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Abstract: We pose and address the radical question of whether quantum mechanics, known
for its firm internal structure and enormous empirical success, carries in itself the genomes
of larger quantum theories that have higher internal intricacy and phenomenological
versatility. In other words, we consider, at the basic level of closed quantum systems and
regardless of interpretational aspects, whether standard quantum theory (SQT) harbors
quantum theories with context-based deformed principles or structures, having definite
predictive power within much broader scopes. We answer this question in the affirmative
following complementary evidence and reasoning arising from quantum-computation-
based quantum simulation and fundamental, general, and abstract rationales within the
frameworks of information theory, fundamental or functional emergence, and participatory
agency. In this light, as we show, one is led to the recently proposed experience-centric

quantum theory (ECQT), which is a larger and richer theory of quantum behaviors with
drastically generalized quantum dynamics. ECQT allows the quantum information of the
closed quantum system’s developed state history to continually contribute to defining and
updating the many-body interactions, the Hamiltonians, and even the internal elements
and “particles” of the total system. Hence, the unitary evolutions are continually impacted
and become guidable by the agent system’s experience. The intrinsic interplay of unitarity
and non-Markovianity in ECQT brings about a host of diverse behavioral phases, which
concurrently infuse closed and open quantum system characteristics, and it even surpasses
the theory of open systems in SQT. From a broader perspective, a focus of our investigation
is the existence of the quantum interactome—the interactive landscape of all coexisting,
independent, context-based quantum theories that emerge from inferential participatory
agencies—and its predictive phenomenological utility.

Keywords: emergent quantum behaviors beyond quantum mechanics; experience-centric
quantum theory; non-Markovian unitary evolutions; quantum simulation; quantum
landscape

1. A Top-Down Introduction to an Interactome of Independent
Quantum Theories

Quantum physics is one of the most successful grand theories of nature, within
which a broad range of theories, e.g., applying to elementary particles and condensed
matter systems, are hosted. This unique nature, together with the fact that quantum
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physics is constructible in general information-theoretic frameworks, makes it potentially
amenable to accommodating even broader phenomena in both the natural and artificial
domains. On the other hand, more detailed explorations of this expansive attribute of
quantum physics can contribute to a deeper and clearer understanding of what quantum

behaviors are in their broadest spectrum, from the elementary to the highly emergent.
Such deeper reconsiderations of quantum theory are especially welcomed given our long-
standing searches for (i) a compelling treatment of the quantum aspects of gravitational and
cosmological phenomena—such as black holes, cosmological horizons, or the pregeometric
universe—and (ii) (abstract or tangible) emergent complex systems. It is known that the states
and properties of quantum systems are fundamentally different from those of classical
systems, which can enable diverse and rich quantum advantages, e.g., in information
processing and computation. In particular, a key role is played by quantum dynamics itself.
In standard quantum theory (SQT), namely quantum mechanics and its finite-dimensional
reductions, the unitary evolution of a closed system is, by postulate, time-local and linear,
such that the Hamiltonian is not influenceable or updatable by the state history of the
system. While this postulate has been strictly maintained, it is intriguing and plausible to
scrutinize diverse quantum behaviors to determine whether and how, in appropriate contexts
and ways, time-nonlocal features such as the developed state history of a closed quantum
system—or, in other words, its experience—can influence the instantaneous Hamiltonians
and internal interactions of the system. Moreover, one can ask whether such drastic
deformation of SQT may exist or emerge in nature, particularly in contexts that are broader
than the traditional domains of quantum physics.

Conducting a multifaceted investigation, we address these questions at the intersection
of four independent, complementary directions: quantum-computation-based simulation,
comparative formal theorems, behavioral analysis, and abstract, fundamental rationales.
First, we devise a novel quantum simulation technique to examine and extend SQT itself
to a larger, more intricate quantum theory, namely experience-centric quantum theory
(ECQT), as proposed in Ref. [1]. By definition, ECQT is any quantum theory that allows the
instantaneous Hamiltonians, the internal interactions, and even the degrees of freedom of a
closed quantum system to be experience-centric (EC)—that is, reformable and updatable
by the developed state history of the closed system. In our scheme of quantum simulation,
we demonstrate that a phenomenologically promising subclass of EC evolutions can, in
principle, be simulated within SQT, albeit at the expense of an exceedingly large resource
overhead and extra quantum degrees of freedom. However, arbitrary EC quantum dy-
namics still remains out of reach of our quantum simulation scheme when using finite
resources. Subsequently, we elevate the comparison between ECQT and SQT to the formal,
general level by proving theorems stating that SQT admits various EC representations,
whereas (at least without exceedingly large reservoirs of extra degrees of freedom) SQT is
only a measure-zero subset of ECQT. Moreover, it is demonstrated that, due to the inherent
interplay of unitarity and non-Markovianity, ECQT features diverse, exotic dynamical
phases and behaviors, which are fundamentally distinct from those of SQT (even its open-
system derivatives) and may offer novel applications in their relevant phenomenological
contexts. Moreover, we show that even slight modifications of SQT via some specific EC
perturbations can yield non-negligible observable effects.

Finally, upon presenting rationales at abstract fundamental levels, we put forward the
formulation and characterization of general quantum behaviors, which in turn are divided
into independent and context-based categories. In light of this characterization, which
is based on the participatory-agentive “it-from-(qu)bit” paradigm, we elevate quantum
mechanics to identify quantum theory with the grand theory of (fundamental or emergent)
general quantum behaviors, and we show how it can branch out into an interacting system
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of structurally distinct, context-based quantum theories. In this way, following our analysis
of SQT vs. ECQT, we are led to the existence and phenomenological utility of a quantum

interactome (QI), which hosts and links interactively all of the consistent, context-based
quantum theories—SQT and beyond. This interactive landscape of context-based quantum

theories can be explored mainly by investigating mutual relations and structural interactions
between its constituent theories. Overcoming the limiting boundaries of SQT by harnessing
such enriched quantumness within the formalism of ECQT offers a systematic, rigorous means

of understanding, connecting, and synergizing seemingly remote concepts, and it paves
the way toward novel theoretical descriptions and empirical predictions. As we see and
contend, our findings signify that QI and its major component, ECQT, are promising and
may lead to new physics and horizons.

2. Quantum Simulation of a Larger Theory

The classical simulation of quantum systems has been practiced extensively in physics.
Methods such as mean-field theory [2], density functional theory [3], the density matrix
renormalization group [4], and several other approximative techniques all aim to make
quantum problems more tractable on a classical computer by reducing the degrees of
freedom and hence the classical resources needed for simulation. It is also important
to determine when quantum dynamics can be simulated on a classical computer with a
reasonable amount of classical resources [5].

Despite such attempts, the main idea of quantum simulation was developed due to the
intractability of the simulation of large quantum systems on classical computers [6]. It has
been shown that, rather than classical systems, “quantum computers can be programmed
to simulate any local quantum system” [7]. This has led to the advancement of numerous
powerful techniques for quantum simulation [8].

Here, however, we aim to use the idea of quantum simulation for a different, novel
purpose: simulating a theory larger than SQT itself. It is known from the classical simulation
of quantum dynamics that the larger dynamical space of quantum systems can, in principle,
be simulated, under some conditions, on classical computers when sufficient (and potentially
large) amounts of classical resources are provided. Based on this, one may speculate that,
in general, it is possible to simulate a larger theory, in the sense of dynamical spaces, via a
smaller one when sufficient resources are available.

Inspired by this, the main question that we are addressing here is whether, having
sufficient quantum resources, it is possible to use quantum simulation (based on SQT) to simulate

a theory larger than SQT. To make this question more specific and tractable, we puruse the
quantum simulation of a specific dynamical space that is larger than what is allowed in
SQT. SQT is a linear theory in that the dynamics of the state of a closed quantum system is
governed by a unitary operation that is generated by a Hamiltonian. More importantly,
based on an implicit principle, the Hamiltonian must be state-/history-independent and
can depend, at most, on time and some external control parameters. In other words, a
state-history-dependent Hamiltonian for a closed system is forbidden in SQT.

In the following, we show that it is possible to simulate dynamics governed by a
specific family of state-history-dependent Hamiltonians within the framework of SQT. This
means that we can access a larger quantum dynamical model using resources that are
allowed within the postulates of SQT.

For now, we restrict ourselves to a specific family of “experience-centric” (EC) unitary
quantum dynamics proposed in Ref. [1], which is generated by the following polynomial
state-history-dependent Hamiltonians:

❍t = ∑
M
j=1λΓj

ϱt−aj1
ϱt−aj2

· · · ϱt−ajN
+ h.c. (1)
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where λΓj
∈ C, and (throughout this paper) we have adopted the notation ϱtk

to rep-
resent the state of the system at time tk. Here, each term (or monomial) is constructed
from the products of the states of the system at different points in the past, as well as
at the present time. We confine ourselves to N past (and present) points of time with
specific distances ai from the current time t, i.e., the states from which the Hamilto-
nian is constructed are chosen from the given set of past (or present) states at times
{t − a1, t − a2, . . . , t − aN}, where 0 ⩽ aN ⩽ aN−1 · · · ⩽ a1. Each term in the Hamiltonian
can be a multiplication of the states at N different points of time chosen from the history set.

Here, we assume that λΓ is a complex number such that

λΓ = Tr[UΓ], (2)

where U is a unitary operator, and Γ represents a set of past or present states on which λΓ

depends. We note, however, that this is only a particular dependence of the couplings on
the history, but it will be necessary to adopt an existing quantum interferometric circuit [9]
for our protocol. For general dependence, see Section 3.

It is evident that conventional Hamiltonian simulation techniques [10,11] do not work
in this case, where the terms in the Hamiltonian are state- or history-dependent (and hence
unknown a priori). Conventional techniques can be used only if we perform quantum
tomography on the system state at each time, which is inefficient in this case.

To propose a simulation technique that does not require state tomography, we use
the recently developed technique of density matrix exponentiation [12], which has also
been realized experimentally [13]. We start with an immediate example, where the memory
distance is two such that the Hamiltonian has only two monomials,

❍ = λΓϱϱ′ + λ∗
Γϱ′ϱ. (3)

Before discussing the details of the simulation protocol, it should be noted that the
dynamics is not simulatable for the duration 0 ⩽ t ⩽ a1 due to the lack of information, i.e.,
the prehistorical evolution of the system is needed to simulate this time interval. Hence, in
this interval, the dynamics should be given to enable simulation at the next time. This is
a feature of “delay differential equations” in which, rather than a single initial point, we
need a time interval as the initial condition [14].

2.1. Quantum Simulation Protocol

Our simulation protocol consists of different elements and is composed of techniques
for (i) the estimation of nonlinear scalar functions of states using the proposed inter-
ferometric quantum circuit in Refs. [9,15–18], (ii) the implementation of density matrix
exponentiation by applying controlled-SWAP gates [19], and (iii) Trotter–Suzuki expansion.
We emphasize that our protocol achieves significantly more than simply simulating non-
linear scalar functions of quantum states and exponentiation density matrices; we can, in
principle, simulate nonlinear and non-Hermitian quantum operations beyond Refs. [9,12].

We assume that the current state of the simulator is σ, and we aim to simulate the
dynamics e−iδ❍ on it. Consider the following steps.

(i) We first prepare a quantum state

|ψλ⟩ = |−⟩ − iδλΓ |+⟩, (4)

where σ1|±⟩ = ±|±⟩, with σ1 being the first Pauli operator for spin-1/2 systems and
|±⟩ = (|0⟩ ± |1⟩)/

√
2 on the basis of the eigenvectors of the third Pauli operator σ3.

Here, δ is a sufficiently small real number (δ ≪ 1/|λΓ|). To perform the preparation,
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we note that the value of λ is not given. We are only given systems whose total state
is what we call Γ, without even knowing (or needing to know) the state Γ itself. We
also know the relation between λ and the unknown state Γ, which is given below
Equation (3). To prepare the state |ψλ⟩, we use a modified “interferometric” quantum
circuit, which has already been proposed to estimate nonlinear scalar functions of a
state Γ, obviating the need for tomography of that state [9,15]—see Figure 1.

(ii) Inspired by the density matrix exponentiation technique [12,19], we apply suitable
controlled-SWAP gates (i.e., Fredkin gates) on a combined system composed of a system
that is already prepared in |ψλ⟩, the simulator, and the two quantum systems with
(unknown) states ϱ and ϱ′; hence, the total system is in the state |ψλ⟩⟨ψλ| ⊗ ϱ ⊗ ϱ′ ⊗ σ.
The suitable controlled-SWAP gates use the prepared system in |ψλ⟩ as the control
system and one of the systems in ϱ or ϱ′ and the simulator as the target systems.
The gates are applied when the control system is in the state |+⟩. In the next step,
we perform a selective measurement on the control system on the {|0⟩, |1⟩} basis
and choose the output when it is in the state |0⟩. Finally, we trace out over all
of the ancillary systems, i.e., all of the systems other than the simulator. Up to
this step, the (unnormalized) state of the simulator becomes σ̃ = e−iδλΓϱϱ′σ eiδλ∗

Γϱ′ϱ +

O(δ2). Interestingly, this is equivalent to simulating a state-dependent non-Hermitian
Hamiltonian λΓϱϱ′.

(iii) To complete the simulation of the dynamics with the evolution eiδλ∗
Γϱ′ϱ σ̃ e−iδλΓϱϱ′ , we

simply need to repeat steps (i) and (ii) by preparing a new control system in

|ψ∗
λ⟩ = |−⟩ − iδλ∗

Γ |+⟩ (5)

(rather than |ψλ⟩) and exchanging ϱ and ϱ′, such that the state of the total system
becomes |ψ∗

λ⟩⟨ψ∗
λ| ⊗ ϱ′ ⊗ ϱ ⊗ σ̃.

Parts (ii) and (iii) can be performed through the quantum circuit of Figure 2.
(iv) We use the Trotter–Suzuki expansion to generalize the simulation to the general case

of Hamiltonians of Equation (1) by repeating steps (i) through (iii) for each term in
this state-history-dependent Hamiltonian.
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Figure 1. Interferometric circuit for the preparation of the |ψλ⟩ state (Equation (4)). By applying
an unbalanced Hadamard gate Hδ, a controlled-PHASE gate with phase shift π/2, a controlled-U
gate that is applied when the control system is in the state |1⟩, and a final Hadamard gate H on the
initial state |0⟩⟨0| ⊗ Γ, we can prepare the state |ψλ⟩ with λ = Tr[UΓ]. In this section, “Tr” denotes
the tracing operation.
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Figure 2. Interferometry circuit for the quantum simulation of a Hamiltonian with state-history-
dependent couplings as in Equation (3). Controlled-SWAP gates act if their control qubit is in |0⟩.
Measurements on the control qubits are on the |0⟩ basis.
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We now explain in more detail our simulation protocol. Inspired by Ref. [9], we
propose the circuit in Figure 1, where H is the Hadamard gate (or beam splitter in a
quantum-optical sense) and Hδ is an unbalanced Hadamard gate (unbalanced beam splitter
in a quantum-optical sense) defined as

Hδ =

(
sin δ cos δ

cos δ − sin δ

)
=

(
δ 1
1 −δ

)
+ O(δ2). (6)

Next, by applying the controlled-U gate (which acts when the control qubit is in the state
|+⟩) followed by the Hadamard gate, the (unnormalized) output state of the total system is

τ =
(

δ2|+⟩⟨+| ⊗ UΓU† + (1 − δ2)|−⟩⟨−| ⊗ Γ + δe−iϕ|+⟩⟨−| ⊗ UΓ + δeiϕ|−⟩⟨+| ⊗ ΓU†
)
+ O(δ2)

=
(
|−⟩⟨−| ⊗ Γ + δe−iϕ|+⟩⟨−| ⊗ UΓ + δeiϕ|−⟩⟨+| ⊗ ΓU†

)
+ O(δ2). (7)

Choosing ϕ = π/2 and tracing out over the ancillary qubits, we have

|ψλ⟩⟨ψλ| =
(
|−⟩⟨−| − iδλΓ|+⟩⟨−|+ iδλ∗

Γ|−⟩⟨+|
)
+ O(δ2)

=
(
|−⟩ − iδλΓ|+⟩

)(
⟨−|+ iδλ∗

Γ⟨+|
)
+ O(δ2). (8)

Now, by putting the above state, within which the first qubit is used as the “control”
qubit (“c”), together with three other systems with states ϱ, ϱ′, and σ, which will be used as
the target systems, we apply controlled-SWAP gates Sc on the target systems if the control
qubit is in the state |0⟩. After applying the two gates Sc,24Sc,34, we obtain

Sc,24Sc,34
(
|ψλ⟩⟨ψλ| ⊗ ϱ ⊗ ϱ′ ⊗ σ

)
Sc,34Sc,24 =

(
|−⟩⟨−| ⊗ ϱ ⊗ ϱ′ ⊗ σ − iδλΓ |+⟩⟨−| ⊗

(
S24S34ϱ ⊗ ϱ′ ⊗ σ

)
+ iδλ∗

Γ |−⟩⟨+| ⊗
(
ϱ ⊗ ϱ′ ⊗ σS34S24

))
. (9)

By performing a selective |0⟩⟨0| measurement on the control qubit, the (unnormalized)
state of the total system reduces to

|0⟩⟨0| ⊗
(

ϱ ⊗ ϱ′ ⊗ σ − iδλΓ ⊗
(
S24S34ϱ ⊗ ϱ′ ⊗ σ

)
+ iδλ∗

Γ

(
ϱ ⊗ ϱ′ ⊗ σS34S24

))
. (10)

After tracing over the other systems and using the SWAP identities

Tr[S(A ⊗ B)] = Tr[AB],

Tr1[S(A ⊗ B)] = AB,

Tr1[(A ⊗ B)S] = BA,

(11)

the (unnormalized) state of the simulator now becomes

σ̃ =
(
σ − iδλΓϱϱ′σ + iδλ∗

Γσϱ′ϱ
)
+ O(δ2)

= e−iδλΓϱϱ′σ eiδλ∗
Γϱ′ϱ + O(δ2). (12)

Here, Tr1 (and similarly Tr2) denotes partial tracing over system 1 (2).
To simulate the rest of the dynamics, we repeat the above steps by modifying the

circuit of Figure 1 as U → U†. These changes lead to the preparation of the state |ψ∗
λ⟩. We

also replace ϱ ↔ ϱ′. Putting these three ancillary systems besides the simulator, which is
now in the (unnormalized) state σ̃, the whole system state is |ψ∗

λ⟩⟨ψ
∗
λ| ⊗ Γ⊗ ϱ′ ⊗ ϱ⊗ σ̃ (note

the new order of ϱ and ϱ′ compared to the previous step). We input this state to a quantum
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circuit similar to the one in the first step and perform the final selective |0⟩⟨0| measurement.
Following similar reasoning, the (normalized) final state of the simulator becomes

Tr123
[
Sc,24Sc,34 (|ψ∗

λ⟩⟨ψ∗
λ| ⊗ ϱ′ ⊗ ϱ ⊗ σ̃) Sc,34Sc,24

]
=
(
σ̃ − iδλ∗

Γϱ′ϱ σ̃ + iδλΓ σ̃ϱϱ′
)
+ O(δ2)

=
(
σ − iδλΓ ϱϱ′σ + iδλ∗

Γ σϱ′ϱ − iδλ∗
Γ ϱ′ϱ σ + iδλΓ σϱϱ′

)
+ O(δ2)

= σ − iδ[λΓ ϱ ϱ′ + λ∗
Γ ϱ′ϱ, σ] + O(δ2)

= e−iδ(λΓ ϱϱ′+λ∗
Γ ϱ′ϱ)σe−iδ(λΓ ϱϱ′+λ∗

Γ ϱ′ϱ) + O(δ2). (13)

The overall outcome of this protocol is to simulate the unitary dynamics generated by
the state-history-dependent Hamiltonian (3) on the simulator system. As indicated before,
this dynamics was, in principle, forbidden in SQT for a closed quantum system, whereas
our construction shows that it can, in principle, be simulated by SQT on a larger system. In
fact, by using multiple copies of a state, we can unleash the forbidden operations.

2.2. Resource Analysis for Simulation

In this part, we analyze the resource complexity of our quantum simulation protocol.
Three remarks are in order.

(i) If the state-dependent Hamiltonian of interest (1) has M monomials, the above quan-
tum circuit will have M interferometry circuits—one per each term in accordance with
step (iv) of the simulation protocol.

(ii) Assuming that λΓ depends on, at most, N states from the state history (e.g.,
{ϱt, ϱt−a, . . . , ϱt−(N−1)a}), each |ψλ⟩ (and |ψ∗

λ⟩) preparation part in the circuit of
Figure 1 requires N past and present states.

(iii) The quantum circuit for the simulation of dynamics generated by a term of l ⩽ L

factors, e.g., λΓ ϱ1 . . . ϱl , will be similar to the half of the circuit in Figure 2, but with
l + 2 lines (labeled “0,” . . . “l + 1”) and l controlled-SWAP gates.

Thus, the number of total system copies needed to implement each circuit includes
N + 1 systems for the simulation of λΓ and, at most, L + 1 copies of the system for the
interaction part (ϱϱ′ϱ′′ . . . ϱ′′′). In other words,

# systems = O
(
2M(N + L + 1)

)
. (14)

Thus, this means that, at a given time a1, we need O
(
2M(N + L + 1)

)
copies of the

system state at present or past times. To simulate the dynamics for the interval [a1, t + a1],
we need to break down the dynamics in m steps so that we can have (setting h̄ ≡ 1
throughout this paper)

❯a1→a1+t = Te
−i
∫ a1+t

a1
ds❍s = e−iδ❍tm e−iδ❍tm−1 . . . e−iδ❍t1 e−iδ❍a1 + O(mδ2), (15)

where T denotes the time-ordering operation and tk = a1 + kδ, with k ∈ {0, 1, . . . , m}

and δ = t/m. Each term in this expansion is in turn expanded to M separate terms
corresponding to each monomial in ❍tk

as

e−iδ❍tk = e−iδ ∑monomials(λΓϱϱ′ ...ϱ′′′+h.c.) + O(Mδ2). (16)

Thus, the total error for the simulation of ❯a1→a1+t by implementing the dynamics of each
monomial becomes O(mMδ2) = O(Mt2/m).

To simulate the dynamics for a period [a1, a1 + t] within error ϵ, we need

m ⩾ O(Mt2/ϵ) (17)
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repetitions. However, it should be noted that, to move one step forward in time in the
simulation, we need to reconstruct all elements (i.e., the past or the present system states)
that are needed in ❍t1 . This is because the O

(
2M(N + L)

)
copies of the state that we had

at hand have already been used in the process of constructing ❍a1 . To construct each of
these elements, we need α ≡ O

(
2M(N + L)

)
copies of the system. Hence, the number of

needed copies grows exponentially as k(ϵ, t) ≡ O(αm(ϵ,t)). This in turn means that, in order
to simulate the EC dynamics of a quantum system of O(d) Hilbert-space dimension in the
time interval [a1, a1 + t] within error ϵ, our SQT simulation protocol requires a quantum
system of O(dk(ϵ,t)) dimension.

Remark. Note that we have not proven the optimality of our quantum simulation
protocol. Thus, devising more efficient algorithms still remains a possibility.

It is important to note that simulating a generic EC Hamiltonian requires computa-
tional resources that grow super-exponentially with the simulation time. This exponential
scaling is unavoidable, as it stems from the nonlinear nature of EC theory, while we are
constrained to simulating it using standard linear quantum theory. Otherwise, if this were
not the case—if we could efficiently simulate such systems using linear tools—it would be
concluded that EC theory is essentially equivalent to quantum theory, and thus it could not
be considered as a larger emergent theory.

As we elaborate in the forthcoming sections, EC Hamiltonians do not belong to the
same complexity class as standard quantum dynamics. In fact, we shall later substantiate
that ECQT is a closed theory by itself that can emerge out of sufficiently complex sys-
tems that can be microscopically quantum mechanical or even classical. Accordingly, the
(super-)exponential expense of simulations with quantum mechanics is a clear signature of
genuine emergence characterized in the sense of complex system theories. Nevertheless,
our simulation algorithm provides a systematic method to emulate the behavior of a class
of such EC systems—provided that sufficient resources are available. As a result, we
offer a principled approach to designing and testing EC systems within existing quantum
simulation platforms.

2.3. Simulation Protocol for a General State-History-Dependent Hamiltonian: Tomography Needed

A significant advantage of the quantum simulation protocol of the previous subsection
is that it does not require any quantum state tomography. As stated earlier, this feature de-
pends strongly on the specific form of the coupling that we have assumed—see Equation (2).
There is no guarantee that this protocol will work for arbitrary λs whose dependence on
the state history is not in the simple, linear form of Equation (2). This, in turn, places a strict
condition on the simulatability of ECQT with SQT. We shall return to this important point
in Theorem 3 of Section 4.3.

In the following, we show that we can, in principle, simulate a general state-history-
dependent Hamiltonian by using state tomography and the density matrix exponentiation
technique. We should, however, remark that the resources needed to simulate such general
dynamics in this way can grow significantly in such a way that it may essentially render
this simulation intractable and inefficient.

