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Abstract: Security vulnerabilities in the symmetric-key primitives of a cipher can undermine the
overall security claims of the cipher. With the rapid advancement of quantum computing in recent
years, there is an increasing effort to evaluate the security of symmetric-key cryptography against
potential quantum attacks. This paper focuses on analyzing the quantum attack resistance of AIM, a
symmetric-key primitive used in the AIMer digital signature scheme. We present the first quantum
circuit implementation of AIM and estimate its complexity (such as qubit count, gate count, and
circuit depth) with respect to Grover’s search algorithm. For Grover’s key search, the most important
optimization metric is depth, especially when considering parallel search. Our implementation
gathers multiple methods for a low-depth quantum circuit of AIM in order to reduce the Toffoli
depth and full depth (such as the Karatsuba multiplication and optimization of inner modules; Mer,
LinearLayer).

Keywords: quantum computing; Grover’s search; AIM; AIMer

1. Introduction

Quantum computing is generating interest and speculation among experts, even
within the field of cryptography [1,2]. Recent advances in quantum computing empha-
size the continued progress of physical solid-state qubits [3,4], including spin, charge,
and superconductor bits, shaping the quantum information processing landscape.

Quantum computing poses a serious threat to cryptography, particularly to public key
algorithms, which can be weakened by Shor’s algorithm [5], reducing the attack complexity
to a polynomial time. As a result, researchers have been studying the applicability of public
key ciphers against a quantum adversary [6-8]. Generally speaking, symmetric key ciphers
are more robust against quantum attacks than public key ciphers, with Grover’s algorithm
capable of recovering a k-bit key with V2K searches (i.e., reduced by the square root). That
means symmetric key ciphers should double their key size to achieve a reasonable level of
security claim even on quantum computers. It is worth noting that quantum security is not
properly analyzed during the design phase of symmetric key ciphers.

Although Grover’s algorithm [9] theoretically reduces the security of key search by
the square root, practical quantum key recovery is still very difficult due to the extreme
iterations required. Moreover, the current level of quantum computer development cannot
handle the depth of extreme iterations. Thus, it is meaningful to implement and analyze
newly proposed symmetric key ciphers with respect to adversaries that have quantum
computing capabilities.

If the quantum resources required to attack a symmetric key cipher are extensive,
the cipher can be considered safe from quantum attacks without increasing the key size.
In this context, it is important to note the post-quantum security requirements of the
National Institute of Standards and Technology (NIST) [10,11]. NIST has defined post-
quantum security levels (Level-1~-5) to assess the resistance of ciphers against quantum
attacks (this will be described in Section 2.2).
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In this work, we perform quantum cryptanalysis on the symmetric key primitive AIM
used in the new signature, AIMer [12]. AIMer is one of the digital signatures (AIMer is
the only symmetric key primitive (AIM) based digital signature in the KPQC competition)
of Korea Post-Quantum Cryptography (KPQC) competition (https://www.kpqc.or.kr/
competition.html, accessed on 24 March 2024). Additionally, AIMer is a candidate for
additional post-quantum digital signature standardization by NIST (https://csrc.nist.gov/
Projects/pqc-dig-sig/round-1-additional-signatures, accessed on 24 March 2024). We
present quantum circuits for AIM, and our design philosophy prioritizes minimizing depth
rather than qubit count. This choice is driven by the necessity of parallelizing Grover’s
search instances, which is often an inevitable option due to the substantial depth of Grover’s
search (discussed in Section 2.3). Based on the depth-optimized quantum circuits of AIM,
we estimate the cost of Grover’s key search and assess the post-quantum security level of
AIM according to NIST’s evaluation criteria.

To the best of our knowledge, this work is the first attempt to analyze the post-quantum
security of AIM on quantum computers. While the compromise of the inner key primitive
(i.e., AIM) may not directly invalidate the security claims of the algorithm (i.e., AIMer), it
can introduce vulnerabilities that should not be overlooked. From this perspective, our
work holds significant importance within the context of security analysis.

Contribution
In short, this work makes the following contributions.

1. Quantum Circuit Implementation of AIM. We present the implementation of a
quantum circuit for the variants of AIM (-1, -1II, and -V). This marks the first quantum
implementation of AIM, which is the symmetric key primitive of AIMer (a candidate
algorithm in the KPQC and NIST PQC competitions).

