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Abstract

I consider the states in Deep Inelastic Scattering situations, as defined in the work of Marchesini
and collaborators (the CMCF Model) and phrase the results in a language suitable for color
dipole considerations. I show that the DIS states can be treated as the radiation from a set of
linked primary dipoles, built up in “the initial state radiation” and decaying into “the final state
radiation”. The scenarium is valid both for energy momentum and space-time considerations
and incorporates both the usual QCD parton model, the Boson-Gluon Fussion and the probe hard
structure interactions. J end with describing some corrections to the well-known BFKL mechanism,
resulting in an essential decrease of the power in the z~*-behaviour.

Résumé

Dans cet article, je considére les états en diffusion profondément inélastique, tels que définis dans
le travail de Marchesini et collaborateurs (le modéle CMCF) et reformule les résultats dans un
langage plus approprié aux considérations sur les dipoles de couleur.

1. Introduction and Remarks on the Color
Dipole Cascade Model

There is one major difference between the calculation of
the x-sections for the DIS and for the ete-annihilation
events. The x-section for DIS events is not describable
only by the lowest order perturbative terms but also
contains the structure functions, ie the inclusive flux of
the partons. For the total cross section we do not need
to calculate all the radiation in the states. Instead the
different states should after an inclusive sum over “the
final state radiation” be amenable to a grouping into
different (non-overlapping) classes.

It is the sum over the probability weights (ie the
relevant Sudakov formfactors) of these classes which
provides the cross section. The choice of the different
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classes is open but one may evidently make more or
less intelligent partitionings, ie make choices containing
less or more Sudakov suppression factors. Different
states in a class contain a common “essential” set
of partons emitted, usually called “the initial state
radiation”. Given this set one must calculate the
“virtual corrections” leading to the Sudakov factors.
They are in general possible to sum up to exponentials
and can often be interpreted in probability language as
“the probability to do nothing” inside a region where
the available current will allow emission. A necessary
consistency request is that it should be possible to
obtain the final state radiation (which is summed up
and therefore not included in the Sudakov weights) from
the states chosen as the essential “initial” set.

In the first subsection I describe the states in ete™-
annihilation in terms of color dipole radiation and
introduce the triangular phase-space in the rapidity, v,



and the logarithm of the squared transverse momentum,
k = log(k3), natural in that context. I will also
mention the approach in the Webber-Marchesini Model
and the reason why the two models lead to equivalent
results. After that I review the way Marchesini et al,
[1], have defined the essential set of emissions in DIS.
I will refer to their method as the CMCF Model and I
will formulate their results in a language suitable for a
treatment in terms of the triangular phase space used
before for dipole emission.

After simplifications and modifications the results
of the CMCF Model is the occurrence of a linked chain
of dipoles. In this way we may define the initial state
radiation as the radiation necessary to obtain the precise
dipole chain and the final state radiation is the result of
the emissions from these dipoles. 1 end by presenting
the probabilities in this the Linked Dipole Chain (LDC)
Model. Finally I consider some results for the structure
functions and exhibit some large corrections to the
BFKL-mechanism.

1.1. Gluon Emission in the Dipole Cascade Model
and the Webber-Marchesini Cascades

In an ete -annihilation (time-like) cascade there is an
initial (color singlet) gg-state formed. At high energies
this state will emit gluons g by color dipole radiation
with the approximate x-section:

a dk?
dp~ ——=% 1
P (1)
Here a is the “effective” coupling (containing suitable
color factors) and the transverse momentum k; and
rapidity y can be defined by Lorentz invariants
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in terms of the two-parton mass squares, 354 =
812, 8gg = S23 and the total squared mass s = W2
For the phase space we have in the cms of the dipole

g2 o S12%8 1

L s 2

(2)

k cosh(y) < approx ki =k exp(£y) < W(3)

2
cortesponding to a triangulsr zegion in the {y,x =
in(k2 ))-plane, cf figure 1a.