Here, we show that, for a given Hamiltonian of the form (1) with general couplings {λ},
with an arbitrary dependence on past and present states, one can, in principle, simulate the
related dynamics within the SQT framework. Our proof works for even more general cases
of any imaginable state-history dependence, but with the caveat mentioned above. We first
note that it is always possible to rewrite any given Hermitian operator H as

H = H(+) − H(−), (18)
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where H(+) = P(+)HP(+) and H(−) = −P(−)HP(−) are two positive operators, and
P(+) (P(−)) is the projector onto the subspace spanned by the eigenvectors of H with
positive (negative) eigenvalues. Note that P(+)P(−) = 0 and hence [P(+), P(−)] = 0 and
[H(+), H(−)] = 0. The commutation of H(+) and H(−) implies that, if we can exponentiate
H(+) and H(−) separately, it would be straightforward to simulate the unitary dynamics
e−i∆t H from the concatenation of the subsequent unitary evolutions e−i∆t H(±)

.
Let us first briefly recall the density matrix exponentiation algorithm [12]. This tech-

nique relies on the relation

Tr1[U
(SWAP)
δ (ϱ ⊗ σ)U

(SWAP) †
δ ] = σ − iδ[ϱ, σ] + O(δ2) = e−iδϱσeiδϱ + O(δ2), (19)

where we have defined the unitary gate U
(SWAP)
δ = e−iSδ. Now, after n = O(t2/ϵ)-times

applications with n copies of ϱ, we can perform the simulation of e−itϱσeitϱ to accuracy ϵ,
with t = nδ. In this way, we simulate the dynamics U = e−itϱ on the state σ.

Thus, in a similar vein, to simulate U(+) and U(−) using the density matrix exponen-
tiation technique, we first need to construct valid density matrices out of H(±), e.g., as
ϱ(±) = H(±)/Tr[H(+)]; H = Tr[H(+)]ϱ(+) − Tr[H(−)]ϱ(−). By setting n(±) such that

∆t Tr[H(±)] = n(±)δ(±), (20)

we can see that, using n(+) copies of ϱ(+),

Tr1
[
U
(SWAP)

δ(+)

(
ϱ(+) ⊗ · · ·Tr1[U

(SWAP)

δ(+)

(
ϱ(+) ⊗ ϱt

)
U
(SWAP) †
δ(+) ] . . .

)
U
(SWAP) †
δ(+)

]
≈ e−i∆t Tr[H(+) ]ϱ(+)

ϱt ei∆t Tr[H(+) ]ϱ(+)
=: σt. (21)

Now, by replacing U
(SWAP)

δ(+) with U
(−SWAP)
δ = U

(SWAP)†
δ in the exponentiation technique

and applying the quantum circuit on the outcome of the above process, we obtain

Tr1
[
U
(−SWAP)

δ(−)

(
ϱ(−) ⊗ . . . Tr1[U

(−SWAP)

δ(−)

(
ϱ(−) ⊗ σt

)
U
(−SWAP) †
δ(−) ] . . .

)
U
(−SWAP) †
δ(−)

]
≈ ei∆t Tr[H(−) ]ϱ(−)

σt e−i∆t Tr[H(−) ]ϱ(−)

= e−i∆tH ϱt ei∆tH + O
(
∑p=±n(p)(δ(p))2). (22)

To achieve an error ϵ in simulating the evolution e−i∆tH at time t, we need n(+) =

O(∆t2 Tr[H(+)]2/ϵ) copies of ϱ(+) and n(−) = O(∆t2 Tr[H(−)]2/ϵ) copies of ϱ(−).
Three remarks are in order here.

(i) Note that ∆t is typically small. The above protocol has achieved the evolution ϱt →

e−i∆tHt ϱt ei∆tHt . In fact, Ht is basically time-dependent through its dependence on the
state history. Hence, the simulation of the evolution for longer times will need the
time-ordered exponential

U0→t = Te−i
∫ t

0 ds Hs = lim
m→∞

e−i∆t Htm e−i∆t Htm−1 . . . e−i∆t Ht1 e−i∆t H0 , (23)

where tk = k ∆t, with k ∈ {0, 1, . . . , m} and ∆t = t/m. This implies that a finite-time
simulation of the true dynamics by the concatenation of . . . e

−i∆tHtk+1 e−i∆tHtk . . . also
introduces further errors, which should be taken into account.

(ii) Since ∆t is small, we also observe from Equation (20) that, for a given δ(±), n(±) does
not need to be large. This is a favorable feature of this simulation: at any instant t, it
does not require a large number of copies of ϱ(±) to simulate e−i∆tHt ϱt ei∆tHt .

(iii) The simulation protocol described above implies that, given sufficient resources, one
can, in principle, simulate general ECQT dynamics with the SQT framework. However,
we should note that, in the above protocol, not only at any instant t do we need n(+)

and n(−) copies of ϱ(+) and ϱ(+), respectively, but we also need to perform tomography
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on ϱt at each time step. In fact, to prepare the relevant systems in ϱ(±), Ω(d2) copies
of the state at each time are needed for state tomography, where d is the dimension of
the Hilbert space of the system. This implies that this protocol, indeed, can incur a
significant resource overhead for simulation, which may render the very simulation
infeasible or even impossible. This point will be important later in Section 4 for our
discussion regarding the comparison of ECQT and SQT.

3. The Rosetta Stone of Experience-Centric Quantum Theory

We have seen in the previous section that, within the context of SQT, one can, in
principle, simulate quantum evolutions that are vastly larger than the linear time-local
evolutions of SQT. In this section, following Ref. [1], we show this “larger” theory on its
own and explain a number of its distinctive properties compared to SQT. In particular,
we show that this theory has a significantly richer and genuinely larger structure in the
theory field and includes SQT. For detailed discussions of the conceptual foundations and
motivations of ECQT as a part of a larger framework, referred to as the quantum interactome

(QI) MQ, see Section 6. In the following, we provide essential defining elements and
formalisms of ECQT (at times with somewhat different notations and terminology or subtle
refinements compared to Ref. [1]). Thereafter, we present the convention that lower indices
indicate time, and, when there is any risk of ambiguity about upper indices and powers,
we use parentheses to distinguish them. Exceptions will be stated clearly.

Element 1. (Quantum) state history or the experience of a closed quantum system.

Assume that S is a closed system with Hilbert space H (S) and its states are represented
by positive semidefinite density operators ϱ

(S)
t′ , with time represented as subscript, which

are known in a (continuous or discrete) interval t′ ∈ [t0, t], with t0 and t denoting the initial
and present times, respectively. The time-ordered (countable or uncountable) collection of
all states in the identified past-to-present interval is defined as the (quantum) state history

of S ,
P

(S)
[t0,t] ≡ {ϱ

(S)
t′ , ∀t′ ∈ [t0, t]} ⊂ lim

t→∞
P

(S)
[t0,t] ≡ P

(S)
[t0,∞)

. (24)

The evolution of the states in a closed system is assumed to be unitary. This implies that
the trace Tr[ϱ(S)t′ ] and purity Tr[(ϱ(S)t′ )2] are preserved. One can, hence, have an entire

pure-state history with ϱ
(S)
t′ = |Ψ

(S)
t′ ⟩⟨Ψ

(S)
t′ |, upon choosing an initial pure state. In any such

initialization, the history becomes equivalent to a set of Hilbert space rays, which we call a
pure-state history,

P
(S)
[t0,t]

∼= P
(S|purity)
[t0,t] ≡ {|Ψ

(S)
t′ ⟩, ∀t′ ∈ [t0, t]}. (25)

Element 2. Sub-state histories (experiences) and “universal” histories (experiences) of a closed

quantum system.

We now consider the partitioning of the closed system S into N
(S)
t subsystems S (it),

where H (S) = ⊗
N

(S)
t

jt=1 H (jt) = H (it) ⊗ H (īt), at every present moment t. We call this

a degree-N
(S)
t resolution of S . It is clear that the familiar case of time-invariant system

partitionings is included as a special case, but dynamical Hilbert-space factorizations
are allowed and can be even useful. The (unitary) time evolution of ϱ

(S)
t projects itself

into the (generically nonunitary) time evolutions of its N
(S)
t sub-states ϱ

(it)
t (in the Hilbert

space H (it)), which are obtainable from a consistent and relevant dimensionality reduction

procedure in correspondence; for concreteness, the standard partial tracing recipe ϱ
(it′ )

t′ ≡
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Trīt′
[ϱ

(S)
t′ ]. For each subsystem S (it), a sub-state history (experience) of S is associated,

which is the time-ordered set of all instantaneous states of the subsystem S (it) during [t0, t],

P
(it)
[t0,t] ≡ {ϱ

(it)
t′ , ∀t′ ∈ [t0, t]}. (26)

Moreover, every degree-N
(S)
t resolution of S introduces its degree-N

(S)
t universal history

(experience). It is defined as the complete N
(S)
t -tuple of all of the (resolution identified)

individual histories, as

P
(S ;N(S)

t ⩾1|{S (it)})
[t0,t] ≡

(
P

(1)
[t0,t], · · · , P

(N
(S)
t )

[t0,t]

)
. (27)

One now defines, at every present moment t, a chosen experience of the system by taking
some arbitrary choices of the very states ϱ

(S)
t′∈[t0,t] or ϱ

(it)
t′∈[t0,t] constituting the histories P

(S)
[t0,t]

or P
(S ;N(S)

t ⩾1|{S (it)})
[t0,t] —for a specific resolution Ft (of degree N

(S)
t ⩾ 1), which itself can be

rechosen moment by moment—as follows:

P chosen
[t0,t]|Ft

≡
{

ϱ
(S)
t′chosen

∈ P
(S)
[t0,t]

}
|{t′chosen}∈[t0,t]

⋃N
(S)
t ⩾1

it=1

{
ϱ
(it)
t′chosen

∈ P
(S ,N(S)

t ⩾1|{S (it)})
[t0,t]

}
|{t′chosen}∈[t0,t]. (28)

In some contexts and examples, it is appropriate to consider a collection of distinct resolu-
tions of the system (or all possible subsystems) at once {F α

t }α. In these cases, the above
definition of the chosen experience is generalized as follows:

P chosen
[t0,t] ≡ ⋃

{α}⊂IN P chosen
[t0,t]|F α

t
. (29)

We shall denote the system’s chosen experience at every moment t (irrespective of the
underlying resolution) by P chosen

[t0,t] for notational brevity.
Remark. One can, in appropriate contexts or examples, define sub-states (i.e., subsystem

states) ϱ
(i)
t′ in alternative consistent ways other than the standard recipe of partial tracing—

see, e.g., Refs. [20–24] for possible alternative approaches and related investigations.

Element 3. Experience-centric Hamiltonians.

An EC Hamiltonian ❍t at every present moment t for a closed quantum system S is a
Hermitian operator Ot that has any form of structural dependence on P chosen

[t0,t] , i.e.,

P chosen
[t0,t]

Experience Centricity−−−−−−−−−−−→ ❍t,

❍t = Ot(P
chosen
[t0,t] ) = ❍†

t .
(30)

In particular, the above general formulas generate three major classes of the EC Hamiltonians
❍t, which we rank in increasing order of generality as follows:

(i) the density operators in P chosen
[t0,t] contribute in the construction of ❍t as part of its

building blocks;
(ii) ❍t takes, as part of its building blocks, some partial time-labeled information that is

contained within the density operators constituting P chosen
[t0,t] ;

(iii) the structural composition of ❍t has any form of conditional dependence on some
time-labeled information within P chosen

[t0,t] .

Remark 1. The defining formulation of EC Hamiltonians is based on quantum states in
the form of density operators (rather than state vectors), as Equations (28) and (30) manifest.
There are two properties that are automatically satisfied by this formulation: (i) it secures
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the physical irrelevance of the global phase of the pure states of a closed quantum system
in the absence of any background field—in other words, the fact that rays live in a complex
projective Hilbert space is incorporated by construction; (ii) it establishes the covariance
(form invariance) of the EC Hamiltonians upon changing from pure to mixed states—this
property is particularly useful in EC Hamiltonians that depend on a combination of pure
and mixed states—for example, when P chosen

[t0,t] has elements of the total system as well as
some of its subsystems.

Remark 2. The general definitions of EC Hamiltonians presented in Equations (28)
and (30) allow the use of arbitrary parts of the total information contained in the (sub-
)system’s density operators as the building blocks of the instantaneous EC Hamiltonians. It
is understood that such information is to be extracted from within the corresponding in-
stantaneous states by means of operatorial actions with well-defined information-theoretic
meanings. For example, the selected partial information can correspond to one’s favored
probabilities of specific measurement outcomes of arbitrarily chosen observables at arbi-
trary present or past moments. In these cases, the extractions are, e.g., implementable via
applying the projection operators on the states.

Remark 3. Let f
(m)
t be a set of state-history-dependent constraints with A(m̃) being a

set of state-history-independent operators. A general expression of the third major class of
the EC Hamiltonians is given by

❍t = Ot, s.t. f
(m)
t

(
{ϱt′} ⊂ P chosen

[t0,t] , {A(m̃)}, Ot

)
= 0; {m}, {m̃} ⊂ IN, ∀m, ∀t. (31)

It is important to stress that, in a typical case in the third major class of EC Hamiltonians,
which are expressed in Equation (31), the operator Ot that identifies the instantaneous
EC Hamiltonian by solving the above system of constraint equations cannot be explicitly
written using the density operators comprising P

(chosen)
[t0,t] or their information. Instead,

❍t = Ot is to be obtained by solving, moment by moment, the coupled system of equations
numerically. A pedagogical example of these EC Hamiltonians is given in Example 3 of
Element 7.

It is important to highlight that the chosen histories that contribute to forming the EC
Hamiltonians of a closed quantum system at two (finitely distant or even immediately close)
moments t< and t>, P chosen

[t0,t< ]
and P chosen

[t0,t> ]
, can themselves consist of completely different

choices of the system or subsystem states. Here, generally speaking, even the tensorial
factorization of the system to subsystems, Ft or {F α

t }, can be updated at every present
moment t. Furthermore, one has the freedom to let the operators defining the instantaneous
EC Hamiltonians be different functions of the quantum information in the chosen histo-
ries. In this sense, the instantaneous EC Hamiltonians can be alternatively thought of as
experiential recreations.

Element 4. Time evolution unitarity, isometry, and generalizations.

The time evolutions of closed system states in ECQT are generated by EC Hamilto-
nians (30). In fact, the unitarity of such evolutions is guaranteed by the very Hermiticity
of the state-history-dependent operators Ot = O†

t , as postulated in Element 3. Finite-

time evolutions of closed system states, ϱ
(S)
t1

→ ϱ
(S)
t2

, are realized by operators ❯t1→t2 ,
which are state-history-dependent and unitary, ❯t1→t2❯

†
t1→t2

= ❯†
t1→t2

❯t1→t2 = 1, for all
t2 ⩾ t1 ⩾ t0. The general construction of the evolution operators is straightforward in
discrete (where moments ∈ Z and ⩾k0) and continuous times (where moments ∈ IR and
⩾t0), respectively, as
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❯s→s+m = ∏
m−1
l=0 ❯s+l→s+l+1 ≡ ❯s+m−1→s+m . . .❯s+1→s+2❯s→s+1; ❯k→k+1 = e

−i❍k(P
chosen
[k0,k] )

❯t1→t2 = lim
m→∞

∏
m
l=0e

−i
t2−t1

m ❍
t1+

t2−t1
m l = Te

−i
∫ t2

t1
dt′❍t′ (P

chosen
[t0,t′ ]

)
.

(32)

The time evolution of the system state during a time interval t1 to t2 is accordingly given
by their unitary transformation on the Hilbert space,

ϱ
(S)
t2

= ❯t1→t2 ϱ
(S)
t1
❯†

t1→t2
, ∀ t0 ⩽ t1 ⩽ t2. (33)

Remark 1. We emphasize again that the very unitarity of EC Hamiltonian evolution
directly follows from two facts. First, the Hermiticity of the state-history-dependent opera-
tor Ot guarantees that the EC Hamiltonian of the moment enlarges the quantum history
one step forward. Second, there is nothing special about the moment t; it can be pushed all
the way back to the initial moment t0. At the moment of initiation, the history consists of
the initial state of the closed system with its possible resolution counterparts {ϱ

(S)
0 , ϱ

(i)
0 }i.

The EC Hamiltonian at the initial moment, ❍0, can be any Hermitian operator of these
state elements, as well as state-history-dependent operators, provided that it generates a
nontrivial evolution, [❍0, ϱ

(S)
0 ] ̸= 0. The examples given in Equation (42) show that such

EC initiations can be observed in all terms individually. In conclusion, EC Hamiltonians
(30) generate unitary state histories across the moduli space of complete consistent solu-
tions of the EC Schrödinger and von Neumann equations, i.e., Equations (35)–(37) in the
next element.

We now turn to the isometric generalization of the EC evolutions of closed quantum
systems. In appropriate contexts or examples (see, e.g., Ref. [25]), it is appropriate to
replace the unitarity condition with the weaker condition of isometry, i.e., ∥Ψt∥ = 1, ∀t.
In these cases, the defining formulation of EC Hamiltonians (30) takes a straightforward
generalization with the only difference being that now ❍ts can be non-Hermitian, state-
history-dependent operators that, by construction, satisfy the dynamical constraint

Tr[ϱt(❍t −❍
†
t )] = 0, ∀t. (34)

It is evident that Equation (34) is a particular example of the Hamiltonian’s experience
centricity in the third major class as given in Equations (31), albeit now generalized to the
case of isometry.

Remark 2. It is possible to further extend EC evolution operators to the alternative
evolution operators in generalized “finite quantum mechanics” [26–28]. However, the
implementation of this point is beyond the interest of this paper.

Element 5. EC von Neumann and Schrödinger equations.

Infinitesimal temporal flows of closed system states under EC unitary transforma-
tions—Equations (32) and (33)—between moments t1 = t and t2 = t + dt lead to the
differential equation that governs state-history-dependent unitary evolutions in ECQT. We
refer to this equation as the EC von Neumann equation,

iϱ̇
(S)
t = [❍t, ϱ

(S)
t ] = [Ot(P

chosen
[t0,t] ), ϱ

(S)
t ], (35)

where the dot denotes d/dt. If the EC dynamics begins with a pure state ϱ0 = |Ψ0⟩⟨Ψ0|,
and noting that the unitarity of the dynamics preserves the quantum state norm and purity,
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such that ϱt = |Ψt⟩⟨Ψt| ∀t, the EC von Neumann Equation (35) reduces to the following EC

Schrödinger equation:

i|Ψ̇(S)
t ⟩ = ❍t|Ψ(S)

t ⟩ = Ot(P
chosen
[t0,t] )|Ψ(S)

t ⟩. (36)

In ECQT defined on discrete time spans, Equations (35) and (36) are replaced with
the dynamical system of one-step-forward EC evolutions. From Equations (32) and (33),
we have

ϱ
(S)
k+1 = e

−i❍k(P
chosen
[k0,k] )

ϱ
(S)
k e

i❍k(P
chosen
[k0,k] )

,

|Ψ(S)
k+1⟩ = e

−i❍k(P
chosen
[k0,k] )|Ψ(S)

k ⟩.
(37)

Remark 1. A crucial point to be highlighted about the behaviors described by the EC
von Neumann and Schrödinger Equations (35) and (37) is as follows. The fundamental
distinction of ECQT (compared to SQT) is its in-built characteristic of dynamics: generic EC
evolutions of closed systems realize the inseparable merging of (conventional open-system)
non-Markovianity and (conventional closed-system) unitarity. ECQT, by construction, has
no fundamental reason to lift unitarity to benefit from a system’s memory effects, especially
for a system’s learning from its experience. It allows unitarity and memory effects to join to-
gether in an intrinsic manner. The intrinsic cooperation between the evolutionary unitarity
and recurrent experiential updates enables ECQT to naturally develop a broad spectrum of
unprecedented coexisting phases and phase transitions of quantum information behaviors,
which are remarkable for their high complexity, multiscale intricacy, and phenomenological
or operational richness. We shall return to this in Section 5.

Remark 2. The general forms of the dynamical equations—Equations (35) and (36)—in
ECQT reveal an important (physical and mathematical) characteristic of them: given their
inherent structural dependence on the system’s state history, typical EC Schrödinger and
von Neumann equations are simultaneously nonlinear and time-nonlocal. Moreover, these
time nonlocalities and nonlinearities are strongly intertwined such that they are typically
inseparable. In particular, we highlight that the mathematical forms and physical behaviors
of (the solutions to) these differential equations are essentially incommensurable with
their counterparts known in the literature on nonlinear quantum mechanics. An analysis of
these equations and their solutions, as presented in Ref. [1] and in Section 5 of this paper,
manifests these points clearly.

Element 6. Polynomial EC Hamiltonians of the kind [[Nt, Lt]] (finite and infinite Nt and Lt).

A natural, infinitely large and rich family of EC Hamiltonians (30) is the “(N, L)

EC Hamiltonians” originally introduced in Ref. [1]. At every present moment, a closed
quantum system chooses N density operators of its history P chosen

[t0,t] , forms a Hermitian
polynomial of degree L out of them, and employs it as the momentary Hamiltonian of its
unitary evolution. The polynomials can (and typically do) have structural dependence
on state-history-independent operators as well. These are the EC Hamiltonians that we
focus on.

Consider a system S with its corresponding d-dimensional Hilbert space H . The
complete input to define an [[Nt, Lt]] instantaneous EC Hamiltonian on H is a triplet
Ξ ≡ [[Nt, Lt, a⃗t]] ∈ IN × IN × IRNt

+ , where a⃗t = (a1, . . . , aNt
) encodes a choice of Nt memory

distances, being measured backward from the present moment and ordered reversely. An
EC Hamiltonian ❍Ξ

t is defined based on Ξ as a Hermitian linear combination of a chosen
set of d−t anti-Hermitian and d+t Hermitian monomials ({❤j−

t ,❤k+
t }), which are (partially or
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entirely) composed of the past-to-present density operators of the system ϱ
(S)
t′ ∈ P chosen

[t0,t] .
In other words, employing any set of real-valued couplings, which themselves can be
state-history-dependent, one has

❍Ξ
t ≡ i∑

d−t
j=1λ

j−
t ❤

j−
t + ∑

d+t
k=1λk+

t ❤k+
t ,

λℓ±
t = λℓ±

t (P chosen
[t0,t] ) ∈ IR, ❤ℓ±t = ❤ℓ±t (P chosen

[t0,t] ).
(38)

Now, selecting an arbitrary collection of (trivial or nontrivial) state-history-independent
operators, collectively denoted by As, and assuming the purity of the whole state history (25)
(which is possible due to the unitarity of the evolution), the state history monomials can be
generally formulated as

❤k+
t = ∏

Lk
t

s=1 Aks
ϱ
(S)
t−aks

Aks+1 +
(

∏
Lk

t
s=1 Aks

ϱ
(S)
t−aks

Aks+1

)†,

❤
j−
t = ∏

L
j
t

r=1 Ajr ϱ
(S)
t−ajr

Ajr+1 −
(

∏
L

j
t

r=1 Ajr ϱ
(S)
t−ajr

Ajr+1

)†,
(39)

for 1 ⩽ k ⩽ d+t and all choices of {k1, . . . , kLk
t
} ∈ {1, . . . , Nt}Lk

t , and similarly for 1 ⩽ j ⩽ d−t

and all choices of {j1, . . . , j
L

j
t

} ∈ {1, . . . , Nt}L
j
t . For extensions to mixed states, see Element 7.

Thus far, we have formulated the case of polynomial EC Hamiltonians with finite Nt

and Lt. However, the case of (countable or uncountable) infinite Nt or Lt is not only allowed
but also can be relevant in some contexts. For example, an infinitely large family of [[Nt, ∞]]

EC Hamiltonians can be constructed by forming a typical (nonpolynomial) function of
[[Nt, Lt]] EC Hamiltonians with finite Lt. More interestingly, an infinitely large and more
diverse family of [[∞, Lt]] EC Hamiltonians can be formed by choosing the largest quantum
memory distance at < ∞ as the width of an arbitrary time window and integrating one’s
chosen quantum information of the state history of the system over the entire window,
weighed by temporal functions that control the significance of the contribution of the
instantaneous quantum information. See Example 4 as a concrete illustration.

Remark 1. We denote a special class of EC Hamiltonians as hybrid when they are com-
posed of an SQT Hamiltonian deformed additively by an EC Hermitian operator. Moreover,
an important type of EC Hamiltonians is those whose defining state history ❤ℓ± monomials
involve no nontrivial state-history-independent operators, i.e., all As in Equation (39) are I.
We refer to this type as primitive EC Hamiltonians.

Remark 2. Hereafter, we shorten the notation by dropping t in Nt, Lt, and a⃗t, and we
denote ❍Ξ

t simply by ❍[[N,L]]
t . However, it should be kept in mind that the triplet [[N, L, a⃗]]

can be rechosen moment by moment.
Remark 3. Following lessons learned from disordered many-body systems, an inter-

esting family of EC Hamiltonians can be formed by assuming that some λ couplings are
randomly chosen from given probability distributions.

Example 1. To illustrate the [[N, L]] EC Hamiltonians as defined above, consider the
primitive EC Hamiltonians of the kind [[1, 1]] and [[2, 2]] with respective constant quantum
memory distances a⃗t = a > 0 and a⃗t = (a, 0). The general forms of these EC Hamiltonians
read as

❍
[[1,1]]
t = λt−a ϱt−a,

❍
[[2,2]]
t = λtϱt + λt−aϱt−a + λR

t−a,t{ϱt−a, ϱt}+ iλI
t−a,t[ϱt−a, ϱt],

(40)

where (λt−a, λt, λR
t−a,t, λI

t−a,t) ≡ Λt([P chosen
[t0,t] ]) ∈ IR4 can themselves be state-history-

dependent. The first term in ❍
[[2,2]]
t is included only as a matter of formal definition,
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but it is dynamically irrelevant (hence, one can drop it). Two other specific examples are
special primitive EC Hamiltonians of the kind [[2, 3]] and [[3, 3]] with respective constant
quantum memory distances a⃗t = (a, 0) and a⃗t = (a, b, 0), defined as

❍
[[2,3]]
t = iλI

t−a,t[ϱt−a, ϱt] + ζR
t−a,tϱt−aϱtϱt−a,

❍
[[3,3]]
t = κt−a,t−b,tϱt−aϱt−bϱt + κ∗t−a,t−b,tϱtϱt−bϱt−a,

(41)

where (λI
t−a,t, ζR

t−a,t, κR
t−a,t−b,t, κI

t−a,t−b,t) ≡ Λt([P chosen
[t0,t] ]) ∈ IR4.

