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Abstract A connection between the deformed Duffin–
Kemmer–Petiau (DKP) algebra and an extended system of
the parafermion trilinear commutation relations for the cre-
ation and annihilation operators a±

k and for an additional
operator a0 obeying para-Fermi statistics of order 2 based on
the Lie algebra so(2M+2) is established. An appropriate sys-
tem of the parafermion coherent states as functions of para-
Grassmann numbers is introduced. The representation for the
operator a0 in terms of generators of the orthogonal group
SO(2M) correctly reproducing action of this operator on the
state vectors of Fock space is obtained. A connection of the
Geyer operator a2

0 with the operator of so-calledG-parity and
with theCPT - operator η̂5 of the DKP-theory is established.
In a para-Grassmann algebra a noncommutative, associative
star product ∗ (the Moyal product) as a direct generalization
of the star product in the algebra of Grassmann numbers is
introduced. Two independent approaches to the calculation
of the Moyal product ∗ are considered. It is shown that in
calculating the matrix elements in the basis of parafermion
coherent states of various operator expressions it should be
taken into account constantly that we work in the so-called
Ohnuki and Kamefuchi’s generalized state-vector spaceU G ,
whose state vectors include para-Grassmann numbers ξk in
their definition, instead of the standard state-vector space U

(the Fock space).

1 Introduction

The principal purpose of the present paper is to study a con-
nection between para-Fermi quantization based on the Lie
algebra of the orthogonal group SO(2M + 2), the Duffin–
Kemmer–Petiau algebra with a deformation, and a para-
Grassmann algebra. Note that an analysis of this connection
is of particular mathematical interest without an application
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to a specific physical problem, since the connection repre-
sents nontrivial synthesis of various subjects such as algebra,
the theory of classical Lie groups and theoretical aspects of
Green’s parafields quantization.

There is a large number of papers devoted to various
aspects of the DKP-formalism. Below we will mention just
a few of them, which are concerned to the object of the given
research.

The DKP-formalism describes spin-0 and spin-1 par-
ticles. The equation of motion represents the first order
matrix-differential equation looking very similar to the Dirac
equation. Analogue of Dirac’s γ -matrices are so-called β-
matrices obeying a more complicated trilinear relation [1–
4]. Mathematical aspects of the DKP-algebra were studied
in greater detail in the fundamental works by Kemmer [5],
Harish-Chandra [6], Fujiwara [7], Tokuoka and Tanaka [8,9],
Chernikov [10], Fischbach et al. [11,12], Filippov et al. [13],
Isaev [14] etc. In particular, it was shown that the classifica-
tion of representations of the DKP-algebra can be reduced
to the classification of irreducible representations of the Lie
algebra so(2M + 1) of the orthogonal group SO(2M + 1).
This DKP-algebra for physically more important case M = 2
has 126 independent elements and admits the irreducible
matrix representations of dimensions of 1 (trivial case), 5
and 10. Umezawa [15] has constructed the expressions for
the projection operators on the sectors with spins 0 and 1.
Finally, it was shown that the DKP-algebra admits super-
symmetric generalization [16].

Further, the Duffin–Kemmer–Petiau algebra is closely
related to an entirely different branch of theoretical physics,
namely, the theory of parastatistics, more exactly, to the para-
Fermi statistics of order p = 2. This nontrivial fact was noted
for the first time in the papers by Volkov [17], Chernikov [10]
and independently by Ryan and Sudarshan [18]. This con-
nection provided an opportunity to present the DKP-algebra
within the framework of an operator formalism (see Sect. 4)
in the form of parafermion algebra of order p = 2 and to
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realize a spin space of vector particle as a Fock space for a
system of para-Fermi operators [19].

However, a preliminary analysis [20] has shown that the
use of parafermion algebra in the standard form is insufficient
for solving some applied problems, for example in the con-
struction of the path integral representation in parasuperspace
for the Green’s function of a spin-1 massive particle in exter-
nal Maxwell’s field, and here, a generalization of this algebra
would be required. As is well known, trilinear commutation
relations for the para-Fermi statistics generate algebra which
is isomorphic to the Lie algebra so(2M+1) [21]. Geyer in the
paper [22] has suggested to extend this isomorphism to the
Lie algebra so(2M + 2). The extension is of great value for
us, since in the corresponding algebra of para-Fermi opera-
tors an additional operator a0 arises. This operator in the case
of parastatistics of order 2 can be related to within a sign to
the Schrödinger “pseudomatrix” ω [23] playing a key role in
constructing the divisor for the first order DKP-operator of
a vector particle in an external gauge field [24]. This divisor
allowed us in particular, to write an operator expression for
the inverse propagator of a vector particle in the form of the
Fock-Schwinger proper parasupertime representation. The
Fock-Schwinger representation can be adopted as an initial
expression for constructing the path-integral representation
of the inverse propagator of the massive vector particle with
the use of corresponding system of the para-Fermi coherent
states.

In the construction of the necessary para-Fermi states the
papers by Omote and Kamefuchi [25] and Ohnuki and Kame-
fuchi [26] are of particular interest for us. For a generaliza-
tion of the notion of path integral to the case of parafermion
variables in these papers the first step was to suggest an gen-
eralization of the well-known Grassmann algebra to the so-
called para-Grassmann algebra [27]. This generalization is
a direct analogue of generalization of the Fermi operators
to the case of the para-Fermi operators in parastatistics. The
authors have introduced the definition of the para-Grassmann
algebra of arbitrary order p, the notions of integration and dif-
ferentiation in this algebra, change of variables in integrals,
Fourier transformation and so on. They also have defined the
notions of coherent states for the para-Fermi operators and
written out the formula of resolution of the identity (the com-
pleteness relation). Essentially all the mathematical appara-
tus constructed by these authors will be actively used in the
suggested research.

In addition to the known results in the present work we
would like to consider one more aspect of algebra of para-
Grassmann numbers. In a para-Grassmann algebra for the
first time we enter noncommutative and associative star prod-
uct ∗ (the Moyal product), which in fact represents an integral
convolution of a certain type of two para-Grassmann–valued
functions. This is a straightforward generalization of a sim-
ilar product in Grassmann algebra (see, for example, Bayen

et al. [28], Tyutin [29], Smilga [30], Hirshfeld and Henselder
[31], Daoud [32]). This product in our case arises naturally
in calculating the matrix elements of a product of various
operator expressions in the basis of parafermion coherent
states. Moreover, the star product enables us to have a better
understanding of a connection between the algebra of cre-
ation and annihilation operators a±

k of para-Fermi particles
and the para-Grassmann algebra equipped with the product
∗ making them in fact isomorphic as it takes place for the
usual fermionic operators and Grassmann variables [32].

For calculating the star product operation we will use two
different approaches. The first of them has somewhat heuris-
tic character. It consists in separation by hands from various
contributions to the integral only those which give nontrivial
result after an integration. For separating these contributions
we make use of a simple fact that the integral with respect to
para-Grassmann variable μ of order p is not vanishing only
when the integrand contains this para-Grassmann variable
exactly to the power of p [26]. Another way was suggested
in the paper by Omote and Kamefuchi [25]. The idea of this
approach consists in reducing the integration over the para-
Grassmann variables to calculating certain operator expres-
sions averaged over the vacuum state. Here, ultimately, the
calculation boils down to shift of the annihilation operators
a−
k to the right until the vacuum conditions can be employed.

Here, the rearrangement rules are defined by the algebra of
operators a±

k obeying the para-Fermi statistics of the spe-
cial order p. Two independent approaches to calculating the
product ∗ allows one to verify independently the results of
calculations.

It is possible to make one more remark concerning algebra
of the para-Grassmann variables. The para-Grassmann alge-
bra of order p = 2 in the spirit of the paper by Omote and
Kamefuchi [25] is still quite visible at concrete calculations.
However we can use another variant of the generalization
of Grassmann variables also widely adopted (see, for exam-
ple, Kwasniewski [33], Baulieu and Floratos [34], Fleury and
Rausch de Traubenberg [35,36], Fillipov et al. [37–40]; Isaev
[14]). These generalized Grassmann variables obey bilinear
q-commutation relations, where q is a primitive nth root of
unity. The bilinear relations are simpler in comparison with
the trilinear commutation relations for para-Grassmann vari-
ables and this significantly simplifies calculations with an
increase of order p. In principle, the use of the general-
ized Grassmann algebra with the corresponding system of
parafermion coherent states, the rules of integration and dif-
ferentiation can be considered as an alternative to approach
which is used in the present paper. It can be very important
upon transition, for example, from the para-Grassmann alge-
bra of order p = 2 to significantly more difficult and more
tangled algebra of order p = 3. The latter is required for the
description of particles with the spin 3/2 as it was shown in
one of our works [41].
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One of the most interesting features of the approach devel-
oped in the present paper is the necessity of introduction
instead of the standard Fock space U an enlarged Fock space
UG , whose state vectors can also include the para-Grassmann
numbers ξk . The need for such a generalization was first noted
by Ohnuki and Kamefuchi [26] and it is connected with that
the para-Fermi operators a±

k and the para-Grassmann num-
bers ξk are not (anti)commutative for parastatistics of order
p ≥ 2. As a consequence, the parafermion coherent state (in
the form which we use throughout this work) could not be
represented in the form of an expansion in states with a cer-
tain number of para-Fermi particles. We discuss briefly this
fact in Sect. 9. Careful consideration of this circumstance is
required at all stages of calculations, or otherwise this leads
to contradictions of various kinds. The necessity of consider-
ing Ohnuki and Kamefuchi’s generalized state-vector space
inevitably leads us to the need to introduce the quadratic
Casimir operators Ĉ2 and Ĉ ′

2 of the Lie algebras so(2M)

and so(2M +1), correspondingly. In our specific case, when
p = 2 these operators are closely related to elements of the
center of the Duffin–Kemmer–Petiau algebra as they were
defined by Harish-Chandra [6]. In our derivation we use the
representation of the quadratic Casimir operators in terms of
the creation and annihilation operators a±

k of parafermions
from the papers by Omote et al. [42] and by Bracken and
Green [43] (see also Gould and Paldus [44]).

The paper is organized as follows. In Sect. 2, a brief review
of Geyer’s work [22] devoted to deriving the generalization of
canonical commutation relations with respect to the orthogo-
nal group SO(n) in even dimensions, is presented. In Sect. 3,
we give some formulas of the Duffin–Kemmer–Petiau the-
ory: the trilinear relations for the βμ-matrices, the definition
of Schrödinger’s pseudomatrix ω and a cubic root of the unit
matrix in term of the ω. In Sect. 4, we provide all neces-
sary formulas of operator formalism: the trilinear relations
to which the second order parafermionic creation and anni-
hilation operators obey, the basis of parafermion coherent
states in the spin-1 spaceH, the normalization and complete-
ness relations for the coherent states and so on. Section 5
is devoted to the calculation of the matrix element for the
Geyer operator a2

0 , an analysis of its structure and derivation
of its more compact and visual representation. In this section
we have defined the resolvent operator R of the a2

0 on the
basis of which an integral representation of the operator a0

from the Lie algebra so(2M + 2) is written out. In Sect. 6
we have shown that this integral representation of the oper-
ator a0 incorrectly reproduces action of this operator on the
state vectors of the Fock space. In the same section another
representation for the operator a0 in terms of the generators
of the group SO(2M) correctly reproducing action on the
state vectors is suggested. A connection of this operator with
the pseudoscalar DKP-operator ω̂ is obtained. Section 7 is
concerned with the calculation of the matrix element for the

operator a0 in the basis of parafermion coherent states. At the
end of this section a proof of the operator relation a3

0 = a0

in terms of the matrix elements is given. In Sect. 8 a connec-
tion between the Harish-Chandra operator ω̂2 and the Geyer
operator a2

0 is analyzed. As a secondary result the connection
between the pseudoscalar DKP-operator ω̂ and the so-called
CPT -operator η̂5 in the DKP theory is obtained.

Section 9 is devoted to establishing a connection between
the Geyer operator a2

0 and operator of so-called G-parity
(the operator of parafermion parity (−1)n , where n is the
parafermion number operator). In the same section, a brief
analysis of a connection between two approaches in con-
structing the Lie algebra of the group SO(2M + 2), namely,
an approach of Geyer [22] and an approach of Fukutome [45],
is performed. At the end of this section a feature of struc-
ture of Omote and Kamefuchi’s definition for the para-Fermi
coherent states is briefly discussed. Section 10 is devoted to
the calculation of the matrix elements of the products Âa±

n
and of the commutators [a0 , a±

n ] and [a2
0 , a±

n ], where Â ≡
α exp

(−i 2π
3 a0

)
. Two different forms of representation for

the matrix elements of the commutators [a2
0 , a±

n ] are consid-
ered. In Sect. 11 a similar calculation of the matrix elements
of the product Â [a0 , a±

n ], is performed. The most compact
representations for these matrix elements are defined. Sec-
tions 12 and 13 are devoted to the establishment of the relation
between the functions 	(ξ̄ ′, ξ) and 	̃(ξ̄ ′, ξ), which are the
matrix elements of the operator a0 and of the Geyer operator
a2

0 in the basis of parafermion coherent states. In Sect. 14 an
important notion of the star product ∗ within the framework
of the algebra of para-Grassmann numbers is introduced. In
Sect. 15 the triple star product 	 ∗ 	 ∗ 	 of the function
	 = 	(ξ̄ ′, ξ) and the star exponential exp∗

(−i 2π
3 	

)
are

considered. In this section we have concluded ultimately that
it is impossible to present the function 	̃(ξ̄ ′, ξ) as the star
product of two functions 	(ξ̄ ′, ξ), i.e. 	̃ �= 	 ∗ 	.

In Sect. 16 to overcome a contradiction of the previous
section, an analysis of the connection between the Harish-
Chandra operator ω̂2 and the Geyer operator a2

0 is performed
again and a more exact relation between these operators (in
comparison with a similar relation obtained in Sect. 8) is
derived. In Sect. 17 the quadratic Casimir operators Ĉ2 and
Ĉ ′

2 of the groups SO(2M) and SO(2M + 1) are taken into
consideration that enables one, in particular, to make a form
of the connection between the operators ω̂2 and a2

0 more
compact and explicit. The action rules of the Casimir opera-
tors on the state vectors, an explicit form of the matrix ele-
ments of these operators, and their representations through
the operator 
̂ ≡ ∑2

k=1{a+
k , a−

k } are defined. Section 18
is devoted to discussion of the so-called generalized state-
vector space U G as it was defined by Ohnuki and Kame-
fuchi [26], whose state vectors include the para-Grassmann
numbers ξk . Here we also briefly discuss a possibility of
alternative definition of the parafermionic coherent states,
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which in principle allows to avoid introduction of the gener-
alized state-vector space. In Sect. 19 the representation for
the Harish-Chandra operator ω̂2 in terms of the operator 
̂ is
written out. In the same section it is proved that by using the
refined connection between the operators ω̂2 and a2

0 , we cor-
rectly reproduce the star product of three functions 	, namely
	 ∗ 	 ∗ 	 = 	. In Sect. 20 the expressions for the commu-
tators [ Â, a±

k ] and [ Â, [a0 , a±
k ]], are calculated. It is shown

that the expressions obtained in calculating their matrix ele-
ments in the basis of the parafermion coherent states are
contradictory with one another. It is pointed out that a rea-
son of this contradiction is the use of trilinear commutation
relation including two operators a0 and one of the operators
a±
k in the form as it was defined in the original paper by

Geyer [22]. The most general form of this trilinear relation
including the Casimir operator Ĉ ′

2 is derived. The extended
trilinear relation allows one to obtain finally the consis-
tent expressions for the commutators [ Â, a±

k ]and

[ Â, [a0 , a±
k ]]. In the concluding Sect. 21 the key points of

our work are specified.
In Appendix A all of the necessary formulas of algebra of

the matrices ω and βμ are listed. Appendix B is devoted to
the formulation of the definition of a para-Grassmann algebra
in a spirit of the paper by Omote and Kamefuchi [25]. The
trilinear relations between the para-Grassmann numbers ξk
of order 2 and the creation and annihilation para-Fermi oper-
ators a±

n of parastatistics of order p = 2 are also written out.
In Appendix C the formulas of differentiation with respect to
the para-Grassmann variables used in the text of our paper are
given. In Appendix D all of the necessary formulas of inte-
gration with respect to a para-Grassmann variable μ of order
2 are given. In Appendix E a list of the commutation rela-
tions between the generators Lkl , Mkl and Nkl of the group
SO(2M) and between these generators and the operators a±

n
are written out.

In Appendix F we prove the validity of the operator rela-
tion (−1)na0 = a0 based on an analysis of its matrix ele-
ment or in other words we show that the matrix element of
the operator a0 in a basis of parafermion coherent states is
even function with respect to change of the sign of para-
Grassmann variables ξ1 and ξ2 (or ξ̄ ′

1 and ξ̄ ′
2) entering into

the definition of the coherent states. In Appendix G we give a
proof of turning into identity the commutation relations from
Sect. 2 containing the operator a0, when the latter is written in
terms of the generators Lkl , Mkl and Nkl . In Appendix H the
derivation of the formula (68) given in the paper by Harish-
Chandra [6] is considered again and its corrected expression
is obtained. Finally, Appendix I is devoted to the proof of the
relation [a0, 
̂] = 0. In particular, it is shown that in contrast
to the relation {a0, 
̂} = 8a0, this operator relation does not
fall into a sum of two independent relations [a0, 
̂i ] = 0,
where 
̂i ≡ {a+

i , a−
i }, i = 1, 2.

2 Review of the Geyer work [22]

A basis of an operator realization of the Lie algebra of the
orthogonal group SO(2M + 2) is given by the set of Hermi-
tian operators

Iμν = −Iνμ,

where the indices μ, ν, . . . run values 1, 2, . . . , 2M + 2.
These operators satisfy the commutation relations

[ Iμν, Iλσ ] = δνλ Iμσ + δμσ Iνλ − δμλ Iνσ − δνσ Iμλ.

We introduce a new set of operators βμ by setting1

βμ = −i Iμ 2M+2.

Here the indexμ runs values 1, 2, . . . , 2M+1. The quantities
βμ are Hermitian

β†
μ = βμ (2.1)

and obey the commutation relations

[βμ, βν] = Iμν,

[[βμ, βν], βλ ] = βμδνλ − βν δμλ.

The property (2.1) enables us to introduce the Hermitian con-
jugate operators

a+
k = β2k − iβ2k−1,

a−
k = β2k + iβ2k−1,

(2.2)

where k = 1, 2, . . . , M , and in addition to the a±
k , a further

operator is defined as

a0 = β2M+1 (≡ −i I2M+1 2M+2). (2.3)

The commutation relations between the operators a±
k are

[a±
k , [a∓

m , a±
n ]] = 2δkm a

±
n , (2.4)

[a±
k , [a±

m , a±
n ]] = 0, (2.5)

[a±
k , [a∓

m , a∓
n ]] = 2δkm a

∓
n − 2δkn a

∓
m (2.6)

and the commutation relations involving the operator a0 are:

[a±
k , [a∓

m , a0 ]] = 2δkm a0 , (2.7)

[a±
k , [a±

m , a0 ]] = 0, (2.8)

[a0 , [a0 , a±
k ]] = a±

k , (2.9)

[a0 , [a±
k , a∓

m ]] = 0, (2.10)

[a0 , [a±
k , a±

m ]] = 0. (2.11)

1 We have redefined the operators βμ from [22] for our case as follows:

βμ → 2βμ for μ = 1, 2, . . . , 2M + 1.
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Further, the uniqueness conditions of vacuum state |0〉 in
the parastatistics of order p are [46]:

a−
k |0〉 = 0, for all k (2.12)

and

a−
k a

+
l |0〉 = p δkl |0〉, for all k, l. (2.13)

The relation

a0|0〉 = ± 1

2
p |0〉 (2.14)

is a consequence of requiring the uniqueness of the vacuum
state. Note that the sign on the right-hand side of (2.14) may
be chosen arbitrarily. Action of the operator a0 on an arbitrary
state vector

|i j k . . . rs〉 = a+
i a

+
j a

+
k . . . a+

r a
+
s |0〉

is defined by the following formula:

a0|i j k . . . rs〉 = ± 1

2
p |i j k . . . rs〉

∓
(
| j k . . . rsi 〉 + |i k . . . rs j 〉 + . . .

+|i j k . . . s r 〉 + |i j k · · · rs 〉
)
.

In particular, this implies in addition to (2.14)

a0|r〉 = ± 1

2
(p − 2)|r〉,

a0|kr〉 = ± 1

2
(p − 2)|kr〉 ∓ |rk〉,

a0| jkr〉 = ± 1

2
(p − 2)| j kr〉 ∓ (| j rk〉 + |kr j〉),

a0|i jkr〉 = ± 1

2
(p − 2)|i j kr〉

∓ (|i j rk〉 + |ikr j〉 + | j kri〉). (2.15)

In the paper [22] a general relation for arbitrary values p
and M , which connects the operator a0 with the operators
N1, . . . , NM is also given (without a proof), where

Nk = 1

2
[a+

k , a−
k ].

Let us write out the explicit form of the relations for the first
three values p in the case when M = 2:

p = 1 : a0 = 2N1 N2, (2.16)

p = 2 : a2
0 = 1

2

{
1 + [

2(N1)
2−1

][
2(N2)

2−1
]}

, (2.17)

p = 3 : a3
0 − 7

4
a0 = − 1

12
N1 N2

[
4(N1)

2 − 7
]

[
4(N2)

2 − 7
]
.

3 Duffin–Kemmer–Petiau formalism

In the Duffin–Kemmer–Petiau theory the matrices βμ obey
the following trilinear relation:

βμβνβλ + βλβνβμ = δμνβλ + δλνβμ. (3.1)

Let us now introduce the matrix ω setting by the definition
in the even-dimension D = 2M Euclidean space-time

ω = 1

(M !)2 εμ1μ2...μ2Mβμ1βμ2 . . . βμ2M . (3.2)

This matrix plays an important part in further consideration.
For the case when M = 2 it was introduced into DKP the-
ory for the first time by Schrödinger [23]. Here, we follow
the notation used in the works by Harish-Chandra [6,47,48],
where the properties of the ω matrix were studied in detail.
Let us note only that the matrix ω is identically zero for the
spin 0, i.e. for the 5-dimensional irreducible representation
of the DKP-algebra in the case of M = 2. Therefore only the
10-row representation need be considered. In Appendix A all
of the necessary formulas of algebra of the matrices ω and
βμ are listed.

In the paper [24] we have introduced a matrix A in the
form of the expansion in powers of ω:

A = α I + βω + γ ω2, (3.3)

where the coefficients are

β =
(
i
√

3

2

)
α, γ =

(
−3

2

)
α, α3 = 1

m
, (3.4)

and I is the unit matrix. The matrix A meets the condition

A3 = 1

m
I.

Thus the matrix A/α is a cubic root of the unit matrix. In the
expansion (3.3) the property (A.1) was taken into account.
Here, in addition we would like to give once more representa-
tion of the matrix (3.3), which sometimes is more convenient
in concrete calculations. It is easy to show by using the prop-
erty (A.1) that the following formula:

ei tω = I + i sint ω + (cos t − 1)ω2,

where t is an arbitrary real number, holds. In particular, for
t = 2π we have

ei 2πω = I. (3.5)

We are mainly interested in two important special cases:

1. in the case when t = 2π/3, we have

α ei
2π
3 ω = α

(
I + i

√
3

2
ω − 3

2
ω2

)
≡ A, (3.6)
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2. in the case when t = 4π/3, we have

α2 ei
4π
3 ω = α2

(
I − i

√
3

2
ω − 3

2
ω2

)
≡ A2.

4 The operator formalism

Let us pass to an operator formulation of the DKP formal-
ism. Instead of the βμ matrices we enter operators β̂μ. The
operators β̂μ acts on the space H of the representation of the
algebra

β̂μβ̂ν β̂λ + β̂λβ̂ν β̂μ = δμνβ̂λ + δλνβ̂μ. (4.1)

The matrices βμ are matrix elements of the operators β̂μ in
the matrix basis {| α〉; α = 1, 2, . . . , 10} in H:

(βμ)αβ = 〈α | β̂μ|β 〉.
For the case when M = 2 within the framework of the oper-
ator formalism, instead of the general formula (3.2), we have

ω̂ = 1

4
εμνλσ β̂μ β̂ν β̂λ β̂σ . (4.2)

We will need a basis of coherent states in the spin-1 space
H. In H, the representation space of the Duffin–Kemmer–
Petiau operator algebra (4.1), in accordance with (2.2) we
introduce the parafermion creation and annihilation operators

a±
1 = β̂2 ∓ i β̂1 , a±

2 = β̂4 ∓ i β̂3 . (4.3)

These operators by virtue of (4.1) obey the following algebra:

a±
k a

∓
l a

±
m + a±

ma
∓
l a

±
k = 2δkl a

±
m + 2δml a

±
k , (4.4)

a±
k a

∓
l a

∓
m + a∓

ma
∓
l a

±
k = 2δkl a

∓
m , (4.5)

a±
k a

±
l a

±
m + a±

ma
±
l a

±
k = 0, k, l,m = 1, 2 (4.6)

and the space H can be realized as a finite Fock space for the
para-Fermi operators (a±

1 , a±
2 ).

As coherent states of the para-Fermi operators we take the
coherent states as they were defined by Omote and Kame-
fuchi [25]. For parastatistics p = 2 they have the form (in
the case when M = 2):

|(ξ)2 〉 = exp

(

−1

2

2∑

l=1

[ξl , a+
l ]

)

|0〉,

〈(ξ̄ ′)2 | = 〈0| exp

(
1

2

2∑

l=1

[ ξ̄ ′
l , a

−
l ]

)

,

(4.7)

so that

a−k | (ξ)2〉 = ξk | (ξ)2〉, 〈(ξ̄ ′)2 | a+
k = 〈(ξ̄ ′)2 | ξ̄ ′

k ,

where ξk and ξ̄ ′
k, k = 1, 2, are para-Grassmann numbers

obeying algebra (B.2). In Appendices B, C and D the for-
mulation of the definition of a para-Grassmann algebra, the
formulas for integration and differentiation with respect to a
para-Grassmann variable of order 2 in a spirit of Omote and
Kamefuchi [25] are given. For brevity sometimes we will
write

2∑

l=1

[ξl , a+
l ] ≡ [ξ , a+],

2∑

l=1

[ ξ̄ ′
l , ξl ] ≡ [ ξ̄ ′, ξ ]

and, moreover, since we are interested only in the case paras-
tatistics of order 2, then we will omit the symbol 2 in the
notation of the parafermion coherent states, i.e.

|(ξ)2〉 ≡ | ξ 〉, 〈(ξ̄ ′)2| ≡ 〈ξ̄ ′ |.
The overlap function and completeness relation for the coher-
ent states (4.7) are given by

〈 ξ̄ ′ | ξ 〉 = exp
{1

2
[ξ̄ ′, ξ ]

}
, (4.8)

∫∫
| ξ 〉〈ξ̄ | e −1

2 [ ξ̄ , ξ ]
(dξ)2 (d ξ̄ )2 = 1̂, (4.9)

where the measures of integration are defined by

(dξ)2 ≡ d 2ξ2d
2ξ1, (d ξ̄ )2 ≡ d 2ξ̄1d

2ξ̄2.

The transition from the matrix elements in the coherent basis
to the representation in which the DKP matrices βμ have a
specific form is realized as follows:

〈α | . . . |β 〉 =
∫∫

e −1
2 [ ξ̄ ′, ξ ′ ]

(dξ ′)2 (d ξ̄ ′)2

× e −1
2 [ ξ̄ , ξ ]

(dξ)2 (d ξ̄ )2 〈α | ξ ′ 〉
× 〈 ξ̄ ′ | . . . | ξ 〉〈 ξ̄ |β 〉. (4.10)

The calculation of the explicit form of the transition func-
tions 〈α | ξ 〉 and 〈 ξ̄ |β 〉 represents the nontrivial mathemati-
cal problem. This will be discussed elsewhere. Here we only
point out that for this purpose the system of 20 algebraic equa-
tions should be written out and solved (for the case of spin
1/2 the number of such equations equals 8, see e.g. [49]). The
coefficients of this system represent para-Grassmann num-
bers of order 2.

5 Matrix element of the operator a2
0

Our immediate task is the analysis of a connection between
operators ω̂ and a0, as they are defined by the equations
(4.2) and (2.3), correspondingly. However as the first step
we determine the matrix element for the operator a2

0 in the
basis of parafermion coherent states (4.7). The explicit form
of this operator is given by Eq. (2.17). If one introduces the
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para-Fermi number operator of the k state (for parastatistics
p = 2)

nk = 1

2
[a+

k , a−
k ] + 1 = Nk + 1, (5.1)

then the expression (2.17) can be presented in the following
equivalent form:

a2
0 = 1 − {

(n1 − 1)2 + (n2 − 1)2}

+2(n1 − 1)2(n2 − 1)2. (5.2)

Let us determine action of the operator a2
0 on the coherent

state | ξ 〉. For this purpose, we find a rule of action of the
para-Fermi number operator nk on | ξ 〉:

nk | ξ 〉 = nk e− 1
2

∑
l [ξl , a+

l ]|0〉
= [

nk, e− 1
2

∑
l [ξl , a+

l ] ]

× |0〉 + e− 1
2

∑
l [ξl , a+

l ]nk |0〉.
Here, the last term vanishes by virtue of the definition of
vacuum state. The commutator in the first term is easily cal-
culated by using the operator identity

eXY e−X = Y + [X,Y ] + 1

2! [X, [X,Y ]]

+ 1

3! [X, [X, [X,Y ]]] + · · · (5.3)

and commutation relations (B.3) and (B.4). This commutator
equals 1

2 [a+
k , ξk ] and thus we have

nk | ξ 〉 =
(

1

2
[a+

k , ξk ]
)

| ξ 〉. (5.4)

Recall that there is no summation over repeated Latin indices.
Similar calculation for n2

k gives

n2
k | ξ 〉 =

{
1

2
[a+

k , ξk ] +
(

1

2
[a+

k , ξk ]
)2 }

| ξ 〉. (5.5)

In view of the definition (5.2), it follows from (5.4) and (5.5)
that

a2
0 | ξ 〉 =

{
1 −

2∑

k=1

[(
1

2
[a+

k , ξk ]
)2

− 1

2
[a+

k , ξk ] + 1

]

+2
2∏

k=1

[(
1

2
[a+

k , ξk ]
)2

− 1

2
[a+

k , ξk ] + 1

]}
| ξ 〉,

and thus the required matrix element has the form

〈ξ̄ ′ | a2
0 | ξ 〉 =

{
1 −

2∑

k=1

[(
1

2
[ ξ̄ ′

k , ξk ]
)2

− 1

2
[ ξ̄ ′

k , ξk ] + 1

]

+ 2
2∏

k=1

[(
1

2
[ ξ̄ ′

k , ξk ]
)2

− 1

2
[ ξ̄ ′

k , ξk ] + 1

]}

× 〈ξ̄ ′ | ξ 〉. (5.6)

We analyze the structure of this expression in more detail.
For the sake of convenience of further reasoning we introduce
the notations:

x ≡ 1

2
[ ξ̄ ′

1 , ξ1 ], y ≡ 1

2
[ ξ̄ ′

2 , ξ2 ]. (5.7)

These variables by the algebra of para-Grassmann numbers
(B.2) satisfy the following relations:

x3 = 0, y3 = 0, x y = y x . (5.8)

In terms of x and y, the matrix element (5.6) is written out
in the form of a polynomial in x and y:

〈ξ̄ ′ | a2
0 | ξ 〉

= [
1 − (x + y) + (x2 + y2) + 2x y − 2(x2y + x y2)

+2x2 y2]〈ξ̄ ′ | ξ 〉. (5.9)

Here, we state the problem of representation of the expres-
sion in the square brackets in the form of the exponential of
some function U , which we present as

U = U(x, y) = α(x + y) + β(x2 + y2) + γ x y

+δ(x2y + y2x) + ρ x2 y2, (5.10)

where α, β, γ . . . are unknown coefficients. By virtue of
algebra (5.8) we have

eU = 1 + U + 1

2! U
2 + 1

3! U
3 + 1

4! U
4, (5.11)

i.e. the power series exactly terminates with the fourth-
order term. Let us substitute (5.10) into the right-hand side
of (5.11), raise to the corresponding power with allowance
for (5.8) and collect similar terms. Equating such obtained
expression to the expression in the square brackets in (5.9),
we get an algebraic system for the unknown coefficients:

α = −1, β + 1

2
α2 = 1, γ + α2 = 2,

δ + α(β + γ ) + 1

2
α3 = −2,

ρ + 1

2
(2β2 + γ 2 + 4αδ) + α2(β + γ ) + 1

4
α4 = 2.

