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Abstract We construct a two-tensor model with order-3
and present its W -representation. Moreover we derive the
compact expressions of correlators from theW -representation
and analyze the free energy in large N limit. In addition,
we establish the correspondence between two colored Dyck
walks in the Fredkin spin chain and tree operators in the ring.
Based on the classification Dyck walks, we give the number
of tree operators with the given level. Furthermore, we show
the entanglement scaling of Fredkin spin chain beyond log-
arithmic scaling in the ordinary critical systems from the
viewpoint of tensor model.

1 Introduction

Matrix models can be associated with discretized random
surfaces and 2D quantum gravity [1]. For the perturbative
series of matrix models, one can rewrite them as a series
in 1/N indexed by the genus, where N is the size of the
matrix. At leading order, the ordinary topological expansion
of matrix models dominated by planar graphs. This limit has
been widely studied and has led to a plethora of results, in
particular their continuum limit and integrability. As the gen-
eralizations of matrix models from matrices to tensors, ten-
sor models were originally introduced to describe the higher
dimensional quantum gravity [2–4]. The 1/N expansion for
colored tensor models was identified in [5–8], where col-
ored tensors are tensors with no further tensorial symmetry
assumed (and an additional flavor index called color). It was
shown that tensor models admit a specific kind of large N
limit, the so-called melonic limit [5–10]. In this limit, the
dominant melonic graphs are built recursively by two-point
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insertions on an initial two-point diagram. Much progress has
been made in recent years on colored tensor models, which
has stimulated other fields. For instance, the existence of 1/N
expansion for tensor has triggered a series of investigations
on the renormalization group analysis of the quantum field
theoretic counterpart of tensor models, i.e. tensor field theory
[11–14]. Importantly, it was shown that in specific instances,
these quantum field models are asymptotically free [15–17].
Concerning the large N expansion of tensor models, it turns
out that coloration was not a prerequisite for the discovery of
such an expansion: Gurau [18] proposed a new approach to
the 1/N expansion adapted to symmetric (and antisymmet-
ric) tensors. It was proved that a tensor model with two sym-
metric tensors and interactions the complete graph admits a
1/N expansion. Moreover, for the symmetric traceless and
the antisymmetric tensor models in rank-3 with tetrahedral
interaction, it was found that they admit a 1/N expansion
[19]. Universally, at leading order, all these models are dom-
inated by melonic diagrams.

Tensor models have found also intriguing connections
with gauge-string duality. By applying permutation TFT
methods, Ben Geloun and Ramgoolam [20] counted gauge
invariants for tensor models and obtained some formulae for
correlators of the tensor model invariants. Furthermore, they
showed that the counting of observables and correlators for a
3-index tensor model are organized by the structure of a fam-
ily of permutation centralizer algebras [21]. Collective field
theory provides a systematic construction of the dynamics
of invariant observables of the theory. It has been applied in
the analysis of tensor models, such as the large N dynam-
ics of the boson tensor model quantum mechanics [22] and
holographic duals of tensor models [23]. Rainbow tensor
model which has gauge symmetryU (N1)

⊗ · · · ⊗U (Nr ) is
a direct generalization of rectangular complex matrix model
with rectangular matrix substituted by a complex-valued ten-
sor of rank-r [24–27]. In rainbow tensor model, all the pla-
nar diagrams are automatically melonic. Once again, just as
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any tensor models with no symmetry assumed between the
tensor indices, melonic graphs are dominant in the large N
limit of rainbow tensor models. The simplest rainbow ten-
sor model is the Aristotelian RGB (red-green-blue) model
with a single complex tensor of rank-3 and the RGB sym-
metry U (N1)

⊗
U (N2)

⊗
U (N3). With the example of the

Aristotelian RGB model, Itoyama et al. [24] introduced a
few methods which allow one to connect calculations in the
tensor models to those in the matrix models. Furthermore,
it was found that there are some new factorization formulas
and sum rules for the Gaussian correlators in the Hermitian
and complex matrix theories, square and rectangular.

W -representation of matrix model was proposed by Moro-
zov and Shakirov for the realization of partition function by
acting on elementary functions with exponents of the given
W -operator [28]. The superintegrable matrix models can be
analyzed from the viewpoint of W -representations [29–34].
The progress has been made on W -representations of tensor
models. As was expected, the Gaussian tensor model with
Gaussian action can be realized by theW -representation [35].
Moreover, from its character expansion with respect to the
Schur functions, it turned out that this model is superinte-
grable. The W -representation of rainbow tensor model has
been investigated [36,37]. In this paper, we will make a step
towards the W -representation of a two-tensor model with
order-3,1,2 and analyze the correlators and free energy.

This paper is organized as follows. In Sect. 2, we give the
keystone operators and construct a graded ring with tree and
loop operators. The kernel and cokernel of the cut-and-join
structure in the graded ring are investigated. Then we estab-
lish the correspondence between two colored Dyck walks in
the Fredkin spin chain and tree operators. Based on the clas-
sification Dyck walks, we present the number of tree oper-
ators with the given level. Moreover for the entanglement
entropy of the Fredkin spin chain, we show the entangle-
ment scaling beyond logarithmic scaling in the ordinary crit-
ical systems from the viewpoint of tensor model. In Sect. 3,
we construct a two-tensor model with order-3 and present
its W -representation. In terms of the W -representation, we
derive the compact expression of correlators. Using the col-
lective field, we also calculate the correlators. Furthermore
we discuss the free energy and its large N limit. We end this
paper with the conclusions in Sect. 4. We list some results of
cut operation � and kernel in the Appendix.

1 Here we use “order” instead of “rank” since the rank of a tensor is
defined by the minimal number of tensors of order 1 required to express
a tensor as a sum of such tensors.
2 The two-tensor model that we deal with can be seen as the two-tensor
extension associated with “uncolored” tensor model defined in [38].

2 The graded ring of gauge-invariant operators

2.1 Gauge invariants and cut-join operators

Let us consider the tensor fields A j1, j2
i and B j1, j2

i with order-
3 which transform in the fundamental of G = U (N1) ×
U (N2) × U (N3), where i = 1, . . . , N1, j1 = 1, . . . , N2

and j2 = 1, . . . , N3. We denoteVk the vector space carrying a
copy of the fundamental representation of U (Nk). The fields
transforming in the fundamental of G = U (N1) ×U (N2) ×
U (N3) belong to V1 × V2 × V3. To build gauge invariants,
we introduce the conjugate tensor fields that transform in
the anti-fundamental, denoted Āi

j1, j2
and B̄i

j1, j2
. Then the

gauge invariants with level-(n+m) are given by contracting
corresponding upper and lower indices, denoted formally as
[20,22]

T (n,m)

σ̌
≡ T (n,m)

(σ1,σ2,σ3)
= AJ1,J2

I · (σ1, σ2, σ3) · ĀI
J1,J2

= AJ1,J2
I Āσ1(I )

σ2(J1),σ3(J2)
, (2.1)

where n and m are non-negative integers satisfying n +m �
1, and the action σ̌ ≡ (σ1, σ2, σ3) ∈ Sn+m × Sn+m × Hn,m

acts independently on three indices of ĀI
J1,J2

, where Sn+m

is the permutation group, and Hn,m ≡ Sn × Sm is a sub-
group of Sn+m . The sleek notation uses the capital Roman
letters I, J1, J2 to collect all of the little Roman let-
ter indices, for example I stands for i (1), i (2), . . . , i (n+m).
Repeated indices are summed over in (2.1) and the following
text. AJ1,J2

I , ĀI
J1,J2

and Āσ1(I )
σ2(J1),σ3(J2)

are given by

AJ1,J2
I = A

j (1)
1 , j (1)

2
i (1) · · · A j (n)

1 , j (n)
2

i (n) B
j (n+1)
1 , j (n+1)

2
i (n+1)

· · · B j (n+m)
1 , j (n+m)

2
i (n+m) ,

ĀI
J1,J2

= Āi (1)

j (1)
1 , j (1)

2
· · · Āi (n)

j (n)
1 , j (n)

2
B̄i (n+1)

j (n+1)
1 , j (n+1)

2

· · · B̄i (n+m)

j (n+m)
1 , j (n+m)

2
,

Āσ1(I )
σ2(J1),σ3(J2)

= (σ1, σ2, σ3) · ĀI
J1,J2

= Āiσ1(1)

j
σ2(1)

1 , j
σ3(1)

2

· · · Āiσ1(n)

j
σ2(n)

1 , j
σ3(n)

2

B̄iσ1(n+1)

j
σ2(n+1)

1 , j
σ3(n+1)

2

· · · B̄iσ1(n+m)

j
σ2(n+m)

1 , j
σ3(n+m)

2

.

