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Abstract: The Proca equation is a generalisation of the Maxwell equations that modifies the potential of a constant charge
at rest from the Coulomb to the Yukawa form and describes massive photons. In this paper, we assume time-dependent
photon mass and solve the Proca equation for a charge at rest. It is found that the vector potential is non-vanishing and that
the scalar potential has the form <D(r, xo) =f (r, xo) /r with x° = ¢t and, thus, is space-time dependent. The solution shows
that an oscillating potential pulse leaves the charge at x° = 0 and propagates with the speed of the light to modify the initial
Yukawa potential. Experimentally the change of sign of the potential field at the charge location can be interpreted as a
change of the sign of the charge. The picture that emerges from the theory is, then, that of charges that at the initial time
emit massive radiation that fills the Universe. The period of the field oscillation is, however, increasing and suggests that
after a long time the potential may become stabilised. A noteworthy consequence of the theory is that the present form of

the Maxwell electrodynamics is only temporarily true.
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1. Introduction
1.1. Context

From the very beginning of our study of Physics we meet
numerical parameters that can be determined only through
experiments: they are the physical constants whose value
and role within Physics are intriguing and vividly dis-
cussed. In general the parameters are dimensionful with
numerical value dependent upon the adopted units but
often they can be algebraically combined to form dimen-
sionless quantities that are free of any human choice. Their
intrinsic meaning can be extracted from the role played
within the theory; in fact, whatever the units might be, the
speed of the light c is the natural upper limit of the speed of
any mass or field; the elementary charge e and half the
Planck constant 7 are the lower limits for the absolute value
of the free electric charges and nonzero angular moment.
Although not often explicitly declared, the value of the
physical constants is considered as given a priori by Nature up
to any decimal digit and, in principle, measurable with any
desired precision. The case of the speed of light ¢ is emblem-
atic: its value is given by definition tobe ¢ = 299, 792, 458 m/s
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with no error bar and thus is known up to any decimal digit
(always zero). Granted our freedom in the choice of the units,
several assumptions are implicit in the definition of c¢; for
example we must be sure that ¢ is not space-time dependent
and, perhaps, that the mass of the photon is zero [1-3]. The
physical constants permit us to calculate the evolution of the
Universe as a whole or of that small fragments of matter that we
call atom. In this picture of Physics the constants play the same
role of Plato’s ideas: a priori given, they disclose the knowl-
edge of the world to us. Yet, to speculate that the distribution of
matter and energy in the Universe and the value of the physical
parameters are mutually dependent in a self-consistent way is
possible. Other options can be envisaged, for example the
parameters could not be known with any desirable precision or
be fluctuating [4]. Which of these possibilities is the true one
cannot be determined on personal philosophical preferences
but on experimental grounds. The full picture of the issue is
much richer, though.

Noticing that the ratio of the electric to gravitational
force between electron and proton is of the order of the age
of the Universe T (expressed in atomic units where
h=e=m, =1, with m, the electron mass) and that the
ratio between the mass of the Universe and that of the
proton is of the order of T2, Dirac was led to hypothesise
that G might be time dependent [5] thus setting the basis of
the so-called Dirac’s cosmology [6].
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Dirac’s suggestion opened several channels of investi-
gations on the possibility that other constants might be
space-time dependent and the present paper is devoted to
the investigation of the consequences brought about by the
hypothesis that some fundamental constants are time
dependent; we refer the interested reader to the existing
reviews for a view of the topics of variation of the physical
constants [7, 8].

From the experimental side, the issue appears to be a
conundrum; it has been hinted that the fine structure con-
stant may be function of time or space [9—12] but inde-
pendent experiments do not confirm the suggestion
[13—-15]. Other investigations discuss the space-time
dependence of % [16, 17], G [18-20], e [21], ¢ [22-26],
electron Compton wavelength [27] but a debate is active if
the quest for the variation of dimensionful parameters has
any meaning at all and, instead, if only dimensionless
parameters should be taken into consideration in the first
place. Unfortunately the fervency of the discussion is
proportional to the lack of clear-cut experimental data.
From the theoretical point of view it is important to explore
all the options in order to have a picture of what may
happen and to suggest new and, may be, maverick methods
of investigation [28-36].

