial State Entanglement. JHEP, 1411:093, 2014.

Sugumi Kanno. Impact of quantum entanglement on spectrum of cosmolog-

ical fluctuations. JCAP, 1407:029, 2014.

Misao Sasaki, Takahiro Tanaka, and Kazuhiro Yamamoto. Euclidean vac-
uum mode functions for a scalar field on open de Sitter space. Phys.Reuv.,
D51:2979-2995, 1995.

David H. Lyth and Ewan D. Stewart. Inflationary density perturbations
with Omegaj 1. Phys.Lett., B252:336-342, 1990.

Juan Maldacena and Guilherme L. Pimentel. Entanglement entropy in de
Sitter space. JHEP, 1302:038, 2013.

Brian Greene, Maulik Parikh, and Jan Pieter van der Schaar. Universal
correction to the inflationary vacuum. JHEP, 0604:057, 2006.

Maulik K. Parikh and Erik P. Verlinde. De Sitter holography with a finite
number of states. JHEP, 0501:054, 2005.

J.D. Cohn and David I. Kaiser. Where do the supercurvature modes go?
Phys.Rev., D58:083515, 1998.

Kazuhiro Yamamoto, Misao Sasaki, and Takahiro Tanaka. Quantum fluctua-
tions and CMB anisotropies in one bubble open inflation models. Phys. Rev.,
D54:5031-5048, 1996.

Jaume Garriga, Xavier Montes, Misao Sasaki, and Takahiro Tanaka. Spec-
trum of cosmological perturbations in the one bubble open universe.
Nucl. Phys., B551:317-373, 1999.

S.W. Hawking, Thomas Hertog, and Neil Turok. Gravitational waves in
open de Sitter space. Phys.Rev., D62:063502, 2000.

R. Holman and Andrew J. Tolley. Enhanced Non-Gaussianity from Excited
Initial States. JCAP, 0805:001, 2008.

195



Bibliography

[136] Pieter Daniel Meerburg, Jan Pieter van der Schaar, and Pier Stefano
Corasaniti. Signatures of Initial State Modifications on Bispectrum Statis-
tics. JCAP, 0905:018, 2009.

[137] Takahiro Tanaka and Misao Sasaki. No supercritical supercurvature mode
conjecture in one bubble open inflation. Phys. Rev., D59:023506, 1999.

[138] Jaume Garriga and Viatcheslav F. Mukhanov. On classical anisotropies in
models of open inflation. Phys.Rev., D56:2439-2441, 1997.

[139] Slava Emelyanov. Local thermal observables in spatially open FRW spaces.
2014.

[140] Renaud Parentani. The Energy momentum tensor in Fulling-Rindler vac-
uum. Class. Quant. Grav., 10:1409-1416, 1993.

[141] Wilhelm Magnus, Fritz Oberhettinger, and Raj Pal Soni. Formulas and
theorems for the special functions of mathematical physics. Third edition,
1966.

[142] Stefan Hollands and Robert M. Wald. Quantum fields in curved spacetime.
Phys.Rept., 574:1-35, 2015.

[143] P.A.R. Ade et al. Detection of B-Mode Polarization at Degree Angular
Scales by BICEP2. Phys.Rev.Lett., 112(24):241101, 2014.

[144] P.A.R. Ade et al. Joint Analysis of BICEP2/KeckArray and Planck Data.
Phys.Rev. Lett., 114(10):101301, 2015.

[145] Jerome Martin, Christophe Ringeval, and Vincent Vennin. Encyclopdia In-
flationaris. Phys.Dark Univ., 2014.

[146] Alexei A. Starobinsky. A New Type of Isotropic Cosmological Models With-
out Singularity. Phys.Lett., B91:99-102, 1980.

[147] P.A.R. Ade et al. Planck 2013 results. XXII. Constraints on inflation. As-
tron. Astrophys., 571:A22, 2014.

[148] Andrei D. Linde. Chaotic Inflation. Phys.Lett., B129:177-181, 1983.

[149] Mario Galante, Renata Kallosh, Andrei Linde, and Diederik Roest. The
Unity of Cosmological Attractors. Phys.Rev.Lett., 114:141302, 2015.