(2.2)

Here we denote σ1(I ) = (iσ1(1), . . . , iσ1(n+m)) and simi-
larly for σ2(J1) and σ3(J2). Note that T (0,m)

σ̌
and T (n,0)

σ̌
are

exactly the gauge invariants in Aristotelian RGB model [24].
Since σ3 ∈ Sn × Sm , we actually focus on a subset of gauge
invariants with all possible contractions where

(i) for A j1, j2
i and B̄i ′

j ′1, j ′2
(or B

j ′1, j ′2
i ′ and Āi

j1, j2
), we do not

contract the indices j2 and j ′2;
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(ii) no contractions are possible for A j1, j2
i and B

j ′1, j ′2
i ′ (and

Āi
j1, j2

and B̄i ′
j ′1, j ′2

).

As done in [24], let us take the following six operators as
the so-called keystone operators

T (2,0)
((12),id,id) = A

j (1)
1 , j (1)

2
i (1) Āi (2)

j (1)
1 , j (1)

2
A
j (2)
1 , j (2)

2
i (2) Āi (1)

j (2)
1 , j (2)

2
,

T (2,0)
(id,(12),id) = A

j (1)
1 , j (1)

2
i (1) Āi (1)

j (2)
1 , j (1)

2
A
j (2)
1 , j (2)

2
i (2) Āi (2)

j (1)
1 , j (2)

2
,

T (0,2)
((12),id,id) = B

j (1)
1 , j (1)

2
i (1) B̄i (2)

j (1)
1 , j (1)

2
B

j (2)
1 , j (2)

2
i (2) B̄i (1)

j (2)
1 , j (2)

2
,

T (0,2)
(id,(12),id) = B

j (1)
1 , j (1)

2
i (1) B̄i (1)

j (2)
1 , j (1)

2
B

j (2)
1 , j (2)

2
i (2) B̄i (2)

j (1)
1 , j (2)

2
,

T (1,1)
((12),id,id) = A

j (1)
1 , j (1)

2
i (1) Āi (2)

j (1)
1 , j (1)

2
B

j (2)
1 , j (2)

2
i (2) B̄i (1)

j (2)
1 , j (2)

2
,

T (1,1)
(id,(12),id) = A

j (1)
1 , j (1)

2
i (1) Āi (1)

j (2)
1 , j (1)

2
B

j (2)
1 , j (2)

2
i (2) B̄i (2)

j (1)
1 , j (2)

2
. (2.3)

Since T (n,m)

σ̌
with the different σ1, σ2 and σ3 may give the

same gauge invariant, we need not discuss the case of a non
id permutation on the third slot.

For the gauge-invariant operator T (a,b)
α̌

, α̌ is a permutation

abouta+b elements, anda+b is the level ofT (a,b)
α̌

, we denote
level(α̌) = a+b. Let us introduce the cut and join operations
on the gauge-invariant operatorT (a,b)

α̌
as follows. The actions

of the cut operations on the gauge-invariant operator T (a,b)
α̌

are

�T (a,b)
α̌

=
N1∑

i=1

N2∑

j1=1

N3∑

j2=1

∂2T (a,b)
α̌

∂A j1, j2
i ∂ Āi

j1, j2

=
3∑

k=1

∑

a1+···+ak+1=a
b1+···+bk=b

asps1≤a2≤···≤ak

∑

β̌1,...,β̌k

�
(a,b),(a1,b1),...,(ak ,bk )
α̌,β̌1,...,β̌k

T (a1,b1)

β̌1

· · ·T (ak ,bk )
β̌k

, a + b � 2,

�̃T (a,b)
α̌

=
N1∑

i=1

N2∑

j1=1

N3∑

j2=1

∂2T (a,b)
α̌

∂B j1, j2
i ∂ B̄i

j1, j2

=
3∑

k=1

∑

a1+···+ak=a
b1+···+bk+1=b
bsps1≤b2≤···≤bk

∑

γ1,...,γk

�̃
(a,b),(a1,b1),...,(ak ,bk )
α̌,γ̌1,...,γ̌k

T (a1,b1)

γ̌1

· · ·T (ak ,bk )
γ̌k

, a + b � 2, (2.4)

where level(β̌i ) = ai + bi (i = 1, . . . , k), level(γ̌ j ) = a j +
b j ( j=1,. . . ,k),�(a,b),(a1,b1),...,(ak ,bk)

α̌,β̌1,...,β̌k
and �̃

(a,b),(a1,b1),...,(ak ,bk )
α̌,γ̌1,...,γ̌k

are polynomials in Ni with integer coefficients (see examples
in (A.1)).

The actions of the join operations on the gauge-invariant
operator T (a,b)

α̌
and T (c,d)

β̌
are

{
T (a,b)

α̌
, T (c,d)

β̌

}

A
=

N1∑

i=1

N2∑

j1=1

N3∑

j2=1

∂T (a,b)
α̌

∂A j1, j2
i

∂T (c,d)

β̌

∂ Āi
j1, j2

=
∑

γ̌ | level(γ̌ )=a+b+c+d−1

�
(a,b),(c,d),(a+c−1,b+d)

α̌,β̌,γ̌

×T (a+c−1,b+d)

γ̌
,

{
T (a,b)

α̌
, T (c,d)

β̌

}

B
=

N1∑

i=1

N2∑

j1=1

N3∑

j2=1

∂T (a,b)
α̌

∂B j1, j2
i

∂T (c,d)

β̌

∂ B̄i
j1, j2

=
∑

σ̌ | level(σ̌ )=a+b+c+d−1

�̃
(a,b),(c,d),(a+c−1,b+d)

α̌,β̌,σ̌

×T (a+c−1,b+d)

σ̌
,

(2.5)

where �
(a,b),(c,d),(a+c−1,b+d)

α̌,β̌,γ̌
and �̃

(a,b),(c,d),(a+c−1,b+d)

α̌,β̌,σ̌

are integer coefficients (see examples in Table 1). Here for
clarity of classifying and generating structure of the gauge
invariants, the cut and join operations (2.4) and (2.5) involve
only A and Ā, or B and B̄, and do not contain A and B̄, or
B and Ā.

To draw the graph associated to the gauge invariants, we
represent every tensor field by a white vertex and its con-
jugation by a black vertex. We promote the position of an
index to a color: i has color 1, j1 has color 2 and j2 has color
3. Lines inherit the color of the index, and always connect
a black and a white vertex. The direction of arrow depends
on the choice of covariant and contravariant indices, which
is from the tensor field to its conjugate. The gauge invariants
T (n,m)

((12···m),id,id) and T (n,m)
(id,(12···m),id) with given length-(n +m)

can be depicted as (n + m) indexed circles “I” and “II”,
respectively (see Fig. 1).