1.2. Motivations
In this context, it has been studied [27] the Dirac equation

for a free electron with time-dependent Compton wave-
length

3
i@o@.b(ac“) = —iZ@-jﬁj@p(x“') + (Jfo)ﬂw(l’“) (1)

with
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the standard Dirac matrices and w the four component
electron wavefunction whose bispinorial nature is indicated
by the two dots under the symbol. Here

M, = = — (3)

and X, is the (reduced) Compton wavelength of the elec-
tron assumed to be time dependent. Throughout this paper
a Greek index runs from O to 3 and a Latin index from 1 to

3; the components of the four vector x* are (x%,x!,x? x%)

(or, concisely, (x°,r)) with metric g° = +1, g = —9/*

(the standard Kronecker symbol); however the Einstein
sum convention over repeated indices in not adopted;
moreover in the following we shall loosely refer to x° = ct
as time. The surprising result is that the analytical solution
of Eq. (1) predicts positive—negative charge oscillations.
Thus, time dependency of A., which does not depend upon
the charge, requires charge non-conservation which in turn
requires that the photon has a nonzero mass [37, 38] and at
the end of the line also that the Coulomb law is not any
more valid [39]. Such a string of implications is disturbing
in front of the fact that the experiments set a very long
constraint on the charge decay time t,>6.6 x 10%® yr
although the value is obtained by assuming a particular
decay of an electron into a photon and a neutrino [21]. Also
very tight is the constraint in the photon mass; recent
experimental limits being mc* <6-107"7 eV [40] and
mc? < 10715 eV [41] and appears to be compatible with the
null result. Of course experiments should be designed to
set also a limit on m in the far past. However, it is well
clear that any variation of the physical constants would
change some of our deepest-rooted ideas of natural bases
such as the inertial law and the equivalence principle
[8, 42].

Since the time dependence of the electron Compton
wavelength implies that the photon must have a mass, to
study such prospects from a different point of view is
essential. As it is well known, Coulomb law and Maxwell
equations require that the photon is massless; nevertheless
by generalising these fundamental laws, to introduce the
concept of massive photon is possible; the task is accom-
plished by the Proca equation that in Gaussian units is
[39, 43]

4
CIA7 +%2A4° = "o (4)
c
where
0
O="_v
ox3 ’ ()

is the d’Alembert operator, A? is the four electromagnetic
potential, j° the four electric current,
_me 1
TR T w
m the mass and X the reduced Compton wavelength of the
photon. The reader interested in the genesis, primeval
motivation and modern vision on the Proca equation and
the mass of the photon is referred to the existing literature
[40, 44, 45].

The presence of the mass term x in Eq. (4) explicitly
breaks the U(1) gauge symmetry of the usual electromag-
netic theory but the relativistic covariance is preserved in
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the Lorenz gauge Z::o 0,A" =0 which is, henceforth
assumed. This is an important point as charge conservation
and Lorentz gauge are strictly related:

3

3
4n) 0" =wc ) d,A" (7)
v=0 v=0

so that the assumption of the Lorenz gauge requires charge
conservation.

2. Theory

We wish to solve Eq. (4) for a time-dependent Compton
wavelength of the photon and therefore we set ¥ = %(xo);
it implies a time-dependent photon mass. For simplicity
sake we consider a constant point charge ¢ at rest at the
origin of the coordinate system; thus

J7 = (cqd(r), 0) (3)

however, even if the particle is at rest, nothing forces the
vector potential A" (x") to vanish, therefore we write

A% = (D,A) )

with ®(x?) the scalar potential. In this way Proca equation
splits into two differential equations:

{ (63 —VHD(x%) + % (x°)D(x7) = dnqd(r)

(@2 — V)ar(x7) + 22 ()4 (x7) = 0 19

2.1. The adiabatic approximation

The second of Eq. (10) is easier and can be solved by
separation of the variables by setting (no sum over n)

A" (x7) = d" () T" (x°). (11)

Confining to Appendix (A) the mathematical details, the
result is that the equation for 7" (x”) becomes:

{%m@%+@m%ﬁm@%o

5 ) (12)
(wgn) (xo) = (k") + %2 (xo)

which is the equation of a parametric oscillator with time-
dependent angular frequency i (x°) = cwpe (x°) and
leads us to predict an oscillating potential. Since the
equation is second order on x° we shall need two integra-
tion constants to be determined from the initial conditions.
This is a far reaching characteristic as the plane waves are
not harmonically oscillating.