[150] Renata Kallosh, Andrei Linde, and Diederik Roest. Universal Attractor for
Inflation at Strong Coupling. Phys.Rev.Lett., 112(1):011303, 2014.

[151] Renata Kallosh, Andrei Linde, and Diederik Roest. The double attractor
behavior of induced inflation. JHEP, 1409:062, 2014.

196



Bibliography

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

Gian F. Giudice and Hyun Min Lee. Starobinsky-like inflation from induced
gravity. Phys.Lett., B733:58-62, 2014.

Renata Kallosh and Andrei Linde. Universality Class in Conformal Inflation.
JCAP, 1307:002, 2013.

Renata Kallosh and Andrei Linde. Superconformal generalizations of the
Starobinsky model. JCAP, 1306:028, 2013.

Renata Kallosh and Andrei Linde. Multi-field Conformal Cosmological At-
tractors. JCAP, 1312:006, 2013.

Renata Kallosh and Andrei Linde. Non-minimal Inflationary Attractors.
JCAP, 1310:033, 2013.

Renata Kallosh, Andrei Linde, and Diederik Roest. Superconformal Infla-
tionary a-Attractors. JHEP, 1311:198, 2013.

Renata Kallosh, Andrei Linde, and Diederik Roest. Large field inflation and
double a-attractors. JHEP, 1408:052, 2014.

Frank S. Accetta, David J. Zoller, and Michael S. Turner. Induced Gravity
Inflation. Phys.Rev., D31:3046, 1985.

D.S. Salopek, J.R. Bond, and James M. Bardeen. Designing Density Fluc-
tuation Spectra in Inflation. Phys. Rev., D40:1753, 1989.

Fedor L. Bezrukov and Mikhail Shaposhnikov. The Standard Model Higgs
boson as the inflaton. Phys. Lett., B659:703-706, 2008.

B.L. Spokoiny. INFLATION AND GENERATION OF PERTURBATIONS
IN BROKEN SYMMETRIC THEORY OF GRAVITY. Phys. Lett., B147:39—
43, 1984.

R. Fakir and W.G. Unruh. Improvement on cosmological chaotic inflation
through nonminimal coupling. Phys.Rev., D41:1783-1791, 1990.

David I. Kaiser. Constraints in the context of induced gravity inflation.
Phys. Rev., D49:6347-6353, 1994.

197



Bibliography

198



Contributions to
Publications

Below I will describe my personal contributions to the publications on which this
thesis is based. Note that in theoretical high energy physics, the order of the list
of authors is alphabetical, so it does not reflect the contribution of the individual
authors.

[1] F.V.Dimitrakopoulos, L. Kabir, B. Mosk, M. Parikh and J.P. van der Schaar
Vacua and correlators in hyperbolic de Sitter space
Journal of High Energy Physics 1506, 095 (2015),
arXiv:1502.00113 [hep-th].

T was responsible for (sub) sections 2.2, 2.3, 8.1 and the appendices of the
original paper. In particular, I calculated the power spectra, analyzed the
divergence of the energy momentum tensor and constructed the expression for
the tensor product of the hyperbolic vacua in terms of the Bunch Davies state.
J.P. van der Schaar and F. V. Dimitrakopoulos were the main contributors to
the calculation of the bi-spectrum and J.P. van der Schaar and L. Kabir were
the main contributors to section 2.1 on the mapping between the hyperbolic
patch and the planar patch. I contributed in conceptual discussions to all
parts and topics discussed in the paper.

199



6. Contributions to Publications

2]

13

14

B. Freivogel, R. A. Jefferson, L. Kabir, B. Mosk and I. S. Yang
Casting Shadows on Holographic Reconstruction
Physical Review D D 91, 086013 (2015), arXiv:1412.5175 [hep-th].