2. Low-Depth Implementation. Our implementation of the quantum circuits for AIM
focuses on low Toffoli depth and full depth. To minimize depth while allowing
for a reasonable number of qubits, we gather multiple contributions, including a
low-depth quantum circuit for the multiplication, optimized quantum circuits for
inner operations (Mer and Linearlayer) of AIM, and the reuse of ancilla qubits (through
reverse operation).

3. Post-quantum Security Evaluation of AIM. We evaluate the post-quantum security
of AIM by estimating the cost of Grover’s key search based on the implemented
quantum circuits of AIM-I, -III, and -V. For this security evaluation, we compare the
estimated cost of Grover’s key search for AES, as estimated by NIST [10,11], with the
findings (the authors of [13] reported/analyzed the issue of underestimated cost
in [14], the result in [11]) from recent related work [13].

2. Preliminaries
2.1. Grover’s Key Search

Grover’s search algorithm is a quantum algorithm that can reduce the search complexity
of ciphers against classical computers by a square root. That is, ciphers that use a k-bit key
have an exhaustive key search complexity of O(2¥) against classical computers, but Grover’s
key search on a quantum computer reduces the complexity to V'2k. The Grover’s key search
process for recovering a k-bit key for a known plaintext-ciphertext pair can be summarized as

follows: Prepare — (Grover oracle and diffusion opemtor)\/fk — measure.

Firstly, to prepare the key in a superposition state, Hadamard (H) gates are applied to
the k qubits, which causes the k-qubit key to be represented as a probability distribution
over all possible key values (i.e., 2¥ values, as in Equation (1)). We refer the reader to [15]
for comprehensive information about the Hadamard gate.

0) + |1 1 2]
He 0 (1y)) = (P5) = 32 o <1>
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For the known plaintext (P), qubits are allocated and X gates are applied according
to the value of the known plaintext. The main component, the Grover oracle, contains the
quantum circuit of the target cipher. The known plaintext is encrypted using the quantum
circuit for the target cipher and the k-qubit key ((k)). This generates a superposition
state of the ciphertext encrypted with all possible key values. Then, the Grover oracle
compares a superposition state of the ciphertext with the known ciphertext (C). If there is
a match (Equation (2)), the Grover oracle returns the solution by flipping the sign of the
corresponding state of the key (Equation (3)) as follows:

fx) = {OifEnclp(k)(P) £ C @
1 2" -1
Ur(lp)|—)) = i/ ;(—1)f(x)|x>|—> 3)

Another module, the diffusion operator, amplifies the amplitude of the solution
returned from the Grover oracle, increasing the probability of recovering the key.

Grover’s key search sequentially iterates the oracle and the diffusion operator V2K
times to increase the amplitude of the solution sufficiently, then recover (measure) the key
with high probability. From a cost perspective, optimizing the encryption quantum circuit
within the Grover oracle is crucial for reducing the cost of Grover’s key search.

2.2. NIST Post-Quantum Security

To evaluate the security of a cipher against quantum attacks, NIST specifies security
bounds for the cipher [10,11]:

*  Level 1: Resource requirements for the attack are similar to those for breaking AES-128
(2170 _ 2157),

e Level 3: Resource requirements for the attack are similar to those for breaking AES-192
(2233 _, o221,

*  Level 5: Resource requirements for the attack are similar to those for breaking AES-256
(2298 N 2285).

Based on the cost estimation of Grover’s key search for AES variants in Grassl et al.’s
work [16], NIST has calculated the quantum attack complexities for Levels 1, 3, and 5
(corresponding to AES variants) to 2170, 2233, and 228, respectively (total gates x depth of
Grover’s search). One important point to note is that the attack complexity estimated by
NIST in [10] is based on research results from PQCrypto’16 [16], and since then, quantum
circuits for AES have been steadily optimized, leading to significant reductions in the
cost of attacks in recent years [13,14,17,18]. NIST acknowledges that the estimated attack
complexity based on the levels is relative, considering the ongoing optimization of quantum
circuits for AES (page 17 on [10]). Therefore, if an attack with reduced cost is proposed,
the benchmark should be reconsidered.

