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Abstract: In this paper, we are concerned with completely integrable Hamiltonian systems and gen-
eralized action–angle coordinates in the setting of contact geometry. We investigate the deformations
of the Sasaki–Einstein structures, keeping the Reeb vector field fixed, but changing the contact form.
We examine the modifications of the action–angle coordinates by the Sasaki–Ricci flow. We then pass
to the particular cases of the contact structures of the five-dimensional Sasaki–Einstein manifolds
T1,1 and Yp,q.
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1. Introduction

Over the past four decades, contact geometry has undergone a rapid development
in pure mathematics [1] and in applied areas as mechanics, dissipative systems, optics,
thermodynamics, or control theory [2].

As it is well-known, the description of Hamiltonian mechanics is developed on sym-
plectic manifolds. Contact geometry has been applied to give a Hamiltonian-type descrip-
tion of mechanical systems with dissipation [3], field theories, and gravitation in an odd
number of dimensions, Sasaki–Einstein geometries [4,5]. An analogous theory to complete
integrability in symplectic geometry was constructed in contact geometry [6,7].

A well-known method for generating Einstein metrics on manifolds is the Ricci flow
introduced by Hamilton in [8] and extended to Kähler manifolds in [9]. Recently, the
method was applied to Sasaki manifolds in [10] to generate new Sasaki structures, the
authors providing the well-posedness.

In this paper, we concentrate on the special class of toric contact structures on S2 × S3

denoted by Yp,q [11] which contain the homogeneous space T1,1 as a special case [12].
We introduce local holomorphic coordinates and construct the Sasakian local potential,

analogous to the Kähler potential. We investigate local deformations of Sasakian structures
exploiting the transverse structure of Sasakian manifolds. On the analogy of Kähler–Ricci
flow, Sasaki–Ricci flow preserves the Sasaki condition in the sense that the evolved metrics
remain Sasaki.

We consider local deformations of Sasakian structures using particular basic functions
which satisfy the Sasaki–Ricci flow equations. As in the case of standard symplectic
dynamics, we introduce the action–angle variables and evaluate the frequencies of the flow
of toric action.

The paper is organized as follows: we start by recalling some background in Sasaki
geometry, deformations of Sasaki metrics, and Sasaki–Ricci flow. In Section 3, we present
the Hamiltonian dynamics in the setting of contact geometry and introduce the generalized
contact action–angle variables. In Section 4, the general results are applied to the five-
dimensional Sasaki–Einstein spaces T1,1 and Yp,q. In the final section, we provide some
closing remarks.
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2. Preliminaries

In this section, we review basic definitions and results concerning the geometry of
Sasaki manifolds and their deformations by the Sasaki–Ricci flow.

2.1. Sasaki Manifolds

Let (M, g) be a Riemannian manifold. The cone manifold C(M) of M is a Riemannian
manifold diffeomorphic to (0, ∞)×M equipped with the metric

ḡ = d r2 + r2g

where r is a coordinate on R+ = (0,+∞).
M is said to be a Sasaki manifold if the cone manifold C(M) has a Kähler structure

(J, ḡ). Notice that any Sasaki manifold M is of odd dimension 2n + 1 where n + 1 is the
complex dimension of the Kähler cone C(M). If the Sasaki space is Einstein (Ricg = 2ng),
then the Kähler metric cone is Ricci flat (Ricḡ = 0), i.e., a Calabi–Yau manifold.

On C(M), we have a vector field ξ̄ and a 1-form η̄ defined by

ξ̄ = Jr
∂

∂r
and η̄(·) = 1

r2 ḡ(ξ̄, ·)

respectively. The vector field ξ̄ restricted to M is called the characteristic vector field or the
Reeb vector field (let us note it by ξ). Let now D = ker η, where η is the restriction of η̄ to M.
We have the g-splitting of the tangent bundle TM of M:

TM = D ⊕ Lξ

where Lξ is the trivial line bundle generated by ξ.
Restrict J to D and extend it to an endomorphism Φ ∈ End(TM) by setting Φξ = 0.

Φ satisfies
Φ2 = −1 + η ⊗ ξ

and
g(Φ(X), Φ(Y)) = g(X, Y)− η(X)η(Y)

for any smooth vector fields X, Y on M.
We have a global 2-form ΩT on M coming from the contact 1-form η

ΩT =
1
2

dη .

