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A b s t r a c t 

I consider the states in Deep Inelastic Scattering situations, as defined in the work of Marchesini 
and collaborators (the CMCF Model) and phrase the results in a language suitable for color 
dipole considerations. I show that the DIS states can be treated as the radiation from a set of 
linked primary dipoles, built up in "the initial state radiation" and decaying into "the final state 
radiation". The scenarium is valid both for energy momentum and space-time considerations 
and incorporates both the usual QCD parton model, the Boson-Gluon Fussion and the probe hard 
structure interactions. I end with describing some corrections to the well-known BFKL mechanism, 
resulting in an essential decrease of the power in the x~x-behaviour. 

R e s u m e 

Dans cet article, je considere les etats en diffusion profondement inelastique, tels que definis dans 
le travail de Marchesini et collaborateurs (le modele CMCF) et reformule les resultats dans un 
langage plus approprie aux considerations sur les dipoles de couleur. 

1. I n t r o d u c t i o n a n d R e m a r k s o n t h e Co lor 
D i p o l e C a s c a d e M o d e l 

There is one major difference between the calculation of 
the x-sections for the DIS and for the e + e-annihilation 
events. The x-section for DIS events is not describable 
only by the lowest order perturbative terms but also 
contains the structure functions, ie the inclusive flux of 
the partons. For the total cross section we do not need 
to calculate all the radiation in the states. Instead the 
different states should after an inclusive sum over "the 
final state radiation" be amenable to a grouping into 
different (non-overlapping) classes. 

It is the sum over the probability weights (ie the 
relevant Sudakov formfactors) of these classes which 
provides the cross section. The choice of the different 
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classes is open but one may evidently make more or 
less intelligent partitionings, ie make choices containing 
less or more Sudakov suppression factors. Different 
states in a class contain a common "essential" set 
of partons emitted, usually called "the initial state 
radiation". Given this set one must calculate the 
"virtual corrections" leading to the Sudakov factors. 
They are in general possible to sum up to exponentials 
and can often be interpreted in probability language as 
"the probability to do nothing" inside a region where 
the available current will allow emission. A necessary 
consistency request is that it should be possible to 
obtain the final state radiation (which is summed up 
and therefore not included in the Sudakov weights) from 
the states chosen as the essential "initial" set. 

In the first subsection I describe the states in e+e~-
annihilation in terms of color dipole radiation and 
introduce the triangular phase-space in the rapidity, y, 



and the logarithm of the squared transverse momentum, 
K — log(A^), natural in that context. I will also 
mention the approach in the Webber-Marchesini Model 
and the reason why the two models lead to equivalent 
results. After that I review the way Marchesini et al, 
[1], have defined the essential set of emissions in DIS. 
I will refer to their method as the CMCF Model and I 
will formulate their results in a language suitable for a 
treatment in terms of the triangular phase space used 
before for dipole emission. 

After simplifications and modifications the results 
of the CMCF Model is the occurrence of a linked chain 
of dipoles. In this way we may define the initial state 
radiation as the radiation necessary to obtain the 'precise 
dipole chain and the final state radiation is the result of 
the emissions from these dipoles. I end by presenting 
the probabilities in this the Linked Dipole Chain (LDC) 
Model. Finally I consider some results for the structure 
functions and exhibit some large corrections to the 
BFKL-mechanism. 

1.1. Gluon Emission in the Dipole Cascade Model 
and the Webber-Marchesini Cascades 

In an e + e~-annihilation (time-like) cascade there is an 
initial (color singlet) gg-state formed. At high energies 
this state will emit gluons g by color dipole radiation 
with the approximate x-section: 

F i g u r e 1 . The Dipole phase (triangular) space and multigluon 
emission according to the text 

in case the transverse momenta are ordered (k±i > 
fc_L2). This factorisation property is better than a few 
percent all over the phase space, [3]. We note in 
particular that the two dipoles are not at rest with 
respect to each other or the original cms. 

The Dipole Cascade Model (DCM) is then based 
upon the production of one dipole —• two dipoles —* 
three...etc. Every time a new gluon is emitted and 
the corresponding dipole partitioned. Actually the final 
state containing a set of dipoles has a strong similarity to 
the Lund String with a set of gluon excitations dragging 
out a set of straight string segments (corresponding to 
the dipoles), cf figure Id. 