Recently, NIST adjusted the security bounds for AES [11,19] based on the results
presented in Eurocrypt’20 [14]. In [14], the quantum attack costs for AES-128, -192, and -256
were significantly reduced to 21%7, 2221 and 2285, respectively (which align with the costs
specified in [11,19]). However, there is an issue of underestimation of quantum resources
for their implementations, particularly with respect to non-linear operations (like S-box).

In [13], the authors analyzed estimation issue in [14] and reported corrected results.
In addition to the corrections, they also presented depth-optimized quantum circuits for
AES. It is worth noting that [13] has not yet undergone peer review, but the costs derived
from their implementation currently represent the lowest estimates.

Throughout this paper, we consider complexity estimates from NIST [11,19] and the
reduced estimates from [13] to assess the post-quantum security of AIM.
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2.3. NIST MAXDEPTH

Exhaustive key search using Grover’s algorithm is much farther ahead than the current
state of quantum computing. While it is true that Grover’s key search theoretically reduces
the security by the square root, succeeding in the attack requires handling an extreme circuit
depth. In a real attack scenario, Grover’s search may be operated in parallel by dividing it
into smaller instances to mitigate the lengthy sequential computations (as mentioned on
page 46 of [19]). For this reason, NSIT defines a limit on the required depth for quantum
attacks, called MAXDEPTH; 240 < 264 < 2%,

Thus, if the attacker reaches the MAXDEPTH limit, they will need to employ a parallel
approach for Grover’s key search, as discussed in [20]. Parallel searches can be categorized
into outer and inner methods (for further details, please refer to [20]).

What we should note is that the performance of parallel search is poor due to the
non-proportional trade-off between the reduction in depth and the success probability of
key recovery. Generally, the product of depth and qubit count is often used as a major
metric for evaluating the performance of a quantum circuit. However, to reduce the depth
of Grover’s search by a factor of S, S? instances need to be operated in parallel [14,20]. This
implies that the depth—qubit count product should be redefined as the depth?>—qubit count
product when designing Grover’s search in parallel for successful key recovery. This is why
reducing depth is more effective when considering the parallelization of Grover’s search.

2.4. Quantum Gates

There are various quantum gates that are commonly used to incorporate ciphers into
quantum circuits, including the X (NOT), CNOT, and Toffoli (CCNOT) gates. The X gate flips
the value of a qubit, which can be used instead of the classical NOT operation (i.e., X(x) = ~x).
The CNOT gate works on two qubits, where the value of the target qubit depends on the value
of the control qubit. If the control qubit is 1, the target qubit is flipped; if it is 0, the target qubit
remains unchanged (i.e., CNOT(x, y) = (x, x ® y)). The CNOT gate can replace the classical
XOR operation. The operation of XORing is a Boolean logic operation where two inputs
are compared, resulting in a true output only when the inputs differ. That is, the CNOT
gate is equivalent to the XORing value of the control qubit to the target qubit.

The Toffoli gate operates on three qubits, with two control qubits and one target
qubit. The target qubit’s value is only flipped if both control qubits have a value of 1
(i.e., Toffoli(x, y,z) = (x,y,z ® xy)). This operation can be described as XORing the result
of the AND operation (when two inputs are compared, the result is a true output only
when both inputs are true) between the control qubits with the value of the target qubit.
Therefore, the Toffoli gate can replace the classical AND operation. By using these quantum
gates, we can implement cipher encryption in quantum computing, replacing classical
NOT, XOR, and AND operations.

For optimizing quantum circuits, it is crucial to reduce the number of Toffoli gates.
Toffoli gates are expensive to implement as they require a combination of T gates (which
affect T-depth) and Clifford gates. Clifford gates are a set of quantum logic gates that
are particularly important in quantum computing. They are fundamental in constructing
quantum circuits and performing quantum operations on qubits. Various methods for
decomposing Toffoli gates exist, and the full depth indicates the depth when Toffoli gates
are decomposed. In this study, we estimate decomposed resources using a decomposition
method involving 7 T gates and 8 Clifford gates, with a T-depth of 4 and a full depth of 8
for one Toffoli gate, as introduced in [21].