Example 2. Consider a one-qubit closed system S and a single quantum memory
distance a > 0. An example of a hybrid, nonprimitive [[1, 1]] Hamiltonian is given by

❍
(S)
t = σ1 +

(
1 − Tr[ϱ(S)t−aϱ

(S)
t ]
)
ϱ
(S)
t−a + 5{ϱ

(S)
t , σ1}+ σ3ϱ

(S)
t σ3. (42)

Example 3. The Gross–Pitaevskii (GP) equation is the nonlinear Schrödinger equation
with the potential VGP

t ∝ (∥Ψt∥)2. It is an extensively analyzed nonlinear equation, appear-
ing, for example, in Bose–Einstein condensations [29]. It is, however, essential to note that
this nonlinear equation arises in SQT as an effective dynamics. Now, however, we show that
the GP Hamiltonian can be recast as a genuinely EC Hamiltonian of the nonprimitive [[1, 1]]
kind as

❍GP
t = ∑k(|Ψk

t |)2 |k⟩⟨k| = ∑k❤
k+ϱt❤

k+, (43)

where ϱt = |Ψt⟩⟨Ψt| and Ψk
t = ⟨k|Ψt⟩, with ❤k+ = |k⟩⟨k| representing projections on a

complete orthonormal basis. On a similar note, one can also see that Weinberg’s nonlinear
quantum mechanics [30,31] can be contained in ECQT.

Example 4. An example of polynomial EC Hamiltonians using an entire time window
of state history information is given by

❍
[[∞,2]]
t =

∫ t
t−adt′ ft′t

[
µt′(P

chosen
[t−a,t] )

(
(ϱt′)

2 − ϱt

)
+ iλI

t′t(P
chosen
[t−a,t] )[ϱt′ , ϱt] + λR

t′t(P
chosen
[t−a,t] ){ϱt′ , ϱt}

]
, (44)

where ftt′ are arbitrarily chosen weight functions for different past-state contributions.

Element 7. Generalizations of [[N, L]] EC Hamiltonians: mixed-state histories, subsystem resolu-

tions, and discriminative type.

(a) Mixed-state histories and resolution-refined [[N, L]] EC Hamiltonians

As stated in Element 3, straightforward generalizations of [[N, L]] Hamiltonians
(Equations (38) and (39)) are obtained by dropping the state history purity assumption
and independently using a chosen resolution of S with N

(S)
t subsystems. This generaliza-

tion follows from the general definition (28) on the basis of (state vs. universal) histories
introduced in Equations (24), (26) and (27). Resolution-based generalizations of [[N, L]]

EC Hamiltonians are formed if one alters some of their state history monomials (39),
❤ℓ±t → ❣ℓ±t s, defined by replacing the states at arbitrarily chosen aks

s with arbitrary powers

of arbitrarily chosen sub-states ϱ
(S)
t−aks

→
(
ϱ
(i)
t−aks

)nks and correspondingly Aks
→ A

(i)
ks

⊗ A
(ī)
ks

.
Mathematically, these alterations introduce the vast extension of [[N, L]] Hamiltonians (38)
and (39).

(b) Discrimination-induced [[N, L]] EC Hamiltonians

A further generalization of the resolution-refined [[N, L]] family is given by EC Hamil-
tonians where some chosen eigenstates of some observables play a discriminative role as
building blocks. For example, consider an observable ❆(i) and one of its eigenprojections
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P(i)m corresponding to a favored outcome of its measurement and identify A(i) = P(i)m in
Equation (39). See Example 2 below.

Example 1. Consider a degree-2 resolution of a 4-dimensional closed quantum system.
This is equivalent to a two-qubit closed system S , with the Hilbert space H (S) = H (1) ⊗
H (2). An example of a resolution-based, hybrid, nonprimitive [[2, 2]] Hamiltonian for this
system is given by

❍
(S)
t =

∥∥ϱ
(S)
t − ϱ

(1)
t ⊗ ϱ

(2)
t

∥∥ σ2 ⊗ σ1 +
(
✶⊗

(
ϱ
(2)
t−a

)2
+
(
ϱ
(1)
t−a

)2 ⊗ ✶
)
− i[ϱ

(S)
t , ϱ

(1)
t ⊗ ϱ

(2)
t ] + σ3 ⊗ σ3ϱ

(S)
t σ3 ⊗ σ3, (45)

where ∥ · ∥ is the standard operator norm.
Example 2. Consider the same subsystem resolution as in Example 1 and assume a

discriminative scheme where the +1 eigenvalue of σ1 on the first subsystem is favored as
the eigenprojection P(1) + = |+⟩.⟨+| plays a special role in the Hamiltonian construction
as follows:

❍
(S)
t = (1 + Tr[P(1)+ϱt]) σ3 ⊗ σ3 + χ

(S|12)
t −

〈
P(1)+ϱ

(1)
t′ P(1)+〉

a,t,{ ftt′}
⊗ ✶,

χ
(S|12)
t ≡ ϱ

(S)
t − ϱ

(1)
t ⊗ ϱ

(2)
t ,

〈
P(1)+ϱ

(1)
t′ P(1)+〉

a,t,{ ftt′}
≡
∫ t

t−adt′ ftt′P
(1)+ϱ

(1)
t′ P(1)+/(

∫ t
t−adt′ ftt′),

(46)

where χ
(S|12)
t is the correlation operator of the system S , encompassing the entanglement

and classical correlation data between subsystems 1 and 2.
Example 3. Consider the same subsystem resolution as in Examples 1 and 2 and

the EC Hamiltonian ❍(S)
t = ∑α,β ht,αβDαβ for the closed system S , with Dαβ being the

Dirac operators. Assume, by a proper shift, that we have set Tr[❍(S)
t ] = ht,00 = 0. We

now formulate, as an example, an EC Hamiltonian ❍(S)
t in the third major class. This

Hamiltonian is EC as all ht,αβs depend on the information contained in the chosen universal

histories P
(S)
[t0,t] ∪ P

(S ;2|{1,2})
[t0,t] by solving for {ht,αβ} (at every present moment t) the EC

system of 15 algebraic equations as follows:

∥❍(S)
t ∥ = ∥χ

(S|12)
t ∥, ∥❍(S)

t − χ
(S|12)

t−a
(S)
i

∥ = c
(S)
i , det[❍(S)

t ] = ⟨P(S)+ϱ
(S)
t′ P(S)+⟩

max{a
(S)
i },t,{ f

(S)
t′ t },

∥K
(1)
t ∥ = Tr[(ϱ(1)t )2], ∥K

(1)
t − ϱ

(1)

t−a
(1)
i

∥ = c
(1)
i , det[K(1)

t ] = ⟨P(1)+ϱ
(1)
t′ P(1)+⟩

max{a
(1)
i },t,{ f

(1)
t′ t′}

,

∥K
(2)
t ∥ = Tr[(ϱ(2)t )2], ∥K

(2)
t − ϱ

(2)

t−a
(2)
i

∥ = c
(2)
i , det[K(2)

t ] = ⟨P(2)+ϱ
(2)
t′ P(2)+⟩

max{a
(2)
i },t,{ f

(2)
t′ t′}

.

(47)

The character specifications in the above equations are as follows. The EC subsystem
operators K

(1)
t and K

(2)
t are defined by partial tracing over ❍(S)

t , K
(i)
t = Trī[❍

(S)
t ], for

i ∈ {1, 2}. The parameters ({a
(1,2,S)
i }3

i=1, {c
(1,2,S)
i }3

i=1) are, respectively, chosen positive
numbers identifying the corresponding quantum memory distances and norm-based dis-
tances. Moreover, P(S)+ denotes the projection operator of the system’s favored eigenstate
of the Dirac operator D11. The instantaneous operators χ

(S|12)
t , as defined in Equation (46),

are momentary correlation operators between the two subsystems. The other characters
and parameters, and especially the averaging operations, are defined as in Example 2.

Remark. As a utility example, resolution-based EC Hamiltonians of kinds similar to the
expressions in Equations (45)–(47) may become relevant in addressing (artificial or natural)
intelligent behaviors—see Section 6 and Ref. [1].

Element 8. EC two-point functions and observables—and their descendants.
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The EC Hamiltonians, together with the EC von Neumann and Schrödinger equations
(Equations (35) and (36)), can be naturally expressed in terms of the system’s state history
two-point functions (autocorrelations) and their n-point descendants [1]. In the case of pure
state histories and the corresponding EC Hamiltonians (38) and (39), these state history
two-point functions mt1,t2 , together with their corresponding fidelities and phase variables
(wt1,t2 , αt1,t2) and their descendant n-point correlations mt1,...,tn , are defined as follows:

mt1,t2 ≡ ⟨Ψt1 |Ψt2⟩ ≡ wt1,t2 eiαt1,t2 = m∗
t2,t1

,

wt1,t2 =
√

Tr[ϱt1 ϱt2 ] ,

mt1,...,tn+1 ≡ ∏
n
r=1mtr ,tr+1 ≡ wt1,...tn eiαt1,...,tn = m∗

tn+1,...t1
.

(48)

Remark 1. The extension to mixed states is straightforward.
Remark 2. The state history n-point functions as defined in Equation (48), and their

extensions for mixed states, will be particularly useful in exploiting the applications of the
EC evolutions in the domains and disciplines pointed out later in Section 7.

Assuming the purity of the state history of the closed system (the case of our main
interest in this paper), the [[1, 1]], [[2, 2]], and [[3, 3]] EC Hamiltonians (40) and (41) adopt
simpler expressions as

❍
[[1,1]]
t =λt−a |Ψt−a⟩⟨Ψt−a|,

❍
[[2,2]]
t =λt−a|Ψt−a⟩⟨Ψt−a|+ λt−a,tmt−a,t|Ψt−a⟩⟨Ψt|+ λ∗

t−a,tm
∗
t−a,t|Ψt⟩⟨Ψt−a|,

❍
[[3,3]]
t =κt−a,t−b,tmt−a,t−b,t|Ψt−a⟩⟨Ψt|+ κ∗t−a,t−b,tm

∗
t−a,t−b,t|Ψt⟩⟨Ψt−a|.

(49)

Thus, the EC Schrödinger Equation (36) read as follows:

[[1, 1]] : i|Ψ̇t⟩ = λt−a mt−a,t|Ψt−a⟩,
[[2, 2]] : i|Ψ̇t⟩ = (λt−a + λt−a,t)mt−a,t|Ψt−a⟩+ λ∗

t−a,t(wt−a,t)
2|Ψt⟩,

[[3, 3]] : i|Ψ̇t⟩ = κt−a,t−b,tmt−a,t−b,t|Ψt−a⟩+ κ∗t−a,t−b,tmt,t−b,t−a,t|Ψt⟩.
(50)

Definition 1. Experience-centric quantum theory (ECQT).

ECQT is established based on conceptual and technical explanations, especially the six
prerequisite defining elements of general quantum behavior in MQ presented in Section 6,
together with the definition of EC Hamiltonians. By definition, ECQT is any quantum
theory in MQ whose defining context and other specifications allow the total Hamiltonians,
the internal interactions, and even the partition-induced degrees of freedom (“particles”)
of a (fundamental or high-level emergent) closed quantum system to be continually EC
according to Elements 1–3.

Remark 1. As the formulations in Elements 1–3 manifest, in ECQT, the information units
and modules within the developed state history of the closed system and its subsystems
can serve as (some of) the building blocks of the Hamiltonians and (according to subsystem
resolution-refined versions formulated in Element 2) the many-body interactions. Moreover,
ECQT allows these state history information units and modules to continually guide the
(flows of the) system’s Hilbert-space factorizations (Element 2)—hence offering experiential
formations of the internal elements and particles of the system.

Remark 2. It is important to appreciate that the experience centricity in an ECQT need
not be confined only to the quantum dynamics; it can have deformational projections—
induced by context-based requirements or consistencies—on observables, their measure-
ments, and even the inner structures of the Hilbert space.
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Element 9. Nature of quantum states and experience in ECQT.

In ECQT, the preferred and primary way to understand density operators and their
roles is based on agentive Bayesian probabilities. One considers a single quantum system
and an agent who examines the system by measurement actions. The momentary density
operator is an encapsulation of all measurement outcome probabilities quantifying the last
updated version of the agent’s expectations about the system’s responses to their future
actions. This statement applies to both pure and mixed density operators, where, unlike
mixed states, pure states show maximally informative cases.

However, the above Bayesian primacy does not impose any fundamental incompati-
bility with frequentist probabilistic implementations of density operators in ECQT. That
is, it remains generally possible to employ suitable representations of density operators
as statistical ensembles of pure-state quantum systems under classical probability distri-
butions. Such mixture-based representations can be used, for example, for the initial-state
preparation of the system in ECQT. However, the unitary evolution of the ensembles de-
velops interesting and distinctive features compared to their counterparts in SQT, due
to the state-history-dependent nature of the EC Hamiltonians. In fact, through mixture
representations of density operators in ECQT, one can use the pure-state density operators
corresponding to some constituent elements of the ensemble as the building blocks of the
total EC Hamiltonians. Such recipes resemble the subsystem-based construction of EC
Hamiltonians, which indeed fits with the general description of EC Hamiltonians given in
Equations (28) and (30).

Finally, it is crucial to note that, in the Bayesian paradigm of ECQT, the state history as
defined in Equation (24) and the corresponding “experience” are defined with respect to a

definite pair of a closed quantum system and (at least) an agent—and not for the system alone.
However, bearing this in mind, throughout this paper, we simply refer to the experience as
that of the system.

4. SQT Versus ECQT

In the first part of this section, we explicitly show how a general SQT Hamiltonian
H can be represented in various EC forms. In particular, we develop two independent,
complementary recipes, one of which is basis-dependent and the other one of which is basis-

independent. In the second part, we prove a number of inclusion theorems that show that
the reformulation of ECQT for a system with a given Hilbert space is generically impossible
with SQT on the same Hilbert space.

4.1. Reformulation of SQT Within ECQT: Basis-Dependent Recipe

In SQT, it is often preferred to use basis states, which are simple, convenient, and
time-independent. For example, we usually choose a user-friendly basis consisting of
the orthonormal eigenstates of a time-independent operator in order to furnish H and
to represent the observables and their evolutions. However, the conceptual nature of
ECQT makes it natural to recast the Hilbert-space observables in terms of the system’s
experience (state history) itself. Therefore, one chooses a dynamical basis C EC

t , identified
with sufficiently many developed states of the system, to expand all observables and their
momentary evolutions. These basis states are the orthonormalization of sufficiently many
past-to-present states of either the whole quantum system or its constituting subsystems.
Consider a d-dimensional closed quantum system whose unitarily evolving states under
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an SQT Hamiltonian H are ϱt′ = |Ψt′⟩⟨Ψt′ |. One chooses an EC basis that, at each moment
t, is defined as follows:

C EC
t ⊂ P chosen

[t0,t] ⊂ P[t0,t],

C EC
t = {|Ψt−a1

t
⟩ , . . . , |Ψt−ad

t
⟩} ; ai=1,...,d

t ⩾ 0; ∀t,

wt−al
t ,t−ak

t
≡ |mt−al

t ,t−ak
t
| < 1 ; mt−al

t ,t−ak
t
≡ ⟨Ψt−al

t
|Ψt−ak

t
⟩, ∀t, (l, k).

(51)

Upon this choice, all operators and all observables in the system Hilbert space are ex-
pandable in terms of the system’s experience states. For example, considering a time-
independent observable O, its expansion is expressible in terms of a rank-d matrix of
experience-dependent coefficients Oij({mt−al

t ,t−ak
t
}) as

O = ∑
d
i,j=1Oij({mt−al

t ,t−ak
t
})|Ψt−ai

t
⟩⟨Ψ

t−a
j
t

|. (52)

In particular, any SQT Hamiltonian H of the closed quantum system (even time-
independent or experience-indifferent) enjoys its EC manifestation in the form of a special

[[d, 2]] EC Hamiltonian as

H = ❍t = poly[[d,2]]({ϱt−aI
t
}, {λlk({mt−al

t ,t−ak
t
})}
)
. (53)

4.1.1. EC Reformulation of a General One-Qubit System

We assume that H is a Hamiltonian on the Hilbert space C2 of the closed system of
a single qubit (d = 2). This Hamiltonian can be arbitrary; it can be a state-independent
operator (SQT); it can have arbitrary time dependence; it can have any dependence on the
present-moment state or the past states of the system; or it can even have any alternative
features. Our aim is to find a [[2, 2]] EC representation for this Hamiltonian.

The derivation that we lay out here is straightforward and general. Although we can ex-
pand any input H in terms of the three Pauli operators and the identity operator, our deriva-
tion is independent of such expansion. Now, rather than the canonical time-independent ba-
sis C = {|1⟩, |2⟩} (e.g., the eigenvectors of the σ3 Pauli operator, corresponding to ±1 eigen-
values), we choose a state history basis as C EC

t = {|Ψt−at⟩ , |Ψt⟩ | a > 0, wt−at ,a < 1, ∀t}.
After orthonormalization and a particular phase choice, we choose

Ĉ EC
t ≡ {|Ψ̂t−a⟩ , |Ψt⟩}, (54)

where

|Ψ̂t−a⟩ = (1/γ)
(
eiαt−a,t |Ψt−a⟩ − wt−a,t|Ψt⟩

)
,

mt−a,t ≡ ⟨Ψt−a|Ψt⟩ ≡ wt−a,te
iαt−a,t , γ ≡

√
1 − (wt−a,t)2 .

(55)

Note that, here, for brevity, we have shortened at to a. The Hamiltonian expansion on the
basis (54) reads

H = λ̂t−a|Ψ̂t−a⟩⟨Ψ̂t−a|+ λ̂t|Ψt⟩⟨Ψt|+ λ̂t−a,t|Ψ̂t−a⟩⟨Ψt|+ λ̂∗
t−a,t|Ψt⟩⟨Ψ̂t−a|. (56)
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By rewriting all operators and couplings in terms of density operators, we note

|Ψt⟩⟨Ψt| = ϱt,

|Ψ̂t−a⟩⟨Ψt| = (1/γ)
[
(1/wt−a,a)ϱt−aϱt − wt−a,tϱt

]
,

|Ψ̂t−a⟩⟨Ψ̂t−a| =
(
ϱt−a − {ϱt−a, ϱt}+ (wt−a,t)

2ϱt

)
/(γ)2,

λ̂t = Tr[ϱtH],

λ̂t−a,t = (1/γwt−a,t)Tr[ϱt−aHϱt]− (1/γ)wt−a,t Tr[ϱtH],

λ̂t−a =
(
Tr[ϱt−a H]− 2Re

(
Tr[ϱt−a Hϱt]

)
+ (wt−a,t)

2 Tr[ϱtH]
)
/(γ)2.

(57)

The EC form of H as a [[2, 2]] Hamiltonian as

H = ❍
[[2,2]]
t = λt−aϱt−a + λtϱt + iλI

t−a,t[ϱt−a, ϱt] + λR
t−a,t{ϱt−a, ϱt} (58)

implies that

λt−a = λ̂t−a/(γ)2,

λt = λ̂t − (2/γ)wt−a,tλ̂
R
t−a,t + (wt−a,t/γ)2λ̂t−a,

λI
t−a,t = (1/γwt−a,t)λ̂

I
t−a,t,

λR
t−a,t = (1/γwt−a,t)λ̂

R
t−a,t − λ̂t−a/(γ)2.

(59)

Finally, combining Equations (57) and (59) gives the λ couplings as

λt =
1

(γ)4

[
Tr[ϱtH] + (wt−a,t)

2Tr[ϱt−a H]− 2 Re
(
Tr[ϱt−a Hϱt]

)]
,

λt−a =
1

(γ)4

[
Tr[ϱt−a H] + (wt−a,t)

2Tr[ϱt H]− 2 Re
(
Tr[ϱt−a Hϱt]

)]
,

λR
t−a,t =

1
(γ)4

[(
1 + 1/(wt−a,t)

2)Re
(
Tr[ϱt−a Hϱt]

)
−
(
Tr[ϱt−a H] + Tr[ϱtH]

)]
,

λI
t−a,t =

−1
(γ)4

[(
1 − 1/(wt−a,t)

2) Im
(
Tr[ϱt−aHϱt]

)]
=

i

2(γwt−a,t)2 Tr
[
H[ϱt−a, ϱt]

]
.

(60)

We stress again that nothing other than the dimensionality and Hermiticity of H is
fed into the above derivation; hence, the final result holds for any arbitrary one-qubit H.
Interestingly, we note that the above result even applies to one-qubit EC Hamiltonians, i.e.,
for every H = ❍

[[N,L]]
t , regardless of [[N, L]]. As a result, one’s favorite choice of a one-qubit

EC Hamiltonian with N ≫ 2 is identically reformulatable as a [[2, 2]] EC Hamiltonian.
Here, the effects of the other N − 2 quantum memories are squeezed into the couplings in
Equation (60).

4.1.2. EC Reformulation of Time-Independent One-Qubit SQT Hamiltonians

As a special case, let us require that the Hamiltonian H be time-independent. In the
case of an SQT Hamiltonian, it must also be state-history-independent. We now wish to
determine how the result of Equations (58) and (60) reformulates SQT as a structurally
fine-tuned subset of ECQT.
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Imposing the time independence of H leads to the following conditions:

Tr[ϱtH] = Tr[ϱt−a H] = Tr[ϱ0H] ≡ ν = const.,

i
∂mt−a,t

∂a
= ⟨Ψt−a|H|Ψt⟩,

Tr[ϱt−a Hϱt] = m∗
t−a,t⟨Ψt−a|H|Ψt⟩ = im∗

t−a,t
∂mt−a,t

∂a
,

Re([Tr[ϱt−aHϱt]
)
= −(wt−a,t)

2 ∂αt−a,t

∂a
,

Im
(
Tr[ϱt−aHϱt]

)
=

1
2

∂(wt−a,t)2

∂a
,

mt−a,t = m0,a = w0,aeiα0,a , γ =
√

1 − (w0,a)2 .

(61)

Hence, the λ couplings in Equation (60) are simplified as

λt−a =
1

(γ)4

[(
1 + (w0,a)

2)ν + 2(w0,a)
2 ∂α0,a

∂a

]
= λt,

λR
t−a,t = − 1

(γ)4

[
2ν +

(
1 + (w0,a)

2)∂α0,a

∂a

]
,

λI
t−a,t =

1
(γ)2

∂ ln(w0,a)

∂a
.

(62)

The physics in Equations (62) becomes clearer upon writing the right-hand side (RHS) in
terms of the energy spectrum of H. Using H = E1|1⟩⟨1|+ E2|2⟩⟨2| (where |1⟩ and |2⟩ are
ground and excited states, respectively) and |Ψ0⟩ = c0,1 |1⟩+ c0,2 |2⟩ gives

mt−a,t = m0,a =
1
2
(
e−iaE1 + e−iaE2

)
+

s0

2
(
e−iaE2 − e−iaE1

)
, (63)

where s0 = (|c0,2|)2 − (|c0,1|)2 and −1 ⩽ s0 ⩽ 1. The state history fidelity and the state
history phase factor (the argument of the autocorrelation) are accordingly obtained as

Ft−a,t ≡ (wt−a,t)
2 = (w0,a)

2 =
1
2
[
1 +

(
1 − (s0)

2) cos(a ∆E)
]
,

αt−a,t = α0,a = − arctan
[ (1 + s0) sin(aE2)− (1 − s0) sin(aE1)

(1 + s0) cos(aE2) + (1 − s0) cos(aE1)

]
,

(64)

where ∆E = E2 − E1 is the energy gap. From Equation (62), the EC λ couplings depend
not only on w0,a but also on the derivates of the state history fidelity and the phase factor
with respect to the quantum memory distance and also on the initial-moment expectation
of the energy,

∂F0,a

∂a
= −

(
1 − (s0)

2)∆E

2
sin(a ∆E),

∂α0,a

∂a
= − (s0)

2(E1 + E2) sin2(a ∆E/2) + s0∆E + 1
1 +

(
1 − (s0)2

)
cos(a ∆E)

,

ν =
(
E1 + E2 + s0 ∆E

)
/2.

(65)

It is straightforward to show that, out of the four (λt, λt−a, λR
t−a,t, λI

t−a,t) couplings of
a [[2, 2]] EC Hamiltonian, there are only two physically relevant ones, λ̄R

t−a,t ≡ λt−a + λR
t−a,t

and λI
t−a,t [1]. Every time-independent one-qubit SQT Hamiltonian H is identically express-

ible within ECQT in the form of a [[2, 2]] EC Hamiltonian ❍t, as given in Equation (58). The
physically relevant couplings of the equivalent ❍t are determined in terms of the energy
spectrum of H and the initial state of the qubit as follows:
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λ̄R
t−a,t =

2 −
(
1 − (s0)

2)(E1 + E2) + s0∆ E − [(E1 + E2) + s0
(
1 − (s0)

2)∆E] cos(a ∆E)

1 −
(
1 − (s0)2

)2 cos2(a ∆E)
,

λI
t−a,t = −

(
1 − (s0)

2)∆E sin(a ∆E)

1 −
(
1 − (s0)2

)2 cos2(a ∆E)
.

