20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032100 doi:10.1088/1742-6596/513/3/032100

Integrating multiple scientific computing needs via a
Private Cloud infrastructure

S Bagnasco', D Berzano!?3, R Brunettil*, S Lusso! and S Vallero'

! Istituto Nazionale di Fisica Nucleare, Via Pietro Giuria 1, 10125 Torino, IT

2 Dipartimento di Fisica, Universita degli Studi di Torino, Via Pietro Giuria 1, 10125 Torino,
1T

3 CERN - European Organization for Nuclear Research, CH-1211 Geneva 23, CH

4 Now at COLT Engine Srl, Pianezza, IT

E-mail: svallero@to.infn.it

Abstract. In a typical scientific computing centre, diverse applications coexist and share
a single physical infrastructure. An underlying Private Cloud facility eases the management
and maintenance of heterogeneous use cases such as multipurpose or application-specific batch
farms, Grid sites catering to different communities, parallel interactive data analysis facilities
and others. It allows to dynamically and efficiently allocate resources to any application and
to tailor the virtual machines according to the applications’ requirements. Furthermore, the
maintenance of large deployments of complex and rapidly evolving middleware and application
software is eased by the use of virtual images and contextualization techniques; for example,
rolling updates can be performed easily and minimizing the downtime. In this contribution we
describe the Private Cloud infrastructure at the INFN-Torino Computer Centre, that hosts
a full-fledged WLCG Tier-2 site and a dynamically expandable PROOF-based Interactive
Analysis Facility for the ALICE experiment at the CERN LHC and several smaller scientific
computing applications. The Private Cloud building blocks include the OpenNebula software
stack, the GlusterFS filesystem (used in two different configurations for worker- and service-class
hypervisors) and the OpenWRT Linux distribution (used for network virtualization). A future
integration into a federated higher-level infrastructure is made possible by exposing commonly
used APIs like EC2 and by using mainstream contextualization tools like CloudlInit.

1. Introduction

The Computer Centre at INFN-Torino is a medium-size infrastructure counting about 1PB
of disk storage and approximately 1000 job slots. The facility caters to the needs of different
applications, the largest ones being a WLCG Tier-2 site for the ALICE experiment at the CERN
LHC and a PROOF-based Analysis Facility for the same experiment [1,2]. Moreover, it provides
computing resources to the PANDA (FAIR) and Belle-2 (KEK) collaborations and to some local
research groups. The centre is planned to grow in the near future by integrating more use cases:
a Grid Tier-2 for the BES-III Experiment (IHEP) and a small (Tier-3 size) WLCG site for CMS
(LHC).

Nowadays, the diversity of resources and the heterogeneity of applications is steadily
increasing with time, however manpower is not. Therefore, it is necessary to consolidate the
available resources in order to attain scalability and economies of scale. This is achieved both by
centralizing provisioning and by separating application management, that can be delegated to

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032100 doi:10.1088/1742-6596/513/3/032100

experienced users, from infrastructure management that can not. The Cloud Computing model
is a way to raise the level of abstraction and to implement such separation. By converting our
computing farm into a Cloud infrastructure, according to the Infrastructure-as-a-Service (IaaS)
paradigm, we were successful in reducing the amount of manpower needed by management tasks
such as reallocation of resources across the applications and maintenance of large deployments
of complex and rapidly evolving middleware and application software. At the same time, the
flexibility of the infrastructure was increased, allowing us to provide on-demand computing
resources to several smaller applications and short-term requirements. Furthermore, a number of
larger-scale Cloud Computing projects are starting in Italy and Europe. A local Cloud designed
for interoperability and which follows existing standards and exposes widely-used interfaces, will
allow to immediately take part in such activities.

In section 2 we describe the INFN-Torino computing infrastructure. In the following sections
we present our recent developments: an EC2 interface to the private Cloud (section 3), a new
contextualization strategy based on CloudInit (section 4) and the deployment of virtual farms
on-demand (section 5).