2.5. AIM

AlMer [12] is a signature scheme that employs the symmetric primitive AIM and
the BN++ proof system [22]. AIM is a one-way function designed to withstand algebraic
attacks and to be compatible with secure multi-party computation in hardware. Before
presenting the quantum circuit implementation of AIM, we describe the symmetric-key
primitive AIM in this section.
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AIM has three variants (-I, -1II, -V), and in this paper, we propose the quantum circuits
for all variants of AIM. AIM is designed with Mers, which are S-boxes that compute
exponentiation by Mersenne numbers over a large field, and a Linear layer that performs
binary matrix multiplications. Figure 1 shows the encryption process of AIM. For more
details about AIM (or AIMer), refer to [12].

Mer (e;) F—

Linear
In Mer (e,) — Layer —— P— | Mer(e.) —»@—»

Mer (e3) |—

Figure 1. Encryption process of AIM; e, ey, e3, and e, indicate the input values.

3. Quantum Circuit Implementation of AIM

Our optimization goal in the quantum circuit implementation of AIM is to minimize
the depth while allowing a reasonable number of additional qubits. Note that, we weigh
on describing the quantum circuit implementation of AIM-I, and our design philosophy
and optimization methods are also applicable to other variants (i.e., AIM-III and -V).

3.1. Binary Field Multiplication and Squaring

The component that requires the most quantum resources in the quantum circuit
implementation of AIM is Mer(e). Mer(e) computes the exponentiation x> ~! on a binary
field, so quantum circuits of binary multiplication and squaring are required for quan-
tum implementation. We adopt the method in [23] for implementing quantum binary
multiplication in Mer(e). In short, the authors of [23] employ the Karatsuba algorithm to
implement quantum multiplication. They apply the Karatsuba algorithm recursively until
the size of the divided multiplications is 1 x 1. The key approach they use is to prepare
all operands for multiplications in advance by allocating additional ancilla qubits. As a
result, all multiplications are executed simultaneously. This multiplication method has a
Toffoli depth of 1 for arbitrary field sizes by generating all products in parallel and has the
lowest full depth compared to other binary multiplication techniques. A disadvantage of
the quantum binary multiplication in [23] is that it requires many ancilla qubits. However,
we note that the burden of qubit allocation can be reduced by reusing the ancilla qubits
used in the previous multiplication when the multiplication is not stand-alone (Section 3.3
in [23]). Since Mer(e) is composed of multiple multiplications (i.e., not stand-alone), we
can effectively reduce the burden on qubit count while reducing the depth of the multipli-
cation. To be specific, in Mer(e), we reuse ancilla qubits from the initial multiplication in
subsequent multiplications. Table 1 shows the quantum resources required for quantum
multiplication of binary fields Fyis / (12 + x7 +x% + x + 1), Fyin / (x12 + 27 + x> + x + 1),
and Fyos6 / (x2%¢ + x10 + x° + x? + 1) (defined binary fields in AIM-I, -11I, and -V, respec-
tively) using the method in [23].

Table 1. Quantum resources required for multiplication of Fyus/(x'28 + x7 + x2 + x + 1),
Fooz / (2192 + %7 4+ x% 4+ x + 1), and Faass / (220 + x10 4+ %% 4+ 22 +-1).

Field Size 2" #CNOT #1qCliff #T T-Depth * #Qubit Full Depth
n =128 29,867 4374 15,309 4 6561 78
n =192 85,577 10,206 35,721 4 15,309 94
n = 256 115,558 13,122 45,927 4 19,683 180

x: Toffoli depth one has a T-depth of four.
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As mentioned earlier, thanks to the reuse of ancilla qubits in the method presented
in [23], we effectively reduce the number of qubits required for multiplications. Of the
6561, 15,309, and 19,683 qubits in Table 1, only 2443, 5387, and 7073 qubits are required for
multiplications excluding the first multiplication in Mer, as 4118, 9922, and 12,610 of the
ancilla qubits can be reused.

While various methods to implement multiplication in quantum (and classical as
well) are actively being investigated [23-26], squaring has no room for optimization or
improvement due to its inherent simplicity. The quantum implementation of squaring is
simpler and less costly than that of multiplication, as in classical implementation. Squaring
only requires modular reduction in the input to the squared result, without the need to
generate product terms, so it can be implemented with only CNOT gates.