We get that (D, Φ|D , dη) gives M a transverse Kähler structure with Kähler form ΩT

and transverse metric gT given by

gT(X, Y) = dη(X, ΦY)

for any smooth vector fields X, Y on M and related to the Sasakian metric g on M by

g = gT + η ⊗ η .

Using the transverse metric gT , it is possible to define a connection ∇T on D which
is torsion free such that ∇T gT = 0. Moreover, the Sasaki–Einstein manifold is transverse
Kähler–Einstein [1,4].

One can choose local coordinates (x, z1, . . . , zn) on a small neighborhood U = I ×V
of M with I ∈ R and V ∈ Cn. In the chart U, we may write [13]
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ξ =
∂

∂x

η = dx + i
n

∑
j=1

(K,jdzj)− i
n

∑̄
j=1

(K, j̄dz̄j)

dη = −2i
n

∑
j,k̄=1

K,jk̄dzj ∧ dz̄k

g = η ⊗ η + gT = η ⊗ η + 2
n

∑
j,k̄=1

K,jk̄dzjdz̄k

Φ = −i
n

∑
j=1

[(∂j − iK,j∂x)⊗ dzj] + i
n

∑̄
j=1

(∂ j̄ + iK, j̄∂x)⊗ dz̄j]

where K : U → R is a local basic function, i.e., ∂K
∂x = 0 and K,j =

∂K
∂zj and K,jk̄ =

∂2K
∂zj∂z̄k . Every

Sasakian manifold is locally generated by a real function K, called the Sasaki potential,
which is the analogue of the Kähler potential.

2.2. Sasaki–Ricci Flow

There are various ways to deform Sasakian structures. We shall consider deformations
keeping the Reeb field ξ fixed and varying the contact form η by perturbing it with a basic
function ϕ:

η̃ = η + dc
B ϕ (1)

where dc
B = i

2 (∂̄B − ∂B) with

∂B =
n

∑
j=1

dzj ∂

∂zj ∂̄B =
n

∑
j=1

dz̄j ∂

∂z̄j .

To introduce the transverse Kähler–Ricci flow, also called Sasaki–Ricci flow, we con-
sider the flow (ξ, η(t), Φ(t), g(t)) with initial data (ξ, η(0), Φ(0), g(0)) = (ξ, η, Φ, g) gener-
ated by a basic function ϕ(t). The Sasaki–Ricci flow equation is [10,14]

∂gT

∂t
= −RicT

g(t) + (2n + 2)gT(t)

where RicT is the transverse Ricci curvature. In the case of the deformation (1) with a
basic function ϕ, in local coordinates, the Sasaki–Ricci flow can be expressed as a parabolic
Monge–Ampère equation [10,14]

∂ϕ

∂t
= ln det(gT

jk̄ + ϕjk̄)− ln(detgT
jk̄) + (2n + 2)ϕ . (2)

It is shown in [14] that the flow is well-posed and preserves the Sasakian structure of
the manifold. It was proved the existence of transverse Kähler–Ricci solitons (or Sasaki–
Ricci solitons) on compact toric Sasaki manifolds, of which the basic first Chern form of
the normal bundle of the Reeb foliation is positive and the first Chern class of the contact
bundle is trivial. More details on stability and convergence of the Sasaki–Ricci flow can be
found in [15].

3. Contact Hamiltonian Systems

A vector field X on the contact manifold (M,D) is called an infinitesimal automor-
phism of the contact structure if its flow preserves the contact structure D.

The condition for X to be an infinitesimal automorphism can be written as [16]:

LXη = ρη (3)
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for some function ρ : M→ R.
The local flow of X preserves the contact form η if and only if ρ = 0, i.e., LXη = 0.
Fixing a contact form η, a function h ∈ C∞(M) gives a unique Hamiltonian vector

field Xh that satisfies
h = η(Xh) . (4)

The function h will be called the contact Hamiltonian associated with the vector
field Xh.

The mapping (4) establishes a one-to-one correspondence between the vector space of
infinitesimal contact automorphisms and smooth functions h : M→ R.

Let Xh be an infinitesimal automorphism. From (3), we get

LXh = ιXh dη + d(η(Xh)) = ιXh dη + dh = ρη .

Applying this equation to the Reeb vector field ξ, we have

ρ = ξ(h) .

Note that Xh preserves the contact form (ρ = 0) if and only if the Hamiltonian function
h is basic.

In connection with the isomorphism (4), the Lie algebra of C∞(M) functions is given
by the Jacobi bracket [16,17]

[ f , g]η = η([X f , Xg]) . (5)

Sometimes it is considered the function 1 = η(ξ) as the Hamiltonian making the Reeb
vector field the Hamiltonian vector field.