It is useful to note that one gluon emission actually 
increase the rapidity region for further emissions. While 
the cms rapidity region, Ay, available for the first 
gluon emission (with transverse moment-urn & n ) is 
log(W2/k2

L1) (the line shown in the triangle of figure la ) 
the two "new" dipoles may emit a gluon (with transverse 
momentum k±2 < &±i) inside the region 
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Here a is the "effective" coupling (containing suitable 
color factors) and the transverse momentum k± and 
rapidity y can be defined by Lorentz invariants 

in terms of the two-parton mass squares, sq9 = 
$ 1 2 , s9q EE 523 and the total squared mass s = W2. 
For the phase space we have in the cms of the dipole 

corresponding to a triangular region In the (y}K ~ 
in(&5 ))-plane, cf figure la . 

Besides the color factor this is the same as in 
QED but there is a major change in the QCD final 
state . Emitting a photon in QED does not change the 
current. But the QCD current is changed because the 
emitted gluon is a color octet. There is, however, the 
simplification that instead of forming a complex charge 
system between the color 3, the 3 and the 8, the final 
state partons form two independent dipoles, [2]. Thus if 

Here we have used the lines after Eq (2). There is then 
by the emission be an increase in the allowed phase 
space, SX — log(k2

Ll / k2

L2). This can be "added" to 
the triangular phase space in figure l a by extending a 
(double) fold as in figure lb . Actually we are in this way 
adding a triangular region, made up of the two sides of 

we consider the emission of two gluons, indexed 1 and 
2, the cross section is factorisable into 



and the approximate relation k± ~ E0 we may map 
these variables onto the quantities (y, k±) and consider 
the emission of a Webber-Marchesini cascade in the 
triangular phase space. The strong angular ordering 
means that after emitting a "first" gluon along a parton 
line (emission angle 0) the next emission must have an 
emission angle smaller than 6. Therefore in this kind of 
cascade you may start with a first emission at some angle 
or rapidity and then afterwards go towards the g-end in 
rapidity and afterwards go towards the g-end in rapidity 
(ie following along the q- and g-lines, respectively). 

In both cases the "new" emissions are evidently 
fulfilling the strong angular ordering requirement (ie 
diminishing angles along the parton line). In every 
"step" in rapidity one searches through the possible k±-
(or .£7-)values, ie one "goes from one side in rapidity, 3/, 
towards the other, all the t ime looking up and down in 
k 2very time one finds an emission a uncw"' paiUm 
line ctarls out and iku correspords exactly in adding 
v joiihid iiiciric \\\ the L'liid language. Tlvm U^jy 
are searched u n c u g h lu the same manner, p r ; discing 
subfold triangles etc. According to our description 
above one is in the Lund DCM "going down in k±. all the 
time looking left and right inside the relevant rapidity 
region", also adding folds and resolving them for new 
emissions. The final result is the same (ie on an inclusive 
basis the events will coincide). It is only a question 
of different orderings in the cascades (and as a matter 
of fact there are different ways to take the recoils into 
account when the emitted gluons are "not" soft). 

q 

F i g u r e 2. A DIS fan-diagram and its description in the 
triangular phase space. The on-shell q-vectors are extended 
triangles from a single emission point and the (virtual) 
connectors k stretch betqween the g ^ j + i ) and \q—j\. The areas 
Aj marked out correspond to the regions excluded according to 
the Sudakov suppression in Ane 