Since modular reduction is a linear operation, an in-place implementation using PLU
decomposition is possible. However, for simplicity, we implement modular reduction
naively rather than using PLU decomposition. As a result, in addition to the input qubits,
our squaring quantum circuit requires a few ancilla qubits (3 or 5) for temp values. Actually,
this increase in the number of qubits is negligible in our implementation, which already
uses many ancilla qubits. The required quantum resources for the squaring quantum circuit
of Fyos / (128 + x7 + 22 + x + 1), Fpuoa / (2192 + 27 + 2% + x + 1), and Fpose / (x26 + x10 +
x> + x% + 1) are shown in Table 2.

Table 2. Quantum resources required for squaring of Fyus / (x128 + x7 + x2 + x + 1), Fyu / (x19% +
X7+ x% 4+ x4+ 1), and Fpose / (2226 + 210 + x5 + %2 4+ 1).

Field Size 2" #CNOT #Qubit Full Depth
n =128 205 131 127
n =192 301 195 196
n =256 401 261 253
3.2. Mer

Now that we have the necessary building blocks (multiplication and squaring), we can
proceed with implementing the quantum circuit of Mer. As noted earlier, for the purpose
of describing the quantum circuit of Mer, we primarily focus on the variant AIM-I, which
consists of Mer(3), (27) (before LinearLayer), and (5) (after LinearLayer).

Algorithm 1 describes the quantum circuit implementation of Mer(3). The notation
CNOT128 of Algorithm 1 means the operation of CNOT gates for 128-qubit arrays. In the
quantum implementation of Mer(3), multiple (Mul, Reduction), and Squaring operations are
performed. Additionally, CleanAncilla initializes the ancilla qubits used in multiplication
(4118) without significant overhead (overhead related to reuse is discussed in Section 3.3
of [23]). These initialized ancilla qubits are reused in subsequent multiplications.

To optimize the quantum circuit of Mer, we combine Mer(3) and Mer(27) (before
LinearLayer. Mer(3) and Mer(27) use the same input, and as there is a duplicated intermedi-
ate value between them, we utilize it. Algorithm 1 (Mer(3)) copies the output right before
finishing (lines 12 and 13) because the same value is used in Mer(27). That is, instead of
using multiplication and squaring to generate the same value in Mer(27), we use a copy of
the output from Mer(3) as the input for Mer(27) and continue with subsequent operations.
As we can observe in Algorithm 2, the output of Mer(3) is used as an input for Mer(27).
Thanks to this efficient sharing, we can conserve the quantum resources required for certain
multiplications and squarings.

Unsurprisingly, this method of efficient sharing is also applicable to AIM-III and
AIM-V. Note that Mer(5) (after LinearLayer) is implemented using the same mechanism as
Mer(3) and Mer(27), but the sharing method is impossible due to the input being different.
We omit the explanation of implementation for other variants (AIM-III and AIM-V) in this
paper, but report the required quantum resources. Table 3 shows the quantum resources
required for the quantum circuit implementations of Mers.
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Table 3. Quantum resources required for the Mer of AIM-L
Component #CNOT #1qCliff #T T-Depth * #Qubit Full Depth
Mer(3) 68,636 8748 30,618 8 8882 411
Mer(27) 226,224 26,244 91,854 16 13,840 2488
Mer(5) 115,385 13,122 45,927 12 6957 678
Mer(29) 780,375 91,854 321,489 32 67,005 6547
Mer(53) 1,037,702 118,098 413,343 32 86,833 14,482

x: Toffoli depth one has a T-depth of four.

Algorithm 1 Quantum circuit implementation of Mer(3).

