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Abstract

This paper continues a study of gravity within the scope of the
measurability notion introduced by the author in his previous works.
Based on the earlier results, it is shown that the Strong Principle
of Equivalence(SPE) of General Relativity may be reformulated in
terms of measurable quantities and is valid in this case at low energies
far from the Planck’s. Next, the possibility for generalization SPE of a
measurable analog of gravity in the ultraviolet (Planck) energy region
is analyzed.
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1 Introduction

This paper is a continuation of a study into a quantum theory and gravity in
terms of the measurability notion, initiated in [1]–[9], with the aim to form
the above-mentioned theories proceeding from the variations (increments) de-
pendent on the existent energies.
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These theories should not involve the infinitesimal variations dt, dxi, dpi, dE, i =
1, ..., 3 and, in general, any abstract small quantities δt, δxi, δE, δpi, ....
In work [10] in the general form it is demonstrated that all the basic ingre-
dients of General Relativity (GR) have their measurable analogs, the way to
derive every term in a measurable variant of the Einstein equations is pre-
sented. Passage of the measurable analog of GR to the ultraviolet (Planck)
region is considered, showing that it is quite natural from the viewpoint of the
methods and approaches developed in [10].
This paper directly follows from [10]. Here it is demonstrated that a measur-
able analog of the Strong Principle of Equivalence(SPE) is valid, i.e.,
SPE may be formulated entirely in terms of measurable quantities at low
energies E � Ep.
Note, as in GR only low energy regions E � Ep are considered, it is implied
that SPE is valid in GR just in this energy region. The region of high energies
E ≈ Ep belongs to Quantum Gravity that has not be formed by now.
Nevertheless, in terms of the measurability notion, we can perform an initial
analysis of the possible generalization of SPE to the Planck (quantum-gravity)
region. This is the principal object of the work.
The structure of this paper is as follows. Section 2 briefly outlines the nec-
essary preliminary information from [1]–[9]. At the same time, for better un-
derstanding, some aspects are elucidated and supplemented. In particular, of
importance are Remark 2.3.–Remark 2.5.. In Section 3, proceeding from
the results of Section 4 in [10], it is indicated that the Strong Principle of
Equivalence (SPE) may be reformulated in terms of the measurability no-
tion at low energies E � Ep and is valid in this case.
In Section 4, within the scope of the space-time foam notion, the possibility
for generalization of SPE for a measurable analog of gravity in the ultraviolet
(Planck) region is analyzed.

2 Necessary Preliminary Information

Let us briefly consider the earlier results [1]–[9] laying the basis for this study.
It is assumed that there is a minimal (universal) unit for measurement of the
length ` corresponding to some maximal energy E` = h̄c

`
and a universal unit

for measurement of time τ = `/c. Without loss of generality, we can consider
` and τ at Plank’s level, i.e. ` = κlp, τ = κtp, where the numerical constant κ
is on the order of 1. Consequently, we have E` ∝ Ep with the corresponding
proportionality factor.
Then we consider a set of all nonzero momenta

P = {pxi}, i = 1, .., 3; |pxi | 6= 0. (1)



Minimal quantities and measurable variant of gravity II 81

¿From this set we can isolate a set of the Primarily Measurable momenta
characterized by the property

pxi
.
= pNi =

h̄

Ni`
, (2)

where Ni is an integer number and pxi is the momentum corresponding to the
coordinate xi.
From these formula it is not unreasonable to propose the following definition:

Definition 1. Primary Measurability
1.1. Any variation in ∆xi for the coordinates xi and ∆t of the time t is
considered primarily measurable if

∆xi = N∆xi`,∆t = N∆tτ, (3)

where N∆xi 6= 0 and N∆t 6= 0 are integer numbers.
1.2. Let us define any physical quantity as primary or elementary mea-
surable when its value is consistent with point 1.1 of this Definition.

So, from Definition 1. it directly follows that all the momenta satisfying
2) are the Primarily Measurable momenta.
Then we consider formula (2) and Definition 1. with the addition of the
momenta px0

.
= pN0 = h̄

N0`
, where N0 is an integer number corresponding to

the time coordinate (N∆t in formula (3)).
For convenience, we denote Primarily Measurable Quantities satisfying
Definition 1. in the abbreviated form asPMQ.
It is clear that PMQ is inadequate for studies of the physical processes. To
illustrate, the space-time quantities

τ

Nt

= pNtc
`2

ch̄

`

Ni

= pNi
`2

h̄
, 1 = 1, ..., 3, (4)

where pNi , pNtc are Primarily Measurable momenta, up to the fundamental
constants are coincident with pNi , pNtc and they may be involved at any stage
of the calculations but, evidently, they are not PMQ in the general case.
Thus, it is reasonable to use Definition 2.

Definition 2. Generalized Measurability
We define any physical quantity at all energy scales E ≤ E` as generalized
measurable or, for simplicity, measurable if any of its values may be ob-
tained in terms of PMQ specified by points 1.1,1.2 of Definition 1.
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Remark 2.1 What is the main difference between Primarily Measurable
Quantities (PMQ) and Generalized Measurable Quantities (GMQ)?
PMQ defines variables which may be obtained as a result of an immediate
experiment. GMQ defines the variables which may be calculated based on
PMQ, i.e. based on the data obtained in previous clause.

The main target of the author is to form a quantum theory and gravity only
in terms of measurablequantities (or of PMQ).
Now we consider separately the two cases.