Besides the color factor this is the same as in
QED but there is a major change in the QCD final
state. Emitting a photon in QED does not change the
current. But the QCD current is changed because the
emitted gluon is a color octet. There is, however, the
simplification that instead of forming a complex charge
system between the color 3, the 3 and the 8, the final
state partons form two independent dipoles, [2]. Thus if
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Figure 1. The Dipole phase (triangular) space and multigluon
emission according to the tezt

we consider the emission of two gluons, indexed 1 and
2, the cross section is factorisable into

dp(qq — ¢91929) = dp(9d — 9919) X

x(dp(gg1 — qg9291) + dp(91d — 91929)) (4)

in case the transverse momenta are ordered (k 11 2
k12). This factorisation property is better than a few
percent all over the phase space, [3]. We note in
particular that the two dipoles are not at rest with
respect to each other or the original cms.

The Dipole Cascade Model (DCM) is then based
upon the production of one dipole — two dipoles —
three...etc. Every time a new gluon is emitted and
the corresponding dipole partitioned. Actually the final
state containing a set of dipoles has a strong similarity to
the Lund String with a set of gluon excitations dragging
out a set of straight string segments (corresponding to
the dipoles), cf figure 1d.

It is useful to note that one gluon emission actually
increase the rapidity region for further emissions. While
the cms rapidity region, Ay, available for the first
gluon emission (with transverse icinentum %)1) is
log(W?/k% ) (the line shown in the triangie of figure 1a)
the two “new” dipoles may emit a gluon (with transverse
momentum k5 < k1) inside the region

A= (Ay)gen = 108(312./1312) + 108(3‘23/’1“12) =
=log(W?/k7 ;) +log(k?,/k%,)  (5)

Here we have used the lines after Eq (2). There is then
by the emission be an increase in the allowed phase
space, A = log(k%;/k%,). This can be “added” to
the triangular phase space in figure la by extending a
(double) fold as in figure 1b. Actually we are in this way
adding a triangular region, made up of the two sides of



the fold, to the original triangle. Each new emission
will have the same effect on phase space, [4]. After
several emissions we obtain a complex figure with many
folds “sticking out” as in figure 1c (corresponding to the
emission in figure 1d). The length of the baseline, which
is what we called the generalised rapidity A above in Eq
(5), is irregular and behaves like a (multi)fractal with
the so-called anomalous dimension of QCD basically
equal to the fractal dimensions. The quantity A is
a useful measure of the multiplicity of the final state
hadronic multiplicity, [4].

The Webber-Marchesini Independent Parton Cas-
cade Model, [5] is a conceptually very different approach
to multiple gluon emissions. The results are neverthe-
less very similar to those obtained in the Dipole Cascade
Model. The reason for this similarity is that the building
of dipoles in the cascade is the same as the requirement
of strong angular ordering in the emissions, [6], in the
Webber-Marchesini Model. They use one angular vari-
able, 8, and one energy variable, E. Remembering the
relation for the rapidity of a massless particle:

y= %log (ZJ_’Z) = —log tan(8/2)) ~ —log(6/2) (6)

and the approximate relation k; ~ E6 we may map
these variables onto the quantities (y, k) and consider
the emission of a Webber-Marchesini cascade in the
triangular phase space. The strong angular ordering
means that after emitting a “first” gluon along a parton
line (emission angle #) the next emission must have an
emission angle smaller than 6. Therefore in this kind of
cascade you may start with a first emission at some angle
or rapidity and then afterwards go towards the g-end in
rapidity and afterwards go towards the g-end in rapidity
(ie following along the g- and g-lines, respectively).

In both cases the “new” emissions are evidently
fulfilling the strong angular ordering requirement (ie
diminishing angles along the parton line). In every
“step” in rapidity one searches through the possible & -
(or E-)values, ie one “goes from one side in rapidity, v,
towards the other, all the time looking up and down in
%,”. Bvery time one finds an emission a “
line staris out and this corresponds ezactly io adding
filed #riemgle im the Lnnd language. Then they
are searched thicugh in the same manner, producing
subfcld triangles etc. According to our description
above oneis in the Lund DCM “going down in & all the
time looking left and right inside the relevant rapidity
region”, aiso adding folds and resolving them for new
emissions. The final result is the same (ie on an inclusive
basis the events will coincide). It is only a question
of different orderings in the cascades (and as a matter
of fact there are different ways to take the recoils into
account when the emitted gluons are “not” soft).

new” paiton
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Figure 2. A DIS fan-diagram and its description in the
triangular phase space. The on-shell g-vectors are eztended
triangles from a single emission point and the (virtual)
connectors k stretch betqueen the gi(j11) and |g—j|. The areas
A; marked out correspond to the regions excluded according to
the Sudakov suppression in An.