By means of the keystone operators (2.3), we may con-
struct a graded ring S with tree and loop operators, where S
is generated by the keystone operators with addition, multi-
plication, cut and join operations. S = ∑∞

l=1 Sl , where Sl
consists of the gauge invariants with level l. Note that for the
tree and loop operators, they have the similar construction
rules with the Aristotelian tensor model. We use the black
dotted lines to represent the Feynman propagators.

The tree operators made from (2.3) alone are constructed
by merging two vertices in two concentric circles (propa-
gators) of the same color (see Fig. 2a and b). When tree
operators involve chains with both circles I and II, they can
be constructed by merging two vertices of two circles (prop-
agators) of different index (see Fig. 2c and d).

The loop operators made from (2.3) alone are constructed
by merging two vertices inside circles (propagators) (see
Fig. 3a and b). When loop operators involve both circles
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Fig. 1 Circles I and II

Fig. 2 Tree operators

I and II, they are either the I–II cycles with the intersect-
ing shortcuts of color 3 or several such I–II cycles with the
shortcuts connected by lines of color 3 (see Fig. 3c and d),
which are constructed by merging two vertices in two circles
(propagators) of two different indexes.

Note that I–II cycles form a circle with length-(n + m)

divided into segments through the arrow line of color 3 (see
Figs. 2c, d and 3c, d). The segments can be drawn as lines
labeled “I” or “II” with length-(n′+m′), and n′ ≤ n,m′ ≤ m
(see Fig. 4).

As done in Ref. [24], if we consider merging two vertices
in two segments I and II, then it leads to emerging of two
new inter-propagator vertices connected by a arrow line of
color 3. Pictorially:

(2.6)

2.2 Counting gauge-invariant operators

Let us focus on the gauge invariants T (n,m)

σ̌
with fixed pos-

itive integers n, m in the graded ring S. Hn,m acts on the
left on AJ1,J2

I by simply swapping the tensors A among
themselves and the tensors B among themselves. Similarly,
Hn,m acts on the right on ĀI

J1,J2
by swapping the tensors Ā

among themselves and the tensors B̄ among themselves. Let
h1, h2 ∈ Hn,m , thus

AJ1,J2
I · (σ1, σ2, σ3) · ĀI

J1,J2

= (AJ1,J2
I · h1) · (σ1, σ2, σ3) · (h2 · ĀI

J1,J2
)

= T (n,m)
(h1σ1h2, h1σ2h2, h1σ3h2)

. (2.7)

123



Eur. Phys. J. C           (2024) 84:239 Page 5 of 19   239 

Fig. 3 Loop operators

We see that T (n,m)

σ̌
and T (n,m)

(h1σ1h2, h1σ2h2, h1σ3h2)
are indeed the

same gauge-invariant operator. It implies that σi , i = 1, 2, 3,
inT (n,m)

σ̌
are characterized by the double coset Hn,m\Sn+m×

Sn+m × Hn,m/Hn,m [20,21].
For a permutation p in Sl , the size of conjugacy class

|Tp| is given by |Tp| = l!
Syml (p)

, where Syml(p) =
∏N

i=1(i
pi )(pi !) is the number of elements of Sl commuting

with any permutation in the conjugacy class Tp, and pi gives
the number of cycles of size i in p. Let us take h2 = gk,
where g ∈ Sn , k ∈ Sm . By Burnside’s Lemma, the number
of elements in this double coset is

|Hn,m \ Sn+m × Sn+m × Hn,m/Hn,m |
= 1

|Hn,m |2
∑

h1,h2,σ3∈Hn,m

∑

σ1,σ2∈Sn+m

δ(h1σ1h2σ
−1
1 )

×δ(h1σ2h2σ
−1
2 )δ(h1σ3h2σ

−1
3 )

= 1

|Hn,m |2
∑

h2∈Hn,m

n!
Symn(g)

· m!
Symm(k)

·(Symn+m(h2))
2 · Symn(g) · Symm(k)

= 1

|Hn,m |
∑

h∈Hn,m

(Symn+m(h))2. (2.8)

For the given h2 and h1 in Th2 in the second line of (2.8),
δ(h1σi h2σ

−1
i ), i = 1, 2 constraints σi to be the permutations

in Sn+m commuting with any permutation in Th2 , which is
exactly Symn+m(h2). δ(h1σ3h2σ

−1
3 ) limits the sum over σ3

to select only the permutations which commute with any
element of the conjugacy class of h2 seen as an element of
Sn × Sm . This yields Symn(g)Symm(k).

For example, when n = m = 1, H1,1 only contains
the identity mapping id = (1)(2), and Sym1+1(id) =
Sym2(id) = 12 · 2! = 2, then

|H1,1 \ S2 × S2 × H1,1/H1,1| = (Sym1+1(id))2 = 22 = 4.

(2.9)

Fig. 4 Propagators

Table 1 Examples with different n and m

n m |Hn,m | |Hn,m\Sn+m × Sn+m × Hn,m/Hn,m |
1 3 6 107

1 4 24 660

2 2 4 168

2 3 12 1276

3 3 36 16084

For the case of n = 1 and m = 2, H1,2 = {id =
(1)(2)(3), (1)(23)} in (2.8), then Sym1+2(id) = Sym3(id) =
13 · 3! = 6, Sym1+2((1)(23)) = Sym3((1)(23)) = 11 · 21 ·
1! · 1! = 2, we have

|H1,2 \ S3 × S3 × H1,2/H1,2|
= 1

2
((Sym1+2(id))2 + (Sym1+2((1)(23)))2)

= 1

2
(62 + 22) = 20. (2.10)

Let us list more examples in Table 1.
We draw the operators of the cases (2.9) and (2.10) in

Figs. 5 and 6, respectively.
Thus the number of independent operators at each level-l

is


l =
l−1∑

n=1

1

|Hn,l−n|
∑

h∈Hn,l−n

(Syml(h))2 + 2
∑

p�l
Syml(p),

(2.11)
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Fig. 5 Four operators in the case of n = 1 and m = 1 in (2.9). White dots correspond to tensor fields A j1, j2
i and B j1, j2

i , black dots to Āi
j1, j2

and

B̄i
j1, j2

; lines of colors 1, 2 and 3 represent the contracting i , j1 and j2 indices, respectively

Fig. 6 Twenty operators in the case of n = 1 and m = 2 in (2.10)

where the second sum below over p is performed over all
partitions of l [26]. From the following relation between dis-
connected operators and connected operators,

η(q) = 1 +
∞∑

l=1


lq
l = PE(ηconn(q)) = PE

( ∞∑

l=1


connl ql
)

=
∞∏

l=1

1

(1 − ql)

conn
l

, (2.12)

the number 
connl can be read off from the plethystic logarithm

PLog((η(q))) =
∞∑

l=1


connl ql =
∞∑

m=1

μ(m)

m
log η(qm),

(2.13)

where μ(m) is the Möbius function

μ(m)=
⎧
⎨

⎩

0, m has at least one repeated prime factor,
1, m = 1,

(−1)n,m is a product of n distinct primes.

(2.14)
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2.3 Cut and join structure

Let us now discuss the kernel and cokernel of the cut-and-
join structure in the ring S. Due to the symmetry of � and �̃

(or {, }A and {, }B), we only focus on the cases � and {, }A
here.

Since � maps all the operators at level-(n + m) to those
at level-(n + m − 1), � inevitably has a kernel [26]
Ker(�) = {T (n,m)

σ̌
∈ Sn+m |�(T (n,m)

σ̌
) = 0} ∈ Sn+m,

(2.15)

whereSn+m denotes the grading n+m part of the ringS. Due
to the cokernel, there are many operators which are not the
descendants produced only by join operation of keystones.
It prevents the direct construction of the non-perturbed RG-
complete partition function.