A) Low Energies, E � E`.
In P we consider the domain PLE ⊂ P (LE is abbreviation of ”Low Energies”)
defined by the conditions

PLE = {pxi}, i = 1, .., 3;P` � |pxi | 6= 0, (5)

where P` = E`/c–maximal momentum.
In this case the formula of (2) takes the form

Ni =
h̄

pxi`
, or (6)

pxi
.
= pNi =

h̄

Ni`
|Ni| � 1,

where the last row of the formula (6) is given by the requirement (5).
As the energies E � E` are low, i.e. (|Ni| � 1), primary measurable
momenta are sufficient to specify the whole domain of the momenta to a high
accuracy PLE.
It is clear that

[Ni] ≤ Ni ≤ [Ni] + 1, (7)

where [ℵ] defines the integer part of ℵ. Then |Ni|−1 falls within the in-
terval with the finite points |[Ni]|−1 and |[Ni] + 1|−1 (which of the num-
bers is greater or smaller, depends on a sign of Ni). In any case we have
|N−1

i − [N−1
i ]| ≤ |([Ni] + 1)−1 − [Ni]

−1| = |([Ni] + 1)[Ni]|−1.
Thus, the difference between pNi and p[Ni] is negligibly small. Therefore, the
primary measurable momenta pNi , (|Ni| � 1) are sufficient to specify the
whole domain of the momenta to a high accuracy PLE.
This means that in the indicated domain a discrete set of primary measur-
able momenta pNi , (i = 1, ..., 3) from formula (6) varies almost continuously,
practically covering the whole domain.
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That is why further PLE is associated with the domain of primary measur-
able momenta, satisfying the conditions of the formula (5) (or (6)).
Of course, all the calculations of point A) also comply with the primary
measurable momenta pNtc

.
= pN0 in formula (4). Because of this, in what

follows we understand PLE as a set of the primary measurable momenta
pxµ = pNµ , (µ = 0, ..., 3) with |Nµ| � 1.

Remark 2.2. It should be noted that, as all the experimentally involved
energies E are low, they meet the condition E � E`, specifically for LHC the
maximal energies are ≈ 10TeV = 104GeV , that is by 15 orders of magnitude
lower than the Planck energy ≈ 1019GeV . But since the energy E` is on the
order of the Planck energy E` ∝ Ep, in this case all the numbers Ni for the
corresponding momenta will meet the condition min|Ni| ≈ 1015,i.e., the for-
mula of (6). So, all the experimentally involved momenta are considered to be
primary measurable momenta,i.e. PLE at low energies E � E`.

In this way in the proposed paradigm at low energies E � Ep any momentum
with pxµ , µ = 0, ...3 takes the form pxµ = pNµ , where Nµ – integer with the
property |Nµ| � 1.
Further for the fixed point xµ we use the notion pxµ = pNxµ or pxµ = pN∆xµ

.
Naturally, the small variation ∆pxµ at the point pxµ = pNxµ of the momentum
space PLE is represented by the primary measurable momentum pN ′

xµ
with

the property |N ′
xµ| � |Nxµ|.

The problem is as follows: is any possibility that ∆pxµ is infinitesimal? For
the special point pxµ = pNxµ the answer is negative.
Indeed, the ”nearest” points to pNxµ are pNxµ−1 and pNxµ+1.
It is obvious that

|pNxµ − pNxµ−1| = |pNxµ (Nxµ−1)|,
|pNxµ − pNxµ+1| = |pNxµ (Nxµ+1)|. (8)

It is easily seen that the difference |pNxµ (Nxµ+1)| − |pNxµ (Nxµ−1)| for |Nxµ| �
1 is infinitesimal, i.e., to within a high accuracy, we have |pNxµ (Nxµ+1)| =
|pNxµ (Nxµ−1)|. And a small variation of |∆pxµ| at the point pxµ = pNxµ has
a minimum that equals |pNxµ (Nxµ+1)|. Clearly, with an increase in |Nxµ |, we
can obtain no matter how small |pNxµ (Nxµ+1)|.
So, in the proposed paradigm at low energies E � Ep a set of the primarily
measurable PLE is discrete, and in every measurement of µ = 0, ..., 3 there
is the discrete subset Pxµ ⊂ PLE:

Pxµ
.
= {..., pNxµ−1, pNxµ , pNxµ+1, ...}. (9)
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In this case, as compared to the canonical quantum theory, in continuous
space-time we have the following substitution:

dpµ 7→∆pNxµ
= pNxµ

− pNxµ+1 = pNxµ (Nxµ+1);

∂

∂pµ
7→ ∆

∆pµ
,
∂F

∂pµ
7→

∆F(pNxµ
)

∆pµ
=

F(pNxµ
)− F(pNxµ+1)

pNxµ
− pNxµ+1

=
F(pNxµ

)− F(pNxµ+1)

pNxµ (Nxµ+1)

.(10)

It is clear that for sufficiently high integer values of |Nxµ|, formula 10) re-
produces a continuous paradigm in the momentum space to any preassigned
accuracy.
Similarly for sufficiently high integer values of |Nt| and |Ni

.
= Nxi | , the quan-

tities τ/Nt, `/Nxi from formula (4) may be arbitrary small.
Hence, for sufficiently high integer values of |Nt| and |Ni

.
= Nxi |, the quanti-

ties τ/Nt, `/Nxi are nothing but a measurable analog of the small quantities
δxi, δt and the infinitesimal quantities dxi, dt, i.e. δxµ, and dxµ, µ = 0, ..., 3.
As follows from formula (4), for sufficiently high integer values of |Nxµ|, µ =
0, ..., 3, the primarily measurable momenta Pxµ (formula (9)) represent
ameasurable analog of small (and infinitesimal) space-time increments in
the space-time variety M⊂ R4.
Because of this, for sufficiently high integer values of |Nxµ|, the space-time
analog of formula (10) is as follows:

dxµ 7→
`

Nxµ

;

∂

∂xµ
7→ ∆

∆Nxµ

,
∂F

∂xµ
7→ ∆F(xµ)

∆Nxµ

=
F(xµ)− F(xµ + `/Nxµ)

`/Nxµ

. (11)

Now we formulate the principle of correspondence to a continuous theory.

Principle of Correspondence to Continuous Theory (PCCT).

