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ABSTRACT The ability to effectively store and transmit high-resolution images such as MRI and
CT scans without losing quality is critical to modernizing medical imaging. Traditional compression
methods risk losing essential medical image data, which requires perfect detail for diagnosis. Quantum
algorithms use superposition and entanglement to compress faster while preserving important information.
This research presents a Quantum-enhanced Artificial Neural Network (QANN) model that combines
quantum feature extraction with classical neural network topologies to improve image compression. Our
approach consists of converting standardized classical data into quantum states, controlling these states
using parameterized quantum circuits, and measuring the resulting states to produce enhanced feature
vectors. The quantum-enhanced features are fed into a traditional neural network for image compression.
The experimental results clearly show that our QANN framework outperforms standard models in terms
of accurate reconstructed images, reduced size, and increased space-saving percentage, especially when
dealing with large and complicated datasets. The QANN model demonstrates how quantum computing can
significantly enhance the effectiveness of medical image processing solutions. Kaggle brain CT and MRI
datasets and COVID-CXNet chest x-ray images are used. The proposed QANN model improves peak signal-
to-noise ratio (PSNR) and structural similarity index (SSIM). Using quantum technology, the image size is
reduced for MRI (73.3 %), X-ray (74.1%), and CT-SCAN (71.8%) to save space.

INDEX TERMS Quantum machine learning, quantum multiclass classifier, quantum feature extraction,
supervised learning.

I. INTRODUCTION

The increase in the variety of datasets in industries like
healthcare, finance, and environmental science has resulted
in a significant growth in the use of advanced data analysis
methods. The growing amount of data, also known as big
data, requires advanced computational techniques to extract
valuable insights and enable well-informed decision-making
processes. Although efficient, conventional machine learning
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(ML) methods face substantial difficulties with extensive
and intricate datasets. The obstacles encompass computing
constraints, optimizing parameter optimization challenges,
and scalability issues [1]. Conventional machine learning
methods frequently encounter constraints when dealing with
extensive and complex datasets, particularly in jobs that
classify many classes. These limits arise from variables
such as computing complexity, overfitting, and the curse of
dimensionality. The latest progress in quantum computing
has created new opportunities for tackling these difficulties.
Quantum computing offers a promising approach to address
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these issues and opens up new possibilities for improving
classification algorithms, thanks to its built-in parallelism and
superposition capabilities [2]. Fig 1 illustrates the fundamen-
tal principles of Quantum Machine Learning (QML).

Modern healthcare depends on medical imaging to
improve the accuracy of diagnosis and treatment planning.
It helps doctors understand complex cases by enabling
3D reconstruction of anatomical components, segmentation
of specific regions (such as tumors or blood arteries),
and enhancing image quality. In addition, cutting-edge
techniques such as real-time image analysis and Al-assisted
diagnosis optimize workflows and increase the effectiveness
of procedures such as image-guided surgery. In addition,
medical imaging facilitates quantitative analysis by helping to
measure features such as blood flow or lesion size, which are
essential for tracking disease and assessing the effectiveness
of treatments.

Medical image compression addresses the difficulties of
storing and transmitting the vast amounts of image data pro-
duced by modalities such as CT, MRI, and X-rays. Compres-
sion enables effective archiving, faster retrieval, and seamless
sharing via telemedicine and PACS systems by reducing file
sizes without compromising diagnostic quality. Optimizing
bandwidth utilization and reducing storage costs enables
real-time applications such as surgical guidance and remote
consultations. When combined, image processing and com-
pression ensure scalable, economical solutions while main-
taining the accuracy of diagnostic data in medical systems.

Quantum computing utilizes the principles of quantum
physics to perform data processing and analysis tasks
previously deemed unachievable using traditional computing
architectures. Quantum computers, due to their superior
computational efficiency, hold great potential for effectively
processing and analyzing vast datasets. This work examines
the combination of quantum computing and classical ML,
explicitly emphasizing the creation of hybrid quantum-
classical algorithms. We propose an innovative QML
methodology to enhance the precision and effectiveness of
supervised learning models. Our study focuses on developing
a quantum-enhanced artificial neural network that uses
qubits as the essential data representation and processing
components, specifically designed for binary classification
tasks. The results of our study indicate that QANN can
achieve comparable performance to standard models while
using fewer training parameters.

Quantum neural networks (QNNs) [3] merge quantum
processing techniques with traditional preprocessing to
enhance compression efficiency. At first, the QNN’s typical
layers extract visual components such as edges, textures, and
patterns. The quantum core of the QNN does supplementary
analysis of the collected features. This core utilizes the princi-
ples of quantum superposition, quantum gates, and qubits to
effectively compress data by simultaneously encoding many
versions of the data. The condensed quantum information is
deciphered following quantum processing, and the image is
reconstructed using conventional image processing methods
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or inverse operations. Quantum neural networks have the
potential to outperform classical approaches due to their
ability to process information more effectively through
the utilization of superposition and parallelism. QNNs can
utilize quantum entanglement as a means to enhance data
representations. Moreover, using quantum techniques such
as quantum amplitude estimation or Fourier transforms could
increase compression ratios and faster processing speeds [4].
This would make QNNs an attractive choice for advanced
photo compression.

Quantum neural networks may be able to compress and
decompress images effectively using ideas from quantum
computing. Image compression aims to minimize file
size without compromising visual quality [5]. DCT and
quantization are used in JPEG (Joint Photographic Experts
Group) compression. Quantum superposition allows QNNs
to process and encode multiple states. This could reduce
redundancy and increase compression ratios when encoding
visual data. Image features can be extracted in quantum
parallel by quantum circuits in QNNs. This feature extrac-
tion method could produce more compressed, perceptually
accurate representations. Compression is optimized using
variational quantum circuits and parameterized quantum
circuits optimized via classical feedback. These circuits
can change parameters to improve compression and reduce
reconstruction error. Entanglement is a quantum phenomenon
that can enhance the fidelity and compression efficiency
of encoding and decoding qubit states. The development
of QNN-based image compression systems [44], [45] is
challenging due to qubit coherence times and error rates,
among other problems with quantum hardware [43]. Quan-
tum computing technology and efficient error correction are
required to overcome these limitations. It is challenging to
develop training and optimization algorithms for QNN image
compression. Mixed classical quantum techniques are needed
for QNN training for image compression. All new image
compression techniques, including those based on QNNs,
must be JPEG-compatible to be valuable and practical.
Theoretical and applied research on quantum computing
technologies will lead to new quantum-enhanced image
compression techniques with higher compression ratios or
better visual quality.

A. CONTRIBUTIONS OF THIS PAPER

« We combine quantum entanglement, parallelism and
superposition, and quantum algorithm exploration to
perform image compression.

o Using a QANN model, image compression could
be achieved by extracting features and compressing
the feature representation using quantum processing.
Inverse operations or classical image processing tech-
niques reconstruct the image from its compressed
representation.

o The proposed QANN model improves peak signal-
to-noise ratio (PSNR) and structural similarity index
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FIGURE 1. Represents steps of quantum machine learning.

(SSIM). It also reduces image size for MRI (73.3%), X-
ray (74.1%), and CT-SCAN (71.8%) to save space.

B. ORGANIZATION OF THE PAPER

The subsequent sections of this document are structured
in the following manner: Section II presents an exten-
sive examination of the current body of literature on
quantum-enhanced machine learning. It focuses on important
approaches, advantages, and constraints highlighted in recent
research. Section III provides an indepth explanation of the
suggested methodology, which encompasses the creation and
execution of quantum machine learning models, approaches
for preparing the data, and metrics for evaluating the
performance of the models. Section IV showcases the
empirical discoveries, contrasts the effectiveness of the
suggested quantum models with traditional alternatives, and
examines the consequences of the outcomes about the
difficulties and possibilities mentioned in the literature study.
Section V provides a concise overview of the paper’s main
contributions, highlights the constraints of the current study,
and proposes potential avenues for future research in the field
of quantum machine learning.

II. LITERATURE REVIEW

A. LITERATURE SURVEY ON MEDICAL IMAGE
COMPRESSION TECHNIQUES

Medical image compression reduces the required storage and
transmission space for high-resolution medical images while
maintaining diagnostic accuracy. Compression algorithms
may effectively handle substantial volumes of data from
imaging modalities such as CT, MRI, and X-rays by utilizing
sophisticated methods such as wavelet transformations,
deep learning, and hybrid approaches. Efficient compression
facilitates the rapid retrieval of medical photographs and
enhances the convenience of telemedicine, archiving, and
remote diagnostics, as shown in Table 1.

The authors combined the logistic chaotic map encryption
with k-means clustering compression in reference [27]. This
was achieved by making the encryption key space larger
and the input image smaller. Metrics such as correlation

VOLUME 13, 2025

Quantum Loader

Quanium Machine Learning

TABLE 1. Examination of methodologies for medical image compression.