At the best of our knowledge, there is no fundamental
theory nor cogent reason requiring a time variation of the
photon Compton wavelength, thus to proceed with the
calculations we need to use some speculation. As far as our

present day experiments say, any time dependence of the
photon Compton wavelength X — or of »*(x”) — if real, is
very slow or would have been detected, thus we believe
that to hypothesise that X has been slowly varying even in
the very far past is reasonable; therefore we make the
crucial adiabatic ansatz [46]:

7 (x°) = cos[0 (x°) + @] (13)

with
0

%MZKW@M (14)

and ¢;. is one of the two integration constants. We stress
that the particular choice of 7}, (x°) is motivated by the
(parametric) oscillator form of its equation.

2.2. The vector potential

Always after Appendix (A), the space-time dependence of
the components of the vector potential is

243y (r,x°%) = (a,lcleikl" cos[0 (x%) + ou ],
alz(zeikz" cos [sz (xo) + q)kz] , aige"kg" cos (15)
[0 (0%) + 0] + ce

with ap, amplitudes to be determined from the initial

condition (we recall that k" = |k"|). The full solution is
given by a linear superposition of these solutions:

24 (r,x") = (/ dSkIa;Ieikl" cos[0p (x°) + pu ],

/ d3k2a12‘26ik2»r coS [9/(2 (XO) + (PkZ} , / d3k3ai3eik3f
cos[0p (x°) + @ ]) + cc
(16)

2.3. The scalar potential

We are interested in the scalar potential (I)(x") to observe
how the Coulomb law is affected by our hypothesis that the
photon Compton wavelength is time dependent. However,
the direct solution of the first of Eq. (10) is hindered by the
presence of the d(r) and we prefer the use of the Lorenz
gauge >0 (0,A°=0= "®+V-A =0. The calcula-
tions leading to V - A are long and time consuming and are
detailed in Appendix (B). The final result is

e

- 21 20) sin(kr)dk (17)

with
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Fu(x") = /cos [0 (x°) + o ] dx°. (18)

After so many titanic calculations, the final result
appears to be quite simple. The expression shows that the
potential generated by a charge put at the origin of the
coordinates is of the form ®(r,x%) = f(r,x°) /r. Fi (x°)
contains the infinite number of phases
determined.

@ to be

3. A model

Among the many possible models, we adopt a periodic
time dependence for % (x%); of course it is a toy model, but
it allows advanced analytical calculations and, moreover, is
based on some ground. In fact hypotheses have been
advanced that the physical constants may be dependent
upon some privileged space direction and in this case the
Earth orbital motion would feel a periodic variation of the
physical constants [7, 47]; therefore we set:

#(x%) = uo + wy sin(kx®), (1, K) < %o (19)
leading to
ar, (x°) = (k”)2 + %5 + 2xon; sin(xkx”), (20)

.XO

Opn (x°) = / \/(k”)2 + %3 + 2% sin(k&) d&
0

HoA1

=/ (1) + " - — =
k) (k") + %3

[cos(kx”) — 1]
1)

and, after redefinition of ¢

0

Fo () = / cos[ (k") +73x° — LCOS(KJCO) + g | dx°.

i\/ (k)2 453
(22)

This integral can be manipulated to give for the function
Fin (xo) the form:

fkn ()CO)
I YA
= N

| - 0 (23)
smK (k") +x0+mc>x +gokn]

(k")* + 52 + nic

with J,,(x) the Bessel function of integer order n; details on
the analytical steps leading to this expression are given in

Appendix (C). A glance to Eq. (17) gives the final
expression for the scalar potential:

O(r,x") = @f(r, %) (24)
with
f(r,x°) = —% +Zw (=1)"x

n=-—00

/.oo Moy ksin [( K+ + nK)xO + (p,‘,n}
X Ju
0 K

VIEEA) [ ) [V ]

(25)

The presence of r at the denominator is reassuring as
reminiscent of the Coulomb law; in the following we shall
discuss the function f(r,x") alone.

The Bessel functions J,(x) peak when x ~ n; thus we
see that the number of addends to be taken into account in
f (r,xo) depends essentially on the ratio %;/k. Complica-

tions may arise if the quantity /k? + %3 -+ nk vanishes
because n may be negative. To look after this sort of res-
onance might be rewarding; since here we present model
calculations, in the numerical evaluation of the scalar
potential, we use values of the load parameters which avoid
the resonance.