A smooth function f ∈ C∞(M) is a first integral of the contact Hamiltonian struc-
ture (M,D, η, h) if f is constant along the flow of the Hamiltonian vector field Xh, i.e.,
Xh f = 0. The subset of first integrals {h, f1, . . . , f j} is independent if the corresponding
set {Xh, X f1 , . . . , X f j

} of Hamiltonian vector fields is pointwise linearly independent on a
dense open set.

A Hamiltonian contact structure is completely integrable if there exists (n + 1) first
integrals {h, f1, . . . , fn} that are independent and in involution with respect to the Jacobi
bracket (5). In addition, a completely integrable Hamiltonian contact structure is said to be
of toric type if the corresponding vector fields X = {Xh, X f1 , . . . , X fn} form the Lie algebra
of a torus Tn+1. The action of a torus Tn+1 on a contact (2n + 1)-dimensional manifold
(M, η) is completely integrable if it is effective and preserves the contact structure η [18].
The Reeb vector field is an element of this algebra. In this case, we have a regular completely
integrable contact structure studied in [6]. It is possible to find the local coordinates
(θ0, θ1, . . . , θn, y1, . . . , yn) such that the contact form has the following canonical form:

η0 = y0dθ0 + y1dθ1 + · · ·+ yndθn

where y0 is a smooth function of (y1, . . . , yn). We refer the set of local coordinates (θ0, θ1, . . . ,
θn, y1, . . . , yn) as generalized contact action–angle coordinates [7].

The flow of X on invariant tori is quasi-periodic

(θ0, θ1, . . . , θ1) −→ (θ0 + tω0, θ1 + tω1, . . . , θn + tωn) , t ∈ R

where frequencies ω0, . . . ωn depend only on yi [6,7].
Consider now the vector field Y = − f ξ, where f is a basic function, a first integral of

the Reeb vector field ξ. The flow φt of Y is a complete flow and preserves the toric fibration.
Let us define the family of 1-forms

ηt = η0 + td f (6)
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which is also a contact form having the Reeb vector field ξ. Using the Moser’s deforma-
tion [6,19], we have

L(Y)ηt = −d f = −∂ηt

∂t
which imply

d
dt
(φ∗t ηt) = φ∗

(
L(Y)ηt +

∂ηt

∂t

)
= 0 .

Therefore, φ∗1 η1 = η0 and we can obtain the coordinates in which the 1-form (6) has
the canonical form. Choosing in turn the first integrals fi of the completely integrable
Hamiltonian contact structure, a change of variables φ = φ−1 permits to extract the
frequencies ωi.

4. Action–Angle Coordinates and Sasaki–Ricci Flow on Spaces T1,1 and Y p,q

In this section we consider the Sasaki–Ricci flow on five-dimensional Sasaki–Einstein
spaces T1,1 and Yp,q. We evaluate the action–angle coordinates for these spaces and produce
some explicit solutions of the Sasaki–Ricci flow equation.

4.1. Sasaki–Einstein Space T1,1

We recall that T1,1 = S2 × S3 is one of the most renowned example of homogeneous
Sasaki–Einstein space in five-dimensions.

The standard metric on this manifold is [12,20]

ds2 =
1
6
(dθ2

1 + sin2 θ1dφ2
1 + dθ2

2 + sin2 θ2dφ2
2) +

1
9
(dψ + cos θ1dφ1 + cos θ2dφ2)

2

where θi ∈ [0, π), φi ∈ [0, 2π), i = 1, 2 and ψ ∈ [0, 4π). The contact 1-form η is

η =
1
3
(dψ + cos θ1 dφ1 + cos θ2 dφ2) (7)

and the Reeb vector field has the form

ξ = 3
∂

∂ψ
. (8)

In what follows, we introduce ν = 1
2 ψ so that ν has canonical period 2π.

The Hamiltonian contact structure of Reeb type (T1,1, η, ξ) is completely integrable.
To describe the effectively acting T3 action, we employ the basis [12]

e1 =
∂

∂φ1
+

1
2

∂

∂ν

e2 =
∂

∂φ2
+

1
2

∂

∂ν

e3 =
∂

∂ν

which preserves the contact structure η.
As on T1,1, the transverse structure is locally isomorphic to a product S2 × S2, for each

S2 sphere the complex coordinates zj are related to the spherical coordinates as

zj = tan
θj

2
eiφj j = 1, 2 . (9)
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The Sasaki potential of the transverse metric gT is

K =
1
3

2

∑
j=1

ln(1 + zj z̄j)− 1
6

2

∑
j=1

ln(zj z̄j) .