2. The CMCF
(Ciafaloni-Marchesini-Catani-Fiorini) Model

We start to consider the kinematics of the partonic
emissions along any “fan-diagram”, cf figure 2a.
Independently of “the beginning” or “the end” there
is a complete color connection along the diagram. In
accordance with the LLA we will as in [1] neglect the
process ¢ — qq, ie the gluon splitting process (which
has no z-pole) and consider the diagram as if it is just
made up of gluon emissions. Then the fan diagram
contains a connection from an “incoming parton” with
a (mass-less) energy momentum vector P towards a
“probe” with energy momentum g. There is a set of
emissions “along” the color line under consideration and
they are described by the energy momentum vectors g;
(which are always tuken to be on-shell and massless).
There is alsc a set of connectors described by the energy
momentum vectors &;, which are all space-like. At every
“vertex” there is energy momentum conservation so that

J
kj:P—-qu ie kj:kj_1-qj‘ (7)
m=1

It is then in [1] noted that in case we use the variables
zm such that ky; = []’(zm)P;, some of the z, are
very small, ie stem from the z-pole dominance in the
splitting function. In Ref [1] it is those emissions, ie



when gy; = (1 — zj)kq(j-1) = ky(;_1) that are taken
as “essential” and the virtual corrections are calculated
to determine the cross section. We call the ensuing
model the CMCF Model and we will next go over to
the kinematical and dynamical results in some detail.

All emissions are in the CMCF Model ordered both
in energy and in angle, ie in rapidity, which means that
the strong angular ordering requirement is invoked. In
case we actually follow the small-z contribution, eg at
the vertex named j, it is evident that all the following
radiation, ie the one “behind” the g;, must have ¢, <
g+j, J < m because there is only available the amount
kij ~ z;q+; < q4; for them. The emission situation is
described for some different cases in figure 2b. We note
that a given value of ky; = kyijexp(y;) = zjky(j-1)
(45 = qujexp(yg) = (1 — z;)ky(j_1)) corresponds
to the points along a line with a distance log(1/z;)
((log1/(1 — z1) ~ 0) to the “earlier” fromt ky(;_1).

The transverse momentum of the connectors k; is in
this logarithmical scenarium dominated by the “large”
g1 emissions in “the neighborhood”. All the emission
steps can be partltloned into three different kinds: (1)
k_|_, —qL; > k_l_(] 1) (as an example cf the emission
denoted 1 in figure 2b), (2) kJ_] ~ kJ_(J_l) > =4
(cf the emission denoted 2 in figure 2b), (3) —q1; =~
E.L(j—l) > E_]_j (cf the emission denoted 3 in figure 2b).

Each step in the emission chain is in the CMCF
Model described in terms of the probability

dz] d? q“

Ane(zj, kij,auj)

) e

Ane(z,k1,q1) = exp(—alog(1/z)log (z
L

z; 1rq“

The formula for the non-eikonal formfactor An (2, k1 j,q1;)

is of the Sudakov kind, ie the negative exponent (if Eq
(9) below is fulfilled) of an integrated emission proba-
bility over the region which is excluded by the emission
step j, for details cf Ref [7] and the the next subsection.
From the expression for A,. it seems necessary and it
is also implicit in Ref [1] that only contributions with

kJ_J > qu.L] (9)

