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Abstract
Even the most classical states are still governed by quantum theory. A number of physical systems
can be described by their Majorana constellations of points on the surface of a sphere, where
concentrated constellations and highly symmetric distributions correspond to the least and most
quantum states, respectively. If these points are chosen randomly, how quantum will the resultant
state be, on average? We explore this simple conceptual question in detail, investigating the
quantum properties of the resulting random states. We find these states to be far from the norm,
even in the large-number-of-particles limit, where classical intuition often replaces quantum
properties, making randomMajorana constellations peculiar and intriguing. Moreover, we study
their usefulness in the context of rotation sensing and find numerical evidence of their robustness
against dephasing and particle loss. We realize these states experimentally using light’s orbital
angular momentum degree of freedom and implement arbitrary unitaries with a multiplane light
conversion setup to demonstrate the rotation sensing. Our findings open up new possibilities for
quantum-enhanced metrology.

1. Introduction

Randommatrices sampled from an ensemble with a specific symmetry were introduced by Wigner [1, 2] and
Dyson [3–5] to describe spectral properties of quantum many-body systems, such as atomic nuclei [6]. Since
then, random matrix theory [7–9] has found applications in fields as diverse as black holes [10–13] and
gravity [14], quantum chaos [15], transport in disordered systems [16, 17], spin glasses [18], neural
networks [19, 20], and even finance [21]. Quantum information is definitely one of the most recent
applications, and a very natural one, too [22–24].

Random quantum states can be seen as arising from the time evolution of arbitrary initial states of
quantum analogues of classically chaotic systems [25]. Furthermore, these states emerge when not much is
known about a state and one wants to ask about its generic properties, characteristic of a ‘typical’
state [26–28]. Given a random quantum state, one may then ask how quantum is this state: does it exhibit
classical behavior in the large-number-of-particles regime? If one had access to a black box that prepared
random states, how much would it be worth and what would its applications be? These questions and more
motivate the present study.

When considering the set of pure states living in anN-dimensional complex vector space, the manifold of
physical states is the projective space CPN [29], wherein there is a unique normalized measure invariant
under all unitary transformations: the associated Haar measure [30]. One can reasonably call this measure
the uniform distribution over the unit sphere [31].
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The geometrical properties of quantum states are essential to understanding where classical intuitions
break down and where the next quantum advantage may lie [32–34]. In phase space, localization is a clear
signature of the state quantumness [35, 36], as it has been demonstrated with several indicators, such as
Rényi–Wehrl entropies [37], inverse participation ratio [38], or Husimi extrema [39]. However, while these
notions provide effective analytical tools, the geometry of CPN is not very intuitive and so it is difficult to
visualize and to gain insights into the nature of those states.

Here, we propose a novel class of random states based upon a mapping onto a many-qubit system
(which, in some cases, might be fictitious). Actually, any system with a finite-dimensional Hilbert space of
dimension N= 2S+ 1 can be thought of as a spin S [40]. The space manifold CPN admits an appealing
representation due to Majorana [41], which maps any pure state onto 2S points on the unit sphere S2; the
state’s stellar representation. This picture makes it natural to consider the states associated with random
points on the sphere. We conduct a detailed study of these states from an SU(2)-invariant perspective.
Notably, we find that, in the limit of a large number of particles, they do not converge to a classical state and
preserve their quantumness.

In addition, these new randomMajorana (RM) states belong to the symmetric (bosonic) subspace. It has
been recognized that symmetric states offer significant advantages from a metrological perspective [42–45].
We find numerical evidence that the usefulness of RM states for rotation-sensing-style tasks, like
magnetometry and ellipsometry, is robust against the loss of a finite number of particles and dephasing. This
is in stark contrast to other relevant states, such as Greenberger–Horne–Zeilinger (GHZ) states [46]
(equivalent to the NOON states [47] in optical interferometry), which completely lose their (otherwise ideal)
sensitivity upon loss of just a single particle. Finally, we experimentally generate these states by utilizing
light’s orbital angular momentum and implement arbitrary unitaries using a multiplane light conversion
setup to showcase rotation sensing.

This paper is organized as follows. In section 2 we address the basic notions of the Majorana stellar
representation and its physical interpretation. In section 3 we raise the ideas behind RM constellations and
characterize their properties by resorting to a multipole expansion. Subsequently, in section 4 we use these
multipoles to compare our method with alternative ways of obtaining random states. In section 5 we
introduce the setting of quantum parameter estimation. Utilizing the quantum Fisher information, we
investigate the performance and robustness of the RM states under the influence of noise and particle loss.
Finally, in section 6 we introduce the experimental setup used to study these states with respect to rotation
sensing and analyze the obtained results. We conclude our work in section 7.

2. Majorana constellations

Let us consider a pure spin-S state |ψ⟩ living in the 2S+ 1-dimensional Hilbert spaceHS spanned by the
standard angular momentum basis {|S,m⟩ |m=−S, . . . ,S}, which is the carrier of the irreducible
representation (irrep) of spin S of SU(2). This space is isomorphic to C2S+1, but since any two vectors inHS

differing by a phase represent the same physical state, the manifold of physical states is the projective space
CP2S [29].