(66)

For the two extreme choices of the initial conditions, s0 = 0, for the maximally symmetric
initial state, and s0 = ±1, for which the initial state coincides with the ground or excited
eigenstate of the SQT Hamiltonian, the above λ couplings become

s0 = 0 : λ̄R
t−a,t = 2

1 − (E1 + E2) cos2(a ∆E/2)
sin2(a ∆E)

, λI
t−a,t = − ∆E

sin(a ∆E)
(67)

s0 = ±1 : λ̄R
t−a,t = 2 ± ∆E − (E1 + E2) cos(a ∆E) , λI

t−a,t = 0. (68)

As an example, consider H = σ3. Applying this choice to the result (61), and
upon using

eiaσ3
= cos(a)✶+ i sin(a) σ3,

mt−a,t = cos(a)− iν sin(a),

ν = ⟨Ψ0|σ3|Ψ0⟩
γ2 = 1 − (w0,a)

2 = [1 − (v)2] sin2(a),

we obtain H = σ3 = ❍
[[2,2]]
t of the form (58) with the following couplings:

λt−a =λt = − ν

1 − (ν)2 csc2(a) = − ν

(γ)2 ,

λR
t−a,t =ν/(γw0,a)

2,

λI
t−a,t =− sin(2a)

2(γw0,a)2 [1 − (ν)2] = − cot(a)

(w0,a)2 .

(69)

It is interesting to note that the EC form for even this simple one-qubit SQT Hamilto-
nian H = σ3 is highly nontrivial. The reason, however, is significant, indicating that the EC
couplings of the SQT Hamiltonians should have such a fine-tuned structure as to (as a net
effect) wash out all state history dependences. In other words, this reflects the statement
that SQT is a highly constrained low-dimensional reduction of ECQT. We will return to this
important point in Section 4.3.

4.2. Reformulation of SQT by ECQT: Basis- and Decomposition-Independent Recipe

Now, we develop a second recipe to obtain representations of SQT Hamiltonians
within ECQT with the following properties: (a) it applies indiscriminately to finite-
dimensional closed quantum systems; (b) it is independent of the selection of any particular
basis states; (c) it is independent of any tensor product decomposition; and (d) it is largely
flexible in the state history resources that the system needs to exploit to produce its EC
Hamiltonian. As a result, this recipe is a flexible general algorithm.

A convenient way to present this reformulation algorithm is based on a straightforward
identity that is satisfied by state history couplings of any EC Hamiltonian (38). In other
words, this identity manifests Equation (38) in an alternative way. For simplicity and
specificity in the discussion, we only focus on the primitive EC Hamiltonians. The details
of this identity are relegated to Appendix A. This identity basically establishes a relation
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between the couplings λs±
t , the operators ❤s±

t , and the EC Hamiltonian ❍Ξ
t , as defined in

Equation (38).
Let us assume that the states of the closed system of interest are in a Hilbert space

H of dimension d, and these states evolve unitarily under an SQT Hamiltonian H. This
Hamiltonian must be independent of the state history of the system, including the state at
the present moment and the initial state. For further simplicity and clarity, we consider a
time-independent H—extension to time-dependent Hamiltonians in SQT is straightforward.
Furthermore, as before, we assume the purity of the state history. This does not impact the
special physical context of our study.

We now wish to reformulate the evolution of the above SQT system in the form
of a pure-state-history [[N, L]] EC Hamiltonian (Equations (38) and (39)) subject to the
the dimensionality-matching constraint d− + d+ = (d)2. The key is to obtain all
matching λt couplings by directly imposing ❍Ξ

t = H. Following the terminology of
Appendix A, here, we determine the elements of ht ≡

(
h1−

t , . . . , hd−−
t , h1+

t , . . . , hd++
t

)T ,
where hs±

t ≡ Tr
[
i❤s±

t ❍Ξ
t

]
, by imposing the condition ❍Ξ

t = H and by using the spectral
decomposition H = ∑

d
n=1 En|n⟩⟨n| and specifying the initial state as ϱ0 = |Ψ0⟩⟨Ψ0|, with

|Ψ0⟩ = ∑
d
n=1c0,n|n⟩,

hk+
t = 2w[k]∑

d
n=1(|c0,n|)2En cos

[
En(tk1 − tkLk

)− α[k]
]
,

h
j−
t = 2w[j]∑

d
n=1(|c0,n|)2En sin

[
En(tj1 − tjLj

)− α[j]
]
.

(70)

The combined state history fidelities w[s] and argument factors α[s] can be determined using
the following result for the state history two-point functions for any time-independent H:

mt′t′′ = ⟨Ψt′ |Ψt′′⟩ = ⟨Ψ0|e−i(t′′−t′)H |Ψ0⟩ = ∑
d
n=1(|c0,n|)2e−iEn(t′′−t′) = m0,t′′−t′ = w0,t′′−t′ e

iα0,t′′−t′ ,

α0,t′′−t′ = arg
(

∑
d
n=1(|c0,n|)2e−iEn(t′′−t′)

)
,

w0,t′′−t′ =
∣∣∣∑d

n=1(|c0,n|)2 e−iEn(t′′−t′)
∣∣∣, ∀t′, t′′ ∈ [t0, t].

(71)

Hence,

w[s] = ∏
Ls−1
r=1 w0,(tsr+1−tsr )

= α0,(tsr+1−tsr )
= ∏

Ls−1
r=1 arg

(
∑

d
n=1(|c0,n|)2e−iEn(tsr+1−tsr )

)
,

α[s] = ∑
Ls−1
r=1 α0,(tsr+1−tsr )

= ∑
Ls−1
r=1

∣∣∑d
n=1(|c0,n|)2e−iEn(tsr+1−tsr )

∣∣.
(72)

To summarize, what is presented above is the solution of the equation ❍Ξ
t = H for any

time-independent Hamiltonian of any (finite) Hilbert space dimension by replacing the
RHS of Equation (A5) with the parameters computed above. It is straightforward to check
that this solution reproduces all results of the one-qubit closed system in SQT as derived in
Sections 4.1.1 and 4.1.2.

We can also remark on the spectrum of the [[N, L]] choices such that the corre-
sponding EC Hamiltonian can represent SQT Hamiltonians. If, for a moment, we re-
lax the assumption of the state history purity, then a general [[N, L]] EC Hamiltonian
has ∑

L
k=1(N)k = N

(
(N)L − 1

)
/(N − 1) independent real parameters, which are its cou-

plings. Hence, to find a representation of an SQT Hamiltonian defined on a Hilbert
space of dimension d as an [[N, L]] EC Hamiltonian, we need to choose N and L such that
∑

L
k=1(N)x ⩾ (d)2—or simply (N)L ⩾ (d)2. This parameter counting is consistent with the

dimensionality constraint d+ + d− = (d)2, and it shows that, when we take N = d, then
L can be ⩾2. This should be contrasted with the basis-dependent recipe (Equation (53)),
where the universal choice of N = dim(H ) = d and L = 2 is dictated by the very recipe.
However, the basis-independent recipe has the flexibility whereby any SQT Hamiltonian
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here admits infinitely many equivalent [[N, L]] EC representations. In this recipe, the fa-
vorite choice of [[N, L]] is given by measures such as context-dependent efficiencies—and
not by the recipe.

4.3. Inclusion Theorems

A Hamiltonian belongs to (or is admissible in) SQT if it has a representation either as a
strictly time-independent Hermitian operator or as a time-dependent Hermitian operator
whose time dependence is independent of the state history of the system—namely, its
dynamics is independent of both the initial state and state trajectory of the system.

Let us consider a quantum system with a Hilbert space H . In the following, we
provide three theorems that compare the dynamics of this system in SQT and ECQT. In
particular, to ensure that the comparison is far, below, we presume that, to obtain an
SQT-admissible representation for an EC Hamiltonian, we do not lift it to a larger Hilbert
space. This caveat is important because, as demonstrated in Section 2, the dynamical action
of some subclasses of EC Hamiltonians can, in principle, be simulated within the SQT
framework if we allow the use of a higher Hilbert space and multiple copies of the system.

Theorem 1. There exist infinitely many ❍
[[1,1]]
t s without any representation as time-independent or

time-dependent SQT Hamiltonians Ht.

Proof. Consider the family of [[1, 1]] Hamiltonians composed of pure states and state-
history-independent couplings,

❍
[[1,1]]
t = λt−aϱt−a, (73)

where λt−a is assumed independent of P[t0,t].
Part (a): Nonexistence of time-independent SQT-admissible representations
First, it is straightforward to prove that, in general, Equation (73) does not admit any

time-independent operator representation. This EC Hamiltonian has d eigenvalues, where
d = dim(H ); one eigenvalue equals λt−a, with all others being equal to 0. Correspondingly,
up to linear combinations, it has one eigenstate associated with the nonzero eigenvalue
and d − 1 degenerate eigenstates as follows. |Ψt−a⟩, the quantum state of the system at
the moment t − a, is the eigenstate with eigenvalue λt−a. The basis states of the subspace
orthogonal to |Ψt−a⟩, namely |Ψ⊥i

t−a⟩ (i = 1, . . . , d − 1), are its degenerate eigenstates. The

only point that we use in the proof is that ❍[[1,1]]
t has a dynamical eigenspace; its eigenstates

change in time. In other words, except in special cases where the entire trajectory is
trivial, time-independent states cannot be its eigenstates. Now, assume that there is a
representation of this Hamiltonian in the form of a time-independent operator H = ❍

[[1,1]]
t .

As a result, this would also imply the existence of a time-independent eigenstate with
eigenvalue λt−a. This, however, does not comply with the eigenspace of ❍[[1,1]]

t . Thus, we

conclude that ❍[[1,1]]
t does not have any time-independent SQT-admissible representation.

Part (b): Nonexistence of time-dependent SQT-admissible representations
Assume that Ht = ❍

[[1,1]]
t is a distinct representation of ❍[[1,1]]

t in the form of a time-
dependent Hamiltonian admissible in SQT. Thus, the unitary time evolution operator of
the system finds a representation as follows:

Ut′→t′′ = lim
m→∞

∏
m
l=0e

−i t′′−t′
m H

t′+ t′′−t′
m l . (74)

Note that, similarly to Ht, Ut′→t′′ is also independent of the past-to-present states of the
system, i.e., independent of all ϱt<s, ∀t< ∈ [t0, t], including all possible choices for the ϱ0
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initialization of the state of the system. Hence, for every ϱ0, Ht must produce the exact
same trajectory as ❍[[1,1]]

t . Combining Equations (73) and (74), we obtain

Ht = λt−a Ut0→t−a ϱ0 U†
t0→t−a. (75)

This is an identity that the state-history-independent Ht should satisfy for any ϱ0. However,
it is evident that Equation (75), across the defining space of the initial state, cannot be
satisfied identically. Based on our assumption, the left-hand side (LHS) is state-history-
independent; hence, it does not change with ϱ0. However, because neither λt−a nor the SQT-
admissible Ut0→t depends on the history of the system, the RHS unavoidably depends on ϱ0

and varies with it. The only way for Equation (73) to satisfy Equation (75) is to force Ut0→t—
and hence Ht< too—to depend on ϱ0. This, however, violates SQT. Thus, we conclude that
Equation (73) does not have any time-dependent SQT-admissible representation.

Part (c):
We can extend the above proof to ❍[[1,1]]

t s, where, now, λt−a has a generic arbitrary
dependence on P[t0,t]. Part (a) of the proof, namely the absence of time-independent
operator representations, proceeds identically. For Part (b), we reconstruct Equations (74)
and (75) exactly as before. The impossibility argument of Equation (75) holding for all
possible ϱ0s as an identity proceeds similarly. The LHS is, of course, independent of ϱ0,
and, for a generic dependence of λt−a on the state history, the dependence of the RHS on ϱ0

cannot be canceled out. Hence, the impossibility holds also for generic ❍[[1,1]]
t s, as presented

in Equation (73).

Remark. The above arguments can be identically repeated for any other ϱt< with t<

ranging from t0 to t. In other words, if we consider versions of ❍[[1,1]]
t with (t0, ϱ0) replaced

with any (t<, ϱt<), the same argument carries over, which implies that the impossibility is
limited only to an enforced dependence on the initial state.

Theorem 2. There exist infinitely many ❍
[[N,L]]
t s with N, L > 1 without any representation as

time-independent or dynamical SQT Hamiltonians Ht.

Proof. The argument is structurally similar to the proof of Theorem 1. For specificity, let us
consider the family of ❍[[2,2]]

t s as

❍
[[2,2]]
t = λR

t−a,t{ϱt−a, ϱt}+ iλI
t−a,t[ϱt−a, ϱt], (76)

where λI,R
t−a,t depends on P[t0,t] generically—or, in special cases, may be independent of it.

Part (a):
The eigensystem of this generic EC Hamiltonian shall be time-dependent. Its nontrivial

eigenvalues depend on (wt−a,a; λI
t−a,t, λR

t−a,t), where, now, the nontrivial eigenstates are
given by certain linear combinations of |Ψt⟩ and |Ψt−a⟩, with the defining coefficients de-
pending on (mt−a,a; λI

t−a,t, λR
t−a,t). Because the eigensystem of this ❍[[2,2]]

t is time-dependent
in a generic sense, it is impossible to always find a time-independent operator representation
H for it.

Part (b):
If ❍[[2,2]]

t can be identically represented as a time-dependent Ht = ❍
[[2,2]]
t , then the

following equation should hold as an identity across the chosen space of ϱ0:

Ht = λR
t−a,t{Ut0→t−aϱ0 U†

t0,t−a, Ut0→tϱ0U†
t0→t}+ iλI

t−a,t[Ut0→t−aϱ0U†
t0→t−a, Ut0→tϱ0U†

t0→t]. (77)
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The LHS is again independent of ϱ0. All of the Us on the RHS are independent of ϱ0 too.
This equation becomes an identity for all ϱ0 only if the total dependence of the RHS on
ϱ0 cancels out. The cancelation imposes, however, fine-tuned dependencies of the λI

t−a,a
and λR

t−a,a couplings on the state history. Hence, we conclude on the nonexistence of an

SQT-admissible Ht for this ❍[[2,2]]
t if the λs are state-history-independent or have a generic

arbitrary dependence on the state history of the system. With appropriate adjustments,
this proof carries over obviously for higher values of N and L and more general [[N, L]]

EC Hamiltonians.

Theorem 3. The set of SQT Hamiltonians SSQT is a measure-zero subset of the set of all ❍
[[N,L]]
t

ECQT Hamiltonians S
[[N,L]]
ECQT, i.e., for the cardinalities (or measures) of these sets, we have |SSQT| ≪

|S[[N,L]]
ECQT|. In addition, we also have

⋃
N,L S

[[N,L]]
ECQT ⊂ SECQT and |⋃N,L S

[[N,L]]
ECQT| ≪ |SECQT|.

Proof. We have shown in Section 4 that SQT is a subset of ECQT in the sense that any
SQT-admissible Hamiltonian Ht can also be represented as some EC Hamiltonian ❍t (i.e.,
such that❍t = Ht). Meanwhile, as proven in the above theorems, there exist infinitely many
❍

[[N,L]]
t s that cannot admit any representation as a time-independent or time-dependent

Hamiltonian in SQT. Moreover, in the proof of Theorem 2, we showed that [[N, L]] EC
Hamiltonians that are not SQT-admissible are in fact typical. Hence, SSQT ⊂ ⋃

N,L S
[[N,L]]
ECQT and

S
[[N,L]]
ECQT ⊈ SSQT. We note also that, by construction (Section 3), S

[[N,L]]
ECQT is itself a measure-zero

subset of all EC Hamiltonians SECQT, because polynomials are themselves measure-zero
subsets of all functions.

The above argument can be illustrated explicitly in the case of one-qubit SQT Hamilto-
nians H. First, we consider the time-independent Hamiltonians worked out in Section 4.1.2,
following Equation (62) or equivalently (66). The state history independence of the EC
Hamiltonian imposes the following constraints on its EC form:

Tr[H] = λt + λt−a + 2(wt−a,t)
2λR

t−a,t = (some state-history-independent) const.;

Tr[Hϱt] = λt + (wt−a,t)
2(λt−a + 2λR

t−a,t) = (some state-history-independent) const.
(78)

It is obvious from a geometric perspective that Equation (78) reduces to the generically
4-dimensional coupling space of a [[2, 2]] EC Hamiltonian (IR4) to a codimension-2 hyper-
surface of IR4. This represents geometrically the measure-zero inclusion of time-independent
SQT Hamiltonians within ECQT.

Equation (78) reveals two physically interesting additional points: (i) for an ECQT
Hamiltonian to be non-generically equivalent to an SQT Hamiltonian, its EC couplings
should necessarily be state-history-dependent in a fine-tuned manner; (ii) for such equiva-
lence to occur, the EC Hamiltonian couplings should bear state history dependences that
are nonanalytic, e.g., of the form 1/(wt−a,t)2.

We now consider time-dependent one-qubit SQT Hamiltonians recast in an EC form.
As we have derived in Section 4.1.1, the requirement ❍[[2,2]]

t = H implies that, for example,
the coupling λI

t−a,t must be in the form of Equation (60),

λI
t−a,t =

i

2(γwt−a,t)2 Tr
[
[ϱt−a, ϱt]H

]
. (79)
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Moreover, in the same section, we have proven that the λI
t−a,t coupling of an ❍[[2,2]]—with

the form as in Equation (58)—satisfies the relation

λI
t−a,t =

i

2(γwt−a,t)2 Tr
[
[ϱt−a, ϱt]❍

[[2,2]]
t

]
. (80)

The point is that although Equation (80) is an identity and always holds, Equation (79) is
a nontrivial equation, which does not always hold reversely. In other words, we do not
always obtain a solution for Equation (79) if we proceed in the reverse manner from ❍t

and look for a corresponding SQT Hamiltonian. This single observation by itself is a clear
demonstration of the measure-zero inclusion of SQT within ECQT.

As Ref. [1] has shown, the Schrödinger or von Neumann equations that arise from EC
Hamiltonians are not only nonlinear but also nonlocal in time. Indeed, in all of the examples
in the previous sections, we have seen that, for the equality of an SQT Hamiltonian and an
[[N, L]] EC Hamiltonian, the composite Hermitian operator that defines the EC Hamiltonian
must be fine-tuned structurally. It is evident from where these structural fine-tunings
are derived. They are necessary to cancel out the otherwise inevitable nonlinearities and
time nonlocalities of the deformed Schrödinger equations that result from the generic EC
Hamiltonians. This statement holds for both EC Hamiltonians that are derived entirely
from the system’s density operators and those that include fixed operators likewise. We
can highlight the famous example of the Gross–Pitaevskii Hamiltonian, which is a [[1, 1]]
EC Hamiltonian, as shown in Equation (43). In addition, we can show that Weinberg’s gen-
eralized quantum mechanics [30,31] can be reformulated as subclasses of EC Hamiltonians.
These cases provide two other examples that highlight that EC Hamiltonians deviate from
the linear state-history-independent Hamiltonians of SQT, unless structural fine-tuning
is imposed.

5. Behavioral Richness of EC Unitary Evolutions

In this section, we contrast EC unitary evolutions with those in quantum mechanics
in order to elucidate the general lessons drawn from the formal inter-theoretical inves-
tigations in Section 4. In doing so, in Section 5.1 and following Ref. [1], we present a
classification of one-qubit EC behavioral phases and demonstrate examples of dynamical
phase transitions among them. Next, we turn to a detailed study of the deformations and
perturbations of SQT by means of additive EC Hamiltonians, which is achieved by means
of time-local, near-Markovian, and deeply non-Markovian EC deformations throughout
Sections 5.2–5.5. Finally, we analyze further enriching behavioral impacts of state-history-
dependent couplings in EC Hamiltonians.

5.1. Dynamics and Behavioral Phases

Our behavioral analysis in this subsection concerns one-qubit EC unitary evolutions
with [[N, L]] EC Hamiltonians under the following specifications: (i) pure state histories;
(ii) low-order [[N, L]], especially N, L ⩽ 3, with constant couplings. The [[1, 1]] and [[2, 2]]
EC Hamiltonians are given in Equation (40) or, equivalently, Equation (49) for pure state
histories. For concreteness, we choose the quantum memory distances to be, respectively,
constants a > 0 and a⃗t = (a1, a2) = (a, 0). We choose ȧ1 = a2 = 0 only for simplification,
while still leaving sufficient behavioral novelties in our analyses. The behavioral phase
diagram of the one-qubit closed quantum systems under these EC Hamiltonians was
investigated in Ref. [1], upon numerically solving the EC Schrödinger Equation (50).
The classification of the behavioral phases, which we review now, reflects the defining
topological and geometrical characteristics of the EC dynamics of one-qubit pure states and
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their state history two-point functions (48) (or fidelities), formed at sufficiently late times,
as behavioral dynamical attractors.

It is obtained that EC unitary evolutions of the closed one-qubit system under the
above specifications develop five principal phases of behavioral attractors, which are described
as follows.

• Phase I: The wavefunction |Ψt⟩ and its state history fidelity wt−a,t develop fixed-
point attractors.

• Phase II: The wavefunction develops large regular simple periodic oscillations such
that the state history fidelity has a fixed-point attractor, typically with tiny fluctuations.

• Phase III: The wavefunction and the state history fidelity feature large irregular oscillations.
• Phase IV: The wavefunction and the state history fidelity develop large structural

oscillations in the form of sequential repetitions of temporally invariant behavioral
modules that are marked with robustly ordered patterns.

• Phase V: The wavefunction features bistable attractor behavior of consecutively switch-
ing between two metastable states. These state swaps are in the form of sharp tran-
sitions. Accordingly, and in a manner that is synchronized with the wavefunction
swaps, the state history fidelity features consecutive sharp minima, which equally
parse the plateau of wt−a,t = 1.

Alongside the above five principal phases, one encounters their crossover deforma-
tions in the total behavioral phase diagram. These deformations exhibit a diverse variety of
mixed behavioral phases, which blend together some characteristics of the five principal
phases—see Ref. [1] for detailed explanations and demonstrations. A major lesson that one
can draw from such behavioral investigations of EC unitary evolutions is that the behav-
ioral characteristics of SQT closed and open quantum systems are intrinsically interfused
in ECQT. Indeed, EC behavioral phases feature significantly rich qualities, which are un-
precedented in SQT-based systems, as they can be generated by means of strongly synergetic

interplays of non-Markovianity and unitarity. This point is crucial and is further confirmed in
the forthcoming toy models in the upcoming subsections of Section 5. Figure 3 shows some
representative examples of the five principal behavioral phases of one-qubit wavefunctions.

A remarkable characteristic of non-hybrid (primitive) EC unitary evolutions is a
version of deep non-Markovianity, which, in Ref. [1], was referred to as “robust non-
Markovianity”. It is the characteristic whereby such EC Hamiltonians generate nontrivial
evolutions only when the corresponding largest quantum memory distances a exceed (or
are equal to) finite lower bounds set by the defining couplings of the EC Hamiltonians. In
contrast, hybrid EC evolutions do not admit any lower bounds on the largest quantum mem-
ory distances—see, e.g., Sections 5.2–5.5—such that they have nontrivial near-Markovian
regimes. We now turn to behavioral effects derived from the lowest higher-order interactions

among the state history information in EC unitary evolutions. Specifically, we focus on one-
qubit pure state histories corresponding to the [[3, 3]] EC Hamiltonian given in Equation (41).
Figures 4 and 5 present three remarkable examples of such higher-order EC effects on the
unitary evolution of the one-qubit closed quantum system. The two plots of the top row in
Figure 4 present an N = L = 3 EC evolution one-qubit wavefunction, with the control pa-
rameters specified in its caption, where the evolutions of the state history fidelities (wt−a,t)2

(left) and (wt−b,t)
2 (right) feature the highly ordered blending of the principal behavioral

Phases IV and V. The three plots of the lower row in Figure 4 depict the EC evolution of
the one-qubit state history fidelity ((wt−a,t)2) under an interestingly deformed N = L = 3
EC Hamiltonian whose definition is given in the caption of the figure. As one observes,
the autocorrelation (wt−a,t)2 goes through an initial transient period of regular simple
oscillations with small amplitudes. The third-order interactions among the state history
information, however, trigger a sharp dynamical transition to a behavioral Phase IV that is
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everlasting. In this post-transition phase, not only do the oscillation amplitudes enlarge
maximally (by about an order of magnitude), but also the defining structures of the consti-
tuting modules of Phase IV become remarkably intricate. Moreover, one can observe in
Figure 5 that the one-qubit closed quantum system exhibits a purely internal sharp dynami-
cal transition—triggered by third-order interactions among state history information—from
a blend of behavioral Phases IV and V to the behavioral Phase II.
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Figure 3. The five behavioral phases of one-qubit EC unitary evolutions with [[2, 2]] EC Hamiltonians
given in Equation (40). The plots show the EC time evolutions of ϱt with the representative numerical
solutions corresponding to the EC Equation (35) or, equivalently, the EC Schrödinger equation given
in Equation (50), with the initial history in the time interval [0, a] developed by an SQT “kicker”
Hamiltonian Hkicker = 5σ2. We assume, in all plots, a = 3, ϱ0 = |+⟩⟨+| = (1/2)(✶+ σ1), λt−a = 0,
and we drop the dynamically irrelevant coupling λt. The (λI

t−a,t, λR
t−a,a) couplings for the five phases

are as follows: Phase I (12.49, 0); Phase II (−0.4, 1.15); Phase III (−2, 8.15); Phase IV (−0.97, 1.98);
Phase V (2.19, 1.32). The EC dynamics in the plots are vs. the dimensionless variable τ ≡ t/a, and
we use the basis of the eigenvectors {|1⟩, |2⟩} of σ3 to represent ϱτ .
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Figure 4. Two highlighted examples of the higher-order behavioral phases of a one-qubit closed

system developed, respectively, by [top] ❍[[3,3]]
t given in Equation (41) and [bottom] the same ❍[[3,3]]

t

additively deformed by a genuinely EC Hermitian operator that, on the σ3 basis, is equal to ν(ϱt)
T .