I was responsible for (sub) sections 4.1, 4.3, 5, 6 and appendices B and C
of the original paper. I also did the calculations for section 3.1. I proposed
to analyze Wilson loops and causal information surfaces as bulk probes. I-
Sheng Yang was the main contributor to (sub) sections 2, 3.2 and appendix
A. L.Kabir was the main contributor to (sub) sections 4.2. R. A. Jefferson
was the main contributor to (sub) section 3.1. B.W. Freivogel was leading the
project and was a major contributor to conceptual discussions. I contributed
in conceptual discussions to all parts and topics discussed in the paper.

B. Mosk and J.P. van der Schaar

Chaotic inflation limits for non-minimal models with a Starobinsky attractor
Journal of Cosmology and Astroparticle Physics 1412, 022 (2014),
arXiv:1407.4686 [hep-th].

I was responsible for all calculations in this article. The intellectual content
originated from discussions between the authors.

B. Freivogel and B. Mosk
Properties of Causal Holographic Information
Journal of High Energy Physics 1309, 100 (2013), arXiv:1304.7229 [hep-th].

I was responsible for all calculations in this article. The intellectual content
originated from discussions between the authors.

200



Summary

THE ENTANGLED UNIVERSE

Context

In the beginning of the 20" century, two fundamentally new concepts in physics
changed our understanding of the universe. The first revolution came with the
advent of Einstein’s theory of general relativity in 1915, which replaced Newton’s
universal law of gravity. General relativity profoundly changed our understanding
of space and time, especially at large scales. The second revolution came with the
conception of quantum mechanics, which changed our understanding of physics at
small scales.

These new ideas gave an enormous boost to the fields of cosmology and particle
physics. General relativity gave insight in the description of the geometry of our
universe. The observation of cosmological redshifts and the theoretical description
of an expanding universe with general relativity formed the basis for the Big Bang
model and the concept of cosmological inflation. The standard model of particle
physics was developed using the concepts of quantum mechanics and special rel-
ativity, resulting in the prediction and discovery of many new particles, such as
recently the Higgs boson.

Although the standard model of particle physics and the theory of cosmological
inflation are extremely successful in predicting and explaining observations, several
questions remain unanswered. Firstly, attempts to reconcile quantum mechanics
and general relativity in a UV-complete theory have been largely unsuccessful.
Secondly, there are many models of cosmological inflation, but which one describes
our universe? Obviously, there are other important open questions that are not
addressed in this thesis, such as the quest for the nature and origin of dark matter
and dark energy.
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Motivation of research

Holography

String theory is an attempt to reconcile quantum mechanics and general relativity;
it is like a marriage between gravity and quantum mechanics. In string theory, par-
ticles can be seen as vibrations on strings. Even though it is questionable whether
string theory describes our universe, it did give birth to a concrete realization of
the concept of holography; the idea that the degrees of freedom in a volume of
space can be described by a model on a holographic screen with one dimension
less.

The peculiar thing about holography is that the model on the holographic screen,
the boundary, does not include gravity, whereas the volume of space it describes,
the bulk, does include gravity. This means that a description of gravity can be
given in terms of a non-gravitational quantum model, at least under certain cir-
cumstances. This opens the door to studying gravity from a completely different
perspective; the perspective of the description on the “holographic screen”.

Holography gives rise to a duality; the exact equivalence of two models in physics,
in this case the bulk model and the boundary model. Models that are dual to
each other might look very different, but they are related by a dictionary that
translates quantities and laws of physics in one model to those in the other model.
The holographic dictionary has not been decoded completely (yet).

The reconstruction of bulk physics, given laws of physics and physical quantities
of the boundary model, is the subject of study in the field of holographic recon-
struction. Part I of this thesis discusses the limitations of known reconstruction
techniques and a possibly “new word” in the holographic dictionary: causal holo-
graphic information.

Cosmology

Observations suggest that our universe went through a phase of accelerated expan-
sion, inflation, during the first fractions after the Big Bang. The cosmic microwave
background (CMB) gives an important observational clue and can be seen as a
footprint of inflation. A successful model of inflation should reproduce the mea-
sured CMB power spectrum.