4. Results and discussion

We have numerically evaluated the integrals present in
Eq. (25) to observe how the Coulomb law is changed by a
time variation of the photon Compton wavelength. At this
stage of the discussion there is no need to ascribe the
variation to any of the constants defining X but we shall
deal with this point later. The integral has the form of a sin
Fourier transform; the upper limit and step of integration
were selected in order to achieve numerical convergence.
We have checked it also by using functions whose integral
could be analytically carried out.

The value of the load parameters %o, %1, ¥ in Eq. (19) is
tricky since these should comply with the experimental
state of the art but, then, calculations would be pro-
hibitively long; thus we choose values apt to unveil the
physics of the problem without requiring a too long
numerical effort. In the following we use %y = 1.074 cm™!
(which is very large but permits to discern at a glance
exponential decreasing behaviours in the plots), %} =
117 x 1072%; cm™' and xk=5.13x103%; cm™!
(2n/x = 1.14 x 10> cm). The reason of the unhandy
choice of the values is given by the need to avoid the
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previously discussed resonances and also possible beats
between the frequencies. The phases ¢, are, as yet, unde-
termined but for simplicity sake we assign the value ¢, =
7/2.05 determined, after few checks, to give the slowest
evolution of the potential.

In Fig. 1 we show few snapshots of f (r,xo) as a function
of r. From the plots a very interesting picture of the scalar
potential appears. At xX’ = 0 a pulse of potential leaves the
charge with speed ¢ and modifies the potential from the
initial Yukawa’s form in eq. (40). For r > x° the potential
is almost unaffected. The pulse is chirped and shows a
time-dependent frequency. This is more evident from two
snapshots taken after a long time x” and shown in
Fig. 2.Now, however, it is evident that the potential at
x% = 0 changes sign; thus a constant and positive charge
creates a negative scalar potential; these awkward charac-
teristics in an experiment may be interpreted as a transition
from a positive to a negative charge. In Fig. 3 we give the
temporal evolution of f(r,x") at r =5 cm: we see that
almost nothing happens until x° = r when the field begins
to oscillate.

An interesting feature is that the period of the positive—
negative potential oscillation increases with time; thus the
sign of the charge tends towards a stabilisation. The inset
of Fig. 3 shows the square modulus of the Fourier trans-
form of f (S,xo) which presents a broad component con-
tent. Of course our results are obtained from a toy model,
however, for x” < 2n/k we may say that the physical
development of f (r,xo) is practically model independent.

1 T T T T T

x%=0.1 — —x%=10
0.8 — —x%=05 x0=12.5|+

x0=1  — —x%=20
o6l e x0=5 —¢—x0_o5 ||
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r (cm)

Fig. 1 Colour on line. Snapshots of f (r7 x‘)) as function of r in cm.
The snapshots at small x° = ¢t in cm show that f (r,xo) exponentially
decreases for r > x°. It is clearly visible the change of sign of f(r, x°)
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Fig. 2 Colour on line. Two snapshots of f(r,x°) as function of r in
O in cm. The change of sign of f(r,x”) can be read as a change
of the sign of the charge. The period of oscillation of f (r, xO)

cm; X

increases with x°
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Fig. 3 Plot off(r,xo) as a function of x° in cm at »r = 5 cm. The
wave arrives at x° = ¢t at xX° = 5 cm; afterwards the field oscillates
with increasing period. The inset shows the square modulus (in
arbitrary units) of the Fourier transform of f (S,xo): the spectrum is
formed of a broad distribution of components

5. Conclusions

Charge conservation, electron stability and massless pho-
ton are amongst the most constrained principles of Physics
both from the experimental and the theoretical point of
view [21, 37, 38, 45, 48-50]. Proca equation describes
massive photons and implies that the potential generated by
an electric charge at rest is modified from the pure Cou-
lomb potential into the Yukawa short range potential
(Eq. (40)). In this paper, we hypothesise that the Compton
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wavelength of the photon is time dependent and accord-
ingly modify the Proca equation which now assumes the
form of a parametric oscillator with very slow variation of
the frequency thus permitting the adiabatic approximation
(Eq. (13)). The Yukawa potential is assumed to be the
initial potential. The surprising result is that a wave prop-
agates from the field source with speed ¢ and modifies the
static potential energy; eventually the potential changes
sign even at the charge location and this can be read, from
the experimental point of view, as a change of the sign of
the charge. The oscillation of the potential is rapid at the
initial time but then becomes increasingly slower and
suggests a picture of the evolution of the field rather
interesting, because at the beginning of time massive
photons leave the charges and fill the Universe; as time
goes by, the sign of the potential becomes stable. For the
sake of argument, by pushing the discussion beyond the
borders of the model here presented, we may envisage that
we are now living at the particular stage of the evolving
Universe when %(x°) = 0 and the Coulomb law is strictly
true.