The behaviors correspond to the numerical solutions corresponding to the EC Equation (35) or,
equivalently (for the top one), the EC Schrödinger equation given in Equation (50), with the initial
history in the time interval [0, a] developed by an SQT “kicker” Hamiltonian Hkicker = 5σ2. The
specification data are given by [top] Hkicker = 41σ2, ϱ0 = |+⟩⟨+| = (1/2)(✶+ σ1), a = 3, a/b = 1.35,
κR

t−a,t−b,t = 3.855, and κI
t−a,t−b,t = 5.124; [bottom] Hkicker = 41σ2, ϱ0 = |+⟩⟨+| = (1/2)(✶+ σ1),

a = 3, a/b = 2, ν = 4.74, κR
t−a,t−b,t = 0, and κI

t−a,t−b,t = −2. The EC dynamics in the plots are
vs. the dimensionless variable τ ≡ t/a, and we use the basis of the eigenvectors {|1⟩, |2⟩} of σ3 to
represent ϱτ .
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Figure 5. A purely internal dynamical transition to the behavioral Phase II from the multiscale
behavioral Phases (IV,V), developed by a higher-order EC unitary evolution of the one-qubit wave-
function with the [[3, 3]] EC Hamiltonian (41). The solution is obtained upon solving numerically the
corresponding EC Equation (35) or, equivalently, the EC Schrödinger equation given in Equation (50).
The specification data are given by ϱ0 = |+⟩⟨+| = (1/2)(✶+ σ1), Hkicker = 800σ2, a = 4, a/b ≈ 1.73,
ν = 0.05, κR

t−a,t−b,t = 3.25, and κI
t−a,t−b,t = 5. The EC dynamics in the plots are vs. the dimensionless

variable τ ≡ t/a, and we use the basis of the eigenvectors {|1⟩, |2⟩} of σ3 to represent ϱτ .

There are two points in order. Firstly, an important feature of higher-order EC evolu-
tions is that the wavefunction and state history autocorrelations can develop across different
temporal scales for distinct behavioral phases (particularly among the five principal phases)
in manners that are highly orchestrated. Figure 5 serves as a clear example. Secondly, we
highlight that one-qubit wavefunctions naturally develop a diverse variety of unprece-
dented, purely internal, long-time dynamical transitions between these behavioral phases.
These EC dynamical transitions are not only beyond the reach of typical quantum systems
but also show exotic physical qualities. As analyzed in Ref. [1], the unitary evolutions of
one-qubit wavefunctions under [[N, L]] EC Hamiltonians with N ⩾ 3 or L ⩾ 3 can easily
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develop long-time-scale transitions between all five principal behavioral phases. Note that
these dynamical transitions in behavior are not caused by any external control, nor are they
the effects of changing the couplings of the EC Hamiltonians. They are purely internal,
caused by the inbuilt interactions between the quantum information in the unitary state
history of the closed system. A clear example of these dynamical transitions is shown in
Figure 5, following the explanation given above.

Finally, we refer to Ref. [1] for the details of the behavioral phase partitioning of these
EC unitary evolutions in terms of the wide ranges of the defining couplings, along with
analytic analyses of robust non-Markovianity and the other relevant behavioral specificities.

5.2. Deforming SQT Evolutions by Time-Local EC Hamiltonians

Consider a closed quantum system with a d-dimensional Hilbert space H and pure
states ϱt = |Ψt⟩⟨Ψt|, ∀t. We evolve this system unitarily under an EC Hamiltonian that has
also an SQT part. This Hamiltonian represents the deformation of an SQT Hamiltonian
(denoted by H) by a Hermitian non-SQT Hamiltonian, which we choose to be ϱ̇t. We stress
that the deformation operator ϱ̇t is indeed state-history-dependent, because it depends on
the system’s initial state ϱ0; hence, according to Element 3, it is itself an EC Hamiltonian.
For simplicity, we assume that H and the deformation parameter ξ are time-independent.
The hybrid EC Hamiltonian of the system reads

❍t = H − ξϱ̇t. (81)

We are interested in the state-history-driven behavior of the closed system under
Equation (81)—specifically, how the wavefunction |Ψt⟩ makes transitions between and
across the eigenstates of the SQT Hamiltonian H during its unitary evolution. We obtain
the general exact solution, describing the dynamics of the system for general deformation
parameter ξ. However, what specially interests us is the wavefunction behavior when the
EC deformation is a small perturbation of SQT corresponding to infinitesimal ξ.

The unitary evolution of the system is described by the EC von Neumann Equation (35).
Considering an initial pure state ϱ0 = |Ψ0⟩⟨Ψ0|, the dynamics is given by the EC
Schrödinger Equation (36) or, equivalently,

(1 − iξ) |Ψ̇t⟩ = −i(H − iξεt✶)|Ψt⟩, (82)

where we have defined the system’s “energy function” as

εt ≡ Tr[ϱt❍t]. (83)

Note that εt can also be rewritten as

εt = ⟨Ψt|❍t|Ψt⟩ = −i⟨Ψ̇t|Ψt⟩ = Tr[ϱtH]− ξ Tr[ϱtϱ̇t] = Tr[ϱtH]. (84)

By using this function, interestingly, the EC dynamics can be given in an equivalent form as

i|Ψ̇t⟩ =
1

1 − iξ
(H − iξεt✶)|Ψt⟩ ≡ ❍eff

t |Ψt⟩, (85)

where
❍eff

t =
1

1 + (ξ)2

(
H + (ξ)2εt✶

)
+ i

ξ

1 + (ξ)2 (H − εt✶) (86)

is a non-Hermitian effective Hamiltonian. Note that, when H = ξ = 0, we have |Ψ̇t⟩ = 0.
A comment is in order before we proceed to solve the dynamics of the system. What we

observe in Equation (85) is that a non-Hermitian Hamiltonian is dynamically equivalent to
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the (original) Hermitian EC Hamiltonian (81). The physical equivalence of the Hamiltonian
(81), whose Hermiticity guarantees both the time evolution unitarity and the reality of the
spectrum of the Hamiltonian, and a non-Hermitian Hamiltonian might appear peculiar.
Nevertheless, this equivalence is mathematically consistent and represents one of the
distinctive features of ECQT. We note that the non-Hermiticity of the Hamiltonian (85) is
harmless, respecting the unitarity of the evolution (hence (∥Ψt∥)2 = 1) and the reality of the
spectrum of the Hamiltonian. What underlies this equivalence is the following observation:

Tr
[
ϱt

(
❍eff

t − (❍eff
t )†)] = 2i Im

(
⟨Ψt|❍eff

t |Ψt⟩
)
= 0, ∀t. (87)

In SQT, Hamiltonians should be state-independent; hence, the dynamical constraint (87),
despite being weaker than Hermiticity, can be satisfied at all times only by Hermitian Hamil-
tonians. In the context of ECQT, unitary evolutions are generated by Hamiltonians that are
typically state-history-dependent; hence, physically equivalent representations in terms of
non-Hermitian Hamiltonians that nevertheless satisfy Equation (85) can be developed.

Now, we proceed to obtain the EC behavior of the closed system. Equations (84)
and (85) result in the following final form of the EC Schrödinger Equation (82):

|Ψ̇t⟩ =
ξ − i

1 + (ξ)2

(
H − iξεt✶

)
|Ψt⟩. (88)

We now use the orthonormal basis defined by all eigenstates of H to work out the
general solution to Equation (88) and obtain the EC flow of the system’s wavefunction
across these d energy levels, which are assumed to have a nondegenerate ground state,
named |1⟩, to a nondegenerate maximally excited stated, named |d⟩. Hence, one rewrites
Equation (88) in terms of the complete set of parameters {En}, the energy eigenvalues of H,
and a complete set of paired variables (pt,n, φt,n) as

H = ∑
d
n=1En|n⟩⟨n|, E1 < E2 ⩽ . . . < Ed,

|Ψt⟩ = ∑
d
n=1ct,n |n⟩ ≡ ∑

d
n=1

√
pt,n eiφt,n |n⟩,

pt,n = ϱt,nn = (|ct,n|)2,

φt,n − φt,m = arg
(
ϱt,nm

)
.

(89)

The EC evolution of the variables pn,t (the probabilities that we are interested in) and the
arguments φt,n are coupled, however, in a one-way manner. The dynamical system that
describes their evolution reads

ṗt,n

pt,n
=

2ξ

1 + (ξ)2

(
En − εt

)
,

φ̇t,n = − 1
1 + (ξ)2

(
En + (ξ)2εt

)
.

(90)

The energy function εt, which contributes to the RHS of the above equations, is critical in
restoring the instantaneous unitarity of this closed-system EC dynamics. To play its role
as explained, εt must depend collectively on all momentary probabilities pt,n in a specific
unique form as

εt = ∑
d
n=1 pt,nEn. (91)

The central point of our study is obtained by the ṗt,n equations in the dynamical
system (90), without needing to know the specific form of εt as a function of {pt,n}. These
equations imply that the evolving probabilities pt,n corresponding to the energy levels
n > 1 and n < d satisfy the following equations:
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ṗt,n

pt,n
− ṗt,1

pt,1
= +

2(En − E1)

1 + (ξ)2 ξ, ∀n > 1

ṗt,n

pt,n
− ṗt,d

pt,d
= −2(Ed − En)

1 + (µ)2 ξ, ∀n < d.
(92)

From these,
pt,n

pt,1
=

p0,n

p0,1
e

2ξ
En−E1
1+(ξ)2

t
, ∀n > 1

pt,n

pt,d
=

p0,n

p0,d
e
−2ξ

Ed−En

1+(ξ)2
t
, ∀n < d.

(93)

It is observed that, when merely depending on the sign of the coupling µ, all pt,n>1/pt,1

or all pt,n<d/pt,d monotonically decay to zero with an exponentially fast rate in the unitary
process. Following Equation (93), we can also determine the reference probabilities pt,1 and
pt,d. As mathematically implemented by the function εt (Equation (91)) in Equation (90),
the time evolution unitarity of the EC system validates the constraint ∑

d
n=1 pt,n = 1 at all

moments. Hence, the probabilities are determined completely as

pt,1 =
(

1 + ∑
d
n=2(p0,n/p0,1) e

2ξ
En−E1
1+(ξ)2

t
)−1

,

pt,d =
(

1 + ∑
d−1
n=1(p0,n/p0,d) e

−2ξ
Ed−En

1+(ξ)2
t
)−1

.
(94)

These two probabilities are indeed equal to the momentary fidelities between the sys-
tem’s state and the two edge eigenstates of the Hamiltonian, H, |1⟩, and |d⟩, respectively.
Hence, for ξ > 0 (ξ < 0), the time derivate of the fidelity F(ϱt, |d⟩⟨d|) (F(ϱt, |1⟩⟨1|)) is
positive definite, and the fidelity is continually drawn to maximum value 1, as we see in
Equations (93) and (94). Thus, the edge eigenstates of the SQT Hamiltonian are the asymp-
totic fixed-point attractors of the unitary evolution generated by the hybrid EC Hamiltonian
(81), regardless of the value of ξ and solely depending on its sign. In other words,

ϱ∞ ≡ θ(−ξ)|1⟩⟨1|+ θ(ξ)|d⟩⟨d|,

F(ϱt, ϱ∞) ≡ Tr[ϱtϱ∞];
d

dt
F(ϱt, ϱ∞) > 0, ∀t,

lim
t→∞

F(ϱt, ϱ∞) = 1,

(95)

where θ(x) is the unit step function. Accordingly, combining Equations (93) and (94) with
(90) and (91), the energy function εt and the phase variables φt,n are obtained as

εt = E(∞) + O(e−zt), z > 0,

E(∞) ≡ Tr[ϱ∞ H] = θ(−µ) E1 + θ(ξ) Ed,

θ(−ξ)
(
(φt,n − φt,1)− (φ0,n − φ0,1)

)
+ θ(ξ)

(
(φt,n − φt,d)− (φ0,n − φ0,d)

)
= −

En − E(∞)

1 + (ξ)2 t, 1 ⩽ n ⩽ d.

(96)

It is interesting to note that the above behavior occurs irrespective of the details of the
Hamiltonian H (e.g., its gap structure) or how strong ξ is. In addition, from the above
equations, one can obtain a characteristic time for the evolution as

τ(H, ξ) ≡
1 + (ξ)2

2|ξ|
×





1/(E2 − E1); ξ < 0

1/(Ed − Ed−1), ξ > 0
. (97)

As we see in Equation (96), all physical phase contributions to the wavefunction,
ei(φt,n>1−φt,1) or ei(φt,d−φt,n<d), develop fixed-period oscillations asymptotically. However,
the amplitudes of these oscillations shrink monotonically following the exponentially fast
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decay of the non-attractor prefactors
√

pt,n s. These points reflect the fidelity behavior of
the state—see Equation (95).

The result (95) is a concrete manifestation of the unitary monotonic self-focusing behav-
ior of the global wavefunction—a novel phenomenon for closed quantum systems in the
context of ECQT, which, as will be shown in Sections 5.3 and 5.4, is robustly realizable
upon EC fine-tuning-free deformations or even arbitrarily small perturbations of the SQT
Hamiltonians. In Figure 6, we present the numerical solution to the one-qubit EC von
Neumann Equation (35) based on the EC Hamiltonian (81), with H = σ3 corresponding
to the perturbation parameter ξ = −0.001. As these plots show, on the σ3 eigenbasis, the
one-qubit wavefunction develops a monotonic localization to the ground state of σ3, with
the profile matching the analytic solution (94).
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Figure 6. EC monotonic localization of the one-qubit wavefunction to the ground state of H = σ3

based on the additive EC deformation −ξϱ̇t, with ξ = −0.001 and the initial pure state ϱ0 at an
infinitesimal vicinity of |2⟩⟨2|, obtained by numerically solving the corresponding EC von Neumann
Equation (35). We use the eigenbasis of σ3 to depict the plots, such that ϱt,11 is equal to the fidelity of
the one-qubit wavefunction and the ground state of H = σ3.

We now conclude the above study as follows. Let the time-independent Hamiltonian
H of an arbitrary closed system be EC-deformed (∀ξ ∈ IR) or infinitesimally perturbed
(ξ → 0±) as in Equation (81). For ξ > 0 (ξ < 0), the hybrid EC unitary evolution transforms
the excited state (the ground state) of H into the asymptotic fixed-point attractor; in other
words, the global wavefunction self-focuses itself in a monotonic unitary manner and with
an exponentially fast rate to localize in the excited state (the ground state) of the SQT
Hamiltonian H.

5.3. Global Wavefunction Localization by Near-Markovian Hybrid EC Hamiltonians

Now, we consider near-Markovian regimes. These regimes occur when the chosen
quantum memory distances at are sufficiently small at every present moment t such that
state history monomials can be approximated by time-local state-dependent monomials
upon replacing the ϱt−bt

s with their Taylor-series expansions,

ϱt−at = ϱt − atϱ̇t +
1
2
(at)

2ϱ̈t + . . . ,

perturbatively truncatable to any desired nontrivial order. We recall two observations
from Ref. [1]. (i) In the absence of accompanying SQT Hamiltonians, all EC Hamiltonians
that are entirely composed of the system’s past-to-present density operators have trivial
near-Markovian regimes to all orders in their Taylor-series expansions. This is in the sense
that these Hamiltonians generate nontrivial dynamics only when the largest quantum
memory distances are not smaller than the finite lower bounds set by the EC couplings.
(ii) In contrast, hybrid [[N, L]] EC Hamiltonians develop nontrivial near-Markovian regimes
already in their first-order Taylor-series truncations. The simplest example of category
(ii) is a hybrid [[1, 1]] EC Hamiltonian
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❍t = H + λt−aϱt−a. (98)

As in Section 5.2, we assume that the SQT Hamiltonian H and the arbitrary coupling
λt−a are time-independent. Moreover, we choose the quantum memory distance a to be
time-independent and sufficiently small, a ≪ 1. Then, the first-order term in the Taylor
series of ϱt−a is sufficient. Hence, in the near-Markovian regime, the hybrid [[1, 1]] EC
Hamiltonian (98) reproduces the time-local EC Hamiltonian (81) with the coupling

ξ ≡ aλt−a. (99)

Hence, the results (93)–(95) are reproduced, developing a unitary monotonic self-focus-
ing behavior.

We now consider a time-independent Hamiltonian deformed by the quadratic in-
teractions of two states that are temporally separated by a sufficiently small distance a.
Truncated to the first-order expansion in a, we have

❍t =H + λt−aϱt−a + iλI
t−a,t[ϱt−a, ϱt] + λR

t−a,t{ϱt−a, ϱt}
=H − aλt−aϱ̇t − aλR

t−a,t{ϱt, ϱ̇t}+ iaλI
t−a,t[ϱt, ϱ̇t] + O(a2).

(100)

By imposing state history purity during its hybrid EC evolution, the differential relation
{ϱt, ϱ̇t} = ϱ̇t is implied. Thus, the near-Markovian version of the [[2, 2]] EC deformation
(100) becomes

❍t = H − ξ1ϱ̇t + i ξI
2 [ϱt, ϱ̇t], (101)

where

ξ1 ≡ a(λt−a + λR
t−a,t),

ξI
2 ≡ aλI

t−a,t.
(102)

This yields the corresponding hybrid EC von Neumann equation as

ϱ̇t = i[ϱt,
H

1 + ξI
2
]− i

ξ1

1 + ξI
2
[ϱt, ϱ̇t]. (103)

From this form, one can observe that the near-Markovian dynamics is equivalent to the
deformed von Neumann Equation (82) for a [[1, 1]] EC dynamics upon the mapping

(ξ, H) →
(
ξ1/[1 + ξI

2], H/[1 + ξI
2]
)
. (104)

Hence, one concludes that all near-Markovian deformations of SQT Hamiltonians of the
[[2, 2]] type, or infinitesimal perturbations with (λt−a)2 + |λt−a,t|2 ≪ 1, similarly develop
unitary monotonic self-focusing behavior. We highlight that the attractor of the hybrid
EC evolution remains invariant under (sign or magnitude) variations in ξI

2 as it depends
(similarly to the [[1, 1]] EC deformations) only on the sign of the coupling ξ1.

The above analytical result is based on the leading-order time-local truncation of
the hybrid [[N ⩽ 2, L ⩽ 2]] von Neumann equation, which itself is time-nonlocal even in
the near-Markovian regime a ≪ 1. The full dynamics of the hybrid EC unitary evo-
lution for [[2, 2]] in its near-Markovian regime is described by the time-nonlocal von
Neumann equation

ϱ̇t = −i[❍t, ϱt],

❍t = H +
(
λt−aϱt−a + iλI

t−a,t[ϱt−a, ϱt] + λR
t−a,t{ϱt−a, ϱt}

)∣∣
a≪1.

(105)
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We have numerically considered a one-qubit EC closed system (105) with H = σ3

beyond the leading-order time-local truncation and obtained a representative solution to
the full time-nonlocal EC dynamics (105). The representative numerical solution is depicted
in the top-left plot of Figure 7, which indeed validates the monotonic unitary self-focusing
attractor behavior of the system’s wavefunction, as we have shown analytically in the
present section. The relevant details of the solution shall be given in the next subsection,
along with the solutions for the deeply non-Markovian EC deformations of H = σ3.
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Figure 7. Eight EC deformations of H = σ3 by means of one-qubit [[2, 2]] Hamiltonians corresponding
to (λt−a, λR

t−a,t, λI
t−a,t) = (0, 1, 2) and a being 0.25 (first row left), 1.33 (first row right), 2.5 (second

row left), 3.5 (second row right), 4.25 (third row left), 5.33 (third row right), 6.5 (fourth row left), 7.88
(fourth row right). We have chosen ϱ0 = (1/2)(✶+ σ1) = |+⟩⟨+| as the initial state, and the initial
state histories between [0, a] using Hkicker = σ3. We use the eigenbasis of σ3 to depict the plots, such
that ϱτ,11 is equal to the fidelity of the one-qubit wavefunction and the ground state of H = σ3. The
plots show the EC evolution of pτ,11 with respect to τ ≡ t/a. See the text in Section 5.4 for detailed
explanations of the EC fidelity behaviors.
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5.4. Deforming SQT Evolutions by Deeply Non-Markovian EC Hamiltonians

Here, we investigate nonlocal deformations of SQT Hamiltonians by EC Hamiltonians,
which are, by construction, deeply non-Markovian. In such a deformation, one uses EC
Hamiltonians whose largest quantum memory distances maxt at ≡ a are sufficiently large
such that the participating state history monomials are not reachable by their time-local
Taylor-series expansions within any finite or (even countably) infinite order of perturbation.
Our aim here is to analyze whether and how these deeply non-Markovian deformations
lead to unitary monotonic localizations of the system’s wavefunction—as described by
Equation (95).

Consider a closed system whose total Hamiltonian equals the sum of a time-
independent SQT Hamiltonian H and a [[1, 1]] EC Hamiltonian (40) whose quantum mem-
ory distance a is chosen arbitrarily. We have shown in Section 5.2 that, for a = δa ≪ 1, the
wavefunction in asymptotic times lands in a dynamical attractor, which is one of the two
extreme (or edge) eigenstates of H. The Taylor series of the only state history monomial
in Equation (40), ϱt−a, has a radius of convergence around the point a = δa, which we
denote by D(δa). Now, consider shifting δa by some positive ∆a constrained by ∆a ⩽ D(δa),
which is to ensure that the enlarged quantum memory distance a = δa + ∆a remains in the
convergence domain. As we analytically show in what follows, the EC deformation based
on such an enlarged a should typically develop unitary monotonic self-focusing behavior.

It suffices to focus on λt−a < 0, as the case for λt−a > 0 follows similarly. The evolution
unitarity implies the dynamical constraint ∑

d
n=1 pt,n = 1. Hence, to validate the monotonic

self-focusing behavior, it suffices to show that the ground-state fidelity pt,1 develops (at
least asymptotically) monotonically increasing behavior, as in Equation (94). To perform
the analytic derivation, we safely assume that the fidelity pt,1 is an analytic function of a.
Hence, pt,1(a) ≡ pt|a,1 at any finite quantum memory distance a ≡ δa + ∆a can be recast
via infinite-order Taylor series around the sufficiently small δa ≪ 1,

pt|a=δa+∆a ,1 = pt|δa ,1 + ∑
∞
s=1(∆

s/s!) R
(s)
t|δa

, (106)

where R
(s)
t|δa

≡
(

∂s

∂τs pt|τ,1

)∣∣∣
τ=δa

. Recalling the formula for the near-Markovian ground-state

fidelity (94), we now compute (up to behaviorally irrelevant subleading corrections) R
(s)
t|δa

and the remainder as the second term on the RHS of Equation (106):

R
(s)
t|δa

=
∂s

∂δs
a

[(
1 + ∑

d
l=2(p0,l/p0,1)e

−2δa |λt−a |(El−E1)t
)−1

+ O (subleading in δa)
]

= −∑
d
l=2(p0,l/p0,1)

∂s

∂δs
a
e−2δa |λt−a |(El−E1)t + O (asymp. irrelev. or subleading in δa)

= −∑
d
l=2(p0,l/p0,1) e−2δa |λt−a |(El−E1)t

(
− 2|λt−a|(El − E1)t

)s
+ O (asymp. irrelev. or subleading in δa)

⇒ ∑
∞
s=1∆sR

(s)
t|δa

/s! = −∑
d
l=2(p0,l/p0,1) e−2δa |λt−a |(El−E1)t

(
e−2∆a |λt−a |(El−E1)t − 1

)
+ O (irrelev.)

≈ −∑
d
l=2(p0,l/p0,1) e−2a|λt−a |(El−E1)t − pt|δa ,1 + 1.

(107)

Finally, combining Equations (106) and (107) with (94), the dominant profile of the
dynamical fidelity between the system’s wavefunction and the ground state of the SQT
Hamiltonian is obtained as

Ft|a(ϱt, |1⟩⟨1|) = pt|a,1 ≈ 1 − ∑
d
l=2(p0,l/p0,1)e

−2a|λt−a |(El−E1)t ⇒

Ft|a(ϱt, |1⟩⟨1|) ≈
(

1 + ∑
d
l=2(p0,l/p0,1)e

−2a|λt−a |(El−E1)t
)−1

= Ft|δa
(ϱt, |1⟩⟨1|)|δa→a

.
(108)

As we observe, the late-time behavior of the ground-state fidelity scales up in a covariant
fashion at any finite a = δa + ∆a (with ∆a ⩽ D(δa)); the infinite-order resummation
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corresponds to simply replacing δa ≪ 1 with the enlarged a. As such, for any a ∈ [δa, δa +

D(δa)], depending only on the sign of the EC coupling λt−a, the EC deformation or even
infinitesimal perturbation makes either the ground state or the excited state of the SQT
Hamiltonians the asymptotic fixed-point attractor of the unitary hybrid EC evolution.

The above derivation extends under the same conditions to the [[2, 2]] EC deformations
of SQT Hamiltonians. This is because, as shown in Section 5.3, the near-Markovian regime
of the [[2, 2]] EC Hamiltonians (100) is behaviorally equivalent to that of their [[1, 1]] versions
upon a linear mapping. Hence, the same rationale holds. The derivation itself, however,
is not sufficiently inclusive, even if it involves the resummation of the infinitely many
asymptotic perturbative terms. Its behavioral coverage is limited because (i) it is based on
assuming the analyticity of the attractor fidelity with respect to a and (ii) the noncompact
range of a beyond the domain of near-Markovian Taylor-series convergence is not covered
by it. Indeed, the analysis of the behavioral phases of one-qubit [[N ⩽ 3, L ⩽ 3]] EC unitary
evolutions (32), (38), and (39) presented in Ref. [1] (and reviewed in Section 5.1) strongly
suggests that either or both of the assumptions (i) and (ii)—i.e., series convergence and
fidelity analyticity—are violated when one goes sufficiently deep into the non-Markovian
regime. Thus, deeply non-Markovian EC deformations of SQT Hamiltonians develop a
highly nontrivial behavioral phase diagram with large qualitative diversity and physical
richness. In this light, we present, in what follows, a numerical exploration of deeply
non-Markovian deformations of one-qubit EC Hamiltonians.