2. T h e C M C F 
( C i a f a l o n i - M a r c h e s i n i - C a t a n i - F i o r i n i ) M o d e l 

We start to consider the kinematics of the partonic 
emissions along any "fan-diagram", cf figure 2a. 
Independently of "the beginning" or "the end" there 
is a complete color connection along the diagram. In 
accordance with the LLA we will as in [1] neglect the 
process g —> gg, ie the gluon splitting process (which 
has no z-pole) and consider the diagram as if it is just 
made up of gluon emissions. Then the fan diagram 
contains a connection from an "incoming parton" with 
a (mass-less) energy momentum vector P towards a 
"probe" with energy momentum g. There is a set of 
emissions "along" the color line under consideration and 
they are described by the energy momentum vectors qj 
(which are always taken to be on-shell and massless). 
There is also a set of connectors described by the energy 
momentum vectors kj, which are all space-like. At every 
"vertex" there is energy momentum conservation so that 
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the fold, to the original triangle. Each new emission 
will have the same effect on phase space, [4]. After 
several emissions we obtain a complex figure with many 
folds "sticking out" as in figure lc (corresponding to the 
emission in figure Id). The length of the baseline, which 
is what we called the generalised rapidity A above in Eq 
(5), is irregular and behaves like a (multi)fractal with 
the so-called anomalous dimension of QCD basically 
equal to the fractal dimensions. The quantity A is 
a useful measure of the multiplicity of the final state 
hadronic multiplicity, [4]. 

The Webber-Marchesini Independent Parton Cas­
cade Model, [5] is a conceptually very different approach 
to multiple gluon emissions. The results are neverthe­
less very similar to those obtained in the Dipole Cascade 
Model. The reason for this similarity is that the building 
of dipoles in the cascade is the same as the requirement 
of strong angular ordering in the emissions, [6], in the 
Webber-Marchesini Model. They use one angular vari­
able, 0, and one energy variable, E. Remembering the 
relation for the rapidity of a massless particle: 

It is then in [1] noted that in case we use the variables 
zm such that k+j ~ \\3 ( z m ) P + , some of the z m are 
very small, ie stem from the z-pole dominance in the 
splitting function. In Ref [1] it is those emissions, ie 



when q+j - (1 - Z j ~ fc+y-i) that are taken 
as "essential" and the virtual corrections are calculated 
to determine the cross section. We call the ensuing 
model the CMCF Model and we will next go over to 
the kinematical and dynamical results in some detail. 

All emissions are in the CMCF Model ordered both 
in energy and in angle, ie in rapidity, which means that 
the strong angular ordering requirement is invoked. In 
case we actually follow the small-z contribution, eg at 
the vertex named j , it is evident that all the following 
radiation, ie the one "behind" the qj, must have q+m <C 
g+j, j < m because there is only available the amount 
k+j ~ Zjq+j <C q+j for them. The emission situation is 
described for some different cases in figure 2b. We note 
that a given value of k+j = kj_j exp(yj) = Z j f c + ^ - i ) 

= 9 i j e x p ( y w - ) = (1 - * i )*+( j - i ) ) corresponds 
to the points along a line with a distance log ( l / z j ) 
((log 1/(1 - zi) ~ 0) to the "earlier" front i). 

The transverse momentum of the connectors kj is in 
this logarithmical scenarium dominated by the "large" 
q± emissions in "the neighborhood". All the emission 
steps can be partitioned into three different kinds: (1) 
kj_j ~ —q±j ^> (as an example cf the emission 
denoted 1 in figure 2b), (2) kj_j ~ ^ ~~ <fj-i 
(cf the emission denoted 2 in figure 2b), (3) —qj_j ~ 
k±(j-i) ^ (°f the emission denoted 3 in figure 2b). 

Each step in the emission chain is in the CMCF 
Model described in terms of the probability 

F i g u r e 3 . The Sudakov suppressed regions in the single step 
l o g ( l / z j ) and the regions corresponding to the "smaller" possible 
steps Zjk with Y\zjk ~ z i a r e described in a, (note the property 
of the Sudakov regions that the "large" ln(l/Zj)-step area is 
"smaller" than the sum of the "small" l o g ( l / Z j ^ - s t e p areas). 
The dipole regions spanned between neighbouring qj emissions 
are shown with the regions Bj mentioned in the text in b. 

have that k-j ~ —q~j> We may therefore conveniently 
represent the k vectors as lines on the height log(k\) 
stretching between the neighbouring q± lines. The 
virtuality of the k vectors are in this way always given by 
the transverse momenta because we have k\ > 

2.1. Reformulation and Analysis, The Linked Dipole 
Chain Model 

Some of the gluons, included in the chains described 
by the CMCF Model, have properties similar to those 
which we already have included in the final state 
interaction (and summed away from the Sudakov 
formfactor). Particularly this is so for the gluons 
included under case 2. above with transverse momenta 
smaller than their neighbouring k±. We will now 
consider the sum over such "soft" gluon emissions. 