The classical evolution of the metric and a scalar field, dubbed the inflaton field,
effectively provides a mechanism for inflation. Quantum fluctuations of the degrees
of freedom described by the metric and the inflaton field successfully describe the
observed power spectrum of the cosmic microwave background.
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There are several problems with the theory of cosmological inflation. There are
hundreds of different models that explain inflation. Many of them cannot be
excluded by current observational data, although they have been based on different
assumptions. This prompts the question: how can we distinguish different models
with different assumptions in the available observational data? And can we at
least organize these models in a useful way?

Results

Holography

In chapter [2] we discussed bulk reconstruction techniques and their limitations.
We introduced two different qualitative characterizations of a bulk probe’s ability
to cover the bulk: the strong and weak coverage properties. For a subset of bulk
probes, we proved a number of lemmas and theorems, casting light on their ability
to probe bulk regions. We proceeded with the analysis of several bulk probes
for the example of the BTZ-metric, showing that the weak and strong coverage
properties are not satisfied. This implies that at least with these known bulk
probes and techniques, a non-perturbative bulk reconstruction is not possible in
certain regions, which we called “shadows”.

As mentioned above, the holographic dictionary is incomplete and our failure
to fully reconstruct bulk physics is one practical motivation to search for “new
words” in the holographic dictionary. In chapter we discussed properties of
causal holographic information, a bulk construct for which the boundary dual is
unknown. Our most important contribution is that we noted that the subleading
divergences of causal holographic information are generally non-local; they cannot
be written as integrals of local quantities. Secondly, we showed that the coefficient
of the logarithmically divergent term (if present) is universal; it does not depend
on the state or the cutoff procedure. Thirdly, we proposed several dual boundary
quantities, which are all associated to the Von Neumann entropy of a coarse grained
density matrix. An improved proposal of this form was subsequently made by A.
C. Wall and W. R. Kelly.

Cosmology

In chapter we considered the hyperbolic patch of de Sitter spacetime, which
served as a toy model for a “bubble universe”. We compared two different quantum
states and their associated power spectra. We also analyzed the behavior of the
energy-momentum tensor. Our main result is firstly that the power spectrum
for the scalar field in the Bunch Davies must correspond to the power spectrum
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calculated with the reduced density matrix associated to the Bunch Davies state,
clarifying earlier work by S. Kanno. Also, we noted that the difference between
the power spectra associated to these two states is not observable. Subsequently,
we presented a mapping between the hyperbolic and planar patches of de Sitter
spacetime, confirming that the natural hyperbolic vacuum is mapped to the Bunch-
Davies state. Finally we showed that the difference between the expectation values
of the energy momentum tensor in these states is typically UV-finite, but divergent
near the boundary of the hyperbolic patch.

In chapter @ we came back to the problem of having so many different models
of cosmological inflation. We took a different point of view on the set of single
field inflation models, by considering them in the non-minimally coupled Jordan-
frame. Firstly, we concluded that two types of models appear naturally as attractor
points. In the limits of a flat and steep conformal factor, or weak and strong non-
minimal coupling, these models correspond to chaotic and Starobinsky inflation
respectively. Secondly, we noted that the fine-tuning problem for chaotic inflation
can directly be interpreted in terms of the flat conformal factor limit. Thirdly, we
showed that the Starobinsky attractor is a more universal attractor in the sense
that the energy scale of inflation does not depend on the particular conformal
factor under consideration, as long as the steep conformal factor limit is satisfied.
For the chaotic attractor points, the scale of inflation does depend on the particular
form of the conformal factor under consideration.

Outlook

The quest for new holographic reconstruction techniques continues and promising
results have recently been obtained using methods of integral geometry and quan-
tum information. We hope that we can contribute to the effort of shedding light
on our shadow-regions in future work, with the identification of new bulk probes
and reconstruction techniques.

