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On the time dependence of the photon Compton wavelength

E Fiordilino*
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Abstract: The Proca equation is a generalisation of the Maxwell equations that modifies the potential of a constant charge

at rest from the Coulomb to the Yukawa form and describes massive photons. In this paper, we assume time-dependent

photon mass and solve the Proca equation for a charge at rest. It is found that the vector potential is non-vanishing and that

the scalar potential has the form U
�
r; x0

�
¼ f
�
r; x0

�
=r with x0 ¼ ct and, thus, is space-time dependent. The solution shows

that an oscillating potential pulse leaves the charge at x0 ¼ 0 and propagates with the speed of the light to modify the initial

Yukawa potential. Experimentally the change of sign of the potential field at the charge location can be interpreted as a

change of the sign of the charge. The picture that emerges from the theory is, then, that of charges that at the initial time

emit massive radiation that fills the Universe. The period of the field oscillation is, however, increasing and suggests that

after a long time the potential may become stabilised. A noteworthy consequence of the theory is that the present form of

the Maxwell electrodynamics is only temporarily true.
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1. Introduction

1.1. Context

From the very beginning of our study of Physics we meet

numerical parameters that can be determined only through

experiments: they are the physical constants whose value

and role within Physics are intriguing and vividly dis-

cussed. In general the parameters are dimensionful with

numerical value dependent upon the adopted units but

often they can be algebraically combined to form dimen-

sionless quantities that are free of any human choice. Their

intrinsic meaning can be extracted from the role played

within the theory; in fact, whatever the units might be, the

speed of the light c is the natural upper limit of the speed of

any mass or field; the elementary charge e and half the

Planck constant �h are the lower limits for the absolute value

of the free electric charges and nonzero angular moment.

Although not often explicitly declared, the value of the

physical constants is considered as given a priori by Nature up

to any decimal digit and, in principle, measurable with any

desired precision. The case of the speed of light c is emblem-

atic: its value is given by definition to be c ¼ 299; 792; 458 m/s

with no error bar and thus is known up to any decimal digit

(always zero). Granted our freedom in the choice of the units,

several assumptions are implicit in the definition of c; for

example we must be sure that c is not space-time dependent

and, perhaps, that the mass of the photon is zero [1–3]. The

physical constants permit us to calculate the evolution of the

Universe as a whole or of that small fragments of matter that we

call atom. In this picture of Physics the constants play the same

role of Plato’s ideas: a priori given, they disclose the knowl-

edge of the world to us. Yet, to speculate that the distribution of

matter and energy in the Universe and the value of the physical

parameters are mutually dependent in a self-consistent way is

possible. Other options can be envisaged, for example the

parameters could not be known with any desirable precision or

be fluctuating [4]. Which of these possibilities is the true one

cannot be determined on personal philosophical preferences

but on experimental grounds. The full picture of the issue is

much richer, though.

Noticing that the ratio of the electric to gravitational

force between electron and proton is of the order of the age

of the Universe T (expressed in atomic units where

�h ¼ e ¼ me ¼ 1, with me the electron mass) and that the

ratio between the mass of the Universe and that of the

proton is of the order of T2, Dirac was led to hypothesise

that G might be time dependent [5] thus setting the basis of

the so-called Dirac’s cosmology [6].
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Dirac’s suggestion opened several channels of investi-

gations on the possibility that other constants might be

space-time dependent and the present paper is devoted to

the investigation of the consequences brought about by the

hypothesis that some fundamental constants are time

dependent; we refer the interested reader to the existing

reviews for a view of the topics of variation of the physical

constants [7, 8].

From the experimental side, the issue appears to be a

conundrum; it has been hinted that the fine structure con-

stant may be function of time or space [9–12] but inde-

pendent experiments do not confirm the suggestion

[13–15]. Other investigations discuss the space-time

dependence of �h [16, 17], G [18–20], e [21], c [22–26],

electron Compton wavelength [27] but a debate is active if

the quest for the variation of dimensionful parameters has

any meaning at all and, instead, if only dimensionless

parameters should be taken into consideration in the first

place. Unfortunately the fervency of the discussion is

proportional to the lack of clear-cut experimental data.

From the theoretical point of view it is important to explore

all the options in order to have a picture of what may

happen and to suggest new and, may be, maverick methods

of investigation [28–36].