By a variation in the Zj <C 1 the value of q+j = 
(1 — 2J)AJ +(J_I) is hardly affected but the value k+j may 
change appreciably in the LLA. We consider all these 
soft ^-emissions "close to the front k+(j_1^" and then 
sum over their contributions to the cross section. In this 
way we produce a set of connectors with the same LLA 
value of K = log(A^.). Thus we may take "the step" Zj 
by emitting many soft qf-k gluons with \[k z'jk = Zj. The 
procedure is illustrated in figure 2b and figure 3a. 

We show the relevant Sudakov regions (in figure 2a 
A\ and A2 and in figure 3a the Aj) corresponding in the 
CMCF Model to gluon emissions with rapidities y(q) < 
y{qj), ie smaller than the emitted gluon qj ("angular 
ordering") but with g + -values larger than the ensuing 
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The formula for the non-eikonal formfactor A n e ( z , k±3q±j) 

is of the Sudakov kind, ie the negative exponent (if Eq 
(9) below is fulfilled) of an integrated emission proba­
bility over the region which is excluded by the emission 
step for details cf Ref [7] and the the next subsection. 
From the expression for Ane it seems necessary and it 
is also implicit in Ref [1] that only contributions with 

should be included in the essential emission set. 
Therefore a situation like the one, denoted 4 in figure 2b 
is excluded. It is essential both for dynamical reasons 
as well as for the interpretations we provide below 
that Eq (9) is fulfilled. We end by the remark that 
all the on-shell g-emission vectors are in this pictorial 
formalism described as extended folded triangles in the 
same way as in the DCM. The connector vectors k are, 
however not on the mass-shell. According to the way 
the CMCF Model choses the essential set we note that 
Jfe+j ~ and (besides the case 2. above) we also 



front k+j ~ Zjq+j (energy-momentum conservation). 
Those are not possible in the CMCF Model (note that 
gluons with y(q) > y(qj) are allowed and summed away 
under the assumption that they "did not change the 
front z-value appreciably"). In figure 3a we show a 
set of "soft" (^-emissions. After summing over all the 
emissions of qf-k we obtain the result that the procedure 
is equivalent to taking one step as in Eq (8) but with the 
form factor Ane equal to 1. This is the relevant weight 
for the case 2. and we obtain a primary dipole stretching 
between the (on-shell) gluon emissions qj and qj+\. 
The radiation from this dipole, similar to the dipoles 
obtained in the &j_-ordered emissions in DCM, may 
provide all the gluons summed away above. Therefore 
the procedure is proven to be consistent. 

We are then left with a chain of steps up and down 
in transverse momentum according to the types 1. and 
3. It is then again possible to sum up a set of emissions 
that will compensate the Sudakov factor along the same 
lines as for the case 2. The result is a weight in each 
case equal to 1 as in Eq (8). The main question is, 
however, if it is possible to obtain the "summed-away" 
radiation as the final state radiation from the ensuing 
dipoles. The situation is illustrated in figure 3b and we 
note in particular the occurrence of the regions denoted 
Bj, which occur in the neighbourhood of an emission q 
with larger transverse momentum than the connector k. 

It is a fact that if: (A) we consider the primary 
dipoles to be stretched between the q-vectors, ie each 
dipole is made up of two neighbouring q-vectors, (B) 
we require that there should be no emission from such 
a dipole with transverse momentum larger than the 
relevant connector virtuality —k2 ~ k\ then we obtain 
radiation which will cover the region (including the parts 
called Bj) below the lines of the connectors stretched 
between the essential gluon set. 

We note that the dipoles, defined from two 
neighbouring gluons, qj and qj+i, in the essential gluon 
set, are not pointlike in space-time. The two gluons 
are connected by the virtual connector kj. The current 
associated with the two gluons therefore starts out with 
a space time size, corresponding to a transverse distance, 

bj, defined by the virtuality bj ~ 1/yj—k2 ~ l/k\_j. It 
is very difficult to obtain radiation with a wavelength 
smaller than this available antenna size. This result is 
also obtained in Ref [1] by a detailed analysis of the 
virtual corrections. This is the reason why the non-
eikonal Sudakov in Eq (8) does not contain any reference 
to the regions above the virtuality lines log(fc^). The 
result (and this is in our opinion the great achievement 
of the hard work done by Marchesini et al) is that there 
is no emission density dp for q\ - > —k2 because the real 
and virtual contributions cancel in this region. 