Ref | Methodology Dataset PSNR | SSIM
(dB)

[29] | Compressed sensing | EEG and DICOM |30.86 |0.7489
algorithm dataset

[30] | High efficiency video | DICOM dataset 63.6 0.864
coding

[31] | Fast Fractal compres- | ADNI dataset 45.70 |-
sion

[32] | Crypto- CT scan dataset 22.1125 -
Steganography

[33] | Wavelet-like FAFB Dataset, FIB-|89.2 -
transform to an end- | 25 Dataset, CT-Spleen

to-end compression | Dataset,  Chaos-CT

framework Dataset, MRI-Heart
Dataset, Attention
Dataset

[34] | Wavelet difference re- | Histological 42.6987 0.9268

duction microscopy images

[35] | ROI-based CT and MRI dataset | 88.4 0.9667
JPEG_OPT method

[36] [ DWT-VQ (Discrete | DICOM dataset 71.27 |0.8801

Wavelet Transform —
Vector Quantization)
[37] | Hybrid adaptive | NA

38.4877 0.9954

block-based
compressive sensing
(HABBCS)
[38] | Energy based | Underwater IoUT im- | 36.33 | 0.9543
Adaptive Block | ages
Compressive Sensing
(EABCS)

[39] | Coefficient Mixed | DICOM dataset
Thresholding  based
ABCS (CMT-ABCS)

42.4155 0.985

coefficients, Mean Squared Error (MSE), Peak Signal-to-
Noise Ratio (PSNR), and Structural Similarity Index (SSIM)
are used to assess the efficacy of the proposed method. This
study [28] uses the Kodak dataset to particularly investigate
both traditional and new methods of image compression with
data loss. The main discussion topics are principal component
analysis (PCA), K-means, autoencoders, and the Discrete
Wavelet Transform (DWT). According to the study, there is
a relationship between SSIM and K values, and greater K
values imply longer processing times. The research findings
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show that when the value of K is set to 16, the K-means
algorithm performs at its best.

Medical signals and images from Digital Imaging and
Communications in Medicine (DICOM) and Electroen-
cephalogram (EEG) signals are used as illustrative data for
the intended scope of this planned project [29]. A medical
facility provides EEG readings obtained using 16 different
electrodes. Based on their statistical characteristics, these
signals are combined to create a single composite signal,
which is then used as input for the CS algorithm. The
composite signal is converted into the frequency domain, and
the relative power in various frequency ranges is calculated to
identify Alzheimer’s disease. Increased complexity in storage
and operations. In particular, the suggested method allows
biological data to be compressed with a ratio as high as
50:1. The proposed method for DICOM image compression
yields about 15% improvement in SSIM, 4% improvement in
PSNR, and 94% reduction in RT compared to standard CS-
based compression.

The high-efficiency video coding (HEVC) application
for diagnostically appropriate medical image compression
is presented in [30], emphasizing compression efficiency
relative to JPEG 2000. This work investigates the use of lossy
compression algorithms appropriate for diagnostic purposes
and looks at the challenge of compressing high-bit-depth
medical images. Using a medically acceptable compression
range for JPEG 2000 as a guide, this work establishes
a reasonable range of HEVC compression for medical
imaging applications. Comparing HEVC to JPEG 2000,
experimental results show that the compression efficiency
can be increased by over 54%. Concurrently, an innovative
technique is suggested to lessen the intricacy of HEVC
encoding for medical pictures. According to the findings,
HEVC intra-encoding difficulty can be lowered by roughly
55% with only a slight increase in file size.

This study employs fractal-based algorithms to suggest
an efficient method for compressing MRI images. The
initial step in generating the picture sequence using fractal
compression involves converting three-dimensional (3D)
MRI scans into a two-dimensional (2D) sequence of images.
The inherent spatiotemporal similarity of the 3D objects
determines the categorization of range and domain blocks.
The suggested strategy enhances the effectiveness of data
matching by utilizing self-similarity to decrease the number
of blocks in the matching pool. High-quality MRI image
decompression is achieved using a residual compensation
approach. The test results indicate that the peak signal-to-
noise ratio has experienced an almost tenfold rise while the
compression speed has improved by two to three. The study
demonstrates the effectiveness of the proposed technique
in achieving a high compression ratio while maintaining
excellent quality in MRI medical pictures [31]. After a
thorough discussion of previous work on medical image
compression approaches, the topic of quantum-enhanced
machine learning, which can be used to address challenges
in medical image compression, is discussed.
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B. LITERATURE SURVEY ON QUANTUM-ENHANCED ML
This section provides a comprehensive literature overview
of multiple works on quantum-enhanced ML. It focuses on
the key approaches, benefits, and limits highlighted in recent
studies. Our objective is to offer a thorough comprehension
of quantum ML’s present condition and its capacity to surpass
classical techniques despite the obstacles related to scalability
and hardware constraints.

Authors [6] aims to assess the viability, precision, and
efficiency of a new quantum support vector machine
(SVM) formulation for direct multiclass classification using
quantum annealing, referred to as quantum multiclass SVM
(QMSVM). The authors demonstrate the practical implemen-
tation of this strategy utilizing remote sensing data and the
latest quantum annealing hardware. The QMSVM developed
in this study reflects an accuracy comparable to traditional
SVM approaches. The authors in [7] refer to Q-SupCon,
an acronym for Quantum-Enhanced Supervised Contrastive
Learning Architecture within the Representation Learning
Framework. The Q-SupCon model, although performing
better than the classical supervised contrastive learning model
and hybrid quantum-classical model in situations with limited
data, has a slower rate of convergence compared to these
models. This implies that although it may get a high level
of accuracy, even when there is a lack of data, the duration
required to train and fine-tune the model may be significant.
Furthermore, the execution of the entire procedure on actual
quantum gear was discovered to be excessively costly due
to the substantial number of needed iterations. The work [8]
aims to tackle the worldwide health issue presented by
cardiovascular diseases, which are a prominent contributor to
mortality and disability. Given the increasing prevalence of
cardiovascular diseases (CVDs), there is a pressing require-
ment for timely identification and precise categorization of
these conditions to enhance treatment results. The study
investigates the capacity of Quantum Machine Learning to
improve the accuracy of multiclass classification of CVDs
compared to traditional machine learning approaches. This is
achieved by utilizing the computational benefits of quantum
computing, such as the ability to execute numerous parallel
computations and overcoming the limitations of classical
artificial intelligence methods.

The paper [9] introduces a quantum computing method
for categorizing galaxies according to their shape. The
study investigates the capacity of quantum computers to
enhance the precision of galaxy classifications by using the
expansive dimensionality of quantum Hilbert space. The
primary objective of the work is to create and utilize a
quantum-enhanced SVM algorithm. This approach relies
on calculating a kernel matrix, executed on a simulated
quantum computer using a quantum circuit that is believed
to be challenging to simulate on conventional computers.
The results demonstrate that classical and quantum-enhanced
SVM algorithms exhibit comparable performance in dis-
tinguishing between elliptical and spiral galaxies. With a
training size of 40,000 pictures, both techniques yield an area
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TABLE 2. Advantages and disadvantages of existing medical image compression methods.

Ref. Methodology Pros Cons

[14] Proposes a distance-based quantum clas- | Demonstrates improved | Limited scalability with increasing
sifier enhanced with quantum amplitude | classification accuracy on | dimensionality of feature space.
amplification. benchmark datasets.

[15] Utilizes quantum-inspired neural net- | Achieves competitive classification | Requires significant computational
works for breast cancer classification. performance compared to classical | resources for training.

models.

[16] Implements quantum-enhanced support | Shows improved classification ac- | Limited to binary classification
vector machines for large-scale image | curacy and reduced training time | tasks.
classification tasks. compared to classical SVMs.

[17] Develops a distance-based quantum | Handles categorical data effectively | Limited experimentation on real-
classifier for machine learning tasks | without the need for one-hot encod- | world datasets.
involving categorical variables. ing.

[18] Proposes a quantum circuit learning | Demonstrates potential for captur- | Requires further optimization for
framework for image classification | ing complex image features using | scalability to large datasets.
tasks. quantum circuits.

[19] Develops quantum-inspired machine | Shows promising results in early | Limited interpretability of
learning algorithms for heart disease | detection of heart disease with im- | quantum-inspired features.
classification from medical data. proved accuracy.

[20] Investigates the application of quantum | Demonstrates potential for identify- | Requires extensive computational
deep learning models for classifying | ing subtle brain abnormalities with | resources for training deep quantum
neurological disorders from brain imag- | high accuracy. networks.
ing data.

[21] Proposes a quantum k-nearest neighbor | Utilizes quantum superposition and | Limited scalability with increasing
algorithm for classification tasks. entanglement for efficient classifi- | dataset size and dimensionality.

cation.

[22] Develops  quantum-inspired  kernel | Offers a flexible framework for in- | Requires optimization of kernel pa-
methods for classification using | corporating quantum features into | rameters for different datasets.
quantum feature maps. classical classifiers.

[23] Introduces quantum fuzzy clustering al- | Handles overlapping clusters and | Limited scalability for large
gorithms for multi-class classification | noisy data effectively. datasets due to computational
tasks. complexity.

[24] Explores using entangled qubits in quan- | Shows potential for capturing se- | Limited evaluation on real-world
tum machine learning models for docu- | mantic relationships between docu- | text datasets.
ment classification. ments.

[25] Proposes quantum clustering algorithms | Offers a quantum approach to iden- | Limited to small-scale datasets due
for unsupervised classification tasks. tifying hidden patterns in data. to computational constraints.