The merit of Majorana was to show that points in CP2S are in one-to-one correspondence with
unordered sets of (possibly coincident) 2S points on the unit sphere S2. In other words, spin-S states can be
obtained as fully symmetrized states of a system of 2S spins 1/2 (or qubits). These systems have many
physical applications, ranging from quantum computation to quantum sensing and metrology [48–52]. This
idea is also at the heart of the Schwinger map [53, 54], which realizes the set of angular momentum operators
in terms of polynomials of bosonic operators.

There are various ways to see why this is so, but probably the most direct one is to notice that the state |ψ⟩
can always be written as

|ψ⟩= 1

N

2S∏
i=1

a†−ui |vac⟩, (2.1)

where ui is a unit direction of spherical coordinates (θi,ϕi), the rotated bosonic operators are

a†u = cos(θ/2) a†+ + eiϕ sin(θ/2) a†− , (2.2)

with a†+ and a†− creating excitations in two modes (denoted by+ and−) from the two-mode vacuum |vac⟩,
andN is a normalization factor of no interest for our purposes here and whose explicit expression can be
found, e.g. in [55].
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The set of 2S (non-necessarily distinct) unit vectors {u1, . . . ,u2S} defines the Majorana constellation of
the state. Alternatively, the state (2.1) can be expressed as

|ψ⟩= Pψ(a
†
+,a

†
−)|vac⟩ , (2.3)

where Pψ(a
†
+,a

†
−) is a homogeneous polynomial of degree 2S in the variables a†+ and a†− that can be

factorized (up to an unessential factor) in the above form.
In particular, the states

|n⟩= 1√
(2S)!

(
a†n
)2S |vac⟩ (2.4)

are precisely the spin-S coherent states (CS) [56]. The definition shows that the associated constellations
consist of only one single point in the antipodal direction−n. It is natural to introduce the CS representation
by ψ (n)≡ ⟨n|ψ⟩: this is a bona fide wave function over the unit sphere S2. Simple algebraic manipulations
yield

ψ (n) =
2S∏
i=1

[
1
2 (1−n ·ui) e

iΣ(n,−ui)
]
, (2.5)

where Σ(n,−ui) is the oriented area of the spherical triangle with vertices (z,n,−ui), with z the unit vector
in the direction of the axis Z. This confirms that the Majorana constellation consists of the zeros of ψ (n).

The CS wavefunction induces a probability distribution

Qψ (n)≡ |⟨n|ψ⟩|2 , (2.6)

which is the Husimi function [57], and whose zeros are also the Majorana constellation.
Because the Majorana representation facilitates a useful geometrical interpretation of quantum states, it

has found an increasing number of applications in recent years, with prominent examples being polarimetry
and magnetometry [58], Bose–Einstein condensates [59, 60], Berry phases [61–63], and studies of
entanglement [64].

3. RandomMajorana constellations

Since points on the sphere S2 correspond uniquely to pure states via the Majorana representation, one is
immediately led to the simplest idea of how to generate RM states: they correspond to sets of random points
on S2. Interestingly, the question of distributing points uniformly over a sphere has inspired substantial
mathematical research [65–67], as has the question of random polynomials [68–71], in addition to attracting
the attention of physicists working in a variety of fields.

We randomize each of the spherical coordinates (θi,ϕi) independently using the Haar measure
sinθi dθi dϕi/4π for S2. Equivalently, the resulting RM states can be viewed as arising from the action of a
random operator U ∈ SU(2)⊗2S on the ground state of 2S qubits, followed by projection onto the symmetric
subspace and normalization. This is fundamentally tied to the most robust deterministic technique for
creating arbitrary bipartite states of light, which uses beam splitters and post selection to sequentially add a
photon’s coordinates on its Poincaré sphere as a new point to a state’s existing Majorana constellation [72,
73]. When the states of the single photons are randomized, the resulting state immediately takes the form of
equation (2.1) with random spherical coordinates. This basic scheme can then be used to create random
states in the light’s polarization degree of freedom for tasks like polarimetry.

The intrinsic SU(2) symmetry suggests using the germane notion of multipoles [74, 75] to characterize
the resulting states. To this end, we expand the density matrix of the system as

ϱ=
2S∑

K=0

K∑
q=−K

ϱKqTKq , (3.1)

where TKq are the spherical tensor operators, defined as [75]

TKq =

√
2K+ 1

2S+ 1

S∑
m,m ′=−S

CSm ′

Sm,Kq|S,m ′⟩⟨S,m| , (3.2)
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Figure 1.Mutipole distribution ϱ2K for RM states with the values of S indicated in the inset.

with CSm′

Sm,Kq being the Clebsch–Gordan coefficients that couple a spin S and a spin K (0⩽ K⩽ 2S) to a total
spin S. These tensors are an orthonormal basis

Tr
(
TKqT

†
K′q ′

)
= δKK′δqq′ (3.3)

that transform appropriately under rotations R(Ω) ∈ SU(2):

R(Ω) TKqR
† (Ω) =

∑
p

DS
pq (Ω) TKp , (3.4)

where DS
mn(Ω) = ⟨S,m|R(Ω)|S,n⟩ are the usual Wigner Dmatrices [76].

The expansion coefficients are scalar values that are precisely the state multipoles. Alternatively, they can
be computed as [48]

ϱKq = CK
ˆ
S2

d2n Qϱ (n) YKq (n) , (3.5)

where CK is a constant, YKq(n) the standard spherical harmonics, and d2n= sinθdθdϕ the invariant measure
on S2. The multipoles thus appear as the standard ones in electrostatics, but replacing the charge density by
Qϱ(n) and distances by directions [77]. They are the Kth directional moments of the state and, therefore,
they resolve progressively finer angular features with increasing K.