1.2. Motivations

In this context, it has been studied [27] the Dirac equation

for a free electron with time-dependent Compton wave-

length

ð1Þ

with

ð2Þ

the standard Dirac matrices and the four component

electron wavefunction whose bispinorial nature is indicated

by the two dots under the symbol. Here

ð3Þ

and is the (reduced) Compton wavelength of the elec-

tron assumed to be time dependent. Throughout this paper

a Greek index runs from 0 to 3 and a Latin index from 1 to

3; the components of the four vector xm are ðx0; x1; x2; x3Þ
(or, concisely, ðx0; rÞ) with metric g00 ¼ þ1, gjk ¼ �dj;k

(the standard Kronecker symbol); however the Einstein

sum convention over repeated indices in not adopted;

moreover in the following we shall loosely refer to x0 ¼ ct

as time. The surprising result is that the analytical solution

of Eq. (1) predicts positive–negative charge oscillations.

Thus, time dependency of , which does not depend upon

the charge, requires charge non-conservation which in turn

requires that the photon has a nonzero mass [37, 38] and at

the end of the line also that the Coulomb law is not any

more valid [39]. Such a string of implications is disturbing

in front of the fact that the experiments set a very long

constraint on the charge decay time se � 6:6 � 1028 yr

although the value is obtained by assuming a particular

decay of an electron into a photon and a neutrino [21]. Also

very tight is the constraint in the photon mass; recent

experimental limits being mc2 � 6 � 10�17 eV [40] and

mc2 � 10�15 eV [41] and appears to be compatible with the

null result. Of course experiments should be designed to

set also a limit on m in the far past. However, it is well

clear that any variation of the physical constants would

change some of our deepest-rooted ideas of natural bases

such as the inertial law and the equivalence principle

[8, 42].

Since the time dependence of the electron Compton

wavelength implies that the photon must have a mass, to

study such prospects from a different point of view is

essential. As it is well known, Coulomb law and Maxwell

equations require that the photon is massless; nevertheless

by generalising these fundamental laws, to introduce the

concept of massive photon is possible; the task is accom-

plished by the Proca equation that in Gaussian units is

[39, 43]

hAr þ ,2Ar ¼ 4p
c

jr ð4Þ

where

h ¼ o

ox2
0

� $; ð5Þ

is the d’Alembert operator, Ar is the four electromagnetic

potential, jr the four electric current,

6

m the mass and the reduced Compton wavelength of the

photon. The reader interested in the genesis, primeval

motivation and modern vision on the Proca equation and

the mass of the photon is referred to the existing literature

[40, 44, 45].

The presence of the mass term , in Eq. (4) explicitly

breaks the U(1) gauge symmetry of the usual electromag-

netic theory but the relativistic covariance is preserved in
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the Lorenz gauge
P3

m¼0 omA
m ¼ 0 which is, henceforth

assumed. This is an important point as charge conservation

and Lorentz gauge are strictly related:

4p
X3

m¼0

omj
m ¼ ,2c

X3

m¼0

omA
m ð7Þ

so that the assumption of the Lorenz gauge requires charge

conservation.

2. Theory

We wish to solve Eq. (4) for a time-dependent Compton

wavelength of the photon and therefore we set , � ,
�
x0
�
;

it implies a time-dependent photon mass. For simplicity

sake we consider a constant point charge q at rest at the

origin of the coordinate system; thus

jr ¼ cqdðrÞ; 0ð Þ ð8Þ

however, even if the particle is at rest, nothing forces the

vector potential An
�
xr
�

to vanish, therefore we write

Ar ¼ ðU;AÞ ð9Þ

with U
�
xr
�

the scalar potential. In this way Proca equation

splits into two differential equations:
�
o2

0 � $2
�
U
�
xr
�
þ ,2

�
x0
�
U
�
xr
�
¼ 4pqdðrÞ

�
o2

0 � $2
�
An
�
xr
�
þ ,2

�
x0
�
An
�
xr
�
¼ 0

(

: ð10Þ

2.1. The adiabatic approximation

The second of Eq. (10) is easier and can be solved by

separation of the variables by setting (no sum over n)

An
�
xr
�
¼ anðrÞTn

�
x0
�
: ð11Þ

Confining to Appendix (A) the mathematical details, the

result is that the equation for Tn
�
x0
�

becomes:

o2
0Tn

kn

�
x0
�
þ ð-knÞ2

�
x0
�
Tn

kn

�
x0
�
¼ 0

ð-knÞ2
�
x0
�
� ðknÞ2 þ ,2

�
x0
�

(

ð12Þ

which is the equation of a parametric oscillator with time-

dependent angular frequency xkn

�
x0
�
¼ c-kn

�
x0
�

and

leads us to predict an oscillating potential. Since the

equation is second order on x0 we shall need two integra-

tion constants to be determined from the initial conditions.