[26] Investigates using quantum deep belief | Captures complex linguistic fea- | Limited evaluation on large-scale
networks for sentiment analysis tasks. tures for sentiment classification. text corpora.

under the receiver operating characteristic curve of 0.946 +
0.005. Furthermore, the research examines the effectiveness
of the quantum SVM algorithm on a quantum computer with
noise-mitigation approaches and verifies its consistency with
simulation findings. This study represents one of the initial
attempts to utilize quantum ML in astronomy, indicating
the possibility of employing these techniques in a wider
range of applications. The research paper [10] explores
the application of quantum computing to enhance anomaly
detection in surveillance video data. The objective is to
create a hybrid model that combines quantum computing
and deep learning approaches, specifically a Convolutional
Neural Network (CNN) based on Quantum Computing. The
primary objective of this approach is to efficiently extract
distinctive characteristics and accurately categorize irregular
occurrences, such as traffic accidents and unlawful incidents,
from surveillance film. The study presents the actual ampli-
tude circuit based on quantum principles designed to improve
performance. The QC-CNN model underwent testing on the
UCF-Crime dataset, resulting in an impressive accuracy rate
of 95.65 percent, surpassing the performance of previous
models. The paper [11] presents a semi-supervised machine
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learning technique designed for one-class classification
that is well-suited for noisy intermediate-scale quantum
computing. The variational quantum one-class classifier
approach utilizes a fully parameterized quantum autoencoder
trained using a conventional dataset and does not necessitate
decoding. The research [12] highlights the utilize of the
VQOCC (Vector Quantization-based One-Class Classifier)
for differentiating standard data from anomalous data. This
makes it a valuable tool for detecting anomalies in many
domains, such as finance, bioinformatics, and computer
vision. The VQOCC is contrasted with conventional machine
learning methods, such as the one-class support vector
machine, kernel principal component analysis, and deep
convolutional autoencoders. Numerical tests were conducted
to evaluate performance on datasets such as handwritten
digits and Fashion-MNIST. The findings indicate that the
classification performance of VQOCC is similar to that of
OC-SVM and PCA. However, VQOCC has the advantage
of its model parameters increasing only logarithmically
with the data size. In addition, the research states that
the quantum algorithm consistently performed better than
the deep convolutional autoencoder when trained under
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comparable settings. This indicates that VQOCC is a very
efficient and effective model for OCC.

The paper [13] presents a comprehensive examination of
the present condition and future possibilities of quantum
computing, with a specific emphasis on the period referred
to as NISQ, which stands for Noisy Intermediate-Scale
Quantum technology. Preskill elucidates the obstacles and
prospects of quantum computing in the NISQ era, examining
the constraints arising from error rates and the number of
qubits, which serve as the fundamental components of quan-
tum information. The paper highlights that although quantum
computers with thousands of qubits will necessitate millions
of physical qubits for error correction and are unlikely to be
accessible soon, the NISQ technology still offers possibilities
to conduct experiments and potentially expedite solutions for
intricate problems. The author acknowledges that quantum
systems have the potential to surpass conventional computers
in replicating complexly interconnected quantum systems.
The paper discusses the potential commercial and investment
opportunities of quantum computing technology. It suggests
that although optimism exists, caution should be exercised
due to uncertainties over its short-term applications. In addi-
tion, Preskill explores the emerging scientific domain made
possible by quantum computing, known as the entanglement
frontier. This frontier can potentially drive progress in
comprehending intricate molecules, material characteristics,
and fundamental principles of physics. The study effectively
communicates the enthusiasm within the scientific commu-
nity for the NISQ era while also promoting a pragmatic
outlook on immediate practical uses and highlighting the
significance of ongoing endeavors to enhance quantum
hardware and algorithm design. Other papers on QC are
summarized in Table 2, along with their pros and cons.

This work [32] aims to improve the security of the
JPEG compression processor, which is used in medical
imaging systems to generate compressed medical images
for diagnostic use. The suggested work aims to build a
dual defensive mechanism to improve the security of the
JPEG compression processor. This technique incorporates
hardware steganography and powerful structural obfuscation
to defend against recognized threats like Trojan insertion
and counterfeiting/cloning. Authors present aiWave [33],
an adaptable system that supports lossy and lossless
approaches and fully compresses volumetric images. Entropy
coding, learning 3-D affine wavelet-like forward and inverse
transforms, quantization, and configurable post-processing
are all covered by aiWave’s components. This technique is
significant because it’s the first to minimize the size of a
picture using an affine wavelet-like transform. You can use
this method instead of traditional wavelet transforms because
it is more intuitive and adaptable. Additionally, aiWave tests
several weight-sharing strategies that are customized based
on the details of the data. In doing so, fewer parameters are
used without compromising performance.

This study [34] introduces a novel and improved method
based on color wavelet difference reduction for compress-
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ing medical photos. The proposed method advances the
commonly employed wavelet difference reduction (WDR)
technique. It utilizes the mean difference between co-located
pixels to select the optimal number of color images exhibiting
the most significant similarity in time and space. Coherent
photos that are large and cover a wide range of time and
space are compressed into a single volume and evaluated
using the SSIM and PSNR. This method was evaluated using
31 colorectal cancer slides in the challenging domain of
histopathology microscope image analysis. The perceptual
quality of the medical image is deemed to be exceptionally
outstanding. Based on the results, the potential improvement
in PSNR compared to JPEG 2000 using existing approaches
might reach 22.65 dB. In addition, it can get a maximum
improvement of 10.33 decibels compared to a discrete
wavelet transform (DWT) technique. Due to these factors,
we have introduced a mobile and web platform that enables
the compression and transmission of real-time microscopic
medical images.

Authors [35] enhanced the performance of JPEGXT
(JPEGXT_OPT) and JPEG by utilizing the entire body as
the region of interest (ROI) and amplifying the discrete
cosine transform coefficients. Our research indicates that
ROI figures substantially impact the conversion rate. More
precisely, a decrease in return on investment (ROI) within the
range of 10-30% leads to an increase in conversion rate (CR).
When utilized for near-lossless compression, JPEGXT_OPT
can process compression ratios (CRs) of up to 4.0 for
regions of interest (ROIs) that occupy 10 to 30% of the
image. The compression ratio for more extensive regions
of interest (ROIs) that cover 90-100% of the image is just
1.2. The compression ratios achieved using JPEG_OPT are
significantly higher. By maintaining a low ROI (Return on
Investment) ranging from 10% to 30%, it is possible to
compress CT (Computed Tomography) and MRI (Magnetic
Resonance Imaging) images above a threshold of 20.0.

This research suggests compressing images using DWT-
VQ (Discrete Wavelet Transform — Vector Quantization)
while retaining medically acceptable visual quality. This
hybrid strategy lowers ultrasonic speckle and salt and pepper
noises. The procedure has little effect without ultrasound, but
the edge is intact. The visualsThe data is then filtered using
a DWT. When dealing with intricate medical imaging, it is
recommended to use Vector Quantization (VQ) to preserve
diagnostic information. To differentiate between the two
main strategies, it is recommended to use an intermediate
approach that produces wavelet coefficients. To increase
the probability of consecutive zeros, the quantizer functions
optimally by setting any integer below the threshold to
zero. To achieve the appropriate dimensions, a codebook is
augmented with a codeword comprised entirely of zeros at its
inception. Thresholding has minimal impact on the restored
image. The Huffman algorithms encode the coefficients
following the completion of the final codebook. The most
effective hybrid method is achieved by employing two
stages of DWT before quantization [36]. This work [37]
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introduces Hybrid adaptive block-based compressive sensing
(HABBCS), a very efficient hybrid technique. HABBCS
calculates the mean value of the frame by first determining the
sampling rate of each block inside a frame using an adaptive
estimate. Consequently, these typical frames are utilized to
calculate the overall sampling rate of the film, and BBCS
is employed to compress the video. Performance indicators
such as PSNR, Delta E, Video Structural Similarity Index
(VSSIM), and Computational Time (CT) are calculated and
displayed. Based on the findings, HABBCS performs better
than ABBCS, with faster data processing capabilities.

This work presents an Orthogonal Matching Pursuit recon-
struction approach coupled with Energy-based Adaptive
Block Compressive Sensing (EABCS) [38] to enhance the
reconstructed image’s visual quality and sampling perfor-
mance. Because it is extremely sparse, the sparse binary
random matrix is employed as the measurement matrix.
Under this energy-based adaptive technique, blocks with
more energy are allocated higher measurements, and blocks
with lower energy are assigned lower measures. When it
comes to measurements and samples, the suggested EABCS
technique performs better than current adaptive techniques in
terms of compression, with a rate of about 25-30%. It also
causes a structural similarity index of roughly 0.1-0.3 and
an increase in the Peak signal-to-noise ratio of about 3-5 dB.
Approximately 60-70% of the area is kept open. This paper
presents the CMT-ABCS approach [39], which compresses
different medical images at a high compression ratio using
Coefficient Mixed Thresholding. The experimental results
show a notable improvement in the performance measures
of the proposed strategy over the state-of-the-art approaches.
The Structural Similarity Index (SSIM) has improved by 0.1—
0.2, the Peak Signal-to-Noise Ratio (PSNR) by 5-10 dB, and
the Normalized Cross-Correlation (NCC) and Normalized
Absolute Error (NAE) by 0.1-0.2. With only around 10% of
the measurements or samples, the reconstruction was much
enhanced at a moderate sampling rate.

Because of its ability to handle complicated, high-
dimensional data, quantum machine learning has the poten-
tial to transform medical image processing and compres-
sion completely. Through sophisticated feature extraction,
segmentation, and classification, quantum approaches can
improve the diagnostic accuracy of medical imaging, includ-
ing MRI, CT, and ultrasound. This will benefit applications
such as tumor detection and the diagnosis of cardiovas-
cular disease. In addition, by detecting and preserving
diagnostically important information more effectively than
classical techniques, quantum algorithms can optimize image
compression, allowing faster storage and exchange of med-
ical data without compromising quality. However, barriers
such as slower convergence rates, high computational costs,
and technology limitations make practical implementation
difficult. By overcoming these barriers through advances
in quantum hardware and algorithm design, scalable and
effective solutions could be made available, revolutionizing
telemedicine, treatment planning, and medical diagnostics.
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IlIl. PROPOSED QANN MODEL

Medical image compression is essential because imaging
modalities such as MRI, CT, and X-rays generate enormous
amounts of data that can strain storage systems, limit
data transfer, and hinder real-time processing. Effective
compression reduces costs and increases accessibility by
ensuring these images can be transmitted and stored without
compromising diagnostic quality. These requirements are met
by Quantum-Enhanced Artificial Neural Networks (QANN)),
which use quantum computing to process high-dimensional,
complicated medical data more efficiently than traditional
techniques. QANNS are ideal for telemedicine, remote diag-
nostics and real-time healthcare decision-making applica-
tions because they retain diagnostically important properties
while achieving better compression ratios and faster process-
ing times. By improving scalability, this cutting-edge method
helps healthcare systems meet increasing data demands while
maintaining effectiveness and quality.