should be included in the essential emission set.
Therefore a situation like the one, denoted 4 in figure 2b
is excluded. It is essential both for dynamical reasons
as well as for the interpretations we provide below
that Eq (9) is fulfilled. We end by the remark that
all the on-shell g-emission vectors are in this pictorial
formalism described as extended folded triangles in the
same way as in the DCM. The connector vectors k are,
however not on the mass-shell. According to the way
the CMCF Model choses the essential set we note that
kij =~ q4(;+1) and (besides the case 2. above) we also
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Figure 3. The Sudakov suppressed regions in the single step
log(1/z;) and the regions corresponding to the “smaller” possible
steps z;, with || zjx = zj are described in a. (note the property
of the Sudakov regions that the “large” In(1/z;)-step area is
“smaller” than the sum of the “small” log(1/zjx-step areas).
The dipole regions spanned between neighbouring q; emissions
are shown with the regions B; mentioned in the text in b.

have that k_; ~ —qg_;. We may therefore conveniently
represent the k vectors as lines on the height log(k?)
stretching between the neighbouring ¢4+ lines. The
virtuality of the k vectors are in this way always given by
the transverse momenta because we have k3 > |kpk_|.

2.1. Reformulation and Analysis, The Linked Dipole
Chain Model

Some of the gluons, included in the chains described
by the CMCF Model, have properties similar to those
which we already have included in the final state
interaction (and summed away from the Sudakov
formfactor). Particularly this is so for the gluons
included under case 2. above with transverse momenta
smaller than their neighbouring k;. We will now
consider the sum over such “soft” gluon emissions.

By a variation in the z; < 1 the value of ¢4; =
(1—2;)k(j_1) is hardly affected but the value k,; may
change appreciably in the LLA. We consider all these
soft g;-emissions “close to the front ky(;_1)” and then
sum over their contributions to the cross section. In this
way we produce a set of connectors with the same LLA
value of kK = log(k2 ;). Thus we may take “the step” z;
by emitting many soft q k gluons with [], z/ ik = % The
procedure is illustrated in figure 2b and ﬁgure 3a.

We show the relevant Sudakov regions (in figure 2a
A1 and A; and in figure 3a the A;) corresponding in the
CMCF Model to gluon emissions with rapidities y(g) <
y(g;), ie smaller than the emitted gluon g; (“angular
ordering”) but with g-values larger than the ensuing



front ky; ~ 2;q4; (energy-momentum conservation).
Those are not possible in the CMCF Model (note that
gluons with y(g) > y(g;) are allowed and summed away
under the assumption that they “did not change the
front z-value appreciably”). In figure 3a we show a
set of “soft” ¢/ -emissions. After summing over all the
emissions of q;-k we obtain the result that the procedure
is equivalent to taking one step as in Eq (8) but with the
form factor Ay, equal to 1. This is the relevant weight
for the case 2. and we obtain a primary dipole stretching
between the (on-shell) gluon emissions q; and qjyi1.
The radiation from this dipole, similar to the dipoles
obtained in the k,-ordered emissions in DCM, may
provide all the gluons summed away above. Therefore
the procedure is proven to be consistent.

We are then left with a chain of steps up and down
in transverse momentum according to the types 1. and
3. It is then again possible to sum up a set of emissions
that will compensate the Sudakov factor along the same
lines as for the case 2. The result is a weight in each
case equal to 1 as in Eq (8). The main question is,
however, if it is possible to obtain the “summed-away”
radiation as the final state radiation from the ensuing
dipoles. The situation is illustrated in figure 3b and we
note in particular the occurrence of the regions denoted
Bj, which occur in the neighbourhood of an emission ¢
with larger transverse momentum than the connector k.

It is a fact that if: (A) we consider the primary
dipoles to be stretched between the g-vectors, ie each
dipole is made up of two neighbouring q-vectors, (B)
we require that there should be no emission from such
a dipole with transverse momentum larger than the
relevant connector virtuality —k* ~ k% then we obtain
radiation which will cover the region (including the parts
called B;) below the lines of the connectors stretched
between the essential gluon set.