Three issues should now be shortly addressed. To begin
with, we are faced with what can be called unity of Nature.
Proca theory violates the gauge invariance of electromag-
netism and moreover the present Paper assumes that the
ratio of few physical constants changes in time. The con-
sequences reverberate everywhere: the Coulomb law is not
any more valid, energy flows from the charges albeit,
perhaps, mainly at the far past and an apparent charge non-
conservation is obtained. But electromagnetism is the basis
and benchmark of all relativistic field theories thus con-
tradictions are to be expected everywhere. As a second
point, in our approach the dependence of the potentials
upon x° is described by an intrinsically time-dependent
differential equation with assigned initial conditions thus
the evolution affects the potential at any spatial point; the
fact that the modification of the scalar potential is essen-
tially represented by a wave leaving the source of the field
and, thus, preserving causality, is indication that our
approach, albeit approximated, catches the essential phy-
sics of the problem.

As a third issue we must address the problem to which
of the parameters entering the definition of the photon
Compton wavelength X should the variation be ascribed.
The discussion requires careful handling as it is often told
that even thinking about variation of dimensionful param-
eters is meaningless. Nevertheless here we are concerned
with the variation of a dimensionful parameter. To some
extent our calculations do not force a choice, but it appears

to us that if the photon mass m is eternally zero, then all of
the presented work would be pointless thus, within our
theory, the choice imposes itself.

A The vector potential

In this Appendix, we detail the steps needed to solve for the
vector potential in the set of Eq (10). Because of the large
amount of calculations, we adopt a rational notation that,
albeit unorthodox, is helpful. Accordingly, throughout the
manuscript we keep a notation allowing constant control of
dimensional consistency. Thus, quantities with L~!
dimension are indicated with symbols of the k family,
quantities with the dimension T-! with « and similar
symbols. Adopting this strategy to avoid errors is simpler.
In equation (35) k& is the integration variable.

We start from the separation in Eq. (11) and substitute it
into the second equation (10) to obtain

R Var
TI’[ - al’[ +

w (x°) = 0; (26)

since @" and T" are function of independent variables, we
set

V2a'(r) = — (K")’d"(r) (27)
giving for T"

2n

G2 = (K’ &

with K" the separation constant.
The spatial part for the generic nth component can be
solved, again, by separation of the variables; thus

an(r) _ an;l(xl)an:Z(XZ)an;3(x3) (29)
with the second index after the semicolon flagging the

variable the amplitude @" is depending from. By following
standard procedure we arrive at

1 dZan;l 1 dZGn;Z 1 d2an:3

2
Wd(xl)z Wd(xz)2 ﬁd()@)Z = —(K") (30)
so that
1 d2a™! "2 n: il !
at gy~ W)= @D = (31

Straightforward reiteration for x> and x> gives
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A (r) = @ Qg K+ ) (32) —20(r,x°) = 2/ V- A(r,x%)dx”
or, concisely: . .

" =i [ @ [afet - (o) e M| () )
din(r) = dje™'. (33)

. 372 2 JikPr (2 \*.—ik’r 0\ (7,212

The notation might seem overburdening but is meant to ti / dk {akze (akz) © }sz (x )(k )
recall that the amplitudes a” does indeed depend from k". . N ) N 0\ /1343
From Eq (27) T / a [a}(w T (ap)e r} Fia ()0
(K" =K' - K" = (k") (34) (39)

The vector potential at the initial time is, then, given by

2A{kn}(r7 0) = (allc,eik]‘r,azgeikz'

et T ai3eik3'r) + cc. (35)

As a warning, K is not the jth component of the vector k
but the vector pertaining to the jth coordinate. Thus,
speaking about the spatial part, any component of the
vector potential is a plane wave.