Quantum-Enhanced Artificial Neural Networks (QANN)
are used in medical image compression. Using quantum
concepts such as superposition, QANN effectively extracts
features and eliminates redundancy, preserving diagnostic
quality while achieving high compression ratios. This
enables faster transmission and storage, particularly for
bandwidth-dependent applications such as telemedicine.
The process is further accelerated by quantum parallelism,
making it ideal for real-time applications. However, hardware
limitations and system noise must be addressed to ensure
scalability and clinical reliability. QANN could completely
transform medical imaging, improving healthcare and diag-
nosis.

Here, our concept combines quantum computing with
traditional machine learning approaches to improve the per-
formance of multiclass classification. Firstly, the incoming
data is subjected to classical preprocessing, which involves
standardization to prepare it for quantum state encoding.
Next, the standardized data is converted into quantum
states via unitary operations, allowing for processing in the
quantum realm. The Quantum-Enhanced Artificial Neural
Network is an innovative method combining the principles of
quantum computing with classical neural network structures
to enhance the performance of supervised learning tasks. The
purpose of this hybrid model is to use the computing benefits
of quantum mechanics, specifically in managing extensive
and intricate datasets that present substantial difficulties for
conventional machine-learning methods.

Given a dataset D = {(x;, yi)}i.vz | Where x; € R? are the
feature vectors and y; € {1, ..., ¢} are the class labels.

Xi—
o

ey

Zi=

where p is the mean and o is the standard deviation of the
dataset features.

Vi) = U(Zi) v |0) @)
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Parameterized Quantum Gate
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Quantum Feature Extraction

Input Image

FIGURE 2. Proposed QANN model.

where U(z;) is a unitary transformation that encodes the
classical data z; in the quantum state |;).

lpi) = V(©O) i) 3

V() defines a parameterized quantum circuit with param-
eter .

g; = Measurement(|¢;)) “)

Let g; be the quantum extracted features. A classical neural
network is defined with weights W; and activation function f".

ho = gi o)

ho: Input layer
For each layer/ =1,2,...,L

hy =f(Wihi—1 + by) (6)

where W, and b; are the weight matrix and bias vector for
layer /.

G0 = f(Wihy_1 + by) 7

We use cross-entropy loss for classification

M =

C

1
Liw,0) === > > 1y = cHlog(G, ) (3)
1 c=1

where 1{y; = c} is an indicator function thatis 1 if y; = ¢ and
0 otherwise.

Optimize the parameters W and 6 using gradient-based
methods such as stochastic gradient descent.

0w, 0) = arg min L(w, 0) )
Quantum data augmentation is applied to quantum circuit
q; = Vaug()) (10)

where V,, is a parameterized quantum circuit for augmenta-
tion.
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A. QANN IMAGE COMPRESSION

Data preprocessing is essential to improve model perfor-
mance, especially for tasks such as medical image classi-
fication. The architecture of Quantum-Enhanced Multiclass
Classification used in medical imaging is shown in Fig 2.
This section presents a novel approach to medical image data
preparation, which involves converting images to greyscale
and scaling them to dimensions that have a power of 2. While
greyscale conversion facilitates data representation without
sacrificing diagnostically significant features, scaling to a
power of two increases computational efficiency and opti-
mizes memory usage. Several models and medical imaging
datasets are used to evaluate the processing technique, which
shows that it improves model performance. The reduced
computational load makes this method suitable for large-scale
medical applications, including telemedicine and disease
diagnosis. The preprocessing methods lay the foundation
for more effective and accurate machine-learning models in
medical imaging.

Our proposed preprocessing strategy involves resizing
input to dimensions that are exponential multiples of 2, such
as 32 x 32, 64 x 64, 128 x 128, and so on. The selection
of this resizing technique is based on maximizing memory
consumption and computational efficiency, particularly in
GPU-accelerated computing environments where power-of-2
dimensions are more effective for processing. To preserve the
quality of the data during the resizing process, interpolation
techniques are used. These techniques allow for alterations
in size while retaining critical visual details. The objective of
adopting this resizing method is to optimize the preprocessing
pipeline by ensuring the integrity of the image data for
subsequent machine-learning activities.

Resizing data to a power of 2 means altering their dimen-
sions to be a multiple of 2, which is a typical requirement
for many compression methods, including those based on
quantum technology. Resizing an image usually requires
interpolation to preserve its quality. Bilinear interpolation is
a frequently used method for interpolation. It calculates the
new pixel values by blending the values of nearby pixels.

Let’s consider an example: Suppose we have an image
with dimensions 600 x 400 pixels. To resize it to the nearest
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power of 2, we would resize it to 512 x 512 pixels. 3. As part
of the preprocessing workflow, RGB photos are transformed
into grayscale by calculating weighted averages of their
red, green, and blue channels. This conversion streamlines
the data representation by merging color information into a
solitary channel, decreasing input dimensions and computa-
tional complexity. Grayscale conversion improves the ability
to extract features by emphasizing brightness and ignoring
color differences. This allows machine learning models to
better concentrate on important medical image attributes for
categorization.

Algorithm 1 Preprocessing for Data Classification

Input: Original dataset
Step 1 For each data sample in the dataset: If image- Read
the image and extract its dimensions (width and height).
Step 2 For each image in the dataset:
Resize the image to the nearest power of 2:
Calculate the next power of 2 for both width and height:
new width = z[logz(original_width)'\
new:height — plog;(original_height)]
Resize the image using bilinear interpolation to
new_width x new_height dimensions.
Step 3 For each resized image in the dataset:
Convert the RGB image to grayscale: For each pixel
(x,y) in the image
Extract the RGB values (R, G, B) of the pixel.
Compute the grayscale intensity (/) using the formula:
I =0.2989-R+0.5870- G+ 0.1140 - B
Set the pixel value at (x, y) to the computed grayscale
intensity (1).
Output The compressed grayscale images.

According to Algorithm 1, if the data is a medical image,
the Image preprocessing for compression algorithm seeks
to convert original RGB images into preprocessed grayscale
images to prepare them for compression. At first, the
algorithm retrieves each medical image from the collection
and obtains its dimensions, such as width and height.
Afterward, it resists each image to the closest power of 2. This
requires performing logarithmic operations to get the next
power of 2 for both the width and height to optimize memory
usage. Subsequently, the medical image is proportionally
adjusted to the computed dimensions with bilinear interpo-
lation, so maintaining the integrity of the image throughout
the resizing procedure. During the subsequent stage, the
algorithm transforms the RGB representation of each scaled
image into grayscale. The conversion process involves
iterating through each pixel in the medical image, extracting
the RGB values, and calculating the grayscale intensity
by applying a weighted sum of the RGB components.
Ultimately, the algorithm produces preprocessed grayscale
images, which have been enhanced for compression. This
is achieved by consolidating the color information into a
single channel, making storing and transmitting the images
easier. In summary, the preprocessing pipelines guarantee that
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the medical images are correctly downsized and transformed
to grayscale, allowing for efficient compression techniques.
This ultimately leads to a reduction in storage needs and
transmission bandwidth while still maintaining crucial visual
information. Bilinear interpolation is a widely employed
method for approximating values within a grid created by
four adjacent pixels. The operation involves calculating a
weighted average of these pixels to estimate the value of a
point between them. Bilinear interpolation is a mathematical
method used to determine the interpolated value (I) based
on four-pixel values (poo, po1, P10, and p11) and their relative
distances to the target point (x, y).

I=(1-a)1-pB)po+a(l—PB)pio+(1—a)Bpor1+afpii
(11

The symbols « and S denote the proportional distances
between the target point and the adjacent pixels along
the horizontal and vertical axes. This technique efficiently
combines the adjoining pixel values to create a seamless
transition between them, which is invaluable for scaling
photos and other types of spatial data interpolation.

B. RGB TO GRAY SCALE

The grayscale intensity for each pixel is determined by
combining the RGB values using weights based on each color
channel’s perceived luminance to convert RGB photos to
grayscale. Mathematically, the grayscale intensity (I) of an
RGB pixel represented as (R, G, B) is determined using the
following formula:

I =0.2989R + 0.5870G + 0.1140B

The coefficients 0.2989, 0.5870, and 0.1140 in (12) represent
the weights allocated to the red, green, and blue channels,
respectively. The weights are designed to align with the
human visual system’s sensitivity to various colors. They aim
to generate a grayscale depiction that retains crucial visual
details while eliminating color discrepancies. By utilizing
these weighted averages, the conversion procedure effi-
ciently streamlines the data representation, decreasing input
dimensions and computing complexity while preserving the
essential elements required for subsequent analysis and
processing.

Quantum data augmentation enhances the dataset by
introducing more unpredictability, improving the neural
network model’s ability to generalize to new and unseen data.
By utilizing quantum circuits for augmentation, we exploit
the distinctive characteristics of quantum mechanics to
generate a wide range of intricate changes that are compu-
tationally efficient. The efficacy of the enhanced quantum
characteristics is assessed by comparing the performance
metrics of the model trained with and without data aug-
mentation. Incorporating quantum data augmentation into
the traditional neural network framework enhances the
model’s performance on regular datasets and creates new
opportunities for utilizing quantum computing in machine
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learning. This technique shows considerable promise in
improving data-driven solutions, especially in fields that
handle extensive and intricate information.