Let us look into one-qubit pure-state-history EC deformations where ❍t is the sum
of the SQT Hamiltonian H = σ3 and a [[2, 2]] EC Hamiltonian (40), with representative
fixed-value couplings (λt−a, λR

t−a,t, λI
t−a,t) = (0, 1, 2), for 8 choices of the quantum memory

distances given by a ∈ {0.25, 1.33, 2.5, 3.5, 4.25, 5.33, 6.5, 7.88}. The numerical solutions to
the corresponding EC von Neumann equations, or, equivalently, EC Schrödinger equa-
tions, are shown in the eight plots of Figure 7. Among these eight plots, the top-left one
corresponds to the near-Markovian deformation discussed in the previous subsection,
while the remaining plots, beginning from the top-right one, correspond to seven exam-
ples of deeply non-Markovian deformations. These plots show the EC time evolution of
pt,1, which is the fidelity between the one-qubit wavefunction and the ground state of
H = σ3, being equal to ϱt,11 in the chosen basis. It is observed that pt,1 develops diverse
remarkable behaviors across the chosen spectrum of a. The numerical solution in the
top-right plot, corresponding to a = 1.33, which is close to the outset a = 1 of deep non-
Markovianity, still presents near-Markovian localization on the excited states of H = σ3.
In doing so, however, it first develops a sizable transient localization on the ground state
of H = σ3, preceded and followed by sharp transitions. The plots corresponding to
a ∈ {3.5, 5.33, 6.5, 7.88} present correlated oscillations in the fidelity pt,1, which develop col-
lectively at longer-scale, large-structured regular oscillations between the ground state and
the excited state of H = σ3. It is worthwhile to highlight that the unitary formation of such
longer-scale large-structured oscillations—which resemble time-like solitonic waves—is
one landmark of (non-hybrid and hybrid) unitary EC evolutions.

A remarkable dynamic attractor behavioral phase is presented by the solutions cor-
responding to a ∈ {2.5, 4.25} in Figure 7. As we observe, these deeply non-Markovian
N = L = 2 deformations transform the two eigenstates of the SQT Hamiltonian H = σ3

into metastable attractors between which the one-qubit wavefunction swaps sequentially in
a structured manner with highly robust profile and quantitative regularity, involving sharp
transitions between the two σ3 eigenstates. In fact, Figure 8 makes it clear that this bistable
attractor behavior precisely corresponds to the behavioral Phase V, previously shown for
non-hybrid [[2, 2]] EC Hamiltonians. As we see in the two plots of Figure 8, the sharp
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swaps between the ground state and the excited state of σ3 are precisely synchronized and
triggered by the one-qubit autocorrelation, i.e., its two-point state history fidelity.

To summarize, it is clear from our analytic discussions and the presented numeri-
cal solutions that the deeply non-Markovian EC deformations of the SQT Hamiltonians
constitute vastly diverse and qualitatively rich types of state and fidelity evolutions.
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Figure 8. The right plot shows the same EC deformation as detailed in the caption of Figure 7, for
the case of a = 2.5. The left plot shows the corresponding evolution of the one-qubit state history
fidelity, i.e., one-qubit autocorrelation with temporal distance a. See the text in Section 5.4 for detailed
explanations of the presented behaviors.

5.5. EC Hamiltonians Endowed with State-History-Dependent Couplings

We first recall that EC Hamiltonians, by definition, are Hermitian operators that
selectively link and coalesce (the information inside) the past-to-present states of their
closed systems. The essential substrate of EC Hamiltonians is the information content
of the state history of the unitarily evolving quantum systems. For example, a linear
combination of SQT Hamiltonians is itself an EC Hamiltonian once even a single coefficient
is allowed to become sensitive to the unitary state history that the system has taken up to
the present moment.

Indeed, typical Hamiltonians in ECQT not only employ products of the system’s
density operators but also contain scalar prefactors with diversely formed dependences
on the state history. The defining couplings of typical [[N, L]] Hamiltonians in ECQT can
themselves be scalar quantities defined in terms of (e.g., expectation values, traces, or
determinants of) the contextual combination of the past-to-present density operators of the
closed system. The physical significance of state-history-dependent couplings in ECQT is
already highlighted in Sections 3 and 4. For example, we have shown in Section 4 that struc-
turally fine-tuned [[N, L]] Hamiltonians, whose defining couplings are tailored to be specific
state-history-dependent scalars, can be equivalent to standard Hamiltonians. However, the
role of state-history-dependent couplings in ECQT goes far beyond such equivalences; their
significance is behavioral. Indeed, the efficient generation of behaviorally desired trajecto-
ries of a closed system requires that the Hamiltonian couplings themselves be EC—namely,
history-sensitive—in contextually distinctive ways. Let us highlight that it can become
behaviorally relevant for a system developing an EC unitary evolution that even their quan-
tum memory distances of its EC Hamiltonian become state-history-dependent. We delegate
a comprehensive study of this additional flexibility to a future publication. The central aim
of this subsection is to use simple examples in the context of minimal EC deformations
of standard Hamiltonians to show the behavioral significance of state-history-dependent
couplings in EC unitary evolutions.

Let us now return to the ground-state localizations of the wavefunction developed by
the ϱ̇t EC deformation introduced in Section 5.2. As the solution of the fidelity dynamics (94)
manifests, EC wavefunction localizations under unitary evolution (81) are characterized by
the following three attributes.
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(i) The speed of wavefunction localization has a finite maximum value vmax = 1, for the
whole spectrum of the deformation coupling. As one reads from the characteristic

time scale of this EC evolution, τ(H, ξ) = 1
2∆E

1+(ξ)2

|ξ| (Equation (97)), the maximum
speed is achieved at

ξmax speed ≡ arg min
ξ∈IR

τ(H, ξ) = 1. (109)

(ii) The fixed-point attractor of the unitary evolution—the moment at which the ground-
state fidelity reaches the value 1—is infinitely distant. In other words, the dynamical
attractor is asymptotic and the fidelity at any finite time has a value < 1.

(iii) The EC deformation in the minimal model (81) does not dynamically rescale the
reference Hamiltonian H (see the first term on the RHS of Equation (111) throughout
the unitary evolution.

We now present a simple proof-of-principle toy model that demonstrates how bringing
state history dependence into the couplings of hybrid EC Hamiltonians, without any form of
explicit time dependence, can be significant in generating the desired behaviors. Specifically,
we investigate how hybrid EC unitary evolutions generated by time-local couplings and
operators depending only on (ϱt or) ϱ̇t meet the following localization optimality criteria:
(a) by varying ξ, the speed defined by the time scale of wavefunction localization can
increase arbitrarily; (b) for any choice of µ, the time distance of the fixed-point attractor of
the wavefunction localization is finite, i.e., there is a finite time τ such that, for all t ⩾ τ, the
ground-state fidelity is stably 1. Based on the result in Equation (94), the first criterion is
satisfied by a slight variation of the profile (81) as

❍t =
(
1 + (ξ)2)H − ξϱ̇t, (110)

involving the ξ-dependent rescaling of the standard Hamiltonian, which, keeping the
reference eigenstates and hence the attractor state intact, changes the time scale and the
speed of the wavefunction localization to τ−1 = 2ξ∆E and vmax = 2ξ.

The consistent realization of the second criterion, however, involves a deformationally
stronger and behaviorally richer EC modification of the profile (81). It is sufficient to work
out the simplest model of an EC one-qubit closed system whose unitary evolution, based
on ϱ̇t-dependent deformations of an arbitrary SQT Hamiltonian H, meets the two criteria
mentioned above. Anticipating the necessity of state history dependence as the dynamical
EC rescaling of H and/or in the effective coupling of the additive EC operator, we introduce
the EC ansatz

❍t = ηt H − λtϱ̇t, (111)

whose complete identification must be deduced as the simplest solution to the inverse prob-
lem. Here, ηt = η(ξ, ϱ̇t) and λt = λ(ξ, ϱ̇t). Integrating the EC von Neumann equation (35)
for the Hamiltonian (111) can be performed similarly to what is described in Section 5.2 for
the model of Equation (81). In particular, considering the case of one-qubit wavefunction
localization to the ground state of the SQT Hamiltonian H (with the energy gap ∆E), the
equations read

ṗt,1 = −2∆E
λtηt

1 + (λt)2 pt,1(1 − pt,1). (112)

If ηt = |η| and λt = −|λ| are state-history-independent (and hence taken to be
constant upon excluding explicit time dependence), the solution of Equation (112) when
choosing p0,1 = 1/2 becomes

pt,1 = 1/(1 + e−t/τ), (113)
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where τ = 1
2|η|∆E

1+(λ)2

|λ| . This gives t = τ ln
(

pt,1/[1− pt,1]
)
, from which the landing time on

the fixed-point attractor state is obtained as tland ≡ t|pt,1=1 = ∞. To obtain a finite landing
time, at least one of the defining couplings in Equation (111) needs to become state-history-
dependent. The characteristic solution that meets criteria (a) and (b)—as stated earlier in
this section—is the EC evolution marked by the linear growth of the ground-state fidelity,
based on the monotonically increasing slope s(ξ) ≡ 2v(ξ)/∆E, with v(ξ) = |ξ|, all the way
from the initial moment t = 0 up to t = tland < ∞. Hence, the characteristic evolution is
defined by

ṗt,1 = 2θ(tland − t) v(ξ)/∆E = 2θ(tland − t)|ξ|/∆E. (114)

Combining Equations (112) and (114) implies that the state history dependences of the
defining couplings of Equation (111) must be such that

1 + (λt)2

λtηt
∝ pt,1(1 − pt,1). (115)

One can observe that the fidelity quantity on the RHS of Equation (115) is itself proportional
to det[ϱ̇t] during the unitary evolution—an on-shell identity that every solution to the EC
von Neumann Equation (35) realizes. By using the matrix representation of the one-qubit
ϱt in the eigenbasis of H, recalling Equation (111) and the assumption of the state history
purity, we conclude

det[ϱ̇t] = − (∆E ηt)2

1 + (λt)2 pt,1(1 − pt,1). (116)

Thus, introducing the constant velocity control parameter ξ, the condition (115) is dynami-
cally equivalent to the following constraint on the state history dependence of the couplings
of the EC Hamiltonian (111):

ηt

λt
= −det[ϱ̇t]

ξ
. (117)

As a result, we observe the possibility of two complementary categories of char-
acteristic solutions that feature linear wavefunction localization on the ground state—
Equation (114) with arbitrarily large localization velocity v(ξ). These categories are

CAT A : ηt = 1 and λt = |µ|/ det[ϱ̇t],

CAT B : ηt = −det[ϱ̇t] and λt = −|ξ|.
(118)

Interestingly, we find that CAT A can only lead to unitary state histories with some finite
temporal extents tmax, which are not even sufficiently long for the complete localization of
the wavefunction, tmax < tland. Combining Equation (117) and the defining condition of
CAT A in Equation (118), we obtain the algebraic equation

(λt)
2ξ − (∆E)2 pt,1(1 − pt,1)λt + ξ = 0. (119)

The reality of the time-dependent roots of this equation, which correspond to the dynamical
couplings λt, inevitably sets an upper bound tmax in the range 0 < tmax < tland on the time
extent of the state history of any CAT A solution. For example, considering the choices
H = σ3, |ξ| < 1/2, and the symmetric initial condition p0,1 = 1/2, we obtain

|ξ| ⩽ 2(1 − pt,1)pt,1 = 2
(1

2
− |ξ|t

)(1
2
+ |ξ|t

)
⇒ tmax =

√
1 − 2|ξ|
2|ξ| <

1
2|ξ| = tland. (120)
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The solutions to CAT B—in contrast to CAT A—always realize unitary evolutions
of an arbitrarily long age, which meet criteria (a) and (b); they attain complete stable
localization at tland = (1 − p0,1)/s(ξ) = ∆E(1 − p0,1)/(2|ξ|) and realize tmax = ∞. In
particular, Equations (117) and (118) for CAT B result in the following dynamics of the
state-history-dependent scaling ηt:

ηt =
1 + (ξ)2

(∆E)2

[
pt,1(1 − pt,1)

]−1

=
1 + (ξ)2

(∆E)2

[(
p0,1 +

2|ξ|
∆E

t
)(

1 − p0,1 −
2|ξ|
∆E

t
)]−1

.
(121)

It is important to ensure the fulfillment of the fixed-point attractor condition at the first
moment when CAT B solutions arrive at complete wavefunction localization, i.e., ptland,2 = 0
and ptland,1 = 1. To this aim, following the steps as in Section 5.2 in solving the EC von
Neumann Equation (35) for the ansatz Hamiltonian (111), the adjusted analogs of the
fidelity differential dynamics in Equation (90) are found to be

ṗt,1 =
2λtηt

1 + (λt)2

(
E1 − εt

)
pt,1,

ṗt,2 =
2λtηt

1 + (λt)2

(
E2 − εt

)
pt,2.

(122)

Having ptland,2 = 0 and εtland = E1, these equations show that ṗtland,2 = ṗtland,1 = 0.
Likewise, Equation (122) implies that all higher-order derivatives of the pt,n variables at
tland vanish, which realizes the total termination of the dynamics.

The final point to address is the scaling feature of the characteristic solutions in CAT B

of the classification (118). As we see in Equation (121), the state dependence of ηt pushes
it dynamically to increase unboundedly toward the landing moment, hence becoming
singular at the finitely distant moment tland. This diverging behavior is not exclusive to
the characteristic solution with the linear growth in ground-sate fidelity; based on the
differential dynamics of the fidelity given in Equation (112), we can easily prove that,
regardless of the ramping profile of pt,1, any solution with a finite landing moment must
develop this scaling divergence. Fortunately, we can show that this diverging behavior
can be trivially renormalized, hence securing the finiteness of all measurement outcomes.
As there is no physical sense in the absolute values of the energy levels of a closed system
(in the absence of a cosmological constant), all it takes to erase the formal divergence is
to impose a physically trivial (ϱt commuting operator) shift to the initial ansatz given in
Equation (111), so that, while the EC dynamics and the eigenstates of H remain invariant,
the ground-state energy becomes finite. The remedied version of the Hamiltonian (111)
endowed with CAT B of state-history-dependent couplings can be presented in the following
two behaviorally equivalent forms:

❍t = −det[ϱ̇t](H − E1✶) + |ξ|ϱ̇t

behavioral∼= −det[ϱ̇t](H − E1ϱt) + |ξ|ϱ̇t. (123)

The unitary evolution corresponding to the above Hamiltonian yields an EC state history
that lasts forever (tmax = ∞) and realizes sharp ground-state localization and a fixed-point
attractor at

tland = (1 − p0,1)/s(ξ) =
(1 − p0,1)∆E

2v(ξ)
=

∆E

2|ξ| (1 − p0,1), (124)

with an arbitrarily large ramping velocity v(ξ) = |ξ|, and it has a smooth Lyapunov function

with a finitely distant attractor of finite value—the energy function εt. Here, εt monotoni-
cally decreases to a stable plateau of finite value, which is the ground state of the one-qubit
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closed system, i.e., limt→tland εt = εland. By using Equations (116), (117), (118) [CAT B],
and (114), and after some algebra, one can determine the Lyapunov function of the EC
Hamiltonian (123) and its attractor value εland as follows:

εt =Tr[ϱt❍t] =
1 + (ξ)2

∆E

1
pt,1

=
1 + (ξ)2

∆E

[
p0,1 +

2|ξ|
∆E

θ

(
∆E

2|ξ|
(1 − p0,1)− t

)
t
]−1

,

εland =
1 + (ξ)2

∆E
.

(125)

Following the above analytic analysis, in Figure 9, we depict a representative unitary
evolution corresponding to the refined hybrid EC Hamiltonian (123), which is obtained by
numerically solving the corresponding von Neumann Equation (35). As a measure of the
effectiveness of the localization performance due to state-history-dependent couplings, we
remark that the effective localization under the initial EC hybrid Hamiltonian (81) with the
same control parameters is about one order of magnitude slower than the one realized by
Equation (123).
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Figure 9. Finite-time EC localization of the one-qubit wavefunction to the ground state of H = σ3,
starting from an infinitesimal vicinity of the σ3 excited state |2⟩, corresponding to the EC Hamil-
tonian (123), with ξ = −1, obtained by numerically solving the corresponding EC von Neumann
equation (35). We use the eigenbasis of σ3 to depict the plots, such that ϱt,11 is equal to the fidelity of
the one-qubit wavefunction and the ground state of H = σ3. The observed profile of localization is
linear, matching Equation (114), realizing tland = 1 according to Equation (124), with the Lyapunov
function following the analytic solution (125).

6. Characterization of General Quantum Behaviors and
Phenomenological Significance of ECQT

Quantum mechanics is a robust cornerstone of modern physics. It has been extremely
successful in explaining, as well as predicting, diverse natural phenomena across many
scales. What has been enabled by standard quantum theory thus far is already funda-
mentally and technologically vast and promising. Notwithstanding all achievements
of this theory, it is subject to fundamental (conceptual and structural) scrutiny, particu-
larly in light of insights gained by long-standing attempts to understand the quantum
nature of spacetime, as well as recent information-theoretic derivations of the theory in
the new millennium. In fact, there are various natural motivations and observations that
suggest deformations or generalizations of standard quantum theory. In particular, we
discern at least three dimensions that constructively contribute to such a picture: (i) quan-
tum gravity and emergent spacetime, especially formulated within the “it-from-(qu)bit”
paradigm [32–34]; (ii) information-theoretic reconstructions of SQT, especially within agent-

based frameworks [35–37], as well as alternative models of emergent quantum theory;
and (iii) conceptual and formal impacts from abstract theories of computational intelli-
gence [38,39], which can formulate interactive dynamical networks of multiagent Bayesian
inference and decision making.

Generalizing SQT is a grand project that would likely lead to significant outcomes and
fundamental impacts. Here, we concentrate on one of these outcomes that is of particular
interest to us: the constructive development of an interactome of quantum theories or, in
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brief, the quantum interactome (QI), which we denote by MQ. This interactive landscape
is the basis of all consistent, coexisting, and phenomenologically successful theories of
context-based (or situational) quantum behaviors. By “context”, one means a sufficiently large
domain of empirical phenomena and observables that share a common foundational theme.
We stress that contexts are neither exclusive to individual problems nor narrow and detail-
sensitive. One can naturally structure MQ as a (hypergraphic) network wherein each node is
an independent theory of an “elementary quantum phenomenon” [32–34] within a specific
context (which can be different from the physical spacetime). In other words, each node of
MQ is a theory of abstract many-body systems composed of cooperative agents, their chosen
queries in the context, and quantum information units of the answers to these queries.
This abstract many-body system yields probabilistic (co)creative inferences of configurated
quantum entities in its own context. The links of the network represent various structural

interactions between these quantum theories, such as inclusions, reductions, hierarchies,
or emergence relations. In the following, we shall elaborate on the elements described
in this paragraph and their rationale. In the present paper, we describe the first attempt
at the characterization of MQ by investigating the various interrelations among SQT and
ECQT [1].

Here, we briefly outline the rationale behind developing ECQT and the QI. In order to
develop generalized quantum theories, a proven methodology to start with, as illustrated
in SQT, is to give precedence to closed systems rather than open systems and to obtain the
latter as a subordinate of the former. In addition, we believe that a plausible approach is
to start with purely dynamical deformations of SQT, whereas other structural, including
kinematical, deformations can be implemented (whenever necessary) through context-
based requirements or internal consistency. This precedence is particularly natural when
one begins with an abstract quantum system in 0 + 1 dimensions out of which physical
phenomena are going to emerge. In any such quantum system, the only observable at
hand is the Hamiltonian. Accordingly, any deformation of the standard structure of the
Hamiltonian gives rise to dynamical deformations of SQT. Assuming that the nodes of
MQ are theories of dynamical probability amplitudes in Hilbert spaces, their probability-
theoretic consistency requires that the time evolution of quantum states, namely rays |Ψt⟩
and density operators ϱt, are isometry or, in a strong sense, unitarity. This principle can be
considered as the only fundamental postulate on dynamics in quantum theory. All other
dynamical properties of quantum dynamics are context-based in that their rationalizations
are conditioned on the associated context of the theory.

We recall that the basic context in which SQT—and local quantum field theories as
its descendants—has been developed is the description of particles that propagate and
interact in spacetime, with the majority of the relevant observables being accordingly
spatiotemporal. Thus, it is important to note that some of the incorporated principles
in SQT have been imposed due to this very context. In particular, to our knowledge,
the postulate of the strict state history independence of the Hamiltonians—and hence
the linearity and time locality of the unitary dynamics—in quantum mechanics has been
adopted for its simplicity or due to heuristic reasonings or analogies. This postulate has
been shown to be empirically successful up to the standard model of elementary particles.

Naturally, however, theories of nonlinear quantum mechanics have also been proposed
as alternatives. However, these theories have been mostly incoherent and scattered explo-
rations or models. A common feature of the proposed models is the possibility of anomalies
and exotic features in them. Nevertheless, we wish to point out that nonlinearity is not
fundamentally forbidden and still remains a serious possibility. In particular, a deeper
inspection reveals the following points: (i) derivations of the anomalies in the proposed
models, such as acausality [30,31,40] or entropy-related concerns [41], for example, in the
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Weinberg model, or the attempts to prove a universal theorem for the linearity of quantum
dynamics [42], are not conclusive. Such derivations were intrinsically model-dependent,
had unnecessary underlying assumptions, or contained hidden elements, such as ignoring
the possibility of necessary redefinitions, modifications, or less conventional scenarios.
It is precisely in this regard that numerous independent constructive reconsiderations
have been proposed, e.g., in Refs. [43–61]. All these show that there is no fundamental
no-go theorem for the nonlinearity of quantum theory. (ii) Various quantum theories in
MQ can be typically immune by context to these anomalies. (iii) Interestingly, within the
very context of SQT, a natural framework for causal, unitary, measurement-wise consis-
tent nonlinear quantum mechanics from state-dependent deformations of quantum field
theory has been recently proposed in Ref. [62], with experimental proposals and tests in
Refs. [63,64]. Moreover, as we shall indicate below, recent developments, especially in
reconstructions of SQT and also quantum gravity, encourage extensive explorations of
physically relevant deformations of SQT.

A pervasive thesis used to synthesize quantum theory and gravity has been the
search for a framework that enables the emergence of the physical spacetime, including
all associated geometrical features, such as locality and causality, and spatiotemporal
observables from within some fundamental spaceless many-body theory in 0 + 1 (or 0 + 0)
dimensions. Within this paradigm, several frameworks have been proposed, such as
formulations and models coming from the holographic principle (especially those within
or inspired by string theory) [65–76], group field theory (and spin networks) [77,78], and
various alternative pregeometric models of quantum gravity [79–92].

The basic assumption is that the fundamental many-body system is itself quantum,
in the sense that its defining degrees of freedom are prephysical quantum information,
which feature some version of abstract quantum behavior. That is, the constituent quantum
information degrees of freedom are defined without any notion of physical spacetime;
hence, they are spatially featureless. As such, although, inherently, no spatiotemporal
observables, interactions, or communications exist a priori in this theory, semiclassical
spacetimes and spatiotemporal interactions and observables (within the standard model
and general relativity as effective theories) are to emerge from the underlying abstract
quantum behavior at some integrated higher levels.

It is evident that such a fundamental theory of abstract pregeometric quantum in-
formation does not need to be confined within the SQT conditioning. In fact, even in
contexts that are less ambitious than the complete emergence of spacetime, various in-
dependent disciplines of quantum gravity (particularly string theory and loop quantum
gravity) suggest the relevance of nonlinear generalizations of SQT; see, e.g., Refs. [93–96].
Moreover, nonlinear quantum mechanics can contribute to resolving deeper puzzles in
black hole quantum information processing [97], especially within generalized frameworks
of AdS/CFT to reconstruct the interior regions of black holes [98–107]. We wish to point
out that the prerequisite of having an emergent local and causal spacetime out of some
abstract quantum behaviors by no means imposes linearity or time locality on the unitary
dynamics in the fundamental theory. Hence, we propose that the fundamental quantum
theory of emergent spacetime can be a distinct node in the QI MQ. Moreover, we antic-
ipate that, in this theory, the unitary evolution operator of the original system can also
be experience-centric, hence exploiting the state history as a source for the updating of
many-body interactions. As we have observed in Section 5 (and following Ref. [1]), having
non-Markovianity and unitarity functionally united enables a broad set of phase diagrams
for EC unitary evolutions, which can potentially serve as a promising resource for diverse
features, such as the emergence of dynamical physical spacetimes and standard-model-like
interactions and matter particles.
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An alternative portal to MQ is spurred by various approaches, frameworks, or schemes
through which SQT becomes a derivative rather than a fundamental theory. In fact, in
light of numerous complementary reasons, as well as a variety of parent models, the idea
of having SQT as an (exact or effective) emergent theory has gained significant momen-
tum in recent years. There are two major categories where the frameworks or scenarios
of this kind are classified. First, one can reconstruct SQT from first principles based on
pure information theory and probabilistic reasoning: some abstract theory of probabilistic
information acquisition and objective or subjective Bayesian inference—see the insightful
reconstructions proposed recently, e.g., in Refs. [108–120] and also Ref. [121] as a relevant
precursor. Alternatively, there are independent frameworks and specific models wherein
SQT is recast as approximate or sometimes exact emergent descriptions of other abstract
or physical theories or (even classical) many-body systems of various kinds or as a de-
scription of some particular phases of these systems or theories; see, e.g., Refs. [122–134].
It is imperative to highlight the breadth and flexibility of these parent theories yield-
ing approximate emergent quantum descriptions. In particular, SQT can emerge from
many-body systems whose microscopic degrees of freedom and interactions are vastly dif-
ferent, encompassing many-body theories as diverse as matrix models, various distinctive
classes of cellular automata, classical neural networks or complex systems, and holographic
bulk-boundary systems.