At low energies E � Ep (or same E � E`) the infinitesimal space-time quanti-
ties dxµ;µ = 0, ..., 3 and also infinitesimal values of the momenta dpi, i = 1, 2, 3
and of the energies dE form the basic instruments (“construction materials”)
for any theory in continuous space-time. Because of this, to construct the
measurable variant of such a theory, we should find the adequate substitutes
for these quantities.
It is obvious that in the first case the substitute is represented by the quantities
`/Nxµ , where |Nxµ| – no matter how large (but finite!) integer, whereas in the
second case by pNxi = h̄

Nxi`
; i = 1, 2, 3; ENx0

= ch̄
Nx0`

, where Nxµ – integer with

the above properties µ = 0, ...3.
In this way in the proposed approach all the primary measurable momenta
pNxµ , |Nxµ | � 1 are small quantities at low energies E � E` and primary
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measurable momenta pNxµ with sufficiently large |Nxµ| � 1 being analogous
to infinitesimal quantities of a continuous theory.
As, according to Remark 2.2, all the momenta at low energies E � Ep, to a
high accuracy, may be considered to be the primary measurable momenta,
from formula (4) we derive that at low energies the primary measurable
momenta pNxµ generate measurable small space-time variations and at suffi-
ciently high |Nxµ| – infinitesimal variations.

B)High Energies, E ≈ Ep.
In this case formula (2) takes the form

Ni =
h̄

pxi`
, or (12)

pxi
.
= pNi =

h̄

Ni`
|Ni| ≈ 1.

where Ni is an integer number and pxi is the momentum corresponding to the
coordinate xi. The discrete set pNi

.
= pNxi is introduced as primary measur-

able momenta.
The main difference of the case B)High Energies from the case A) Low
Energies is in the fact that at High Energies the primary measurable
momenta are inadequate for theoretical studies at the energy scales E ≈ Ep.
This is easily seen when we consider, e.g., the Generalized Uncertainty Princi-
ple (GUP) [11]–[20], that is an extension of Heisenberg’s Uncertainty Principle
(HUP) [22],[21], to (Planck) high energies

∆x ≥ h̄

∆p
+ α′l2p

4p
h̄

(13)

where α′ is a constant on the order of 1.
Obviously, (13) leads to the minimal length ` on the order of the Planck length
lp

∆xmin = 2
√
α′lp

.
= `. (14)

In his earlier works [7],[9] the author, using simple calculations, has demon-
strated that for the equality in (13) at high energies E ≈ Ep, (E ≈ E`) the
primary measurable space quantity ∆x = N∆x`, where N∆x ≈ 1 is an
integer number, results in the momentum ∆p(N∆x, GUP ):

∆p
.
= ∆p(N∆x, GUP ) =

h̄

1/2(N∆x +
√
N2

∆x − 1)`
. (15)

It is clear that for N∆x ≈ 1 the momentum ∆p(N∆x, GUP ) is not a primary
measurable momentum.
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On the contrary, at low energies E � Ep, (E � E`) the primary measurable
space quantity ∆x = N∆x`, where N∆x � 1 is an integer number, due to the
validity of the limit

lim
N∆x→∞

√
N2

∆x − 1 = N∆x, (16)

leads to the momentum ∆p(N∆x, HUP ):

∆p
.
= ∆p(N∆x, HUP ) =

h̄

1/2(N∆x +
√
N2

∆x − 1)`
≈ h̄

N∆x`
=

h̄

∆x
. (17)

It is inferred that, for sufficiently high integer values of N∆x the momentum
∆p(N∆x, HUP ) within any high accuracy may be considered to be the pri-
mary measurable momentum.
This example illustrates that primary measurable momenta are insufficient
for studies in the high-energy domain E ≈ Ep and we should use the gener-
alized measurable momenta.

As noted above, the main target of the author is to construct a quantum
theory at all energy scales E ≤ E` in terms of measurable quantities.
In this theory the values of the physical quantity G may be represented by the
numerical function F in the following way [8]:

G = F(Ni, Nt, `) = F(Ni, Nt, G, h̄, c, κ), (18)

where Ni, Nt–integers for general form from the formula (2) and at high ener-
gies E ≈ E` from the formula (12) and G, h̄, c are fundamental constants. The

last equality in (18) is determined by the fact that ` = κlp and lp =
√
Gh̄/c3.

If Ni 6= 0, Nt 6= 0 (nondegenerate case), then it is clear that (18) can be
rewritten as follows:

G = F(Ni, Nt, `) = F̃((Ni)
−1, (Nt)

−1, `) (19)

Then at low energies E � E`, i.e. at |Ni| � 1, |Nt| � 1, the function F̃
is a function of the variables changing practically continuously, though these
variables cover a discrete set of values. Naturally, it is assumed that F̃ varies
smoothly (i.e. practically continuously). As a result, we get a model, discrete
in nature, capable to reproduce the well-known theory in continuous space-
time to a high accuracy, as it has been stated above.
Obviously, at low energies E � E` the formula (19) is as follows:

G = F(Ni, Nt, `) = F̃((Ni)
−1, (Nt)

−1, `) = (20)

= F̃p(pNi , pNtc , `),
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where pNi , pNtc are primary measurable momenta.

Remark 2.3. What is the main point of this Section?
At low energies E � Ep we replace the abstract small and infinitesimal quanti-
ties δxµ, dxµ, δpµ, dpµ incomparable with each other, by the specific small quan-
tities `/Nxµ , pNxµ , which may be made however small at sufficiently high |Nxχ|,
still being ordered and comparable. It is very important that the quantities
`/Nxµ , pNxµ are directly associated with the existing energies; for |N ′

xµ | > |Nxµ |
the momentum p|N ′

xµ |
< p|Nxµ | and p|N ′

xµ |
corresponds to lower energy than

p|Nxµ | . The same is true for the space variations `/N
′
xµ , `/Nxµ .

Remark 2.4.
At low energies E � Ep we should emphasize the difference between the pri-
mary measurable momenta pNxµ ∈ PLE and the space-time quantities `/Nxµ

corresponding to them in accordance with formula (4).
The first, that is pNxµ , in accordance with Remark 2.2. represent the whole
set of the momenta PLE at low energies E � Ep in terms of measurable
quantities, whereas the second, `/Nxµ, represent only the measurable small
variations of space-time quantities. Because of this, any point pNxµ ∈ PLE is
associated with the fixed measurable minimal variation ∆pNxµ from formula
(10). At the same time, for a point with the space-time coordinates x

.
= {xµ}

such measurable minimal variation is dependent on the number |Nxµ| accord-
ing to formula (11).