C. COMPUTATIONAL COMPLEXITY OF CLASSICAL VS
QANN MODEL
This paper categorized the complexity of classical prepro-
cessing complexity and quantum complexity of proposed
methods shown in Table 3.
« Classical preprocessing complexity:
In this, each feature is standardized using equation (1),
and the complexity of the standardization is O(n.d),
where n represents data samples and d represents
a number of features. Considering algorithm 1, the
next power of 2 for height and width should be
calculated, wherein each image is resized using a
bilinear equation (11). The complexity of both power
of 2 and resizing is O(n.w.h) where n is the number of
images, w and h are image dimensions. Similarly, the
same complexity is obtained in the grayscale conversion.
+ Quantum processing complexity:
Standardized data Z; is encoded into quantum states
using a unitary operation U (Z;) as follows:

lp) = U(ZyI0)

The complexity of the above standardization data is
O(n.poly(d)) where d represents the number of qubits.
Similarly, the quantum measurements are considered
for complexity calculation. It provides O(n.q) where q
represents the number of qubits.

TABLE 3. Complexity comparison between classical and QANN.

Taken Classical QANN Complex-
Component Complexity ity

Preprocessing O(n.d) O(n.(d + w.h))
Feature Encoding 0(1) O(n.poly(d))

Overall
Computational
Complexity

O(n x L x k?)
where L is the
number of layers, k
represents average
neurons

O(n- (poly(d) +g-
g+L-k?)) where g
represents number
of gates and g rep-
resents number of

qubits

IV. RESULT AND DISCUSSION
This section compares our proposed QANN mode with other
image compression methods to determine its effectiveness.
The results of the studies demonstrated how quantum
computing can be used to improve the accuracy and efficiency
of medical image compression. We ensured the validity and
practicality of our findings by using real-world scenarios in
the COVID-CXNet [42] chest x-ray images and the Kaggle
brain CT and MRI datasets [41] for our comparison study.
With separate datasets for CT, MRI, and X-ray imaging
modalities, the Kaggle dataset ““darren2020/ct-to-mri-cgan”
provides a comprehensive resource for training and testing
medical imaging models. There are 1,742 training images and
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744 test images in the CT dataset and 1,744 training images
and 744 test images in the MRI dataset. The dataset also
includes X-rays, of which 452 are used for testing and 900 for
training. Applications such as image synthesis, classification,
and diagnosis using sophisticated processing and quantum
machine learning techniques are enabled by this balanced
distribution across modalities, which facilitates robust model
training and evaluation.

The investigations used Python programming and libraries
such as scikit-learn for traditional machine learning methods
and Qiskit for quantum computing capabilities. To ensure
a fair distribution of samples across different classes,
we divided the dataset into separate training and testing sets.
We will use a comprehensive set of performance metrics to
evaluate the effectiveness of the proposed quantum-enhanced
classification methods. Several performance measures, such
as enhanced peak signal-to-noise ratio (PSNR) and structural
similarity index (SSIM), will be evaluated using these
metrics. To save space, the image size is reduced for
MRI (73.3%), X-ray (74.1%), and CT-SCAN (71.8%) using
quantum technology.

A. PEAK SIGNAL-TO-NOISE RATIO (PSNR)
PSNR is a frequently used metric to evaluate how faithfully
compressed or reconstructed medical images compare to their
sources. PSNR measures the maximum difference between
the original and compressed medical image quality; higher
PSNR values correspond to higher-quality images.

Compute the PSNR in decibels (dB):

L2
PSNR = 101log,, (M—SE) (12)

where:

o L is the maximum possible pixel value of the image.
o MSE is the Mean Squared Error.

L Soss e o g a2
MSE = 275 > D 1G.) = K. )] (13)
i=1 j=1
where:

o I(i,)) is the pixel value at position (i, j) in the original
image.

e K(i,j) is the pixel value at position (i,j) in the
compressed image.

e M and N are the dimensions of the images.

PSNR measures how closely the compressed version
resembles the original content in Table 4. Higher PSNR
values, which indicate lower noise and distortion levels than
the original signal, indicate a higher quality reconstruction.
The A PSNR suggests the difference between the current
approaches and our proposed QANN model.

For CT scan images, the PSNR values obtained by E-
ABCS, CMT-ABCS, WDR, and DCAE are 27.57, 36.82,
26.43, and 37.05. In contrast, the proposed QANN model
achieves a PSNR value of 40.03 compared to all other existing
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FIGURE 3. Analysis of PSNR and Delta PSNR in SR = 0.1.

SR=0.3: PSNR Comparison Across Different Modalities
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FIGURE 4. Analysis of PSNR and Delta PSNR in SR = 0.3.

approaches with SR = 0.1, as shown in Fig 3. There is less values obtained by E-ABCS, CMT-ABCS, WDR, and DCAE
difference in A when comparing CMT-ABCS and DCAE are, in order, 59.01, 34.64, 47.81, and 36.59. Compared to all
with the other current methods. For MRI scans, the PSNR other current techniques with SR = 0.1, the proposed QANN
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FIGURE 5. Analysis of PSNR and Delta PSNR in SR = 0.5.
TABLE 4. PSNR and A PSNR analysis.

Methods CT scan MRI X-ray
SR=0.1 PSNR A PSNR PSNR A PSNR PSNR A PSNR
E-ABCS [38] 27.57 -12.46 59.01 -0.63 35.19 -12.03
CMT-ABCS [39] 36.82 -3.21 34.64 -25 44.38 -2.84
WDR [34] 26.43 -13.6 47.81 -11.83 39.24 -7.98
DCAE [40] 37.05 -2.98 36.59 -23.05 45.47 -1.75
Proposed QANN Model 40.03 NA 59.64 NA 47.22 NA
SR=0.3 PSNR A PSNR PSNR A PSNR PSNR A PSNR
E-ABCS WDR [38] 38.95 -2.28 42.02 -16.11 42.04 -6.23
CMT-ABCS [39] 43.41 -2.02 43.99 -14.14 452 -3.07
WDR WDR [34] 27.1 -14.13 48.82 -9.31 40.55 =172
DCAE [40] 38.61 -2.62 37.17 -20.96 46.49 -1.78
Proposed QANN Model 45.23 NA 58.13 NA 48.27 NA
SR=0.5 PSNR A PSNR PSNR A PSNR PSNR A PSNR
E-ABCS [38] 43.67 -5 45.76 -14.9 44.72 -4.57
CMT-ABCS DCAE [39] 46.61 -2.06 48.69 -11.97 46.27 -3.02
WDR [34] 414 -7.27 46.52 -14.14 43.8 -5.49
DCAE DCAE [40] 47.2 -1.47 55.21 -5.45 47.76 -1.53
Proposed QANN Model 48.67 NA 60.66 NA 49.29 NA

model achieves a PSNR of 59.64. When comparing E-ABCS
with the other existing approaches, there is less difference in
the A value. E-ABCS, CMT-ABCS, WDR, and DCAE gave
PSNR values for X-rays of 35.19, 44.38, 39.24, and 45.47,
respectively. Compared to all other known techniques with
SR = 0.1, the proposed QANN model achieves a PSNR of
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47.22. When comparing CMT-ABCS and DCAE with the
other existing approaches, there is less difference in the A
value.

For CT images, the PSNR values obtained by E-ABCS,
CMT-ABCS, WDR, and DCAE are 43.67, 46.61, 41.4, and
47.2, respectively, shown in Fig 4. On the other hand, the
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proposed QANN model achieves a PSNR of 48.67 compared
to all other methods currently in use with SR = 0.5. When
comparing DCAE with the other existing approaches, there
is less difference in A. The PSNR values for MRI scans
obtained by WDR, DCAE, E-ABCS, and CMT-ABCS are
45.76, 48.69, 46.52, and 55.21 in that order. The proposed
QANN model achieves a PSNR of 60.66 compared to all
other existing methods with SR = 0.5. The difference in
A value is minor when DCAE is compared with the other
current methods. For X-rays, the PSNR values of E-ABCS,
CMT-ABCS, WDR, and DCAE were 44.72, 46.27, 43.8, and
47.76, respectively. The proposed QANN model achieves a
PSNR of 49.29, higher than any other known approach with
SR = 0.5 shown in Fig 5. The A value differs less between
DCAE and the other current methods. Our proposed QANN
model outperforms the existing system in all scenarios
compared to SR = 0.5 and SR = 0.1. Furthermore, for SR
= 0.1, the CMT-ABCS and DCAE perform very close to our
proposed model for CT and X-ray images. In contrast, E-
ABCS performs very close to our proposed model for MRI
images, DCAE performs very close to our proposed method
for CT, MRI and X-ray images el when SR = 0.5.

Table 4 shows that the proposed QANN model produces
higher PSNR values than alternative methods at SR = 0.1,
with a difference of 1.75 dB-13 dB. A difference of 1.53 dB-
15 dB in PSNR is achieved at higher sampling rates. Later
in this study, the subjective results show that although some
algorithms occasionally produce PSNR values closer to the
proposed one, they have poor reconstruction of some blocks.
The perceptual metric SSIM is used to quantify how much the
reconstructed medical image has changed from the original.

B. STRUCTURAL RESEMBLANCE INDEX (SSIM)
A perceptual metric called the Structural Resemblance Index
measures the similarity of two images. Because SSIM
considers changes in brightness, contrast, and structural
information, it is more in line with how humans see visual
stimuli than PSNR, which only analyzes differences in
individual pixels. Table 5 shows SSIM comparisons for
various medical images.

