Hyperfine Interact (2019) 240:35
https://doi.org/10.1007/s10751-019-1578-7

®

Realistic 3D implementation of electrostatic elements = check for
for low energy machines updates

V.Rodin' © . J.R. Hunt . J. Resta-Lopez' - B. Veglia® - C. P. Welsch'

Published online: 10 April 2019
© The Author(s) 2019

Abstract

Novel antimatter experiments at CERN require high intensity, low energy (<100 keV)
antiproton beams. Each experiment has a set of desirable beam parameters. To achieve
this, and obtain the greatest efficiency, transfer lines will be based on electrostatic optics.
Unfortunately, only a small amount of simulation codes allow realistic and flexible imple-
mentation of such elements. In this contribution, methods for accurately creating and
tracking through electrostatic optical elements are presented, utilising a combination of a
modified version of G4Beamline (Roberts and Kaplan 2007) and finite element methods
(FEM). To validate our approaches the transfer line from the ELENA (Chohan et al. 2014)
ring to the ALPHA experiment was chosen as a basis for particle tracking studies. A range
of approaches to modelling the electrostatic elements were explored, ranging from simple
field expressions, to the complex field maps used in the final model. An investigation into
the achievable beam quality at ALPHA is presented.
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1 Introduction

In the modern field of accelerator physics, where ions are typically in the relativistic regime,
magnetic bends and quadrupoles are more efficient than electrostatic ones. With com-
paritively less focus on low energy accelerator physics, the usage of electrostatic optical
elements [3, 4] is more uncommon. However in the new era of extra low energy (<100 keV)
antimatter physics, brought in by new facilities such as FLAIR [5] or ELENA, their use will
become more prevalent.
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The main objective of this study is the improvement of existing tools and development
of new methods for fast but realistic and thorough particle tracking simulations comparable
with models in FEM software. Here we implement a 3D model of the electrostatic transport
line from ELENA to the ALPHA experiment [6] since we may benchmark our new methods
against pre-existing simulations, help to determine and optimise beam parameters at the
experiment, and eventually compare simulation results with real measurements of beamlines
which will become operational at the end of 2020.

As opposed to particle tracking codes such as MAD-X [7], particles in these simulations
are propagated through a physical 3D environment where they may be subject to additional
forces and effects based on surrounding conditions. At such a low energy scale, even small
electrostatic field imperfections will have a significant impact on the orbit and quality of
the beam. Hence, the simulation should take into account many combined factors including
parameterized shapes of inhomogeneous and fringe fields, stray magnetic fields, residual
gasses, heating effects on electrodes, space charge effects and other additional scattering
and collective effects.

2 Simulation environment

G4Beamline was chosen as the main working environment for the realization of our goals.
As a Geant4 based tool it allows 3D particle tracking through matter and EM fields. The
code simplicity and flexibility make it a very robust software on which to base the simula-
tions. The implementation of the fields allows and enables the use of an electric or combined
electromagnetic variant. These fields can also vary with time.

Generated 6D beam distribution can propagate through voxelized 3D media by analyzing
the factors limiting the particle movement and applying the relevant physics processes for
each step. Primarily, EM fields are the main source of restraint in the beam transport line.
In order to propagate the created distribution inside dipoles or quadrupoles, the equation of
motion of the particle in the field is integrated. In general, this is done using a Runge-Kutta
method for the integration of ordinary differential equations.

Additionally, the Geant4 environment contains numerous physical models or manually
prepared physics lists that may be based on new measurements, which makes accurately
simulating low energy hadron behaviour possible [8].

3 Electrostatic quadrupoles—source code modification

The implementation of generic magnetic quadrupole elements is possible with a simple one-
line command, genericquad and includes a wide set of parameters to make the model more
realistic. The transverse field shape of a magnetic quadrupole is described by filling each
voxel in its aperture with x and y components of the field: By = Gy, By = Gpx; where
Gp = % is flux density gradient, r is the radius of quadrupole aperture and B is magnetic
flux density at the pole tip.