An unique solution of this system has the form

α = −1, β = 1

2
, γ = 1, δ = 0, ρ = −1

2

and thus

U = −(x + y) + 1

2
(x2 + y2) + xy − 1

2
x2y2

≡ −(x + y) + 1

2
(x + y)2 − 1

12
(x + y)4.

If we remember the expression for the overlap function

〈ξ̄ ′|ξ 〉 = e
1
2

∑
l [ξ̄ ′

l , ξl ] ≡ e x + y , (5.12)
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then matrix element (5.9) goes into

〈ξ̄ ′ |a2
0 | ξ 〉 = eU 〈ξ̄ ′ | ξ 〉 = e

1
2 (x + y)2 − 1

12 (x + y)4
.

In spite of a more compact form in comparison with the initial
expression (5.6), this formula is not convenient in concrete
calculations by virtue of nonlinear character in x and y of the
argument in the exponential. The form of the matrix element
〈ξ̄ ′ | a2

0 | ξ 〉 can be further simplified if we note that

e
1
2 (x + y)2 − 1

12 (x + y)4

= 1 + 1

2! (x + y)2 + 1

4! (x + y)4 ≡ cosh(x + y),

then finally we find

〈ξ̄ ′ | a2
0 | ξ 〉 = cosh

(
1

2

∑

l

[ξ̄ ′
l , ξl ]

)

. (5.13)

We return to the operator a2
0 and analyze some of its prop-

erties. By analogy with (5.7) we introduce the notations

x̂ = 1

2
[a+

1 , a−
1 ], ŷ = 1

2
[a+

2 , a−
2 ]. (5.14)

Instead of algebra (5.8), now we have the operator algebra

x̂3 = x̂, ŷ3 = ŷ, x̂ ŷ = ŷ x̂ . (5.15)

In terms of (5.14) the operator a2
0 takes the form

a2
0 = 1 − ( x̂2 + ŷ2 ) + 2 x̂2 ŷ2.

Note that this operator is self-adjoint. Taking into account
(5.15), it is not difficult to see that

(a2
0)2 = a2

0 (≡ P1),

i.e. the operator has the property of a projector. Another pro-
jector orthogonal to P1 has the obvious form

P2 ≡ 1 − a2
0 . (5.16)

It is worth pointing out that there exist one more structure
orthogonal to P1, namely,

x̂ + ŷ − ( x̂2 ŷ + x̂ ŷ2),

which, however, doesn’t possess the property of a projector.
Now we consider the problem of defining an explicit form

of the resolvent of the operator a2
0 , i.e. of the operator (a2

0 −
λ)−1. For this purpose, we analyze the following equation:

(a2
0 − λ)(Û + μ) = 1̂, (5.17)

where μ is unknown constant, and operator Û is defined by
expression (5.10) with the replacements x → x̂, y → ŷ.
Equation (5.17) with algebra (5.15) results in a simple system
of algebraic equations for the unknown coefficients in (5.10)

μ(1 − λ) = 1, α = 0, μ + λβ = 0, γ (1 − λ) = 0,

α + δ (1 − λ) = 0, ρ + 2β + 2μ − λρ = 0,

whose solution is

μ = 1

1 − λ
, β = − 1

λ(1 − λ)
, ρ = 2

λ(1 − λ)
,

α = δ = γ = 0.

Hence, the resolvent of the operator a2
0 has the form

Rλ = 1

1 − λ

{
1̂ − 1

λ
(1 − a2

0 )

}
.

The resolvent is defined for all values of the parameter
λ with the exception of two points: 0 and 1, i.e. the spec-
trum is σ(a2

0) = {0, 1}. In particular, it immediately follows
that the operator a2

0 is irreversible. Further, we can define an
arbitrary analytic function of a2

0 using for this purpose the
representation [50]

ϕ(a2
0) = − 1

2π i

∮

�
a2

0

ϕ(λ)Rλ(a
2
0)dλ,

where the contour �a2
0

surrounds the spectrum σ(a2
0). We are

interested in the special case of choosing the function ϕ

ϕ(λ) = √
λ,

then

a0 = − 1

2π i

∮

�
a2

0

√
λ

1 − λ

{
1̂ − 1

λ
(1 − a2

0)

}
dλ, (5.18)

i.e. formally we have the expression for the operator a0,
which enters into the commutation relations (2.7)–(2.11) and
in the condition (2.14) on the vacuum state vector |0〉. By the
spectral mapping theorem [50] the spectrum of this operator
is σ(a0) = [σ(a2

0)]1/2 = {0, ±1}.
Let us rewrite expression (5.18) in a somewhat different

form

a0 = 1

2π i

∮

�
a2

0

dλ√
λ

1̂

+
{
− 1

2π i

∮

�
a2

0

dλ√
λ

+ 1

2π i

∮

�
a2

0

√
λ dλ

λ − 1

}
a2

0 . (5.19)

In the next section we examine the question of action of the
operator a0 on state vectors of the system under considera-
tion. Here, we consider only action on the ground state. It
follows from the expression (5.2) that

a2
0 |0〉 = |0〉, (5.20)

and the condition (2.14) for p = 2 yields

a0|0〉 = ±| 0〉. (5.21)
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On the other hand from the representation (5.19) by virtue of
(5.20) it follows that

a0|0〉 =
(

1

2π i

∮

�
a2

0

√
λ dλ

λ − 1

)
| 0〉.

Hence, uncertainty in the sign in the condition (5.21) is con-
nected with twovaluedness of the function λ1/2 in the domain
of 0 < | λ| < ∞. Indeed, let us consider the contour �a2

0
consisting of the circle |λ| = 2 and the segments [−2, 0]
and [0,−2], which lie on the upper and lower banks, respec-
tively. The function

√
λ splits in the domain into two regular

branches, g1(λ) and g2(λ). This means that the integrand
splits into two regular branches, f1(λ) = g1(λ)/(λ − 1) and
f2(λ) = g2(λ)/(λ−1). Let g1(λ) be the branch of the root on
which g1(1) = 1, then g2(1) = −1. Each function f1,2(λ) is
regular in the domain being considered except at point λ = 1,
which is a simple pole. By the residue theorem we have

1

2π i

∮

�
a2

0

√
λ dλ

λ − 1
= ±1. (5.22)

6 Operator a0

We turn now to the to construction of an explicit form of the
operator a0 in terms of the parafermion creation and annihi-
lation operators a±

k . For convenience of further reference we
write out all independent state vectors spanned by the oper-
ators a±

k . In our case, when M = 2 according to Chernikov
[10] the number of these state vectors equals C2

5 = 10, and
the number of para-Fermi particles in each state is

n0 = C0
2C

0
2 = 1, n1 = C1

2C
0
2 = 2, n2 = C1

2C
1
2 = 4,

n3 = C2
2C

1
2 = 2, n4 = C2

2C
2
2 = 1.

These states are

|0〉,
|1〉 ≡ a+

1 |0〉, |2〉 ≡ a+
2 |0〉,

|11〉 ≡ (a+
1 )2|0〉, |22〉 ≡ (a+

2 )2|0〉,
|12〉 ≡ a+

1 a+
2 |0〉, |21〉 ≡ a+

2 a+
1 |0〉,

|112〉 ≡ (a+
1 )2a+

2 |0〉, |221〉 ≡ (a+
2 )2a+

1 |0〉,
|1122〉 ≡ (a+

1 )2(a+
2 )2|0〉.

(6.1)

All the remaining states are a consequence of (6.1) by virtue
of algebra2 (4.4)–(4.6). The states (6.1) can be written in so-
called standard form [51–54] (see also [55]), however, we
will not do so. We restrict oneself to consideration of the

2 In particular, one has

|121〉 = |212〉 = 0, |211〉 = −|112〉, |221〉 = −|122〉,
|2211〉 = |1122〉 = −|2112〉 = −|1221〉.

simple representation (6.1) of the parastatistical Fock space.
In addition, we write out the norms of the state vectors

〈0 |0〉 = 1, 〈l |k〉 = 2δkl , 〈lk |mn〉 = 22δkm δln,

〈lkk |kkl 〉 = 23(1 − δkl), 〈llkk |kkll 〉 = 24(1 − δkl).

By virtue of the definition (5.2) we immediately obtain

a2
0 |0〉 = | 0〉, a2

0 |k〉 = 0,

a2
0 |kk〉 = |kk〉, a2

0 |kkl 〉 = 0,

a2
0 |kl 〉 = |kl 〉,

a2
0 |kkll 〉 = |kkll 〉, k �= l, k, l = 1, 2,

(6.2)

i.e. the operator a2
0 turns into zero the states with an odd

number of parafermions.
Further we define the rules of an action of the operator a0

on the state vectors (6.1). For definiteness we fix the positive
sign in formula (2.14), i.e. we set

a0|0〉 = |0〉. (6.3)

Then from general relations (2.15) with allowance for the
algebra (4.4)–(4.6) it follows that

a0|1〉 = a0|2〉 = 0, (6.4)

a0|11〉 = −|11〉, a0|22〉 = −|22〉, (6.5)

a0|12〉 = −|21〉, a0|21〉 = −|12〉, (6.6)

a0|112〉 = a0|221〉 = 0, (6.7)

a0|1122〉 = |1122〉. (6.8)

The operator a0 similar to the operator a2
0 turns into zero

states with an odd number of parafermions. The signs on the
right-hand side (6.5), (6.6) and (6.8) are connected with a
choice of the sign in (2.14). The relations (6.6) are of special
interest. Two different states |12〉 and |21〉 are orthogonal
to each other and contain the same number of parafermions
of sorts 1 and 2, i.e. the two-particle system has a two-fold
degeneracy. The operator a0 correct to a sign changes one
state to another.

From the other hand, if we act by the operator a0 in the
representation (5.19) on the state vectors (6.1), then in view
of (6.2) for the states with an odd number of paraparticles we
have

a0|k〉 =
(

1

2π i

∮

�
a2

0

dλ

λ1/2

)
|k〉,

a0|kkl 〉 =
(

1

2π i

∮

�
a2

0

dλ

λ1/2

)
|kkl 〉, k �= l

and for states with an even number of paraparticles we get

a0|kk〉 =
(

1

2π i

∮

�
a2

0

λ1/2 dλ

λ − 1

)
|kk〉,
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a0|kl 〉 =
(

1

2π i

∮

�
a2

0

λ1/2 dλ

λ − 1

)
|kl 〉,

a0|kkll 〉 =
(

1

2π i

∮

�
a2

0

λ1/2 dλ

λ − 1

)
|kkll 〉.

If we fix the positive branch in the integral (5.22)

1

2π i

∮

�
a2

0

λ1/2 dλ

λ − 1
= +1

for consistency with our choice of the sign in (6.3), and
besides simply set for the second3 integral

1

2π i

∮

�
a2

0

dλ

λ1/2 = 0,

then we reproduce relations (6.3), (6.4), (6.7) and (6.8). How-
ever, differences in the signs for (6.5), and most importantly,
complete disagreement with (6.6), take place. The possible
reason for this lies in the fact that the expression for the oper-
ator a2

0 , Eq. (5.2), suggested by Geyer [22] is not likely to be
the square of the operator a0, i.e. in other words,

(a2
0)1/2 �= a0,

and thus the representation (5.18) is not correct. This delicate
matter will be discussed in detail in the subsequent sections.

In the remainder of this section we consider approach to
defining an explicit form of the operator a0 based on making
use of the generators Lkl , Mkl and Nkl of the group SO(2M)

as they are defined in Appendix E, Eq. (E.1). In the special
case M = 2 we have the following components of these
generators different from zero:

L12 = 1

2
[a+

1 , a+
2 ], M12 = 1

2
[a−

1 , a−
2 ],

N12 = 1

2
[a+

1 , a−
2 ], N21 = 1

2
[a+

2 , a−
1 ],

N1 = 1

2
[a+

1 , a−
1 ], N 2 = 1

2
[a+

2 , a−
2 ]

(6.9)

and the general commutation relations (E.2) take a simple
form

3 This integral is badly defined since one of points of the spectrum
σ(a2

0) is the branch point for the function λ1/2. It can be trivially esti-
mated as follows. As the contour �a2

0
we take the circle CR : |λ| = R.

Further, we set λ = Reiϕ and therefore dλ = i Reiϕdϕ, λ1/2 =
R1/2ei ϕ/2+iπn, n = 0, 1. Purely formal calculation results in the
expression

∮

|λ|=R

dλ

λ1/2 = i
√
R

2π∫

0

eiϕ/2−iπndϕ = −4
√
R e−iπn,

which vanishes only in the limit R → 0.

[N12, N21 ] = N1 − N2,

[L12, M12 ] = −(N1 + N2), (6.10)

[L12, N12 ] = [L12, M21 ] = 0,

[M12, N12 ] = [N12, M21 ] = 0,

[L12, N1 ] = −L12, [L12, N2 ] = −L12,

[M12, N1 ] = M12, [M12, N2 ] = M12,

[N12, N1 ] = −N12, [N12, N2 ] = N12,

[N21, N1 ] = −N21, [N21, N2 ] = N21. (6.11)

By using the definition (6.9) and the algebra (4.4)–(4.6) it is
easy to check the validity of the following relations:

L12M12|12〉 = M12L12|12〉 = |21〉 − |12〉,
L12M12|21〉 = M12L12|21〉 = |12〉 − |21〉
and, correspondingly,

N12N21|12〉 = N21N12|12〉 = |12〉 + |21〉,
N21N12|21〉 = N12N21|21〉 = |12〉 + |21〉.
If one accepts that the operator a0 has the following structure:

a0 ∼ −1

4

({L12, M12} + {N12, N21}), (6.12)

then we obtain

a0|12〉 = −|21〉, a0|21〉 = −|12〉. (6.13)

By doing so, we reproduce equality (6.6). However, the action
of the operator (6.12) on vacuum state vector gives us

a0|0〉 = 1

2
|0〉 (6.14)

that is in contradiction with (6.3). To determine the action
of the operator (6.12) on the other state vectors, we need the
rules of commutation of the group generators (6.9) with the
operators a±

k . These rules follow from general relations (E.3)
for M = 2:

[a−
k , L12 ] = δk1a

+
2 − δk2a

+
1 , [a−

k , M12 ] = 0,

[a+
k , M12 ] = δk1a

−
2 − δk2a

−
1 , [a+

k , L12 ] = 0,

[a−
k , N12 ] = δk1a

−
2 , [a+

k , N12 ] = −δk2a
+
1 ,

[a−
k , N21 ] = δk2a

−
1 , [a+

k , N21 ] = −δk1a
+
2 ,

[a−
l , Nk ] = δkl a

−
l , [a+

l , Nk ] = −δkl a
+
l .

(6.15)

Based on these relations and the rules of action on the vacuum
state (6.14), it is not difficult to obtain for (6.12)

a0|1〉 = a0|2〉 = 0, a0|112〉 = 0,

a0|11〉 = −1

2
|11〉, a0|221〉 = 0,

a0|22〉 = −1

2
|22〉, a0|1122〉 = 1

2
|1122〉.

(6.16)

Here, we also observe appearance of undesirable factor 1
2 on

the right-hand side as it takes place in (6.14).
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Let us take, instead of (6.12), the operator

a0 = −1

4

({L12, M12} + {N12, N21}) +U (N1, N2).

We choose an operator functionU (N1, N2) ≡ U (n1−1, n2−
1) so that the operator a0 would reproduce correctly relations
(6.14) and (6.16), while retaining (6.13). As a general expres-
sion forU one takes (5.10) with the replacements x → n1−1
and y → n2 − 1. We obtain the following system of linear
algebraic equations for the unknown coefficients in (5.10):

|0〉 : U (−1, −1) = −2α + 2β + γ − 2δ + ρ = 1

2
,

|1〉, |2〉 : U (0, −1) = U (−1, 0) = −α + β = 0,

|11〉, |22〉 : U (1, −1) = U (−1, 1) = 2β − γ + ρ = −1

2
,

|12〉, |21〉 : U (0, 0) ≡ 0,

|112〉, |221〉 : U (1, 0) = U (0, 1) = α + β = 0,

|1122〉 : U (1, 1) = 2α + 2β + γ + 2δ + ρ = 1

2
.

The solution of this system is

α = β = δ = ρ = 0, γ = 1

2
,

and therefore, the desired operator function U has the form

U (N1, N2) = 1

2
N1N2 ≡ 1

4
{N1, N2}.

Thus, the operator a0 as a function of the generators (6.9),
correctly reproducing the relations (6.3)–(6.8), is of the fol-
lowing final structure:

a0 = −1

4

({L12, M12} + {N12, N21} − {N1, N2 }). (6.17)

In closing this section let us define a connection between
the operators a0 and ω̂. We rewrite the expression for ω̂,
Eq. (4.2), in an equivalent form:

ω̂ =
(

1

4

)2

εμνλσ [β̂μ, β̂ν ][β̂λ, β̂σ ]

= 1

4

({[β̂1, β̂2 ], [β̂3, β̂4 ]} + [β̂1, β̂4 ], [β̂2, β̂3 ]}

−[β̂1, β̂3 ], [β̂2, β̂4 ]}
)
. (6.18)

Further, we write down the expression in the last two lines in
terms of the creation and annihilation operators by using the
connection (4.3) and the definitions (6.9). It is easy to show
that the following relations hold:

[β̂1, β̂2 ] = i N1, [β̂3, β̂4 ] = i N2,

[β̂1, β̂4 ] = 1

2i

[
(L12 − M12) − (N12 + N21)

]
,

[β̂2, β̂3 ] = 1

2i

[
(L12 − M12) + (N12 + N21)

]
,

[β̂1, β̂3 ] = 1

2

[
(L12 + M12) + (N12 − N21)

]
,

[β̂2, β̂4 ] = −1

2

[
(L12 + M12) − (N12 − N21)

]
.

Substituting these expressions into (6.18), we obtain an
explicit form of the operator ω̂ in terms of generators of the
orthogonal group SO(4)

ω̂ = 1

4

({L12, M12 } + {N12, N21} − {N1, N2 }). (6.19)

Comparing (6.19) with (6.17), we get the desired relation
between the operators ω̂ and a0

ω̂ = −a0. (6.20)

The minus sign on the right-hand side is caused by the choice
of the sign in (2.14). Let us make a comment with regard to
an arbitrariness of a sign on the right-hand side of the relation
(2.14). In the paper by Kemmer [5] the complete list of the
algebraically inequivalent irreducible matrix representations
of the DKP-algebra (3.1) for the case of an arbitrary number
of elements βμ is established and ranks of the representations
is defined (see also Fujiwara [7]). An interesting feature for
the case of an odd number of the βμ is appearing so-called
twin representations. In more exact terms, for any odd num-
ber 2M + 1 of the elements βμ there are two representations
of the same rank as the highest ranked representation for 2M .
As the matrix β2M+1 of the DKP-algebra with odd number
of elements βμ one takes matrix β2M+1 = ±ω, where ω is
defined by expression (3.2). Therefore, we have two alterna-
tives that are algebraically inequivalent. In the case M = 2,
which is interesting from the physical point of view, in the
situation when we have five elements βμ, the twin represen-
tations consist of the matrices of the representation of rank
10 for μ = 1, 2, 3, 4 and the fifth matrix β5 equals

β5 = ±ω, (6.21)

where now the matrix ω is defined by the expression (6.18).
Thus, by virtue of the relation (6.20), uncertainty in a sign
in (2.14) for the particular case p = 2 and M = 2 in view
of (6.21) can be associated with the existence of the twin
representations of rank 10 in the DKP-algebra.

Further, the relation (2.14) is true for an arbitrary order
of parastatistics p that hint at the fact that the twin repre-
sentations could exist not only in the DKP-algebra but also
in the higher-order algebras describing the particles with the
spin greater than 1. The Bhabha–Madhavarao algebras for
the spins 3/2 and 2 [41,56,57] could serve as an example of
such algebras.

Now we can extend the algebra (4.4)–(4.6) for the para-
Fermi operators a±

k of order p = 2 by incorporating the
operator a0. From the relations (A.1)–(A.5) in view of the
relationship (6.20) we have

a3
0 = a0, (6.22a)

a0 a
±
k a0 = 0, (6.22b)

a2
0 a

±
k + a±

k a
2
0 = a±

k , (6.22c)
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a±
k a

∓
ma0 + a0 a

∓
ma

±
k = 2δkma0 , (6.22d)

a±
k a

±
ma0 + a0 a

±
ma

±
k = 0, (6.22e)

a±
k a0 a

±
m + a±

ma0 a
±
k = 0, (6.22f)

a±
k a0 a

∓
m + a∓

ma0 a
±
k = 0. (6.22g)

Nevertheless, we note that with respect to the operator rela-
tion (6.22c) in Sect. 20 as well as with respect to the matrix
relation (A.3) we will have an important refinement.

7 Matrix element of the operator a0

Given an explicit form of the operator a0, Eq. (6.17), we
can define its matrix element in the basis of the para-Fermi
coherent states. We need this matrix element, in particular
for determining the matrix element of the operator Â, which
we present in two forms:

Â = α
[
Î −

( i
√

3

2

)
a0 − 3

2
a2

0

]
, (7.1a)

Â = α
[
Î −

( i
√

3

2

)
a0 − 3

2
(a0)

2
]
. (7.1b)

Here, from the original matrix definition (3.3) we have passed
to the operator formulation and then, in accordance with
(6.20), we have perform the replacement ω̂ → −a0. We
note that in the second expression (7.1b) we write exactly
(a0)

2 ≡ a0 ·a0 to distinguish it from the symbol a2
0 , which we

keep for the notation of Geyer’s operator (2.17), and which
is used in the first expression (7.1a).

In Sect. 5 we have defined action of the operator nk =
Nk + 1 on the parafermion coherent state, Eq. (5.4). Hence it
follows that

Nk | ξ 〉 = (nk − 1)| ξ 〉 =
(

1

2
[a+

k , ξk ] − 1

)
| ξ 〉. (7.2)

Let us consider action of the product N2N1 on the coherent
state

N2N1| ξ 〉 = (n2 − 1)

(
1

2
[a+

1 , ξ1 ] − 1

)
| ξ 〉

= 1

2
[n2, [a+

1 , ξ1 ]]| ξ 〉 +
(

1

2
[a+

1 , ξ1 ] − 1

)

×
(

1

2
[a+

2 , ξ2 ] − 1

)
| ξ 〉.

By using the commutation rules (2.4) and (B.3) it is not dif-
ficult to show that the double commutator on the right-hand
side vanishes, and consequently we have

{N1, N2}| ξ 〉 =
{( 1

2
[a+

1 , ξ1 ] − 1
)
,
( 1

2
[a+

2 , ξ2 ] − 1
)}

| ξ 〉,

and matrix element for the anticommutator is

〈ξ̄ ′ | {N1, N2}| ξ 〉 = 2

(
1

2
[ ξ̄ ′

1 , ξ1 ] − 1

)(
1

2
[ ξ̄ ′

2 , ξ2 ] − 1

)

×〈ξ̄ ′ | ξ 〉. (7.3)

Further we consider the operator expression {L12, M12},
which with the help of the second expression in (6.10), can
be presented as

{L12, M12} = 2L12M12 + N1 + N2.

Recalling the definition of the operators L12 and M12,
Eq. (6.9), taking into account the relation (7.2), it is easy
to obtain the matrix element for the first anticommutator in
(6.17)

〈ξ̄ ′ | {L12, M12}| ξ 〉
=

{
2

(
1

2
[ ξ̄ ′

1 , ξ̄ ′
2 ]

)(
1

2
[ξ1, ξ2 ]

)
+

(
1

2
[ ξ̄ ′

1 , ξ1 ] − 1

)

+
(

1

2
[ ξ̄ ′

2 , ξ2 ] − 1
)}

〈ξ̄ ′ | ξ 〉. (7.4)

It remains for us only to define matrix element for the
anticommutator {N12, N21}. Action of the generator N21 on
the coherent state is defined as

N21| ξ 〉 = [
N21, e− 1

2 [ξ , a+] ]|0〉 + e− 1
2 [ξ , a+] N21 |0〉.

By virtue of the uniqueness conditions for the vacuum state
(2.12) and (2.13) we have N21| 0〉 = 0 and therefore here, the
last term vanishes. Taking into account the operator identity
(5.3) and commutation rule (B.3), we obtain for the first term

[
N21, e− 1

2 [ξ , a+] ] = [a+
2 , ξ1 ] e− 1

2 [ξ , a+]

and thus we have

N21| ξ 〉 =
(

1

2
[a+

2 , ξ1 ]
)

| ξ 〉,

N12| ξ 〉 =
(

1

2
[a+

1 , ξ2 ]
)

| ξ 〉. (7.5)

Hence we get

N12N21| ξ 〉 = 1

2

[
N12, [a+

2 , ξ1 ]]| ξ 〉

+
( 1

2
[a+

2 , ξ1 ]
)
N12| ξ 〉.

Here, for computing the double commutator we use the
Jacobi identity and commutation rules (2.4), (B.3):

[N12, [a+
2 , ξ1 ]] = 1

2
[[a+

1 , a−
2 ], [a+

2 , ξ1 ]]

= −1

2
[a+

2 , [ξ1 , [a+
1 , a−

2 ]]]

−1

2
[ξ1 , [[a+

1 , a−
2 ], a+

2 ]]
= −[ξ1 , a+

1 ],
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and therefore

N12N21| ξ 〉
=

{(
1

2
[a+

2 , ξ1 ]
)(

1

2
[a+

1 , ξ2 ]
)

+
(

1

2
[a+

1 , ξ1 ]
)}

| ξ 〉.

By analogy, we have

N21N12| ξ 〉
=

{(
1

2
[a+

1 , ξ2 ]
)(

1

2
[a+

2 , ξ1 ]
)

+
(

1

2
[a+

2 , ξ2 ]
)}

| ξ 〉.

Using the expressions obtained, we define the matrix element
for the anticommutator {N12, N21}:
〈ξ̄ ′ | {N12, N21}| ξ 〉

=
{

2

(
1

2
[ ξ̄ ′

1 , ξ2 ]
)(

1

2
[ ξ̄ ′

2 , ξ1 ]
)

+
(

1

2
[ ξ̄ ′

1 , ξ1 ]
)

+
(

1

2
[ ξ̄ ′

2 , ξ2 ]
)}

〈ξ̄ ′ | ξ 〉. (7.6)

With allowance made for the expressions (7.3), (7.4) and
(7.6), the desired matrix element of the operator a0 takes the
following form:

〈ξ̄ ′ | a0| ξ 〉 = −1

2

{(
1

2
[ ξ̄ ′

1 , ξ̄ ′
2 ]

)(
1

2
[ξ1, ξ2 ]

)

+
(

1

2
[ ξ̄ ′

1 , ξ2 ]
)(

1

2
[ ξ̄ ′

2 , ξ1 ]
)

−
(

1

2
[ ξ̄ ′

1 , ξ1 ]
)(

1

2
[ ξ̄ ′

2 , ξ2 ]
)

+ 2

(
1

2
[ ξ̄ ′

1 , ξ1 ] + 1

2
[ ξ̄ ′

2 , ξ2 ] − 1

)}
〈ξ̄ ′ | ξ 〉.

(7.7)

This matrix element along with the matrix element for the
operator a2

0 , Eq. (5.6), enables us to fully define the matrix
element of the operator Â as it was defined by the expression
(7.1a).

In closing this section let us consider an indirect proof
of the operator relation (6.22a) for our presentation (6.17).
Matrix element of this relation can be presented as follows:

〈ξ̄ ′ | a0| ξ 〉 = 〈ξ̄ ′ | a3
0 | ξ 〉

=
∫

〈ξ̄ ′ | a0| ζ 〉〈ζ̄ | a2
0 | ξ 〉

× e− 1
2 [ ζ̄ , ζ ]

(dζ )2 (d ζ̄ )2. (7.8)

Here, we have used the completeness relation (4.9). For the
matrix element of the operator a2

0 it is convenient to use the
representation (5.13), then

〈ζ̄ | a2
0 | ξ 〉 e− 1

2 [ ζ̄ , ζ ]

= 1

2

(
e

1
2 [ ζ̄ , ξ − ζ ] + e− 1

2 [ ζ̄ , ξ + ζ ])
.

Substituting the last expression into (7.8) and taking into
account the definition of the para-Grassmann delta-function
∫

e
1
2 [ ζ̄ , ξ − ζ ]

(d ζ̄ )2 = δ(ξ − ζ ), (7.9)

where for the special case, p = 2,

δ(ξ − ζ ) ≡
2∏

j =1

δ(ξ j − ζ j ),

δ(ξ j − ζ j ) = 1

i2 2! (ξ j − ζ j )
2, (7.10)

instead of (7.8), we obtain

〈ξ̄ ′ | a0 | ξ 〉 = 1

2

[
〈 ξ̄ ′ | a0 | ξ 〉 + 〈ξ̄ ′ | a0 |−ξ 〉

]
.

Thereby, in order that the preceding expression turns into
identity, the following equality must be true

〈ξ̄ ′ | a0 | −ξ 〉 = 〈 ξ̄ ′ | a0 | ξ 〉. (7.11)

By virtue of (7.7), the matrix element on the left-hand side
has the following form:

〈ξ̄ ′ | a0 | −ξ 〉 = −1

2

{(
1

2
[ ξ̄ ′

1 , ξ̄ ′
2 ]

)(
1

2
[ξ1, ξ2 ]

)

+
(

1

2
[ ξ̄ ′

1 , ξ2 ]
)(

1

2
[ ξ̄ ′

2 , ξ1 ]
)

−
(

1

2
[ ξ̄ ′

1 , ξ1 ]
)(

1

2
[ ξ̄ ′

2 , ξ2 ]
)

− 2

(
1

2
[ ξ̄ ′

1 , ξ1 ] + 1

2
[ ξ̄ ′

2 , ξ2 ] + 1

)}

× 〈ξ̄ ′ | −ξ 〉.
We see that the sign of terms linear in commutators and in the
overlap function, has changed. It is not at all obvious that the
equality (7.11) will take place. The proof of (7.11) is given
in the Appendix F.