Along with technical evidence coming from these diverse models, placing SQT and
quantum behavior in its generality within the emergence framework also has purely
conceptual roots. For example, in SQT, the evolution of states or observables is parametrized
based on physical, classically measurable time variables. On the basis that any such time
is a derivative phenomenon, SQT as a theory for probability amplitudes should also be
emergent. Now, since some consequential properties of emergence can themselves be
context-dependent, the mathematical and physical structures of the Schrödinger and von
Neumann equations of the alternative quantum theories in MQ can admit a wide variety. In
particular, in the category of emergent quantum theories, the Schrödinger equation typically
receives various nonlinear deformations. For a few relevant examples and remarks, see
Refs. [129–132,134]. Moreover, we wish to point out that, even when restricting ourselves
to the exact reconstructions of SQT (in the first category), the exact linearity and time
locality of the unitary evolution are consequences of supplemental conditions or technical
structures, which are external to the very abstract information theory in a general context.
The principal message of this discussion is that alternative quantum theories in MQ can
have largely variant structures of unitary quantum dynamics, manifesting the variety of their
defining contexts.

The third dimension of the synthesis that can lead us to contextual quantum the-
ories in MQ is deformational structural interactions and mutual impacts between the
general disciplines of intelligent behavior and quantum behavior. It is noted that applica-
tions of SQT, especially quantum computation, have been vastly investigated in quan-
tum machine learning and quantum artificial intelligence to devise advantageous al-
gorithms for supervised, unsupervised, and reinforcement learning and computational
intelligence [135–140]. Here, in essence, SQT as a resource provides tools for the remanufac-
turing of learning systems in order to improve their performance. However, as a powerful
forward step, we propose that the principles and formalisms of computational intelligence
and cognition (artificial [38,39] or biological [141,142]) can serve as guidelines for the for-
mulation of contextual quantum behaviors beyond the reach of SQT. To demonstrate the
naturalness and utility of this reverse impact, in the following, we describe three aspects
that indicate how the abstract discipline of computational intelligence can project deep
structural deformations for SQT.
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(i) The impacts of computational intelligence and cognition on the formulation of quan-
tum theories in MQ can be linked to a fundamental origin as follows. Information-
theoretic constructions of quantum theories are ultimately based on observer-
participatory networks (in the Wheelerian sense), where agentive decision making
and inferential information processing are developed cooperatively. In effect, this
“interactome” of agents functions as abstract cognitive machines performing inferential,
probabilistic computations, which, in particular, construct (experiential representa-
tions of) the defining contexts of the alternative quantum theories. The bottomline of
this reasoning is that mutual structural interactions between quantum and intelligent
behaviors can be natural, fundamental, and multipurpose.

(ii) The behavioral states and functional phases of complex many-body systems and neu-
ral networks can give rise to alternative quantum theories in MQ, as their emergent

descriptions. Thus, correspondingly, intelligent behavior can be the dominant deter-
mining factor in the defining structure of such quantum theories. This impact can
manifest in either of the following forms: (a) the many-body complex system is itself a
system with intelligent behavior by architecture, e.g., a classical or quantum neural net-
work, or (b) it is some complex many-body system whose sufficiently rich behavioral
phase diagram hosts specific states and phases that can feature intelligent behavior.

(iii) One can formulate abstract, contextual quantum theories in MQ, which, by definition
and independently of any emergence mechanism, model abstract computational
systems that solve goal-driven complex tasks, such as complex decision making,
inference, or meta-learning.

To summarize, any of the above scenarios implies that the structural impacts of abstract
computational intelligence and cognition on quantum theories can be direct and pivotal.
Moreover, it can be argued based on thought experiments and general considerations that
profound dynamical deformations of SQT are required for quantum general intelligence, as
proposed in Ref. [1]. The primary components of such deformations are a combination of
experience centricity and unitarity.

Thus far, we have substantiated why and how the notions of general quantum behavior

and the QI are to be conceived. In light of these reasonings based on information theory,
fundamental or functional emergence, and participatory agency, we establish an interactome of
quantum theories MQ whose constituent theories all share the following basic elements
and characteristics, as the prerequisites of general quantum behaviors.

(i) Elementary quantum phenomena in agent-participatory networks: the elementary degrees of
freedom, being the superposable “YES” or “NO” (or even “NO COMMENT”) responses
to the context-based-chosen queries that are posed by the associated agents in their
participatory inferential networks. These information degrees of freedom, which are
meaning-based (e.g., association-specifying), interact, evolve, and form Hilbert-space-
representable experiential systems.

(ii) Complementarity: the existence of nonempty classes of queries whose answers are
informationally incompatible/nonadditive.

(iii) Irreversibility of measurement actions: the registration of acquired information, meaning
its retention in the absence of new informational incompatibilities.

(iv) States: momentary states identified with density operators, encoding the complete sets
of updated Bayesian predictions corresponding to agent–system pairs.

(v) Distinctive role of the pure states: probability amplitudes encoded in pure states—being
maximally informative density operators—with amplitudes identified by Born’s rule
or its possible consistent generalizations or appropriate context-based deformations.

(vi) Evolution: unitarity (or isometry) of the time evolution of the states of closed systems.
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Upon this abstract characterization, we identify quantum theory as the general theory of
(fundamental or emergent) quantum behaviors. Beyond the above general quantum behav-
ior prerequisites, any additional postulate or structure (whether dynamical or kinematical)
is to be imposed as a context-defining constraint, which singles out the specific context-based
quantum theory, represented by a constituting node of the QI, MQ. As we conjecture,
many of these nodes should be formulated within ECQT—which is the quantum theory of
(fundamental or emergent) experience-centric unitary evolutions as defined in Section 3.
The hypergraphical essence of MQ manifests the essential fact that there are structural
interactions (as explained earlier in this section) between these independent quantum
theories, which are represented by different types of hyperlinks.

It is highlighted again that “contexts” are broad empirical categories of phenomeno-
logical observables organized by a central common theme. To bring an example, the
organizational theme in quantum mechanics is spacetime, i.e., spatiotemporal propaga-
tions, correlations, interactions, and observables. It is due to this specific context that SQT
has been defined as a quantum theory formulated with the additional postulates of the
time locality and linearity of the unitary dynamics. In a way, this important point was re-
vealed when Feynman succeeded in reformulating quantum mechanics—without primarily
imposing the standard properties of the Schrödinger equation—by choosing a method-
ology where the very spacetime context plays a direct determinant role in constructing
SQT [143,144]. For deeper investigations in recent times on the structural constraints im-
posed on SQT due to its spacetime context, see, e.g., Refs. [145–147]. Along this line, it
should be remembered that, even in the very spacetime context (including its relativistic
extensions), neither dynamical linearity nor dynamical time locality is a necessary condition
for the consistency of quantum physics; see, e.g., Refs. [61,62,148] regarding nonlinearity
and Refs. [149–154] regarding time nonlocality. Moving beyond SQT within its ECQT
generalization, one becomes able to formulate numerous other contextual nodes of MQ,
some of which we shall point out in Section 8.

To summarize, thus far, in this section, we have presented a general abstract, funda-
mental basis for the interactive quantum landscape MQ and ECQT (serving as its major
component). However, we stress that ECQT can also be viewed independently of the
rationale and motivations presented in this section (entirely based on the formulation
presented in Section 3).

Finally, we articulate the transformative insight that may conclusively arise from
the complementary, abstract rationale and general, independent considerations presented
above. In principle, one sees two broad domains of natural and artificial phenomena whose
adequate theoretical formulations motivate and welcome larger quantum theories that,
by construction, allow for strongly state-history-sourced quantum behaviors already at
the core level of unitarily coherent processes—hence, ECQT. Intriguingly, these domains
represent the two extreme, opposite limits of the phenomenological spectrum in nature
and the universe.

At one end, we have the fundamental theories of the pregeometric phases of the
universe and multiverse from which physical and geometric spacetime(s) and the en-
tire standard theory of particle physics are to emerge, perhaps level by level, in their
phase diagrams. In a theory of such self-evolving, purely informational closed quan-
tum systems, there is nothing but the experienced information in the state history of the
closed system to update its many-body interactions and guide its evolution. Importantly,
a pregeometric and immaterial closed system as such cannot have the structural sym-
metries/invariances/constraints of the to-be-emergent physical spacetime and matter as
built-in features imposed on it. Indeed, the principle of experience centricity implies that
phenomenologically established features such as causal locality, diffeomorphism, CPT,
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quantum mechanical linearity, and gauge groups all ought to emerge experientially from
internal “experimentations” of the closed system of a young universe, which follows its
self-driven phases of evolution.

At the opposite end, we have sufficiently complex many-body systems in which EC
quantum behaviors genuinely self-emerge at higher organizational levels. These complex
many-body systems, being ubiquitous in nature and technology, can be material, purely
symbolic, or hybrid. In particular, they can be widely diverse in their structural instan-
tiations and can be microscopically quantum mechanical or even classical. On general
grounds, it is expected that generic higher-level processes in such complex many-body
systems—which, generically speaking, fall within our characterization of general quantum
behaviors—can be influenced and led by the state history of the system, even in intervals in
which the system is decoupled from its environment. Thus, ECQT serves as the emergent,
larger quantum theory that formulates their higher-level behavior.

Moreover, a variety of natural and technological domains residing between the two
extremes can substantially benefit from their (possibly effective) reformulations within
ECQT. In the next section, we elaborate further on the envisioned applications of ECQT
across this broad spectrum.

7. Foundations for Applications of ECQT

In this section, we lay out the foundations for the broad applications of ECQT and QI,
which span established areas of physics as well as fields and domains that have remained
thus far beyond the direct reach of the traditional theories of physics. These foundations
follow, in particular, the independent lines of reasoning put forward in both Section 6 and
Ref. [1].

First, we stress that there are various established domains of quantum physics that
reasonably invite intriguing and promising applications of ECQT and the QI.

1. ECQT can substantially impact the subfields of quantum information processing,
including quantum computation, quantum communication, and quantum networks.
In this respect, three points should be highlighted.
(i) The standard disciplines of quantum information theory and quantum computation
have thus far offered an abstract language for SQT. In the past few decades, the signif-
icant productivity of this language has proven itself in diverse areas of physics, such
as condensed matter, holographic spacetimes, etc. However, beneath its abstractness,
this language is bound to the contextual constraints of quantum mechanics, which
renders it non-universal—with “universality” meant as faithful theoretical inclusivity,
not simulational coverage. To bestow universality as such, one is required to re-
visit and generalize quantum information theory and quantum computation beyond
this hidden mechanical context. This notion that quantum information and quantum
computation should transcend quantum mechanics to be universal becomes more
conspicuous when the computational units and processes are functional and emergent

at higher levels. The computational modules and processes of such systems and states
do not reflect the mechanisms that take place between the underlying elements at
the anatomical level, nor do they bound themselves necessarily to the mechanistic
constraints on the architectures. The QI and ECQT, by their nature and construction,
do have the capacity and potency to develop a universal theory of fundamental and
emergent information processing and computation. We shall return to this important
point in the forthcoming applications of ECQT and MQ.
(ii) EC unitarities enable a larger space of observable quantities in which quantum
information and computational elements can be implanted reliably. In particular, state
history fidelities, their corresponding phase factors, and their many-point descendants
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(as defined in Equation (48)) can naturally encode a variety of evolving data. Indeed,
there are numerous phases of EC unitary evolutions in which such time-nonlocal
information encodings are highly robust. Concrete examples of such behavioral
phases include Phases IV and V of the [[2, 2]] EC Hamiltonians of the one-qubit closed
systems—see Figure 3—and their higher-order ramifications—see Figure 4.
(iii) It has been shown that nonlinear unitarities can significantly enhance quantum
computation [155] and quantum search algorithms [156–158]. The time nonlocality,
the memory resource uses, and especially the EC steerability of EC unitary evolutions
allow for the dissection, composition, development, and processing of quantum
information in novel manners that are more complex and highly orchestrated. These
features endow ECQT with the potential to enrich and enhance quantum computation,
e.g., by enabling novel and structurally unprecedented quantum circuits, quantum
walks, and quantum algorithms, which surpass the performance and limits of SQT.
(iv) In ECQT systems of information processing, the computational units and modules
can be continually redefined and updated according to the experience of the system
and its subsystems (Element 2, Section 3). One can anticipate that this characteristic
will bring about substantial advantages in computational processes and tasks that
are highly complex. Once these points are appreciated, it becomes clear that one can
develop significantly more powerful and versatile quantum information and quantum
computation theories—which have the luxury of a universal, context-free framework—
within ECQT. Moreover, the generalized families of EC Hamiltonians defined in
Element 7 of Section 3 can not only further enrich these quantum computational
systems but also provide natural candidates for novel quantum network architectures
and quantum communication protocols that are more intricate and resourceful. Finally,
we highlight that ECQT can naturally provide unique error correcting processes and
protocols, with which the resilience of quantum computation becomes more easily
achievable. Ultimately, these investigations should lead us to the computational
landscape—e.g., in the sense of Ref. [159]—of ECQT and the QI, which are applicable
in highly complex computations in broad disciplines and domains.

2. Systematic EC generalizations of the standard theory of open quantum systems—and
its different contextual realizations within MQ—appear to be promising and can have
potential profound impacts. In methodological similarity to quantum mechanics,
ECQT has been initiated as a theory for closed quantum systems with their unitary

evolutions. The next natural level will be moving toward its open-system descendant.
The formulation begins with the EC unitary evolution of a closed composite system
(composed of an open system interacting with an environment) and deducing the
nonunitary dynamics of the open quantum system of interest. The closed-to-open
transition in ECQT, however, brings about the following fundamental differences
compared to SQT.
(a) The innermost idea in ECQT is that nonunitarity (environmentally induced varia-
tions in the information content of open systems) and non-Markovianity (dynamical
memory dependence) are essentially two independent aspects of general quantum
behaviors in open quantum systems, including diverse contextual specializations.
In fact, thinking reversely, the ECQT of closed quantum systems can be thought
of as the dissipationless limit of a generalized open-system theory where—unlike
SQT—non-Markovianity and nonunitarity can have their presences as independent

variable aspects, while still impacting each other dynamically.
(b) Indeed, this decoupling can be explicitly observed upon tracing out the environ-
mental degrees of freedom of composite closed systems under EC unitary evolution.
The EC open systems inherit their non-Markovianity from two independent sources,
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with the first source being the intrinsic non-Markovianity of their total closed systems
and the second source—the one inducing nonunitarity—being correlations and inter-
actions with the environment. This EC trinity of the nonunitarity and the two different
kinds of non-Markovianity, in turn, results in rich mutual interactions between these
variable aspects (bipartite and tripartite) beyond open-system SQT. Moreover, the
EC Hamiltonian of the mother system—as, e.g., in the resolution-refined families of
[[N, L]] EC Hamiltonians presented in Section 3—typically contains inter-subsystem
and environmental interactions of natures or forms that do not exist in SQT. In partic-
ular, due to the experience centricity of all these novel interactions, the information
exchange between the interplaying parties (even including the mother system herself
as one of these parties) can be even more constructive and orchestrated (resembling
meaningful communications) than the information backflow in SQT.
(c) The contextual realizations of EC open systems, relying on the above-mentioned
characteristics, can naturally lead to diverse novel types of nonunitary quantum
behaviors that are outstanding phenomenologically and empirically. As already wit-
nessed in the smallest closed quantum system of one qubit, the experience centricity
of the quantum dynamics leads to behavioral phases, transitions, and observable
effects of diverse and unprecedented kinds. It is interesting to note that, already in
the 4-dimensional open ECQT, which describes two open-system qubits, “Alice” and
“Bob”, arising experientially from within their mother system, “Celine” (according
to Element 2), become three-body interacting systems and generate highly rich be-
havioral phase diagrams. More generally, a plethora of even richer behavioral phases
and observable effects emerge in more complex EC open-system evolutions. Indeed,
even in a single EC open system, one has numerous phases, only some of which
would qualitatively appear in a collection of distinct controlled SQT open systems.
In particular, one can mention the following two natural features of EC open-system
dynamics: recurrent phase revivals and complex cooperative learning on the basis of
dynamically interactive exchanges of experience among agents.

3. In recent years, an exciting progression of quantum computation theory has arisen
in the form of quantum artificial intelligence and quantum machine learning. These
disciplines apply the enriching techniques of quantum algorithms, quantum circuits,
and open quantum dynamics within SQT to advance artificial intelligent systems,
including machine learning and reinforcement learning [137,138]. Following the
reasonings presented in Ref. [1], and in the above items (1) and (2), combined with
the discussions presented in the forthcoming paragraphs about general cognitive
processes, phenomena, and intelligent behaviors, we envision that ECQT can play a
transformative role in all these disciplines and approaches. These ECQT applications
include (structurally and functionally) novel generations of neural networks, deep
learning, convolutional neural networks, Transformers, and large-language models.
In a broader and even independent perspective, ECQT could lead to novel intel-
ligent systems featuring meta-learning and meta-cognition toward artificial general

intelligence.
4. Prototypical spin, fermionic, and bosonic condensed matter systems such as quan-

tum spin models, Hubbard models, and Bose–Hubbard models can be drastically
generalized by allowing their internal interactions to become EC. In fact, the simplest
example of this type was formulated in Ref. [1]. It would be exciting to obtain the
enlarged phase diagrams and novel phase transitions of these EC condensed matter
systems—for example, EC Hubbard models—whose SQT versions already capture
some phenomenological aspects of strange metals, high-temperature superconductors,
and emergent gauge fields. Along these lines, it would be intriguing to investigate
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novel aspects of nonequilibrium dynamics, effective thermalization, and especially
the scrambling of information in EC quantum many-body systems.

5. It is necessary to point out the possible applications of ECQT in cosmology and
“beyond the standard model” physics. First, the discernment of possible ECQT observ-
able phenomena in particle physics and cosmology mainly amounts to addressing
novel empirical questions that are distinct from the established question sets tradition-
ally addressed within the standard theories of particle physics and cosmology. Second,
we highlight that the usual smallness of the empirical bounds on quantum nonlin-
earities does not necessarily render such ECQT-observable phenomena insignificant.
Indeed, SQT perturbations with infinitesimally coupled Hermitian EC operators can
accumulatively give rise to sizable observable effects over sufficiently long periods
of time, which can be particularly relevant for cosmological scenarios. Moreover, as
we have seen in Section 5, there are certain classes of slight EC perturbations of SQT
that can generate non-negligible and phenomenologically interesting effects. One
possible scenario for the investigation of such phenomena can be obtained via ECQT
extensions of nonlinear quantum mechanics as in Ref. [62], possibly along the lines of
Refs. [63,64].

6. At the fundamental level, the QI and ECQT may lead to unprecedented, more plausible
theories and models of quantum gravity. In this direction, it is primarily interesting
to examine different approaches to formulating holographic models within ECQT—
in particular, EC generalizations of AdS/CFT and its de Sitter-type variants [65]
and matrix or tensor theories such as the BFSS model [66] and the SYK model [160]
and its proposed dS-dual variants [161] stand out. Moreover, various independent
proposals of quantum gravity, such as the ones introduced in Refs. [76,94,162], could
benefit from suitable EC generalizations. In addition, revisiting quantum-information-
theoretic aspects of causal horizons, including black holes and observer-dependent
horizons, within the framework of EC unitary processing and computing sounds
promising in the enhancement of existing models or the development of new models
and formalisms. Finally, understanding that the ultimate and the only perfect closed
system is the universe itself, it is natural to advance toward richer models of quantum
cosmology using the resolution-refined versions of ECQT. Moving beyond this, one
can use the QI and ECQT to revisit and reinvigorate formulations of grand unified
theories, particularly within the context of “it-from-(qu)bit” paradigms—for example,
in the spirit of Refs. [163,164].
Thus far, we have suggested plausible applications of ECQT in various disciplines
of quantum physics; however, these constitute a small fraction of the phenomenological

coverage of ECQT and the QI. We are aware that there have been several remark-
able investigations into diverse ways to generalize quantum mechanics; see, e.g.,
Refs. [27,28,43,165–176]. However, the overwhelming majority of this literature is
marked by the following three characteristics: (i) it has been basically presumed (some-
times implicitly) that quantum theory is—by context—quantum mechanics, including
its finite-dimensional reductions and quantum field-theoretical formulations; (ii) these
generalizations are mostly motivated by the search for more fulfilling theories of
quantum gravity with a sound conceptual basis and sharp, falsifiable, and predictive
phenomenological outreach; (iii) typically, they are marked by giving precedence
to structural generalizations of SQT that are mainly mathematical or kinematical or
based on the formalism of measurement operators.
However, the standpoints of ECQT and the QI are starkly different. In this regard, there
are several major points that should be highlighted.



Universe 2025, 11, 162 54 of 69

(a) Quantum theory is not quantum mechanics. Quantum mechanics is quantum
theory tailored to a specific context, i.e., the organizational theme: spacetime and
spatiotemporal propagations, correlations, interactions, and observables. Otherwise,
quantum theory—the theory of general quantum behaviors—is a multi-context grand
theory that is vastly larger, richer, and more flexible than quantum mechanics.
(b) Quantum gravity and, more generally, emergent spacetime have neither any
privileged compass role nor any fundamental phenomenological precedence to guide
generalizations of quantum mechanics.
(c) In transcending quantum mechanics within ECQT, the primary direction in the gen-
eralization of SQT is dynamics rather than kinematics—merging the time evolution
unitarity with non-Markovian experience centricity. Any other possible kinemati-
cal generalizations (including observables and measurements) should follow this
dynamical generalization and be based on the context.
(d) The fact that quantum mechanics has taken the role of identifying and representing
quantum theory is mainly a historical (not principal) point. Quantum mechanics co-
exists and interacts with other structurally different context-based quantum theories
that are independent and capable of predictive empirical success across domains and
phenomena beyond the reach of traditional quantum physics. Indeed, the abstract fun-
damental nature of MQ—participatory-agentive “it-from-(qu)bit” developing diverse
contexts—together with the associated flexibility and generality of ECQT formalisms,
places alternative contextual specializations and phenomenological domains of quan-
tum theory on an equal footing. In this light, broader applications of ECQT are outlined
selectively as follows.