We note that the dipoles, defined from two
neighbouring gluons, g; and g;41, in the essential gluon
set, are not pointlike in space-time. The two gluons
are connected by the virtual connector k;. The current
associated with the two gluons therefore starts out with
a space time size, corresponding to a transverse distance,
b;, defined by the virtuality b; ~ 1/,/—k? ~ 1/ky;. It
is very difficult to obtain radiation with a wavelength
smaller than this available antenna size. This result is
also obtained in Ref [1] by a detailed analysis of the
virtual corrections. This is the reason why the non-
eikonal Sudakov in Eq (8) does not contain any reference
to the regions above the virtuality lines log(k} ;). The
result (and this is in our opinion the great achievement
of the hard work done by Marchesini et al) is that there
18 no emission density dp for ‘IL’ > —k]2 because the real
and virtual contributions cancel in this region.

To understand the cancellation we consider the
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radiation in the rest-frame of the two gluons ¢; and ¢; ;.
In that frame there is then only gluon emission from the

(gj,9;41) dipole with ¢ <
directions counted with respect to the dipole axis. In
case we would boast back to the initial Lorentz frame
specified by the probe and hadron directions (this will
require both a longitudinal and a transverse boost, in
general) then the radiation defined in the restframe will
cover just the regions below the lines described above.
The main point for the B;-regions is that they occur
because the two gluons defining the dipole in the probe-
hadron frame will have different transverse momenta for
the cases 1. and 3. (Note that the Bj-regions actually
correspond to the cases of gluon emission “above” k%
but “inside” the connection lines k4 to the emitted g).

We note that by this procedure we are also making
the states symmetric with respect to a treatment from
the hadron and the probe side and we will in the next
subsection further exhibit these properties with respect
to the hadron and probe ends. In case we consider
the same chain as before but this time analyse the
results from the probe side we would consider the steps
lj = —k; — g¢; + (—kj-1) = ¢; + ;-1 and use the
variables —k_; = z_(—k_(;11))(= ¢—;) for small z_ to
define the essential set. It is in particular at this point
that the requirement kﬁ_]- > 244 qﬁ_j for the essential set
of the CMCF Model in Ref [1] becomes necessary.

In this picture we may, inside the LLA, define the
transverse momentum for the emitted gluon as q,; =
max(kj,ky(j-1)). The two-dimensional description in
the phase space triangle neglects the dependence on the
azimuthal angles ¢;. An emitted gluon in the essential
set is described by a single point, representing all values
of 0 < ¢; < 27 (but containing precise information of
its g% ; and its lightcone components g+; with ¢;;q_; =
g%;)- This is not enough in order to define the relation
between the ¢, and (Elj, El(j_l)). With this definition
of gy ; it is sufficient (although the connectors are not on
the mass-shell) to provide either the values (k?, k4;) or
(k%;,k—;) and then use the connections in the dipoles
to define the state. Therefore the probability for a step
is given by

—k]"-’ with the transverse

dzj A%k k%,

zj wk3 max(ki(j_l), k%))

(10)

We have used dzq“- = dzklj and introduced qf_j ~
max(k?; ), k1;) as in the discussion above. The last
factor will make it difficult to “go down” in transverse
momentum along the chain. The product over these
factors integrated over all chains (as defined above with
the requirement that []; z; = z) is then the structure
function, ie the partonic flux. In this way we have

defined the Linked Dipole Chain (LDC) Model by the



requirements that the weights for all “steps” are defined
by the Eq (10) and that the primary dipoles defined
by two neighbouring vectors g¢; will emit radiation in
their restframes up to the g, -order defined by the virtual
connector k; between them.

Actually the factors in Eq (10) imply that any
maximum in transverse momentum along the chain will
provide two contributions, ie there is one emission on
one side (in order to “go up”) and another on the
other side (in order to “go down” again). Together
they provide a combined factor (¢7%)% ~ k=%, which is
just the contribution valid for a Rutherford interaction.
To be precise it is necessary to carry through all the
calculations including the sums over the polarisations
and the different color line contributions along the
emission current. The result nevertheless stands, ie
there is always at the “top” point of any fan diagram two
emissions and they provide just well-known x-section
for the Rutherford scatterings between two charges in
a gauge field theory. In a “long” chain it is possible to
have many maximum regions of this kind and we will
come back to these situations.