The SSIM index is calculated using the following formula:

SSIM(x, y)

_ zﬂxﬂy + Cl ZGXO‘y + C2 ( Oyxy + C3 )
ng +pu3 +C 02 +02+C oxoy + C3

(14)

where:
« x and y are the two images being compared.
ey and uy are the mean intensity of x and y, respectively.
e 0y and o, are the standard deviations of x and Yy,
respectively.
e Oyy is the covariance of x and y.
« C1=(K Ly
« Co=(K2-L)
« C3=0C1/2
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o L is the dynamic range of the pixel values.
e K and K, are constants.

The SSIM values for CT images obtained using E-ABCS,
CMT-ABCS, WDR, and DCAE are, in order, 0.634, 0.911,
0.657, and 0.928 shown in Fig 6. However, when the proposed
QANN model is compared with all other methods currently
used with SR = 0.1, the SSIM value is 0.941. When DCAE
is compared with the other existing approaches, there is less
difference in A. The results of E-ABCS, CMT-ABCS, WDR,
and DCAE for MRI scans are, in order, 0.716, 0.965, 0.699,
and 0.924 for SSIM values. With SR = 0.1, the proposed
QANN model gives an SSIM of 0.955 compared to all other
existing methods. The difference in the A value between
DCAE and the other currently used methods is minimal.
SSIM values for X-rays were obtained from E-ABCS, CMT-
ABCS, WDR, and DCAE in the following order: 0.719,
0.965, 0.8, and 0.976. The proposed QANN model obtains
an SSIM of 0.987 compared to all other known methods with
SR = 0.1. There is less difference in the A value between
DCAE and the other current methods.

For CT images acquired with E-ABCS, CMT-ABCS,
WDR, and DCAE, the SSIM values are 0.949, 0.968, 0.935,
and 0.97, respectively, shown in Fig 7. On the other hand,
the SSIM value is 0.989 when the proposed QANN model
is compared with all other existing approaches with SR =
0.5 shown in Fig 8. There is less difference in A between
DCAE and the other current methods. In that order, the
E-ABCS, CMT-ABCS, WDR, and DCAE results for MRI
scans are 0.969, 0.984, 0.962, and 0.989 for SSIM values.
Compared to all other current techniques, the proposed
QANN model gives an SSIM of 0.994 with SR = 0.5. There is
little difference in the A values between DCAE and the other
currently used approaches. The following order of SSIM
values for X-rays was derived using E-ABCS, CMT-ABCS,
WDR, and DCAE: 0.98, 0.985, 0.973 and 0.991. Compared
to all other existing techniques with SR = 0.5, the proposed
QANN model achieves an SSIM of 0.996. The A value differs
less between DCAE and the other currently used approaches.

When comparing our proposed QANN model with SR =
0.5, 0.3, and 0.1, we see that it performs better than the
current system in every case. It is also shown that the DCAE
performs exceptionally well for CT, MRI, and X-ray images
for SR = 0.5, 0.3, and SR = 0.1. It is also noted that the
SSIM value for SR = 0.5 is much closer to 1 than for SR
= 0.3 and SR = 0.1. SSIM values closer to 1 are produced
by a good reconstruction algorithm. Table 5 shows that the
proposed QANN model outperforms the others in terms of
SSIM values. The SSIM values are closer to 1 even at SR =
0.1, while other approaches have lower values. This shows
little degradation in the quality of the reconstructed images
compared to the original images.

C. IMAGE SIZE AND SPACE ANALYSIS
The sample compression of exiting methods images are
shown in Fig 9. Table 6 shows the compressed image size
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SR=0.1: SSIM Comparison Across Different Modalities
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FIGURE 6. Analysis of SSIM and Delta SSIM in SR=0.1.
TABLE 5. SSIM and A SSIM analysis.
Methods CT scan MRI X-ray
SR=0.1 SSIM A SSIM SSIM A SSIM SSIM A SSIM
E-ABCS 0.634 -0.307 0.716 -0.239 0.719 -0.268
CMT-ABCS 0911 -0.03 0.891 -0.064 0.965 -0.022
WDR 0.657 -0.284 0.699 -0.256 0.8 -0.187
DCAE 0.928 -0.013 0.924 -0.031 0.976 -0.011
Proposed QANN Model 0.941 NA 0.955 NA 0.987 NA
SR=0.3 SSIM A SSIM SSIM A SSIM SSIM A SSIM
E-ABCS 0.868 -0.106 0.966 -0.02 0.978 -0.015
CMT-ABCS 0.953 -0.021 0.972 -0.014 0.98 -0.013
WDR 0.932 -0.042 0.819 -0.167 0.916 -0.077
DCAE 0.961 -0.013 0.979 -0.007 0.986 -0.007
Proposed QANN Model 0.974 NA 0.986 NA 0.993 NA
SR=0.5 SSIM A SSIM SSIM A SSIM SSIM A SSIM
E-ABCS 0.949 -0.04 0.969 -0.025 0.98 -0.016
CMT-ABCS 0.968 -0.021 0.984 -0.01 0.985 -0.011
WDR 0.935 -0.054 0.962 -0.032 0.973 -0.023
DCAE 0.97 -0.019 0.989 -0.005 0.991 -0.005
Proposed QANN Model 0.989 NA 0.994 NA 0.996 NA

and space savings of the CT image for different sampling
rates. It also shows that the proposed QANN model achieves
high compression levels. As a result, the space-saving
values have increased. Furthermore, the proposed solution
requires less time to execute the algorithm compared to
alternative methods. The space savings for SR = 0.1, 0.3,
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and 0.5 are 71.8%, 64.4%, and 61.9%, respectively, shown in
Fig 10.

Table 7 illustrates the reduced size and space saving of
the MRI image for different sampling rates. It also shows
that the proposed QANN model has achieved significant
compression. For SR = 0.1, 0.3, and 0.5, the space savings
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SR=0.3: SSIM Comparison Across Different Modalities
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FIGURE 7. Analysis of SSIM and Delta SSIM in SR = 0.3.

SR=0.5: SSIM Comparison Across Different Modalities

Proposed QANN Model

1.0 1

0.8

0.6 1

SSIM

0.4 1
0.2 1
0.0 -

CMT-ABCS

0.00 -
—0.01 4

N .
il |

—0.04 4

A ssim

—0.05 1

WDR

Methods

SR=0.5: A SSIM Comparison Across Different Modalities

0 4
a

CT Scan ssiM
MRI S5IM

Proposed QANN Model

mwa CT Scan A SSIM
mm MRIASSIM
mam X-ray A SSIM

E-ABCS CMT-ABCS

FIGURE 8. Analysis of SSIM and Delta SSIM in SR=0.5.

are 73.3%, 65.6%, and 63.7%, in that order. The space
savings have, therefore, increased. In addition, the proposed
technique takes less time to run the algorithm compared to
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DCAE

Proposed QANN Model

other approaches shown in Fig 11. Table 8 shows the X-
ray image’s reduced size and space savings for different
sampling rates. It also shows that the proposed QANN
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Original Image E-ABCS CMT-ABCS WIDR DCAE Proposed QANN Model

FIGURE 9. Sample Image compression of exiting methods and proposed method.

TABLE 6. CT-SCAN Image size and Space analysis.

CT-SCAN (Original Image Size= 77,900 bytes)
Methods Compressed image size (Bytes) Space saving (%)

SR SR=0.1 SR=0.3 SR=0.5 SR=0.1 SR=0.3 SR=0.5

E-ABCS 34587.6 46584.2 51803.5 55.6 40.2 335

CMT-ABCS 254733 31082.1 32873.8 67.3 60.1 57.8

WDR 36690.9 47908.5 54452.1 529 38.5 30.1

DCAE 24460.6 29368.3 30848.4 68.6 62.3 60.4

Proposed QANN Model 21967.8 27732.4 29679.9 71.8 64.4 61.9

TABLE 7. MRI image size and Space analysis. TABLE 8. X-Ray Image size and Space analysis.
MRI SCAN (Original Image Size= 63,500 bytes) X-Ray (Original Image Size= 58,000 bytes)

Methods | Compressed image size (Bytes) Space saving (%) Methods | Compressed image size (Bytes) Space saving (%)
SR SR=0.1 | SR=0.3 | SR=0.5 SR=0.1| SR=0.3| SR=0.5 SR SR=0.1 | SR=0.3 | SR=0.5 SR=0.1| SR=0.3| SR=0.5
E-ABCS |[27750 |36894 [41021 56.3 41.9 354 E-ABCS |[24882 [32828 |[37004 57.1 434  [36.2
CMT- 19749 [23686 |25337 68.9 62.7 60.1 CMT- 17458 [21170 |22388 69.9 63.5 61.4
ABCS ABCS
WDR 28258 [37846 |42672 55.5 404 [32.8 WDR 25172 [33756 |38454 56.6 |41.8 337
DCAE 18987 [22352 [23940 70.1 64.8 62.3 DCAE 16878 [20126 |21866 70.9 65.3 62.3
Proposed | 16955 |21844 |23051 73.3 65.6 |63.7 Proposed | 15022 | 19546 |20764 74.1 66.3 64.2
QANN QANN
Model Model

model has achieved significant compression levels. For SR increased. In addition, the proposed technique takes less time
= 0.1, 0.3, and 0.5, the space savings are 74.1%, 66.3%, to run the algorithm compared to other approaches shown in
and 64.2%, in that order. Therefore, the space savings have Fig 12.
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FIGURE 10. Analysis of CT-SCAN Image size and Space.
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FIGURE 11. Analysis of MRI image size and space.
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X-Ray Compressed Image Size Analysis
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FIGURE 12. Analysis of X-Ray image size and space.