Remark 2.5.
Finally, according to Definition 1., in the relativistic case the primary mea-
surable energy is of the form

E =
h̄c

N0`
,N0

.
= Nx0 , (21)

where N0 is an integer number, and at low energies E � Ep it is obvious that
N0 � 1.
Then at low energies E � Ep from Remark 2.2. it follows naturally that
primary measurable energies, to a high accuracy, cover the whole low-energy
spectrum. Then, considering that the formula
E2 = p2c2 + m2c4 low energies E � Ep [23],[24] to a high accuracy is valid
in terms of measurable quantities and all components of the vector p are the
primary measurable momenta, we can found the mass m in terms of the
measurability notion as follows:

m2 =
h̄2

c2
(

1

N2
0 `

2
−

∑
1≤i≤3

1

N2
i `

2
). (22)
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3 Space-Time Metrics in Measurable Format

and Strong Principle of Equivalence at Low

Energy

The principal result of this section is based on Section 4 in [10] and we give
all the required information from [10].
According to the above-mentioned results, the measurable variant of gravity
should be formulated in terms of the small measurable space-time quantities
`/N∆xµ or same primary measurable momenta pN∆xµ

.
Let us consider the case of the random metric gµν = gµν(x) [25],[26], where
x ∈ R4 is some point of the four-dimensional space R4 defined in measurable
terms. The phrase ”some point of the four-dimensional space R4 defined in
measurable terms” means that all variations at the indicated point are de-
termined in terms of measurable quantities (formula (18)–(20)). Specifically,
as mentioned above, all small measurable variations, according to formula
(4), take the from `/N∆xµ ∝ pN∆xµ

, where pN∆xµ
are primary measurable

momenta and |N∆xµ| � 1.
Now, any such point x

.
= {xχ} ∈ R4 and any set of integer numbers {N∆xχ}

dependent on the point {xχ} with the property |N∆xχ| � 1 may be correlated
to the bundle with the base R4 as follows:

BNxχ
.
= {xχ, `

N∆xχ
} 7→ {xχ}. (23)

It is clear that lim
|N∆xχ |→∞

BN∆xχ
= R4.

Then as a canonically measurable prototype of the infinitesimal space-time in-
terval square [25],[26]

ds2(x) = gµν(x)dxµdxν (24)

we take the expression

∆s2
{N∆xχ}(x)

.
= gµν(x, {N∆xχ})

`2

N∆xµN∆xν
. (25)

Here gµν(x, {N∆xχ}) – metric gµν(x) from formula (32) with the property that
minimal measurable variation of metric gµν(x) in point x for coordinate χ
has form

∆gµν(x, {N∆xχ})χ = gµν(x+ `/N∆xχ , {N∆xχ})− gµν(x, {N∆xχ}), (26)

Let us denote by ∆χgµν(x, {N∆xχ}) quantity

∆χgµν(x,N∆xχ) =
∆gµν(x,N∆xχ)χ

`/N∆xχ
. (27)



Minimal quantities and measurable variant of gravity II 89

It is obvious that in the case under study the quantity ∆gµν(x, {N∆xχ})χ is a
measurable analog for the infinitesimal increment dgµν(x) of the χ-th compo-
nent (dgµν(x))χ in a continuous theory, whereas the quantity ∆χgµν(x,N∆xχ)
is a measurable analog of the partial derivative ∂χgµν(x).
In this manner we obtain the (23)-formula induced bundle over the metric
manifold gµν(x):

Bg,N∆xχ

.
= gµν(x, {N∆xχ}} 7→ gµν(x). (28)

Referring to formula (4), we can see that (25) may be written in terms of the
primary measurable momenta (pN∆xi

, pN∆x0 )
.
= pN∆xχ

as follows:

∆s2
N∆xχ

(x) =
`4

h̄2 gµν(x, {N∆xχ})pN∆xµ
pN∆xν

. (29)

Considering that ` ∝ lP (i.e., ` = κlP ), where κ = const is on the order of 1,
in the general case (29), to within the constant `4/h̄2, we have

∆s2
N∆xχ

(x) = gµν(x, {N∆xχ})pN∆xµ
pN∆xν

. (30)

As follows from the previous formulae, the measurable variant of General
Relativity should be defined in the bundle Bg,N∆xχ

Remark 3.1
According to (25)–(27), a measurable analog of the metric gµν(x, {N∆xχ})
is differing from gµν(x) by the value of a ”minimal” interval and by minimal
variations of gµν(x, {N∆xχ}). However, the components gµν(x, {N∆xχ}) them-
selves are coincident with gµν(x).

For convenience, apart from formula (25), we use the equivalent formula

∆s2
{N∆xχ}(x)

.
= gµν(x, {N∆xχ})

`2

N∆xµN∆xν

, (31)

that is a measurable analog of the formula

ds2(x) = gµν(x)dxµdxν (32)

Since it has been demonstrated that the metric components in continuous and
measurable cases are the same, they may be used to raise and to lower the
indices in the measurable case as well. Specifically, instead of a set of the
quantities gµν(x, {N∆xχ}), N∆xχ , `/N∆xµ , pN∆xµ

, we can use the set
gµν(x, {N∆xχ}), N∆xχ , `/N∆xµ , pN∆xµ

.
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Measurability and Strong Principle of Equivalence in Low Energies

We can easily show that because the energies are low (E � Ep or same
|N∆xχ| � 1), the Strong Principle of Equivalence (SPE) ([27],p.69) is
valid in terms of measurable quantities.
Indeed, let x0 .

= (x0
µ), µ = 0, .., 3 be some fixed point of the space-time variety

M⊂ R4, with the metric gµν(x) i.e. x0 ∈M.
According to SPE, in continuous space-time the point x0 has a sufficiently
small neighborhood, where the metric gµν(x) is equivalent to the Minkowskian
metric ηµν(x); ||ηµν || = Diag (−1, 1, 1, 1) .
We denote this neighborhood as X0(gµν).
Without loss of generality, we can calculate X0(gµν) for each of the coordinates
µ = 0, .., 3 symmetric relative to x0, i.e., we have

X0(gµν)
.
= [(x0

µ − aµ < xµ < x0
µ + aµ)

.
= |xµ − x0

µ| < aµ, (33)

µ = 0, .., 3; aµ > 0].