In order to allow for easy implementation of the electrostatic quadrupoles, a modification
of the G4Beamline source code was made. The quadrupole class was edited to accept G g, an
electric field strength gradient, as a new parameter for electrostatic quadrupole placement as
well. Electrostatic field components were defined in the following way: Ey = —Ggx, Ey =
GEy;
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Fig. 1 The full transfer line from ELENA (left) to ALPHA (right) with antiproton beam tracks (red line).
Bending elements are highlighted and CST models with field lines shown

The field gradients for both sets of quadrupoles were set such that both sets had the
same focusing strength, k. The magnetic and electrostatic field gradients, Gp and Gpg
respectively, were calculated from k, in G4Beamline input units (Tm~!, MVm™!) using:

kp Gpv
cx 109" 7F T 06
where p is the momentum of the particles in the beam, c is the speed of light in vacuum and
v is the velocity of the beam particles.

The longitudinal field shape difference between electrostatic and magnetic quadrupoles
was also taken into account. The current G4Beamline magnetic model is based on the stan-
dard description by a Enge function [9] with six parameters a ...ag. The same method
is applicable to electrostatic version of elements, fitting the six parameters to match fields
obtained through realistic FEM simulations.

ey

Gp =

1
1 +exp(a; +az2(z/D) + ... + ag(z/ D)),

where z is the distance perpendicular to the effective field boundary and D is the full
aperture of the particle optical element.

Enge(z) = @3]

4 Electrostatic bending elements

The realistic fields including fringe effects fields and inhomogeneities due to geometrical
factors were generated using finite element software. Firstly, CAD models of all bending
elements from the electrostatic transfer line were created. They were based on drawings
from the CERN CDD database [10] and consisted primarily of the electrodes used to gen-
erate the bending fields. The size and shape of field maps completely depend on the CAD
models used. Thus, for comparison with previous simulations in other tracking codes, all
simplifications should be taken into account. Furthermore, the models were imported to
CST Studio [11] and field maps were generated according to nominal operating voltages,
Fig. 1. The field maps were found to have nominal values of field gradient at the center of
the elements. Thereafter output field maps could be generated in a G4Beamline compat-
ible 3D grid format. At this stage, an optimal field map resolution was chosen according
to the difference in computational times and tracking output, meaning that the value of the
integrated field was not changing significantly after some point. In addition, CAD models
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Fig. 2 Beam profile and transverse phase space at the ALPHA experiment, considering nominal beam
parameters at extraction from ELENA

can be used for future thermomechanical studies in Ansys Workbench [12] via transfer of
spatial distributions of deposited energy to thermal loads.

5 Results

At present, implementation of an electrostatic version of quadrupoles in LNEOO, LNEO1 and
LNEO03-04 sections to ALPHA from ELENA transfer line have been tested. The external
field maps for bending elements were obtained from FEM simulations. The gradients of
all electrostatic bending elements have been optimised to compensate fringe effects and
achieve the correct bending angle. Despite the fact that quadrupole tuning for the majority of
the line has not been completed and initial parameters were used from the original MAD-X
simulation, zero initial particles are lost.

Assuming nominal beam parameters and 100 keV extraction kinetic energy from
ELENA, the computed beam distributions at the end of the ALPHA transfer line (Fig. 2)
show that despite some imperfections due to the inhomogeneity of 3D fieldmaps, the beam
is being transported properly through the beamline.

6 Outlook

A new electrostatic version of the genericquad element from G4Beamline has been added
to our modified version of the code. The first testing of this element within the transfer line
from ELENA to the ALPHA experiment showed great agreement with preceding models of
electrostatic quadrupoles and FEM simulations. Future goals for the simulation include the
tracking of more realistic beam profiles from external simulation software and the injection
of beams based on real data [13]. As mentioned previously, the main source of inhomo-
geneities is the design of bending or focusing elements. It is hard to avoid fringe field effects
completely but it is possible to apply additional corrections for power supplies or positions
of the problematic elements. Thus, field maps or their analytical description should be based
on real experimental data obtained from novel measurement techniques for electrostatic
fields [14]. A further combination of such kind of measurements with beam diagnostic tools
will estimate how realistic these methods of simulation are. Thermomechanical effects on
electrodes and the impact of stray magnetic fields will also be investigated. Additionally,
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the existing model of the beamline can be expanded to the other experiments at the AD hall,
for the purpose of tailoring beam quality to each experiment.
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