In the field of cosmology, the interest in chaotic attractor points diminished after
a joint analysis of the BICEP2/Keck Array and Planck groups, which points to a
small tensor to scalar ratio, which is not consistent with chaotic inflation models.
The Starobinsky attractor point is in the sweet spot of models favored by obser-
vations by the Planck satellite. More precise measurements of the tensor to scalar
ratio and of non-Gaussianities in the CMB are crucial to develop a more accurate
model of inflation.
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THE ENTANGLED UNIVERSE

Context

In het begin van de 20%' eeuw veranderden twee fundamenteel nieuwe concepten
in de natuurkunde ons begrip van het universum. De eerste revolutie werd in-
gezet met de komst van Einsteins algemene relativiteitstheorie in 1915, waarmee
Newtons universele wet van de zwaartekracht werd vervangen. De algemene rela-
tiviteitstheorie veranderde ons begrip van ruimte en tijd. De relativiteitstheorie
geeft een goede beschrijving op grote schalen. De tweede revolutie vloeide voort
uit de ontdekking van de kwantummechanica. De kwantummechanica geeft een
goede beschrijving van de natuurkunde op kleine schalen.

Deze nieuwe ideeén gaven een enorme impuls aan het gebied van de kosmologie
en dat van de deeltjesfysica. De algemene relativiteitstheorie gaf inzicht in de
beschrijving van de geometrie van ons universum. Het waarnemen van de kosmo-
logische roodverschuiving, in combinatie met het ontdekken van de theoretische
beschrijving van een uitdijend heelal met de algemene relativiteitstheorie vormden
de basis voor de modellen van de Oerknal en kosmologische inflatie. Het stan-
daardmodel van de deeltjesfysica werd ontwikkeld met behulp van de concepten
uit de kwantummechanica en de speciale relativiteitstheorie en resulteerde in de
voorspelling en de ontdekking van vele nieuwe deeltjes, zoals recentelijk nog het
Higgs boson.

Hoewel het standaardmodel van de deeltjesfysica en de theorie van kosmologische
inflatie zeer succesvol zijn in het voorspellen en verklaren van observaties, blijft
een aantal vragen onbeantwoord. In de eerste plaats is het verzoenen van de
kwantummechanica en de algemene relativiteitstheorie problematisch. Ten tweede
zijn er vele modellen van kosmologische inflatie, maar welk model geeft een juiste
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beschrijving van ons universum? Daarnaast zijn er nog vele andere open vragen
die niet in dit proefschrift worden behandeld, zoals de zoektocht naar de aard en
herkomst van donkere materie en donkere energie.

Motivatie van het onderzoek

Holografie

Met de ontwikkeling van de snaartheorie is een poging gedaan om de kwantumme-
chanica en de algemene relativiteitstheorie met elkaar te verzoenen; de theorie is als
een huwelijk tussen de zwaartekracht en de kwantummechanica. In de snaartheorie
kunnen deeltjes worden gezien als trillingen op snaren. Ook al is het twijfelachtig
of de snaartheorie de natuurverschijnselen in ons universum verklaart, de theorie
bracht een concrete realisatie voort van het concept van holografie; het idee dat
de vrijheidsgraden in een volume van ruimte kunnen worden beschreven met een
model op een holografisch scherm met één dimensie minder.

Het eigenaardige van holografie is dat het model op het holografische scherm,
de “rand”, geen zwaartekracht kent, terwijl de beschrijving van het volume van
ruimte, de “bulk”, wél zwaartekracht kent. Dit betekent dat een beschrijving van
de zwaartekracht mogelijk is in termen van een quantum mechanisch model zénder
zwaartekracht, althans onder bepaalde omstandigheden. Dit opent de deur om de
zwaartekracht te bestuderen vanuit een heel ander perspectief: het perspectief van
de beschrijving op een “holografisch scherm”.

Holografie geeft een voorbeeld van een dualiteit: een exacte equivalentie van twee
modellen in de natuurkunde. In dit geval betreft het de twee modellen van de bulk
en de rand. Modellen die duaal zijn zien er misschien heel anders uit, maar er is
een woordenboek dat de grootheden en natuurwetten in één model vertaald naar
grootheden en natuurwetten in het andere model. Het holografische woordenboek
is nog incompleet.