In what follows, we take the rings S2 and S3 as
examples. In the ring S2, there are three disconnected
gauge-invariant operators (T (1,0)

(id,id,id))
2, T (1,0)

(id,id,id)T
(0,1)

(id,id,id),

T (0,1)
(id,id,id)T

(0,1)
(id,id,id) and nine connected gauge-invariant oper-

ators T (2,0)
((12),id,id), T (0,2)

((12),id,id), T (2,0)
(id,(12),id), T (2,0)

(id,id,(12)),

T (2,0)
(id,id,(12)),T

(0,2)
(id,id,(12)),T

(1,1)
((12),id,id),T

(1,1)
(id,(12),id),T

(1,1)
((12),(12),id).

The cut operation � takes operators from S2 to level-1 oper-
ators T (1,0)

(id,id,id) and T (0,1)
(id,id,id). In this case, through calcula-

tions we know that � has a kernel (of codimension two) with
dimension ten

ker(2)(�) = span{T (0,2)
((12),id,id), T

(0,2)
(id,(12),id),

T (0,2)
(id,id,(12)), T

(0,1)
(id,id,id)T

(0,1)
(id,id,id),

(β + 1)T (2,0)
((12),id,id) − α(T (1,0)

(id,id,id))
2,

(β + 1)T (2,0)
(id,(12),id) − α̃(T (1,0)

(id,id,id))
2,

(β + 1)T (2,0)
(id,id,(12)) − α̂(T (1,0)

(id,id,id))
2,

N2N3T (1,1)
((12),(12),id) − N3T (1,1)

((12),id,id),

N1N3T (1,1)
((12),(12),id) − N3T (1,1)

(id,(12),id),

βT (1,1)
((12),(12),id) − N3T (1,0)

(id,id,id)T
(0,1)

(id,id,id)}, (2.16)

where α = N1 + N2N3, β = N1N2N3, α̃ = N2 + N1N3 and
α̂ = N3 + N1N2.

In the following discussion, we omit the operators involv-
ing only field B and B̄, since they are obviously included
in kernel. Thus in S3, we only consider the gauge-invariant
operators T (3,0)

((123),(132),id), T (2,1)
((123),(132),id) and the level-3

operators produced by join operation {, }A (see Table 2).
The cut operation � acting on the above level-3 gauge-

invariant operators are listed in (A.1). Then we can give the
kernel ker(3)(�) with dimension 29 (see (A.2)) and cokernel
as follows

Coker(3)({, }A) = span{T (3,0)
((123),(132),id), T

(2,1)
((123),(132),id)}.

(2.17)

2.4 Join operators and Fredkin spin chain

The Fredkin spin chain [39,40] is a spin chain of length-2n,
where up and down spin degrees of freedom with multiplicity
(called as color) s are assigned at each of the lattice sites
{1, 2, . . . , 2n}. There is the connection between the Fredkin
spin chain and large N matrix models [41]. The Hamiltonian
of Fredkin spin chain is

HF,s = 1

2

2n−2∑

j=1

s∑

k1,k2,k3=1

{

(|uk1
j , uk2

j+1, d
k3
j+2〉

−|uk1
j , dk2

j+1, u
k3
j+2〉)(〈uk1

j , uk2
j+1, d

k3
j+2|

−〈uk1
j , dk2

j+1, u
k3
j+2|) + (|uk1

j , dk2
j+1, d

k3
j+2〉

−|dk1
j , uk2

j+1, d
k3
j+2〉)(〈uk1

j , dk2
j+1, d

k3
j+2|

−〈dk1
j , uk2

j+1, d
k3
j+2|)

}

+
2n−1∑

j=1

∑

k 
=l

{

|ukj , dlj+1〉〈ukj , dlj+1|

+1

2
(|ukj , dkj+1〉 − |ulj , dlj+1〉)

×(〈ukj , dkj+1| − 〈ulj , dlj+1|)
}

+
s∑

k=1

{|dk1 〉〈dk1 | + |uk2n〉〈uk2n|}, (2.18)

where we express the up- and down-spin states with color k ∈
{1, 2, . . . , s} at the site i as |uki 〉 and |dki 〉, respectively. For
the von Neumann entropy of the Fredkin model, it shows a
square-root violation of the area law, and the scaling behavior
of the first gap [39].

In this paper, we only focus on the case of s = 2
in (2.18). Thus the up- and down-spin states can be rep-
resented as arrows with color degrees of freedom in the
two-dimensional (x, y)-plane pointing to (1, 1) (up-step)
and (−1,−1) (down-step), respectively. For the Hamiltonian
(2.18), it has a unique ground state at zero energy, which is
superposition of spin configurations with equal weight. Each
spin configuration appearing in the superposition is identi-
fied with each path of length-2n Dyck walks. For the Dyck
walks, they are random walks starting at the origin, ending
at (2n, 0) and restricted to the region y � 0. Furthermore
the color of each up-step should be matched with that of the
down-step subsequently appearing at the same height.

The ground state of the Fredkin spin chain is given by

|PF,2n,2〉 = 1
√
NF,2n,2

∑

ω∈PF,2n,2

|ω〉, (2.19)

where PF,2n,2 denotes the formal sum of length-2n colored
Dyck walks, ω runs over monomials appearing in PF,2n,2,
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Table 2 Level-3 operators produced by join operation { , }A

and NF,2n,2 counts the number of the length-2n colored Dyck
walks

NF,2n,2 = 2nNF,2n = 2n

n + 1

(
2n

n

)

, (2.20)

where NF,2n denotes the n-th Catalan number.
Let us take n = 2 as an example, we have NF,4,2 = 8 and

|PF,2n,2〉 = 1

2
√

2
(|u1d1u2d2〉 + |u2d2u1d1〉

+|u1u2d2d1〉 + |u2u1d1d2〉). (2.21)

The four states of the summand can be drawn as the colored
Dyck walks (see Fig. 7).

In the previous subsection, we have presented the tree
operators which are constructed by the keystone opera-
tors through the join operation. Since the gauge invari-
ants T (n,m)

σ̌
with fixed positive integers n,m constitute the

double coset Hn,m \ Sn+m × Sn+m × Hn,m/Hn,m , there is
σ̌ ∼= (h1σ1h2, h1σ2h2, h1σ3h2), where h1, h2 ∈ Hn,m . If
there exist h1, h2 such that h1σ1h2 = id and h1σ2h2 is in
the conjugacy class of (1, 2, . . . , n +m), we obtain the con-
jugacy class in which the Feynman diagrams are I–II cycles
with shortcuts of color 3. When the shortcuts are disjoint, the
Feynman diagrams represent the tree operators (see Fig. 2c,
d).

Let us now establish the correspondence between two col-
ored Dyck walks with length-2(n+m) in Fredkin spin chain
and tree operators. By cutting tree operators from lines of
color 2, it gives a I or II segment with elements connected

by disjoint lines of color 3, where each line of color 3 may
correspond a up- and down-step. If the line of color 3 con-
nects A and Ā, we paint the step with purple, otherwise with
yellow. We make the correspondence rule as follows:

(i) For the tree operators with rotational symmetry, we cut
the fundamental domain of Feynman diagrams. For exam-
ple, the Feynman diagram of T (2,2)

((1324),id,id) has 2-fold rotation
symmetry. Thus we only need to cut two lines color 2 con-
necting A and Ā, B and B̄, respectively (see left-hand side of
Fig. 8). The segments I and II are shown in the middle parts
of Fig. 8. Each line of color 3 in chains corresponds a up-
and down-step in Dyck walks (see right-hand side of Fig. 8).

(ii) For the tree operators without rotational symmetry,
we cut them from each line of color 1 or 2 (see examples in
Figs. 9 and 10).