To obtain the full expression of the vector potential we
need to solve for the temporal part. Eq. (26) gives

{%mﬁ%+wm%ﬂm@%=0

36
(wkn)z(xo) = (k")* + %2 (x0) (36)

B The scalar potential
In this Appendix, we detail the steps leading to the

expression of the scalar potential. We evaluate the diver-
gence of A

2V -A(r,x°) =
+ i/d3k2a12‘2(k2)zeik2~r cos I:sz (x()) 4 (PkZ]

+ i/d3k3a,3‘3(k3)3eik3" cos [0 (x°) + @] + ce.

By setting
Fr(x") = /cos [0 (x°) + o ] dx® (38)

we obtain

It is well known that the static solution of Proca
equation for the scalar potential with constant mass term
% = u is the Yukawa potential [39, 51]

e i
thus we require the initial condition (i.e. at =0
—x(0)r
®(r,0) = ¢*——: (41)
r

by equating the Fourier transform of Eqs (39)and (41) we
arrive at:
q _ 2-{ [ 1 1 *] 1
——————="n"I4 |a, + (a_ p
P2+ %2(0) 14 ( p) ()
+ @+ (@) )7+ [a+ @) ]} 7 0

The right-hand side of the equation must be real, thus we
set

a+(a",) =B, (43)
giving

q .2l 1 2 2 33
P r20) " {ﬁpp + B+ Bpp }‘7:1’(0) (44)
and

/d3k1 (allc] )*eiik]‘r(kl)lfkl ()CO)
S / k(@) e T (k) Fa (x0).

From Eq. (39) we obtain
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—20(r,x") = i/d3kl [ + (al_k')*]eikl'r}-kl () (")
i [ R+ (@)
i / K [+ (@) Je* T F 0O K)°
- _/d3k1ﬁ,'{leikl"fkl ()"
- / P e Fia (1) (k)
- / &I e Fio () (i)
B / Fr(Bik' + Bk + Bk ) Fr(x%)e™
_4 d3kweﬂf'r

2 k? 4+ %2(0)
(46)
or, performing the angular integrations:
2q [ Fi(x)/Fi(0) .
O(r,x") == | k—>————sin(kr)dk. 47
) = | Py sk @)

C An integral involving Bessel functions

By using the generating function of the Bessel functions
[52] in the identity

cos[ax — beos (kx) + c|

= cos(ax + ¢) cos [bsin(kx)| + sin(ax + ¢) sin[bsin(ix)]

= cos(ax + c)

)+2 ZJQ,, cos 2nKx)]

+2 sin(ax + c)

XOO:JQ,H] (b) sin [(Zn + I)Kx]]
n=0
(48)

it is possible to obtain a closed form for F» (xo). We set

HoX1
a=\[K2+%; b=———=; c=qu (49)
K/ k? + %}

and proceed:

Fro(x®) =
) = o (b sin[(a — 2nK)x° +¢]  sin[(a + 2nx)x° + ]
+ ; 2l ){ 2(a — 2nk) 2(a + 2nk) }
= sin{[a — (2n + D]x® + ¢}
2 J; n+
2 { 2la— @n+ 1)
_ sin{[(a +

(2n+ 1)KJx® + c}}
2[a+ (2n + 1)x]

_ Jo(b) sin[(a — nx)x® + ¢]

00
sin(ax” + ¢) + ZJ,,(b)
n=1
sin[(a + nr)x® 4 ¢]
a+ nk

a — nK

00

+ 3 (=1)"u(b)

n=1

(50)

with the substitution » — —n in the first summation and
use of the relation J_,(x) = (—1)"J,(x) to gather the
expression under the same summation is possible:

§1n[ a+ nx)x® + ]

Jo(b)

0 0

A (x0) = § J_n(b
Frn(x7) P ——sin(ax” + ¢) PR

n=-—0o0

u sin[(a + nx)x® + c]
)= e

b) . (o S n
sin(ax’ + ¢) + Z (—=1)"J,(b)

n=-—0o0

J’_

NgE

3
Il

S
= L

sin[(a + nx)x® + ¢]
a—+nk

sin[(a + nx)x® + ]

+
2 <

(*l)n*]n(b)

po| a+nk
> " sin[(a 4+ ni)x® + ¢
= Z (-1) Jn(b)M.
= a—+nK

(51)
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