Bij een échte dualiteit moet het mogelijk zijn het woordenboek tussen de twee
modellen volledig te ontrafelen. Holografische reconstructie is het vakgebied van
de reconstructie van de bulk fysica, waarbij de natuurwetten en grootheden van
het model op de rand gegeven zijn. In deel I van dit proefschrift wordt ingegaan op
de beperkingen van de bekende reconstructietechnieken en een eventueel “nieuw
woord” in het holografische woordenboek, namelijk de “causale holografische in-
formatie”.
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Kosmologie

Waarnemingen suggereren dat ons universum een fractie na de Oerknal een fase
van versnelde uitdijing (inflatie) doormaakte. De kosmische achtergrondstraling
kan gezien worden als een voetafdruk van de kosmologische inflatie. Het verklaren
van het spectrum van de kosmische achtergrondstraling is dan ook een belangrijke
eigenschap waaraan een model van inflatie moet voldoen.

Een model gebaseerd op de klassieke evolutie van de metriek en een scalair veld,
genaamd het inflaton-veld, voorziet in een effectieve beschrijving van het mecha-
nisme achter inflatie. Quantum fluctuaties verklaren de vorm van het waargeno-
men spectrum van de kosmische achtergrondstraling verbazingwekkend goed.

Er zijn verscheidene problemen met de theorie van kosmologische inflatie. Zo zijn
er bijvoorbeeld honderden verschillende modellen die inflatie kunnen verklaren.
Vele van deze modellen kunnen niet worden uitgesloten op basis van waarnemin-
gen. Desalniettemin zijn die modellen vaak gebaseerd op verschillende aannames.
Dit roept de volgende vraag op: hoe kunnen we verschillende modellen met ver-
schillende aannames onderscheiden in de (toekomstige) waarnemingen? En kunnen
we op zijn minst deze modellen op een nuttige manier organiseren of ordenen?

Resultaten

Holografie

In hoofdstuk [2] werd een aantal bulk-reconstructietechnieken besproken. Bulk-
reconstructie technieken maken gebruik van bulk-sondes; dat zijn objecten in de
bulk, waarvan we idealiter ook weten wat de representatie is in het model op
de rand. Er werden twee verschillende begrippen geintroduceerd die kwalitatief
aangeven wat het vermogen van een bulk-sonde is om de bulk te reconstrueren:
de sterke- en zwakke bedekkingseigenschappen. Voor een deelverzameling van
bulk-sondes bewezen we een aantal lemma’s en stellingen, die inzichtelijk maken
hoe “goed” een bulk-sonde is in de context van bulk-reconstructie. Vervolgens
illustreerden wij de beperkingen van bulk-sondes door te kijken naar het voor-
beeld van de BTZ-metriek, waaruit blijkt dat niet aan de sterke bedekkingsei-
genschap wordt voldaan. Dit betekent dat we met de bekende bulk-sondes en
bulk-reconstructietechnieken niet in staat zijn de bulk op een niet-perturbatieve
wijze te reconstrueren. De gebieden waar een niet-perturbatieve reconstructie niet
mogelijk is noemen we “schaduwen”. Zoals hierboven al is beschreven, is het holo-
grafische woordenboek onvolledig. Het feit dat men op dit moment niet in staat is
de bulk helemaal te reconstrueren, motiveert de zoektocht naar “nieuwe woorden”
in het holografische woordenboek.
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In hoofdstuk (3)) bespraken we eigenschappen van de causale holografische informa-
tie, een bulk-sonde waarvan niet duidelijk is wat het corresponderende object is in
het duale model op de rand. Onze belangrijkste bijdrage is dat we hebben ontdekt
dat de niet-leidende divergenties van causale holografische informatie in het alge-
meen niet-lokaal zijn; ze kunnen niet worden uitgedrukt in termen van integralen
van lokale grootheden. Ten tweede hebben we laten zien dat de coéfficiént van de
logaritmisch divergerende term (indien aanwezig) universeel is; deze coéfficiént is
niet afhankelijk van de kwantum-toestand, of de procedure waarmee de divergentie
wordt gereguleerd. Ten derde hebben we gespeculeerd over de mogelijke kandida-
ten voor een duale representatie van causale holografische informatie in het model
op de rand. Onze voorstellen worden gekenmerkt door het feit dat zij allemaal
de Von Neumann entropie van een grofkorrelige dichtheidsmatrix zijn. Volgend
op onze initi€le suggesties, is er recentelijk een verbeterd voorstel van deze aard
gedaan door A. C. Wall en W. R. Kelly.