Here for the rotational symmetry of tree operators T (n,m)

σ̌
,

it means that there exist the disjoint d-cycles ω1, . . . , ω j ,
(d × j = n + m), such that the following relations hold

T (n,m)

(ω1ω2···ω j�σ1�(ω1ω2···ω j )
−1,ω1ω2···ω j�σ2�(ω1ω2···ω j )

−1,ω1ω2···ω j�σ3�(ω1ω2···ω j )
−1)

= T (n,m)

σ̌
, (2.22)

where the symbol “�” represents the composition of maps.
Then we call the maximum value of d the fold of rotational
symmetry of T (n,m)

σ̌
.

From such correspondence, we see that NF,2(n+m),2

counts the weight n+m
r of tree operators with level-(m + n),

where r denotes the fold of rotational symmetry,

NF,2(n+m),2 = 2(n+m)NF,2(n+m) = 2n+m

n + m + 1

(
2(n + m)

n + m

)

=

treen+m∑

i=1

(
weight of tree operator T (n,m)

α̌i

)
.

(2.23)

123
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Fig. 7 Colored Dyck walks in
the summand of (2.21)

Fig. 8 Correspondence between T (2,2)
((1324),id,id) and length-8 Dyck walks

Fig. 9 Correspondence between T (1,0)
(id,id,id), T

(0,1)
(id,id,id) and length-2 Dyck walks

Fig. 10 Correspondence
between T (1,1)

(id,(12),id), T
(1,1)
((12),id,id)

and length-4 Dyck walks
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Then from (2.23), we obtain a partition (n1, n2, . . . , n
treen+m
)

of NF,2(n+m),2, where 
treen+m denotes the number of tree oper-
ators with level-(n + m = l). This partition gives a classi-
fication of length-2(n + m) Dyck walks. Let us number the
steps of Dyck walks. Then we move the first two steps to the
back in turn and remain the matching relation (see examples
in Fig. 11). By repeating the process above, we may obtain
all Dyck walks belonging the same class, i.e., corresponding
to the same tree operator cutted from different lines of color
2.

Based on the classification Dyck walks, it is easy to give
the number of tree operators with level-l


treel = NF,2l,2+∑l−1
i=1

∑
r
r−1
r llr +2[2(l − 1)+∑

q
q−1
q llq ]

l
,

(2.24)

where r is the common factor of i and l − i , q is the factor
of l, lr and lq count the number of Dyck walks with length r
and q, respectively.

Since the number of connected operators with level-l,

connl , can be calculated from (2.12), we have the number of

connected loop operators with level-l, 

loop
l = 
connl − 
treel .

To divide the cutted Feynman diagram into two parts, we
draw a vertical line passing the cutted line. It gives (n +
m − r) and (n + m + r) fields in the left and right parts,
respectively. Thus the corresponding two colored Dyck walks
are divided into two subsystems, A with (n +m − r), and B
with (n+m+r) spins, respectively. The spin configurations
in subsystem A correspond to a part of colored Dyck paths
from the origin to (n +m + r, h) in the (x, y)-plane, and the
spin configurations in subsystem B correspond to the paths
from (n + m + r, h) to (2(n + m), 0). The part of A has h
unmatched up-steps that are supposed to be matched across
the boundary with h unmatched down-steps in the part of

B. For example, the cutted Feynman diagrams of T (1,1)
((12),id,id)

correspond to the Dyck walks of n = m = 1, r = 0 and
h = 2 (see Fig. 12).

Let us denote the number of the paths in subsystem A
as N (0→h)

F,n+m+r,2, and the number of the paths in subsys-

tem B as N (h→0)
F,n+m−r,2. The correspondence implies that,

N (0→h)
F,n+m+r,2N

(h→0)
F,n+m−r,2 counts the number of cutted Feyn-

man diagrams with h intersection points of the vertical line
and lines of color 3, where

N (0→h)
F,n+m+r,2 = N (h→0)

F,n+m−r,2 = 2ρN (h)
F,n+m+r

=
{

2ρ h+1
ρ+1

(n+m+r
ρ

)
, ρ ∈ N,

0, otherwise.
(2.25)

The entanglement entropy of the quantum system divided
into two systems is given by

sF,A = −
n+m−|r |∑

h=0

2h p(h)
F,n+m+r,n+m−r,2 ln p(h)

F,n+m+r,n+m−r,2,

(2.26)

where

p(h)
F,n+m+r,n+m−r,2 = 2−2h

N (0→h)
F,n+m+r,2N

(h→0)
F,n+m−r,2

NF,2(n+m),2
. (2.27)

For the entanglement entropy of the Fredkin spin chain, it
exhibits a nonlogarithmic violation of the area law, which is
beyond logarithmic scaling in the ordinary critical systems
[39].

The ratio (2.27) plays an important role in the entan-
glement entropy. Note that p(n+m−|r |)

F,n+m+r,m+n−r,2 is always the

smallest in all p(h)
F,n+m+r,n+m−r,2 for n +m � 2, since there

is only the contribution from the diagrams with vertical line
intersecting all possible lines of color 3 (see examples in
Fig. 13). It prohibits all possible p(h)

F,n+m+r,n+m−r,2 to be
equal. Hence we conclude that the following relation does
not hold

sF,A = −
n+m−|r |∑

h=0

2h p(h)
F,n+m+r,n+m−r,2 ln p(h)

F,n+m+r,n+m−r,2

= −
k∑

i=1

2h
(

2−2h 1

k

)

ln

(

2−2h 1

k

)

= 2−h ln 22hk,

(2.28)

where k = [n + m − |r |] + 1 due to the construction of tree
operator. Thus we explain the entanglement scaling beyond
logarithmic scaling in the ordinary critical systems from the
viewpoint of tensor model here.

3 A two-tensor model with order-3

3.1 W -representation of the two-tensor model with order-3

We may choose keystone operators constructed from (2.3)
to generate a renormalization group completed two-tensor
model with order-3

ZAB =
ˆ

d Ad Ā
ˆ

dBd B̄ exp(−TrAĀ − TrB B̄

+
∞∑

n+m=1

∑

σ̌ | level(σ̌ )=n+m

N−2(n+m)t (n,m)

σ̌
T (n,m)

σ̌
),

=
ˆ

d Ad Ā
ˆ

dBd B̄ exp(−TrAĀ − TrB B̄

+N−2t (1,0)
(id,id,id)T

(1,0)
(id,id,id) + N−2t (0,1)

(id,id,id)T
(0,1)

(id,id,id)

+
∞∑

k=2

N−2k t (k,0)
((12···k),id,id)T

(k,0)
((12···k),id,id)

123
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Fig. 11 Two examples of
moving the first two steps of
Dyck walks to the back in turn

Fig. 12 Divide the cutted
Feynman diagram of T (1,1)

((12),id,id)
into two parts, and two colored
Dyck walks of two subsystems
in the case of n = m = 1, r = 0
and h = 2

+
∞∑

k=2

N−2k t (0,k)
((12···k),id,id)T

(0,k)
((12···k),id,id)

+
∞∑

k=2

N−2k t (k,0)
(id,(12···k),id)T

(k,0)
(id,(12···k),id)

+
∞∑

k=2

N−2k t (0,k)
(id,(12···k),id)T

(0,k)
(id,(12···k),id)

+
∞∑

k=2

N−2k t (k,0)
(id,(12···k),id)T

(k,0)
(id,(12···k),id)

+
∞∑

k=2

N−2k t (0,k)
(id,(12···k),id)T

(0,k)
(id,(12···k),id) + · · · ),

(3.1)

where the measure is induced by the norm ‖ δAδB ‖2=
δA j1, j2

i δ Āi
j1, j2

δB j1, j2
i δ B̄i

j1, j2
.