Then we can easily find integer N∆x0
µ
; |N∆x0

µ
| � 1 sufficiently high in absolute

value so that

|xµ − x0
µ| =

`

|N∆x0
µ
|
� aµ. (34)

As noted above, for sufficiently high |N∆x0
µ
|, the metric gµν(x), to however

high accuracy, is considered to be the measurable metric gµν(x, {N∆xχ}) .
As with an increase in |N∆x0

µ
| the quantity `/|N∆x0

µ
| is varying practically

continuously, the metric gµν(x) to however high accuracy could be considered
the measurable metric for

|xµ − x0
µ| ≤

`

|N∆x0
µ
|
. (35)

Since the neighborhood of the point x0 assigned by the condition (35) is fully
lying about the point specified by the condition (33), in this neighborhood the
metric gµν(x) is equivalent to the Minkowskian metric ηµν(x) in continuous
space-time.
But, in turn, ηµν(x) can be represented, to however high accuracy, for the in-
teger number N

′
∆xχ ; |N ′

∆xχ| � 1 sufficiently high in absolute value, in the form

of measurable metrics ηµν(x, {N ′
∆xχ}).

So, within the concept of measurability, the Strong Principle of Equiv-
alence (SPE) may be formulated as follows:

Definition 3.1. Measurable Variant of SPE at Low Energies.
For sufficiently small measurable neighborhood of the point x0, (the term
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”measurable neighborhood” means that all points of this neighborhood arise
from x0 by means of measurable variations), the measurable metric
gµν(x, {N∆xχ}), with the integer number N∆xχ sufficiently high in absolute
value, is equivalent to the measurable Minkowskian metric ηµν(x, {N ′

∆xχ})
with the integer N

′
∆xχsufficiently high in absolute value. In other words, in a

sufficiently small measurable neighborhood of the point x0 we can obtain, to
however high accuracy, the equivalence of the two measurable metrics

gµν(x, {N∆xχ}) ≡ ηµν(x, {N ′

∆xχ}). (36)

It is clear that, taking maximal absolute values from both sets N∆xχ and
N

′
∆xχ , |N∗∆xχ | = Max{|N∆xχ |, |N

′
∆xχ|}, we can have for (36) the coincident

sets {N∆xχ} and {N ′
∆xχ}:

gµν(x, {N∗∆xχ}) ≡ ηµν(x, {N∗∆xχ}). (37)

Remark 3.2
Again without loss of generality, we can takes as a sufficiently small mea-
surable neighborhood of the point x0 the neighborhood X0(gµν) specified by
formula (33).
It is clear that, as the energies under study are low (E � Ep), we have
aµ = Naµ` and Naµ � 1. Of course, the quantity aµ = Naµ` is not necessarily
primarily measurable, i.e., the number Naµ is not necessarily integer. But
we can always make it so, taking, instead of the number Naµ , its integer part
[Naµ ]. Then the primarily measurable quantity aµ = [Naµ ]` is also satisfy-
ing the condition specified in formula (33).

The condition ”sufficiently small measurable neighborhood” indicates that
the numbers Naµ should set the upper bound as follows:

1� Naµ � Nµ(gµν), (38)

where the high positive number Nµ(gµν), (i.e. Nµ(gµν) � 1) is dependent on
the metric gµν .
For complete consideration of SPE at low energies E � Ep in terms of mea-
surability notion, we should study the coordinate transformations of a con-
tinuous theory in terms of measurable quantities.
Let us consider any coordinate transformation xµ = xµ (x̄ν) of the space–time
coordinates in continuous space-time. Then we have

dxµ =
∂xµ

∂x̄ν
dx̄ν . (39)
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As mentioned at the Section 2 (formula (10)),in terms of measurable quan-
tities we have the substitution

dxµ 7→ `

N∆xµ

; dx̄ν 7→ `

N̄∆x̄ν

, (40)

where N∆xµ , N̄∆x̄ν – integers (|N∆xµ| � 1, |N̄∆x̄ν | � 1) sufficiently high in
absolute value, and hence in the measurable case (39) is replaced by

`

N∆xµ

= ∆µν(x
µ, x̄ν , 1/N∆xµ , 1/N̄∆x̄ν )

`

N̄∆x̄ν

. (41)

Equivalently, in terms of the primary measurable momenta we have

pN∆xµ
= ∆µν(x

µ, x̄ν , 1/N∆xµ , 1/N̄∆x̄ν ) pN̄∆x̄ν
, (42)

where ∆µν(x
µ, x̄ν , 1/N∆xµ , 1/N̄∆x̄ν )

.
= ∆µν(x

µ, x̄ν , pN∆xµ
, pN̄∆x̄ν

) – correspond-
ing matrix represented in terms of measurable quantities.
It is clear that, in accordance with formula (40), in passage to the limit we get

lim
|N∆xµ |→∞

`

N∆xµ

= dxµ =

= lim
|N̄∆x̄ν |→∞

∆µν(x
µ, x̄ν , 1/N∆xµ , 1/N̄∆x̄ν )

`

N̄∆x̄ν

=
∂x̄µ

∂xν
dxν . (43)

Equivalently, passage to the limit (43) may be written in terms of the primary
measurable momenta pN∆xµ

, pN̄∆x̄ν
multiplied by the constant `2/h̄.

How we understand formulae (40)–(43)?
The initial (continuous) coordinate transformations xµ = xµ (x̄ν) gives the ma-
trix ∂xµ

∂x̄ν
. Then, for the integers sufficiently high in absolute value N̄∆x̄ν , |N̄∆x̄ν | �

1, we can derive

`

N∆xµ

=
∂xµ

∂x̄ν
`

N̄∆x̄ν

, (44)

where |N∆xµ | � 1 but the numbers for N∆xµ are not necessarily integer. Still,
as noted above, the difference between `/N∆xµ and `/[N∆xµ ] (and hence be-
tween pN∆xµ

and p[N∆xµ ]) is negligible.
Then substitution of [N∆xµ ] for N∆xµ in the left-hand side of (44) leads to re-
placement of the initial matrix ∂xµ

∂x̄ν
by the matrix ∆µν(x

µ, x̄ν , 1/N∆xµ , 1/N̄∆x̄ν )
represented in terms of measurable quantities and, finally, to the formula
(41). Clearly, for sufficiently high |N∆xµ |, |N̄∆x̄ν | , the matrix ∆µν(x

µ, x̄ν , 1/N∆xµ , 1/N̄∆x̄ν )
may be selected no matter how close to ∂xµ

∂x̄ν
.