Since YKq(n) constitute an orthonormal basis on S2, we can immediately invert equation (3.5):

Qϱ (n) = C−1
K

∑
Kq

ϱKqYKq (n) , (3.6)

so the multipoles represent the state’s Q distribution on the sphere in its natural basis of spherical harmonics.
As the Q function determines the Majorana constellation, these coefficients ϱKq can also be directly
computed from the constellation, as was recently explained in [78].

For each value of S, we average over 1.5× 106 samples. In figure 1 we show the resulting multipoles
plotted in terms of the multipole squared length

ϱ2K =
K∑

q=−K

|ϱKq|2 (3.7)

which are SU(2) invariant and thus serve as an effective tool for studying the states, treating all states related
by an SU(2) transformation (a rigid rotation of the constellation) as equivalent. As we can see, only
multipoles with small K contribute significantly. The maximally contributing multipole Kmax smoothly
increases with S: a least-squares fitting gives that, for large S, Kmax = a

√
S, with a≃ 0.8.

To gain further insight into this behavior, in figure 2 we plot the average multipoles for RM states with
S= 60. The broken lines delimit the corresponding variances, which are clearly not uniform. Since the
individual multipole distributions are non-Gaussian, the variances give only partial information. To
complete the picture, in the background we display a density plot representing the number of states with a
given value of the Kth multipole. Notice that we use a logarithmic scale in order to better appreciate the
behavior of higher Ks, which have exceedingly small values. We see the emergence of a striking multipeaked
structure. The multipoles with significant yellow areas (i.e. a strong concentration of samples) are those with
less variance.
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Figure 2. The dots represent the average multipoles for RM states with S 60. The broken lines delimit the associated variances.
The density plot in the back (with the logarithmic scale shown at the right) is the number of trials having the corresponding value
of the multipole.

Figure 3.Multipole distribution for CS, RM, and Kings of Quantumness for S= 106. The colors in the inset indicate the
corresponding states.

One sensible set of quantities in this scenario is the set of cumulative multipole distributions, defined as

AM =
M∑

K=1

ϱ2K . (3.8)

Note that we ignore the 0th multipole as it corresponds only to normalization. For CS this quantity reaches
the value

ACS
M =

2S

2S+ 1
− [Γ(2S+ 1)]2

Γ(2S−M)Γ(2S+M+ 2)
, (3.9)

and it has been proven that this is indeed maximal for everyM ∈ {1, . . . ,2S} [79]. At the opposite extreme
we have states whose multipoles vanish up to the highestM: they have been dubbed as Kings of
Quantumness [80] and they are maximally unpolarized. For each total spin S, there exists a maximal orderM
to which a state can be unpolarized; the state(s) satisfying this condition of AM = 0 are the Kings. Therefore,
AM is a good measure of the quantum properties of a state through its hidden polarization features [81] that
are stored in high-order multipoles.

To appreciate the different behaviors, in figure 3 we have plotted the multipole distributions for the most
quantum (Kings of Quantumness), the least quantum (CS), and RM states for S= 106. The differences speak
for themselves. A RM constellation is markedly different from a classical state: although the maximal
contributions arise from roughly the same multipoles for both states (actually, for CS a quick estimate gives
Kmax ≃

√
S− 1/2), RM states have much heavier tails, thus hiding their quantum information in

higher-order multipoles than CS. This makes them useful for metrological applications, even in the large-S
limit, where quantum effects may be expected to vanish. Additionally, such RM states are far from the most
quantum states, certifying the rarity of the Kings of Quantumness and the effort required for creating them.
This behavior is confirmed by the cumulative multipole distribution AM for the same states, as plotted in
figure 4.

4. Comparison to other random distributions

If a pure state is expressed in the angular momentum basis as |ψ⟩=
∑

mψm|S,m⟩, one could instead
consider states with randomized probability amplitudes ψm. This can be achieved with a random unitary

5
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Figure 4. Cumulative multipole distribution for CS, RM, and Kings of Quantumness states for S= 106. The colors are the same as
in figure 3.

U ∈ SU(2S+ 1) acting on the state, which is often called the circular unitary ensemble (CUE) [4]. These
random unitaries were considered in [82] and [37], who found the Rényi–Wehrl entropies of the resulting
random CUE states to be highly quantum. Moreover, in [45] it was demonstrated that such random CUE
states are useful and robust for metrology.

Actually, we can calculate the expectation value of the cumulative multipole momentsAM =
´
AM dU for

a variety of normalized Haar measures dU, through

AM =
M∑

K=1

K∑
q=−K

2K+ 1

2S+ 1

S∑
m,m ′=−S

CSm+q
Sm,KqC

Sm ′+q
Sm ′,KqIm,m ′,q, (4.1)

with Im,m ′,q =
´
ψm+qψ

∗
mψ

∗
m ′+qψm ′dU, and CSm

S1m1,S2m2
the Clebsch–Gordan coefficients [76] that vanish

unless the usual angular momentum coupling rules are satisfied:m1 +m2 =m, 0⩽ K⩽ 2S, and
−K⩽ q⩽ K.