7. Formulating (“natural” or artificial) cognitive science [177,178]—that is, theoretical
and empirical studies of general mental, cognitive, and intelligent phenomena and
behaviors—and predicting its empirical observables are among the natural applica-
tions of ECQT. As such, cognitive quantum theories, as empirically predictive theories of
general quantum intelligence and cognition, should correspond to particular context-
based nodes of MQ. By general agentive intelligence and cognition, we especially
mean that the agent is able to cognize, form abstract representations of, and antici-
pate diverse (internal or external) situations; have meaningful thoughts, emotions,
goal orientations, and decision-for-action abilities; process and (in principle) solve
a general spectrum of problems of diverse kinds and levels, which, in particular,
require general-scope learning, meta-learning, abstraction, predictions, and continual
self-updating; and meaningfully communicate and interact with other agents. As we
see and now explain, ECQT naturally leads to a universal theory of (emergent) general

intelligent and cognitive phenomena and behaviors. One general prescription to formulate
these phenomena and behaviors within ECQT is outlined in what follows.
Consider a sufficiently complex (“natural” or artificial) classical many-body system B ,
regardless of its microscopic units, interactions, and architecture. Moreover, suppose
that (as is typical) B interacts with a dynamical, sufficiently complex environment W .
To be general, it is assumed that B-W interactions can switch between “off” (passive)
and “on” (active) states of arbitrary duration and that there can be considerable
strength modulations or type variations in the environmental interactions during the
“on” state. In general, W can also include subsystems similar to B . We stress that, as
supposed, B and W form a classical closed system in total.
We now suppose that the “mental” states of an emergent cognizant agent A—whose
cognitive behaviors fall within the broad definition of general quantum behaviors in
MQ (Section 6)—have (somehow) emerged from the internal mechanisms of B . As
such, the (classical) BW pair induces an interacting EC closed quantum system whose ab-
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stract information-theoretic degrees of freedom constitute the mental states of A in the form
of a complementary (and generally time-dependent) pair of intentional–extrospective

open quantum systems. The intentional subsystem “It” is composed of those quantum
information degrees of freedom that constitute both introspective and intentional sub-
states of A ’s mind—those especially associated with A ’s behavioral choices and their
(re)organizations. The extrospective subsystem “Et” is composed of the complementary
subset of quantum information degrees of freedom constituting A ’s mental states
by which—based on both perceived sensory stimuli and behavioral outcomes—the
inferred internal representations, namely “cognitive maps”, together with predictive

formal models of W are formed. As such, A ≈ (It, Et), and H (A) = H (It) ⊗ H (Et),
where H (It) and H (Et) accommodate, respectively, the evolving quantum states ϱ

(It)
t

and ϱ
(Et)
t , identified as follows. The intentional sub-states encode A ’s chosen proba-

bility distribution across its behavioral modes—A ’s behavioral “policy”—at every
present moment t. These behavioral encodings can be time-local, namely inside ϱ

(It)
t ,

or time-nonlocal, namely within {ϱ
(It)
t′⩽t}—for example, encoded in the state history

n-point functions mt1,...,tn⩾2 . The extrospective sub-states ϱ
(Et)
t encode, at every present

moment t, the last updated cognitive map that A has (passively or actively) inferred
about W .
There are seven points in order about the characterization of quantum degrees of free-
dom and their state spaces as presented above. (i) The time evolutions of extrospective
and intentional sub-states are both centered on the integrated experiences of A and
follow Bayesian probabilistic reasoning under uncertainties, since we assume that, at
typical moments t, A has only partial knowledge of W , due to complexity, practical,
or epistemic restrictions. (ii) The extrospective Hilbert space H (Et) can correspond to
the effective low-dimensional reduction of an otherwise large Hilbert space, capturing
only those environmental aspects that A cares about. (iii) A ’s cognitive processes
(even when their motivations or contents have arisen environmentally) can also occur
during the “off” state, resembling dreaming states or seclusive contemplative states of
A ’s mind. (iv) As is typical, there can be within the total A ≈ (It, Et) closed system
a set of noise variables that are particularly associated with the involved complexi-
ties. (v) As W can include a number of subsystems B , the considered agent A can
know about and interact with other agents in its surrounding world. We, however,
focus on the single-agent scenario, while we emphasize that multi-agent scenarios
have substantially enriching features. (vi) The time variable with respect to which
the mental states and cognitive phenomena of the emergent A evolve is typically
distinct from the time variable with which the physical closed system BW evolves.
This time variable, which can be called cognitive time, can be discrete or continuous
and arises from the internal mechanisms of the physical system B . The point is that
this cognitive time is emergent and arises across higher levels. (vii) The cognitive
bipartitioning of the mental Hilbert space H (A) into the subspace factors H (It) and
H (Et) can typically be time-dependent and experiential, as explained in Section 3.
Moreover, these two Hilbert spaces H (It) and H (Et) can further take experiential
resolutions into cognitively meaningful subsystem Hilbert spaces depending on the
empirical specificities.
As we have laid out, the cognizant agent A chooses its behaviors by going through
introspective–extrospective cognitive computational processes that are centered on its
(sensory and action–outcome) experiences. The adequate formulation of such general

cognitive processes reflects the unitary or isometric time evolutions of A ’s mental
states ϱ

(A)
t , generated by the instantaneous Hamiltonians❍(A)

t , which are EC, (It, Et)-
resolution refined, and goal-oriented discriminative. In other words, the quantum
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information degrees of freedom constituting A ’s mental states in H (A) = H (It) ⊗
H (Et) evolve based on instantaneous Hamiltonians ❍(A)

t , which (at every present
moment t) are directly (re)made from the triplet of the past-to-present quantum
states ({ϱ

(A)
t′ }, {ϱ

(It)
t′ }, {ϱ

(Et)
t′ })|t′∈[t0,t], or the information contained therein. Thus,

the structure of the cognitive EC Hamiltonians of A ’s mental states, at every present
moment of the (continuous or discrete) time “t”, reads as

❍
(A)
t = Ot

(
P

(A)
[t0,t]

⋃
P

(A ,2|{It ,Et})
[t0,t] ; A⃗

(A)
t , ϕ⃗t; G⃗

(A |⃗µt)
t , P⃗+

G⃗
(A |⃗µt)
t

)
,

continuous : iϱ̇
(A)
t = [❍

(A)
t , ϱ

(A)
t ]; discrete : ϱ

(A)
t+1 = e−i❍

(A)
t ϱ

(A)
t+1ei❍

(A)
t ,

Υ = ❱
(It)
t

(
P

(It)
[t0,t], R

(It)
[t0,t]; A⃗

(It)
t , ϕ⃗t; G⃗

(It |⃗µt)
t , P⃗+

G⃗
(It |⃗µt)
t

)
; Υ ∈ {ϱ̇

(It)
t for continuous; ϱ

(It)
t+1 for discrete}.

(126)

The character specifications on the first and second lines are as follows: P
(A)
[t0,t] and

P
(A ,2|{It ,Et})
[t0,t] are defined as in Elements 1 and 2; ϕ⃗t and A⃗t are, respectively, sets of

noise variables and state-history-dependent operators, some of which are induced

by B-W interactions; G⃗
(A |⃗µt)
t are a set of goal operators depending on some subjective

value parameters µ⃗t; and P⃗+

G⃗
(A |⃗µt)
t

are projection operators corresponding to the favorite

eigenstates of the goal operators G⃗
(A |⃗µt)
t . In the third line of Equation (126), we have

the same operators but now reduced to the behavioral Hilbert space H (It), while
R (It) denotes the history of A ’s behavioral outcomes or “rewards” up to the present
moment t.
The cognitive EC Hamiltonians (126) can particularly be in the form of the three

major classes introduced in Element 3 of Section 3. Accordingly, the forms of A ’s
EC Hamiltonians can (in part) resemble the numerous explicit examples throughout
Elements 6–8 of Section 3. The central marker of the agent’s intelligence—the recurrent

organization of its behavior and policy updates—is mirrored in the experiential recreations
of the instantaneous operators❱(It)

t , which are conjunct with or obtainable from the EC

Hamiltonian ❍(It)
t upon a relevant state-space reduction H (A) → H (It). Finally, we

wish to remark on cognitive quantum theories in MQ that can be derived from ECQT.
(i) Thus far, we have considered that the physical system B and its environment W

are classical. Aside from concreteness, this assumption is motivated by the foremost
examples of B representing the body and brain, or, in the “artificial” realm, a suf-
ficiently advanced classical neural network, and W representing a large physical
world surrounding it. This assumption is, however, by no means necessary. In fact, B

and W can both or either be quantum mechanical systems or any type of classical–
quantum hybrid. One returns in all of these cases to the central idea of the emergence
paradigm [179–181], according to which a theory that describes the observable prop-
erties of a system at higher levels of organization in complex many-body systems can
be a theory whose defining degrees of freedom, their interactions, and the dynamics
are by nature distinct from their macroscopic ones. Cognitive quantum theories seek
to formulate general cognitive processes and predict their phenomena and observable
quantities, which are emergent at higher levels.
(ii) We have stated that emergent cognitive processes respect the principles of general
quantum behaviors (Section 6), such that the ECQT formalism in Section 3 formu-
lates them. We now highlight that these assumptions should not be taken as being
restrictive. Indeed, it is plausible to consider cognitive processes that, across diverse
internal–external situations, can appropriately be quantum, classical, or simultaneous
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mixtures of them. Still, all these cognitive processes can be formulated, in appropriate
ways, within ECQT. Even when cognitive processes are purely classical, they can be
flexibly formulated as classical derivatives of their general EC formulations (126).
(iii) In SQT treatments of agentive behavioral processes, individual decision-making
events are typically incorporated as quantum measurement operations. We now high-
light that the ECQT formalism provides various additional ways to realize decisional
action selections and events alike, which (a) are measurement-free and decoherence-
scenario-independent; (b) naturally arise out of the experience centricity of quan-
tum state evolutions, without external controls and without fine-tuning; and (c) can
bring about substantial utility in the formulation of cognitive processes outlined in
Equation (126). This leverage comes about because the total states, sub-states, and
state history n-point autocorrelations (in all of which cognitive and behavioral data
can be encoded appropriately) can develop harmoniously throughout their EC evolu-
tions’ recurrent patterns of (perfect or effective) localization–delocalization profiles.
One observes this fact in the one-qubit behavioral analyses in Section 5, throughout
Sections 5.1–5.5, while appreciating that such behavioral features become more diverse
and flexible in one-qubit scenarios with momentarily reconfigurable EC Hamiltonian
operators (❍t = Ot(P chosen

[t0,t ]
)) and (even substantially more) in EC multi-qubit scenar-

ios. This point serves as a clear example of the broad technical possibilities that the
ECQT formalism provides in modeling general and context-based quantum behaviors.
Following the formulation of general cognitive processes within ECQT portrayed in
Equation (126), one can move on to extract cognitive quantum theories as specific nodes
of MQ that can predict cognitive observables and phenomena successfully. These
extractions require the discernment of additional principles beyond those of general
quantum behaviors (presented in Section 6), which are specific to the defining context
of (general or special) cognition. As the result of these complementary principles, the
cognitive EC Hamiltonian (126) admits additional constraints and structures.
In recent times, several exciting investigations and proposals for quantum-theoretical
descriptions of cognitive processes and behaviors, mathematical psychology, human
decision making, and consciousness have been put forth—see, e.g., Refs. [182–194].
As we envision, the contributions of this paper, together with Ref. [1], to the natural
evolution of this profound research field—which develops a constructive dialog between
quantum physics and cognitive science—are promising and substantial. From the
perspective of ECQT and the QI, the cognitive quantum theories, namely distinct
nodes of MQ following the above general recipe (126), should not be taken merely
as mathematical modeling. Rather, we highlight that (i) these cognitive quantum
theories, being ECQT offspring, do necessarily differ from SQT in several drastic
ways; (ii) what these theories (based on ECQT) are to the higher-level emergent realm
of cognitive science and phenomena is what the standard theory of particle physics
(based on quantum mechanics) is to the lower-level realm of elementary particles and
their spatiotemporal phenomena; and (iii) by conception and construction, cognitive
quantum theories are genuine quantum theories in which general quantum behaviors
(Section 6) specialize in the general context of mental, cognitive, and intelligent
processes and phenomena and (admitting all the involved complexities) are able to
predict their empirical observables.

8. The versatile and natural applications of ECQT—the major component of the QI
that formulates abstract information-theoretic general and context-based quantum
behaviors—can include quantum formulations of diverse formal and phenomeno-
logical areas in broader domains and disciplines such as linguistics, sociophysics,
economics, and game theory. Earlier investigations have focused on mostly the mathe-
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matical modeling of such phenomena within (closed- and open-system) SQT—see, e.g.,
Refs. [195–198]. Advancing further, one can harness the advantageous predictive
formulations of these complex phenomena, processes, and their observables within
the profound generalization of SQT offered by ECQT. Moreover, novel means of
formulating, modeling, or behaviorally simulating and computing nonlinear classical
dynamical systems featuring chaos or turbulence, such as weather forecasts, can be
investigated within ECQT. Finally, we point to the promising applications of ECQT
in modeling classical probabilistic systems such as stochastic time series and hidden
Markov systems.

Indeed, there are numerous questions in different directions and fields that are pivotal
to advancing the understanding of ECQT and to extracting context-based quantum theories
within the QI. We now mention only a few of these exciting questions that are closer to the
immediate interest of the present paper.

– An intriguing inter-theoretical inquiry is to address whether and how ECQT can
emerge from SQT in novel Wilsonian frameworks as a larger quantum theory that
stands on its own.

– There have been various epistemic derivations of quantum mechanics and particular
nonlinear deformations of SQT, or at least some of their main features, from classical
statistical theories—see, e.g., Refs. [199–201]. Given the primacy of the Bayesian
nature of EC quantum states, it would be interesting to obtain similar derivations of
EC closed and open quantum systems.

– One immediate direction to investigate is experimental realizations of EC unitary
evolutions and the descendant open-system dynamics. Indeed, our proof-of-principle
quantum simulation protocol presented in Section 2 already demonstrates that a
considerable class of phenomenologically interesting EC unitary evolutions can, in
principle, be simulated using novel SQT quantum circuits. However, one can seek
to design alternative, more resource-efficient quantum simulation networks with en-
hanced performance and broader coverage of ECQT processes. Independently, based
on the understanding of EC quantum behaviors as higher-level functional emergences
and their prevalence in natural systems, a promising alternative way to experimen-
tally realize ECQT processes and phenomena is by synthesizing machines that—e.g.,
in the form of classical neural networks—serve as artificial cognitive connectomes.

– It would be significant to explore novel features of entanglement dynamics under EC
unitary evolutions and their open-system derivatives. For example, one can begin
with two-qubit EC quantum systems or the ECQT versions of the Heisenberg or
Hubbard models.

– It it natural to discern ECQT gates, circuits, and algorithms motivated as follows.
From an abstract general perspective, information-theoretic computations can ulti-
mately be reduced to a finite number of elementary input–output operations, which,
upon composing the developed modules of information, generate new processed
information modules. As such, one envisions abstract quantum circuits as formal
dynamical systems of information-theoretic grammar and meaningful text generation,
which function based on experience centricity. Along these lines, ECQT algorithms
can be naturally developed, resembling transitions from Turing machines to compu-
tational circuits in computer science. Moreover, in the context of quantum cognitive
theories, mental and cognitive processes, and especially thought development, should
naturally be based on such abstract elementary gates and circuits. In the paradigm
of computational cognition, discerning versatile, finite formal systems of cognitive
computation is also practically relevant due to the finiteness of the available physical
resources for the underlying machines, such as the brain. Consequently, this leads



Universe 2025, 11, 162 59 of 69

to the generalization and enhancement of standard theories of quantum logic and
quantum computation within ECQT. Independently, from an experimental point of
view, it would be interesting to design and investigate gates, circuits, and networks
for ECQT.

– ECQT can generate distinct spatiotemporal sub-theories in MQ, which nevertheless
are larger and more flexible than in quantum mechanics. This requires sub-theories of
ECQT with spatiotemporal causality, where one example could be EC extensions of
causal nonlinear quantum mechanics as in Ref. [62]. A fundamental way to develop
such causal spatiotemporal sub-theories is to formulate abstract information-theoretic
degrees of freedom whose EC interactions are constrained by appropriate adjacency
matrices of an abstract incomplete graph. In such scenarios, there can be analog
variants of Lieb–Robinson bounds—especially their abstract variants [202]—from
which spatiotemporal locality and causality can emerge. It is evident that, from a
technical point of view, some structural elements of the so-called “quantum graphity”
models can be relevant [89].

– It is evident that ECQT can generate various novel families of classical theories in its
appropriate mechanisms or limits of classicalization. For example, unprecedented
models of classical random systems can be deduced from the classical limits of the
[[N, L]] EC Hamiltonians and their generalizations and ramifications, as presented in
Section 5 throughout Sections 5.1–5.5. Along these lines, it would be interesting to
explicitly derive various deformed versions of the Fokker–Planck equations, Langevin
equations, and classical neural networks, within ECQT classicalizations. Indepen-
dently, EC classicalization procedures can lead to novel classical nonlinear differential
equations—such as drastically deformed Navier–Stokes equations—especially for
hydrodynamics, which could help to capture a range of phenomena in fluid systems.
Moreover, it is particularly relevant to derive purely classical formulations of cogni-
tive processes and intelligent behaviors obtainable from the classical limits of general
cognitive EC Hamiltonians (126).

– In the present paper, as a matter of convenience, we have focused on finite-
dimensional quantum systems even in the very context of SQT. The reason has
been three-fold. First, the message and main results of this paper are insensitive to
the dimensionality of the Hilbert space of the system. Second, finite-dimensional
quantum systems are more crucial in abstract information-theoretic computations
and inferential versions of quantum theory. However, certainly, it is interesting to
directly investigate the distinct properties of EC closed and open quantum systems
with infinitely many degrees of freedom. Furthermore, formulating EC quantum field
theories requires systems with continua of degrees of freedom.

– Some crystalized features of quantum mechanics, such as the no-cloning theorem [203]
and violations of Bell’s inequalities [204], should be revisited within the much broader
scope of ECQT and the QI. As we recall, by conception and construction, ECQT
formulates emergent or fundamental general quantum behaviors alongside its vari-
ous context-based specializations, as presented in Section 6. Such behaviors, being
typically marked by experience centricity, are described by generalized quantum
dynamics in which the inherent time-nonlocality and nonlinearity are merged with
isometry and unitarity. Thus, since some of the assumptions or structural settings
underlying quantum no-cloning and Bell’s inequalities lose fundamental ground in
ECQT, a major revisit of these quantum mechanical properties becomes relevant. The
quantum no-cloning theorem has already been revisited in works such as Ref. [205],
while experience centricity provides a much larger space for scrutiny and general-
ization. Furthermore, we highlight that the ECQT reconsiderations of these aspects
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can be double-faceted, bringing distinctive technicalities with conceptual foundations.
In particular, one notes in revisiting Bell’s inequalities in cognitive quantum theories
formulated within the general formulation (126) the following points. Within the
totality of the abstract information-theoretic degrees of freedom that comprise the
emergent mental states in H (A) (regardless of their partitioning into introspective–
extrospective subsystems), the traditional boundaries between ontic vs. epistemic and
local vs. nonlocal characteristics disappear.

– All foundational landmarks and techniques of SQT can be naturally revisited in ECQT.
This list especially includes EC generalizations of uncertainty relations [206,207] for
general and context-based quantum behaviors; quantum reference frames [208–212]
formulated within ECQT and the QI; formulating second-quantized (and third-
quantized) descendants of ECQT; and developing EC quantum field theories.

– Following the significance of the adiabatic evolutions, processes, and computations
in quantum systems, it is relevant both phenomenologically and technologically to
formulate and investigate EC adiabatic phenomena and investigate their properties.
Moreover, in a similar vein but independently, it is of immediate interest and relevance
to formulate and investigate generalized quantum walks [213] with EC unitarity and
their open-system variants.

– Quantifying experience centricity (i.e., the interfusion of non-Markovianity and uni-
tarity) in the generalized quantum dynamics proposed in Ref. [1] and in the present
paper is of special interest. This requires the formulation of observables that can
witness or measure, locally or globally, deviations of EC unitary evolution away
from SQT.

– To initiate broader applications of ECQT in domains beyond the traditional disciplines
of SQT, as we have explained in this section, we suggest formulating and investigating
sufficiently rich models of (a) human decision making within ECQT to advance
earlier models, such as those of Refs. [183,185]; (b) quantum games [214] enriched
within ECQT; and (c) EC social phenomena, expanding on earlier models, e.g., as
in Ref. [215]. Moreover, it is of special interest to formulate and investigate self-
organized complex structures in multi-agent decision-making networks—such as in
Ref. [216]—within ECQT.

– In this work and in Ref. [1], we have focused on investigating the behaviors of
EC Hamiltonians whose chosen experience resources (chosen state histories) do not
involve subsystem resolution refinement. It is crucial to advance our understanding of
the distinctive behaviors of EC evolutions based on resolution-refined Hamiltonians
for closed quantum systems [217].

8. Closing Remarks on a Portal to a Paradigm Shift

The quantum interactome (QI) proposed in this work, and its major component,
experience-centric quantum theory (ECQT), are, respectively, a powerful framework and
rigorous theory that transcend quantum mechanics by relaxing the time locality and
linearity of the unitary dynamics and formulating a variety of consistent, independent,
context-based quantum theories based on structural experience centricity. The develop-
ments of ECQT and the QI conceptually analogize the transition from Euclidean geometry
to non-Euclidean ones, which are formulated in differential and algebraic geometries. In
particular, for now, two points should be highlighted along this line. First, the exten-
sive attempts of mathematicians across numerous centuries to prove the fifth postulate
of Euclidean geometry and the impossibility of consistent generalizations of Euclidean
geometry essentially paved the way to the opposite accomplishment of formulating the
early versions of concrete, consistent non-Euclidean geometries, where the fifth postu-
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late was transmuted into two distinct categories divided and directed by their foreseen
natural contexts [218]. Second, it is evident that the elevation of Euclidean geometry to
non-Euclidean ones has been not only far-reaching in pure mathematics but also inevitable
and essential for applications to describe diverse natural phenomena.

In light of this comparison, which is meaningful even from a technical point of view,
we present some important remarks about the inter-theoretical interactions between SQT
and ECQT. (a) It is clear that SQT, being a measure-zero subset of ECQT (Section 4), can
be derived from EQCT in a straightforward manner. (b) As we show in Section 2, ex-
ceedingly higher-dimensional SQT can, in principle, simulate some interesting classes of
ECQT or even might realize ECQT in infinite dimensions. From the above geometrical
perspective, this resembles the hypersurface embedding of non-Euclidean geometries in
higher-dimensional Euclidean spaces. Such embeddings are possible (globally or locally)
and can be convenient in addressing certain problems in differential geometry. Neverthe-
less, one important point still stands. What is responsible for the mathematical richness and
phenomenological relevance of non-Euclidean geometries is their curvature, which marks
their deviation from the Euclidean postulates. The fact that the curvature is considered
to be embedding-induced or intrinsic is not essential. Likewise, it is the very experience
centricity of unitary evolutions beyond SQT that causes their behavioral richness and
phenomenological versatility.

The present work and Ref. [1] have initiated the ambitious and radical task of for-
mulating (from first principles) quantum theory meant as the grand theory of general
(elementary or high-level emergent) quantum behaviors, which gives rise to a rich vari-
ety of context-based quantum theories. These context-based quantum theories include
quantum mechanics and possible quantum gravitational extensions of it; structurally and
functionally novel computational systems; and theories of emergent complex systems,
including (but not limited to) cognitive quantum theories and the theory of general intelli-
gence. At the theoretical level, the result will be a vast and rich theoretical basis composed
of interacting context-based quantum theories that stand at equal footing. At the phe-
nomenological and experimental levels, the most significant gain will be expanding the
predictive power of quantum physics, especially to new domains of emergent, highly
complex phenomena. Future works are in progress [219] in light of this insight.
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Appendix A. A Useful Identity

A convenient way to present the reformulation algorithm of Section 4.2 is based on a
straightforward identity that is satisfied by the state history couplings of any EC Hamilto-
nian (38). In other words, this identity mirrors Equation (38) inversely. For simplicity and
specificity in the discussion, we only focus on the primitive EC Hamiltonians. We introduce
three matrices, denoted by ht, λt, and ❚t, as follows.
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(i) ht: The real-valued (d− + d+)-dimensional vector defined as

ht ≡
(
h1−

t , . . . , hd−−
t , h1+

t , . . . , hd++
t

)T , (A1)

whose elements are

h
j−
t ≡ Tr

[
i❤

j−
t ❍

Ξ
t

]
,

hk+
t ≡ Tr

[
❤k+

t ❍Ξ
t

]
.

(A2)

Here, superscript T denotes transposition.
(ii) λt: The (d− + d+)-dimensional real-valued vector that consists of all couplings of the

EC Hamiltonian,
λt ≡

(
λ1−

t , . . . , λd−−
t , λ1+

t , . . . , λd++
t

)T . (A3)

(iii) ❚t: The state-history-made real-valued (d− + d+) × (d− + d+) matrix, which col-
lects all traces of the pairwise products of the state history monomials and whose
elements are

iTs∓,r±
t ≡ iTr

[
❤s∓

t ❤r±
t

]
,

iTs±,r∓
t ≡ iTr

[
❤s±

t ❤r∓
t

]
,

Ts±,r±
t ≡ Tr

[
❤s±

t ❤r±
t

]
.

(A4)

This matrix provides a dynamical EC characterization of the closed quantum system.
Hence, its elements can be fully determined as specific time-dependent functions of
the state history two-point functions ❚t = ❚t

(
{mt,t′′}|

P chosen
[t0,t]

)
.

The identity in the form of a matrix equation relates the triplet of (ht, λt,❚t) for any
EC Hamiltonian according to Equation (38) and reads as ht = ❚tλt or, equivalently,

λt = (❚t)
−1

ht. (A5)

Note that the invertibility condition of ❚t is a mild constraint on the choice of the quan-
tum memory distance at. Independently, in atypical cases in which ❚t is singular, the
invertibility can be retrieved by adding appropriate, dynamically trivial terms to the
EC Hamiltonian.

The state history purity ϱt1 = |Ψt1⟩⟨Ψt1 | for all moments t1 ∈ [t0, t] implies that any
product of the density operators can be reduced to a sequential product of the state history
two-point functions mt1t2 = wt1t2 eiαt1t2 , multiplied by a single state history two-point
operator Mt′t′′ ≡ |Ψt1⟩⟨Ψt2 |. Hence, introducing the shorthand tl ≡ t − al for each present
moment t and al for each quantum memory time distance, one immediately observes that
the state history monomials (39) are reducible to

❤
j−
t = w[j]

(
eiα[j]|Ψj1⟩⟨ΨjLj

| − e−iα[j]|ΨjLj
⟩⟨Ψj1 |

)
,

❤k+
t = w[k]

(
eiα[k]|Ψk1⟩⟨ΨkLj

|+ e−iα[k]|ΨkLk
⟩⟨Ψk1 |

)
,

(A6)

where

w[s] ≡ ∏
Ls−1
r=1 wsrsr+1 ,

α[s] ≡ ∑
Ls−1
r=1 αsrsr+1 .

(A7)

Having this result, we can now determine the elements of❚t via straightforward computation:
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Ts±,r±
t = 2w[s]w[r]

[
wsLs r1 wrLr s1 cos

(
α[s] + α[r] + αsLs r1 + αrLr s1

)
± ws1r1 wrLr sLs

cos
(
− α[s] + α[r] + αs1r1 + αrLr sLs

)]
,

iTs±,r∓
t = −2w[s]w[r]

[
wsLs r1 wrLr s1 sin

(
α[s] + α[r] + αsLs r1 + αrLr s1

)
± ws1r1 wrLr s sin

(
− α[s] + α[r] + αs1r1 + αrLr sLs

)]
,

iTs∓,r±
t = −2w[r]w[s]

[
wrLr s1 wsr1 sin

(
α[r] + α[s] + αrLr s1 + αsr1

)
± wr1s1 wsrLr

sin
(
− α[r] + α[s] + αr1s1 + αsLr rLr

)]
.

In addition, straightforward calculation gives

h
j−
t = −2w[j] sin(α[j])Re

(
Tr
[
|Ψj1⟩⟨ΨjLj

|❍t

])
− 2w[j] cos(α[j]) Im

(
Tr[|Ψj1⟩⟨ΨjLj

|❍t]
)
,

hk+
t = 2w[k] cos(α[k])Re

(
Tr
[
|Ψk1⟩⟨ΨkLk

|❍t

])
− 2w[k] sin(α[k]) Im

(
Tr[|Ψk1⟩⟨ΨkLk

|❍t]
)
.

(A8)

Thus, we now have the RHS of Equation (A5) in terms of ❍Ξ
t and the states |Ψt⟩.
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