3. The Probe End , Boson-Gluon Fussion, the
Structure Function of the Probe and the
General Structure Function of a Hadron

In the CMCF Model there is a tacit assumption that the
partonic chain diagrams contains a largest transverse
momentum, in general maxj(ki]-) < Q2. It is true that
for large Q% the main contributions stem from these
situations (this is the DGLAP mechanism). But for
smaller values of @2 and for the investigation of states
with large (Rutherford scattering) jets it is necessary
to include all contributions even those containing some
k%, > Q. This is straight-forward in the LDC Model.
While the “hadron end” contains the splitting of the
hadron into a color 3 and a color 3 (which due to the
lack of a z-pole can be treated in the LLA as an entity,
for more detailed studies cf Ref [7]) the probe end needs
more refined analysis.

3.1. The Probe End and a Partitioning into Different
Channels

For a description of the interactrion one may use
different Lorentz frames, eg the cms frame between the
field pulse and the hadron (the FPH frame) or the cms
frame between the leptonic probe and the hadron (the
LPH frame). We now show how to incorporate the
description of the DIS events in both of the above-
mentioned frames into the triangular phase space.

In a frame equivalent to the (LPH) frame, where the
initial lepton has a (large) component along the negative
lightcone, equal to (a positive) Q' it will send away a

lepton

V \
n(Q ) V In(1/x) \:.‘

a

Figure 4. A description of the “backend” interaction between a
lepton probe scattering with Q| and Q_, thereby producing the
line Q_ as backward limit down to log(Q?) where the line

zP. = Q?/Q- takes over. The notations are described in the
tezt and the figs b and c correspond to Feynman diagram
descriptions of Boson-Gluon Fussion and Rutherford scattering
on the probe constituents

fraction @_ with the bosonic field pulse and recoil with a
transverse momentum Q 1. This is described in figure 4
by means of the connector v* at the level log(Q?) with
Q= éﬁ_ ending on the negative lightcone line Q_ with
the lepton (after the scattering described by a triangle,
although there is no gluonic emission in there) at the
other end of the connector.

When the “incoming” propagator is described by the
points marked 1 and 2 in figure 4 the event corresponds
to an (upwards in transverse momentum) splitting of
the gluon propagator denoted 3 —4 into a § (at 2) and a
g*-propagator 1 — 2 at the level log(k? ) with k2 < Q?
(on the logarithmic scale). The interaction is then the
“usual” one in the QCD parton model, ie y*¢* — g¢
with (the final) ¢ “moved up” to the triangular fold
marked at the point 5. The value of the Bjorken variable
z = —q?/2pg is given by zP; = Q. = Q?/Q_ and
is shown by the hatched line. In a frame equivalent
to the FPH frame we neglect the “backward” lepton
triangle and the 4* propagator and consider the probe
to be given by (-Q4,Q-) (with —¢* = Q* = Q, Q)
interacting with the ¢* propagator. This “extends” the
propagator from the point 1 to the final (on-shell) ¢
position as an emitted triangle at the point 5’ (note
that the transverse momentum for the ¢ is in the FPH
frame solely given by the “incoming” propagator k).

Next consider the case described by the points 6 —7

in figure 4. Then there is a quark propagator ¢* at the
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level k2 > Q?. Therefore the gluon (g*) propagator
8 — 9 (with transverse momentum k%, < k7 ) is split up
into the ¢ (the triangle at the point 7) and the quark
(¢*) propagator 6 — 7 at the level log(k? ) ending on the
negative lightcone line Q_. This situation corresponds
to a BGF event where the main transverse momentum,
ie the “virtuality” of the state,-is not the Q% of the field
pulse but instead the k% splitting of the g* — gq*, cf
figure 4b. According to the rules of perturbation theory
one should always start at the largest virtuality and
consider the emissions on either side as independently
coherent. For a BGF event we are no longer asking for a
(virtual) parton line ending on the positive lightcone line
Q+ = zP,. Instead we ask for the propagator to end on
Q- = @*/Q.. In this way also the BGF events “which
come from above the Q?-level” may be incorporated into
our description of the general events.