Similarly, in the measurable format we can get the formula

dx̄µ =
∂x̄µ

∂xν
dxν (45)
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and correspondingly the matrix ∆̃µν(x̄
µ, xν , 1/N̄∆xµ , 1/N∆xν ) with the property

`

N̄∆xµ

= ∆̃µν(x̄
µ, xν , 1/N̄∆xµ , 1/N∆xν )

`

N∆xν

, (46)

Thus, any coordinate transformation may be represented, to however high
accuracy, by the measurable transformation (i.e., written in terms of mea-
surable quantities), where the principal components are the measurable
quantities `/N∆xµ or the primary measurable momenta pN∆xµ

.
From this it follows that all the components necessary for the formulation of
a measurable variant of SPE at low energies E � Ep are available – all of
them are represented in terms of the measurability notion, making the above
definition of a measurable variant of SPE at low energies E � Ep correct.

4 Measurability in Gravity and Strong Prin-

ciple of Equivalence at All Energy Scales

In this section, based on the results from [10], within the scope of the space-
time foam notion we perform an initial analysis of the possibility for general-
ization of SPE in a measurable analog of gravity to the ultraviolet (Planck)
energy region.
As directly follows from the first part of Section 3, specifically from formu-
lae (25)–(27), the principal components involved in gravitational equations of
General Relativity have measurable analogs [10].
In particular, the Christoffel symbols [25],[26]

Γαµν(x) =
1

2
gαβ(x)

(
∂ν gβµ(x) + ∂µ gνβ(x)− ∂β gµν(x)

)
(47)

have the measurable analog [10]

Γαµν(x,Nxχ) =
1

2
gαβ(x,Nxχ) (∆νgβµ(x,Nxχ) + ∆µgνβ(x,Nxχ)−

−∆βgµν(x,Nxχ)). (48)

Similarly, for the Riemann tensor in a continuous theory we have [25],[26]:

Rµ
ναβ(x) ≡ ∂αΓµνβ(x)− ∂βΓµνα(x) + Γµγα(x) Γγνβ(x)− Γµγβ(x) Γγνα(x). (49)

With the use of formula (48), we can get the corresponding measurable ana-
log, i.e. the quantity Rµ

ναβ(x,Nxχ) [10].
In a similar way we can obtain the measurable variant of Ricci tensor,
Rµν(x,Nxχ) ≡ Rα

µαν(x,Nxχ) , and the measurable variant of Ricci scalar:
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R(x,Nxχ) ≡ Rµν(x,Nxχ) gµν(x,Nxχ) [10].
So, for the Einstein Equations (EU) in a continuous theory [25],[26]

Rµν −
1

2
Rgµν −

1

2
Λ gµν = 8π GTµν (50)

we can derive their measurable analog, for short denoted as (EUM)Einstein
Equations Measurable [10]:

Rµν(x,Nxχ)− 1

2
R(x,Nxχ) gµν(x,Nxχ)− 1

2
Λ(x,Nxχ) gµν(x,Nxχ) =

= 8π GTµν(x,Nxχ), (51)

where G – Newton’s gravitational constant.
For correspondence with a continuous theory, the following passage to the limit
must take place for all the points x:

lim
|Nxχ |→∞

Λ(x,Nxχ) = Λ, (52)

where the cosmological constant Λ is taken from formula(50).
Moreover, for high |Nxχ|, the quantity Λ(x,Nxχ) should be practically inde-
pendent of the point x, and we have

Λ(x,Nxχ) ≈ Λ(x
′
, N

′

x′χ
) ≈ Λ, (53)

where x 6= x
′

and |Nxχ| � 1, |N ′

x′χ
| � 1.

Actually, it is clear that formula (52) reflects the fact that (EUM) given by
formula (51) represents deformation of the Einstein equations (EU) (50) in
the sense of the Definition given in [28] with the deformation parameter Nxχ ,
and we have

lim
|Nxχ |→∞

(EUM) = (EU). (54)

We denote this deformation as (EUM)[Nxχ ]. Since at low energies E �
EP and to within the known constants we have `/Nxχ = pNxχ , the following
deformations of (EU) are equivalent to

(EUM)[Nxχ ] ≡ (EUM)[pNxχ ]. (55)

So, on passage from (EU) to the measurable deformation of (EUM)[Nxχ ] (or
identically (EUM)[pNxχ ]) we can find solutions for the gravitational equations
on the metric bundle Bg,Nxχ

.
= gµν(x, {Nxχ}) (formula (28)) given by formula

(25) [10].
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What are the advantages of this approach?

4.1. First, as |Nxχ| � 1, from the above formulae it follows that the metric
gµν(x, {Nxχ}) belonging to Bg,Nxχ and representing a solution for (EUM)[Nxχ ],
to a high accuracy, is a solution for the Einstein equations (EU) in a continuous
theory. Besides, formula (54) shows that at sufficiently high |Nxχ| this accu-
racy may be however high. In this way the Principle of Correspondence to
Continuous Theory (PCCT) (Section 2) to a continuous theory takes place.

4.2. We replace the abstract infinitesimal quantities dxµ, incomparable with
each other, by the specific small quantities `/Nxµ which may be made however
small at sufficiently high |Nxχ|, still being ordered and comparable. Because
of this, we can compare small values of the squared intervals ∆s2

{Nxχ}(x) from

formula (25). Possibly, this will help to recover the causality property for all
solutions in (EUM)[Nxχ ] without pathological solutions in the form of the
Closed Time-like Curves (CTC), involved in some models of General Relativ-
ity [29]–[32].