By requiring that the partition function (3.1) is invari-
ant under the transformation A → A + δA, where δA =

∞∑

a+b=1

∑

α̌| level(α̌)=a+b

N−2(a+b)t (a+b)
α̌

∂T (a,b)
α̌

∂ Ā
, we have

[

−
∞∑

a+b=1

∑

α̌| level(α̌)=a+b

aN−2(a+b)t (a,b)
α̌

T (a,b)
α̌

+
∞∑

a+b=1

∑

α̌| level(α̌)=a+b

N−2(a+b)t (a,b)
α̌

�T (a,b)
α̌

+
∞∑

a+b=1,
n+m=1

∑

α̌| level(α̌)=a+b,
σ̌ | level(σ̌ )=n+m

N−2(a+b)N−2(n+m)t (a,b)
α̌

t (n,m)

σ̌

×{T (n,m)

σ̌
, T (a,b)

α̌
}A

]

ZAB = 0. (3.2)

123
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Fig. 13 The cutted Feynman diagrams contributing to p(3)
F,3,3,2

Similarly, for the transformation B → B + δB, where

δB =
∞∑

a+b=1

∑

α̌| level(α̌)=a+b

N−2(a+b)t (a+b)
α̌

∂T (a,b)
α̌

∂ B̄
, we have

[

−
∞∑

a+b=1

∑

α̌| level(α̌)=a+b

bN−2(a+b)t (a,b)
α̌

T (a,b)
α̌

+
∞∑

a+b=1

∑

α̌| level(α̌)=a+b

N−2(a+b)t (a,b)
α̌

�̃T (a,b)
α̌

+
∞∑

a+b=1,
n+m=1

∑

α̌| level(α̌)=a+b,
σ̌ | level(σ̌ )=n+m

N−2(a+b+n+m)t (a,b)
α̌

t (n,m)

σ̌

×{T (n,m)

σ̌
, T (a,b)

α̌
}B

]

ZAB = 0. (3.3)

From (3.2) and (3.3), it is not difficult to obtain that the
partition function (3.1) satisfies

D̂Z AB = Ŵ ZAB, (3.4)

where

D̂ =
∞∑

a+b=1

∑

α̌| level(α̌)=a+b

aN−2(a+b)t (a,b)
α̌

∂

∂t (a,b)
α̌

+
∞∑

a+b=1

∑

α̌| level(α̌)=a+b

bN−2(a+b)t (a,b)
α̌

∂

∂t (a,b)
α̌

, (3.5)

Ŵ =
∞∑

a+b=1

∑

α̌| level(α̌)=a+b

3∑

k=1

∑

β̌1,...,β̌k ,
a1+···+ak+1=a,
b1+···+bk=b,

asps1≤a2≤···≤ak

(1 − δa,1)

×�
(a,b),(a1,b1),...,(ak ,bk )
α̌,β̌1,...,β̌k

N−2(a+b)t (a,b)
α̌

× ∂

∂t (a1,b1)

β̌1

· · · ∂

∂t (ak ,bk )
β̌k

+
∞∑

a+b=1

∑

α̌| level(α̌)=a+b

3∑

k=1

∑

γ̌1,...,γ̌k ,
a1+···+ak=a,

b1+···+bk+1=b,
bsps1≤b2≤···≤bk

(1 − δb,1)

×�̃
(a,b),(a1,b1),...,(ak ,bk )
α̌,γ̌1,...,γ̌k

N−2(a+b)t (a,b)
α̌

× ∂

∂t (a1,b1)

γ̌1

· · · ∂

∂t (ak ,bk )
γ̌k

+
∞∑

a+b=1,
n+m=1

∑

α̌| level(α̌)=a+b,
σ̌ | level(σ̌ )=n+m,

β̌| level(β̌)=n+m+a+b−1

�
(n,m),(a,b),(n+a−1,m+b)
σ̌ ,α̌,β̌

×N−2(a+b)N−2(n+m)t (a,b)
α̌

t (n,m)

σ̌

∂

∂t (n+a−1,m+b)
β̌

+
∞∑

a+b=1,
n+m=1

∑

α̌| level(α̌)=a+b,
σ̌ | level(σ̌ )=n+m,

β̌| level(β̌)=n+m+a+b−1

�̃
(n,m),(a,b),(n+a−1,m+b)
σ̌ ,α̌,γ̌

×N−2(a+b)N−2(n+m)t (a,b)
α̌

t (n,m)

σ̌

∂

∂t (n+a−1,m+b)
γ̌

+N−2t (1,0)
(id,id,id)N3 + N−2t (0,1)

(id,id,id)N3, (3.6)
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where α̌, β̌ and σ̌ are taken from indices of connected oper-
ators in the ring, N3 = N1N2N3.

Let us rewrite (3.1) as

ZAB =
∞∑

s=0

Z (s)
AB, (3.7)

where

Z (s)
AB =

ˆ
d Ad ĀdBd B̄ exp(−TrAĀ − TrB B̄)

·
∞∑

l=0

∑

σ̌i | level(σ̌i )=ni+mi ,
n1+m1+···+nl+ml=s

1

l!

〈
l∏

i=1

T (ni ,mi )

σ̌i

〉

· N−2(n1+m1+···+nl+ml )
l∏

i=1

t (ni ,mi )

σ̌i
, (3.8)

and the correlators 〈∏l
i=1 T

(ni ,mi )

σ̌i
〉 are defined by

〈
l∏

i=1

T (ni ,mi )

σ̌i

〉

=
´
d Ad ĀdBd B̄T (n1,m1)

σ̌1
T (n2,m2)

σ̌2
· · · T (nl ,ml )

σ̌l
exp(−TrAĀ − TrB B̄)´

d Ad ĀdBd B̄ exp(−TrAĀ − TrB B̄)
. (3.9)

From the operators D̂ and Ŵ acting on Z (s)
AB ,

D̂Z (s)
AB = sZ (s)

AB, (3.10)

Ŵ Z (s)
AB = (s + 1)Z (s+1)

AB , (3.11)

we see that the operators D̂ and Ŵ are indeed the operators
preserving and increasing the grading, respectively. Thus the
partition function can be realized by the W -representation

ZAB = exp(Ŵ ) · 1. (3.12)

Let us write the k-th power of the operator Ŵ as

Ŵ k =
k∑

i=1

∑

a1+b1+···+ai+bi=k

∑

α̌i | level(α̌i )=ai+bi

P(a1,b1),...,(ai ,bi )
α̌1,...,α̌i

×N−2k t (a1,b1)

α̌1
· · · t (ai ,bi )

α̌i

+
2k∑

i=1

3k∑

j=1

∑

a1+b1···+ai+bi−n1−m1−···−n j−m j=k

×
∑

α̌i | level(α̌i )=ai+bi ,
β̌ j | level(β̌ j )=n j+m j

P
β̌1,...,β̌ j ;(n1,m1),,...,(n j ,m j )

α̌1,...,α̌i ;(a1,b1),...,(ai ,bi )

· N−2k t (a1,b1)

α̌1
· · · t (ai ,bi )

α̌i

∂

∂t (n1,m1)

β̌1

· · · ∂

∂t
(n j ,m j )

β̌ j

,

(3.13)

where the coefficients P(a1,b1),...,(ai ,bi)
α̌1,...,α̌i

and P
β̌1,...,β̌ j ;(n1,m1),...,(n j ,m j)

α̌1,...,α̌i;(a1,b1),...,(ai,bi )
are polynomials of N1, N2 and N3.

Then it is not difficult to derive the compact expression of
correlators from (3.12)
〈
T (a1,b1)

α̌1
· · · T (ai ,bi )

α̌i

〉
= i !

k!λ(α̌1,...,α̌i )

∑

τ

P(a1,b1),...,(ai ,bi )
τ (α̌1),...,τ (α̌i )

,

(3.14)

where k = a1 + b1 + · · · + ai + bi , τ denotes all distinct
permutations of (α̌1, . . . , α̌i ) and λ(α̌1,...,α̌i ) is the number of
τ with respect to α̌1, . . . , α̌i .