Input: x
Output: 2’1, x2’~Y(copy), ancilla
/ / Allocate ancilla qubits for Mul

1: ancilla + allocate 4118 qubits

//Compute Mer(3)

//Copy x to x1
2: x1 < allocate new 128 qubits
3: CNOT128(x, x1)

//x22—1
4: x1 < Squaring(x1)

5: x2 < Mul(x, x1, ancilla)
6: x2 < Reduction(x2)
7: ancilla < CleanAncilla(x, x1, ancilla)

//x2371
8: x2 < Squaring(x2)

9: out < Mul(x, x2, ancilla)
10: out < Reduction(out)
11: ancilla < CleanAncilla(x, x2, ancilla)

//Copy out to x3 for Mer (27)
12: x3 < allocate new 128-qubit
13: CNOT128(out, x3)

14: return out, x3, ancilla

3.3. LinearLayer

In the LinearLayer operation, either four (for AIM-I and -III) or six (for AIM-V) matrix-
vector multiplications are performed. The binary matrices of sizes 128 x 128, 192 x 192,
and 256 x 256 for AIM-I, -III, and -V, respectively, are generated using the hash values
(SHAKE-128 for AIM-I, and SHAKE-256 for AIM-III and -V). The output of Mer is used as
the input vector, and it is multiplied by the binary matrices.

Since the initial vector (input of hash) is public, these binary matrices are constant.
Therefore, the matrix-vector multiplication corresponds to a classical-quantum (matrix-
vector) implementation that does not require a SHAKE-128 or SHAKE-256 quantum circuit.
In other words, a quantum circuit for this matrix-vector multiplication can be efficiently
designed using the classical values of the generated matrices.

We adopt a naive approach for the quantum circuit implementation of matrix-vector
multiplication, rather than the PLU decomposition. An in-place implementation based on
PLU decomposition increases the depth due to the execution of CNOT gates in limited
space (fewer qubits) without using additional qubits. On the other hand, we allocate a
new 128, 192, or 256-qubit output vector (AIM-], -III, and -V, respectively) and perform
CNOT gates between the input vector and output vector where the value of the matrix is
1. This method (out-of-place) requires additional qubits, but the depth decreases due to
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the execution of CNOT gates in the increased space. Actually, opting for the out-of-place
method, which allocates output qubits rather than the in-place method where the input is
transformed into the output, represents our design philosophy.

Algorithm 2 Quantum circuit implementation of Mer(27).

Input: x2°~1(x3)
Output: x>, ancilla
//Compute Mer(27)
//Copy x3 to x4
1: x4 < allocate new 128 qubits
2: CNOT128(x3, x4)

£2-1
: fori=0to2do

x4 < Squaring(x4)
: end for

/

6: x5 < Mul(x3, x4, ancilla)
7: x5 < Reduction(x5)
8: ancilla < CleanAncilla(x3, x4, ancilla)

//Copy x5 to x6
9: x6 <— allocate new 128 qubits
10: CNOT128(x5, x6)

//x212_1

11: fori =0to 5 do

12: x6 < Squaring(x6)
13: end for

14: x7 < Mul(x5, x6, ancilla)
15: x7 ¢~ Reduction(x7)
16: ancilla < CleanAncilla(x5, x6, ancilla)

/ /Copy x7 to x8
17: x8 < allocate new 128 qubits
18: CNOT128(x7, x8)

//x22471

19: fori =0to 11 do

20: x8 ¢+ Squaring(x8)
21: end for

22: x9 < Mul(x7, x8, ancilla)
23: x9 < Reduction(x9)
24: ancilla < CleanAncilla(x7, x8, ancilla)

//x22771

25: fori =0to2do

26: X9 + Squaring(x9)
27: end for

28: out < Mul(x3, x9, ancilla)

29: out < Reduction(out)

30: ancilla < CleanAncilla(x3, x9, ancilla)
31: return out, ancilla

One more thing to note is that for the last matrix-vector multiplication, instead of
allocating a new output vector, we use the final output vector from the previous matrix-
vector multiplication. This implementation is possible due to the XOR operations between
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the resulting vectors after the LinearLayer is performed. As a result, we can save 128, 192,
and 256 qubits (CNOT gates also) for AIM-I, -1II, and -V, respectively. Table 4 shows the
quantum resources required for Linearlyer of AIM-I, -1II, and -V.

Table 4. Quantum resources required for the LinearLayer of AIM.

LinearLayer #CNOT #Qubit Full Depth
AIM-I (n = 128) 16,889 640 426
AIM-III (n = 192) 37,657 960 632
AIM-V (n = 256) 99,352 1792 1015

Although we did not describe it earlier, the vector extracted from the hash value is
XORed with the result vector of the matrix-vector multiplication. This step corresponds
to a classical quantum implementation. Thus, we only apply X gates to the input vector
depending on the bit values of the public vector, instead of using CNOT gates, which is a
more efficient approach. Lastly, Mer(e,) and FeedForward, which XOR the input with the
output, are performed. Note that FeedForward is a quantum-quantum implementation, so
CNOT gates are used.