To understand the cancellation we consider the 

radiation in the rest-frame of the two gluons qj and gy+i-
In that frame there is then only gluon emission from the 

(qj,qj+i) dipole with q± < ^J—kj with the transverse 
directions counted with respect to the dipole axis. In 
case we would boast back to the initial Lorentz frame 
specified by the probe and hadron directions (this will 
require both a longitudinal and a transverse boost, in 
general) then the radiation defined in the restframe will 
cover just the regions below the lines described above. 
The main point for the Bj-regions is that they occur 
because the two gluons defining the dipole in the probe-
hadron frame will have different transverse momenta for 
the cases 1. and 3. (Note that the -regions actually 
correspond to the cases of gluon emission "above" k\ 
but "inside" the connection lines k± to the emitted q). 

We note that by this procedure we are also making 
the states symmetric with respect to a treatment from 
the hadron and the probe side and we will in the next 
subsection further exhibit these properties with respect 
to the hadron and probe ends. In case we consider 
the same chain as before but this time analyse the 
results from the probe side we would consider the steps 
lj = —kj —> qj + (—kj-i) = qj + lj-\ and use the 
variables — k-j = z_(—&_(J+1))(~ q_j) for small z_ to 
define the essential set. It is in particular at this point 
that the requirement k\j > z+jq±j for the essential set 
of the CMCF Model in Ref [1] becomes necessary. 

In this picture we may, inside the LLA, define the 
transverse momentum for the emitted gluon as q±j — 
max(fcjLj, The two-dimensional description in 
the phase space triangle neglects the dependence on the 
azimuthal angles <f>j. An emitted gluon in the essential 
set is described by a single point, representing all values 
of 0 < <f)j < 2ir (but containing precise information of 
its q2

Lj and its lightcone components q±j with = 
q\j)> This is not enough in order to define the relation 
between the q± and (k±j, With this definition 
ofq±j it is sufficient (although the connectors are not on 
the mass-shell) to provide either the values {k\p &-f-j) o r 

{k\j,k-j) and then use the connections in the dipoles 
to define the state. Therefore the probability for a step 
is given by 
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We have used d?q±_j = d2k±j and introduced q\- ~ 

max.(k^(j_1y k\j) as in the discussion above. The last 
factor will make it difficult to "go down" in transverse 
momentum along the chain. The product over these 
factors integrated over all chains (as defined above with 
the requirement that . Zj — x) is then the structure 
function, ie the par tonic flux. In this way we have 
defined the Linked Dipole Chain (LDC) Model by the 



requirements that the weights for all "steps" are defined 
by the Eq (10) and that the primary dipoles defined 
by two neighbouring vectors qj will emit radiation in 
their restframes up to the qj_-order denned by the virtual 
connector kj between them. 

Actually the factors in Eq (10) imply that any 
maximum in transverse momentum along the chain will 
provide two contributions, ie there is one emission on 
one side (in order to "go up") and another on the 
other side (in order to "go down" again). Together 
they provide a combined factor (q~]_2)2 — &~ 4 , which is 
just the contribution valid for a Rutherford interaction. 
To be precise it is necessary to carry through all the 
calculations including the sums over the polarisations 
and the different color line contributions along the 
emission current. The result nevertheless stands, ie 
there is always at the "top" point of any fan diagram two 
emissions and they provide just well-known x-section 
for the Rutherford scatterings between two charges in 
a gauge field theory. In a "long" chain it is possible to 
have many maximum regions of this kind and we will 
come back to these situations. 

3 . T h e P r o b e E n d , B o s o n - G l u o n F u s s i o n , t h e 
S t r u c t u r e F u n c t i o n o f t h e P r o b e a n d t h e 
G e n e r a l S t r u c t u r e F u n c t i o n o f a H a d r o n 

In the CMCF Model there is a tacit assumption that the 
partonic chain diagrams contains a largest transverse 
momentum, in general maxj(ijj_ •) < Q2. It is true that 
for large Q2 the main contributions stem from these 
situations (this is the DGLAP mechanism). But for 
smaller values of Q2 and for the investigation of states 
with large (Rutherford scattering) jets it is necessary 
to include all contributions even those containing some 
k\- > Q2. This is straight-forward in the LDC Model. 
While the "hadron end" contains the splitting of the 
hadron into a color 3 and a color 3 (which due to the 
lack of a z-pole can be treated in the LLA as an entity, 
for more detailed studies cf Ref [7]) the probe end needs 
more refined analysis. 