Kosmologie

In hoofdstuk beschouwden we de hyperbolische sectie van de Sitter ruimtetijd,
die als model diende voor een “bubbel universum”. We vergeleken twee verschil-
lende kwantumtoestanden en de bijbehorende spectra. Ook analyseerden we het
gedrag van de energie-momentum tensor. Ons belangrijkste resultaat is in de eer-
ste plaats dat het spectrum van het scalaire veld in de Bunch-Davies toestand
overeenkomt met het spectrum dat volgt uit de berekening met de gereduceerde
dichtheidsmatrix van de Bunch-Davies toestand. In principe is dat logisch, maar in
recent werk van S. Kanno werd gesuggereerd dat deze twee berekeningen verschil-
lende resultaten geven. Verder concludeerden we dat de Bunch-Davies toestand
en het hyperbolische vaciium niet resulteren in waarneembare verschillen in het
spectrum.

Ook presenteerden we een afbeelding tussen de hyperbolische en vlakke secties
van de Sitter ruimtetijd. Met deze afbeelding laten we zien dat het natuurlijke
hyperbolische vacuiim wordt afgebeeld op de Bunch-Davies toestand van de vlakke
sectie. Vervolgens toonden we aan dat het verschil tussen de energie-momentum
tensoren in deze toestanden UV-eindig is, maar divergeert nabij de horizon van de
hyperbolische sectie.

In hoofdstuk @ kwamen we terug op het probleem van het grote aantal modellen
van kosmologische inflatie. We namen een ander perspectief op de verzameling
van inflatiemodellen met één scalar veld, door ze in het niet-minimaal gekoppelde
Jordan-raamwerk te bekijken. Ten eerste hebben wij geconcludeerd dat er twee
typen modellen speciaal zijn vanuit dit perspectief; dat zijn zogenaamde aantrek-
kingspunten. In de limiet van een vlakke- en steile conforme factor, ofwel de
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zwakke- en sterke niet-minimale koppeling, reduceren deze modellen respectie-
velijk tot de chaotische- en Starobinsky-inflatiemodellen. Ten tweede zagen we
dat het fijn-afstelingsprobleem (“fine-tuning”) bij chaotische inflatie kan worden
geinterpreteerd als de vlakke conforme factor limiet. Ten derde toonden we aan
dat het Starobinsky-aantrekkingspunt een universeler karakter heeft dan de chaoti-
sche aantrekkingspunten, omdat de energie-schaal van inflatie bij het Starobinsky-
aantrekkingspunt niet athangt van de precieze vorm van de conforme factor, zolang
aan de steile conforme factor limiet wordt voldaan. Voor de chaotische aantrek-
kingspunten hangt de schaal van de inflatie wel af van de specifieke vorm van de
conforme factor.

Vooruitblik

In de zoektocht naar nieuwe technieken in het veld van de holografische recon-
structie zijn recentelijk veelbelovende resultaten verkregen door methoden uit de
integraal-geometrie en de kwantuminformatietheorie te gebruiken. We hopen dat
we in de toekomst een bijdrage kunnen leveren aan het belichten van mogelijkhe-
den om de holografische schaduwgebieden in de bulk te reconstrueren, door nieuwe
bulk-sondes en reconstructietechnieken te identificeren.

Op het gebied van de kosmologie is de interesse in de chaotische aantrekkingspun-
ten afgenomen na een gezamenlijke analyse van de BICEP2/Keck Array en Planck
groepen, die wijst op een kleinere tensor-scalar verhouding dan oorspronkelijk ge-
opperd door de BICEP2-groep, wat inconsistent is met chaotische inflatiemodellen.
Het Starobinsky-aantrekkingspunt is juist consistent met de waarnemingen van de
Planck-satelliet. Meer nauwkeurige metingen van de tensor-scalar verhouding en
van de niet-Gaussische afwijkingen in het spectrum van de kosmische microgolf
achtergrond zijn cruciaal om tot een juister model van inflatie te komen.
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