8 Connection between the operators ω̂2 and a2
0

In Sect. 6 we have defined a connection between the operators
ω̂ and a0. Recall that the first of these operators arises nat-
urally within the framework of the Duffin–Kemmer–Petiau
formalism, whereas the second one enters into a generating
set of the orthogonal group SO(2M + 2). In this section, we
would like to analyse independently a connection between
the operators ω̂2 and a2

0 . According to conclusions of Sect. 6
the operator a2

0 introduced by Geyer [22] generally speaking,
is not the square of the operator a0 at least in the form given
by expression (6.17).

In view of the general formula (67) from Harish-Chandra’s
paper [6] for M = 2 we have the representation for the
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squared matrix ω2:

ω2 = 1

4

∑

(P)

β2
μ4

β2
μ2

(1 − β2
μ3

)(1 − β2
μ1

),

where the indices μ1, μ2, μ3 and μ4 are all different and∑
(P) denotes a sum over all permutations (1, 2, 3, 4). Let

us rewrite this expression in terms of Kemmer’s matrices
[2,5]

ημ = 2β2
μ − 1 (8.1)

possessing the properties

η2
μ = 1, ημην = ηνημ, (8.2)

then

ω2 = 1

43

∑

(P)

(1 + ημ4)(1 + ημ2)(1 − ημ3)(1 − ημ1). (8.3)

In view of (8.2), the sum on the right-hand side of (8.3) can
be presented in the following form:

4! (1 + η5) − 8 [ημ1ημ2 + ημ1ημ3 + ημ1ημ4

+ημ2ημ3 + ημ2ημ4 + ημ3ημ4 ] ≡ 4! (1 + η5)

+4
[
4 − (ημ1 + ημ2 + ημ3 + ημ4)

2], (8.4)

where

η5 = η1η2η3η4 (8.5)

with the property

η5ημ = ημη5.

On the other hand, for the square of the sum ημi in (8.4), by
virtue of the definition (8.1), we obtain

( 4∑

i=1

ημi

)2

=
(

2
4∑

i=1

β2
μi

− 4

)2

≡ (2B − 4)2

= (2 − 2ω2 )2 = 4 (1 − ω2). (8.6)

Here, we have used the definition of the matrix B in
Appendix A, the formula (A.6) for M = 2, and the prop-
erty (A.1).

Substituting (8.6) into (8.4) and further into (8.3), we
obtain finally

ω2 = 1

2
(1 + η5). (8.7)

It must be especially noted that we have not seen anywhere in
literature such simple relation between the matrices ω and η5.
The most intriguing thing here is that two quantities entering
into the relation have a rather different physical meaning.
This difference has so clearly underlined in the paper by
Krajcik and Nieto [58]. The matrix

ω = 1

4
εμνλσ βμβν βλβσ

plays a role of the “pseudoscalar operator” used in pseu-
doscalar coupling (in the Dirac theory analog of this matrix is
(1/4!)εμνλσ γμγνγλγσ ) while the matrix η5, Eq. (8.5), plays a
role of CPT operator in the DKP theory (in the Dirac theory
its analog is the matrix γ5 = γ1γ2γ3γ4 ). In the Dirac case the
pseudoscalar andCPT operators are the same operator γ5 by
virtue of the purely algebraic peculiarities of the γ -matrices.
However, in the DKP theory ω �= η5, and the relation (8.7)
shows us how these two different operators correlate among
themselves.

Note, moreover, that relation (8.7) correctly reproduces
formula (A.3) by virtue of the property {η5, βμ} = 0.

Now we turn to the consideration of the operator a2
0 as it

was defined by Geyer. Here, we give once again its explicit
form

a2
0 = 1 − [

(N1)
2 + (N2)

2] + 2 (N1)
2(N2)

2, (8.8)

where, we recall that Nk = 1
2 [a+

k , a−
k ]. Let us rewrite the

operator a2
0 in terms of the operators η̂μ as they follows from

the matrix definition (8.1). By virtue of the representation
(4.3), we have

[a+
1 , a−

1 ] = −2i [ β̂1, β̂2 ], [a+
2 , a−

2 ] = −2i [ β̂3, β̂4 ]
and therefore, due to the DKP operator algebra (4.1) and the
properties (8.2), we derive

(N1)
2 = −[ β̂1, β̂2 ]2 = (1 − β̂2

2 )β̂ 2
1 + (1 − β̂ 2

1 )β̂ 2
2

= 1

4

[
(1 − η̂2)(1 + η̂1) + (1 − η̂1)(1 + η̂2)

]

= 1

2
(1 − η̂1 η̂2) (8.9)

and similar we get

(N2)
2 = 1

2
(1 − η̂3 η̂4). (8.10)

Substituting the obtained expressions (8.9) and (8.10) into
(8.8), we define a connection between the operators a2

0 and
η̂5:

a2
0 = 1

2
(1 + η̂5). (8.11)

Comparing this expression with (8.7), we can conclude that

ω̂ 2 = a2
0 . (8.12)

However, as it will be shown further, the operator relation
(8.12) is true only in a some limited sense, and within the
framework of our problem it is not correct and requires a
principle improvement that will be done in Sect. 16. For
ease of reading, hereafter the operator ω̂2 will be named the
Harish-Chandra operator and the operator a2

0 will the Geyer
operator.
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9 Another representation for the Geyer operator a2
0

In this section we establish a connection between the operator
a2

0 and the parafermion number counter (−1)n , where

n = n1 + n2. (9.1)

We begin our consideration with a reminder of how a similar
connection arises for parastatistics p = 1, i.e. in the Dirac
theory and then we extend it to the case p = 2. In usual
Fermi statistics the operator Nk = 1

2 [a+
k , a−

k ] satisfies the
condition

N 2
k = 1

4
, k = 1, 2, (9.2)

by virtue of {a+
k , a−

k } = 1 and (a±
k )2 = 0. Further we intro-

duce the operator

(−1)N1+N2 ≡ eiπ (N1+N2)

= 1 + iπ (N1 + N2)

+ 1

2! (iπ)2(N1 + N2)
2

+ 1

3! (iπ)3(N1 + N2)
3 + · · · . (9.3)

By straightforward calculation using the condition (9.2), it is
not difficult to verify a validity of the relations

(N1 + N2)
2s+1 = N1 + N2,

(N1 + N2)
2s = 1

2
+ 2N1N2, s = 0, 1, 2, . . . (9.4)

and therefore we can write

(−1)N1+N2 = 1 +
(
iπ + 1

3! (iπ)3 + · · ·
)(

N1 + N2
)

+
(

1

2! (iπ)2 + 1

4! (iπ)4 + · · ·
)

(
1

2
+ 2N1N2

)
= 1 + i sin π

(
N1 + N2

)

+(cos π − 1)

(
1

2
+ 2N1N2

)

= −4N1N2 = −2a0.

Here, at the last step we have taken into account the relation
(2.16). On the other hand, for p = 1 we have

2a0 ≡ γ̂5 = i 2 γ̂1 γ̂2 γ̂3 γ̂4.

If we introduce the fermion number operators for particles
of the kind k

nk = Nk + 1

2
,

then in terms of (9.1) we derive finally

(−1)n = 2a0 = (2n1 − 1)(2n2 − 1). (9.5)

By doing so we reproduce the expression given in the paper
by Dilkes, McKeon and Schubert [59] (see also D’Hoker and
Gagné [60]).

Now we turn to the case of parastatistics p = 2. Here,
instead of the condition (9.2) we have

N 3
k = Nk . (9.6)

As in the case of (9.4), we perform an analysis separately for
even and odd powers of the sum N1 +N2. By using (9.6) it is
easy to obtain the explicit expressions for the first few even
powers, which we write as follows:

(N1 + N2)
2 = N 2

1 + N 2
2 − 2N 2

1 N
2
2 + 2

(
N1N2 + N 2

1 N
2
2

)
,

(N1 + N2)
4 = N 2

1 + N 2
2 − 2N 2

1 N
2
2 + 8

(
N1N2 + N 2

1 N
2
2

)
,

(N1 + N2)
6 = N 2

1 + N 2
2 − 2N 2

1 N
2
2 + 32

(
N1N2 + N 2

1 N
2
2

)
,

(N1 + N2)
8 = N 2

1 + N 2
2 − 2N 2

1 N
2
2 + 128

(
N1N2 + N 2

1 N
2
2

)
.

It is not difficult to define a general form of the coefficient of
the last term on the right-hand side if one notes that for the
power 4 we have

1∑

k=0

C 2k+1
4 = C1

4 + C 3
4 = 8,

for the power 6 we have

2∑

k=0

C 2k+1
6 = C1

6 + C 3
6 = 32

etc. Here Ck
n are the binomial coefficients. By this means we

have

(N1 + N2)
2n = N 2

1 + N 2
2 − 2N 2

1 N
2
2

+
(

n−1∑

k=0

C 2k+1
2n

)
(
N1N2 + N 2

1 N
2
2

)
, (9.7)

where n = 1, 2, 3, . . . . By using formula for the sum of the
binomial coefficients from Prudnikov et al. [61], finally we
define

n−1∑

k=0

C 2k+1
2n = 22n−1. (9.8)

Now we consider odd powers. The first three nontrivial
terms can be reduced to the following form:

(N1 + N2)
3 = N1 + N2 + 3

(
N 2

1 N2 + N1 N
2
2

)
,

(N1 + N2)
5 = N1 + N2 + 15

(
N 2

1 N2 + N1 N
2
2

)
,

(N1 + N2)
7 = N1 + N2 + 63

(
N 2

1 N2 + N1 N
2
2

)
.

(9.9)

The coefficient before the last term on the right-hand side for
an arbitrary odd power 2n + 1 equals a sum of all binomial
coefficients (with the exception of the first and the last those)

123



 1153 Page 16 of 47 Eur. Phys. J. C          (2020) 80:1153 

divided by 2, i.e.

1

2

(
2n+1∑

k=0

C k
2n+1 − C 0

2n+1 − C 2n+1
2n+1

)

= 22n − 1, n ≥ 1.

It is easy to check that this formula correctly reproduces the
coefficients in (9.9) and thus we get

(N1 + N2)
2n+1 = N1 + N2 + (22n − 1)

(
N 2

1 N2 + N1 N
2
2

)
. (9.10)

We turn to the general expansion (9.3), which can be
rewritten for the case under consideration as follows:

(−1)N1+N2 = eiπ (N1+N2)

≡ cos
[
π
(
N1 + N2

)] + i sin
[
π
(
N1 + N2

)]

=
∞∑

n=0

(−1)n

(2n)!
[
π
(
N1 + N2

)]2n

+i
∞∑

n=0

(−1)n

(2n + 1)!
[
π
(
N1 + N2

)]2n+1
.

(9.11)

Let us substitute the above expressions (9.7), (9.8) and (9.10)
into (9.11). Then for the sum of even powers we obtain

1 + (
N 2

1 + N 2
2 − 2N 2

1 N
2
2

)
( ∞∑

n=0

(−1)n

(2n)! π2n

)

+(
N1N2 + N 2

1 N
2
2

)1

2

( ∞∑

n=0

(−1)n

(2n)! (2π)2n

)

= 1 + (
N 2

1 + N 2
2 − 2N 2

1 N
2
2

)
(cos π − 1)

+(
N1N2 + N 2

1 N
2
2

)
(cos 2π − 1)

= 1 − 2
(
N 2

1 + N 2
2 − 2N 2

1 N
2
2

)

and we get a similar expression for the sum of odd powers:

(
N1 + N2

)
( ∞∑

n=0

(−1)n

(2n + 1)! π2n+1

)

+ (
N 2

1 N2 + N1 N
2
2

)

×
{

1

2

( ∞∑

n=0

(−1)n

(2n + 1)! (2π)2n+1

)

−
( ∞∑

n=0

(−1)n

(2n + 1)! π2n+1

)}

= (
N1 + N2

)
sin π + (

N 2
1 N2 + N1 N

2
2

) ( 1

2
sin 2π − sin π

)

= 0.

Certainly, vanishing the contribution with odd powers is a
consequence of evenness of the initial expression (−1)N1+N2

with respect to the sum of operators N1 + N2. Verifying this
fact by a direct calculation serves to show consistency of the
calculation scheme.

Thus, from (9.11) it follows that

(−1)N1+N2 = 1 − 2
(
N 2

1 + N 2
2 − 2N 2

1 N
2
2

)
. (9.12)

The final step is to pass on the left-hand side of (9.12) to the
parafermion number operators nk = Nk + 1 such that

N1 + N2 = n1 + n2 − 2 ≡ n − 2,

and for the right-hand side we recall the definition of the
operator a2

0 , Eq. (8.8). As a result, instead of (9.12), we obtain

(−1)n = 2a2
0 − 1

or

a2
0 = 1

2
[1 + (−1)n ]. (9.13)

This expression is an immediate generalization of formula
(9.5) to the case of parastatistics p = 2. It is interesting to
note that the operatora2

0 in the representation (9.13) coincides
in its structure with the Gliozzi, Scherk and Olive operator
[62] (the GSO projection), which projects onto states of even
(para)fermion number.

A few consequences of the relation (9.13) can be obtained.
Let us consider the matrix element of the operator a2

0 , then
due to (9.13) we have

〈ξ̄ ′ | a2
0 | ξ 〉 = 1

2

{〈ξ̄ ′ | ξ 〉 + 〈ξ̄ ′ | (−1)n| ξ 〉}

= cosh

(
1

2

∑

l

[ξ̄ ′
l , ξl ]

)

. (9.14)

Here, we have taken into account the equality

(−1)n| ξ 〉 = |−ξ 〉 (9.15)

and therefore the overlap function is

〈ξ̄ ′ |−ξ 〉 = exp

(

−1

2

∑

l

[ξ̄ ′
l , ξl ]

)

.

Thus we reproduce the simple formula (5.13) obtained in
Sect. 5 on the basis of completely different considerations.

Further, we consider the matrix element 〈ξ̄ ′ | [a2
0 , a+

k ]| ξ 〉.
Taking into account that

{(−1)n, a+
k } = 0, (9.16)
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we get

〈ξ̄ ′ | [a2
0 , a+

k ]| ξ 〉 = 1

2
〈ξ̄ ′ | [(−1)n, a+

k ]| ξ 〉
= −〈ξ̄ ′ |a+

k (−1)n | ξ 〉
= −ξ̄ ′

k 〈ξ̄ ′ |−ξ 〉
= −ξ̄ ′

k e−
∑

l [ξl , ξ̄ ′
l ] 〈ξ̄ ′ | ξ 〉

= − 1

2

(
∂

∂ ξk
e−

∑
l [ξl , ξ̄ ′

l ]
)

〈ξ̄ ′ | ξ 〉

= −
(

∂ 	̃

∂ ξk

)
〈ξ̄ ′ | ξ 〉.

(9.17)

Here, we have used the differentiation rules (C.1), (C.2) and
the definition of the function 	̃:

	̃ = 1

2

(
1 + e−

∑
l [ξl , ξ̄ ′

l ]
)

. (9.18)

We would like to draw some parallel between Geyer [22]
and Fukutome’s [45] approaches. In the latter the problem of
the construction of the algebra so(2M + 2) from the algebra
so(2M + 1) was considered. For this purpose Fukutome has
introduced the projectors

P± = 1

2
[1 ± (−1)n ]

with the properties P2± = P±, P+P− = 0. By virtue of the
relations (9.13) and (5.16), in our notations these projectors
have the form:

P+ = a2
0, P− = 1 − a2

0 .

The Lie algebra so(2M + 1) in [45] consists of the elements{
a+
n , a−

k , Ek
l , Ekl , Ekl

}
, which correspond to the generators4

(E.1)

Ek
l = Nkl , Ekl = Mkl , Ekl = Lkl , Ek

k = Nk .

For an extension of the algebra so(2M + 1) to the alge-
bra so(2M + 2) Fukutome added new elements

{
E0

0 , Ek
0 ,

Ek0, Ek0
}
, where

E0
0 = 1

2

(
P− + P+

) = 1

2
− a2

0,

Ek
0 = a+

k P− = P+a+
k , E0

k = a−
k P+ = P−a−

k ,

Ek0 = −a+
k P+ = −P−a+

k , E0k = −Ek0,

Ek0 = a−
k P− = P+a−

k , E0k = −Ek0.

(9.19)

By this means, he constructed the algebra so(2M+2) simply
adding “by hand” new generating elements to the algebra
so(2M+1), whereas Geyer [22] immediately considered the

4 Note that in the construction of the Lie algebra so(2M+1) Fukutome
has used usual fermion creation and annihilation operators. In the case
of para-Fermi statistics, we use the definition of the generator of algebra
so(2M + 1) following the paper Bracken and Green [43].

algebra so(2M +2), in which there is already a new element
β2M+1 ≡ a0, Eq. (2.3), and this element in principle is not
reduced to one of the elements (9.19). Therefore, in spite of
some similarity of two approaches in the determination of the
algebra so(2M + 2), one can state that they do not coincide
literally.

The requirement of consistency of the representation
(9.13) and the property a3

0 = a0, Eq. (6.22a), lead us to the
relations

[(−1)n, a0 ] = 0,

(−1)na0 = a0. (9.20)

The commutativity of the operators (−1)n and a0 is a simple
consequence of the representation (6.17), the property (9.16)
and of the operator identity

[A, BC ] = {A, B}C − B {A,C }.
A proof of the relation (9.20) is much more nontrivial. We
consider it only in terms of the matrix elements.

In Sect. 6 we written out the rules of action of the operator
a0 on the state vectors. The operator (−1)n changes a sign
for the states with the odd number of para-Fermi particles.
However, as we see from the formulas (6.4) and (6.7), it is
these states that vanish zero under the action of the operator
a0. In this sense the operator a0 and the product (−1)na0 are
equivalent within the framework of the usual Fock space of
the system under consideration. The situation changes dras-
tically, when we use the para-Fermi coherent state | ξ 〉 in the
form of (4.7). The fact is that this definition of the coherent
state in principle does not admit an expansion in the number
basis

(a+
i )n(a+

j )m | 0〉, i, j = 1, 2, n,m ≤ 2. (9.21)

Indeed, let us write the coherent state | ξ 〉 in the form of an
expansion in powers of

∑
l [ξl , a+

l ]:

| ξ 〉 = e− 1
2

∑
l [ξl , a+

l ]| 0〉
= | 0〉 +

(
−1

2

)∑

l

[ξl , a+
l ]| 0〉

+ 1

2!
(
−1

2

)2(∑

l

[ξl , a+
l ]

)2 | 0〉 + · · · .

For the second term on the right-hand side we get

∑

l

[ξl , a+
l ]| 0〉 =

∑

l

(
ξl | l 〉 − | l 〉ξl

)
,

where we have taken into account that

ξl | 0〉 = | 0〉ξl .
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Here, the expansion in the basis (9.21) takes place. Further,
for the third term in the expansion we have
∑

l, l ′
[ ξl , a+

l ] [ ξl ′ , a+
l ′ ]| 0〉 =

∑

l, l ′
[ ξl , a+

l ]
(

ξl ′ | l ′ 〉 − | l ′ 〉ξl ′
)

=
∑

l, l ′

(
ξl ′ ξl | l l ′ 〉 − ξl ′ a

+
l ξl | l ′ 〉 − ξl | l l ′ 〉 ξl ′ − a+

l ξl | l ′ 〉 ξl ′
)
.

We see that it is impossible to present the second and fourth
terms in the above expression in the form (9.21) multiplied by
para-Grassmann numbers as is the case of the first and third
terms. This is a consequence of the fact that for parastatistics
p = 2 only trilinear relations of the form (B.6)–(B.8) are
hold and therefore we have

a±
k ξn �= ξn a

±
k .

The equality takes place (with an accuracy of the factor (−1))
only for p = 1, i.e. for the usual Fermi statistics and Grass-
mann numbers. By doing so, there is no the decomposition
of | ξ 〉 in the Fock space and ipso facto we come to a con-
ception of the generalized state-vector space [26] including
as well ξn

′s para-Grassmann numbers. We will discuss this
question in more detail in the subsequent sections. Here, we
only conclude that action of the operator a0 on the coherent
state | ξ 〉 is not reduced to operations (6.3)–(6.8) and there-
fore a validity of the relation (9.20) is far from obvious in
the generalized state-vector space. The proof of the relation
(9.20) in basis of the coherent states comes down to the proof
of the relation (7.11) (see Appendix F).

10 Matrix elements of the products Âa±
n and of the

commutators [a0 , a±
n ] and [a2

0, a±
n ]

In this section we calculate in an explicit form the matrix ele-
ments of the products Âa±

n and of the commutators [a0 , a+
n ]

and [a2
0 , a+

n ]. Let us consider the product Âa−
n :

〈ξ̄ ′ | Âa−
n | ξ 〉 = 〈ξ̄ ′ | Â| ξ 〉ξn . (10.1)

A similar term with the creation operator a+
n has somewhat

a more complicated structure, since

Âa+
n = a+

n Â + [ Â, a+
n ]

and therefore we can write

〈ξ̄ ′ | Âa+
n | ξ 〉

= ξ̄ ′
n 〈ξ̄ ′ | Â | ξ 〉 − β 〈ξ̄ ′ | [a0 , a+

n ]| ξ 〉
+γ 〈ξ̄ ′ | [a2

0 , a+
n ]| ξ 〉. (10.2)

Here, we have taken into account the representation of the
operator Â in the first form (7.1a). Therefore, we are con-
fronted by the task of deriving matrix elements of the com-
mutators [a0 , a+

n ] and [a2
0, a+

n ]. Let us consider the first of
them.

By virtue of the representation of the operator a0,
Eq. (6.17), we have

[a0 , a+
n ]

= −1

4

(
[{L12, M12}, a+

n ] + [{N12, N21}, a+
n ]

−2 [N1N2, a
+
n ]

)
. (10.3)

By using the operator identity

[{A, B },C ] = {A, [B,C ]} + {B, [A,C ]} (10.4)

and commutation rules (6.15), it is not difficult to obtain a
more simple form of the commutators on the right-hand side
(10.3). We write them in two representations: the first of them
is

[{L12, M12}, a+
n ] = δn2 {L12, a

−
1 } − δn1 {L12, a

−
2 },

[{N12, N21}, a+
n ] = δn2 {N21, a

+
1 } + δn1 {N12, a

+
2 },

[N1N2, a
+
n ] = δn2a

+
2 N1 + δn1a

+
1 N2

(10.5)

and the second one is

[{L12, M12}, a+
n ] = 2L12 (δn2a

−
1 − δn1a

−
2 )

+ (δn2a
+
2 + δn1a

+
1 ),

[{N12, N21}, a+
n ] = 2δn2a

+
1 N21 + 2δn1a

+
2 N12

+ (δn2a
+
2 + δn1a

+
1 ),

[N1N2, a
+
n ] = δn2a

+
2 N1 + δn1a

+
1 N2.

(10.6)

In Appendix G we use the first representation in the proof
of turning into identity the commutation relations includ-
ing the operator a0, Eqs. (2.7)–(2.11). The second one is
more convenient for deriving the required matrix element
〈ξ̄ ′ | [a0 , a+

n ]| ξ 〉 (and also 〈ξ̄ ′ | Â [a0, a+
n ]| ξ 〉, see the next

section).
We need the matrix elements of the generators L12,

M12, . . . , which can be easily obtained from their definitions
(6.9):

〈ξ̄ ′ | L12| ξ 〉 =
(

1

2
[ ξ̄ ′

1 , ξ̄ ′
2 ]

)
〈ξ̄ ′ | ξ 〉,

〈ξ̄ ′ | M12| ξ 〉 =
(

1

2
[ξ1, ξ2 ]

)
〈ξ̄ ′ | ξ 〉,

〈ξ̄ ′ | N12| ξ 〉 =
(

1

2
[ ξ̄ ′

1 , ξ2 ]
)

〈ξ̄ ′ | ξ 〉,

〈ξ̄ ′ | N21| ξ 〉 =
(

1

2
[ ξ̄ ′

2 , ξ1 ]
)

〈ξ̄ ′ | ξ 〉,

〈ξ̄ ′ | N1| ξ 〉 =
{(

1

2
[ ξ̄ ′

1 , ξ1 ]
)

− 1

}
〈ξ̄ ′ | ξ 〉,

〈ξ̄ ′ | N2| ξ 〉 =
{(

1

2
[ ξ̄ ′

2 , ξ2 ]
)

− 1

}
〈ξ̄ ′ | ξ 〉.

(10.7)

Substituting (10.6) into (10.3) and taking into account (10.7),
we obtain the desired matrix element
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〈ξ̄ ′ | [a0 , a+
n ]| ξ 〉

= −1

2

{(
1

2
[ ξ̄ ′

1 , ξ̄ ′
2 ]

)
(δn2 ξ1 − δn1 ξ2 )

+δn1 ξ̄ ′
2

(
1

2
[ ξ̄ ′

1 , ξ2 ]
)

+ δn2 ξ̄ ′
1

(
1

2
[ ξ̄ ′

2 , ξ1 ]
)

−δn2 ξ̄ ′
2

(
1

2
[ ξ̄ ′

1 , ξ1 ]
)

− δn1 ξ̄ ′
1

(
1

2
[ ξ̄ ′

2 , ξ2 ]
)

+2(δn2 ξ̄ ′
2 + δn1 ξ̄ ′

1 )

}
〈ξ̄ ′ | ξ 〉. (10.8)

The expression can be presented in a more compact and
visual form. For this purpose we write the matrix element of
operator a0 in the following form:

〈ξ̄ ′ | a0 | ξ 〉 = 	 〈ξ̄ ′ | ξ 〉, (10.9)

where in accordance with (7.7) we have

	 ≡ 	(ξ̄ ′, ξ)

= −1

2

{(
1

2
[ ξ̄ ′

1 , ξ̄ ′
2 ]

)(
1

2
[ξ1, ξ2 ]

)

+
(

1

2
[ ξ̄ ′

1 , ξ2 ]
)(

1

2
[ ξ̄ ′

2 , ξ1 ]
)

−
(

1

2
[ ξ̄ ′

1 , ξ1 ]
)(

1

2
[ ξ̄ ′

2 , ξ2 ]
)

+ 2

(
1

2
[ ξ̄ ′

1 , ξ1 ] + 1

2
[ ξ̄ ′

2 , ξ2 ] − 1

)}
.

(10.10)

Let us take the derivative of the function 	 with respect to ξn
by making use of the rules of differentiation (C.1) and (C.2)

∂ 	

∂ξn
= −1

2

{(
1

2
[ ξ̄ ′

1 , ξ̄ ′
2 ]

)
(δn1 ξ2 − δn2 ξ1 )

− 1

2
ξ̄ ′

2 [ ξ̄ ′
1 , (δn1 ξ2 − δn2 ξ1)]

+1

2
ξ̄ ′

1 [ ξ̄ ′
2 , (δn1 ξ2 − δn2 ξ1)]

−2(δn1 ξ̄ ′
1 + δn2 ξ̄ ′

2 )

}
. (10.11)

Comparing the last expression with (10.8), we obtain that

〈ξ̄ ′ | [a0 , a+
n ]| ξ 〉 = −

(
∂ 	

∂ξn

)
〈ξ̄ ′ | ξ 〉. (10.12)

Similar reasoning for the commutator [a0 , a−
n ] leads us to

the representation of the corresponding matrix element

〈ξ̄ ′ | [a0 , a−
n ]| ξ 〉 = −

(
∂ 	

∂ ξ̄ ′
n

)
〈ξ̄ ′ | ξ 〉, (10.13)

where

∂ 	

∂ ξ̄ ′
n

= −1

2

{
(δn1 ξ̄ ′

2 − δn2 ξ̄ ′
1 )

(
1

2
[ξ1, ξ2 ]

)

− 1

2
[(δn1 ξ̄ ′

2 − δn2 ξ̄ ′
1 ), ξ2 ] ξ1

+1

2
[(δn1 ξ̄ ′

2 − δn2 ξ̄ ′
1 ), ξ1 ] ξ2

+2(δn1 ξ1 + δn2 ξ2 )

}
. (10.14)

Now we turn to an analysis of the matrix element
〈ξ̄ ′ | [a2

0 , a+
n ]| ξ 〉. By virtue of Geyer’s representation (8.8)

we have the starting expression

〈ξ̄ ′ | [a2
0 , a+

n ]| ξ 〉 = −〈ξ̄ ′ | [N 2
1 , a+

n ]| ξ 〉 − 〈ξ̄ ′ | [N 2
2 , a+

n ]| ξ 〉
+2〈ξ̄ ′ | [N 2

1 N
2
2 , a+

n ]| ξ 〉. (10.15)

By using the last two formulas in the commutation rules
(6.15), we obtain

[N 2
k , a+

n ] = δkn a
+
n + 2δkn a

+
n Nk .

Matrix element of this commutator equals

〈ξ̄ ′ | [N 2
k , a+

n ]| ξ 〉
=

{
δkn ξ̄ ′

n + 2δkn ξ̄ ′
n

(
1

2
[ ξ̄ ′

k , ξk ] − 1

)}
〈ξ̄ ′ | ξ 〉.

Further, the commutator with the product N 2
1 N

2
2 in (10.15)

has the form

[N 2
1 N

2
2 , a+

n ] = δn2a
+
2 (N 2

1 + 2N2N
2
1 )

+δn1a
+
1 (N 2

2 + 2N1N
2
2 )

+δn1 δn2a
+
n (1 + 2N1)(1 + 2N2).

The last term here vanishes for M = 2. We need a matrix
element of operator N 2

k . It can easily be obtained from the
formulas (5.4) and (5.5) with regard to the definition (5.1)

〈ξ̄ ′ | N 2
k | ξ 〉 =

{(
1

2
[ ξ̄ ′

k , ξk ]
)2

−
(

1

2
[ ξ̄ ′

k , ξk ]
)

+ 1

}

×〈ξ̄ ′ | ξ 〉. (10.16)

As a consequence of commutativity of the operators N1 and
N2 we have

〈ξ̄ ′ | N2N
2
1 | ξ 〉 =

(
1

2
[ ξ̄ ′

2 , ξ2 ] − 1

)

×
{(

1

2
[ ξ̄ ′

1 , ξ1 ]
)2

−
(

1

2
[ ξ̄ ′

1 , ξ1 ]
)

+ 1

}

×〈ξ̄ ′ | ξ 〉

and a similar expression for the product N1N 2
2 with the

replacement 1 � 2. Substituting the obtained expressions
into (10.15), we derive the explicit form of the desired matrix
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element

〈ξ̄ ′ | [a2
0 , a+

n ]| ξ 〉
= ξ̄ ′

n

[
δn1

{
−1 − 2

(
1

2
[ξ̄ ′

1 , ξ1 ] − 1

)

+ 2

[(
1

2
[ ξ̄ ′

2 , ξ2 ]
)2

−
(

1

2
[ ξ̄ ′

2 , ξ2 ]
)

+ 1

]

+ 4

(
1

2
[ ξ̄ ′

1 , ξ1 ] − 1

)[(
1

2
[ ξ̄ ′

2 , ξ2 ]
)2

−
(

1

2
[ ξ̄ ′

2 , ξ2 ]
)

+ 1

]}
+ (1 � 2)

]

× 〈ξ̄ ′ | ξ 〉.