Finally, Table 5 shows the quantum resources required for the AIM quantum circuits.
Our proposed AIM quantum circuits require a significant number of ancilla qubits, which
is due to the Karatsuba multiplication method [23] we adopted. Most of the ancilla qubits
are used for the multiplication operations inside Mer. While we allow for a large number of
qubits, we provide low T-depth and full depth. In particular, since a single multiplication
has a T-depth of only 4, the T-depth of our proposed quantum circuit is very low. In the
trade-off between qubit count and depth, we use metrics such as Toffoli depth x qubit
count (TD x M) and full depth x qubit count (FD x M), which are common metrics for
quantifying the performance of quantum circuits.

Table 5. Quantum resources required for the AIM quantum circuits.

Cipher #CNOT  #1qCliff #T T-Depth* #Qubit Full Depth TD X M FD XM

AIM-1 358,754 39,430 137,781 36 25,299 3499 227,691 88,521,201
AIM-TII 1,144,536 132,785 464,373 48 88,395 8583 1,060,740 758,694,285
AIM-V 1,486,100 157,588 551,124 44 108,072 16,857 1,188,792  1,821,769,704

x: Toffoli depth one has a T-depth of four.

4. Post-Quantum Security Evaluation of AIM

In this section, we discuss the post-quantum security of AIM. In a nutshell, we estimate
the cost of Grover’s key search for AIM and compare the cost with the costs of Grover’s key
search for AES variants. The costs for the AES variants we use to evaluate post-quantum
security are NIST estimates [10,11]. These estimates draw from the work of Grassl et al. [16]
and Jaques et al. [14]. Additionally, we also consider the work of Jang et al. [13], which
currently provides the lowest cost for evaluation (since the estimates of [11] based on [14]
are lower bound).

As explained in Section 2.1, Grover’s key search for a cipher using a k-bit key involves
approximately V/2F iterations of Grover oracle and diffusion operator. Tight analysis of
the Grover search algorithm [27] suggests that the optimal number of iterations is | 7 V2K,
and we estimate the cost based on this. When estimating the cost of Grover’s key search, we
ignore the diffusion operator, as its overhead can be considered negligible (as is performed
in most related studies [13,14]). Therefore, we estimate the cost based only on the oracle.
The Grover oracle consists of the AIM quantum circuit for encryption, an n-controlled
NOT gate (n is the ciphertext size) for comparing the ciphertext (with known ciphertext),
and the reverse operation of the previously executed AIM quantum circuit for the next
iteration. The n-controlled NOT gate is estimated to be (32 - n — 64) T gates using the
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decomposition method in [28]. Thus, the cost of Grover’s key search for AIM is estimated
as | ZV2K| x (32128 — 64) T gates +| Zv/2K| x(2 X Acost) Where Acost indicates cost of
AIM. Since the iterations are sequential, the number of qubits does not increase from
Table 5, but only one decision qubit to check the ciphertext (with known ciphertext) is
added. Table 6 shows the costs of Grover’s key search for AIM.

In addition, we include the metrics TD? x M and FD? x M in Table 6. Grover’s key
search suffers from extreme depth, making it difficult to execute. Therefore, performing a
parallel search to reduce the depth is more practical. However, the efficiency of parallelizing
Grover’s search is very poor (see Section 2.3). The reason is that to reduce the depth by S,
S? Grover instances must be executed in parallel [14,20], resulting in a qubit count increase
in S. Therefore, when considering parallel search, the metrics that need to be optimized
are TD? x M and FD? x M. This is why minimizing the depth is clearly advantageous for
quantum circuits of target ciphers for Grover’s key search.

Table 6. Costs of the Grover’s key search for AIM.