We list some correlators in (3.14) as follows:
〈
T (1,0)

(id,id,id)

〉
=

〈
T (0,1)

(id,id,id)

〉
= N3,

〈
T (2,0)

((12),id,id)

〉
=

〈
T (0,2)

((12),id,id)

〉
= N3(N1 + N2N3),

〈
T (1,0)

(id,id,id)T
(1,0)

(id,id,id)

〉
=

〈
T (0,1)

(id,id,id)T
(0,1)

(id,id,id)

〉
= N 2

3 + N3,
〈
T (1,0)

(id,id,id)T
(0,1)

(id,id,id)

〉
= N 2

3 ,
〈
T (1,1)

((12),id,id)

〉
= N3N2N3,

〈
T (1,0)

(id,id,id)T
(2,0)

((12),id,id)

〉
=

〈
T (0,1)

(id,id,id)T
(0,2)

((12),id,id)

〉

= N3(N1 + N2N3) + N 2
3 (N1 + N2N3),

〈
T (1,0)

(id,id,id)T
(0,2)

((12),id,id)

〉
=

〈
T (0,1)

(id,id,id)T
(2,0)

((12),id,id)

〉

= N 2
3 (N1 + N2N3),

〈
T (3,0)

((123),id,id)

〉
=

〈
T (0,3)

((123),id,id)

〉

= N 2
3 + N3 + N3[N1

2 + (N2N3)
2 + 2N1N2N3],

〈
T (3,0)

(id,(123),(12))

〉
=

〈
T (0,3)

(id,(123),(12))

〉

= N 2
3 N3 + N3(N2

2N3 + N1
2N3 + 2N1N2 + N3),

〈
T (3,0)

(id,(123),(132))

〉
=

〈
T (0,3)

(id,(123),(132))

〉

= 3N 2
3 + N3(N1

2 + N2
2 + N3

2),
〈
T (2,1)

((123),id,id)

〉
=

〈
T (1,2)

((123),id,id)

〉

= N 2
3 + N3(N2N3)

2,
〈
T (2,1)

(id,(123),(12))

〉
=

〈
T (1,2)

(id,(123),(12))

〉

= N 2
3 N3 + N3(N2

2N3 + 2N1N2 + N3),
〈
T (1,0)

(id,id,id)T
(1,0)

(id,id,id)T
(0,1)

(id,id,id)

〉

=
〈
T (1,0)

(id,id,id)T
(0,1)

(id,id,id)T
(0,1)

(id,id,id)

〉
= N 3

3 + N 2
3 ,

〈
T (1,1)

((12),id,id)T
(1,0)

(id,id,id)

〉
=

〈
T (1,1)

((12),id,id)T
(0,1)

(id,id,id)

〉

= N 2
3 N2N3 + N3N2N3,

〈
(T (1,0)

(id,id,id))
i
〉
=

〈
(T (0,1)

(id,id,id))
i
〉
=

i−1∏

j=0

(N3 + j). (3.15)
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3.2 Perturbative collective field theory

Let us consider the Hamiltonian [23]

H = − ∂

∂A j,k
i

∂

∂ Ā j,k
i

− ∂

∂B j,k
i

∂

∂ B̄ j,k
i

+1

4
A j,k
i Ā j,k

i + 1

4
B j,k
i B̄ j,k

i . (3.16)

We introduce the collective variables

�k = Tr(eikT ), (3.17)

where T is a matrix on the vector space with elements

T i2
i1

= A j1, j2
i1

Āi2
j1, j2

+ B j1, j2
i1

B̄i2
j1, j2

. (3.18)

Note that it is different from the discussion in [23] where the
second term in (3.18) was dropped.

Let us introduce the field �(x) = ´ dk
2π

e−ikx�k, which is
the eigenvalues density of matrix T [22]. Using the collective
variables �k , we rewrite the kinetic terms in (3.16) as

− ∂

∂A j,k
i

∂

∂ Ā j,k
i

− ∂

∂B j,k
i

∂

∂ B̄ j,k
i

= −T i
l

∂

∂T j
l

∂

∂T j
i

− 2N2N3
∂

∂T i
i

=
ˆ

dk
ˆ

dk
′
�k,k′ πkπk′ +

ˆ
dkωkπk, (3.19)

where πk = 1
i

δ
δ�k

, �k,k′ and ωk are given by

�k,k′ = T i
l
∂�k

∂T j
l

∂�k′

∂T j
i

= ikk
′ ∂

∂k
�k+k′ ,

ωk = −T i
l

∂

∂T j
l

(
∂�k

∂T j
i

)

− 2N2N3
∂�k

∂T i
i

= k
ˆ 1

0
dτ�(1−τ)k − 2ikN2N3�k . (3.20)

Then by the fourier transformations of (3.20), we have

�(x, x
′
) = ∂x∂

′
x (x�(x)δ(x − x

′
),

ω(x) = 2∂x

 
dy�(x)�(y)

x

x − y
+[2N2N3 − N1]∂x�(x). (3.21)

We may further write the Hamiltonian in terms of the
collective variables. By performing similarity transformation
on Hamiltonian to hermitian it, it gives an equality

2
ˆ

dx
′
�(x, x

′
,�)C(x

′
) + ω(x,�) = 0. (3.22)

From (3.22), we have

∂xC(x) = 1

2x
·
 

dy
2x�(y)

x − y
+ (2 · N2N3

N1
− 1)N1

2x
. (3.23)

The desired Hamiltonian can be finally written as

H =
ˆ

dx
∂π(x)

∂x
φ(x)

∂π(x)

∂x
+ Vef f , (3.24)

where π(x) = 1
i

δ
δ�(x) , the effective potential is given by

Vef f =
ˆ

dx

[
π2

3
x�(x)3 + (2 · N2N3

N1
− 1)2

4x
N1

2�(x)

+ x

4
�(x) − ��(x)

]

, (3.25)

� is the lagrange multiplier enforces the constraint
´
dx�(x) =

N1.
The classical field should minimize the effective potential.

By
δVef f
δ�

= 0, we have

π2x�2 + (2 · N2N3
N1

− 1)2

4x
N1

2 + x

4
− � = 0. (3.26)

By requiring 2� −
√

4�2 − N1
2 ≤ x ≤ 2� +√

4�2 − N1
2 and taking the limit N2N3

N1
→ 1 and the multi-

plier � = 3
2 N1 in (3.26), we obtain the classical collective

field

�(x) = 1

2π

√

6N1

x
− 1 − N1

2

x2 . (3.27)

Then the collective field computation gives
ˆ (3+2

√
2)N1

(3−2
√

2)N1

dx�(x)xn = CnN1
n+1, (3.28)

where

Cn = 4 · 3n−1 − 6(1 + (−1)n)
(2

√
2)n−2(n − 1)(n − 1)!!

n!!
−2(1 + (−1)n+1)

(2
√

2)n−1n!!
(n + 1)!!

+2
(n − 1)!!

n!!
n−1∑

k=2

(2
√

2)k−23n−k−1(1 + (−1)k)

×
[

8

(
n − 1

k

)

− 9

(
n − 1

k − 2

)]

. (3.29)

The first several ones of (3.28) are
ˆ (3+2

√
2)N1

(3−2
√

2)N1

dx�(x)x = 2N1
2,

ˆ (3+2
√

2)N1

(3−2
√

2)N1

dx�(x)x2 = 6N1
3,

ˆ (3+2
√

2)N1

(3−2
√

2)N1

dx�(x)x3 = 22N1
4. (3.30)

As done in Ref. [22], let us consider the limit that Ni →
∞, (i = 1, 2, 3) and setting N1 = N2N3 in the correlators
〈TrT n〉, then the classical collective solution (3.28) gives the
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highest power term of N1 in 〈TrT n〉. Thus in this large Ni

limit, we write the correlators as
〈
TrT n 〉 = 〈

Tr(AĀ + B B̄)n
〉 = CnN1

n+1 + ◦(N1
n), (3.31)

where the expression of Tr(AĀ+ B B̄)n contains all the tree
operators T (p,n−p)

(σ,id,id) , σ ∈ Sn, in S̃, S̃ is a closed ring generated

by T (2,0)
((12),id,id), T

(0,2)
((12),id,id) and T (1,1)

((12),id,id) through addition,
multiplication, cut and join operations.