2. The infrastructure

Given the aforementioned considerations, and taken into account the need not only to maintain
but also to develop the infrastructure with limited manpower and effort, the system was designed
according to three guidelines [3]:

e provide a production service to users in a timely fashion
e favor manageability and flexibility over performance

e ensure interoperability with existing and upcoming infrastructures

This translated into a number of design and implementation choices that will be described briefly
below. We choose only stable and widely used tools and components, such as OpenNebula [4]
and the GlusterFS [5] distributed filesystem, and tried to develop in-house as few pieces as
possible. Furthermore, an agile development cycle was adopted, with resources given to the
users as soon as possible and features and functionalities introduced only when needed by the
applications.

2.1. OpenNebula as cloud controller

The middleware stack of choice is OpenNebula [4], an open-source software suite aimed at
deploying, managing and monitoring Infrastructure-as-a-Service clusters widely used both in
industry and in the research community. Even though most of the more recent Cloud projects
use OpenStack [6], at the time we made the original choice the latter was judged not to be mature
enough for a production environment. OpenNebula has many attractive features, for instance
it has a modular and easily customizable architecture, mainly based on shell and ruby scripts.
It provides most of the needed features and functionalities, with the notable exception (up to
version 3.8) of an integrated tool for network-on-demand, which prompted the developments
described in section 5.1. Furthermore, OpenNebula exposes, even if with different levels of
maturity, industry-standard interfaces such as OCCI and EC2, along with the native OCA.
Finally, it includes SunStone: a practical web application for most of the management tasks.
The version of OpenNebula used for the work described in this paper is 3.8.

2.2. Two classes of virtual machines

Servers that provide high-level services and workers that provide computational power have
different requirements. In order to efficiently accommodate the two classes of VMs, our
infrastructure comprises two categories of physical hosts (Clusters in OpenNebula terminology):

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032100 doi:10.1088/1742-6596/513/3/032100

the Services Cluster and the Worker Clusters. Server-class virtual machines are instantiated on
the Services Cluster, and worker-class ones on different Worker Clusters (each use case can be
assigned a separate Worker Cluster).

The services are often critical for the functionality of the whole system, so they need resilient
hardware and some form of High Availability may be desirable. Some services require inbound
connectivity (at a bare minimum, for granting access to the system), whereas the local disk
performance requirements may not be very tight. The hosts in this cluster are built with
redundant server-class hardware. They are dual-homed with interfaces in both the public
network and the workers private network (private and public IP) with both in- and out-bound
connectivity.

Conversely, workers that do data analysis need a high-throughput access to data storage
and usually don’t need a public IP. The workers are typically dual-twin servers that share a
redundant power supply among four motherboards, but have good network connection with the
storage servers. The infrastructure currently includes about 7 such hosts.

High-level services can run either on the Workers Cluster head node (e.g. a batch queue
manager) or, if they are more critical or need outbound connectivity, on a separate VM on
the Services Cluster. Furthermore, the two clusters have been provided with different types of
back-end storage in order to optimize the performances and satisfy the above requirements, as
described in section 2.3.

2.8. Storage back-end architecture using GlusterF'S

The back-end storage system is used by the Cloud infrastructure to distribute the virtual machine
images (in our case in raw or qcow2 format) across the physical hosts. It is well distinguished
from storage services for data, which are beyond the scope of this paper. In OpenNebula
terminology a filesystem for VM images is called a Datastore.

GlusterF'S [5] was chosen to implement the back-end storage because of its robustness and
scalability, which have been proven by several very large deployments in the scientific and high-
performance computing. GlusterF'S is an open-source filesystem for network-attached storage.
It provides horizontal scalability by aggregating storage servers over the network into one large
parallel file system with no master host: all synchronizations are peer-to-peer and clients access
data directly from the node hosting it. GlusterF'S can mimic some RAID functionalities at
filesystem level, like striping or mirroring, so that a filesystem can be optimized for performance
or reliability.

As mentioned above, the Services and the Workers Clusters have different requirements,
most of which are fulfilled by GlusterF'S. The filesystems are served by two file-servers equipped
with redundant hardware (RAID disks and power supplies) and 10Gbps Ethernet interfaces.
The virtual images repository resides on a simple Gluster filesystem that currently comprises
a single brick, but that can be scaled out by simply adding more bricks should more capacity
be needed. All hosts mount this filesystem, from which the images need to be copied by the
relevant OpenNebula Transfer Manager to the Datastore on which the running machine images
will reside before it boots. Both the Datastores and the copy mechanisms are different for the
Services and Workers Clusters (figure 1).