Let F = ( f0, f1, f2) the set of independent first integrals in involution and
X = (Rη , X f1 , X f2) the corresponding set of infinitesimal automorphisms of η. Let T
be a compact connected component of the level set { f1 = c1, f2 = c2} and d f1 ∧ d f2 6= 0
on T. T is diffeomorphic to a T3 torus and there exist a neighborhood U of T and a
diffeomorphism φ : U → T3 × D

φ(x) = (ϑ0, ϑ1, ϑ2, y1, y2)

where D ∈ R2, such that the contact form has the following canonical expression [6,21]:

η0 = (φ−1)∗η = y0dϑ0 + y1dϑ1 + y2dϑ2 .

Note that η0(
∂

∂ϑi
) = yi are the contact Hamiltonians of the independent set of vector fields

X . Let us remark that the action of the torus T3 is given by translations of the angles ϑi.
Taking into account the 1-form η (7), it is convenient to choose

ϑ0 =
2
3

ν ϑ1 = φ1 ϑ2 = φ2

and accordingly we have

y0 = 1 y1 =
1
3

cos θ1 y2 =
1
3

cos θ2 .

These functions are first integrals of the Hamiltonian contact structure

f0 = y0 = 1 , fi = yi =
1
3

cos θi , i = 1, 2 (10)

which are independent and in involution

[1, fi]η = [ fi, f j]η = 0 , i, j = 1, 2

as can be seen through a direct evaluation of the respective Jacobi brackets (5).
The flows of the set X on invariant tori is quasi-periodic

(ϑ0, ϑ1, ϑ2)→ (ϑ0 + tω0, ϑ1 + tω1, ϑ2 + tω2) (11)

where the frequencies ωi depend only on yi.
As it was shown in Section 3, we consider the vector field X = − f ξ, where f is a basic

function, a first integral of the Reeb vector field ξ. Choosing the first integrals fi = yi as
in (10), a simple calculation permits us to extract the frequencies

ωi = ln cos θi , i = 1, 2 .

Finally, we evaluate the modifications of the action–angle coordinates by the Sasaki–
Ricci flow. We consider deformations of the contact form (7) with a basic function ϕ solution
of the Sasaki–Ricci flow Equation (2). For a concrete realization of the deformation of the
contact structure, we need an explicit analytical solution of the Sasaki–Ricci flow equation.
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For the Sasaki–Einstein space T1,1, a distinguished class of solutions of the Sasaki–Ricci
flow equation is represented by the following families of basic functions [22]

ϕ(t) = (e6t − 1) ∑
j=1,2

[
cj(ln zj + ln z̄j) + dj(ln

2 zj + ln2 z̄j)
]

(12)

with cj, dj arbitrary constants and the complex coordinates zj are given in (9).
In terms of angular coordinates, we have

Proposition 1. The families of contact forms

η̃ = η +
e6t − 1

2 ∑
j

[
−cjdφj + dj

φj

sin θj
dθj + dj ln tan

θj

2
dφj

]
(13)

with arbitrary real constants cj, dj j = 1, 2, represent deformations of the canonical contact structure
of T1,1.

We remark that, if the constants dj in (13) are not zero, the angles φj interfere in the
deformed metric and the Reeb vector field (8) remains the only Killing vector. Therefore,
the primary toric symmetry of T1,1 is broken for this class of deformations. However, if the
constants dj = 0, the toric T3 symmetry is preserved with the same angle coordinates. For
the action coordinates, instead of the first integrals (10), we get the modified ones

ỹi = f̃i =
1
3

cos θi − cj
e6t − 1

2
, i = 1, 2 .

Regarding the frequencies, they are modified accordingly.

4.2. Sasaki–Ricci Space Yp,q

In the framework of AdS/CFT correspondences, spaces Yp,q have been employed to
provide an infinite class of dualities [23].