This is a far reaching characteristic as the plane waves are

not harmonically oscillating.

At the best of our knowledge, there is no fundamental

theory nor cogent reason requiring a time variation of the

photon Compton wavelength, thus to proceed with the

calculations we need to use some speculation. As far as our

present day experiments say, any time dependence of the

photon Compton wavelength – or of ,2
�
x0
�

– if real, is

very slow or would have been detected, thus we believe

that to hypothesise that has been slowly varying even in

the very far past is reasonable; therefore we make the

crucial adiabatic ansatz [46]:

Tn
kn

�
x0
�
¼ cos hkn

�
x0
�
þ ukn

� �
ð13Þ

with

hkn

�
x0
�
¼
Z x0

0

-knðnÞdn ð14Þ

and ukn is one of the two integration constants. We stress

that the particular choice of Tn
kn

�
x0
�

is motivated by the

(parametric) oscillator form of its equation.

2.2. The vector potential

Always after Appendix (A), the space-time dependence of

the components of the vector potential is

2Afkng
�
r; x0

�
¼ a1

k1 eik1�r cos
�
hk1

�
x0
�
þ uk1

�
;

�

a2
k2 eik2�r cos

�
hk2

�
x0
�
þ uk2

�
; a3

k3 eik3�r cos
�
hk3

�
x0
�
þ uk3

��
þ cc

ð15Þ

with an
kn amplitudes to be determined from the initial

condition (we recall that kn ¼ jknj). The full solution is

given by a linear superposition of these solutions:

2A
�
r; x0

�
¼

Z
d3k1a1

k1 eik1�r cos
�
hk1

�
x0
�
þ uk1

�
;

�

Z
d3k2a2

k2 eik2�r cos
�
hk2

�
x0
�
þ uk2

�
;

Z
d3k3a3

k3 eik3�r

cos
�
hk3

�
x0
�
þ uk3

��
þ cc

ð16Þ

2.3. The scalar potential

We are interested in the scalar potential U
�
xr
�

to observe

how the Coulomb law is affected by our hypothesis that the

photon Compton wavelength is time dependent. However,

the direct solution of the first of Eq. (10) is hindered by the

presence of the dðrÞ and we prefer the use of the Lorenz

gauge
P3

r¼0 orAr ¼ 0 ) o0Uþ $ � A ¼ 0. The calcula-

tions leading to $ � A are long and time consuming and are

detailed in Appendix (B). The final result is

U
�
r; x0

�
¼ 2q

pr

Z 1

0

k
F k

�
x0
�
=F kð0Þ

k2 þ ,2ð0Þ sinðkrÞdk ð17Þ

with
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F knðx0Þ ¼
Z

cos
�
hkn

�
x0
�
þ ukn

�
dx0: ð18Þ

After so many titanic calculations, the final result

appears to be quite simple. The expression shows that the

potential generated by a charge put at the origin of the

coordinates is of the form U
�
r; x0

�
¼ f
�
r; x0

�
=r. F kn

�
x0
�

contains the infinite number of phases ukn to be

determined.