V. CONCLUSION

Using the QANN model, this study investigated the effective-
ness of applying quantum computing techniques to improve
the compression of medical image data. We presented a
QANN model that combines quantum feature extraction with
traditional neural network topologies. The QANN model
has shown impressive progress in accurately identifying
scenarios using ideas from quantum physics. The SSIM
and PSNR are improved by the proposed QANN model.
For MRI (73.3%), X-ray (74.1%), and CT-SCAN (71.8%),
the image size is reduced using quantum technology to
save space. It is essential to understand that each model
has its advantages and disadvantages, and the selection
process should be tailored to the particular characteristics of
the dataset and problem domain. Although our results are
encouraging, it is essential to understand the limitations of our
research. Scalability issues, hardware constraints, and algo-
rithm complexity are the main obstacles to the widespread
implementation of quantum computing techniques in prac-
tical settings. Future research should focus on developing
hybrid quantum-classical computing techniques, improving
algorithms, and advancing quantum hardware. In addition to
working with medical images, our proposed QANN model
will need to be fine-tuned in the future so that it can be used
with other videos and photos unrelated to medicine.

31826

Proposed QANN Model

Methods

REFERENCES

[1] H. Yuxuan, D. Yining, R. Zhong, T. Yubo, and C. Wei, ‘“‘Machine learning
methods in medical image compression,” J. Comput.-Aided Des. Comput.
Graph., vol. 33, no. 8, pp. 1151-1160, Aug. 20, 2021.

[2] Y. Zhang and Q. Ni, “Recent advances in quantum machine learning,”
Quantum Eng., vol. 2, no. 1, p. €34, Mar. 2020.

[3] A. Abbas, D. Sutter, C. Zoufal, A. Lucchi, A. Figalli, and S. Woerner,
“The power of quantum neural networks,” Nature Comput. Sci., vol. 6,
pp. 403-412, Jun. 2021.

[4] S.K.Jeswaland S. Chakraverty, “Recent developments and applications in
quantum neural network: A review,” Arch. Comput. Methods Eng., vol. 26,
no. 4, pp. 793-807, Sep. 2019.

[5] Y.-Y. Chen, “Medical image compression using DCT-based subband
decomposition and modified SPIHT data organization,” Int. J. Med.
Informat., vol. 76, no. 10, pp. 717-725, Oct. 2007.

[6] A. Delilbasic, B. Le Saux, M. Riedel, K. Michielsen, and G. Cavallaro,
“A single-step multiclass SVM based on quantum annealing for remote
sensing data classification,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 17, pp. 1434-1445, 2024.

[71 A. K. K. Don and I. Khalil, “Q-SupCon: Quantum-enhanced supervised
contrastive learning architecture within the representation learning frame-
work,” ACM Trans. Quantum Comput., vol. 6, no. 1, pp. 1-24, Mar. 2025.

[8] S. Prabhu, S. Gupta, G. M. Prabhu, A. V. Dhanuka, and K. V. Bhat,
“QuCardio: Application of quantum machine learning for detection of
cardiovascular diseases,” IEEE Access, vol. 11, pp. 136122-136135,2023.

[9]1 M. H. Hassanshahi, M. Jastrzebski, S. Malik, and O. Lahav, “A quantum-

enhanced support vector machine for galaxy classification,” RAS Techn.

Instrum., vol. 2, no. 1, pp. 752759, Jan. 2023.

M. Y. Arafath and A. N. Kumar, “Quantum computing based neural

networks for anomaly classification in real-time surveillance videos,”

Comput. Syst. Sci. Eng., vol. 46, no. 2, pp. 2489-2508, 2023.

[10]

VOLUME 13, 2025



B. Subbiyan et al.: QANN Model for Efficient Medical Image Compression

IEEE Access

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

G. Park, J. Huh, and D. K. Park, ‘“Variational quantum one-class classifier,”
Mach. Learn., Sci. Technol., vol. 4, no. 1, Mar. 2023, Art. no. 015006.

Z. Xu, Y. Hu, T. Yang, P. Cai, K. Shen, B. Lv, S. Chen, J. Wang, Y. Zhu,
Z. Wu, and Y. Dai, “Parallel structure of hybrid quantum-classical neural
networks for image classification,” Res. Square, Apr. 2024. [Online].
Available: https://doi.org/10.21203/rs.3.1s-4230145/v1

J. Preskill, “Quantum computing in the NISQ era and beyond,” Quantum,
vol. 2, p. 79, Aug. 2018.

N. M. De Oliveira, L. P. De Albuquerque, W. R. De Oliveira,
T. B. Ludermir, and A. J. Da Silva, “Quantum one-class classification with
adistance-based classifier,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN),
Jul. 2021, pp. 1-7.

O. P. Patel and A. Tiwari, “Quantum inspired binary neural network
algorithm,” in Proc. Int. Conf. Inf. Technol., Dec. 2014, pp. 270-274.

K.-C. Chen, X. Xu, H. Makhanov, H.-H. Chung, and C.-Y. Liu, “Quantum-
enhanced support vector machine for large-scale stellar classification with
GPU acceleration,” 2023, arXiv:2311.12328.

M. Benedetti, J. Realpe-Gémez, and A. Perdomo-Ortiz, “Quantum-
assisted Helmholtz machines: A quantum-—classical deep learning frame-
work for industrial datasets in near-term devices,” Quantum Sci. Technol.,
vol. 3, no. 3, Jul. 2018, Art. no. 034007.

K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, “Quantum circuit
learning,” Phys. Rev. A, Gen. Phys., vol. 98, no. 3, 2018, Art. no. 032309.
S. S. Alotaibi, H. A. Mengash, S. Dhahbi, S. Alazwari, R. Marzouk,
M. A. Alkhonaini, A. Mohamed, and A M. Hilal, “Quantum-enhanced
machine learning algorithms for heart disease prediction,” Hum.-Centric
Comput. Inf. Sci., vol. 13, p. 41, Apr. 2023.

M. Mazher, A. Qayyum, M. A. Khan, S. Niederer, M. Mokayef, and
C. S. Hassan, “Hybrid classical and quantum deep learning models
for medical image classification,” in Proc. Int. Conf. Artif. Life Robot.
(ICAROB), 2024, pp. 222-226.

Y. Dang, N. Jiang, H. Hu, Z. Ji, and W. Zhang, “Image classification
based on quantum K-nearest-neighbor algorithm,” Quantum Inf. Process.,
vol. 17, no. 9, pp. 1-8, Sep. 2018.

T. Villmann, A. Engelsberger, J. Ravichandran, A. Villmann, and
M. Kaden, “Quantum-inspired learning vector quantizers for prototype-
based classification: Confidential: For personal use only—Submitted to
neural networks and applications 5/2020,” Neural Comput. Appl., vol. 34,
no. 1, pp. 79-88, Nov. 2022.

O. P. Patel, N. Bharill, A. Tiwari, and M. Prasad, “A novel quantum-
inspired fuzzy based neural network for data classification,” IEEE Trans.
Emerg. Topics Comput., vol. 9, no. 2, pp. 1031-1044, Apr. 2021.

M. Nivelkar and S. G. Bhirud, “Optimized machine learning: Training
and classification performance using quantum computing,” in Proc.
IEEE 6th Int. Conf. Comput., Commun. Autom. (ICCCA), Dec. 2021,
pp. 8-13.

S. DiAdamo, C. O’Meara, G. Cortiana, and J. Bernabé-Moreno, ‘“Practical
quantum K-means clustering: Performance analysis and applications
in energy grid classification,” [EEE Trans. Quantum Eng., vol. 3,
pp. 1-16, 2022.

Y. Zhang, D. Song, X. Li, P. Zhang, P. Wang, L. Rong, G. Yu, and B. Wang,
“A quantum-like multimodal network framework for modeling interaction
dynamics in multiparty conversational sentiment analysis,” Inf. Fusion,
vol. 62, pp. 14-31, Oct. 2020.

B. Ahuja and R. Doriya, “An unsupervised learning approach for visual
data compression with chaotic encryption,” in Proc. 4th Int. Conf.
Electr, Comput. Commun. Technol. (ICECCT), Sep. 2021, pp. 14, doi:
10.1109/ICECCT52121.2021.9616827.

A. Thakker, N. Namboodiri, R. Mody, R. Tasgaonkar, and M. Kambli,
“Lossy image compression—A comparison between wavelet transform,
principal component analysis, K-means and autoencoders,” in Proc. 5th
Int. Conf. Adv. Sci. Technol. (ICAST), Dec. 2022, pp.569-576, doi:
10.1109/ICAST55766.2022.10039613.

P. Chakraborty and T. Chandrapragasam, ‘“Extended applications of com-
pressed sensing algorithm in biomedical signal and image compression,”
J. Inst. Engineers India, B, vol. 103, no. 1, pp. 83-91, Feb. 2022, doi:
10.1007/540031-021-00592-8.

S. S. Parikh, D. Ruiz, H. Kalva, G. Fernandez-Escribano, and V. Adzic,
“High bit-depth medical image compression with HEVC,” IEEE
J. Biomed. Health Informat., vol. 22, no. 2, pp. 552-560, Mar. 2018, doi:
10.1109/JBHI.2017.2660482.

VOLUME 13, 2025

[31] S.Liu, W. Bai, N. Zeng, and S. Wang, ““A fast fractal based compression
for MRI images,” IEEE Access, vol. 7, pp. 62412-62420, 2019, doi:
10.1109/ACCESS.2019.2916934.

[32] A. Sengupta and M. Rathor, “Structural obfuscation and crypto-
steganography-based secured JPEG compression hardware for medical
imaging systems,” IEEE Access, vol. 8, pp.6543-6565, 2020, doi:
10.1109/ACCESS.2019.2963711.

[33] D. Xue, H. Ma, L. Li, D. Liu, and Z. Xiong, “AiWave: Volumetric
image compression with 3-D trained affine wavelet-like transform,”
IEEE Trans. Med. Imag., vol. 42, no. 3, pp. 606-618, Mar. 2023, doi:
10.1109/TM1.2022.3212780.