For example, if we express our random unitaries by U ∈ SU(2S+ 1), these integrals can be obtained
exactly using random-matrix theory [83, 84] (see Supplemental Material). But there is another intuitive
method: all of the nonzero integrals take the form

´
|ψm|2|ψn|2dU and the distribution for each ψi is the

same, so we know immediately that Im,m ′,q ∝ δq,0 + δm,m ′ , such that

AM, SU(2S+1) =
M(M+ 2)

(2S+ 1)(2S+ 2)
. (4.2)

This means that states with random coefficients ψm have
∑K

q=−K |ϱKq|2 ∝ 2K+ 1, making them much more
quantum than RM states and according with other results for this distribution [37, 82]. This is in stark
contrast to the notion that both forms of randomness approach each other in the limit of large S in terms of
the distance between arbitrary pairs of random states [85], stressing the differences maintained between the
forms of randomness for all but S= 1/2.

Another possibility of obtaining a random spin-S state is to take a state of 2S random qubits. We employ
the same procedure as used for the RM, beginning with the 2S qubits, but without normalizing the states
initially. The resulting state is normalized at the end, ensuring that each state carries a weight proportional to
its overlap with the symmetric subspace. This contrasts with the RM, where all states are assigned equal
weight. This is not a unitary operation, instead creating the states from equation (2.1) with the replacement
of the normalization constant by a state-independent factorN →

√
(2S)!, but it facilitates an analytical

calculation whose cumbersome expression we show in the Supplemental Material.
Because each state in the ensemble has a different normalization due to having inhomogeneous

likelihoods of being produced, the statistical properties derived for them should be understood as being
weighted by the probabilities of finding the different projected states. These probabilities are proportional to
N and their normalization can be found from the 0th order multipole. After normalizing the final results, we
find that their multipolar distribution is very similar to that of CS. Intuitively, one can conclude that it is far
more likely for such a projection method to produce a state close to CS than to produce a highly quantum
state. The RM states may be thought of as states randomly chosen after the projection method succeeds,
while the projected states are the result of randomization prior to the projection. In other words, if the RM
can be thought of as a die with n equally likely sides, the projected states are the same die, but with each side
having a different probability.

In figure 5 we display the conspicuous differences between the multipole distributions for these different
randomized states.

6



Quantum Sci. Technol. 10 (2025) 015053 A Z Goldberg et al

Figure 5.Multipole distribution for RM, CUE, and projected random qubits, all of them for S= 30. For comparison, the dots
represent the multipoles for a CS.

Figure 6. Quantumness E for the same random states considered in figure 5 as a function of S. The two continuous lines give the
limit values of E : the upper one is 2S/(2S+ 1), whereas the lower one corresponds to the CS.

The conclusion from the discussion thus far is that classical states convey their information in lower
multipoles, whereas the opposite occurs for extremal quantum states. However, to assess this behavior in a
quantitative way, we need a proper measure of quantumness. Since our analysis has been largely based on
multipoles, we will use a recent proposal defined precisely in terms of them [86]; viz.,

E (ϱ) = 1−
2S∑

K=0

ϱ2K
2K+ 1

. (4.3)

E(ρ) takes an entanglement monotone for a particular decomposition of Hilbert space, the linear entropy of
the pure state when decomposed over the modes au and a−u, then averages this over all possible two-mode
decompositions that come from rotating the unit vector u. We stress though that this metric is an
entanglement monotone only for pure states. Equation (4.3) provides a mode-decomposition-agnostic
measure of quantumness that is entanglement averaged over easy-to-perform entangling operations. Larger
values of E signify more quantum states. This quantity emerges when looking at symmetric superpositions of
two-mode states: it turns out that they can be entangled or separable, but this property can change after the
Majorana constellation undergoes a rigid rotation. To properly account for this possibility, one can consider
their linear entropy of entanglement averaged over all rotated partitions of the two-mode Hilbert space: the
final result is precisely (4.3).

In figure 6 we calculate this measure for the different states discussed before for various values of S. We
see that RM constellations are more quantum than states of random qubits projected onto the symmetric
subspace, but less quantum than CUE states with random coefficients in the angular momentum basis.
Impressively, the CUE states have ECUE = 2S/(2S+ 2) on average, which is very close to the maximum value
for a single pure state: 2S/(2S+ 1). The lower continuous line in the figure corresponds to the values of E for
CS, which are the least quantum ones.

This confirms the fact that the overwhelming majority of CUE random states are extremely close to the
maximally entangled state [87] and that a significant portion of the RM states are entangled, which seems
very counterintuitive. Moreover, we observe that for many functions defined overHS, the majority of vectors
take a value of the function very close to the average value as S→∞. This observation, collectively, is
referred to as the concentration of measure phenomenon [88].

7
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5. Metrology with random states

We look next at the possibility of sensing rotations using random states. A general rotation is characterized
by three parameters: the two angular coordinates fixing the rotation axis u(Θ,Φ) and the angle ω rotated
around that axis [89]. In the spaceHS the action of this rotation is represented by the operator [90]

R(Ω) = exp(iωS ·u) , (5.1)

where we have used the notationΩ(ω,u) = (ω,Θ,Φ) to denote the three parameters and S is the vector
comprising the three components of the angular momentum; the generators of the algebra su(2).

The restriction of working in a single irrep is reasonable, since maximal precision will be obtained by
concentrating all of the resources into a single subspace corresponding to the average total number of
particles. This is true in the local regime, where prior information about the parameter in question is
known [91], in sharp contrast to the global regime, where minimum error in estimating a completely
unknown parameter requires coherences between irreps [92].