3. A model

Among the many possible models, we adopt a periodic

time dependence for ,
�
x0
�
; of course it is a toy model, but

it allows advanced analytical calculations and, moreover, is

based on some ground. In fact hypotheses have been

advanced that the physical constants may be dependent

upon some privileged space direction and in this case the

Earth orbital motion would feel a periodic variation of the

physical constants [7, 47]; therefore we set:

,
�
x0
�
¼ ,0 þ ,1 sinðjx0Þ; ð,1; jÞ � ,0 ð19Þ

leading to

-2
kn

�
x0
�
ffi
�
kn
�2 þ ,2

0 þ 2,0,1 sin
�
jx0
�
; ð20Þ

hkn

�
x0
�
ffi
Z x0

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðknÞ2 þ ,2

0 þ 2,0,1 sinðjnÞ
q

dn

ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
kn
�2 þ ,2

0

q
x0 � ,0,1

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
kn
�2 þ ,2

0

q
�
cos
�
jx0
�
� 1
�

ð21Þ

and, after redefinition of ukn

F kn

�
x0
�
¼
Z

cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
knð Þ2þ,2

0

q
x0 � ,0,1

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
knð Þ2þ,2

0

q cos
�
jx0
�
þ ukn

2

64

3

75dx0:

ð22Þ

This integral can be manipulated to give for the function

F kn

�
x0
�

the form:

F kn

�
x0
�

¼
X1

n¼�1
ð�1ÞnJn

,0,1

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðknÞ2 þ ,2

0

q

0

B@

1

CA

sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
kn
�2 þ ,2

0

q
þ nj

� 	
x0 þ ukn


 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
kn
�2 þ ,2

0

q
þ nj

ð23Þ

with JnðxÞ the Bessel function of integer order n; details on

the analytical steps leading to this expression are given in

Appendix (C). A glance to Eq. (17) gives the final

expression for the scalar potential:

U
�
r; x0Þ ¼ qð0Þ

r
f
�
r; x0

� ð24Þ

with

f
�
r; x0

�
¼ � 2

p

Xþ1

n¼�1
ð�1Þn�

�
Z 1

0

Jn
,0,1

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ,2

0

p

 !
k sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ,2

0

p
þ nj

� �
x0 þ ukn

h i

�
k2 þ ,2

0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ,2

0

p
þ nj

h i

sinðkrÞ
F kð0Þ

dk:

ð25Þ

The presence of r at the denominator is reassuring as

reminiscent of the Coulomb law; in the following we shall

discuss the function f
�
r; x0

�
alone.

The Bessel functions JnðxÞ peak when x 
 n; thus we

see that the number of addends to be taken into account in

f
�
r; x0

�
depends essentially on the ratio ,1=j. Complica-

tions may arise if the quantity
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ,2

0

p
þ nj vanishes

because n may be negative. To look after this sort of res-

onance might be rewarding; since here we present model

calculations, in the numerical evaluation of the scalar

potential, we use values of the load parameters which avoid

the resonance.

4. Results and discussion

We have numerically evaluated the integrals present in

Eq. (25) to observe how the Coulomb law is changed by a

time variation of the photon Compton wavelength. At this

stage of the discussion there is no need to ascribe the

variation to any of the constants defining but we shall

deal with this point later. The integral has the form of a sin

Fourier transform; the upper limit and step of integration

were selected in order to achieve numerical convergence.

We have checked it also by using functions whose integral

could be analytically carried out.

The value of the load parameters ,0, ,1, j in Eq. (19) is

tricky since these should comply with the experimental

state of the art but, then, calculations would be pro-

hibitively long; thus we choose values apt to unveil the

physics of the problem without requiring a too long

numerical effort. In the following we use ,0 ¼ 1:074 cm�1

(which is very large but permits to discern at a glance

exponential decreasing behaviours in the plots), ,1 ¼
1:17 � 10�2,0 cm�1 and j ¼ 5:13 � 10�3,0 cm�1

(2p=j ¼ 1:14 � 103 cm). The reason of the unhandy

choice of the values is given by the need to avoid the
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previously discussed resonances and also possible beats

between the frequencies. The phases uk are, as yet, unde-

termined but for simplicity sake we assign the value uk ¼
p=2:05 determined, after few checks, to give the slowest

evolution of the potential.

In Fig. 1 we show few snapshots of f
�
r; x0

�
as a function

of r. From the plots a very interesting picture of the scalar

potential appears. At x0 ¼ 0 a pulse of potential leaves the

charge with speed c and modifies the potential from the

initial Yukawa’s form in eq. (40). For r [ x0 the potential

is almost unaffected. The pulse is chirped and shows a

time-dependent frequency. This is more evident from two

snapshots taken after a long time x0 and shown in

Fig. 2.Now, however, it is evident that the potential at

x0 ¼ 0 changes sign; thus a constant and positive charge

creates a negative scalar potential; these awkward charac-

teristics in an experiment may be interpreted as a transition

from a positive to a negative charge. In Fig. 3 we give the

temporal evolution of f
�
r; x0

�
at r ¼ 5 cm: we see that

almost nothing happens until x0 ¼ r when the field begins

to oscillate.