Cipher Total Gates

Total Depth Cost #Qubit TD X M FD XM For Parallel Search

(Complexity) TD? x M FD? x M

AIM-I 1.612 x 283
AIM-IIT  1.306 x 2117
AIM-V  1.645 x 2149

1.342 x 276 1.082 x 2160 25300 1.351 x 282  1.036 x2°1  1.182 x 2190 139 x 2167
1.646 x 2109 1.075 x 2227 88,396 1517 x 2116 1110 x 2126 1707 x 2216 1,827 x 2235
1.616 x 2142 1.33 x 2292 108,073 1.752 x 2148 1332 x 2159 1862 x 2280 1,076 x 2302

We compare Grover’s key search cost for AES variants to evaluate the post-quantum
security of AIM. Table 7 provides a birds-eye view of our discussion of post-quantum
security for AIM. While it may not be unfair, when compared to NIST’s estimates [10]
based on Grassl et al.’s quantum circuit implementation of AES [16], AIM-], -1II, and -V
cannot achieve Level-1, -3, and -5, respectively. This is because the cost of implementing
AES quantum circuits in [16] is high, which in turn makes NIST’s estimated costs for each
level overly conservative [10].

Recently, NIST adjusted the Grover’s key search costs for AES variants [11] based on
Jaques et al’s work [14]. Therefore, we use these adjusted costs for our evaluation (Note
that these costs have an issue of underestimation, as discussed in [13]). Additionally, we
also consider the work of Jang et al. [13] for our evaluation. They presented the lowest
Grover’s key search costs for AES (with their depth-optimized circuits); AES-128: 21,
AES-192: 2221 AES-256: 2286 As of now, since these costs are the lowest and do not have
any issues of underestimation, we incorporate these costs into our evaluation as well.

As a result of comparing the Grover’s key search costs from [11,13,14] with the
Grover’s key search costs of AIM, AIM-I, -1II, and -V reliably achieve Level-1, -3, and -5
(post-quantum security), as 2160 9227 and 2292 are greater than 2157 9221 gnd 22850r286
respectively (see Table 7).

Additionally, we can consider the required number of qubits for Grover’s key search.
Although NIST does not consider qubit counts as a key metric for estimating attack com-
plexity (considering the limit of depth rather than the limit of qubit counts), the qubit
count is certainly a significant metric. The estimated costs of Grover’s key search for AIM
require a large number of qubits (more than AES) and have a higher attack complexity than
AES (for all variants). In this context, we evaluate that AIM can achieve the appropriate
post-quantum security for the key sizes (i.e., Level-1, -3, and -5 for 128, 192, and 256-bit
keys), and the required number of qubits for an attack is also high.
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Table 7. Comparison of the Grover’s key search costs.

Post-Quantum NIST’16 [10] NIST’22 [11] J++ 1131 AIM
Security (Based on [16]) (Based on [14]) -1 -III -V
Level-1 (AES-128) 9170 2157 2157 2160
Level-3 (AES-192) 2233 0221 2221 2227
Level-5 (AES-256) 2298 2285 2286 2292

5. Conclusions

This paper presents the first quantum circuit implementation of the symmetric-key
primitive AIM used in AIMer. To reduce the cost of Grover’s key search, an effective
quantum circuit implementation of AIM is essential, and our effort reduces the depth while
allowing a reasonable number of qubits. Specifically, various techniques are applied to
optimize the quantum implementation of the components of AIM, such as binary field
multiplication, Mer, and LinearLayer. To optimize the circuit depth, we adopted Karatsuba
multiplication [23] for multiple multiplications in Mer and implemented an out-of-place
based LinearLayer.

With our depth-optimized quantum circuits for AIM, we estimated Grover’s key search
costs for AIM variants. When evaluating AIM against several recent benchmarks [10,11,13,14],
we found that AIM-I, -IIl, and -V reliably achieve post-quantum security Levels-1, -3,
and -5, respectively.

Assessing the post-quantum security of cryptographic systems against potential at-
tacks on quantum computers, which pose significant threats, contributes to the establish-
ment of a secure post-quantum system. In this context, our future plans involve evaluating
post-quantum security in various ways for cryptographic algorithms. The Simon algo-
rithm [29] for period finding in ciphers or the application of Grover’s algorithm to other
PQC algorithms, such as quantum sieving [30] for lattice-based ciphers and Quantum
Information Set Decoding (QISD) [31] for code-based ciphers, may be prominent choices.
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