(10.17)

This expression can be given in a more visual form if one
takes into account the fact that
(

1

2
[ ξ̄ ′

k , ξk ]
)2

−
(

1

2
[ ξ̄ ′

k , ξk ]
)

+ 1 ≡ 1
(

1

2
[ ξ̄ ′

k , ξk ]
)

+ 1
,

k = 1, 2.

The relation holds by virtue of algebra (5.8). Then by using
the notations x and y introduced in Sect. 5, Eq. (5.7), instead
of (10.17), we have

〈ξ̄ ′ | [a2
0 , a+

n ]| ξ 〉
= ξ̄ ′

n

[
δn1

{
−1 + 2

[
(1 − x) + 1

1 + y
− 2

1 − x

1 + y

]}

+ δn2

{
−1 + 2

[
(1 − y) + 1

1 + x
− 2

1 − y

1 + x

]}

× 〈ξ̄ ′ | ξ 〉.
We note also that the matrix element 〈ξ̄ ′ | a2

0 | ξ 〉 defined by
expression (5.6), can be given in a similar form

〈ξ̄ ′ | a2
0 | ξ 〉

=
(

1 −
[

1

1 + x
+ 1

1 + y

]
+ 2

1

(1 + x)(1 + y)

)
〈ξ̄ ′ | ξ 〉

≡ 1

2

[
1 + (1 − x)(1 − y)

(1 + x)(1 + y)

]
〈ξ̄ ′ | ξ 〉. (10.18)

By straightforward calculation one can easily check the cor-
rectness of the following relations:

e2x = (1 + x)

(1 − x)
, e2 y = (1 + y)

(1 − y)
.

Taking into account these relations and the form of the over-
lap function (5.12), we get, instead of (10.18),

〈ξ̄ ′ | a2
0 | ξ 〉 = 1

2

(
1 + e−2(x+y))ex+y = cosh(x + y).

By doing so, we have shown by the third way a correctness
of the expression (5.13) (the second way was considered in
the previous section).

Let us return to the expression (10.17). We present it in
the form similar to (10.12) for the matrix element of commu-
tator the [a0 , a+

n ]. For this purpose, we write out the matrix
element of the operator a2

0 as follows:

〈ξ̄ ′ | a2
0 | ξ 〉 = 	̃ 〈ξ̄ ′ | ξ 〉, (10.19)

where in accordance with (5.6), we have

	̃ = 	̃(ξ̄ ′, ξ)

= 1 −
2∑

k=1

[(
1

2
[ ξ̄ ′

k , ξk ]
)2

− 1

2
[ ξ̄ ′

k , ξk ] + 1

]

+2
2∏

k=1

[(
1

2
[ ξ̄ ′

k , ξk ]
)2

− 1

2
[ ξ̄ ′

k , ξk ] + 1

]
. (10.20)

By a direct calculation, using the formulas of differentiation
(C.1) and (C.2), it is easy to verify that the following relation

〈ξ̄ ′ | [a2
0 , a+

n ]| ξ 〉 = −
(

∂ 	̃

∂ ξn

)
〈ξ̄ ′ | ξ 〉 (10.21)

is true. In this way we reproduce the result (9.17). The same
reasoning leads to

〈ξ̄ ′ | [a2
0 , a−

n ]| ξ 〉 = −
(

∂ 	̃

∂ ξ̄ ′
n

)
〈ξ̄ ′ | ξ 〉. (10.22)

We write the matrix element of the operator Â in a form
similar to the form of expressions (10.9) and (10.19):

〈ξ̄ ′ | Â | ξ 〉 = A 〈ξ̄ ′ | ξ 〉. (10.23)

An explicit form of the functionA = A(ξ̄ ′, ξ) can be written
out based on the operator expression (7.1) and with allowance
made for (10.9), (10.10) and (10.19), (10.20). However we
will postpone it until the Sect. 15, where we consider in detail
a question of a connection between the operator a2

0 defined
by the expression (8.8) and the square of the operator a0

(i.e. (a0)
2 ≡ a0 · a0) defined by the expression (6.17). Let us

recall that the square of the operator a0 enters into the second
representation of the operator Â, Eq. (7.1b).

For the remaining two terms in (10.2) we use the repre-
sentations (10.12) and (10.21), correspondingly. As a result,
instead of (10.2), we have

〈ξ̄ ′ | Âa+
n | ξ 〉 =

(
ξ̄ ′
nA − ∂A

∂ξn

)
〈ξ̄ ′ | ξ 〉. (10.24)

Follow the same procedure, we can write out the matrix ele-
ment for the product a−

n Â

〈ξ̄ ′ | a−
n Â | ξ 〉 =

(
ξnA − ∂A

∂ξ̄ ′
n

)
〈ξ̄ ′ | ξ 〉. (10.25)

The last two expressions will be used in the following sec-
tion. In the accepted notations the matrix element (10.1) is
rewritten in the form

〈ξ̄ ′ | Âa−
n | ξ 〉 = ξnA 〈ξ̄ ′ | ξ 〉.
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The absence of the term with derivative in the last expression
in comparison with (10.25) is connected with the fact that
operators Â and a−

n are not commutative.

11 Matrix elements of the product Â[a0 , a±
n ]

Now we proceed to the calculation of the matrix elements
of the product Â [a0, a±

n ]. We need the following represen-
tations for the commutators [a0 , a−

n ] and [a0 , a+
n ]:

[a0 , a−
n ]

= −1

2

{
(δn2a

+
1 − δn1a

+
2 )M12 − (δn1 N21a

−
2 + δn2 N12a

−
1 )

+ (δn2 N1a
−
2 + δn1 N2a

−
1 ) − (δn2a

−
2 + δn1a

−
1 )

}
, (11.1)

[a0 , a+
n ]

= −1

2

{
L12 (δn2a

−
1 − δn1a

−
2 ) + (δn2a

+
1 N21 + δn1a

+
2 N12 )

− (δn2a
+
2 N1 + δn1a

+
1 N2 ) + (δn2a

+
2 + δn1a

+
1 )

}
. (11.2)

A proof of the second representation was given in the previ-
ous section, Eqs. (10.3) and (10.6), the first one is proved in
a similar way. Further we consider action of the commutator
(11.1) on the parafermion coherent state

[a0 , a−
n ]| ξ 〉 = −1

2

{
(δn2a

+
1 − δn1a

+
2 )

(
1

2
[ξ1, ξ2 ]

)

− (δn1 N21 ξ2 + δn2 N12 ξ1 )

+ (δn2 N1 ξ2 + δn1 N2 ξ1 ) − (δn2 ξ2 + δn1 ξ1 )

}

× | ξ 〉. (11.3)

Action of the generators N1, N2, N12 and N21 on the coherent
state was defined by us in Sect. 7, Eqs. (7.2) and (7.5). Let us
write out the expressions obtained there for convenience of
further references:

N12| ξ 〉 =
(

1

2
[a+

1 , ξ2 ]
)

| ξ 〉,

N1| ξ 〉 =
(

1

2
[a+

1 , ξ1 ] − 1

)
| ξ 〉,

N21| ξ 〉 =
(

1

2
[a+

2 , ξ1 ]
)

| ξ 〉,

N2| ξ 〉 =
(

1

2
[a+

2 , ξ2 ] − 1

)
| ξ 〉.

(11.4)

We note that the following relation is true:

[a0, ξk ] = 0. (11.5)

Since the operator a0 consists of only the commutators of the
operators a+

k and a−
k , and by virtue of (B.3) and (B.4), the

following relationships hold:

[[a±
i , a±

j ], ξk ] = 0, [[a±
i , a∓

j ], ξk ] = 0.

A trivial consequence of (11.5) is the relation

[ Â, ξk ] = 0, (11.6)

which holds by the definition (7.1a) (or (7.1b)).
Taking into account the expressions (11.3), (11.4) and

relation (11.6), we can present the matrix element of the
product Â[a0 , a−

n ] as follows:

〈ξ̄ ′ | Â[a0 , a−
n ]| ξ 〉

= −1

2

{
〈ξ̄ ′ | Â(δn2a

+
1 − δn1a

+
2 )| ξ 〉

(
1

2
[ξ1, ξ2 ]

)

− 1

2
δn1 [〈ξ̄ ′ | Âa+

2 | ξ 〉, ξ1 ]ξ2 − 1

2
δn2 [〈ξ̄ ′ | Âa+

1 | ξ 〉, ξ2 ]ξ1

+ δn2

(
1

2
[〈ξ̄ ′ | Âa+

1 | ξ 〉, ξ1 ]ξ2 − 〈ξ̄ ′ | Â | ξ 〉ξ2

)

+δn1

(
1

2
[〈ξ̄ ′ | Âa+

2 | ξ 〉, ξ2 ]ξ1 − 〈ξ̄ ′ | Â | ξ 〉ξ1

)

− (δn2 ξ2 − δn1 ξ1 )〈ξ̄ ′ | Â | ξ 〉
}
. (11.7)

Thus we have been able to reduce the calculation of the initial
matrix element 〈ξ̄ ′ | Â[a0 , a−

n ]| ξ 〉 to that of the matrix ele-
ments 〈ξ̄ ′ | Â | ξ 〉 and 〈ξ̄ ′ | Âa+

n | ξ 〉, which in turn are given
by (10.23) and (10.24), correspondingly. Collecting similar
terms and recalling the definition of the derivative ∂ 	/∂ ξ̄ ′

n ,
Eq. (10.14), we can write the expression (11.7) in a more
compact form

〈ξ̄ ′ | Â[a0 , a−
n ]| ξ 〉

=
{
− ∂ 	

∂ ξ̄ ′
n

A +
(

∂ 	

∂ ξ̄ ′
n

)

ξ̄ ′
n =∂A/∂ ξn

+ ξn

}
〈ξ̄ ′ | ξ 〉. (11.8)

In the second term on the right-hand side instead of vari-
ables ξ̄ ′

n in the derivative (10.14) it is necessary to substitute
∂A/∂ ξn .

Finally, we consider the operator product Â[a0 , a+
n ]. We

present the matrix element of this product similar to (10.2)
in the following form:

〈ξ̄ ′ | Â[a0 , a+
n ]| ξ 〉

= 〈ξ̄ ′ |[a0 , a+
n ] Â| ξ 〉 + 〈ξ̄ ′ |[ Â, [a0 , a+

n ]]| ξ 〉. (11.9)

We perform analysis of the first term in the same way as it
was just done for the matrix element 〈ξ̄ ′ | Â[a0 , a−

n ]| ξ 〉. By
using the representation (11.2), we obtain

〈ξ̄ ′ |[a0 , a+
n ] = 〈ξ̄ ′ |

(
−1

2

){(
1

2
[ ξ̄ ′

1 , ξ̄ ′
2 ]

)

× (δn2a
−
1 − δn1a

−
2 ) + (δn1 ξ̄ ′

2 N12

+ δn2 ξ̄ ′
1 N21 ) − (δn2 ξ̄ ′

2 N1 + δn1 ξ̄ ′
1 N2 )

+ (δn2 ξ̄ ′
2 + δn1 ξ̄ ′

1 )

}
.
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Further, instead of (11.4), we will need the expressions

〈ξ̄ ′ |N12 = 〈ξ̄ ′ |
(

1

2
[ ξ̄ ′

1 , a−
2 ]

)
,

〈ξ̄ ′ |N1 = 〈ξ̄ ′ |
(

1

2
[ ξ̄ ′

1 , a−
1 ] − 1

)
,

〈ξ̄ ′ |N21 = 〈ξ̄ ′ |
(

1

2
[ ξ̄ ′

2 , a−
1 ]

)
,

〈ξ̄ ′ |N2 = 〈ξ̄ ′ |
(

1

2
[ ξ̄ ′

2 , a−
2 ] − 1

)
.

With these relations and by using (11.6) the first term on the
right-hand side of (11.9) takes the form

〈ξ̄ ′ |[a0 , a+
n ] Â| ξ 〉

= −1

2

{(
1

2
[ ξ̄ ′

1 , ξ̄ ′
2 ]

)
〈ξ̄ ′ |(δn2a

−
1 − δn1a

−
2 ) Â| ξ 〉

+ 1

2
δn1 ξ̄ ′

2 [ ξ̄ ′
1 , 〈ξ̄ ′

1 | a−
2 Â | ξ 〉]

+1

2
δn2 ξ̄ ′

1 [ ξ̄ ′
2 , 〈ξ̄ ′

2 | a−
1 Â | ξ 〉]

− δn2

(
ξ̄ ′

2
1

2
[ ξ̄ ′

1 , 〈ξ̄ ′
1 | a−

2 Â | ξ 〉] − ξ̄ ′
2 〈ξ̄ ′ | Â | ξ 〉

)

−δn1

(
ξ̄ ′

1
1

2
[ ξ̄ ′

2 , 〈ξ̄ ′
2 | a−

1 Â | ξ 〉] − ξ̄ ′
1 〈ξ̄ ′ | Â | ξ 〉

)

+ (δn2 ξ̄ ′
2 − δn1 ξ̄ ′

1 )〈ξ̄ ′ | Â | ξ 〉
}
.

The last step is to use the expressions (10.23) and (10.25).
Collecting similar terms and recalling the definition of the
derivative ∂ 	/∂ ξn , Eq. (10.11), we can write the expression
above in the form similar to (11.8)

〈ξ̄ ′ |[a0 , a+
n ] Â| ξ 〉

=
{
− ∂ 	

∂ξn
A +

(
∂ 	

∂ξn

)

ξn=∂A/∂ ξ̄ ′
n

− ξ̄ ′
n

}
〈ξ̄ ′ | ξ 〉. (11.10)

Here, in the second term instead of the variables ξn in the
derivative (10.11) it is necessary to substitute ∂A/∂ ξ̄ ′

n .
It only remains to analyse the last term in (11.9). Taking

into account the second form of the operator Â, Eq. (7.1b),
we rewrite the double commutator as follows:

[ Â, [a0 , a+
n ]] = −β [a0, [a0 , a+

n ]] + γ [(a0)
2, [a0 , a+

n ]]
= −βa+

n + γ {a0 , a+
n }

= −βa+
n + 2γ a+

n a0 + γ [a0 , a+
n ].

(11.11)

Here, we have used the commutation rule (2.9). In view of
(10.9) and (10.12), we get

〈ξ̄ ′ |[ Â, [a0 , a+
n ]]| ξ 〉

=
{
ξ̄ ′
n

(−β + 2γ 	
) − γ

(
∂ 	

∂ξn

)}
〈ξ̄ ′ | ξ 〉. (11.12)

12 Connection between the matrix elements 〈ξ̄ ′ | a0 | ξ 〉
and 〈ξ̄ ′ | a2

0 | ξ 〉

In Sects. 7 and 5 we have derived matrix elements of the
operators a0 and a2

0 . For convenience of further references,
we present these expressions ones again

〈ξ̄ ′ | a0 | ξ 〉 = 	 〈ξ̄ ′ | ξ 〉, (12.1)

where we recall

	 ≡ 	(ξ̄ ′, ξ) = −1

2

{(
1

2
[ ξ̄ ′

1 , ξ̄ ′
2 ]

)(
1

2
[ξ1, ξ2 ]

)

+
(

1

2
[ ξ̄ ′

1 , ξ2 ]
)(

1

2
[ ξ̄ ′

2 , ξ1 ]
)

−
(

1

2
[ ξ̄ ′

1 , ξ1 ]
)(

1

2
[ ξ̄ ′

2 , ξ2 ]
)

+ 2

(
1

2
[ ξ̄ ′

1 , ξ1 ] + 1

2
[ ξ̄ ′

2 , ξ2 ] − 1

)}

(12.2)

and

〈ξ̄ ′ | a2
0 | ξ 〉 = 	̃ 〈ξ̄ ′ | ξ 〉, (12.3)

with

	̃ = 	̃(ξ̄ ′, ξ)

= 1 −
2∑

k=1

[(
1

2
[ ξ̄ ′

k , ξk ]
)2

− 1

2
[ ξ̄ ′

k , ξk ] + 1

]

+2
2∏

k=1

[(
1

2
[ ξ̄ ′

k , ξk ]
)2

− 1

2
[ ξ̄ ′

k , ξk ] + 1

]
. (12.4)

In this section and in the subsequent three sections we would
like to establish a connection between the functions 	̃ and 	

and thereby to clarify whether the operator a2
0 is the square

of the operator a0. For this purpose, we use the insertion of
resolution of the identity operator
∫∫

| μ〉〈μ̄| e −1
2 [μ̄, μ]

(dμ)2 (dμ̄)2 = 1̂,

where μ̄, μ are para-Grassmann numbers,

(dμ)2 ≡ d 2μ2d
2μ1, (dμ̄)2 ≡ d 2μ̄1d

2μ̄2

are the measure of integration and as usual, for the sake of
brevity we make use of the notations

[μ̄, μ] =
2∑

k=1

[μ̄k, μk ]

and so on. Then, by virtue of the definition (12.1) we get

〈ξ̄ ′ | a2
0 | ξ 〉 =

∫∫
〈ξ̄ ′ | a0 | μ〉〈μ̄| a0 | ξ 〉

×e −1
2 [μ̄, μ]

(dμ)2 (dμ̄)2

=
∫∫

	(ξ̄ ′, μ)	(μ̄, ξ) e −1
2 [μ̄−ξ̄ ′, μ−ξ ]
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×(dμ)2 (dμ̄)2e
1
2 [ξ̄ ′ , ξ ]

.

Here, we have written down an explicit form of the over-
lap function (4.8). Substituting the representation (12.3) into
the left-hand side of this expression and canceling the factor
〈ξ̄ ′ | ξ 〉, we obtain

	̃(ξ̄ ′, ξ) =
∫∫

	(ξ̄ ′, μ)	(μ̄, ξ)

×e −1
2 [μ̄−ξ̄ ′, μ−ξ ]

(dμ)2 (dμ̄)2.

The last step is a shift of the variables of integration:

μ̄ → μ̄ + ξ̄ ′, μ → μ + ξ

and finally we get

	̃(ξ̄ ′, ξ) =
∫∫

	(ξ̄ ′, ξ + μ)	(ξ̄ ′ + μ̄, ξ)

×e −1
2 [μ̄, μ]

(dμ)2 (dμ̄)2. (12.5)

By these means, it is necessary to take the integral on the
right-hand side of (12.5) for the function 	 defined by the
expression (12.2) and to compare the obtained expression
with (12.4).

The first step is an expansion of the function 	 in the
integrand (12.5) in powers of μ and μ̄. From (12.2) it is easy
to see that these expansions have the following form:

	(ξ̄ ′, ξ + μ)

= 	(ξ̄ ′, ξ) − 1

2

[
∂	(ξ̄ ′, ξ)

∂ ξ
, μ

]
+

(
− 1

23

)

×
{ (1)

[ ξ̄ ′
1 , ξ̄ ′

2 ][μ1, μ2 ] +
(2)

[ ξ̄ ′
2 , μ1 ][ ξ̄ ′

1 , μ2 ]

−
(3)

[ ξ̄ ′
1 , μ1 ][ ξ̄ ′

2 , μ2 ]
}

(12.6)

and

	(ξ̄ ′ + μ̄, ξ)

= 	(ξ̄ ′, ξ) + 1

2

[
μ̄,

∂	(ξ̄ ′, ξ)

∂ ξ̄ ′

]
+

(
− 1

23

)

×
{ (1)[μ̄1, μ̄2 ][ξ1, ξ2 ] + (2)[μ̄2, ξ1 ][μ̄1, ξ2 ]

− (3)[μ̄1, ξ1 ][μ̄2, ξ2 ]
}
. (12.7)

We have introduced the markers (1), (2) and (3) over the terms
which are quadratic in μ and μ̄.

Let us consider the terms in (12.6) and (12.7) linear in μ

and μ̄. Substituting them into (12.5), one obtains

	(ξ̄ ′, ξ)

∫∫ ([
μ̄,

∂	(ξ̄ ′, ξ)

∂ ξ̄ ′

]
−

[
∂	(ξ̄ ′, ξ)

∂ ξ
, μ

])

× e −1
2 [μ̄, μ]

(dμ)2 (dμ̄)2

= 	(ξ̄ ′, ξ)

(∫ [
μ̄,

∂	(ξ̄ ′, ξ)

∂ ξ̄ ′

]
δ(2)(μ̄)(dμ̄)2

−
∫ [

∂	(ξ̄ ′, ξ)

∂ ξ
, μ

]
δ(2)(μ)(dμ)2

)
= 0.

Here, the para-Grassmann δ-functions are

δ(2)(μ̄) ≡ δ(μ̄1)δ(μ̄2), δ(2)(μ) ≡ δ(μ1)δ(μ2),

where δ(μ̄i ) and δ(μi ), i = 1, 2, are defined by the formula
(D.5).

Further we consider the contributions quadratic in μ and
μ̄. At first we calculate a contribution with derivatives of the
function 	:

− 1

22

∫∫ [
∂	(ξ̄ ′, ξ)

∂ ξ
, μ

][
μ̄,

∂	(ξ̄ ′, ξ)

∂ ξ̄ ′

]

×e −1
2 [μ̄, μ]

(dμ)2 (dμ̄)2. (12.8)

There are two independent ways of taking the integrals of this
type. The first of them was suggested in the paper by Omote
and Kamefuchi [25]. We take the integral (12.8) by the first
way and then verify the result of calculations by another way.

Following an approach suggested by Omote and Kame-
fuchi, we present the exponential in the integrand (12.8) in
the form of the overlap function

e −1
2 [μ̄, μ ] = 〈−μ̄ | μ〉. (12.9)

Then, instead of (12.8), we will have a chain of equalities

− 1

22

∫∫ ([
∂ 	(ξ̄ ′, ξ)

∂ ξ1
, μ1

]
+

[
∂ 	(ξ̄ ′, ξ)

∂ ξ2
, μ2

])

×〈−μ̄| μ〉(dμ)2

[
μ̄ ,

∂ 	(ξ̄ ′, ξ)

∂ ξ̄ ′

]
(dμ̄)2

= − 1

22

∫∫
〈−μ̄|

([
∂ 	(ξ̄ ′, ξ)

∂ ξ1
, a−

1

]

+
[

∂ 	(ξ̄ ′, ξ)

∂ ξ2
, a−

2

])
| μ〉(dμ)2

[
μ̄ ,

∂ 	(ξ̄ ′, ξ)

∂ ξ̄ ′

]
(dμ̄)2

= − 1

24

∫∫
〈−μ̄|

([
∂ 	(ξ̄ ′, ξ)

∂ ξ1
, a−

1

]
+

[
∂ 	(ξ̄ ′, ξ)

∂ ξ2
, a−

2

])

×(a+
1 )2(a+

2 )2| 0〉(dμ)2

[
μ̄ ,

∂ 	(ξ̄ ′, ξ)

∂ ξ̄ ′

]
(dμ̄)2. (12.10)

Here, at the last step we have formally used the definition of
δ-function (D.5) as applied to the creation operator a+

k :
∫

| μ〉(dμ)2 =
∫

e −1
2 [μ, a+ ]| 0〉(dμ)2

= 1

22 (a+
1 )2(a+

2 )2| 0〉.
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The last matrix element in (12.10) is calculated when the
operators a−

1 and a−
2 are shifted, with the use of (B.3)

and (B.4), to the right until the vacuum conditions can be
employed. The result of calculations is

〈−μ̄|
([

∂ 	(ξ̄ ′, ξ)

∂ ξ1
, a−

1

]
+

[
∂ 	(ξ̄ ′, ξ)

∂ ξ2
, a−

2

])
(a+

1 )2(a+
2 )2| 0〉

= 22
(

δ(μ̄2)

{
∂ 	(ξ̄ ′, ξ)

∂ ξ1
, μ̄1

}
+ δ(μ̄1)

{
∂ 	(ξ̄ ′, ξ)

∂ ξ2
, μ̄2

})
.

(12.11)

The remaining integral with respect to (dμ̄)2 in (12.10) is
easily calculated by using the formula (D.4)

− 1

22

∫ [
μ̄,

∂	(ξ̄ ′, ξ)

∂ ξ̄ ′

](
δ(μ̄2)

{
∂	(ξ̄ ′, ξ)

∂ ξ1
, μ̄1

}

+ δ(μ̄1)

{
∂	(ξ̄ ′, ξ)

∂ ξ2
, μ̄2

})
d 2μ̄1d

2μ̄2

= − 1

22

(∫ [
μ̄1 ,

∂	(ξ̄ ′, ξ)

∂ ξ̄ ′
1

]{
∂	(ξ̄ ′, ξ)

∂ ξ1
, μ̄1

}
d 2μ̄1

+
∫ [

μ̄2 ,
∂	(ξ̄ ′, ξ)

∂ ξ̄ ′
2

]{
∂	(ξ̄ ′, ξ)

∂ ξ2
, μ̄2

}
d 2μ̄2

)

= −1

2

([
∂	(ξ̄ ′, ξ)

∂ ξ1
,
∂	(ξ̄ ′, ξ)

∂ ξ̄ ′
1

]

+
[

∂	(ξ̄ ′, ξ)

∂ ξ2
,
∂	(ξ̄ ′, ξ)

∂ ξ̄ ′
2

])

≡ −1

2

[
∂	(ξ̄ ′, ξ)

∂ ξ
,
∂	(ξ̄ ′, ξ)

∂ ξ̄ ′

]
.

(12.12)

Therefore, we can already write out the first two terms in the
expansion of convolution integral (12.5)

	̃(ξ̄ ′, ξ) = [	(ξ̄ ′, ξ)] 2 +
(

−1

2

)

×
[

∂	(ξ̄ ′, ξ)

∂ ξ
,
∂	(ξ̄ ′, ξ)

∂ ξ̄ ′

]
+ · · · . (12.13)

Let us analyse the contributions cubic in μ and μ̄. We
take for example the term with derivative from the expansion
(12.6) and the contribution (1) from (12.7). Then, instead of
(12.8), we have

1

24 [ξ1, ξ2 ]
∫∫ [

∂	(ξ̄ ′, ξ)

∂ ξ
, μ

]
[μ̄1, μ̄2 ]

×e −1
2 [μ̄, μ]

(dμ)2 (dμ̄)2

= 1

24 [ξ1, ξ2 ]
∫∫ (

δ(μ̄2)

{
∂	(ξ̄ ′, ξ)

∂ ξ1
, μ̄1

}

+δ(μ̄1)

{
∂	(ξ̄ ′, ξ)

∂ ξ2
, μ̄2

})

×[μ̄1, μ̄2 ]d 2μ̄1d
2μ̄2 = 0.

Here, we have used the results of the previous calculations,
Eqs. (12.10) and (12.11). Similarly, we can verify that in

(12.5) the remaining contributions cubic in μ and μ̄ also
vanish.

13 Contributions of the fourth order in μ and μ̄

Now we turn to the consideration of the remaining contribu-
tions of fourth order in μ and μ̄. Let us consider the “diago-
nal” contribution (1) − (1), where the first one (1) designates a
term with a mark (1) in (12.6) and the second one (1) denotes
a similar term in (12.7):

1

26 [ ξ̄ ′
1 , ξ̄ ′

2 ][ξ1, ξ2 ]
∫∫

[μ1, μ2 ][μ̄1, μ̄2 ]

×e −1
2 [μ̄, μ]

(dμ)2 (dμ̄)2. (13.1)

The use of the representation (12.9) and the expression like
(12.10) leads to necessity of the calculation of the matrix
element

〈−μ̄|[a−
1 , a−

2 ](a+
2 )2(a+

1 )2| 0〉.
In view of the commutation rules (2.4)–(2.6), we obtain

[a−
1 , a−

2 ](a+
2 )2(a+

1 )2

= (a+
2 )2(a+

1 )2 [a−
1 , a−

2 ] − 2(a+
2 )2a−

2 a+
1 − 2a+

1 a+
2 a−

1 a+
1

−2a+
2 a+

1 a+
1 a−

1 + 4a+
2 a+

1 − 2(a+
2 )2a+

1 a−
2 ,

and therefore the required matrix element equals

〈−μ̄|[a−
1 , a−

2 ](a+
2 )2(a+

1 )2| 0〉
= −4[μ̄1, μ̄2 ],

and the integral (13.1) transforms to

− 1

26 [ ξ̄ ′
1 , ξ̄ ′

2 ][ξ1, ξ2 ]
∫∫

[μ̄1, μ̄2 ]2d2μ̄1 d
2μ̄2

= − 1

23 [ ξ̄ ′
1 , ξ̄ ′

2 ][ξ1, ξ2 ]
∫

δ(μ̄2)d
2μ̄2.

Here, we have used the integration formula (D.3) and the
definition of δ-function, Eq. (D.5). As a result, the desired
contribution of fourth order (1) − (1) is equal to

(1)−(1) : − 1

23 [ ξ̄ ′
1 , ξ̄ ′

2 ][ξ1, ξ2 ]. (13.2)

Let us consider the second “diagonal” contribution of
fourth order to the convolution (12.5), namely (2)−(2) one:

1

26

∫∫
[ ξ̄ ′

2 , μ1 ][ ξ̄ ′
1 , μ2 ][μ̄2, ξ1 ][μ̄1, ξ2 ]

e −1
2 [μ̄, μ]

(dμ)2 (dμ̄)2. (13.3)

Here, we are faced with an analysis of matrix element of the
following type:

〈−μ̄|[ ξ̄ ′
2, a

−
1 ][ ξ̄ ′

1, a
−
2 ](a+

2 )2(a+
1 )2| 0〉. (13.4)

123



Eur. Phys. J. C          (2020) 80:1153 Page 25 of 47  1153 

By using the commutation rules (B.3) and (B.4), after some-
what cumbersome calculations we find

[ ξ̄ ′
2, a

−
1 ][ ξ̄ ′

1, a
−
2 ](a+

2 )2(a+
1 )2

= (a+
2 )2(a+

1 )2 [ ξ̄ ′
2, a

−
1 ][ ξ̄ ′

1, a
−
2 ]

+ 2( ξ̄ ′
2 a

+
1 (a+

2 )2 [ ξ̄ ′
1, a

−
2 ] + a+

1 ξ̄ ′
2(a

+
2 )2 [ ξ̄ ′

1, a
−
2 ]

+ (a+
1 )2 ξ̄ ′

1 a
+
2 [ ξ̄ ′

2, a
−
1 ] + (a+

1 )2 a+
2 ξ̄ ′

1 [ ξ̄ ′
2, a

−
1 ])

+ 4( ξ̄ ′
2 a

+
1 ξ̄ ′

1 a
+
2 + a+

1 ξ̄ ′
2 ξ̄ ′

1 a
+
2 + ξ̄ ′

2 a
+
1 a+

2 ξ̄ ′
1 + a+

1 ξ̄ ′
2 a

+
2 ξ̄ ′

1).