For the time being, we assume the rotation axis u to be known; the task is thus to estimate the rotation
angle ω. A canonical scenario requires ω to be imprinted on a (preferably pure) probe state |ψ⟩, in which the
latter is shifted by applying a rotation R(ω) ∈ SU(2) that encodes the angle ω. A set of measurements is then
performed on the output state |ψω⟩= R(ω)|ψ⟩, with the measurements represented by a positive
operator-valued measure (POVM) [93] {Πx}, where the POVM elements are labeled by an index x (discrete
or continuous) that represents the possible outcomes of the measurement according to Born’s rule
p(x|ω) = ⟨ψω|Πx|ψω⟩. Afterward, what remains is to infer the angle via an estimator ω̂ [94], whose
performance is usually assessed in terms of the variance. The ultimate limit for any possible POVM is given
by the quantum Cramér–Rao bound (QCRB), which reads [33]

Varψ (ω̂)⩾ 1

ν Qψ (ω)
, (5.2)

where ν is the number of independent times the experiment is repeated. To assess the ultimate sensitivity per
experimental trial, we take henceforth ν= 1. Here, Qψ(ω) is the quantum Fisher information (QFI), which
depends exclusively on the initial probe state. We briefly recall that an explicit way to compute Qϱ(ω) is as
Qϱ(ω) = Tr(ϱωL2ω) and Lω is the so-called symmetric logarithmic derivative, defined implicitly via [95–97]

∂ϱω
∂θ

=
1

2
{ϱω,Lω} , (5.3)

and {·, ·} stands for the anticommutator {A,B}= AB+BA. For pure initial states we have the simple result

Qψ (ω) = 4 Varψ (S ·u) . (5.4)

although generalizations to general density matrices are possible [98]. Convexity of the variance is
responsible for a single irrep conferring maximal precision per number of particles. The QFI is thus maximal
for pure states that maximize the variance of the generator S ·u: these are the states |u⟩+ |−u⟩)/

√
2, which

are the rotated versions of the time-honoured NOON states [47], defined as

|NOON⟩= 1√
2
(|S,S⟩+ |S,−S⟩) . (5.5)

One may be interested in a probe state with the best average performance for any u rather than creating a
distinct state for every axis. To this end, we consider the average QFI defined as

Q̄ϱ (ω) =
1

4π

ˆ π

0
dΘ sinΘ

ˆ 2π

0
dΦQϱ (ω) . (5.6)

This average has been used in different issues of quantum information [99]. An exemplary context is
magnetometry, where the magnitude of the magnetic field being sensed can be more important than its
orientation. Then, Q̄ϱ(ω) gives an upper bound on the attainable precision for a quantum state ϱ, if the
direction of the magnetic field is chosen randomly based on a uniform distribution.

The maximum average QFI is achieved by states whose angular momentum projection vanishes in all
directions; i.e.

Tr(ϱωS) = 0 , (5.7)

8
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Figure 7. Average QFI as a function of the spin S. The black (green) dots denote the average value (over 60k trials) of the RM
(CUE) states. The density plot in the back is the number of trials having the corresponding value of the average QFI for RM. The
red lines indicate the maximum and minimum achiveable values of the QFI, corresponding to first-order unpolarized and CS,
respectively.

Figure 8. Average variance for RM (black line), CUE (green line) and King of Quantumness (yellow line) states as a function of
the dimensionless time τ = γt when the system experiences dephasing according to the model in equation (5.8). In all cases,
S= 3. The density plot in the back is the same as in previous plots.

with a maximum value Q̄max =
4
3S(S+ 1). They correspond to first-order unpolarized states (which, among

others, include the NOON states). In this sense, the most sensitive probe states are those whose classical
angular momentum features are hidden [100, 101].

In figure 7 we plot the average Q̄ϱ(ω) for both, RM and CUE states as a function of S. We also include the
extremal values of this quantity, which are for first-order unpolarized and CS, respectively. The random
states always lie in between these two lines, although CUE are closer to optimal. Some of the random states
have QFI close to the maximum values, but most of them are concentrated below its average value.

In view of these results, one might wonder about the usefulness of random states. Intuition suggests that
they should be more robust against imperfections than very fragile entangled states, as is the case for CUE
states with certain types of loss [45]. To confirm this point, let us first consider the case of depolarization. We
use the model devised in [102] for an SU(2)-invariant dephasing, which is appropriate for our case. The time
evolution of the state is given by

ϱ(t) = exp
(
−2γtS2

) ∞∑
n=0

∑
j=x,y,z

(2γt)n

n!
Snj ϱ(0)S

n
j , (5.8)

where γ is a constant determining the strength of the dephasing, which we set to 1 without loss of generality.
The results of the evolution under this dephasing are summarized in figure 8 for the case of S= 3, where we
plot the minimum average variance of the angle estimator ω̂ as a function of the dimensionless time
evolution (that can be easily converted to, e.g. traveled distance), for RM, CUE, and Kings of Quantumness
states. The Kings are the optimal states to sense an arbitrary rotation when quantified by the highest QFI
averaged over all rotations and by the lowest inverse QFI when averaged over all rotations [52], and, as
expected, are very vulnerable to dephasing, and become much worse than the random, not only in their
average values, but for most of their individual trials. Interestingly, RM are more robust than CUE and
similar behavior is observed for other dimensions.