[34] M.C.H. Zerva, V. Christou, N. Giannakeas, A. T. Tzallas, and L. P. Kondi,
“An improved medical image compression method based on wavelet
difference reduction,” IEEE Access, vol. 11, pp. 18026-18037, 2023, doi:
10.1109/ACCESS.2023.32469438.

[35] Z.Li, A. Ramos, Z. Li, M. L. Osborn, W. Zaid, X. Li, Y. Li, and J. Xu,
“Nearly-lossless-to-lossy medical image compression by the optimized
JPEGXT and JPEG algorithms through the anatomical regions of interest,”
Biomed. Signal Process. Control, vol. 83, May 2023, Art. no. 104711.

[36] P.N.T. Ammah and E. Owusu, ‘“‘Robust medical image compression based
on wavelet transform and vector quantization,” Informat. Med. Unlocked,
vol. 15, Apr. 2019, Art. no. 100183.

[37] B. Lalithambigai and S. Chitra, “A hybrid adaptive block based
compressive sensing in video for IoMT applications,” Wireless Netw.,
vol. 10, pp. 1-10, Jan. 2022, doi: 10.1007/s11276-021-02847-0.

[38] R. Monika, D. Samiappan, and R. Kumar, ‘“Underwater image compres-
sion using energy based adaptive block compressive sensing for IoUT
applications,” Vis. Comput., vol. 37, no. 6, pp. 1499-1515, Jun. 2021.

[39] R. Monika and S. Dhanalakshmi, “An efficient medical image com-
pression technique for telemedicine systems,” Biomed. Signal Process.
Control, vol. 80, Feb. 2023, Art. no. 104404.

[40] A. Fettah, R. Menassel, A. Gattal, and A. Gattal, “Convolutional
autoencoder-based medical image compression using a novel annotated
medical X-ray imaging dataset,” Biomed. Signal Process. Control, vol. 94,
Aug. 2024, Art. no. 106238.

[41] CT and MRI Dataset. Accessed: Dec. 20, 2024. [Online]. Available:
https://www.kaggle.com/datasets/darren2020/ct-to-mri-cgan

[42] A. Haghanifar, M. M. Majdabadi, and S. Ko, 2020, “COVID-19
chest X-ray image repository,” Figshare, doi: 10.6084/m9.figshare.
12580328.v3.

[43] N.Jiang, X. Lu, H. Hu, Y. Dang, and Y. Cai, “A novel quantum image
compression method based on JPEG,” Int. J. Theor. Phys., vol. 57, no. 3,
pp. 611-636, Mar. 2018.

[44] S. K. Deb and W. D. Pan, “Quantum image compression: Fundamentals,
algorithms, and advances,” Computers, vol. 13, no. 8, p. 185, Jul. 2024.

[45] S. Du, Y. Yan, and Y. Ma, “Quantum-accelerated fractal image
compression: An interdisciplinary approach,” IEEE Signal Process. Lett.,
vol. 22, no. 4, pp. 499-503, Apr. 2015.

BALASUBRAMANI SUBBIYAN received the
B.Tech. degree in information technology and
the ML.E. degree in computer science and engi-
neering from Anna University, Chennai, India,
in 2012 and 2015, respectively, and the Ph.D.
degree in computer science engineering from the
Hindustan Institute of Technology and Science,
Chennai, in 2023. He is currently an Assistant
Professor with the Computer Science and Engi-
neering Department, Koneru Lakshmaiah Educa-
tion Foundation, Vijayawada. He has published several research articles
in international journals and conferences. As a reviewer, he conducts peer
reviews of research articles for the prestigious IEEE, Elsevier, and Springer
journals. His research interests include information security, the IoT security,
distributed computing, machine learning, and blockchain technology.

31827


http://dx.doi.org/10.1109/ICECCT52121.2021.9616827
http://dx.doi.org/10.1109/ICAST55766.2022.10039613
http://dx.doi.org/10.1007/s40031-021-00592-8
http://dx.doi.org/10.1109/JBHI.2017.2660482
http://dx.doi.org/10.1109/ACCESS.2019.2916934
http://dx.doi.org/10.1109/ACCESS.2019.2963711
http://dx.doi.org/10.1109/TMI.2022.3212780
http://dx.doi.org/10.1109/ACCESS.2023.3246948
http://dx.doi.org/10.1007/s11276-021-02847-0
http://dx.doi.org/10.6084/m9.figshare.12580328.v3
http://dx.doi.org/10.6084/m9.figshare.12580328.v3

IEEE Access

B. Subbiyan et al.: QANN Model for Efficient Medical Image Compression

RENJITH PRABHAVATHI NEELAKANDAN
received the B.Tech. degree in information
technology and the Master of Engineering degree
in computer science and engineering from Anna
University, in 2005 and 2010, respectively,
and the Ph.D. degree in computer science and
engineering from Anna University, Chennai, India,
specializing in the area of security in wireless
sensor networks. He is currently an Assistant
Professor SG2 with the Computer Science and
Engineering Department, Vellore Institute of Technology, Chennai. He has
demonstrated his expertise through the publication of numerous papers
and the filing of two patents in these domains. In addition to his research
pursuits, he is a dedicated educator who imparts knowledge on several
subjects, including Computer Networks, Theory of Computation, Advanced
Programming with Python, Wireless Sensor Networks, and Internet of
Things. His comprehensive understanding and teaching abilities make him
an invaluable asset to any academic conference in the field of sensors
and sensing technology. His research interests include various aspects of
wireless sensor networks (WSNs), big data analytics, mobile ad hoc networks
(MANETS), vehicular ad hoc networks (VANETS), network security, and
quality of service (QoS).

KAVISANKAR LEELASANKAR is currently an
Associate Professor with the SRM Institute of
Science and Technology, Kattankulathur, Tamil
Nadu. He was previously a Research Associate
with the “Collaborated Directed Basic Research
Smart and Secure Environment” (CDBR-SSE).
He is a Postdoctoral Fellow with IIITA working
on the C3ihub IHUBNF, IIT Kanpur sponsored
“IoT Security-Development of Security Audit
Framework for Secure IoT Network™ project.
He is the Smart and Secure Environment Research Consortium, which
connects eight Tamil Nadu institutions, and is funded by the National
Technical Research Organisation (NTRO), New Delhi. He is with the PSG
College of Technology Coimbatore, Pondicherry University, Thiagarajar
College of Engineering, Madurai, Madurai Kamaraj University Madurai,
IIT Madras, NIT Tiruchirapalli, and Pondicherry University, Guindy, Anna
University, Chennai are among the institutions. This connection is made
possible by MPLS-VPN. The project is valued at nine lakhs for more than
five years, from 2007 to 2012. During this time, several cybersecurity flaws
are being addressed. Users investigate “‘Intrusion Detection Prevention™ to
build a framework for detecting and mitigating multi-vector DDoS attacks.
He oversaw the study while serving as the Dean of CEG, Anna University.
He is interested in quantum computing, computer forensics, the Internet of
Things, cyber security, and network security.

RAJKUMAR RAJAVEL received the Ph.D. degree
from the Anna Centenary Research Fellow,
Department of Information Science and Technol-
ogy, Anna University, Chennai, India, in August
2016. He is currently an Associate Professor
with the Department of Computer Science and
Engineering, Christ University, Bengaluru, India.
He has published 11 research publications in
the reputed SCI journals. His research interests
include cloud computing, quantum computing, big
data analytics, and the Internet of Things.

31828

MUTHUKUMARAN MALARVEL (Senior Mem-
ber, IEEE) received the Ph.D. degree in digital
image processing from IGCAR, India. He is
currently a Professor with the Department of
Computer Science and Engineering, Aarupadai
Veedu Institute of Technology, Vinayaga Mis-
sion’s Research Foundation (deemed to be Univer-
sity), Chennai, India. He has more than 20 years of
experience which includes the IT industry, teach-

2 ing, and rich research experience. He received a
Senior Research Fellowship (SRF) under the collaborative funded project of
the Board of Research in Nuclear Sciences (BRNS), Government of India,
and IGCAR. He published more than 30 research articles, including nine
SCl-indexed articles. He edited three books in Taylor and Francis and John
Wiley publications, and he is an editor and a reviewer of reputed journals,
such as IEEE Accgss, Soft Computing, and Journal of Intelligence and
Fuzzy Systems. He filed five patents in intellectual property in India and one
international patent, and received two national and one international patent
grant. His research interests include digital image processing, machine vision
systems, image statistical analysis and feature extraction, pattern recognition,
and machine learning techniques.

ACHYUT SHANKAR received the Ph.D. degree
in computer science and engineering majoring in
wireless sensor networks from VIT University,
Vellore, India. He is currently an Associate
Professor with Bennett University, Greater Noida,
India. He was with the University of Warwick,
U.K., from November 2022 to November 2024.
He is also an associated with the University of
Johannesburg, South Africa, as a Visiting Asso-
ciate Professor and Maryam Abacha American
University, Nigeria, as an Honorary Adjunct Faculty. He was with Birkbeck
University, London from January 2022 to May 2022, for his research work.
He has published more than 200 research papers in reputed international
conferences and journals of which 160 papers are in SCIE journals. His
research interests include electronic vehicle, wireless sensor networks, the
Internet of Things, blockchain, and machine learning. He is a member of
ACM. He has received a research award for excellence in research, in
2016 and 2017. He had organized many special sessions with Scopus Indexed
International Conferences worldwide, proceedings of which were published
by Springer, IEEE, and Elsevier. He received the Young Scientist Award,
in 2020 for excellence in research. He is an Associate Editor and a Guest
Editor for a few SCI journals for the last four years, and other prestigious
conferences.

VOLUME 13, 2025