Substituting this expression into (13.4), we obtain

〈−μ̄|[ ξ̄ ′
2, a

−
1 ][ ξ̄ ′

1, a
−
2 ](a+

2 )2(a+
1 )2| 0〉

= 4(ξ̄ ′
2 μ̄1 ξ̄ ′

1 μ̄2 + μ̄1 ξ̄ ′
2 ξ̄ ′

1 μ̄2 + ξ̄ ′
2 μ̄1 μ̄2 ξ̄ ′

1 + μ̄1 ξ̄ ′
2 μ̄2 ξ̄ ′

1)

≡ 4{μ̄1, ξ̄
′
2}{μ̄2, ξ̄

′
1}.

In this case, the integral (13.3) is reduced to a product of two
independent integrals:

1

26

(∫
[μ̄1, ξ2 ]{μ̄1, ξ̄

′
2}d2μ̄1

)(∫
[μ̄2, ξ1 ]{μ̄2, ξ̄

′
1}d2μ̄2

)

= 1

24 [ ξ̄ ′
1 , ξ1 ][ ξ̄ ′

2 , ξ2 ].
Here, we have used the integration formula (D.4). As a result,
for the contribution (2) − (2) we derive

(2)−(2) : 1

24 [ ξ̄ ′
1 , ξ1 ][ ξ̄ ′

2 , ξ2 ]. (13.5)

From the expressions (12.6) and (12.7) it is easy to see that
the third “diagonal” contribution (3)−(3) follows from pre-
vious one by a simple replacement: ξ̄ ′

1 � ξ̄ ′
2, ξ1 � ξ2,

consequently we can immediately write

(3)−(3) : 1

24 [ ξ̄ ′
1 , ξ1 ][ ξ̄ ′

2 , ξ2 ]. (13.6)

Let us now examine the fourth order “off-diagonal” contri-
butions. The calculations completely similar to the previous
ones result in the following expressions:

(1)−(2) = (2)−(1) : − 1

24 [ ξ̄ ′
1 , ξ̄ ′

2 ][ξ1, ξ2 ],

(1)−(3) = (3)−(1) : − 1

24 [ ξ̄ ′
1 , ξ̄ ′

2 ][ξ1, ξ2 ],

(2)−(3) = (3)−(2) : − 1

24 [ ξ̄ ′
1 , ξ2 ][ ξ̄ ′

2 , ξ1 ].

(13.7)

Substituting the obtained terms of expansion (12.13), (13.2),
(13.5), (13.6) and (13.7) into (12.5) and collecting similar
terms, we finally obtain

	̃(ξ̄ ′, ξ) = [	(ξ̄ ′, ξ)] 2

+
(

−1

2

)[
∂	(ξ̄ ′, ξ)

∂ ξ
,
∂	(ξ̄ ′, ξ)

∂ ξ̄ ′

]

+
(

− 3

23

)
[ ξ̄ ′

1 , ξ̄ ′
2 ][ξ1, ξ2 ]

+ 1

23 [ ξ̄ ′
1 , ξ1 ][ ξ̄ ′

2 , ξ2 ]

+
(

− 1

23

)
[ ξ̄ ′

1 , ξ2 ][ ξ̄ ′
2 , ξ1 ]. (13.8)

This expression can be rewritten in terms of derivatives of
the function 	. Making use of the differentiation formulas
(C.1)–(C.4) and an explicit form of the function (12.2), we
find instead of (13.8)

	̃(ξ̄ ′, ξ) = [	(ξ̄ ′, ξ)] 2

+
(

−1

2

)[
∂	(ξ̄ ′, ξ)

∂ ξ
,
∂	(ξ̄ ′, ξ)

∂ ξ̄ ′

]

+
(

− 3

23

)(
∂2 	(ξ̄ ′, ξ)

∂ ξ1 ∂ ξ2
· ∂2 	(ξ̄ ′, ξ)

∂ ξ̄ ′
1 ∂ ξ̄ ′

2

)

+ 1

23

(
∂2 	(ξ̄ ′, ξ)

∂ ξ̄ ′
1 ∂ ξ1

− 2

)(
∂2 	(ξ̄ ′, ξ)

∂ ξ̄ ′
2 ∂ ξ2

− 2

)

+
(

− 1

23

)(
∂2 	(ξ̄ ′, ξ)

∂ ξ̄ ′
1 ∂ ξ2

· ∂2 	(ξ̄ ′, ξ)

∂ ξ̄ ′
2 ∂ ξ1

)
.

In closing this section, we would like to consider another
more direct way of taking the integrals with the para-
Grassmann variables. As an example, let us examine the
contribution (1)−(1), i.e. the expression (13.1). Instead of rep-
resentation (12.9) we use the expansion of the exponential
function

e −1
2 [μ̄, μ ] = 1 − 1

2
[μ̄, μ ] + 1

2!
(

1

2

)2

[μ̄, μ ] 2

− 1

3!
(

1

2

)3

[μ̄, μ ] 3 + 1

4!
(

1

2

)4

[μ̄, μ ] 4

= 1 − 1

2

([μ̄1 , μ1 ] + [μ̄2 , μ2 ])

+ 1

2!
(

1

2

)2([μ̄1 , μ1 ] 2

+ 2[μ̄1 , μ1 ][μ̄2 , μ2 ] + [μ̄2 , μ2 ] 2)

− 1

3!
(

1

2

)3(
3 [μ̄1 , μ1 ] 2[μ̄2 , μ2 ]

+ 3 [μ̄1 , μ1 ][μ̄2 , μ2 ] 2)

+ 1

4!
(

1

2

)4

6 [μ̄1 , μ1 ] 2 [μ̄2 , μ2 ] 2.

(13.9)

As it is not difficult to see from the integration formulae
(D.1)–(D.4), a nontrivial contribution to the expression (13.1)
for p = 2 gives us only one term from the right-hand side
(13.9), namely

1

22 [μ̄1 , μ1 ][μ̄2 , μ2 ],

and therefore by using subsequently (D.3), (D.4) and (D.5),
we derive
∫∫

[μ1, μ2 ][μ̄1, μ̄2 ] e −1
2 [μ̄, μ]

(dμ)2 (dμ̄)2
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= 1

22

∫∫
[μ1, μ2 ][μ̄1, μ̄2 ] [μ̄1 , μ1 ][μ̄2 , μ2 ](dμ)2 (dμ̄)2

= 1

22 2i2
∫∫

[μ̄1, μ̄2 ][μ̄1 , μ1 ]{μ1, μ̄2 }d 2μ1 (dμ̄)2

= 1

22 (2 i2)2
∫∫

[μ̄1, μ̄2 ][μ̄2, μ̄1 ]d 2μ̄1d
2μ̄2

= − 1

22 25
∫

δ(μ̄2)d
2μ̄2 = −23.

Substituting the obtained number into (13.1), we reproduce
(13.2).

Let us verify more nontrivial contribution (12.8). At the
beginning we write in more detail the integrand in (12.8):

[
∂	

∂ ξ
, μ

][
μ̄,

∂	

∂ ξ̄ ′

]
=

[
∂	

∂ ξ1
, μ1

][
μ̄1 ,

∂	

∂ ξ̄ ′
1

]

+
[

∂	

∂ ξ2
, μ2

][
μ̄2 ,

∂	

∂ ξ̄ ′
2

]

+
[

∂	

∂ ξ1
, μ1

][
μ̄2 ,

∂	

∂ ξ̄ ′
2

]

+
[

∂	

∂ ξ2
, μ2

][
μ̄1 ,

∂	

∂ ξ̄ ′
1

]
.

(13.10)

For the first two terms on the right-hand side of (13.10) in
the expansion (13.9) only two terms give a nontrivial contri-
bution:

− 1

24

([μ̄1 , μ1 ] 2 [μ̄2 , μ2 ] + [μ̄1 , μ1 ][μ̄2 , μ2 ] 2).

For the remaining terms in (13.10) there are no such nontrivial
contributions in (13.9) and therefore they can be dropped.
The integral with the first term on the right-hand side (13.10)
equals

1

26

∫∫ [
∂	

∂ ξ1
, μ1

][
μ̄1 ,

∂	

∂ ξ̄ ′
1

]

× [μ̄1 , μ1 ][μ̄2 , μ2 ] 2d 2μ2d
2μ1 (dμ̄)2

= 1

23

∫∫
δ(μ̄2)

[
∂	

∂ ξ1
, μ1

][
μ̄1 ,

∂	

∂ ξ̄ ′
1

]

× [μ̄1 , μ1 ] d 2μ1 (dμ̄)2

= i2

22

∫∫
δ(μ̄2)

[
μ̄1 ,

∂	

∂ ξ̄ ′
1

]{
μ̄1 ,

∂	

∂ ξ1

}
d 2μ̄1d

2μ̄2

= −1

2

[
∂	(ξ̄ ′, ξ)

∂ ξ1
,
∂	(ξ̄ ′, ξ)

∂ ξ̄ ′
1

]
.

The integral with the second term in (13.10) is taking in a
similar way and as a result, we reproduce the second term on
the right-hand side (12.13).

14 The star product

It remains for us to compare the expression for the convolu-
tion (13.8) with the expression for the function 	̃, Eq. (12.4),
which follows from the matrix element of the operator a2

0 .
But we shall defer this comparison until the following sec-
tion, and here we would like to introduce an important notion
of a star product ∗ in a class of functions depending on the
para-Grassmann variables. For this purpose we return to the
connection between the functions 	̃ and 	 as it was defined
by the convolution integral, Eq. (12.5). We present the inte-
grand as a result of action of the shift operators on 	:

	(ξ̄ ′+ μ̄, ξ) = e
1
2 [μ̄,

−→
∂ /∂ξ̄ ′ ]

	(ξ̄ ′, ξ),

	(ξ̄ ′, ξ + μ) = 	(ξ̄ ′, ξ) e− 1
2 [μ,

←−
∂ /∂ξ ]

. (14.1)

By a direct calculation, we verify that these expressions
reproduce the expansions (12.6) and (12.7). To be specific,
let us consider the first one

e
1
2 [μ̄,

−→
∂ /∂ξ̄ ′ ]

	(ξ̄ ′, ξ) = 	(ξ̄ ′, ξ) + 1

2

2∑

l=1

[
μ̄l ,

∂	

∂ξ̄ ′
l

]

+ 1

2!
(

1

2

)2 2∑

l=1

2∑

s=1

[
μ̄l ,

∂

∂ξ̄ ′
l

]

×
[
μ̄s ,

∂	

∂ξ̄ ′
s

]
.

The function	depends quadratically on the para-Grassmann
variable ξ̄ ′

l , because of this, the expansion is exactly termi-
nated on the third term. The first two terms coincides with
the corresponding terms in (12.7), and so there is a need to
analyze only the last term. Let us consider the contribution
with s = 1 and use an explicit form of the derivative ∂	/∂ ξ̄ ′

1,
Eq. (10.14), then
[
μ̄1 ,

∂	

∂ξ̄ ′
1

]
= − 1

22

{
[μ̄1, ξ̄

′
2 ][ξ1, ξ2 ] + [μ̄1, ξ2 ][ ξ̄ ′

2 , ξ1 ]

−[μ̄1, ξ1 ][ ξ̄ ′
2 , ξ2 ]

}
− [μ̄1, ξ1 ].

Under the action of the operator [μ̄l , ∂/∂ ξ̄ ′
l ] on the last

expression only the term with l = 2 gives a nontrivial contri-
bution. By employing the differentiation rules (C.1)–(C.4),
further we find
[
μ̄2 ,

∂

∂ξ̄ ′
2

][
μ̄1 ,

∂	

∂ξ̄ ′
1

]

= −1

2

{
[μ̄1, μ̄2 ][ξ1, ξ2 ] + [μ̄1, ξ2 ][μ̄2, ξ1 ]

−[μ̄1, ξ1 ][μ̄2, ξ2 ]
}
.

The second nontrivial contribution follows from the expres-
sion [μ̄1, ∂/∂ ξ̄ ′

1 ][μ̄2, ∂	/∂ ξ̄ ′
2 ]. By doing so we exactly

reproduce the expression (12.7).
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The second expression in (14.1) is analysed similarly, but
only here the rule of action of the right derivative on the
function 	 must be taken into consideration:

	

←−
∂

∂ ξl
= −

−→
∂ 	

∂ ξl
.

Based on the representation (14.1) we write the convolu-
tion (12.5) in the following form:

	̃(ξ̄ ′, ξ) = 	(ξ̄ ′, ξ)

×
[∫∫

e− 1
2 [μ,

←−
∂ /∂ ξ ] e− 1

2 [μ̄, μ]

×e
1
2 [μ̄,

−→
∂ /∂ ξ̄ ′ ]

(dμ)2 (dμ̄)2

]
	(ξ̄ ′, ξ) (14.2)

or somewhat differently

	̃(ξ̄ ′, ξ) = 	(ξ̄ ′, ξ)

×
[∫∫

e− 1
2 [μ̄ −←−

∂ /∂ ξ, μ −−→
∂ /∂ ξ̄ ′ ]

(dμ)2 (dμ̄)2

]

×e
1
2 [←−∂ /∂ ξ,

−→
∂ /∂ ξ̄ ′ ]

	(ξ̄ ′, ξ).

We take the following definition of the para-Grassmann star
product:

∗ =
∫∫

e− 1
2 [μ,

←−
∂ /∂ ξ ] e− 1

2 [μ̄, μ] e
1
2 [μ̄,

−→
∂ /∂ ξ̄ ′ ]

×(dμ)2 (dμ̄)2. (14.3)

Using this definition we can proof isomorphism between
the algebra of creation and annihilation operators a±

n obeying
the para-Fermi statistics of order 2

ǎi ǎ j ǎk + ǎk ǎ j ǎi = 2 δ̌i j ǎk + 2 δ̌k j ǎi ,

where the operator ǎi denotes a+
i or a−

i and δ̌i j = δi j when
ǎi = a−

i (a+
i ) and ǎ j = a+

j (a−
j ); otherwise δ̌i j = 0, and

the algebra of para-Grassmann numbers of the same order
equipped with the star product

ξ̌i ∗ ξ̌ j ∗ ξ̌k + ξ̌k∗ ξ̌ j ∗ ξ̌i = 2 δ̌i j ξ̌k + 2 δ̌k j ξ̌i ,

where the para-Grassmann numbers ξ̌i denote ξi or ξ̄ ′
i . On

the left-hand side of the last expression we have a triple star
product and consequently it is of importance to ascertain that
the star product (14.3) is associative. Details of the proof are
presented in [63].

15 Triple star product � ∗ � ∗ �

In terms of the definition of the star product (14.3) the integral
convolution (12.5) is written in the form

	̃(ξ̄ ′, ξ) = 	(ξ̄ ′, ξ)∗ 	(ξ̄ ′, ξ). (15.1)

From the other hand, in Sect. 7 and in Appendix F by a direct
calculation we have proved a validity of the relation

	(ξ̄ ′, ξ) = 	(ξ̄ ′, ξ)∗ 	̃(ξ̄ ′, ξ). (15.2)

Thus, if the relation (15.1) was indeed valid, then by virtue of
(15.2) the following equality with triple star product would
take place:

	(ξ̄ ′, ξ) = 	(ξ̄ ′, ξ)∗ 	(ξ̄ ′, ξ)∗ 	(ξ̄ ′, ξ). (15.3)

This expression is a classical analogue of the operator equal-
ity

a3
0 = a0 .

The consequence of this operator equality is a possibility
to present the operator Â, in the second form (7.1b), in the
exponential form (see Eq. (3.6))

Â = α
[
Î −

( i
√

3

2

)
a0 − 3

2
(a0)

2
]

≡ αe−i 2π
3 a0 . (15.4)

The matrix element of this operator as it was defined by the
expression (10.23) in view of (15.1) and (15.3) also can be
presented in the compact form:

〈ξ̄ ′ | Â | ξ 〉 = A(ξ̄ ′, ξ) 〈ξ̄ ′ | ξ 〉,
where

A(ξ̄ ′, ξ) = α
[
I −

( i
√

3

2

)
	 − 3

2
	 ∗ 	

]

≡ αe
−i 2π

3 	(ξ̄ ′, ξ)
∗ .

Here,

ex∗ =
∞∑

k=0

1

k! (x)k∗, (x)k∗ ≡ (x ∗ x ∗ . . . ∗ x)︸ ︷︷ ︸
k times

is the star exponential [32]. Thus, we only need to verify a
validity of (15.1). In our reasoning we will follow consider-
ation of Appendix F.

We make use of the notations from Sect. 5

x ≡ 1

2
[ ξ̄ ′

1 , ξ1 ], y ≡ 1

2
[ ξ̄ ′

2 , ξ2 ] (15.5)

and present the function 	 in the form

	(ξ̄ ′, ξ) = �	(ξ̄ ′, ξ) − (x + y − 1),

where

�	(ξ̄ ′, ξ) = − 1

23 [ ξ̄ ′
1 , ξ̄ ′

2 ][ξ1, ξ2 ]

− 1

23 [ ξ̄ ′
1 , ξ2 ][ ξ̄ ′

2 , ξ1 ] + 1

2
x y.

From here, in particular it follows that
[
	(ξ̄ ′, ξ)

]2 = (
�	(ξ̄ ′, ξ)

)2 − 2(x + y − 1)�	(ξ̄ ′, ξ)

+(x + y − 1)2. (15.6)
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Our purpose is to rewrite the expression obtained in Sects. 12
and 13 for the star product 	∗ 	, Eq. (13.8), in terms of the
variables x and y with subsequent comparison with (12.4). To
do so, we use the formulas obtained in Appendix F, Eq. (F.7)–
(F.10). On the strength of these formulas for the term in (15.6)
linear in �	 we have

(x + y − 1)�	(ξ̄ ′, ξ) = 1

23

([ ξ̄ ′
1 , ξ̄ ′

2 ][ξ1, ξ2 ]

+[ ξ̄ ′
1 , ξ2 ][ ξ̄ ′

2 , ξ1 ]) − 1

2
x y + (x + y)x y.

For the term in (15.6) quadratic in �	 the same formulas
lead to the following expression:

(
�	(ξ̄ ′, ξ)

)2 = 1

26 [ ξ̄ ′
1 , ξ̄ ′

2 ]2 [ξ1, ξ2 ]2

+ 1

26 [ ξ̄ ′
1 , ξ2 ]2 [ ξ̄ ′

2 , ξ1 ]2 + 1

22 x 2 y2

+ 1

25
[ ξ̄ ′

1 , ξ̄ ′
2 ][ξ1, ξ2 ][ ξ̄ ′

1 , ξ2 ][ ξ̄ ′
2 , ξ1 ]

− 1

23 [ ξ̄ ′
1 , ξ̄ ′

2 ][ξ1, ξ2 ]x y

− 1

23 [ ξ̄ ′
1 , ξ2 ][ ξ̄ ′

2 , ξ1 ]x y. (15.7)

In view of (F.10) the last two terms here equal x2y2/4. Let
us consider the first term. By algebra of para-Grassmann
numbers of order p = 2, Eq. (B.2), this term can be presented
as follows:

[ ξ̄ ′
1 , ξ̄ ′

2 ]2 [ξ1, ξ2 ]2

= (ξ̄ ′
1 ξ̄ ′

2 ξ̄ ′
2 ξ̄ ′

1 + ξ̄ ′
2 ξ̄ ′

1 ξ̄ ′
1 ξ̄ ′

2 )(ξ1 ξ2 ξ2 ξ1 + ξ2 ξ1 ξ1 ξ2)

= 22(ξ̄ ′
1)2(ξ̄ ′

2)2(ξ1)
2(ξ2)

2 = 22(ξ̄ ′
1)2(ξ1)

2(ξ̄ ′
2)2(ξ2)

2

= [ ξ̄ ′
1 , ξ1 ]2 [ ξ̄ ′

2 , ξ2 ]2 = 24 x 2 y2.

Here, at the last step we have used Eqs. (F.7) and (F.8). Similar
reasoning for the second term in (15.7) results in the equality

[ ξ̄ ′
1 , ξ2 ]2 [ ξ̄ ′

2 , ξ1 ]2 = 24 x 2 y2.

We need only to consider the mixed contribution to (15.7),
which we present as a product of two multiplies
([ ξ̄ ′

1 , ξ̄ ′
2 ][ ξ̄ ′

1 , ξ2 ] )([ξ1, ξ2 ][ ξ̄ ′
2 , ξ1 ]).

For the first factor, by virtue of algebra (B.2), we have

[ ξ̄ ′
1 , ξ̄ ′

2 ][ ξ̄ ′
1 , ξ2 ] = −ξ̄ ′

1 ξ̄ ′
2 ξ2 ξ̄ ′

1 − ξ̄ ′
2 ξ̄ ′

1 ξ̄ ′
1 ξ2

= (ξ̄ ′
1)2(ξ2 ξ̄ ′

2 + ξ̄ ′
2 ξ2

)

and for the second one, correspondingly, we get

[ξ1, ξ2 ][ ξ̄ ′
2 , ξ1 ] = ξ1 ξ2 ξ̄ ′

2 ξ1 + ξ2 ξ1 ξ1 ξ̄ ′
2

= −(ξ1)
2(ξ2 ξ̄ ′

2 + ξ̄ ′
2 ξ2

)
.

Their multiplication gives us the required expression

[ ξ̄ ′
1 , ξ̄ ′

2 ][ξ1, ξ2 ][ ξ̄ ′
1 , ξ2 ][ ξ̄ ′

2 , ξ1 ] = 2(ξ̄ ′
1)2(ξ1)

2(ξ̄ ′
2)2(ξ2)

2

= 1

2
[ ξ̄ ′

1 , ξ1 ]2 [ ξ̄ ′
2 , ξ2 ]2

= 23 x 2 y2.

Taking into consideration the aforementioned, we can write
the expression (15.7) in a very simple form:

(
�	(ξ̄ ′, ξ)

)2 = 3

2
x 2 y2.

Therefore, the square of the function 	, Eq. (15.6), can be
written in the following form:
[
	(ξ̄ ′, ξ)

]2 = 3

2
x 2 y2 − 2(x 2 y + x y2) + 3x y

+ (x 2 + y2) − 2(x + y) − 2

− 1

22

([ ξ̄ ′
1 , ξ̄ ′

2 ][ξ1, ξ2 ] + [ ξ̄ ′
1 , ξ2 ][ ξ̄ ′

2 , ξ1 ]).
(15.8)

Now we turn to the consideration of the term with the
derivatives in (13.8). To be specific, let us consider a contri-
bution of the form

− 1

2

[
∂	(ξ̄ ′, ξ)

∂ ξ1
,
∂	(ξ̄ ′, ξ)

∂ ξ̄ ′
1

]
. (15.9)

Here, the derivations are defined by the general expressions
(10.11) and (10.14) and equal

∂	(ξ̄ ′, ξ)

∂ ξ1

= − 1

22

([ ξ̄ ′
1 , ξ̄ ′

2 ]ξ2 − ξ̄ ′
2 [ ξ̄ ′

1 , ξ2 ] + ξ̄ ′
1 [ ξ̄ ′

2 , ξ2 ]) + ξ̄ ′
1 ,

∂	(ξ̄ ′, ξ)

∂ ξ̄ ′
1

= − 1

22

(
ξ̄ ′

2 [ξ1, ξ2 ] + [ ξ̄ ′
2 , ξ1 ]ξ2 − [ ξ̄ ′

2 , ξ2 ]ξ1

) − ξ1.

The substitution of these derivatives into the commutator
(15.9) after transformations similar previous ones, results in
the following expression:

−1

2

[
∂	(ξ̄ ′, ξ)

∂ ξ1
,
∂	(ξ̄ ′, ξ)

∂ ξ̄ ′
1

]

= −1

2
x y2 + x y − x

− 1

22

([ ξ̄ ′
1 , ξ̄ ′

2 ][ξ1, ξ2 ] + [ ξ̄ ′
1 , ξ2 ][ ξ̄ ′

2 , ξ1 ]).
The second commutator additional to (15.9) with the deriva-
tives with respect to ξ2 and ξ̄ ′

2 is obtained from this expression
by the replacement x � y and then the term with derivatives
in (13.8) takes its final form:

−1

2

[
∂	(ξ̄ ′, ξ)

∂ ξ
,
∂	(ξ̄ ′, ξ)

∂ ξ̄ ′

]

= 1

2
(x 2 y + x y2) − 2x y + (x + y)

+1

2

([ ξ̄ ′
1 , ξ̄ ′

2 ][ξ1, ξ2 ] + [ ξ̄ ′
1 , ξ2 ][ ξ̄ ′

2 , ξ1 ]). (15.10)
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Substituting the obtained expressions (15.8) and (15.10) into
(13.8) and collecting similar terms, we derive an explicit form
of the convolution 	∗ 	:

	(ξ̄ ′, ξ)∗ 	(ξ̄ ′, ξ)

= 3

2
x 2 y2 − 3

2
(x 2 y + x y2) + 3

2
x y

+ (x 2 + y2) − (x + y) + 1

− 1

23

([ ξ̄ ′
1 , ξ̄ ′

2 ][ξ1, ξ2 ] − [ ξ̄ ′
1 , ξ2 ][ ξ̄ ′

2 , ξ1 ]). (15.11)

This expression should be compared with the function
	̃(ξ̄ ′, ξ) as it is defined by Eq. (12.4). In terms of the nota-
tions (15.5) this function has the following form:

	̃(ξ̄ ′, ξ) = 2x 2 y2 − 2(x 2 y + x y2) + 2x y

+(x 2 + y2) − (x + y) + 1. (15.12)

In spite of very close similarity of these two expressions,
there is no coincidence in a literal sense, and thus the equal-
ity (15.1) does not take place. It is a powerful argument to
the conclusion that the Geyer operator a2

0 as it was originally
defined by Eq. (2.17) should be considered simply as a sym-
bol. It is not the result of the multiplication of two operators
a0 · a0. In the next sections we will analyses this problem in
more detail.

16 Connection between the operators ω̂ 2 and a2
0 revised

In Sect. 8 we have defined a connection between the Harish-
Chandra and Geyer operators ω̂2 and a2

0 . In establishing
the connection between these two operators, we used the
matrix relation derived by Harish-Chandra [6], namely (see
Appendix A)

B = 3 − ω2, (16.1)

which enables one to put the operator ω̂2 in the following
form:

ω̂ 2 = 1

2
(1 + η̂5). (16.2)

A particular consequence of this representation is the con-
nection

ω̂ 2 = a2
0 . (16.3)

However, as it was shown in the previous section this relation
results in a contradiction. It should be particularly empha-
sized that the operator ω̂2 on the left-hand side of (16.3)
represents the square of the operator ω̂ as it was defined by
Eq. (6.18), and the operator a2

0 on the right-hand side was
introduced into consideration by Geyer [22]. The latter as it

will be clear from the subsequent discussion, should be con-
sidered simply as a symbol, but not the square of a certain
operator.

Let us give up the relation (16.1) and consider what would
be the consequences of this. For that purpose, we return to
the formula (8.4). On the left-hand side of this formula we
rewrite the second term in the operator representation:

η̂μ1 η̂μ2 + η̂μ1 η̂μ3 + η̂μ1 η̂μ4 + η̂μ2 η̂μ3 + η̂μ2 η̂μ4 + η̂μ3 η̂μ4

= (̂ημ1 η̂μ2 + η̂μ3 η̂μ4) + (̂ημ1 + η̂μ2)(̂ημ3 + η̂μ4). (16.4)

To be specific, we fix the values of the indices as follows:
μk ≡ k, k = 1, 2, 3, 4. The use of formulae (8.9) and (8.10)
for the first term on the right-hand side in (16.4) gives us

η̂1η̂2 + η̂3η̂4 = −2(N 2
1 + N 2

2 ) + 2. (16.5)

Further, by using the connection between the creation and
annihilation operators a±

k and the operators β̂μ, Eq. (4.3), we
derive

β̂ 2
1 = 1

4

(
(a+

1 )2 + (a−
1 )2 + {a+

1 , a−
1 }),

β̂ 2
2 = 1

4

(
(a+

1 )2 + (a−
1 )2 − {a+

1 , a−
1 }).

(16.6)

Recalling the definition of η-matrices: ημ = 2β2
μ −1, we get

further

η̂1 + η̂2 = 2(β̂ 2
1 + β̂ 2

2 ) − 2 = {a+
1 , a−

1 } − 2, (16.7)

and similar we have

η̂3 + η̂4 = 2(β̂ 2
3 + β̂ 2

4 ) − 2 = {a+
2 , a−

2 } − 2. (16.8)

Substituting (16.5), (16.7) and (16.8) into (16.4), and then
into (8.4) and finally into (8.3), instead of (16.3), we derive

ω̂ 2 = 3

4
a2

0 + 1

4

[(
N 2

1 + N 2
2 − 1

) − 2
( 1

2
{a+

1 , a−
1 } − 1

)

×
( 1

2
{a+

2 , a−
2 } − 1

)]
. (16.9)

Here, we have taken into account the connection between the
operator a2

0 and the operator η̂5, Eq. (8.11).
Let us define a matrix element of the expression (16.9) in

the basis of parafermion coherent states. The matrix element
of the first term on the right-hand side is given by the expres-
sions (12.3) and (12.4) (or (15.12)). The matrix elements of
the operators N 2

1 and N 2
2 are defined by the formula (10.16)

and in terms of the variables x and y have the form

〈ξ̄ ′ | N 2
1 | ξ 〉 = (x 2 − x + 1)〈ξ̄ ′ | ξ 〉,

〈ξ̄ ′ | N 2
2 | ξ 〉 = (y2 − y + 1)〈ξ̄ ′ | ξ 〉. (16.10)

We have only to define the matrix element of the last term in
(16.9). Towards this end, we will need the following formu-
las:

a−
k a

+
n | ξ 〉 = (2δkn + ξk a

+
n )| ξ 〉,

〈ξ̄ ′ | a−
n a

+
k = 〈ξ̄ ′ |(a−

n ξ̄ ′
k + 2δkn).