4.3. Finally, this approach from the start is quantum in character due to
the fact that the fundamental length ` is proportional to the Planck length
` ∝ lP and includes the whole three fundamental constants, the Planck con-
stant h̄ as well. Besides, it is naturally dependent on the energy scale: sets of
the metrics gµν(x, {Nxχ}) with the lowest value |Nxχ| correspond to higher en-
ergies as they correspond to the momenta {pNxχ} which are higher in absolute
value. This is the case for all the energies E.
However, minimal measurable increments for the energies E ≈ EP are not
of the form `/Nxµ because the corresponding momenta {pNxχ} are no longer
primary measurable, as indicated by the results in Section 2.
So, in the proposed paradigm the problem of the ultraviolet generalization of
the low-energy measurable gravity (EUM)[Nxχ ] (formula (51)) is actually
reduced to the problem: what becomes with the primary measurable mo-
menta {pNxχ}, |Nxχ| � 1 at high Planck’s energies.
In a relatively simple case of GUP in Section 2 we have the answer. And,
using the fact that (EUM)[Nxχ ] ≡ (EUM)[pNxχ ] (55), based on the results
of Section 2, we can construct a correct high-energy passage to the Planck
energies E ≈ Ep [10]

(EUM)[pNxχ , |Nxχ| � 1] 7→ (EUM)[pNxχ (GUP ), |Nxχ| ≈ 1], (56)

where pNxχ (GUP ) = ∆p(∆xχ, GUP ) according to formula (15) of Section 2.
In this specific case, we can construct the natural ultraviolet generalization
(EUM)[pNxχ , |Nxχ| � 1]

.
= (EUM)[pNxχ ]. The theoretical calculations

(EUM)[pNxχ (GUP ), |Nxχ | ≈ 1] derived at Planck’s energies are obviously dis-
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crete,measurable, and represent a high-energy deformation in the sense of
the [28] measurable gravitational theory (EUM)[pNxχ , |Nxχ | � 1].

Strong Principle of Equivalence in Measurable Variant at All
Energy Scales

The Equivalence Principle (weak or strong) in its initial form has been formu-
lated for a low-energy gravitational theory, i.e. for the energies E � Ep in
continuous space-time [27].There is nothing similar for the energies E ≈ Ep.
However, in the proposed approach (or in the present paradigm) we go from
continuous space-time to the measurable discrete space-time but in such a
way that at low energies E � Ep the introduced measurable discrete space-
time is close to the continuous space-time, enabling the author to form a mea-
surable analog of the Strong Principle of Equivalence at Low Energies
in Section 3.
The basic parameters used to form the measurability notion for all the en-
ergy scales are the integer numbers Nxµ , µ = 0, ..., 3 (or identically Nxµ). At
low energies E � Ep these numbers satisfy the condition |Nxµ | � 1. As
it has been demonstrated above, the corresponding primarily measurable
momenta pN∆xµ

(and space-time variations `/N∆xµ) are adequate to form a
measurable variant of gravity at these energy scales.
At high energies E ≈ Ep (same E ≈ E`) (case B) from Section 2), due to the
fact that for |Nxµ| ≈ 1 a theory in terms of measurable quantities becomes
really discrete, the primarily measurable momenta pN∆xµ

, in line with for-
mula (15), are inadequate for the correct examination of this case.
In the general case the transition from high E ≈ Ep to low energies for a
measurable variant of gravity is given by reversal of the arrow from formula
(56):

(EUM)[pNxχ , |Nxχ | ≈ 1] 7→ (EUM)[pNxχ , |Nxχ| � 1], (57)

where pNxχ for |Nxχ | ≈ 1 the generalized measurable (or simply measur-
able) momenta are so that we have

pNxχ , (|Nxχ | ≈ 1)
|Nxχ |≈1→|Nxχ |�1

⇒ pNxχ , (|Nxχ| � 1). (58)

The momenta in the right-hand part of formula (58),i.e. pNxχ , (|Nxχ| � 1),
are the primary measurable momenta at low energies E � Ep.
In Section 2 it is shown that the momenta pNxχ (GUP ), |Nxχ | ≈ 1 specified by
formula (15) just satisfy the conditions of (57),(58). But it is obvious that in
the general case at the energies E ≈ Ep the momenta pNxχ , (|Nxχ | ≈ 1, meeting
the conditions (57),(58), may be of a more complex form. For example, the
form of GUP may be more complex than that considered in the survey work
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[38]. In this case on passage to quantum gravity the formulas (56)–(58) are
still valid.
In all the cases for a measurable variant of gravity the transition to the ultra-
violet (i.e quantum) region may be realized by substitution of `

2

h̄
pN∆xµ

, |N∆xµ| ≈
1 in Section 3 for the quantities `/N∆xµ = `2

h̄
pN∆xµ

, |N∆xµ | � 1; by the cor-
responding corrections of formulae (25)–(31) from Section 3, of all the com-
ponents necessary for derivation of gravitational equations in a measurable
variant Γαµν(x,Nxχ), Rµ

ναβ(x,Nxχ), ..., and of formulae (48),(50),... from this
Section.
It is clear that, provided at high energies E ≈ Ep in the measurable case
some analog of the Strong Principle of Equivalence (SPE)is involved, its
formulation should be radically different from (SPE) in the measurable case
at low energies E � Ep considered in Section 3 for the two main reasons given
below.

4.4A. As at high energies E ≈ Ep (and hence at |N∆xµ| ≈ 1) a measurable
variant of gravity represents a discrete theory, where the notion of locality
is senseless, we should involve the minimal primarily measurable spatial
neighborhood and the minimal generalized measurable spatial variations
`2

h̄
pN∆xµ

, |N∆xµ| ≈ 1 for the arbitrary point x
.
= {xµ} (with the naturally se-

lected finite bounds of the numbers N∆xµ).

4.4B. Besides, it is obvious that at high energies E ≈ Ep the space curva-
ture becomes great and this space in any measurable neighborhood of the
random point x is far from the flat space with the Minkowskian metric ηµν(x).