We next examine the case where a photon loss occurs. To analyze this scenario, we employ a simple
SU(2)-invariant model that consists of mapping each state to an incoherent superposition of the states
resulting from the removal of one particle, which in general is a mixed state in the space of spin S− 1

2 . In
other words, we create 2S states by the removal of each one of the creation operators in equation (2.1) and
add them incoherently, to explicitly look at randomMajorana constellations that randomly lose a star; this is
different from mode-agnostic removal of a particle [103] and is more in line with a preparation error where

9
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Figure 9. Average variance for RM (black line), CUE (green line) and King of Quantumness (yellow line) states as a function of S
after losing one particle. The density plot in the back is the same as in previous plots.

one of the inputs is randomly neglected. The results are shown in figure 9, for the same states as in the
previous figure. One can observe that for low S, random states exhibit again a clear advantage over Kings of
Quantumness, albeit it diminishes as S increases.

The measurement saturating the QCRB has been characterized [52], but its experimental
implementation may be challenging. Easier is to project the rotated state onto a set of coherent states for
various directions and to reconstruct the rotation parameters from these measurements. Using the same
basic principles applied to geographical positioning systems (GPS) [104], five projections are sufficient for
this orientation problem, as has been recently demonstrated [105]. This is particularly useful in the context
of random-state metrology, where we seek a single measurement scheme that is useful for all input states;
while it cannot generally attain the averaged QFI, due to the QFI allowing for a different measurement for
each term being averaged over, it can often perform very well, as demonstrated experimentally below.

6. Experimental results

The results of section 5 suggests that random states should perform well in rotation sensing tasks, in systems
with imperfections. Hence, as a last step, we set out to test the suitability of random states for rotation
sensing in the laboratory, where experimental imperfections can never be avoided. In these measurements,
we used multiple different random states in the GPS-like measurement protocol mentioned above.

In our experimental implementation, we used the transverse-spatial degree of freedom of light. More
specifically, we construct our Hilbert spaceHS from a set of Laguerre–Gauss (LG) modes LGp

ℓ, only choosing
modes with a zero radial index p= 0 and orbital angular momentum indices ℓ corresponding to them index
in the standard angular momentum basis |S,m⟩. This is a standard system for probing SU(2) dynamics, even
though it can also be analyzed with classical optics [107]. The beam radius was around 520 µm for the LG
modes used to prepare the probe state. For both RM and CUE states, we follow the generation procedure
described in sections 3 and 4, respectively, and translate the resulting states to our laboratory encoding using
a set of (2S+ 1) LG modes. We then constructed the rotation R(Ω), within this Hilbert space, using a
multiplane light conversion (MPLC) device [108, 109]. For the measurements, Hilbert spaces with
dimensions 5 and 7, corresponding to spins S= 2 and S= 3, respectively, were used.

The experimental setup is shown in figure 10 and can be divided into three distinct parts: probe state
generation, unitary rotation of the probe state, and measurement of the rotated state. We used a CW laser at
roughly 808.4 nm, for all of the measurements. The random probe states were created as coherent
superpositions of the chosen set of LG modes by shaping an initial Gaussian field with an amplitude and
phase modulating mask [110] on a spatial light modulator (SLM, Holoeye Pluto-2). An additional Gaussian
correction was added to the masks [111, 112], and all of the SLMs used in the experiment had an added
phase profile for aberration correction that was retrieved using the method introduced in [113].

In the second part of the experimental setup, an MPLC system, with five phase modulations, transforms
the probe field according to the rotation transformation R(Ω). The phase modulations were performed on a
single SLM, and each pair of consecutive modulations was separated by 800 mm of free-space propagation.
The MPLC device is capable, in principle, of performing an arbitrary unitary mapping between spatial
modes [108, 114].

A set of five phase modulating masks had to be designed, through a process called wavefront
matching [115], for each of the 10 rotation angles [(0,36, . . . ,324) degrees], in both the 5- and
7-dimensional systems. The rotation axis was kept fixed in each dimension. The third and final SLM was
used to measure the rotated probe state by projecting it onto a transverse field structure [106].

10
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Figure 10. A simplified sketch of the experimental system is shown in (a). The initial laser output is split into two using a fiber
beamsplitter with half of its power being directed onto a power meter (PM). The rest is collimated and sent onto the first of three
SLMs. The Gaussian beam coming out of the single-mode fiber (SMF, yellow) is shaped into one of the chosen random states by
the first SLM. The prepared probe state is then sent to the MPLC device that performs a unitary rotation operation R(Ω). After
the MPLC, the rotated probe state is sent to the third SLM to be measured. The third SLM, together with a final single-mode fiber
(SM), perform a projective measurement onto a state by first shaping the phase and amplitude of the beam and then coupling the
first diffraction order of the SLM into the SMF using a 10×microscope objective [106]. Non-magnifying 4f lens systems imaging
each SLM onto the next one are omitted from the figure. The insets correspond to field structures (in color) and phase mask
structures (in gray scale). Colorbars explaining the mode structure and gray-scale colormaps are given in (c). The holographic
measurement mask shown in (a) filters for one of the chosen coherent states in the 5-dimensional Hilbert space. The field
structure insets in (a) show an example of a state with a randomly distributed Majorana constellation for S= 2 and the same
transverse field structure after the rotation unitary. In (b), more examples of states with random constellations are shown, along
with their rotated counterparts. In the sketch of the experiment, the grating terms have been removed from the phase masks of the
unitary and only the field structure at the first-diffraction orders from each phase mask are shown.