Finally we consider the case when the connected
gluon (g*) propagator is “above” the level 6 — 7, ie the
case described by the points 10 — 11 in figure 4. Then
the ¢* propagator “dominates” the probe Q2 but is itself
dominated by the g* at the level 10 —11. This situation,
which may occur frequently for small boson virtualities,
corresponds to the evolvement of a structure function
for the field pulse probe. The state on the “backward”
side of the largest virtuality, ie in this case the breakup
state of the 4* into ¢ at 6 and ¢* propagator 6 — 7, is a
coherent reaction. According to figure 4c the interaction
corresponds to a a quark-gluon Rutherford scattering
(10—11) between a constituent §* from the ¥* — q@* and
the hadron virtual state ending on 12, (which then acts
as a “probe” on the field pulse). The final state of the
parton-parton scattering corresponds to the g triangle
at 10 and the gluon triangle at 11.

3.2. Some Remarks on the Structure Functions

Space does not permit a detailed analysis of the results
from the earlier sections. We obtain (just in Ref [1])
an equation for the structure functions, [7], containing
contributions both from the DGLAP and the BFKL
mechanisms. In the CMCF Model some of the “true”
contributions to the anomalous dimensions are neglected
with the argument that they are subleading, ie do
not correspond to pole contributions in the Mellin
transformation with respect to the Bjorken z-variable.
Using the relation (valid for a smooth “non-integrated”
structure function F(log(1/x),log(k?)))

6(q* — min(k3 , k'2))F(L', )
~ F(L, k') - 6(kL — @) F (L', x) (11)
the authors are able to reproduce the BFKL result small
z-values. In Ref [7] different scenarios are investigated.
We find very large contributions from the sub-leading
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terms neglected in the CMCF Model, in particular if we
use the “BFKL-approximation” in Eq (11) the power A
in 272 decreases from around 0.5 to 0.33)

I would like to end by exhibiting a different result,
partly because so many of my colleagues feel that the
BFKL mechanism is stable. The main behaviour of the
BFKL gluon structure function f is obtained from the
iteration that the n:th step in the transverse momentum
k', — k. results from a particular kernel K:

fE) = [dFPRELEDLED) (2
In case we know the eigenvalues of the kernel K (and
the largest eigenvalue turns out to be A = 12alog(2)/n
for a fixed coupling a) we may sum over all iterations
to get the BFKL gluon structure function

Alog(1/z))"

foBFEL X Z ( o o~ exp(Alog(l/w) =z 2 (13)

using the integral (valid for positive y-values):

/ H dyﬁ(Z ¥ —Y)

We note that that in every splitting in LLA one of the
poles contributes to the results (we have conventionally
followed the z-pole contributions). It is then necessary
for consistency that it really does dominate, ie in this
convention that z < exp(—a) for some real number
a (which must be at least ¢ > log(2) in order that
z < (1 = 2)). (Another argument is that unless we
restrict the z-variations we will break energy-momentum
conservation along the emission line).
Introducing this simple restriction we obtain

/ ﬁ dy; 8y —Y) = / [T dw6(3_w = (¥ - na))

Yn—l

R

(Y —na)"!
T (n=1)
(keeping to the notations in Eq (14)). We have

introduced the domain restriction in the second line
and then the third line summed over all values of n
will no longer provide the BFKL exponential. It is
straightforward, using the Stirling approximation to the
factorial to obtain the change to Eq (13) as a power in
1/z with A — p with the relation log(A/p) = ap. Thus
the power A is diminished so that A — p ~ A(1 — a]).
We conclude that the BFKL mechanism obtains a large
part of its contributions from the possibility to emit
gluons with moderate to large values of z (at the same
time there are then many emitted gluons with (1 — 2)
small!). This decrease in the exponent is also found in



a consistent evaluation of the structure function, cf Ref
[7]. We note that the correction exhibited above is of
the order a? (which is expected in the BFKL treatment).
But it should also be noted that the correction is very
large, ie A ~ 0.5 — 0.25.
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