The metric of the Sasaki–Einstein space Yp,q is given by the line element [12]

ds2 =
1− y

6
(dθ2 + sin2 θ dφ2) +

1
w(y)q(y)

dy2 +
w(y)q(y)

36
(dβ− cos θ dφ)2

+
1
9
[dψ + cos θ dφ + y(dβ− cos θ dφ)]2

where

w(y) =
2(a− y2)

1− y

q(y) =
a− 3y2 + 2y3

a− y2

and the constant a is chosen in the range 0 < a < 1.
The contact 1-form η is [12]

η =
1
3

dψ +
1
3

y dβ +
1− y

3
cos θ dφ (14)

and the Reeb vector field is
ξ = 3

∂

∂ψ
. (15)
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The angular coordinates span the ranges 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, 0 ≤ ψ ≤ 2π.
In order to specify the range of the variable β, we note that it is connected with another
variable α

β = −(6α + ψ) .

The range of α is
0 ≤ α ≤ 2π`

where
` =

q
3q2 − 2p2 + p(4p2 − 3q2)1/2 .

We introduce a local set of transverse complex coordinates appropriate for the trans-
verse Kähler structure of Yp,q [24,25]

z1 = tan
θ

2
eiφ

z2 =
sin θ

f1(y)
eiβ

(16)

where

f1(y) = exp
(∫ 3(1− y)

a− 3y2 + 2y3 dy
)

.

The Sasaki–Kähler potential of the transverse metric is [24]

K =
1
3

[(
1 +

1
z1z̄1

)
f2(y)

]
+

1
6

ln(z1z̄1) (17)

where

f2(y) = exp
(∫ 3y(1− y)

a− 3y2 + 2y3 dy
)
=

1√
a− 3y2 + 2y3

.

As in the case of the Sasaki–Ricci flow equation for the space T1,1, an explicit analytical
solution can be found. Quite interestingly, a class of explicit solutions has the same form as
in the case of the space T1,1 (12), but, of course, with the complex coordinates zj given by
Equation (16).

Proposition 2. The families of contact forms

η̃ = η +
e6t − 1

2

[
c1φ

sin θ
dθ +

(
−d1 + c1 ln tan

θ

2

)
dφ

+
c2β

ρ
dρ + (−d2 + c2 ln ρ)dβ

] (18)

with real arbitrary constants cj, dj j = 1, 2 represent deformations of the canonical contact structure
of Yp,q.

To find the action–angle coordinates, we choose the following basis of an effectively
acting T3 action [12,26]

e1 =
∂

∂φ
+

∂

∂ψ

e2 =
∂

∂φ
− (p− q)`

2
∂

∂α

e3 = `
∂

∂α
.
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To write the contact form (14) and the Reeb vector field (15) in the canonical forms,
we introduce the angle variables

ϑ0 =
ψ

3
ϑ1 = −6α− ψ ϑ2 = φ

and the generalized action variables

y0 ≡ 1 y1 =
y
3

y2 =
y− 1

3
cos θ .

Concerning the frequencies, their evaluation proceeds as in the case of the space T1,1.

Remark 1. We observe that the presence of the constants cj dj in the deformed contact form (18)
implies that the Reeb vector field (15) remains the only Killing vector of the deformed metric.
Therefore, the initial toric symmetry is broken during the Sasaki–Ricci flow deformation.

5. Discussion

An important point of interest in physics is to find the conserved quantities and
investigate the integrability of the systems. Having in mind that Sasaki–Einstein manifolds
have become of significant interest in many areas of physics, we investigate the integrability
in the frame of contact geometry.

Unlike the symplectic case, the contact structures are automatically Hamiltonian.
Moreover, for the manifolds T1,1 and Yp,q, the toric action T3 is effective and preserves the
contact structures implying the complete integrability. We introduce generalized action–
angle variables which are similar to the ones in Hamilton dynamics and evaluate the
frequencies of the flow of toric action.

We examine the Kähler structure of the transverse Kähler geometry and consider
deformations of the contact structure perturbing the contact form with a basic function.
In the case of the five-dimensional spaces T1,1 and Yp,q, we have explicit solutions of the
Sasaki–Ricci flow equation. Finally, we investigate the modifications of the action–angle
variables by the Sasaki–Ricci flow.

It would be interesting to study the Sasaki–Ricci flow on higher-dimensional Sasaki–
Einstein spaces as well as other contact spaces with 3-Sasaki structures [27] or mixed
3-structures [28].

It is worth extending the study of deformations of the metric using other kind of
deformations. For instance, the so-called D-homotetic deformation is defined

η′ = aη ξ ′ =
1
a

ξ g′ = ag + a(a− 1)η ⊗ η

for a positive constant a. Other deformations of interest in Sasaki geometry are obtained
by defining a new Sasakian structure (M, η′, ξ ′) with η′ = f η for a positive function
f 6= constant and ξ ′ is the corresponding Reeb vector field [29].
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