To perform the GPS-like measurement mentioned before, we probed each rotated random state |ψΩ⟩ by
projecting it onto a set of five coherent states, as described in detail in [105]. The explicit form of the FI
matrix for this measurement is computed in [52]. Effectively, our measurements produced the quantities

Qn = |⟨n|ψΩ⟩|2 =
P⟨n|ψΩ⟩

P⟨ψΩ|ψΩ⟩

ηψΩ

ηn
, (6.1)

where P⟨n|ψΩ⟩ was the relative power coupled into the final SMF when projecting the rotated random state
|ψΩ⟩ onto the coherent state |n⟩, and P⟨ψΩ|ψΩ⟩ was the power coupled when projecting the rotated random
state onto itself. The efficiencies ηψΩ

and ηn are measured estimates of the state-dependent projection
efficiencies: ηψΩ

is the projection efficiency for the rotated random state measurement mask in question and
similarly ηn is the efficiency of the CS projection.

The projection efficiencies were measured by first shaping the light field to the structure we want to
project on in the generation, the MPLC was made to image the field structures, and the power of the field
was measured both before the last SLM and after the last fiber. The efficiency was then estimated as the
power after the fiber divided by the power before the measurement mask. The power measurements were
normalized by dividing them with the power measured before the first spatial mode manipulation, as shown
in figure 10. This was done to minimize the effects of changes in laser power throughout the measurements.

As mentioned before, the probe states used in the experiment were both RM and CUE states. In our
specific experimental implementation, where transverse spatial modes are used to encode different types of
random states, the primary challenge in preparing, modulating, and measuring the states with minimal
errors arises from the increasing dimensionality of the state space. This difficulty stems from the increasingly
intricate transverse phase and amplitude structures, coupled with the limited resolution of our devices.
Consequently, all types of states can be considered equally challenging to work with, regardless of their
specific nature.

However, since the difficulty of generating states will vary across different systems, it is essential to weight
the ease of generating each type of state against its metrological power. Generally, we anticipate that the more
entangled a state is on average, such as CUE or NOON states, the harder it will be to generate them
accurately. This suggests that RM states may serve as a valuable and powerful alternative.

11



Quantum Sci. Technol. 10 (2025) 015053 A Z Goldberg et al

Figure 11. The dots are the estimated values of the rotation angle ω̂ for the CUE and RM states indicated in the upper labels. The
horizontal axis labels the 100 random states used in each one of the experiments. The rotation axes used are given in
equation (6.2). The true values of ω are 0,36, . . . ,324 degrees and are indicated by horizontal lines.

Figure 12. Statistics of the measurement for the states considered before in figure 11. The error bars represent standard deviations.
The estimation procedure is local: the same states can be used for estimating a wide range of parameter values, but prior
information about those parameters is essential to obtain the sensitivity limits dictated by local estimation theory.

It is important to stress that in our experimental setup there is no need to perform any projection onto
the symmetric subspace, as the states are directly generated inHS. The concept of a symmetric subspace does
not apply here, since ourHS does not originate from 2S qubits.

We performed the rotation measurement with 100 different random states of each type, with ν= 100
repetitions of each relative-power measurement. The rotation axis u(Θ,Φ) was arbitrarily chosen for each
value of S:

u(Θ,Φ) =


Θ= 34.9674◦,Φ = 296.4448◦ S= 2,

Θ= 157.948◦,Φ = 137.361◦ S= 3 .
(6.2)

Three different kinds of generalized maximum likelihood estimators were formed from this data set to verify
the excellent rotational sensitivity of the fiducial states, following standard procedures [116, 117]. The
estimator of the rotated angle ω reads

ω̂ = argmax
ω

5∑
j=1

qj log
Qj∑
j′ Qj′

, (6.3)

where qj is the measured value ofQj = |⟨nj|ψΩ⟩|2. This is equivalent to a quantum measurement where there
are five meaningful outcomes, the measurement is repeated ν times, and the frequency with which each
outcome occurs is proportional to qj. The results appear in figure 11. The estimated values of ω show small
fluctuations around the true values with very small typical standard deviations and negligible biases. The
three cases look very similar.

To check the quality of our estimators, in figure 12 we have plotted the true values of ω versus the
estimated ones. For each estimated point, we have included error bars determined by the corresponding
standard deviation. The agreement emphasizes the excellent performance of the method. Moreover, figure 12
corroborates a unique property of random states: due to their typicality [118], they can unambigously
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Figure 13. Estimated rotation axes for RM with S= 2 (red points) and S= 3 (blue points) using the data from figure 11.

estimate any rotation angle within a 2π range. This is in sharp contrast with other states such as NOON or of
Quantumness that can distinguish angles within a range π/(2S) [80].

Turning the assumptions around, we can take now the set of rotation angles as fixed, while assuming no
prior knowledge of the rotation axis. The orientation of this axis can be estimated globally as follows

û= argmax
u

∑
k

∑
j

qjk log
Qjk∑

k′
∑

j′ Qk′j ′
, (6.4)

where nowQjk = |⟨nj|ψk,Ω⟩|2. This time, there is a bigger set of outcomes: each of the five quantum
measurement outcomes for each of the rotation angles. Using this on the ensemble of 100 input RM states
gives the statistics of inferred axis directions :

û(Θ̂, Φ̂) =


Θ̂ = 35.31◦ ± 4.0◦, Φ̂ = 295.8◦ ± 2.9◦ S= 2,

Θ̂ = 138.4◦ ± 2.9◦, Φ̂ = 157.2◦ ± 3.9◦ S= 3 .
(6.5)

All the target true values are comfortably accommodated within those uncertainty regions. This estimation is
nicely visualized on the sphere S2, as sketched in figure 13. The results for CUE random states are similar,
although a bit less reliable due to experimental difficulties in getting the corresponding data.