Let us list the correlators corresponding to (3.30)

(3.32)

where the dotted lines depict the Feynman propagators.
The Feynman diagrams of operators in S̃ are circles I (see

Fig. 3a). It implies that the lines of color 2 and 3 always

simultaneous appear in these Feynman diagrams. We delete
the lines index 3 in these Feynman diagrams (see examples
in the left part of Fig. 14), which do not affect the results
in this section. Thus the Wick contractions contributing to
the highest power terms of N1 in (3.32) can be depicted as
circles I and IIwith disjoint dotted lines connecting A and Ā,
or B and B̄, where dotted lines denote Wick contractions.
Then by changing the dotted lines into lines of color 3, we
obtain tree operators in the closed ring Š generated by five
keystones T (2,0)

((12),id,id), T
(0,2)

((12),id,id), T
(2,0)

(id,(12),id), T
(0,2)

(id,(12),id)

and T (1,1)
((12),id,id) (see examples in the second part on the left

of Fig. 14).
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For the number of the length-2n two colored Dyck walks,
it is counted by 2n multiples of the n-th Catalan number
(2.20). Based on the correspondence between Fredkin spin
chain and tree operators in the previous section, we see that
the number of spin chains corresponding to tree operators
with level-n in Š is given by Cn . In other words, Cn counts
the number of special length-2n two colored Dyck walks
which satisfy the following two conditions: (i) The colors of
the first and last steps are same. (ii) The colors of 2k-th and
(2k + 1)-th steps are same, but for the (2k − 1)-th and 2k-th
steps, k = 1, 2, . . . , n−1, their colors don’t have to be same.
In Fig. 14, we take 〈TrT 2〉 in (3.32) as an example to draw
the corresponding six spin chains.

3.3 Free energy and large N limit

Let us consider the free energy F of the two-tensor model
(3.1)

F = − ln ZAB

=
∞∑

s,l=0

∑

λ�→l ,length(λ)=p,
α̌i | level(α̌i )=ni+mi ,

n1+m1+···+nλp+mλp=s

(−1)p+1

l!p S(μ)S̃(λ)

×〈T (n1,m1)

α̌1
· · · T (nλ1 ,mλ1 )

α̌λ1
〉〈T (nλ1+1,mλ1+1)

α̌λ1+1
· · · T (nλ2 ,mλ2 )

α̌λ2
〉

· · · · 〈T (nλp−1+1,mλp−1+1)

α̌λp−1+1
· · · T (nλp ,mλp )

α̌λp
〉

×
l∏

i=1

t (ni ,mi )

α̌i
N−2(n1+m1+···+nl+ml ), (3.33)

where the partitions λ and μ are λ = (1n1+m1 , 2n2+m2 , . . . ,

pnp+mp ) and μ = (1u1+v1 , 2u2+v2 , . . . , pup+vp ), S(μ)

= (∑
i ni+mi
u1+v1

)(∑
i ni+mi−(u1+v1)

u2+v2

) · · · 1, S̃(λ) = (n1 +
m1)!(n2 + m2)! · · · (n p + mp)!.

Here we have taken N1 = N2 = N3 = N in (3.33), then
the correlators can be written as

〈T (n1,m1)

α̌1
· · ·T (nl ,ml )

α̌l
〉 = N 2(n1+m1)+1+···+2(nl+ml )+1

· l!cl
(n1 + m1 + · · · + nl + ml)!λα̌1,...,α̌l

+ ◦ (N 2(n1+m1)+1+···+2(nl+ml )+1),

(3.34)

where cl is a constant.
Thus in large N limit, we have

F ∼
∞∑

α̌1| level(α̌1)=n1+m1=0

N

(n1 + m1)! t
(n1,m1)

α̌1
. (3.35)

For the degrees of Feynman graphs ω(G) and gauge-
invariant operators ω(T ) in the D-colored tensor model,
there are the relations as follows [8]:

|FG | = D(D − 1)

2
v + D − 2

(D − 1)!ω(G),

|FT | = (D − 1)(D − 2)

2
v + D − 1 − 2

(D − 2)!ω(T ),

(3.36)

where |FG | and |FT | denote the number of faces in the Feyn-
man diagrams and the gauge-invariant operators respectively,
and 2v denotes the number of vertices in the Feynman dia-
grams.

Then we have the number of faces obtained only by the
Wick contractions, i.e.,

|FG | − |FT | = 2v + 1 − ω(G) + 2ω(T ), (3.37)

where we have taken D = 3 in |FG | and |FT |.
From (3.35) and (3.37), there is a relation between the

free energy in large N limit and melonic graphs as follows.
The highest power of N in each Gaussian average of the
gauge-invariant operator is 2v + 1. It is given by the Feyn-
man diagram with degree zero i.e., melonic graphs. The mel-
onic graphs can be obtained from a elementary melon (see
Fig. 15a) with fewer vertices by inserting two vertices con-
nected by 2 edges on one of the edge of the elementary melon
which also be called the dressed melon (see Fig. 15b and c).

4 Conclusions

We have given the keystone operators which are the gauge-
invariant operators. Then by the keystone operators with
addition, multiplication, cut and join operations, we con-
structed a graded ring with tree and loop operators and enu-
merated the operators in the graded ring. We have also taken
the ring S2 and S3 as examples to analyze the kernel and
cokernel of the cut-and-join structure in these rings. In terms
of the keystones operators, connected tree and loop opera-
tors in the ring, we have constructed a two-tensor model with
order-3. Moreover we showed that it can be realized by acting
on elementary function with exponent of the given operator.
By means of the W -representation of this two-tensor model,
we have derived the compact expression of correlators and
presented the free energy in large N limit.

The Fredkin spin chain exhibits violation of the cluster
decomposition property and of the area law for the entangle-
ment entropy, with the presence of anomalous and extremely
fast propagation of the excitations after driving the sys-
tem out-of-equilibrium. It seems that this model extremely
promising for applications in quantum information and com-
munication processes. We have established a correspondence
between two colored Dyck walks in Fredkin spin chain and
tree operators in tensor model. For the number of the length-
2n two colored Dyck walks, it is counted by 2n multiples of
the n-th Catalan number. Based on the classification Dyck
walks, we gave the number of tree operators with level-l,
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Fig. 14 Feynman diagrams
contributing to highest power
terms of N1 in 〈TrT 2〉 and the
corresponding length-4 two
colored Dyck walks

Fig. 15 Examples of melonic
graphs

i.e., 
treel . Then the number of connected loop operators can
be obtained from the difference between the numbers of con-
nected operators and tree operators. On the other hand, by the
collective field computation, we gave the highest power term
of N1 in correlators 〈TrT n〉 with N1 = N2N3. It was noted
that the coefficientCn of the highest power term of N1 indeed
counts the number of special length-2n colored Dyck walks.
For the entanglement entropy of the Fredkin spin chain, it
exhibits the entanglement scaling beyond logarithmic scal-
ing in the ordinary critical systems. Quite interestingly, we
found that this result can be easily showed from the viewpoint
of tensor model. For further research, it would be interesting
to explore more properties of the tensor model and Fredkin
spin chain via such kind of correspondence.
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Appendix A

We list the cut operation � acting on the level-3 gauge-
invariant operators as follows:

(A.1)

then we may give the kernel

(A.2)
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