3.1. The Probe End and a Partitioning into Different 
Channels 

For a description of the interactrion one may use 
different Lorentz frames, eg the cms frame between the 
field pulse and the hadron (the FPH frame) or the cms 
frame between the leptonic probe and the hadron (the 
LPH frame). We now show how to incorporate the 
description of the DIS events in both of the above-
mentioned frames into the triangular phase space. 

In a frame equivalent to the (LPH) frame, where the 
initial lepton has a (large) component along the negative 
lightcone, equal to (a positive) Q'_ it will send away a 

F i g u r e 4 . A description of the "backend" interaction between a 
lepton probe scattering with Qj_ and Q-, thereby producing the 
line Q- as backward limit down to log(<32) where the line 
xP+ = Q2IQ- takes over. The notations are described in the 
text and the figs b and c correspond to Feynman diagram 
descriptions of Boson-Gluon Fussion and Rutherford scattering 
on the probe constituents 

fraction Q_ with the bosonic field pulse and recoil with a 
transverse momentum This is described in figure 4 
by means of the connector 7* at the level log(Q 2 ) with 
Q2 = Q2

L ending on the negative lightcone line Q_ with 
the lepton (after the scattering described by a triangle, 
although there is no gluonic emission in there) at the 
other end of the connector. 

When the "incoming" propagator is described by the 
points marked 1 and 2 in figure 4 the event corresponds 
to an (upwards in transverse momentum) splitting of 
the gluon propagator denoted 3 — 4 into a q (at 2) and a 
g*-propagator 1 — 2 at the level log(Aj^) with k\ <C Q2 

(on the logarithmic scale). The interaction is then the 
"usual" one in the QCD parton model, ie 7*4* —+ q 
with (the final) q "moved up" to the triangular fold 
marked at the point 5. The value of the Bjorken variable 
x = —q2/2pq is given by xP+ = Q+ — Q2/Q_ and 
is shown by the hatched line. In a frame equivalent 
to the FPH frame we neglect the "backward" lepton 
triangle and the 7* propagator and consider the probe 
to be given by , Q _ ) (with -q2 = Q2 = Q + Q _ ) 
interacting with the q* propagator. This "extends" the 
propagator from the point 1 to the final (on-shell) q 
position as an emitted triangle at the point 5' (note 
that the transverse momentum for the q is in the FPH 
frame solely given by the "incoming" propagator k±). 

Next consider the case described by the points 6 — 7 
in figure 4. Then there is a quark propagator q* at the 
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level k\ ^> Q2. Therefore the gluon (g*) propagator 
8 — 9 (with transverse momentum k2

Lg <C k2^) is split up 
into the q (the triangle at the point 7) and the quark 
(q*) propagator 6 — 7 at the level log(fc^) ending on the 
negative lightcone line <J_. This situation corresponds 
to a BGF event where the main transverse momentum, 
ie the "virtuality" of the state,°is not the Q2 of the field 
pulse but instead the k\ splitting of the g* —> qqk

) cf 
figure 4b. According to the rules of perturbation theory 
one should always start at the largest virtuality and 
consider the emissions on either side as independently 
coherent For a BGF event we are no longer asking for a 
(virtual) parton line ending on the positive lightcone line 
Q+ = xP+. Instead we ask for the propagator to end on 
Q- - Q 2/<?+- In this way also the BGF events "which 
come from above the Q2-level" may be incorporated into 
our description of the general events. 

Finally we consider the case when the connected 
gluon (g*) propagator is "above" the level 6 — 7, ie the 
case described by the points 10 — 11 in figure 4. Then 
the q* propagator "dominates" the probe Q2 but is itself 
dominated by the g* at the level 10—11. This situation, 
which may occur frequently for small boson virtualities, 
corresponds to the evolvement of a structure function 
for the field pulse probe. The state on the "backward" 
side of the largest virtuality, ie in this case the breakup 
state of the 7* into q at 6 and q* propagator 6 — 7, is a 
coherent reaction. According to figure 4c the interaction 
corresponds to a a quark-gluon Rutherford scattering 
(10 — 11) between a constituent q* from the 7* —> qq* and 
the hadron virtual state ending on 12, (which then acts 
as a "probe" on the field pulse). The final state of the 
parton-parton scattering corresponds to the q triangle 
at 10 and the gluon triangle at 11. 