Services should tolerate with little or no interruption the failure of a hardware or software
component. To this aim, all hosts in the Services Cluster share a Gluster filesystem on which
the image is copied just before the virtual machine boots. The filesystem is replicated across the
two file-servers to ensure availability in case of the failure of one, with the Gluster’s self-healing
feature enabled. Moreover, it is shared across all physical hosts to allow for live migration of
virtual machines from one host to another. The latency in the startup of the virtual machine
while the image is copied to the shared Datastore is generally deemed tolerable since the
redeployment of a service is a rare event. Also the cost in terms of performance of having

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032100 doi:10.1088/1742-6596/513/3/032100

Gluster Storage
) Replicated Servers
Image Repository Volume

Datastore

Shared

Cache for

?atastore | | | image repo [~~"1" """ 1 |
we ' @0 @b 8o e =0

Services Cluster Workers Cluster

Figure 1. Architecture of the back-end storage. Data storage is not included. The Datastore
for running VM instances is shared among the Service Cluster hosts to allow for live-migration
and cached for Worker Cluster hosts to reduce the VM start-up time.

a host accessing its running image over the network is justified by a higher stability of the
system.

On the opposite, dynamic allocation of resources entails the need for the fast start-up of large
numbers of virtual machines, which would be impossible if the images needed to be copied every
time. Furthermore, the computing capacity of the site depends heavily on the performance of
worker nodes, so network latency towards the running images is to be avoided. Thus, hosts in
the Workers Cluster share no filesystem; their running images are cached asynchronously on the
local disk of the host by a custom torrent-like tool (built upon scpWave [7] and rsync [8]) so
that they are available on the host when a virtual machine needs to boot.

3. An EC2 interface to the private Cloud

OpenNebula provides a web service, called the OpenNebula EC2 Query service [9], which allows
for launching and managing virtual machines through the Amazon EC2 Query Interface. The
service is implemented upon two main components:

e the OpenNebula Cloud API (OCA) layer, which exposes the full capabilities of an
OpenNebula private Cloud

e the light web framework Sinatra [10]

The OpenNebula distribution includes some basic tools needed to use the EC2 Query service,
namely for image upload and registration and for the VM run, describe and terminate operations.
At present these tools do not allow the user to send to the VM instance a file containing custom
configuration data (user-data), which can only be passed in the form of an argument string.
This limitation is unfortunate in the case of a complex contextualization, as in our case (see
section 4). Therefore, we decided to use the Eucalyptus native implementation of the Amazon
clients: the so-called euca200ls [11]. These are a set of open-source command-line tools which
better suit our needs.

4. Contextualization with CloudInit
To simplify the VM management, we rely on a small number of very generic and simple
Operating System images, which are configured (contextualized) at boot time using the standard
OpenNebula tools. So far, we have maintained a number of shell scripts which perform the
required contextualization actions for both service-class and worker-class VMs: configuring the
filesystem, installing and configuring the LRMS, the Grid middleware and so on.

At present, we are developing a contextualization strategy relying on CloudInit [12]: a more
advanced tool recently adopted by many Cloud Computing projects. CloudInit is a native

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032100 doi:10.1088/1742-6596/513/3/032100

Ubuntu package to handle early initialization of a Cloud instance and it comes as a default
on Ubuntu images. It is available for multiple Linux distributions, for instance we use it with
CentOS 6 base images. The source code is written in Python and it relies on different known
modules, for example the boto [13] application framework is used to retrieve the configuration
data. The latter can be provided either by the cloud stack (meta-data) or by the user (user-
data). Among the features that make CloudInit an appealing tool for our purposes, we mention
here customizability and modularity. Different configuration formats are foreseen, such as
cloud-config (YAML syntax), shell-scripts, include URLs and MIME archives, among others.
Moreover, the user can implement additional features either by adding new modules to the
CloudInit source code or via part-handlers. Part-handlers are custom modules that can be
passed to the VM instance as user-data, without modifying the CloudInit installation on the base
image. They can be viewed as plug-ins that allow the user to perform custom contextualization
tasks not foreseen by the core package. Moreover, part-handlers allow to handle user-defined
configuration formats.

Starting from version 0.73 CloudlInit supports the OpenNebula contextualization disk as
source of configuration data. Only a minor modification to the original package was needed to
allow CloudInit to handle user-data files. We plan to submit this modification for inclusion in
the next release.