As follows from remarks 4.4A. and 4.4B., when for a measurable variant of
gravity there is some form of an analog of the Strong Principle of Equiv-
alence (SPE) at high energies E ≈ Ep , its correct formulation should be
completely coordinated with the transitions from high to low energies given in
formulae (57), (58). In other words, on going from high to low energies, this
high-energy analog of SPE should conform to SPE at low energies E � Ep
for a measurable variant of gravity considered in Section 3.
In accordance with the modern understanding of the problem, at high ener-
gies E ≈ Ep the space geometry, due to high Space-Time Quantum Fluctua-
tions (STQF), represents the “space-time foam”(stf) [33],[34]. The notion of
“space-time foam” was introduced by J. A. Wheeler about 60 years ago for
the description and investigation of physics at Planck’s scales (Early Universe).
Actually, because of high quantum fluctuations of the metric gµν , the space
has a quantity of geometries. Despite the fact that in the last time numerous
works have been devoted to physics at Planck’s scales within the scope of this
notion, by this time still their no clear understanding of stf as it is.
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Still, some models based on micro-black holes are very interesting and fairly
promising. In particular, the models studied in [35]–[37] and based on micro-
black holes, i.e. black holes with a Schwarzschild radius of several Planck’s
units of length.
Without loss of generality, it may be considered that all the micro-black holes
considered as ”constituent parts” of stf are Schwarzschild’s black holes.
It should be noted that the case of micro-black holes with the Schwarzschild
metric in terms of measurable quantities has been already studied by the
author in his papers [7], [9]. In these papers, within the scope of validity of the
Generalized Uncertainty Principle (GUP) of Section 2, in terms of the mea-
surability notion the gravitational equations at the event horizon surface of
these holes have been derived and their basic thermodynamic characteristics
(temperature, entropy) have been obtained.
It is obvious that these holes form a discrete finite set, provided their Schwarzschild
radii rmbh are considered primarily measurable quantities:

rmbh = Nrmbh`,Nrmbh ≈ 1, (59)

where Nrmbh is an integer number.
Proceeding from all the above, a measurable variant of the Strong Princi-
ple of Equivalence at high energies E ≈ Ep for stf based on the geometry
of Schwarzschild’s micro-black holes may be formulated as follows.

In a sufficiently small primarily measurable neighborhood of any spatial
point x at the Planck scale the geometry of stf is equivalent to the geometry of
some micro-black hole with the Schwarzschild metric and with the correspond-
ing Schwarzschild radius rmbh satisfying formula (59).

As, in accordance with GUP of Section 2, we have

p(N∆xi , GUP ) =
h̄

1/2(N∆xi +
√
N2

∆xi
− 1)`

, i = 1, ..., 3, (60)

on passage from high energies E ≈ Ep to low energies E � Ep, formula (58)
is apparently valid and we can, to a high accuracy, obtain at low energies the
primarily measurable momenta p(N∆xi), |N∆xi | � 1 and a measurable
variant of the Strong Principle of Equivalence at Low Energies from
Section 3.
In the process it is assumed that formula (57) is valid by default, i.e. passage
from stf at high energies E ≈ Ep to low energies E � Ep leads to the large-
scale space-time structure and to Einstein Equations.
As noted in point 4.3., in a simple case of GUP considered in Section 2 pas-
sage to quantum gravity in a measurable variant of General Relativity is
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represented by formula (56). However, GUP may be of a more complex as
compared to the considered in the survey work [38]. In this case on passage to
quantum gravity the formula (56) is still valid.

5 Conclusion

Thus, in this paper it has been demonstrated that the Strong Principle of
Equivalence (SPE) may be correctly formulated in terms of measurable
quantities, i.e. for a measurable analog of gravity (or same measurable
variant of gravity) at low energies E � Ep. Besides, it has been shown that,
within the scope of the specific models for Space-Time Foam, SPE may be
also valid for a measurable variant of gravity and at the Planck scales, or at
high energies E ≈ Ep.
Since at the present time no direct or indirect experiments at the scales on
the order of Planck’s scales (i.e. at the energies associated with the quantum
gravity scales) are known, all theoretical studies in this field are to some or
other extent speculative. Nevertheless, considering that gravity should be for-
mulated with the use of the same terms at all the energy scales, it must be
governed by the particular unified principles the formulation of which varies
depending on the available energies. Because of this, the results from Section
4 seem to be important. Of course, these results are tentative and may be cor-
rected during further studies of gravity in terms of the measurability notion.
But they give the main idea and define the trend towards the derivation of a
measurable variant of gravity: framing of a correct gravitational theory at
all the energy scales, with the use of a set of discrete parameters p(N∆xµ) for
all nonzero integer values of N∆xµ , that is close to the General Relativity at
low energies E � Ep and is a new (discrete) theory at high energies E ≈ Ep.
As noted in Section 4 (formula (54)) and in the earlier papers of the author,
the above derivation of a measurable variant of gravity may be realized pro-
ceeding from the notion of the deformation of a physical theory introduced in
[28]:

Deformation is understood as an extension of a particular theory by inclusion
of one or several additional parameters in such a way that the initial theory
appears in the limiting transition.

Denoting a measurable variant of gravity at low energies E � Ep (that
is yet incompletely derived) by Grav[LE,meas]`, we obtain that the above-
mentioned deformation is nothing else but the following mapping:

Grav[LE,meas]`
`→0⇒ GR, (61)
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where the deformation parameters are primarily measurable momenta
p(N∆xµ), |N∆xµ | � 1 (or the corresponding space-time variations `/N∆xµ).
Then Einstein Equations Measurable (EUM) at low energies E � Ep in Section
3 (formula (51)) is a low-energy deformation deformation of Einstein Equations
(EU) in General Relativity (GR) as indicated by formula (54).
Considering that Grav[LE,meas]` and GR are very close but not identical,
the author’s hypothesis is as follows:

we can frame a measurable variant of gravity Grav[LE,meas]`, within the
scope of which there is possibility for the effective solution of several problems
at the joint of General Relativity and Quantum Theory: the above-mentioned
Closed Time-like Curves (CTC) problem [29]–[32], black hole radiation prob-
lem, Hawking’s Information Paradox [39] –[41], etc.
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