(16.11)
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Then for the anticommutators {a+
k , a−

k } by virtue of these
formulas we have

〈ξ̄ ′ |{a+
k , a−

k }|ξ 〉 = ({ξ̄ ′
k , ξk} + 2

)〈ξ̄ ′ | ξ 〉. (16.12)

Let us consider the matrix element of a product of two
anticommutators, which we present as a sum of four terms

〈ξ̄ ′ |{a+
1 , a−

1 }{a+
2 , a−

2 }|ξ 〉
= 〈ξ̄ ′ | a+

1 a−
1 a+

2 a−
2 |ξ 〉 + 〈ξ̄ ′ | a+

1 a−
1 a−

2 a+
2 |ξ 〉

+〈ξ̄ ′ | a−
1 a+

1 a+
2 a−

2 |ξ 〉 + 〈ξ̄ ′ | a−
1 a+

1 a−
2 a+

2 |ξ 〉. (16.13)

For the first three terms, by using the relations (16.11) it is
not difficult to obtain, correspondingly

〈ξ̄ ′ | a+
1 a−

1 a+
2 a−

2 |ξ 〉 = ξ̄ ′
1 ξ1 ξ̄ ′

2 ξ2 〈ξ̄ ′ | ξ 〉,
〈ξ̄ ′ | a+

1 a−
1 a−

2 a+
2 |ξ 〉 = (− ξ̄ ′

1 ξ̄ ′
2 ξ2 ξ1 + 2 ξ̄ ′

1 ξ1)〈ξ̄ ′ | ξ 〉,
〈ξ̄ ′ | a−

1 a+
1 a+

2 a−
2 |ξ 〉 = (− ξ̄ ′

2 ξ̄ ′
1 ξ1 ξ2 + 2 ξ̄ ′

2 ξ2)〈ξ̄ ′ | ξ 〉.
The analysis of the last term in (16.13) is somewhat more
complicated. Here, from (16.11) we have

〈ξ̄ ′ | a−
1 a+

1 a−
2 a+

2 |ξ 〉 = 〈ξ̄ ′ | (a−
1 ξ̄ ′

1 + 2)(ξ2a
+
2 + 2)|ξ 〉

= 〈ξ̄ ′ | a−
1 ξ̄ ′

1 ξ2a
+
2 |ξ 〉 + 2(ξ1 ξ̄ ′

1 + ξ2 ξ̄ ′
2 )〈ξ̄ ′ | ξ 〉 + 4 〈ξ̄ ′ | ξ 〉.

We transform the expression in the first term by using the
permutation rules (B.8)

a−
1 ξ̄ ′

1 ξ2a
+
2 = −a−

1 a+
2 ξ2 ξ̄ ′

1 ,

then

〈ξ̄ ′ | a−
1 ξ̄ ′

1 ξ2a
+
2 |ξ 〉 = ξ2 ξ̄ ′

2 ξ1 ξ̄ ′
1 〈ξ̄ ′ | ξ 〉.

Taking into account the obtained expressions (16.12) and
(16.13), we derive an explicit form of the matrix element of
the last term in (16.9):

〈ξ̄ ′ |
( 1

2
{a+

1 , a−
1 } − 1

)( 1

2
{a+

2 , a−
2 } − 1

)
| ξ 〉

=
[ 1

4

(
ξ̄ ′

1 ξ1 ξ̄ ′
2 ξ2 − ξ̄ ′

1 ξ̄ ′
2 ξ2 ξ1 − ξ̄ ′

2 ξ̄ ′
1 ξ1 ξ2 + ξ2 ξ̄ ′

2 ξ1 ξ̄ ′
1

+ 2{ξ̄ ′
1 , ξ1} + 2 {ξ̄ ′

2 , ξ2} + 4
)

− 1

2

({ξ̄ ′
1 , ξ1} + {ξ̄ ′

2 , ξ2}
) − 2 + 1

]
〈ξ̄ ′ | ξ 〉. (16.14)

As we can see from this expression, all terms of zeroth and
second orders in the para-Grassmann variables are canceled
out and thus, we eventually obtain

〈ξ̄ ′ |
( 1

2
{a+

1 , a−
1 } − 1

)( 1

2
{a+

2 , a−
2 } − 1

)
| ξ 〉

= 1

4

(
ξ̄ ′

1 ξ1 ξ̄ ′
2 ξ2 − ξ̄ ′

1 ξ̄ ′
2 ξ2 ξ1 − ξ̄ ′

2 ξ̄ ′
1 ξ1 ξ2 + ξ2 ξ̄ ′

2 ξ1 ξ̄ ′
1

)

〈ξ̄ ′ | ξ 〉.
Making use of this expression and the formulas (15.12) and
(16.10), we can now write the whole matrix element for the
Harish-Chandra operator ω̂ 2 in the representation (16.9)

〈ξ̄ ′ | ω̂ 2| ξ 〉

=
{ 3

2
x 2 y2 − 3

2
(x 2 y + x y2)

+3

2
x y + (x 2 + y2) − (x + y) + 1 − 1

23

×(
ξ̄ ′

1 ξ1 ξ̄ ′
2 ξ1 − ξ̄ ′

1 ξ̄ ′
2 ξ2 ξ1 − ξ̄ ′

2 ξ̄ ′
1 ξ1 ξ2 + ξ2 ξ̄ ′

2 ξ1 ξ̄ ′
1

)}

×〈ξ̄ ′ | ξ 〉. (16.15)

If one takes into account the trivial identity

[ ξ̄ ′
1 , ξ̄ ′

2 ][ξ1, ξ2 ] − [ ξ̄ ′
1 , ξ2 ][ ξ̄ ′

2 , ξ1 ]
= −(

ξ̄ ′
1 ξ1 ξ̄ ′

2 ξ1 − ξ̄ ′
1 ξ̄ ′

2 ξ2 ξ1 − ξ̄ ′
2 ξ̄ ′

1 ξ1 ξ2 + ξ2 ξ̄ ′
2 ξ1 ξ̄ ′

1

)
,

then we see that the expression (16.15) perfectly reproduces
the expression for the convolution 	∗ 	, Eq. (15.11). In the
subsequent sections we will discuss in more detail why omit-
ting the Harish-Chandra relation (16.1) leads us to a correct
result. It is precisely these expression (16.9) that defines the
square of the operator a0 (≡ −ω̂), which in contrast to the
Geyer symbol a2

0 will be designated as (a0)
2.

17 The Casimir operators ̂C2 and ̂C ′
2

In the paper Omote et al. [42] an explicit form of the quadratic
Casimir operator for the group SO(2M) was written out in
terms of the generators

Ĉ2 =
∑

k,l

(
2Nkl Nlk + LklMlk + Mkl Llk

)
.

Here, the indices k, l run 1, 2, . . . , M . In our case M = 2
and therefore

Ĉ2 = 2
(−{L12, M12} + {N12, N21} + (N 2

1 + N 2
2 )

)
. (17.1)

For comparison, here we write out an explicit form of the
operator a0 obtained in Sect. 6

a0 = −1

4

({L12, M12 } + {N12, N21} − {N1, N2 }). (17.2)

For the group SO(2M + 1) the quadratic Casimir operator
is

Ĉ ′
2 = Ĉ2 + 
̂, (17.3)

where 
̂ ≡ ∑M
k=1{a+

k , a−
k }. In our case for M = 2 the

operator 
̂ is


̂ = {a+
1 , a−

1 } + {a+
2 , a−

2 }. (17.4)

From the form of Casimir’s operator (17.1) we may notice
that the contribution (N 2

1 +N 2
2) has its analogue in the expres-

sion for the Harish-Chandra operator (16.9). This suggests
that the product
( 1

2
{a+

1 , a−
1 } − 1

)( 1

2
{a+

2 , a−
2 } − 1

)
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from (16.9) may have a connection with the difference

{N12, N21} − {L12, M12} (17.5)

from the definition of the Casimir operator (17.1). We verify
this assumption by a direct transformation of (17.5).

Let us consider the first term in (17.5). By the definitions
of the generators N12 and N21

N12 = 1

2
[a+

1 , a−
2 ], N21 = 1

2
[a+

2 , a−
1 ]

and of the algebra of para-Fermi operators of order p = 2,
Eqs. (4.4)–(4.6), we have

N12N21 = 1

4

[−a+
1 a−

1 a+
2 a−

2 − a+
1 a−

2 a−
1 a+

2 − a−
2 a+

1 a+
2 a−

1

− a−
1 a+

1 a−
2 a+

2 + 2(a+
1 a−

1 + a−
2 a+

2 )
]
,

N21N12 = 1

4

[−a+
1 a−

1 a+
2 a−

2 − a+
1 a−

2 a−
1 a+

2 − a−
2 a+

1 a+
2 a−

1

− a−
1 a+

1 a−
2 a+

2 + 2(a−
1 a+

1 + a+
2 a−

2 )
]
.

Summing these two expressions, we get

{N12, N21}
= −1

2

[
a+

1 a−
1 a+

2 a−
2 + a+

1 a−
2 a−

1 a+
2 + a−

2 a+
1 a+

2 a−
1

+a−
1 a+

1 a−
2 a+

2 − ({a+
1 , a−

1 } + {a+
2 , a−

2 })]. (17.6)

In what follows we shall analyze the second term in (17.5).
Here, we recall that the generators L12 and M12 are given by
the expressions

L12 = 1

2
[a+

1 , a+
2 ], M12 = 1

2
[a−

1 , a−
2 ].

By virtue of the algebra (4.4)–(4.6), we have

L12M12 = 1

4

[−a+
1 a−

2 a−
1 a+

2 + a+
1 a−

1 a−
2 a+

2 + a−
1 a+

1 a+
2 a−

2

− a−
2 a+

1 a+
2 a−

1 − 2(a+
1 a−

1 + a+
2 a−

2 )
]
,

M12L12 = 1

4

[−a+
1 a−

2 a−
1 a+

2 + a+
1 a−

1 a−
2 a+

2 + a−
1 a+

1 a+
2 a−

2

− a−
2 a+

1 a+
2 a−

1 − 2(a−
1 a+

1 + a−
2 a+

2 )
]
,

that in turn, gives

{L12, M12}
= −1

2

[
a+

1 a−
2 a−

1 a+
2 − a+

1 a−
1 a−

2 a+
2 − a−

1 a+
1 a+

2 a−
2

+a−
2 a+

1 a+
2 a−

1 + ({a+
1 , a−

1 } + {a+
2 , a−

2 })].

Substituting this expression and (17.6) into (17.5), further we
obtain

{N12, N21} − {L12, M12}
= −1

2

[
a+

1 a−
1 a+

2 a−
2 + a−

1 a+
1 a−

2 a+
2 + a+

1 a−
1 a−

2 a+
2

+ a−
1 a+

1 a+
2 a−

2 − 2
({a+

1 , a−
1 } + {a+

2 , a−
2 })]

= −1

2

[{a+
1 , a−

1 }{a+
2 , a−

2 } − 2{a+
1 , a−

1 } − 2{a+
2 , a−

2 }]

= −2
( 1

2
{a+

1 , a−
1 } − 1

)( 1

2
{a+

2 , a−
2 } − 1

)
+ 2.

Thus, we finally have

( 1

2
{a+

1 , a−
1 } − 1

)( 1

2
{a+

2 , a−
2 } − 1

)

= −1

2

({N12, N21} − {L12, M12}
) + 1.

With allowance made for the last relation and the definition
(17.1), the Harish-Chandra operator (16.9) can be cast in a
rather compact and visual form

ω̂ 2 = 3

4
a2

0 + 1

8

(
Ĉ2 − 6

)
(17.7)

or making use of the representation for the a2
0 in terms of the

G-parity operator, Eq. (9.13), it can be also written as

ω̂ 2 = 3

8
[1 + (−1)n ] + 1

8

(
Ĉ2 − 6

)
.

The Casimir operator Ĉ2 (and correspondingly, Ĉ ′
2) can be

presented as a polynomial of the operator 
̂. For this purpose,
it is easy to use the formulas (8.3)–(8.6) without recourse to
the relation (16.1). Based on these formulas we have

ω̂ 2 = 3

4
a2

0 + 1

43

[−(2 B̂ − 4)2 + 42 ]. (17.8)

Here, the operator B̂ ≡ β̂μβ̂μ by the relations of the (16.6)
type and the definition (17.4) equals

B̂ = 1

2

̂. (17.9)

Comparing the last terms in (17.7) and (17.8), we can easily
find the required representation

Ĉ2 = −1

2

̂
(

̂ − 8

)
, (17.10)

and as a consequence of (17.3), we obtain

Ĉ ′
2 = −1

2

̂
(

̂ − 10

)
. (17.11)

We write out the rules of action of the Casimir operator Ĉ2

on the vector states (6.1). They can be easily obtained by
calculations identical with those performed by us in Sect. 6
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for the operator a0:

Ĉ2|0〉 = 8|0〉,
Ĉ2|1〉 = 6|1〉, Ĉ2|2〉 = 6|2〉,
Ĉ2|11〉 = 8|11〉, Ĉ2|22〉 = 8|22〉,
Ĉ2|12〉 = 8|12〉, Ĉ2|21〉 = 8|21〉,
Ĉ2|112〉 = 6|112〉, Ĉ2|221〉 = 6|221〉,
Ĉ2|1122〉 = 8|1122〉.

(17.12)

Making use of these rules5, it is not difficult to see that
action of the Harish-Chandra operator ω̂2 in the representa-
tion (17.7) on the state vectors is exactly the same as the rules
of action of the Geyer operator a2

0 , Eq. (6.2). By this means in
the usual Fock space these two operators are fully equivalent.
This equivalence breaks down if we introduce the so-called
generalized state-vector space [26]. We will discuss this fact
in the next section, but here, in the remainder of this section
we analysed some properties of the Casimir operator Ĉ ′

2.
Let us define a connection of the Casimir operator Ĉ ′

2 for
the SO(2M + 1) group (for M = 2) with θ -element of the
center of the DKP-algebra [6]. The element of the center,
θ , in the matrix representation is expressed in terms of the
matrix B with the help of relation

θ = B (5 − B ). (17.13)

In the operator representation we have the connection (17.9)
and consequently the operator representation of θ takes the
form

θ̂ = 1

4

̂
(
10 − 
̂

)
.

Comparing this expression with (17.11), we derive the
required relation

Ĉ ′
2 = 2 θ̂ . (17.14)

In accordance with the Harish-Chandra approach the matrix
θ (for D = 4) has the eigenvalue 6 and therefore by virtue
of the fact that θ is in the center of the DKP-algebra, it must
be put

θ = 6I ≡ θ0, (17.15)

5 The eigenvalues obtained in the right-hand side of (17.12) are in
perfect agreement with the conclusions of Bracken and Green [43].
In notations of the authors the quadratic Casimir operator σ̂2(2M) of
the SO(2M) group (which should be considered as a subgroup of the
SO(2M + 1) group) has the following eigenvalues for arbitrary M and
p

σ̂2(2M) = [
pM

(
M + 1

2
p − 1

) − 2q ′(p − q ′)] Î ,

where q ′ = 0, 1, . . . , p. For our specific case M = 2 and p = 2, it
immediately follows that

σ̂2(4) =
{
8, if q ′ = 0, 2
6, if q ′ = 1.

where I is the unit matrix. In an operator formalism it goes
in the relation

θ̂ = 6 Î ,

where in turn Î is the unit operator. As a consequence, in view
of (17.14) the Casimir operator for SO(5) group is equal to

Ĉ ′
2 = 12 Î . (17.16)

In fact it is precisely this relation6 that is the primary source of
disagreement between two expressions (15.11) and (15.12).

Let us consider action of the operator Ĉ ′
2 = Ĉ2 + 
̂ on

the vector states. Action of the operator Ĉ2 is defined by
the formulas (17.12), and action of the operator 
̂ is easily
defined from its definition (17.4):


̂|0〉 = 4|0〉, 
̂|1〉 = 6|1〉, 
̂|11〉 = 4|11〉, . . . ,
i.e. action of 
̂ is reduced to multiplying by 4 or 6 depending
on evenness of the number of parafermions in a particular
state. Then for the Casimir operator Ĉ ′

2 = Ĉ2 + 
̂ we have

Ĉ ′
2|0〉 = 12|0〉, Ĉ ′

2|1〉 = 12|1〉, Ĉ ′
2|11〉 = 12|11〉, . . . ,

in a perfect agreement with the formula (17.16).
Let us calculate a matrix element of the operator Ĉ ′

2 in the
basis of parafermion coherent states. It is easy to determine
the matrix element for the Casimir operator Ĉ2 based on
the expression (17.7). Taking into account that the matrix
element of the Harish-Chandra operator ω̂2 is defined by
the expression (15.11), and the matrix element of the Geyer
operator a2

0 is defined by expression (15.12), from (17.7) we
derive

〈ξ̄ ′ | Ĉ2 | ξ 〉 = 2

[
2

{(
1

2
[ ξ̄ ′

1 , ξ2 ]
)(

1

2
[ ξ̄ ′

2 , ξ1 ]
)

6 This relation is in agreement again with the conclusions of the paper
[43]. The quadratic Casimir operator σ̂2(2M + 1) for arbitrary M and
p has the following eigenvalue:

σ̂2(2M + 1) = pM

(
M + 1

2
p

)
Î ,

whence, for M = 2 and p = 2, it follows that

σ̂2(5) = 12 Î .

In addition we note also that the invariant q̂ introduced in the paper [43]
in analysis of the reduction of the orthogonal group SO(2M + 1) with
respect to the unitary group U (M) is simply related to the operator 
̂.
From a general formula [43]

σ̂2(2M + 1) − σ̂2(2M) = 2 q̂ (p − q̂) + pM,

in our specific case with allowance made for the representations (17.10)
and (17.11) it follows that

2 q̂ (2 − q̂) + 4 = 
̂.

By this means the invariant q̂ cannot be expressed as a rational function
of 
̂.
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−
(

1

2
[ ξ̄ ′

1 , ξ̄ ′
2 ]

)(
1

2
[ξ1, ξ2 ]

)}

+(x 2 + y2) − (x + y) + 4

]
〈ξ̄ ′ | ξ 〉. (17.17)

Incidentally, this expression can be obtained by a direct cal-
culation starting from the definition (17.1) with the use of
the results in Sect. 7. The matrix element of the operator 
̂

equals

〈ξ̄ ′ |
̂| ξ 〉 = ({ξ̄ ′
1 , ξ1} + {ξ̄ ′

2 , ξ2} + 4
)〈ξ̄ ′ | ξ 〉. (17.18)

Adding the last two expressions, we obtain that in the basis of
parafermion coherent states the following non-equality takes
place

〈ξ̄ ′ | Ĉ ′
2 | ξ 〉 �= 12〈ξ̄ ′ | ξ 〉,

and in such a manner the relation (17.16) is not true within
the framework of generalized state-vector space.

18 Ohnuki and Kamefuchi’s generalized state-vector
space

As was noted for the first time by Ohnuki and Kamefuchi
[26] “The introduction of para-Grassmann numbers into the
framework of our theory naturally necessitates a correspond-
ing generalization of the state-vector space A.” This state-
vector space is usually spanned by state vectors such as

M(a+
i , a+

j , · · · )|0〉,

where M is a monomial in the creation operators a+
k , which

in our case is defined by the expressions (6.1). The use of the
para-Grassmann numbers ξk results in the fact that we have
to allow such M′s to contain as well ξ ′s. We have already
faced with this situation in Sect. 9 in analysis of the structure
of the parafermion coherent state | ξ 〉. There was shown that
some terms of the expansion of the coherent state in powers
of [ξ, a+] under the action on the vacuum state in principle
are not reduced to the expansion in the state vectors (6.1).

Instead of the usual state-vector space A now we should
consider a generalized state-vector space AG , which is
spanned by ket vectors such as

M(a+
i , a+

j , . . . , ξk, . . .)|0〉.
By this means the Harish-Chandra operator (17.7) and the
Geyer operator (2.17) are equivalent in the space A and are
not equivalent in the enlarged space AG . The accounting this
circumstance results in an appreciable complication of the
matrix elements of the operator expressions containing the
Geyer operator a2

0 .

In principle, the complication of this kind can be avoided
if instead of the parafermion coherent state of the form

| ξ 〉 = e− 1
2

∑
l [ξl , a+

l ]|0〉

one uses the coherent state admitting an expansion in the
number basis as it takes place in the case of the usual Fermi
(and Bose) statistics. An example of such a coherent state
for the case of a single-mode parafermi system can be found
in the paper by Jing and Nelson [64]. In this paper the para-
Fermi eigenstate of annihilation operator a− is presented in
the form of the expansion in the number basis

|n〉 = 1√{n}! (a+)n|0〉,

such that n̂ f |n〉 = n|n〉, where the parafermi number opera-
tor is

n̂ f = 1

2
[a+, a−] + 1

2
p

and

{n} ≡ n(p + 1 − n), {n}! = {n}{n − 1} . . . {1}
= n! p !

(p − n)! .

Note that the coefficient {n} coincides with the coefficient in
the differentiation formula of para-Grassmann number ξn ,
Eq. (C.3). The para-Fermi coherent state has the following
form:

| (ξ)p 〉 =
p∑

n=0

| n〉 ξ n

√{n}! . (18.1)

It obeys the relationa−| (ξ)p 〉 = | (ξ)p 〉ξ and has the overlap
function

〈(ξ̄ ′)p |(ξ)p 〉 =
p∑

n=0

1

{n}! (ξ̄ ′)n (ξ)n .

In particular, for the special case p = 2 the expression (18.1)
takes the form

| (ξ)2〉 = | 0〉 + 1√
2

|1〉ξ + 1

2
|2〉ξ 2.

Making use of the parafermion state (18.1) (and its gener-
alization to two-mode para-Fermi system) enables one to
avoid the introduction of the generalized state-vector space
AG , however, in so doing the usual exponential represen-
tation both of the coherent state and, correspondingly of the
overlap function rather convenient for the construction of the
path integral representation, is lost.
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19 Another representation of Harish-Chandra operator
ω̂2

We define the expression for Harish-Chandra operator ω̂2,
Eq. (17.7), in terms of the Geyer operator a2

0 and the Casimir
operator Ĉ2 for the orthogonal SO(4) group. Let us define
a representation for this operator in terms of the Casimir
operator Ĉ ′

2 for the SO(5) group and the operator 
̂. For
this purpose, we will need the formula (68) from the paper
[6]. In the special case M = 2 this formula (in the matrix
representation) for the non-normalized matrix ω2 gives us

ω2 = 4
{
2B2 − 2B3 + B4

}
, (19.1)

where the matrices Bk are recurrently defined by the matrix
B (see Eq. (H.8))

B2 = B (B − 1), B3 = B2(B − 2), B4 = B3(B − 3).

(19.2)

It should be noted that the formula (68) in [6] was given with
wrong number coefficients of the matrices Bk . In particular,
for the case M = 2 the coefficient 2 of B2 is absent. We give
the correct expression in (19.1). The formula (68) in Harish-
Chandra’s original text further is not used with the exception
of the following formula (69) and therefore all subsequent
expressions are true. However, the following formula (69)
from [6] will be incorrect if one uses (68). We discuss in
detail all of these questions in Appendix H, where a correct
expression for (68) is given.

Let us use the definition of the element of the center θ ,
Eq. (17.13), to exclude in (19.2) all terms nonlinear in the
matrix B, then

B2 = −θ + 4B,

B3 = −2θ − B (θ − 12),

B4 = θ2 − 6θ − B (4θ − 24).

Putting these expressions into (19.1) yields

ω2 = 4
[
P(θ) + Q(θ)B

]
, (19.3)

where P(θ) ≡ θ2 − 4θ and Q(θ) ≡ −2(θ − 4). We elimi-
nate the term θ 2 from the function P(θ) using the minimal
equation for θ :

(θ − 4)(θ − 6) = 0,

then P(θ) = 6(θ − 4), and the expression (19.3) takes the
form

ω2 = 1

2
(θ − 4)(3 − B ). (19.4)

Here, we went to the normalized pseudo-matrix ω in accor-
dance with the rule: ω → 4ω. The expression (19.4) cor-
rectly reproduces the formula (70) from [6] suggested by
Harish-Chandra from general reasoning. In particular, when

we fix the element of the center θ , Eq. (17.15), from (19.4)
follows (16.1). The use of the original formula (68) (see (H.2)
in Appendix H) leads to the improper expressions (19.4) and
(16.1).

For the operator formulation of the relation (19.4) we make
use of the formulas of connection (17.14) and (17.9) that give
us the desired representation for the Harish-Chandra operator

ω̂2 = 1

8
(Ĉ ′

2 − 8)(6 − 
̂).

If one recalls the representation of the Casimir operator Ĉ ′
2

in terms of 
̂, Eq. (17.11), then the preceding expression can
be put into another form

ω̂2 = 1

16
(
̂ − 8)(
̂ − 6)(
̂ − 2) (19.5)

and thus the operator ω̂2 represents a polynomial of the third
order in 
̂. As a consequence of (19.5), (17.7) and (17.10),
we obtain a similar representation for the Geyer operator a2

0 :

a2
0 = 1

12
(
̂ − 7)(
̂ − 6)(
̂ − 2). (19.6)

By this means, for the a2
0 operator we have the third repre-

sentation in this case in terms of 
̂. The first representation is
the original expression of Geyer, Eq. (2.17), and the second
one was written out in terms of the fermion number counter
(−1)n , Eq. (9.13).

By virtue of the obtained expressions (17.9)–(17.11),
(19.5) and (19.6), one can state a question on the possibility
of the representation of the operator ω̂ (≡ −a0) as a function
of 
̂. However, analysis showed that the representation of
the ω̂ as a polynomial of the second and the third orders in

̂ is incompatible with the property

ω̂3 = ω̂,

i.e. we result either in a contradiction or in the trivial case
ω̂ ≡ 0. In principle, that should be expected since ω̂ is a
pseudo-scalar operator as distinct from the other operators.

In the remainder of this section, we would like to return to
analysis of the integral convolution (15.2). As was discussed
in Sect. 15, we proved the validity of (15.2) in Sect. 7 and in
Appendix F, where as the function 	̃(ξ̄ ′, ξ) we had taken an
expression from the matrix element for the Geyer operator
a2

0 , Eqs. (12.3) and (12.4). However, in the extended state-
vector space AG instead of the operator a2

0 we must use the
operator ω̂2 ≡ (a0)

2, whose matrix element by virtue of
(17.7) has the form

〈ξ̄ ′ | ω̂2| ξ 〉 = ˜̃	(ξ̄ ′, ξ)〈ξ̄ ′ | ξ 〉, (19.7)

where now

˜̃	(ξ̄ ′, ξ) = 3

4
	̃(ξ̄ ′, ξ) + 1

8
(C2(ξ̄ ′, ξ) − 6). (19.8)
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We define the function C2(ξ̄
′, ξ) as usually by the relation

〈ξ̄ ′ | Ĉ2| ξ 〉 = C2(ξ̄ ′, ξ)〈ξ̄ ′ | ξ 〉.
An explicit form of C2(ξ̄ , ξ) is given by the expression
(17.17). Instead of (15.2) we need to prove the validity of
the relation

	(ξ̄ ′, ξ) = 	(ξ̄ ′, ξ)∗ ˜̃	(ξ̄ ′, ξ). (19.9)

For the first term on the right-hand side of (19.8) the relation
(15.2) is still true and therefore instead of (19.9) we can write

	(ξ̄ ′, ξ) = 1

2
	(ξ̄ ′, ξ)∗ (C2(ξ̄ ′, ξ) − 6)

or

	(ξ̄ ′, ξ) = 1

8
	(ξ̄ ′, ξ)∗ C2(ξ̄ ′, ξ). (19.10)

However, a straightforward calculation of the convolution
in (19.10) is too cumbersome, consequently we consider
the proof of (19.10) within the operator formalism which
is somewhat easier.

We exploit the fact that the right-hand side of (19.10) can
be written as

1

8
〈ξ̄ ′ | a0 Ĉ2| ξ 〉〈ξ̄ ′ | ξ 〉−1. (19.11)

In the matrix representation the following relation (see (H.7))
was proved:

ωB = 2ω. (19.12)

In the operator representation it takes the form

a0 
̂ = 4a0. (19.13)

Further we use the representation of the Casimir operator Ĉ2

in terms of the operator 
̂, Eq. (17.10). Then by virtue of
(19.13) the following chain of equalities is true:

a0 Ĉ2 = −1

2
a0 
̂2 + 4a0 
̂ =

[
−1

2
42 + 42

]
a0 = 8a0.

The expression (19.11) in view of the last relation is really
equals 	(ξ̄ ′, ξ). However, we need clearly to show that the
operator equality (19.13) indeed takes place.

We rewrite the equality (19.13) in an identical form

1

2
{a0, 
̂} + 1

2
[a0, 
̂] = 4a0.

Let us prove that the following relations are valid:

{a0, 
̂} = 8a0, [a0, 
̂] = 0. (19.14)

Here, we consider the proof of the first relation, the proof
of the second one is given in Appendix I. Substituting an
explicit form of the operators a0 and 
̂ into the first relation
in (19.14), we get
({{L12, M12 }, {a+

1 , a−
1 }} + {{N12, N21}, {a+

1 , a−
1 }}

−{{N1, N2 }, {a+
1 , a−

1 }}) + (1 � 2)

= 8
({L12, M12} + {N12, N21} − {N1, N2 }). (19.15)

We will need two operator identities

{C, {A, B }} = [A, [B,C ]] + {B, {A,C }}, (19.16)

[C, {A, B }] = {B, [C, A]} − {A, [B,C ]}. (19.17)

We consider the first term on the left-hand side of (19.15).
By using the identity (19.16), we obtain

{{L12, M12}, {a+
1 , a−

1 }}
= [L12, [M12, {a+

1 , a−
1 }]] + {M12, {{a+

1 , a−
1 }, L12}}.

(19.18)

Further we take advantage of the identity (19.17). The inter-
nal commutator in the first term in (19.18) is

[M12, {a+
1 , a−

1 }] = {a−
1 , [M12, a

+
1 ]} − {a+

1 , [a−
1 , M12 ]}

= −{a−
1 , a−

2 }.
Here, we have used the commutation rules (6.15). Then the
first term in (19.18) takes the form

− [L12, {a−
1 , a−

2 }] = −{a−
2 , [L12, a

−
1 ]} + {a−

1 , [a−
2 , L12 ]}

= {a+
2 , a−

2 } − {a+
1 , a−

1 }, (19.19)

where we again have used the identity (19.17) and the rules
(6.15).

Let us analyze now the second term on the right-hand side
of (19.18). We have the following chain of equalities:

{{a+
1 , a−

1 }, L12} = [a+
1 , [a−

1 , L12 ] ] + {a−
1 , {L12, a

+
1 }}

= [a+
1 , a+

2 ] + {a−
1 , {L12, a

+
1 }}

= 2L12 − 1

2
{a−

1 , [a+
2 , (a+

1 )2 ]}.
Here, at the last step we have made transformation with the
use of the definition of the generator L12, Eq. (6.9),

{L12, a
+
1 } = 1

2
{[a+

1 , a+
2 ], a+

1 } ≡ −1

2
[a+

2 , (a+
1 )2 ].

By this means the second term in (19.18) can be presented
in the following form:

{M12, {{a+
1 , a−

1 }, L12}} = 2{M12, L12}
−1

2
{M12, {a−

2 , [a+
2 , (a+

1 )2 ]}}.
With the use of this expression and (19.19) the first contri-
bution on the left-hand side of (19.15) is written as

{{L12, M12, }, {a+
1 , a−

1 }}
= ({a+

2 , a−
2 } − {a+

1 , a−
1 }) + 2{M12, L12}

−1

2
{M12, {a−

1 , [a+
2 , (a+

1 )2 ]}}. (19.20)

Analysis of the second and the third contributions on the
left-hand side of (19.15) is performed in accordance with the
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same scheme, because of this, here we write out only the final
expressions:
for the second term

{{N12, N21}, {a+
1 , a−

1 }}
= (−{a+

2 , a−
2 } + {a+

1 , a−
1 }) + 2{N21, N12 }

−1

2
{N21, {a−

1 , [a−
2 , (a+

1 )2 ]}} (19.21)

and for the third term

{{N1, N2 }, {a+
1 , a−

1 }} = 4{N1, N2 }. (19.22)

It remains for us to analyze the last terms in (19.20) and
(19.21). Let us consider the first of them. Making use of the
operator identity (19.17) for the internal anticommutator we
have

{a−
1 , [a+

2 , (a+
1 )2 ]} = {(a+

1 )2, [a−
1 , a+

2 ]} + [a+
2 , {(a+

1 )2, a−
1 }]

= −2{(a+
1 )2, N21} − 4L12.