We are revisiting our contextualization strategy in order to achieve high portability of
the instances to any EC2-compatible Cloud, provided that CloudInit is installed on the base
images, by embedding all the configuration data in a single self-contained user-data file. Our
contextualization procedure is quite complex and involves multiple configuration tasks. For
example for a Grid worker-node we need to configure the local filesystem and to install and
configure CVMFS, the Grid software and the Torque client. Each task might involve different
actions like installing packages, writing configuration files or running shell commands. Tasks
should be executed in a specific order and we need to be able to exclude/add contextualization
blocks according to needs in a simple way. Moreover, task-specific logging would be advisable.
For this purposes we pinpointed the use of part-handlers as the most efficient solution. The new
contextualization strategy we have developed is the following:

e one part-handler is available for each customization task (to be modified only if new features
are needed)

e write the configuration file in simple cloud-config-like format, eventually the only thing that
the user or the system administrator should modify

e run a script to embed all the information (part-handlers, configuration, SSH keys...) in a
single MIME archive

e instance the VM with EC2-compatible query tools (euca2ools) passing the MIME archive
as user-data file

e user-data are securely transmitted to the instance via the OpenNebula context disk

During the procedure, each part-handler produces a detailed log-file also including the shell
standard output and error streams. A script is run as last contextualization step, which parses
these log-files for errors and produces a summary log-file reporting the list of failed handlers. As
future development, the information contained in the summary log-file will be used to detach
the VM from the LRMS queue in case of fatal errors. At present, this new contextualization
strategy is in testing phase.

5. Virtual Farms on-demand

Any generic application (a virtual farm in the following) on our infrastructure can be viewed as
a number of virtual machines in the Workers Cluster managed by a number of services that run
either in a head-node in the Workers Cluster or in VMs in the Services Cluster.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032100 doi:10.1088/1742-6596/513/3/032100

|
Figure 2. Example deployment of two
Virtual Farms. VMs in the Workers Cluster
pnvate ______________________________________ (called private in the figure) are isolated from
other VMs running on the infrastructure and

[VM j[VM] [VM][VM] connected to the external network through the
Virtual Router.

5.1. Networking and Virtual Routers

In our infrastructure, all physical hosts share a common private network, while the ones in the
Services Cluster also have a second interface to a public network. At the bare minimum, the
only service needed by virtual farms is a router to provide network services and access from the
outside to a user’s virtual Worker Nodes.

We currently deploy Virtual Routers (VRouters) as small virtual machines (one physical
CPU, 150 MB memory) based on OpenWRT [14], a lightweight Linux distribution designed
for embedded systems. VRouters provide internal and external connectivity to the virtual
machines of a given application, alongside with tools for network configuration and management.
OpenNebula implements tools for the definition and management of virtual networks at the cloud
controller and hypervisor level. Nevertheless, at the time our infrastructure was set-up it lacked
a tool to provide virtual farms with an isolated, flexible and secure network environment with
access from the outside (now available since version 3.8 under the name of Open vSwitch).

In our implementation each application has its own private fully-featured class-C network,
built on top of the physical network (Figure 2). At level 2, these networks are isolated from each
other using appropriate ebtables [15] rules defined on the hypervisor network bridge, to which
the users have no access. At level 3, each private network is managed by a VRouter.

VRouters provide NAT, DHCP, firewalling and port forwarding functionalities, along with a
web interface for their configuration and monitoring. They run on the Services Cluster, both for
robustness and to allow them to be accessed from the outside. In the standard configuration,
the tcp port 22 on the public network of the VRouter is forwarded to tcp port 22 on the private
network of one of the nodes in the virtual farm, thus providing SSH access to manage the nodes.
Communication between nodes in the same virtual farm is open, whereas they have no way to
access the private networks of other clusters.

Moreover, we have implemented on the VRouter the elastic IP functionality. It is therefore
possible to use an EC2-compatible APIs to bind dinamically a public IP (called elastic IP in
EC2 terminology) to one of the private VM instances.