These values can be compared with the best possible results respectively for the variances of Θ̂ and Φ̂ for
a single measurement with a CS, which are (albeit for different orientations of CS)

VarCS(Θ̂) = VarCS(Φ̂) =
1

2S
(6.6)

and the variances with Kings of Quantumness

VarKings(Θ̂) =
3

16S(S+ 1) sin2 (ω/2)
,

VarKings(Φ̂) =
3

16S(S+ 1) sin2 (ω/2) sin2Θ
. (6.7)

When performing such a multiparameter estimation, the achievable uncertainties tend to depend on the
actual values of the parameters. This dependence can be removed by choosing an appropriate weight matrix
for combining the covariances of the different parameters: using the metric tensor for the group as the weight
matrix allows all of the results to be independent from the parameter values and the chosen parametrization
[119]. As in [105], such a figure of merit when estimating the angular coordinates of a unit vector is
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Figure 14. Deviation∆ between the true rotation and the estimated rotation for RM states with S= 2 (red) and S= 3 (blue),
determined by the angle of rotation one would require to convert between the true and estimated rotation, as a function of the
angle. The large error bars on the deviations make these results compatible with both quantum advantages (small deviations) and
lack of demonstrated quantum advantages (large deviations); in all cases, the measurement method is demonstrated to be viable
for determining all three parameters of a rotation.

∆2Θ̂+ sin2 Θ̂∆2Φ̂, here 0.00 488 634 and 0.00 257 369, as compared to the best possible values with a single
coherent state of

1

2S

2cosω+ csc2 (ω/2)+ 2

2
√
2sinω+ cosω+ 3

>
0.3758

2S
. (6.8)

Finally, our detection scheme projecting onto five coherent states has a redundancy that makes possible
to estimate simultaneously the axis of rotation and the angle of rotation. This implies maximizing the
objective function

{ω̂, û}= arg max
{ω,u}

5∑
j=1

qj log
Qj∑
j′ Qj′

, (6.9)

which requires global optimization tools [120]. Again, we are using a classical system to simulate a quantum
measurement by taking the frequency of quantum measurement outcomes to be proportional to the relative
power received for each of the five settings, then finding the variances of the maximum likelihood estimators
that we take to be distributed according to the underlying probability distribution for the true parameters.

Errors of the inferred three parameters of the rotations can be quantified by considering the deviation∆
between the true rotation and the estimated rotation, determined by the angle of rotation one would require
to convert between the true and estimated rotation, as∆= argR(−Ω)R(Ω̂), which can be found from the
Hilbert-Schmidt norm as cos∆S+ sin∆S/ tan(∆/2) = Tr[R(−Ω)R(Ω̂)] [105]. This way, we find the
average deviations

∆=


19.3◦ ± 15.2◦ S= 2 ,

18.9◦ ± 15.1◦ S= 3 .
(6.10)

The results are plotted for RM states in figure 14. These can be compared with the best possible results for
measurement with a single CS as a probe state, which can never be used to estimate all three parameters of a
rotation due to CS only depending on two coordinates that define the state’s spin. Comparisons of schemes
that split all of the trials into different subsets that each involve the same respective probe state can be found
in the recent [121]. This allows us to conclude that the high rotational sensitivity of the RM states has been
experimentally verified.

Although in our experiment the rotations have been artificially encoded using an MPLC system, the
coherent-state projections used for the detection offer a range of advantages, including compactness,
versatility, high efficiency, flexibility, and real-time adaptability. As already demonstrated in [105], this
scheme is broad enough to apply to any other rotation-sensing application.

7. Concluding remarks

We have explored randomMajorana constellations that arise as sets of points uniformly distributed on the
sphere S2. The concept of state multipoles, intimately linked with the inherent SU(2) symmetry, has served
as our main diagnostic tool to capture the amazing properties of these states. Additionally, these multipoles
are sensible and experimentally-realizable quantities.
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The family of symmetric states contains many metrologically useful states, including GHZ, NOON, and
Dicke states, among others. However, all of them are extremely fragile resources. In contradistinction,
randomMajorana states, from their very same definition, are robust against imperfections such as dephasing
and particle losses.

We have experimentally demonstrated the usefulness of these random constellations in protocols of
quantum metrology. Apart from their incontestable geometrical beauty, there surely is plenty of room for the
application of these states in a variety of physical contexts.
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[31] Życzkowski K and Kús M 1994 Random unitary matrices J. Phys. A: Math. Gen. 27 4235
[32] Mielnik B 1968 Geometry of quantum states Commun. Math. Phys. 9 55
[33] Braunstein S L and Caves C M 1994 Statistical distance and the geometry of quantum states Phys. Rev. Lett. 72 3439
[34] Nielsen M A, Dowling M R, Gu M and Doherty A C 2006 Quantum computation as geometry Science 311 1133
[35] Goldberg A Z, Klimov A B, Grassl M, Leuchs G and Sánchez-Soto L L 2020 Extremal quantum states AVS Quantum Sci. 2 044701
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