Then this term takes the form

2{M12, L12} + {M12, {(a+
1 )2, N21}}

= 2{M12, L12} + [(a+
1 )2, [N21, M12 ] ]

+{N21, {M12, (a
+
1 )2}}.

Here, we have used the identity (19.16). The second term
on the right-hand side of the above expression vanishes by
virtue of the algebra (6.11) and as a result, we obtain

−1

2
{M12, {a−

2 , [a+
2 , (a+

1 )2 ]}}
= 2{M12, L12} + {N21, {M12, (a

+
1 )2}}.

Completely similar analysis for the last term in (19.21) leads
us to

−1

2
{N21, {a−

2 , [a−
2 , (a+

1 )2 ]}}
= 2{N21, N12} − {N21, {(a+

1 )2, M12 }}
and thus, instead of (19.20) and (19.21), now we can write,
correspondingly,

{{L12, M12}, {a+
1 , a−

1 }}
= ({a+

2 , a−
2 } − {a+

1 , a−
1 }) + 4{M12, L12}

+ {N21, {M12, (a
+
1 )2}},

{{N12, N21}, {a+
1 , a−

1 }}
= ({a+

1 , a−
1 } − {a+

2 , a−
2 }) + 4{N21, N12}

− {N21, {M12, (a
+
1 )2}}.

Putting the last expressions together and subtracting (19.22)
from them, we obtain that the contribution of the first three
terms on the left-hand side of (19.15) equals

4
({L12, M12} + {N21, N12} − {N1, N2}

)
.

The contribution with the replacement (1 � 2) gives us the
remaining half of terms on the left-hand side of (19.15). In
this way we really reproduce the first relation in (19.14). In
fact we have proved even a more weak statement. Let us
present the operator 
̂ as a sum


̂ = 
̂1 + 
̂2,

where 
̂1 ≡ {a+
1 , a−

1 }, 
̂2 ≡ {a+
2 , a−

2 }. Then by virtue of
the aforementioned we proved the validity of two indepen-
dent relations

{a0, 
̂1} = 4a0, {a0, 
̂2} = 4a0. (19.23)

However, if we remember an existence of the second relation
in (19.14), then in addition to (19.23) we have to verify the
validity of the equalities

[a0, 
̂1 ] = 0, [a0, 
̂2 ] = 0. (19.24)

As we showed in Appendix I, the relations (19.24) do not
hold separately, and they hold only in a sum.

The necessity of using the operator ω̂2 instead of a2
0 leads

to a modification of some expressions with a2
0 , which were

obtained earlier. In particular, it is concerned with the matrix
elements 〈ξ̄ ′ | [a2

0 , a±
n ]| ξ 〉 derived in Sect. 10. It is not dif-

ficult to show that now, instead of (10.21) and (10.22), we
must use the equalities

〈ξ̄ ′ | [ω̂2, a+
n ]| ξ 〉 = −

(
∂ ˜̃	
∂ξn

)
〈ξ̄ ′ | ξ 〉,

〈ξ̄ ′ | [ω̂2, a−
n ]| ξ 〉 = −

(
∂ ˜̃	
∂ ξ̄ ′

n

)
〈ξ̄ ′ | ξ 〉

with the function ˜̃	(ξ̄ ′, ξ) defined by the formula (19.8).
Some other modifications of the formalism under consider-
ation will be discussed below.

20 Calculation of the commutators [ Â, a+
k ] and

[ Â, [a0 , a+
k ]]

We determine the commutators of the operator Â with the
creation operator a+

k and with the commutator [a0 , a+
k ]. The

aim of these calculations is to obtain a more compact and
visual representation for the matrix elements 〈ξ̄ ′ | Âa+

n | ξ 〉
and 〈ξ̄ ′ | Â[a0 , a+

n ]| ξ 〉. We recall that the awkwardness of
these matrix elements is caused by the necessity to move the
operator a+

k and the commutator [a0 , a+
k ] towards the left of

the operator Â, Eqs. (10.2) and (11.9). For the calculation of
the required commutators it is the most convenient for us to
use the exponential representation of the operator Â

Â = α e−i 2π
3 a0 . (20.1)
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We need the expression for the trilinear commutator (2.9),
which for convenient reference, we give once more

[a0 , [a0 , a+
k ]] = a+

k . (20.2)

First we consider the commutator [ Â, a+
k ]. We rearrange

the operator Â to the right

α [e−i 2π
3 a0 , a+

k ]
= α

(
e−i 2π

3 a0 a+
k ei

2π
3 a0 − a+

k

)
e−i 2π

3 a0

=
(
a+
k −

(
2π i

3

)
[a0 , a+

k ]

+ 1

2!
(

2π i

3

)2

[a0 , [a0 , a+
k ]] − . . . − a+

k

)
Â

=
(

−
{(

2π i

3

)
+ 1

3!
(

2π i

3

)3

+ · · ·
}

[a0 , a+
k ]

+
{

1

2!
(

2π i

3

)2

+ 1

4!
(

2π i

3

)4

+ · · ·
}
a+
k

)
Â

=
{
−i sin

2π i

3
[a0 , a+

k ] + cos
2π i

3
a+
k

}
Â

=
{(

− i
√

3

2

)
[a0 , a+

k ] +
(

−3

2

)
a+
k

}
Â.

Here, we have used the operator identity (5.3) and the com-
mutation rule (20.2). The commutator [ Â, [a0 , a+

k ]] is cal-
culated in the same way7 and as a result, we can write the
desired commutators

[ Â, a+
k ] =

{(
−3

2

)
a+
k +

(
− i

√
3

2

)
[a0 , a+

k ]
}
Â, (20.3a)

[ Â, [a0 , a+
k ]] =

{(
− i

√
3

2

)
a+
k +

(
−3

2

)
[a0 , a+

k ]
}
Â.

(20.3b)

We analyze these expressions by calculating their matrix
elements in the basis of parafermion coherent states. Let us
consider the second one. For the left-hand side we make use
of the relation8 (11.11)

[ Â, [a0 , a+
k ]] = −β a+

k + 2γ a+
k a0 + γ [a0 , a+

k ]. (20.5)

7 It is easiest to calculate the double commutator [ Â, [a0, a
+
k ]] by an

algebraic differentiation, i.e. by the commutation of the expression for
[ Â, a+

k ] with the operator a0, in view of (20.2).
8 Recall that

β =
(
i
√

3

2

)
α, γ =

(
−3

2

)
α, α3 = 1

m
. (20.4)

The matrix elements of two terms on the right-hand side
(20.3b) can be written as

〈ξ̄ ′ | a+
k Â| ξ 〉 = ξ̄ ′

k A(ξ̄ ′, ξ)〈ξ̄ ′ | ξ 〉,

〈ξ̄ ′ | [a0 , a+
k ] Â| ξ 〉 = −

(
∂	(ξ̄ ′, ξ)

∂ ξk

)
∗ A(ξ̄ ′, ξ)〈ξ̄ ′ | ξ 〉.

(20.6)

Here, we have used the definitions of the function A(ξ̂ ′, ξ),
Eq. (10.23), of the derivative ∂	/∂ξk , Eq. (10.12), and of
the star product (14.3). Based on (20.5) and (20.6) the matrix
element of (20.3b) can be presented in the form

(α/γ )

{
ξ̄ ′
k

(
−β + 2γ 	 + (β/α)A

)
− γ

(
∂	

∂ ξk

)}

= −
(

∂	

∂ ξk

)
∗ A. (20.7)

On the left and right-hand sides we canceled by the overlap
function 〈ξ̄ ′ | ξ 〉.

Further we consider the relation (20.3a). Taking into
account that

〈ξ̄ ′ | [ Â, a+
k ]| ξ 〉 = −∂A(ξ̄ ′, ξ)

∂ ξk
〈ξ̄ ′ | ξ 〉,

we can write the matrix element of the operator relation
(20.3a) in the following form:

(α/β)

{
(γ /α) ξ̄ ′

k A + ∂A
∂ ξk

}
= −

(
∂	

∂ ξk

)
∗ A. (20.8)

Equating the left-hand sides of (20.7) and (20.8), we obtain
a condition for consistency of the operator relations (20.3a)
and (20.3b) in the enlarged state-vector space AG :

1

γ

{
ξ̄ ′
k

(
−β + 2γ 	 + (β/α)A

)
− γ

(
∂	

∂ ξk

)}

= 1

β

{
(γ /α) ξ̄ ′

k A + ∂A
∂ ξk

}
. (20.9)

This relation must be fulfilled identically. Let us verify this
circumstance. The function A(ξ̄ ′, ξ) by virtue of the defini-
tions (15.4) and (19.7) has the following form:

A(ξ̄ ′, ξ) = α − β 	(ξ̄ ′, ξ) + γ ˜̃	(ξ̄ ′, ξ), (20.10)

where, in turn, the function ˜̃	 is given by the expression
(19.8). Making use of the representation (9.18) for the func-
tion 	̃, we have

∂ 	̃

∂ ξk
= ξ̄ ′

k (2	̃ − 1). (20.11)

Taking into account the last expression and (19.8), we obtain
the derivative of the function A with respect to ξk :

∂A
∂ ξk

= −β
∂	

∂ ξk
+ γ

3

4
ξ̄ ′
k (2	̃ − 1) + γ

1

8

∂ C2

∂ ξk
.
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Substituting this derivative into (20.9), by using numerical
values of the parameters β and γ , Eq. (20.4), one can show
that eventually the consistency condition (20.9) is reduced to
the simple relation

∂ C2 (ξ̄ ′, ξ)

∂ ξk
= 2ξ̄ ′

k

(C2 (ξ̄ ′, ξ) − 7
)
. (20.12)

Finally, by using an explicit form of the function C2(ξ̄
′, ξ),

Eq. (17.17), it is not difficult to verify that the consistency
condition does not turn into identity. Let us define the reason
of such a contradiction.

In deriving the formulas (20.3) and (20.5) we used the
quantization rule (20.2). In a special case of parastatistics
p = 2 this rule is a consequence of two relations

a0 a
+
k a0 = 0, (a0 )2a+

k + a+
k (a0 )2 = a+

k , (20.13)

which, in turn, is the operator representation of matrix rela-
tions (see Appendix A)

ωβμ ω = 0, ω2βμ + βμ ω2 = βμ. (20.14)

Let us define the matrix element in the basis of parafermion
coherent states of the second operator relation in (20.13). For
the left-hand side we have

〈ξ̄ ′ | {(a0 )2, a+
k }| ξ 〉 ≡ 〈ξ̄ ′ | 2a+

k (a0 )2 + [(a0 )2, a+
k ]| ξ 〉

= 2ξ̄ ′
k 〈ξ̄ ′ | (a0 )2| ξ 〉

+〈ξ̄ ′ | [(a0 )2, a+
k ]| ξ 〉.

At first we take as the operator (a0)
2 the Geyer operator

(2.17). Then making use of (10.19) and (10.21), we can put
the desired matrix element after canceling by the overlap
function into the form

2 ξ̄ ′
k 	̃ − ∂ 	̃

∂ ξk
= ξ̄ ′

k , (20.15)

and thus we result in (20.11), i.e. there is no contradiction.
However, as we already know from the preceding consid-
eration, instead of the Geyer operator a2

0 , we must use the
Harish-Chandra operator ω̂2 ≡ (a0)

2 and therefore, instead
of (20.15), we have to write

2 ξ̄ ′
k
˜̃	 − ∂ ˜̃	

∂ ξk
= ξ̄ ′

k .

Substituting (19.8) into this equality, we result in the relation
(20.12), which is contradictory. This circumstance provides
a hint that the second matrix relation in (20.14), and as a
consequence, its operator formulation (20.13) are not entirely
correct.

In Appendix A we have given all basic formulas of the
ω-βμ algebra. All of them except the formula (A.3) were
proved in [6] without fixing the element of center (17.15). Let
us discard this fixing in deriving the formula (A.3). We will

need the relation (19.3) in which we come to the normalized
matrix ω according to the rule ω → 4ω:

ω2 = 1

4

[
P(θ) + Q(θ)B

]
.

Here we recall P(θ) = 6(θ − 4) and Q(θ) = −2(θ − 4).
By virtue of the fact that θ is element of the center of the
DKP-algebra and from the equality {B, βμ} = 5βμ, instead
of (A.3), we have

{ω2, βμ} = 1

4

(
2P(θ)βμ + Q(θ){B, βμ})

= 1

4
(2θ − 8)βμ.

To pass to the operator representation it is sufficient to per-
form the following replacements: ω → ω̂ (≡ −a0 ), βμ →
a±
k , 2θ → Ĉ ′

2. Thus we finally arrive at the desired general-
ization of the second relation in (20.13)

(a0)
2a±

k + a±
k (a0)

2 = 1

4
(Ĉ ′

2 − 8)a±
k .

In fixing the Casimir operator Ĉ ′
2 = 12 Î we return to the

original relation (20.13). With allowance made for this gen-
eralization, the double commutator (20.2) takes the form

[a0 , [a0 , a+
k ]] = 1

4
(Ĉ ′

2 − 8)a+
k , (20.16)

and now, instead of (11.11), we obtain

[ Â, [a0 , a+
k ]] = −1

4
β(Ĉ ′

2 − 8)a+
k

+1

4
γ {a0 (Ĉ ′

2 − 8), a+
k }.

Further, based on the representation (17.11) and on the prop-
erty (19.13) we can put the last expression in the final form

[ Â, [a0 , a+
k ]]

= −1

4
β(Ĉ ′

2 − 8)a+
k + 2γ a+

k a0 + γ [a0 , a+
k ]. (20.17)

Comparing this expression with (20.5), we see that change
occurred only in the first term on the right-hand side.

Further, we need to modify the relations (20.3), since now
for their deriving we should make use of the commutation
rules (20.16) instead of (20.2). It is not difficult to show that
in this case, instead of (20.3), we get

[ Â, a+
k ] =

{(
−3

2

)
a+
k +

(
− i

√
3

2

)
[a0 , a+

k ]
}
Â

+ 1

4
γ a+

k (Ĉ ′
2 − 12), (20.18a)

[ Â, [a0 , a+
k ]] =

{(
− i

√
3

2

)
a+
k +

(
−3

2

)
[a0 , a+

k ]
}
Â

− 1

4
β a+

k (Ĉ ′
2 − 12). (20.18b)
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Here, we see appearing additional terms in comparison with
(20.3). At this stage on the left-hand side of (20.18b) we have
to use the relation (20.17).

Let us consider now the matrix elements of the generalized
operator relations (20.18). The change in the first term of the
right-hand side of (20.17) leads to the following replacement
on the left-hand side of (20.7):

ξ̄ ′
k β → ξ̄ ′

k β
1

4

(C ′
2 (ξ̄ ′, ξ) − 8

)
,

and additional terms in (20.18a) and (20.18b) result in
appearance of additional terms on the left-hand side of the
matrix elements (20.7) and (20.8), namely the expression

−ξ̄ ′
k β

1

4

(C ′
2 (ξ̄ ′, ξ) − 12

)
,

should be added to the left-hand side of (20.7) and the expres-
sion

ξ̄ ′
k γ

1

4

(C ′
2 (ξ̄ ′, ξ) − 12

)

should be added to the left-hand side of (20.8). The consis-
tency condition of thus obtained two matrix elements in view
of the equality

C ′
2 (ξ̄ ′, ξ) = C2 (ξ̄ ′, ξ) + 
(ξ̄ ′, ξ),

results us, instead of (20.12), in a completely different rela-
tion, namely

∂ C2 (ξ̄ ′, ξ)

∂ ξk
= −2 ξ̄ ′

k

(

(ξ̄ ′, ξ) − 5

)
. (20.19)

By using an explicit form of the functions C2 (ξ̄ ′, ξ) and

(ξ̄ ′, ξ), Eqs. (17.17) and (17.18), it is easy to verify that
(20.19) turns into identity.

21 Conclusion

In this paper we have made the detailed analysis of the con-
nection between the Duffin–Kemmer–Petiau algebra and an
extended system of parafermion trilinear commutation rela-
tions for the creation and annihilation operators a±

k obeying
para-Fermi statistics of order 2 and for an additional operator
a0. We have considered two representations of the operator
a0. The first of them is an “indirect” representation based on
employing the resolvent R of the Geyer operator a2

0 . The sec-
ond is an “explicit” representation constructed from the gen-
erators of the group SO(2M). It was shown that the former in
contrast to the latter leads to incorrect formulas determining
the rules of action of the operator a0 on the state vectors of
the corresponding finite Fock space. We have suggested that
the reason of such an inconsistency is that Geyer’s expres-
sion for the operator a2

0 in terms of the parafermion number

operators is most probably not the square of the initial oper-
ator a0. We recall that the latter appears as some additional
abstract element of the algebra so(2M + 2).

As a secondary result we have obtained a simple elegant
representation for the operator a2

0 in terms of the parafermion
parity operator (−1)n , where n is the parafermion num-
ber operator. This representation in particular enabled us to
obtain the expression for some matrix elements in the basis
of parafermion coherent states by a simple way in contrast to
an approach based on the Geyer representation, Eq. (2.17).
Besides we found an intriguing connection between the a2

0
operator and the so-called CPT operator η̂5, Eq. (8.11).

An important element of the developed formalism is the
notion of a star product of para-Grassmann-valued functions,
which enabled to put the matrix elements into the elegant and
compact form. Two different techniques of the calculation of
the star product were considered. This made it possible to
verify independently the results of the calculations.

Another important element of our formalism is the notion
of an extended Fock space AG . In fact, this notion is a key
element of our approach. We have come to recognize that we
must work within the framework of Ohnuki and Kamefuchi’s
generalized state-vector space AG rather than in the context
of the usual state-vector space A that allowed us finally to
resolve all the contradictions involved. As a particular con-
sequence, a number of the trilinear matrix and operator rela-
tions obtained earlier in the papers by Harish-Chandra [6] and
by Geyer [22] have been refined. These improved relations
include such an important objects as the element θ of the cen-
ter of the Duffin–Kemmer–Petiau algebra and the quadratic
Casimir operator Ĉ ′

2 of the Lie group SO(2M + 1).
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Appendix A: The ω-βμ matrix algebra

In this Appendix we give some necessary formulas of the ω

-βμ matrix algebra, which are used in the article text. This
algebra characterizes the matrices for the spin-1 case (for
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the 10-row representation in the four-dimensional Euclidean
space-time). Details of the proof of these formulas and also
their generalization to higher dimensions can be found in the
papers by Harish-Chandra [6,47] and Fujiwara [7]. In view
of the definition of the ω matrix, Eq. (3.2), and the trilin-
ear relation for the β-matrices, Eq. (3.1), in arbitrary even-
dimensional D = 2M Euclidean space-time we have

ω3 = ω, (A.1)

ωβμ ω = 0, (A.2)

ω2βμ + βμ ω2 = βμ, (A.3)

βμβν ω + ωβνβμ = ωδμν, (A.4)

βμ ωβν + βν ωβμ = 0. (A.5)

If one defines the matrix B ≡ βμβμ, then the following
relation is valid:

ω2 = M + 1 − B. (A.6)

Appendix B: Para-Grassmann numbers

In this Appendix we list the most important commutation
relations between the para-Grassmann numbers and the para-
Fermi operators a±

i . We follow the definition of a para-
Grassmann algebra suggested by Omote and Kamefuchi [25],
namely a set of independent numbers ξ1, ξ2, . . . , ξM are said
to form a para-Grassmann algebra of order p when these
numbers satisfy the following relations:

[ξi , [ξ j , ξk ]] = 0,

{ξi1 , ξi2 , . . . , ξim } = 0 for m ≥ p + 1,
(B.1)

where i ′s, j, k = 1, 2, . . . , M and by the symbol {ξi1, ξi2 ,
. . . , ξim } one means a product of m ξ -numbers completely
symmetrized with respect to the indices i1, i2, . . . , im . For
the special case p = 2 these relations are reduced to

ξi ξ j ξk + ξk ξ j ξi = 0. (B.2)

Further, let us write out the rules of commutation between
the para-Grassmann numbers and the creation and annihila-
tion para-Fermi operators a±

i :

[a±
i , [a∓

j , ξk ]] = 2δi j ξk , (B.3)

[a±
i , [a±

j , ξk ]] = 0, (B.4)

[ξi , [ξ j , a±
k ]] = 0. (B.5)

These relations hold for parastatistics of an arbitrary order
p. For the case p = 2 the commutation rules (B.3) turn into

identity on the strength of the following relations:

a±
i a∓

j ξk + ξk a
∓
j a

±
i = 2δi j ξk ,

a±
i ξk a

∓
j + a∓

j ξk a
±
i = 0.

(B.6)

By direct calculations, one can verify a validity of these
equalities using Green’s decomposition [46]

a±
i =

2∑

α=1

a±(α)
i , ξi =

2∑

α=1

ξ
(α)
i

and the bilinear commutation relations for the Green com-
ponents [26,46]

{a±(α)
i , a∓(α)

j } = δi j , {a±(α)
i , a±(α)

j } = 0, α = 1, 2,

[a±(α)
k , a±(β)

l ] = 0, [a±(α)
k , a∓(β)

l ] = 0, α �= β,

{a±(α)
k , ξ

(α)
l } = 0, [a±(α)

k , ξ
(β)
l ] = 0,

{ξ (α)
k , ξ

(α)
l } = 0, [ξ (α)

k , ξ
(β)
l ] = 0.

For the commutation rules (B.4) and (B.5) we can write out
similar relations for the particular case p = 2, correspond-
ingly,

a±
i a±

j ξk + ξk a
±
j a

±
i = 0,

a±
i ξk a

±
j + a±

j ξk a
±
i = 0

(B.7)

and

ξi ξ j a
±
k + a±

k ξ j ξi = 0,

ξi a
±
k ξ j + ξ j a

±
k ξi = 0.

(B.8)

Appendix C: Differentiation of para-Grassmann-valued
functions

Here, we present the formulas of differentiation with respect
to a para-Grassmann number ξ . The required formulas for
the left derivative are [13,26]

∂
([ξ, ζ ]g(ξ)

)

∂ ξ
=

(
∂ [ξ, ζ ]

∂ ξ

)
g(ξ) + [ξ, ζ ] ∂ g(ξ)

∂ ξ
, (C.1)

∂

∂ ξ
[ξ, ζ ] = 2ζ, (C.2)

∂

∂ ξ
ξ n = n(p + 1 − n)ξ n−1. (C.3)

In particular, from the last formula for n = 1 and p = 2 it
follows that

∂

∂ ξ
ξ = 2. (C.4)
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Appendix D: Integration of para-Grassmann-valued func-
tions

The general formulas of integration with respect to a single
para-Grassmann variable μ of arbitrary order p are given in
[26]. Here, we write out only the necessary formulas for the
special case p = 2. The integrals different from zero have
the form:

∫
μ2d 2μ = 2i 2, (D.1)

∫
[μ, ξ ] μ d 2μ = −2i 2ξ, (D.2)

∫
[μ, ξ ] [μ, ξ ′ ] d 2μ = 2i 2{ξ, ξ ′ }, (D.3)

∫
[μ, ξ ]{μ, ξ ′ } d 2μ = 2i 2[ξ, ξ ′ ], (D.4)

where ξ and ξ ′ are arbitrary para-Grassmann numbers of the
same order as μ. The integrals containing zeroth and first
powers of μ vanish by the definition. Let us write out also
the expression for the δ-function

δ(ξ − ξ ′) ≡ 1

2i 2 (ξ − ξ ′)2 =
∫

e− 1
2 [ξ − ξ ′, μ] d 2μ.

(D.5)

Appendix E: Algebra of the generators Lkl, Mkl and Nkl

In this Appendix we present a list of the commutation rela-
tions for the generators

Lkl = 1

2
[a+

k , a+
l ], Mkl = 1

2
[a−

k , a−
l ],

Nkl = 1

2
[a+

k , a−
l ], (E.1)

as they were defined in the paper by Kamefuchi and Taka-
hashi [21]. Here, the indices k and l run values 1, 2, . . . , M .
These generators possess evident properties

Lkl = −Llk, Mkl = −Mlk, N †
kl = Nlk, L†

kl = Mlk

and satisfy the following commutation relations:

[Nkl , Nmn ] = δlm Nkn − δkn Nml ,

[Lkl , Nmn ] = δln Lmk − δkn Lml ,

[Lkl , Lmn ] = 0, [Mkl , Nmn ] = δkm Mnl − δlm Mnk,

[Mkl , Mmn ] = 0,

[Lkl , Mmn ] = −δkm Nln + δkn Nlm − δln Nkm + δlm Nkn .

(E.2)

The commutation relations involving the operators a±
k have

the form

[a−
k , Llm ] = δkl a

+
m − δkm a+

l , [a−
k , Mlm ] = 0,

[a−
k , Nlm ] = δkl a

−
m ,

[a+
k , Mlm ] = δkl a

−
m − δkm a−

l ,

[a+
k , Llm ] = 0, [a+

k , Nlm ] = −δkm a+
l .

(E.3)

Appendix F: Proof of the relation (7.11)

Our first step is to verify the validity of the relation

(−1)n| ξ 〉 = | −ξ 〉. (F.1)

We have used this expression in Sect. 9 without proof. Let
us present the left-hand side of (F.1) in the following form:

(−1)n| ξ 〉 = eiπn e− 1
2

∑
l [ξl , a+

l ]|0〉
≡

(
eiπn e− 1

2

∑
l [ξl , a+

l ] e−iπn
)

eiπn |0〉

= exp

[(
−1

2

)
eiπn

∑

l

[ξl , a+
l ] e−iπn

]
|0〉.

(F.2)

Here, we have taken into account the operator identity

eXeY e−X = exp
(
eXY e−X ).

Further, for the argument of the exponential in (F.2) we use
the identity (5.3). Taking the commutation relations (B.3)
and (B.4) into account, we have
∑

l

[n, [ξl , a+
l ]] =

∑

l

[ξl , a+
l ]

and therefore

eiπn
∑

l

[ξl , a+
l ] e−iπn

=
∑

l

[ξl , a+
l ]

(
1 + iπ + 1

2! (iπ)2 + · · ·
)

=
∑

l

[ξl , a+
l ] eiπ = −

∑

l

[ξl , a+
l ].

By this means from (F.2) it follows that

(−1)n| ξ 〉 = e
1
2

∑
l [ξl , a+

l ]|0〉 ≡ | −ξ 〉.
The matrix element of the expression (9.20) in the basis

of the parafermion coherent states with allowance made for
(F.2) takes the form

〈ξ̄ ′ | a0|ξ 〉 = 〈−ξ̄ ′ | a0| ξ 〉.
We rewrite the equality in the notations (10.9), (10.10)

	(ξ̄ ′, ξ) 〈ξ̄ ′ | ξ 〉 = 	(−ξ̄ ′, ξ) 〈−ξ̄ ′ | ξ 〉
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or

	(ξ̄ ′, ξ) = 	(−ξ̄ ′, ξ) exp
(
−
∑

l

[ ξ̄ ′
l , ξl ]

)
. (F.3)

The last expression can be considered as a rule of changing
a sign of the para-Grassmann variables ξ1 and ξ2 (or ξ̄ ′

1 and
ξ̄ ′

2) of the function 	. Let us represent this function as a sum
of the terms quadratic and linear in the commutators

	(ξ̄ ′, ξ) = �	(ξ̄ ′, ξ) − (x + y − 1),

where

�	(ξ̄ ′, ξ) = −1

2

{(
1

2
[ ξ̄ ′

1 , ξ̄ ′
2 ]

)(
1

2
[ξ1, ξ2 ]

)

+
(

1

2
[ ξ̄ ′

1 , ξ2 ]
)(

1

2
[ ξ̄ ′

2 , ξ1 ]
)

− x y

}
. (F.4)

The notations x and y were introduced by us in Sect. 5,
Eq. (5.7). Then the expression (F.3) can be written as
[
�	(ξ̄ ′, ξ) − (x + y − 1)

]
ex+y

= [
�	(ξ̄ ′, ξ) − (x + y − 1)

]
e−(x+y)

or collecting similar terms it takes the form
[
�	(ξ̄ ′, ξ) + 1)

]
tanh(x + y) = x + y. (F.5)

In view of the algebra (5.8), further we obtain

tanh(x + y) = (x + y) − 1

3
(x + y)3

= (x + y) − (x 2 y + x y2 ).

Taking into account the expansion and the explicit form of
the function �	, Eq. (F.4), instead of (F.5) we obtain

1

8

(
[ ξ̄ ′

1 , ξ̄ ′
2 ][ξ1, ξ2 ] + [ ξ̄ ′

1 , ξ2 ][ ξ̄ ′
2 , ξ1 ]

)

×
(
[ ξ̄ ′

1 , ξ1 ] + [ ξ̄ ′
2 , ξ2 ]

)

+(x 2 y + x y2 ) = 0. (F.6)

The terms linear in x and y were canceled. In further analysis
of the expression (F.6) for the para-Grassmann numbers we
have to use, instead of the general relations (B.1), the partic-
ular relation (B.2) valid only for para-Grassmann numbers
of order p = 2.

At first we deal with the expression

[ ξ̄ ′
1 , ξ1 ]2 = (ξ̄ ′

1 ξ1 − ξ1 ξ̄ ′
1 )(ξ̄ ′

1 ξ1 − ξ1 ξ̄ ′
1 )

= −ξ̄ ′
1 (ξ1)

2 ξ̄ ′
1 − ξ1(ξ̄ ′

1)2ξ1

= 2(ξ̄ ′
1)2(ξ1)

2,

i.e. for p = 2 we get

(ξ̄ ′
1)2(ξ1)

2 = 1

2
[ ξ̄ ′

1 , ξ1 ]2 = 2x 2 (F.7)

and similarly

(ξ̄ ′
2)2(ξ2)

2 = 1

2
[ ξ̄ ′

2 , ξ2 ]2 = 2y2. (F.8)

Let us consider the first contribution in the product on the
left-hand side of (F.6)

[ ξ̄ ′
1 , ξ̄ ′

2 ][ ξ̄ ′
1 , ξ1 ][ξ1, ξ2 ]

= (−ξ̄ ′
1 ξ̄ ′

2 ξ1 ξ̄ ′
1 − ξ̄ ′

2 ξ̄ ′
1 ξ̄ ′

1 ξ1

)[ξ1, ξ2 ]
= ξ̄ ′

1 ξ̄ ′
2 ξ1 ξ̄ ′

1 ξ2ξ1 − ξ̄ ′
2 ξ̄ ′

1 ξ̄ ′
1 ξ1 ξ1ξ2

= ξ2 ξ̄ ′
2 (ξ1)

2(ξ̄ ′
1)2 − ξ̄ ′

2 ξ2 (ξ̄ ′
1)2(ξ1)

2

= −[ ξ̄ ′
2 , ξ2 ](ξ̄ ′

1)2(ξ1)
2

= − 1

2
[ ξ̄ ′

2 , ξ2 ][ ξ̄ ′
1 , ξ1 ]2

= −4y x 2. (F.9)

At the last step we have used relation (F.7). The remaining
three contributions in a product in (F.6) are analyzed in a
similar manner and as a result we can write

[ ξ̄ ′
1 , ξ̄ ′

2 ][ ξ̄ ′
2 , ξ2 ][ξ1, ξ2 ] = −4x y2,

[ ξ̄ ′
2 , ξ1 ][ ξ̄ ′

1 , ξ2 ][ ξ̄ ′
1 , ξ1 ] = −4y x 2,

[ ξ̄ ′
2 , ξ1 ][ ξ̄ ′

1 , ξ2 ][ ξ̄ ′
2 , ξ2 ] = −4x y2,

[ ξ̄ ′
1 , ξ̄ ′

2 ][ξ1 , ξ2 ][ ξ̄ ′
1 , ξ1 ] = −4y x 2.