5.2. A model for Virtual Farm provisioning

We have also developed a tool for the automated creation of a sandboxed environment within our
Private Cloud. The provisioning of an on-demand Virtual Farm consists in the creation of a new
OpenNebula user, of an isolated Virtual Network with dedicated VRouter and a single assigned
public and elastic IP. The tool takes care of template creation and instantiation for the Virtual
Network and the VRouter. The new user has a restrictive quota on the amount of resources
at her disposal and can choose among a subset of base images with public permissions. VM
configuration is simplified through the definition of Amazon-like flavours, which are mapped to
OpenNebula templates. The service is now experimentally offered to users, who can access and
control their Virtual Farm from within the INFN-Torino network. New VMs can be instantiated
and manged with a custom command-line interface based on the euca2ools.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032100 doi:10.1088/1742-6596/513/3/032100

This model for Virtual Farm provisioning allows a more flexible use of the Cloud
infrastructure. For example it favors a computing model in which the user can request
dinamically new resources to the Cloud through a Workload Management System (WMS). See
for instance the recent implementation of the Elastiqg daemon [16], which was partially tested in
our facility.

6. Conclusions and outlook

Currently the Torino Cloud hosts two main applications: a full-fledged WLCG Tier-2 site for
the ALICE experiment and a PROOF-based Virtual Analysis Facility for the same experiment.
Alongside those, a number of smaller use cases have been successfully tested and more are
planned to join in the next future, including a Tier-2 centre for the BES-III experiment. The
infrastructure has been in production for nearly two years: the tools of choice proved themselves
satisfyingly stable and robust. This, together with the flexibility and manageability of the TaaS
model, helped to reduce the management load on the Data Centre staff.

We have enabled the Amazon EC2 interface of OpenNebula to ensure interoperability with
other similar infrastructures and we plan to participate in upcoming projects aimed at developing
higher-level federated Cloud facilities. In this perspective, we are as well restructuring our
contextualization strategy to achieve higher portability (for instance with the use of the main
stream tool CloudInit). Moreover, we are now able to provide self-service systems for advanced
users to deploy their virtual application farm in a simple way.

There is still room for improvement and we are planning several updates to the system, both
to improve the stability of the infrastructure and to provide new functionalities. For example,
we are exploring the opportunities given by the CernVM [17] ecosystem, to provide higher-level
Platform-as-a-Service tools to experiments.

Acknowledgments

The authors want to acknowledge the support by the ALICE and BES-III communities, and
in particular by their Italian components. This work is partially funded under contract
20108T4XTM of Programmi di Ricerca Scientifica di Rilevante Interesse Nazionale (Italy).

References
[1] Bagnasco S, Berzano D, Lusso S and Masera M 2008 PoS ACAT 08 050
[2] Bagnasco S, Berzano D, Lusso S and Masera M 2010 J. Phys.: Conf. Ser. 219 062033
[3] Bagnasco S, Berzano D, Brunetti R, Lusso S and Vallero S 2013 Managing a Tier-2 Computer Centre with
a Private Cloud Infrastructure to be published in J. Phys.: Conf. Ser.
] Moreno-Vozmediano R, Montero R S and Llorente I M 2012 IEEE Computer 45 65-72 .
| Gluster [http://www.gluster.org]
] OpenStack [http://www.openstack.org|
] scpWave [https://code.google.com/p/scp-wave]
| rsync [http://rsync.samba.org]
| EC2 Service Configuration 3.8 [http://opennebula.org/documentation:archives:rel3.8:ec2qcg]
| Sinatra Web Framework [http://www.sinatrarb.com]
| Eucalyptus and AWS-compatible Tools [http://www.eucalyptus.com/eucalyptus-cloud/tools]
] CloudInit [https://help.ubuntu.com/community/CloudInit]
] boto: A Python interface to Amazon Web Services [http://docs.pythonboto.org/en/latest/]
] openWRT [https://openwrt.org|
] ebtables [http://ebtables.sourceforge.net]
| Berzano D, Blomer J, Buncic P, Charalampidis I, Ganis G, Lestaris G and Meusel R 2013
PROOF as a Service on the Cloud: a Virtual Analysis Facility based on the CernVM ecosystem
to be published in J. Phys.: Conf. Ser.
Buncic P, Aguado Snchez C, Blomer J, Harutyunyan A and Mudrinic M 2011 The European Physical Journal
Plus 126 13

TR EE TS
TR W N = O ©

ey
1