3.2. Some Remarks on the Structure Functions 

Space does not permit a detailed analysis of the results 
from the earlier sections. We obtain (just in Ref [1]) 
an equation for the structure functions, [7], containing 
contributions both from the DGLAP and the BFKL 
mechanisms. In the CMCF Model some of the "true" 
contributions to the anomalous dimensions are neglected 
with the argument that they are subleading, ie do 
not correspond to pole contributions in the Mellin 
transformation with respect to the Bjorken x-variable. 
Using the relation (valid for a smooth "non-integrated" 
structure function _F(log(l/#), log(fc^))) 

terms neglected in the CMCF Model, in particular if we 
use the "BFKL-approximation" in Eq (11) the power A 
in x~x decreases from around 0.5 to 0.33) 

I would like to end by exhibiting a different result, 
partly because so many of my colleagues feel that the 
BFKL mechanism is stable. The main behaviour of the 
BFKL gluon structure function / is obtained from the 
iteration that the n:th step in the transverse momentum 
k'L —* k± results from a particular kernel K: 

(keeping to the notations in Eq (14)). We have 
introduced the domain restriction in the second line 
and then the third line summed over all values of n 
will no longer provide the BFKL exponential. It is 
straightforward, using the Stirling approximation to the 
factorial to obtain the change to Eq (13) as a power in 
Ijx with A —+ p with the relation log(A/p) = ap. Thus 
the power A is diminished so that A —• p ^ A(l — aX). 
We conclude that the BFKL mechanism obtains a large 
part of its contributions from the possibility to emit 
gluons with moderate to large values of z (at the same 
time there are then many emitted gluons with (1 — z) 
small!). This decrease in the exponent is also found in 
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the authors are able to reproduce the BFKL result small 
x-values. In Ref [7] different scenarios are investigated. 
We find very large contributions from the sub-leading 

In case we know the eigenvalues of the kernel K (and 
the largest eigenvalue turns out to be A = 12alog(2)/7r 
for a fixed coupling a ) we may sum over all iterations 
to get the BFKL gluon structure function 

using the integral (valid for positive y-values): 

We note that that in every splitting in LLA one of the 
poles contributes to the results (we have conventionally 
followed the z-pole contributions). It is then necessary 
for consistency that it really does dominate, ie in this 
convention that z < exp(—a) for some real number 
a (which must be at least a > log(2) in order that 
z < (1 - z)). (Another argument is that unless we 
restrict the z-variations we will break energy-momentum 
conservation along the emission line). 

Introducing this simple restriction we obtain 



a consistent evaluation of the structure function, cf Ref 
[7]. We note that the correction exhibited above is of 
the order a2 (which is expected in the BFKL treatment). 
But it should also be noted that the correction is very 
large, ie A ~ 0.5 —• 0.25. 

Aknowledgements 

This work was done in Lund in collaboration with 
G.Gustafson and J.Samuelson. It is a pleasure to thank 
the convenors of the hadron final state working group 
and the organizing committee. 

R e f e r e n c e s 

[1] S .Catani ,G.Marchesini et a l ,Nucl . P h y s . B 3 3 6 ( 1 9 9 0 ) 18. 
[2] Ya . I .Azuimov et al, P h y s . L e t t . B l 6 5 ( l 9 8 5 ) 147. 
[3] C.Sjogren et al, Nucl . P h y s . B 3 8 0 ( 1 9 9 2 ) 391 . 
[4] P .Dahlqvis t et al, Nucl . P h y s . B 3 2 8 ( l 9 8 9 ) 76. 
[5] G.Marches im,B.Webber ,Nuc l .Phys . B 3 1 0 ( 1 9 8 8 ) 4 6 1 . 
[6] Yu. L. Dokshi tzer et al, Bas ics of Perturbat ive Q C D . 
[7] B .Andersson ,G.Gustaf son ,J .Samuelson (under publ icat ion) 