(F.10)

Substituting the obtained expressions into (F.6), we see that
the latter turns into identity.

Appendix G: A proof of the relations (2.7) and (2.8)

Here, we show that the commutation rules (2.7) and (2.8) (and
their consequences (2.10) and (2.11)) turn into identities after
substitution of the operator a0 in the representation (6.17).
Let us consider at first the relation (2.8) and for the sake of
concreteness we take

[[a0 , a+
n ], a+

m ] = 0. (G.1)

For the commutator [a0 , a+
n ] we use the first representation

given in Sect. 10, namely the expressions (10.3) and (10.5).
Then, we can write the double commutator in (G.1) in the
following form:

[[a0 , a+
n ], a+

m ]
= −1

4

(
δn2 [{L12, a

−
1 }, a+

m ] − δn1 [{L12, a
−
2 }, a+

m ]
+ δn2 [{N21, a

+
1 }, a+

m ] + δn1 [{N12, a
+
2 }, a+

m ]
−δn2 [{N1 , a+

2 }, a+
m ] − δn1 [{N2 , a+

1 }, a+
m ]

)
. (G.2)

By using the identity (10.4), the definitions (6.9) and the
relations (6.15), for each of the terms on the right-hand side
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of (G.2), we get

[{L12, a
−
1 }, a+

m ] = −2{L12, Nm1}
≡ −2δm1 {L12, N1 } − 2δm2 {L12, N21},

[{L12, a
−
2 }, a+

m ] = −2{L12, Nm2 }
≡ −2δm2 {L12, N2 } − 2δm1 {L12, N12},

[{N21, a
+
1 }, a+

m ] = 2δm2 {N21, L12} + δm1 {a+
1 , a+

2 },
[{N12, a

+
2 }, a+

m ] = −2δm1 {N12, L12} + δm2 {a+
2 , a+

1 },
[{N1 , a+

2 }, a+
m ] = −2δm1 {N1 , L12} + δm1 {a+

2 , a+
1 },

[{N2 , a+
1 }, a+

m ] = 2δm2 {N2 , L12} + δm2 {a+
1 , a+

2 }.
(G.3)

Substituting these expressions into (G.2) and collecting sim-
ilar terms with respect to Kronecker deltas, we derive

[[a0 , a+
n ], a+

m ]
= −1

2

{
δn2 δm1

(
−{L12, N1} + {N1, L12}

)

+ δn2 δm2

(
−{L12, N21} + {N21, L12}

)

+ δn1 δm1

(
{L12, N12} − {N12, L12}

)

+ δn1 δm2

(
{L12, N2} − {N2, L12}

)}

− 1

4

{
δn2 δm1

({a+
1 , a+

2 } − {a+
2 , a+

1 })

+ δn1 δm2

({a+
2 , a+

1 } − {a+
1 , a+

2 })
}
.

Here we see that the right-hand side vanishes identically and
thus the relation (G.1) seems to be true.

Let us consider now the relation (2.7) and to be specific,
its particular case

[[a0 , a+
n ], a−

m ] = 2δkm a0 .

Now for the left-hand side, instead of (G.2) and (G.3), we
have

[[a0 , a+
n ], a−

m ]
= −1

4

(
δn2 [{L12, a

−
1 }, a−

m ] − δn1 [{L12, a
−
2 }, a−

m ]
+ δn2 [{N21, a

+
1 }, a−

m ] + δn1 [{N12, a
+
2 }, a−

m ]
−δn2 [{N1 , a+

2 }, a−
m ] − δn1 [{N2 , a+

1 }, a−
m ]

)
, (G.4)

where in turn

[{L12, a
−
1 }, a−

m ] = 2δm2 {L12, M12} + δm2 {a−
1 , a+

1 }
− δm1 {a−

1 , a+
2 },

[{L12, a
−
2 }, a−

m ] = −2δm1 {L12, M12} + δm2 {a−
2 , a+

1 }
− δm1 {a−

2 , a+
2 },

[{N21, a
+
1 }, a−

m ] = 2δm1 {N21, N1 } + 2δm2 {N21, N12}
− δm2 {a+

1 , a−
1 },

[{N12, a
+
2 }, a−

m ] = 2δm1 {N12, N21} + 2δm2 {N12, N2 }
− δm1 {a+

2 , a−
2 },

[{N1 , a+
2 }, a−

m ] = 2δm1 {N1 , N21} + 2δm2 {N1 , N2 }
− δm1 {a+

2 , a−
1 },

[{N2 , a+
1 }, a−

m ] = 2δm1 {N2 , N1 } + 2δm2 {N2 , N12}
− δm2 {a+

1 , a−
2 }.

Substituting these expressions into (G.4) and collecting sim-
ilar terms, we find

[[a0, a
+
n ], a−

m ]
= −1

2

{
δn2 δm1

(
{N21, N1} − {N1, N21}

)

+ δn2 δm2

(
{L12, M12} + {N21, N12} − {N1, N2}

)

+ δn1 δm1

(
{L12, M12} + {N12, N21} − {N2, N1}

)

+ δn1 δm2

(
{N12, N2} − {N2, N12}

)}
+

− 1

4

{
δn2 δm1

(−{a−
1 , a+

2 } + {a+
2 , a−

1 })

+ δn2 δm2

({a+
1 , a−

1 } − {a+
1 , a−

1 })

+ δn1 δm1

({a−
2 , a+

2 } − {a+
2 , a−

2 })

+ δn1 δm2

({a−
2 , a+

1 } + {a+
1 , a−

2 })
}

= −1

2
(−4)

(
δn2 δm2 + δn1 δm1

)
a0 ≡ 2δnm a0,

which is the required result.

Appendix H: Corrected Harish-Chandra’s formula (68)

Here, we give a derivation of the formula (68) from the paper
[6] with a proper number coefficients of the matrices

Br =
∑

(k1 ... kr )

β2
k1

. . . β2
k1

, (H.1)

where the summation is to be taken over all possible values
of k1, . . . , kr such that no two of k′s are the same. In this
Appendix we follow the notations accepted in [6].

The original formula (68) in [6] has the following form:

ω2 = (−1)

[ 1
2 s (s − 1)

][
s + 1

2

][
s

2

]
. . .

[
2

2

]
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×
{
B[ 1

2 (s+1)] −
[
s

2

]
B[ 1

2 (s+3)] + 1

2!
[
s

2

]

×
[
s − 2

2

]
B[ 1

2 (s+5)] − 1

3!
[
s

2

][
s − 2

2

][
s − 4

2

]

× B[ 1
2 (s+7)] + · · · + (−1)

[ 1
2 s

]
Bs

}
. (H.2)

Here, s is space-time dimensions, [n] denotes the integral part
of n. This expression is derived from the following formula
(Eq. (67) in [6]):

ω2 = (−1)

[ 1
2 s (s − 1)

][
s + 1

2

][
s

2

]
. . .

[
2

2

]

×P(k1 ... kr )β
2
ks β

2
ks−2

. . . (1 − β2
ks−1

)(1 − β2
ks−3

) . . . ,

(H.3)

where P(k1 ... kr ) denotes a sum over all permutations of
(1, 2, . . . , s) and k1, . . . , ks are all different. In turn, (H.3)
is a result of a product of two (non-normalized) matrices
ω = εk1... ksβk1 . . . βks .

Let us remove the parentheses on the right-hand side of
(H.3):

ω2 = (−1)

[ 1
2 s (s − 1)

][
s + 1

2

][
s

2

]
. . .

[
2

2

]
P(k1 ... kr )

×
{
C [s/2]

0 β2
ks β

2
ks−2

. . . β 2
k2

1ks−1 1ks−3 . . . 1k1

− C [s/2]
1 β2

ks β
2
ks−2

. . . β 2
k2

β 2
ks−1

1ks−3 1ks−5 . . . 1k1

+ C [s/2]
2 β2

ks β
2
ks−2

. . . β 2
k2

β 2
ks−1

β 2
ks−3

1ks−5 1ks−7 . . . 1k1

− C [s/2]
3 β2

ks β
2
ks−2

. . . β 2
k2

β 2
ks−1

β 2
ks−3

β 2
ks−5

1ks−7 1ks−9 . . . 1k1

+ . . . + (−1)

[ 1
2 s

]
C [s/2]

[s/2]β
2
ks β

2
ks−2

. . . β 2
k2

β 2
ks−1

β 2
ks−3

. . . β 2
k1

}
.

(H.4)

Here,Cn
k are binomial coefficients. Writing out their explicit

form

C [s/2]
0 = 1, C [s/2]

1 = 1

1!
[
s

2

]
, C [s/2]

2 = 1

2!
[
s

2

][
s − 2

2

]
,

C [s/2]
3 = 1

3!
[
s

2

][
s − 2

2

][
s − 4

2

]
, . . . ,

using the definition of matrices Br , Eq. (H.1), and omitting a
product of the unity matrices 1ks , we reproduce the original
formula of Harish-Chandra (H.2). However, indeed we have
to take into account a possibility of rearrangement of the unity
matrices 1ks−l , l = 1, 3, 5, . . .. We explicitly set the markers
ks−l for the unity matrices to emphasize the importance of
accounting their rearrangements. This gives additional fac-
tors. So in the first term in braces in (H.4) the rearrangement
of the unity matrices gives an additional factor

[
s/2

]!, in the
second term it gives the factor

[
(s−2)/2

]! etc. By this mean,
as a result, instead of (H.2) now we have

ω2 = (−1)

[ 1
2 s (s − 1)

][
s + 1

2

][
s

2

]
. . .

[
2

2

]

×
{([

s

2

]
!
)
B[ 1

2 (s+1)] −
[
s

2

]([
s − 2

2

]
!
)
B[ 1

2 (s+3)]

+ 1

2!
[
s

2

][
s − 2

2

]([
s − 4

2

]
!
)
B[ 1

2 (s+5)]

− 1

3!
[
s

2

][
s − 2

2

][
s − 4

2

]([
s − 6

2

]
!
)
B[ 1

2 (s+7)] + . . .

+ (−1)

[ 1
2 s

]
Bs

}

or taking the common factorial
([
s/2

]!) outside braces, we
get

ω2 = (−1)

[ 1
2 s (s − 1)

][
s + 1

2

][
s

2

]
. . .

[
2

2

]([
s

2

]
!
)

{
B[ 1

2 (s+1)] − 1

1! B[ 1
2 (s+3)] + 1

2! B[ 1
2 (s+5)]

− 1

3! B[ 1
2 (s+7)] + . . . + (−1)

[ 1
2 s

]

×
([

s

2

]
!
)−1

Bs

}
. (H.5)

For the special case s = 4 from this expression follows

ω2 = 4
{
2B2 − 2B3 + B4

}
,

while the original formula (H.2) gives us

ω2 = 4
{
B2 − 2B3 + B4

}
.

As previously discussed, in Sect. 19, the formula (H.2) has
never been used further in the text of the paper [6], except
deriving the next formula (69) having the following form:

ω3 = (−1)

[ 1
2 s (s − 1)

]

×
{[

s + 1

2

][
s

2

][
s − 1

2

]
. . .

[
2

2

]}2

ω. (H.6)

Let us show that this expression can not be reproduced by
using the original formula (H.2), whereas the revised formula
(H.5) do this.

We will need the following matrix relation [6]:

ωB =
[
s + 1

2

]
ω. (H.7)

We have used the special case of this formula in Sect. 19,
Eq. (19.12). Besides, instead of the initial definition of matri-
ces Br , Eq. (H.1), we make use of the following representa-
tion:

Br = B (B − 1) . . . (B − r + 1). (H.8)

Let us multiply (H.8) by ω from the left. Taking into account
(H.7), we find

ωBr =
[
s + 1

2

]([
s + 1

2

]
− 1

)
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×
([

s + 1

2

]
− 2

)
. . .

([
s + 1

2

]
− r + 1

)
ω.

At a certain value r ≡ r∗ this expression for r ≥ r∗ vanishes.
This value equals

r∗ =
[
s + 1

2

]
+ 1 =

[
s + 3

2

]
. (H.9)

Further, we multiply the expression (H.2) by ω. We see that
all terms except the first one, by virtue of the condition (H.9)
vanish and consequently we get

ω3 = (−1)

[ 1
2 s (s − 1)

]

×
([

s + 1

2

][
s

2

][
s − 1

2

]
. . .

[
2

2

])
ωB[ 1

2 (s+1)]

= (−1)

[ 1
2 s (s − 1)

]([
s + 1

2

][
s

2

][
s − 1

2

]
. . .

[
2

2

])

×
([

s + 1

2

][
s − 1

2

][
s − 3

2

]
. . .

[
2

2

])
ω. (H.10)

Obviously, the formula (H.6) is not reproduced, because the
factors

[
s/2

]
,
[
(s − 2)/2

]
,
[
(s − 4)/2

]
, . . . are lacking.

Now we multiply the revised formula (H.5) by the matrix
ω. Then instead of (H.10), we have

ω3 = (−1)

[ 1
2 s (s − 1)

]

×
([

s + 1

2

][
s

2

][
s − 1

2

]
. . .

[
2

2

])([
s

2

]
!
)

×
([

s + 1

2

][
s − 1

2

][
s − 3

2

]
. . .

[
2

2

])
ω.

Here, in contrast to (H.10), an additional factor appears
[
s

2

]
! =

[
s

2

][
s − 2

2

][
s − 4

2

]
. . .

[
2

2

]
,

which gives us the missing multiplies. Thereby the formula
(H.5) reproduces (H.6).

Appendix I: Proof of the relation [a0, �̂] = 0

In this Appendix we will give a proof of the second relation
in (19.14). Let us present it as a sum of two terms

[a0, 
̂1 ] + [a0, 
̂2 ] = 0, (I.1)

where 
̂ = {a+
k , a−

k }, k = 1, 2. Substituting an explicit
form of the operator a0, Eq. (6.17), we present the first term
in (I.1) in the following form:

− 1

4

([{L12, M12}, {a+
1 , a−

1 }] + [{N12, N21}, {a+
1 , a−

1 }]
−[{N1 , N2 }, {a+

1 , a−
1 }]). (I.2)

Let us consider the first contribution in (I.2). Making use of
the operator identity (19.17), we present it in the form:

[{L12, M12}, {a+
1 , a−

1 }] = {L12, [M12, {a+
1 , a−

1 }]}
+{M12, [L12, {a+

1 , a−
1 }]},

where in turn

[M12, {a+
1 , a−

1 }] = −{a+
1 , [a−

1 , M12 ]} + {a−
1 , [M12, a

+
1 ]}

= −{a−
1 , a−

2 }
and

[L12, {a+
1 , a−

1 }] = −{a+
1 , [a−

1 , L12 ]} + {a−
1 , [L12, a

+
1 ]}

= −{a+
1 , a+

2 }.
Here, we have used the commutation rules (6.15). As a result,
the first contribution in (I.2) takes the form

[{L12, M12 }, {a+
1 , a−

1 }]
= −{L12, {a−

1 , a−
2 }} − {M12, {a+

1 , a+
2 }}. (I.3)

For the second contribution in (I.2) a similar reasoning results
in

[{N12, N21}, {a+
1 , a−

1 }]
= {N12, {a−

1 , a−
2 }} − {N21, {a+

1 , a+
2 }}, (I.4)

and the third contribution in (I.2) vanishes.
Further, we transform the right-hand side of (I.3). For the

first term on the right-hand side we make use of the operator
identity (19.16)

{L12, {a−
1 , a−

2 }} = [a−
1 , [a−

2 , L12 ]] + {a−
2 , {L12, a

−
1 }}

= 2N1 + {a−
2 , {L12, a

−
1 }}.

Here, we have employed again the commutation rules (6.15).
For the second term in (I.3) we have similarly

{M12, {a−
1 , a−

2 }} = −2N1 + {a+
2 , {M12, a

+
1 }},

and then (I.3) goes into

[{L12, M12 }, {a+
1 , a−

1 }] = −{a−
2 , {L12, a

−
1 }}

−{a+
2 , {M12, a

+
1 }}. (I.5)

We make another transformation of the right-hand side of
the last expression with the aim that instead of the generators
L12 and M12 the second pair of the generators N12 and N21

has appeared. By using the identity (19.17) for the internal
anticommutator in the first term in (I.5) and in the definition
of the generator L12, we obtain

{L12, a
−
1 } = 1

2
{[a+

1 , a+
2 ], a−

1 }

= 1

2

({a+
1 , [a+

2 , a−
1 ]} − [a+

2 , {a−
1 , a+

1 }])

= {a+
1 , N21} − 1

2
[a+

2 , {a−
1 , a+

1 }].
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A similar transformation for the internal anticommutator in
the second term in (I.5) gives

{M12, a
+
1 } = −{a−

1 , N12} − 1

2
[a−

2 , {a+
1 , a−

1 }],
and the right-hand side of (I.5) becomes

−{a−
2 , {a+

1 , N21}} + {a+
2 , {a−

1 , N12}}
+1

2

({a−
2 , [a+

2 , {a−
1 , a+

1 }]} − {a+
2 , [a−

2 , {a+
1 , a−

1 }]}).
The expression in parentheses here can be written in a more
compact form:

[ {a+
2 , a−

2 }, {a+
1 , a−

1 }] ≡ [
̂2 , 
̂1 ]
and then the first contribution in (I.2) takes its final form

[{L12, M12 }, {a+
1 , a−

1 }] = −{a−
2 , {a+

1 , N21}}
+ {a+

2 , {a−
1 , N12}} + 1

2
[
̂2 , 
̂1 ].

(I.6)

It is sufficient to transform the right-hand side of the
second contribution (I.4) to the form similar to (I.5). Then
instead of (I.4) we have

[{N12, N21}, {a+
1 , a−

1 }] = {a+
2 , {N12, a

−
1 }}

−{a−
2 , {N21, a

+
1 }}. (I.7)

We should note that here the signs on the right-hand side
coincide with the signs of the first two terms in (I.6) contrary
to the expectations. Summing (I.6) and (I.7), we get

[a0 , 
̂1 ] = 1

2

({a−
2 , {a+

1 , N21}} − {a+
2 , {a−

1 , N12}}
)

+1

8
[
̂1, 
̂2 ].

As we see, this expression does not vanish. The second term
on the left-hand side of (I.1) can be obtained from the pre-
vious one by a simple replacement of indices 1 � 2 (the
operator a0 is invariant with respect to such a replacement,
and N12 � N21):

[a0 , 
̂2 ] = 1

2

({a−
1 , {a+

2 , N12}} − {a+
1 , {a−

2 , N21}}
)

−1

8
[
̂1 , 
̂2 ].

We sum the last two expressions and, finally, obtain

[a0 , 
̂1 + 
̂2 ]
= 1

2

({a−
2 , {a+

1 , N21}} − {a+
1 , {a−

2 , N21}}
)

+1

2

({a−
1 , {a+

2 , N12}} − {a+
2 , {a−

1 , N12}}
)

= 1

2

([N21, [a+
1 , a−

2 ] ] + [N12, [a+
2 , a−

1 ]])

≡ [N21, N12 ] + [N12, N21 ] = 0.

By this mean, in contrast to (19.23), the relation (I.1) is ful-
filled only for a sum of two terms 
̂1 and 
̂2 and therefore
the equalities (19.24) are not the case.

References

1. R.J. Duffin, On the characteristic matrices of covariant systems.
Phys. Rev. 54, 1114 (1938)

2. N. Kemmer, The particle aspect of meson theory. Proc. R. Soc. A
173, 91–116 (1939)

3. G. Petiau, Contribution à l’étude des équations d’ondes corpuscu-
laires, Ph.D. Thesis, University of Paris (1936)

4. G. Petiau, Acad. R. de Belg. A. Sci. Mem. Collect. XVI, 118 (1936)
5. N. Kemmer, The algebra of meson matrices. Math. Proc. Camb.

Philos. Soc. 39, 189–196 (1943)
6. Harish-Chandra, On relativistic wave equations. Phys. Rev. 71,

793–805 (1947)
7. I. Fujiwara, On the Duffin–Kemmer algebra. Prog. Theor. Phys.

10, 589–616 (1953)
8. Z. Tokuoka, H. Tanaka, On the equivalence of the particle for-

malism and the wave formalism of meson. Prog. Theor. Phys. 8,
599–614 (1952)

9. Z. Tokuoka, Generating relations of the sub-algebras in the Duffin–
Kemmer algebra. Nucl. Phys. 78, 681–693 (1966)

10. N.A. Chernikov, The Fock representation of the Duffin–Kemmer
algebra. Acta Phys. Polon. 21, 51–60 (1962)

11. E. Fischbach, M.M. Nieto, C.K. Scott, Duffin–Kemmer–Petiau
subalgebras: representations and applications. J. Math. Phys. 14,
1760–1774 (1973)

12. E. Fischbach, J.D. Louck, M.M. Nieto, C.K. Scott, The Lie algebra
so(N ) and the Duffin–Kemmer–Petiau ring. J. Math. Phys. 15, 60–
64 (1974)

13. A.T. Filippov, A.P. Isaev, A.B. Kurdikov, Paragrassmann differen-
tial calculus. Theor. Math. Phys. 94, 150–165 (1993)

14. A.P. Isaev, Paragrassmann integral, discrete systems and quantum
groups. Int. J. Mod. Phys. A 12, 201–206 (1997)

15. H. Umezawa, Quantum Field Theory (North-Holland Publishing
Company, Amsterdam, 1956)

16. S. Okubo, Supergeneralization of Duffin–Kemmer–Petiau algebra
and Lie superalgebra osp(N , M). J. Math. Phys. 42, 4554–4562
(2001)

17. D.V. Volkov, On the quantization of half-integer spin fields. Sov.
Phys. JETP 9, 1107–1111 (1959)

18. C. Ryan, E.C.G. Sudarshan, Representations of parafermi rings.
Nucl. Phys. 47, 207–211 (1963)

19. N.N. Bogolyubov, A.A. Logunov, A.I. Oksac, I.T. Todorov, Gen-
eral Principles of Quantum Field Theory (Kluwer Academic Pub-
lishers, Dordrecht, 1989)

20. YuA Markov, M.A. Markova, D.M. Gitman, Unitary quantization
and para-Fermi statistics of order 2. J. Exp. Theor. Phys. 127, 398–
421 (2018)

21. S. Kamefuchi, Y. Takahashi, A generalization of field quantization
and statistics. Nucl. Phys. 36, 177–206 (1962)

22. B. Geyer, On the generalization of canonical commutation relations
with respect to the orthogonal group in even dimensions. Nucl.
Phys. B 8, 326–332 (1968)

23. E. Schrödinger, Pentads, tetrads, and triads of meson-matrices.
Proc. R. Irish Acad. A 48, 135–146 (1943)

24. YuA Markov, M.A. Markova, A.I. Bondarenko, Third order wave
equation in Duffin–Kemmer–Petiau theory: massive case. Phys.
Rev. D 92, 105017 (2015)

123



Eur. Phys. J. C          (2020) 80:1153 Page 47 of 47  1153 

25. M. Omote, S. Kamefuchi, Para-Grassmann algebras and para-
Fermi systems. Lett. Nuovo Cimento 24, 345–350 (1979)

26. Y. Ohnuki, S. Kamefuchi, Para-Grassmann algebras with applica-
tions to para-Fermi systems. J. Math. Phys. 21, 609–616 (1980)

27. A.J. Kálnay, A note on Grassmann algebras. Rep. Math. Phys. 9,
9–13 (1976)

28. F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer,
Deformation theory and quantization. II. Physical applications.
Ann. Phys. 110, 111–151 (1978)

29. I.V. Tyutin, General form of the ∗-commutator on the Grassmann
algebra. Theor. Math. Phys. 128, 1271–1292 (2001)

30. A.V. Smilga, Quasiciassical expansion for Tr{(−1)Fe−βH }. Com-
mun. Math. Phys. 230, 245–269 (2002)

31. A.C. Hirshfeld, P. Henselder, Deformation quantization for systems
with fermions. Ann. Phys. 302, 59–77 (2002)

32. M. Daoud, Covariance of the Grassmann star product. Rep. Math.
Phys. 52, 281–294 (2003)

33. A.K. Kwasniewski, J. Math. Phys. 26, 2234–2238 (1985)
34. L. Baulieu, E.G. Floratos, Phys. Lett. B 258, 171–178 (1991)
35. N. Fleury, M. Rausch de Traubenberg, J. Math. Phys. 33, 3356–

3366 (1992)
36. M. Rausch de Traubenberg, Adv. Appl. Clifford Algebras 4, 131–

144 (1994)
37. A.T. Filippov, A.P. Isaev, A.B. Kurdikov, Mod. Phys. Lett. A 7,

2129–2141 (1992)
38. A.T. Filippov, A.P. Isaev, A.B. Kurdikov, Int. J. Mod. Phys. A 8,

4973–5003 (1993)
39. A.T. Filippov, A.P. Isaev, A.B. Kurdikov, Theor. Math. Phys. 94,

150–165 (1993)
40. A.T. Filippov, A.P. Isaev, A.B. Kurdikov, in Problems in Modern

Theoretical Physics. Dubna 96–212, p. 83 (1996) (in Russian)
41. YuA Markov, M.A. Markova, A.I. Bondarenko, Fourth-order wave

equation in Bhabha–Madhavarao spin-3/2 theory. Int. J. Mod. Phys.
A 32, 1750144 (2017)

42. M. Omote, Y. Ohnuki, S. Kamefuchi, Fermi-Bose similarity. Prog.
Theor. Phys. 56, 1948–1964 (1976)

43. A.J. Bracken, H.S. Green, Identities for para-Fermi statistics of
given order. Nuovo Cimento A 9, 349–365 (1972)

44. M.D. Gould, J. Paldus, Para-Fermi algebras and the many-electron
correlation problem. Phys. Rev. A 34, 804–814 (1986)

45. H. Fukutome, The group theoretical structure of fermion many-
body systems arising from the canonical anticommutation relation.
I. Prog. Theor. Phys. 65, 809–827 (1981)

46. H.S. Green, A generalized method of field quantization. Phys. Rev.
90, 270–273 (1953)

47. Harish-Chandra, The correspondence between the particle and the
wave aspects of the meson and the photon. Proc. R. Soc. A 186,
502–525 (1946)

48. Harish-Chandra, On the algebra of the meson matrices. Proc. Camb.
Philos. Soc. 43, 414–421 (1947)

49. N.V. Borisov, P.P. Kulish, Path integral in superspace for a relativis-
tic spinor particle in an external gauge field. Theor. Math. Phys. 51,
535–540 (1982)

50. Ju.L. Daleckii, M.G. Krein, Stability of Solutions of Differen-
tial Equations in Banach Space (American Mathematical Society,
Providence, 1974)

51. Y. Ohnuki, S. Kamefuchi, Some general properties of para-Fermi
field theory. Phys. Rev. 170, 1279–1293 (1968)

52. Y. Ohnuki, S. Kamefuchi, Wavefunctions of identical particles.
Ann. Phys. (N.Y.) 51, 337–358 (1969)

53. Y. Ohnuki, S. Kamefuchi, The statistical quantum number and
gauge groups in parafermi field theory. Ann. Phys. (N.Y.) 78, 64–89
(1973)

54. Y. Ohnuki, S. Kamefuchi, Parafermi field theory and elementary
particles. Prog. Theor. Phys. 52, 1369–1375 (1974)

55. M. Hama, M. Sawamura, H. Suzuki, Pair mode in two-level
parafermion systems. Europhys. Lett. 21(4), 383–387 (1993)

56. B.S. Madhava Rao, Commutation rules for matrices related to par-
ticles of higher spins. Proc. Indian Acad. Sci. A 15, 139–147 (1942)

57. B.S. Madhava Rao, V.R. Thiruvenkatachar, K. Venkatachaliengar,
Algebra related to elementary particles of spin 3/2. Proc. R. Soc.
A 187, 385–397 (1946)

58. R.A. Krajcik, M.M. Nieto, Bhabha first-order wave equations: I.
C , P , and T . Phys. Rev. D 10, 4049–4063 (1974)

59. F.A. Dilkes, D.G.C. McKeon, C. Schubert, A new approach to axial
vector model calculations II. JHEP 03, 022 (1999)

60. E.D. D’Hoker, D.G. Gagné, Worldline path integrals for fermions
with scalar, pseudoscalar and vector couplings. Nucl. Phys. B 467,
272–296 (1996)

61. A.P. Prudnikov, YuA Brychkov, O.I. Marichev, Integrals and
Series: Elementary Functions, vol. 1 (Gordon and Breach, Ams-
terdam, 1986)

62. F. Gliozzi, J. Scherk, D. Olive, Supersymmetry, supergravity theo-
ries and the dual spinor model. Nucl. Phys. B 122, 253–290 (1977)

63. Yu.A. Markov, M.A. Markova, Star product for para-Grassmann
algebra of order two (in preparation)

64. S. Jing, C.A. Nelson, Eigenstates of paraparticle creation operators.
J. Phys. A Math. Gen. 32, 401–409 (1999)

123


	Generalization of Geyer's commutation relations with respect  to the orthogonal group in even dimensions
	Abstract 
	1 Introduction
	2 Review of the Geyer work geyersps1968
	3 Duffin–Kemmer–Petiau formalism
	4 The operator formalism
	5 Matrix element of the operator a20
	6 Operator a0
	7 Matrix element of the operator a0
	8 Connection between the operators 2 and a20
	9 Another representation for the Geyer operator a20
	10 sps
	11 sps
	12 sps
	13 Contributions of the fourth order in µ and barµ
	14 The star product
	15 Triple star product Ω*Ω*Ω
	16 Connection between the operators 2 and a20 revised
	17 The Casimir operators C"0362C2 and C"0362C 2
	18 Ohnuki and Kamefuchi's generalized state-vector space
	19 Another representation of Harish-Chandra operator  2
	20 sps
	21 Conclusion
	Appendix A: The ω -βµ matrix algebra
	Appendix B: Para-Grassmann numbers
	Appendix C: Differentiation of para-Grassmann-valued functions
	Appendix D: Integration of para-Grassmann-valued functions
	Appendix E: Algebra of the generators Lkl, Mkl and Nkl
	Appendix F: Proof of the relation (7.11)
	Appendix G: A proof of the relations (2.7) and (2.8)
	Appendix H: Corrected Harish-Chandra's formula (68)
	Appendix I: Proof of the relation [ a0, ] = 0
	References