An interesting feature is that the period of the positive–

negative potential oscillation increases with time; thus the

sign of the charge tends towards a stabilisation. The inset

of Fig. 3 shows the square modulus of the Fourier trans-

form of f
�
5; x0

�
which presents a broad component con-

tent. Of course our results are obtained from a toy model,

however, for x0 � 2p=j we may say that the physical

development of f
�
r; x0

�
is practically model independent.

5. Conclusions

Charge conservation, electron stability and massless pho-

ton are amongst the most constrained principles of Physics

both from the experimental and the theoretical point of

view [21, 37, 38, 45, 48–50]. Proca equation describes

massive photons and implies that the potential generated by

an electric charge at rest is modified from the pure Cou-

lomb potential into the Yukawa short range potential

(Eq. (40)). In this paper, we hypothesise that the Compton

Fig. 1 Colour on line. Snapshots of f
�
r; x0

�
as function of r in cm.

The snapshots at small x0 ¼ ct in cm show that f
�
r; x0

�
exponentially

decreases for r [ x0. It is clearly visible the change of sign of f
�
r; x0

�

Fig. 2 Colour on line. Two snapshots of f
�
r; x0

�
as function of r in

cm; x0 in cm. The change of sign of f
�
r; x0

�
can be read as a change

of the sign of the charge. The period of oscillation of f
�
r; x0

�

increases with x0

Fig. 3 Plot of f
�
r; x0

�
as a function of x0 in cm at r ¼ 5 cm. The

wave arrives at x0 ¼ ct at x0 ¼ 5 cm; afterwards the field oscillates

with increasing period. The inset shows the square modulus (in

arbitrary units) of the Fourier transform of f
�
5; x0

�
: the spectrum is

formed of a broad distribution of components
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wavelength of the photon is time dependent and accord-

ingly modify the Proca equation which now assumes the

form of a parametric oscillator with very slow variation of

the frequency thus permitting the adiabatic approximation

(Eq. (13)). The Yukawa potential is assumed to be the

initial potential. The surprising result is that a wave prop-

agates from the field source with speed c and modifies the

static potential energy; eventually the potential changes

sign even at the charge location and this can be read, from

the experimental point of view, as a change of the sign of

the charge. The oscillation of the potential is rapid at the

initial time but then becomes increasingly slower and

suggests a picture of the evolution of the field rather

interesting, because at the beginning of time massive

photons leave the charges and fill the Universe; as time

goes by, the sign of the potential becomes stable. For the

sake of argument, by pushing the discussion beyond the

borders of the model here presented, we may envisage that

we are now living at the particular stage of the evolving

Universe when ,
�
x0
�
¼ 0 and the Coulomb law is strictly

true.

Three issues should now be shortly addressed. To begin

with, we are faced with what can be called unity of Nature.

Proca theory violates the gauge invariance of electromag-

netism and moreover the present Paper assumes that the

ratio of few physical constants changes in time. The con-

sequences reverberate everywhere: the Coulomb law is not

any more valid, energy flows from the charges albeit,

perhaps, mainly at the far past and an apparent charge non-

conservation is obtained. But electromagnetism is the basis

and benchmark of all relativistic field theories thus con-

tradictions are to be expected everywhere. As a second

point, in our approach the dependence of the potentials

upon x0 is described by an intrinsically time-dependent

differential equation with assigned initial conditions thus

the evolution affects the potential at any spatial point; the

fact that the modification of the scalar potential is essen-

tially represented by a wave leaving the source of the field

and, thus, preserving causality, is indication that our

approach, albeit approximated, catches the essential phy-

sics of the problem.

As a third issue we must address the problem to which

of the parameters entering the definition of the photon

Compton wavelength should the variation be ascribed.

The discussion requires careful handling as it is often told

that even thinking about variation of dimensionful param-

eters is meaningless. Nevertheless here we are concerned

with the variation of a dimensionful parameter. To some

extent our calculations do not force a choice, but it appears

to us that if the photon mass m is eternally zero, then all of

the presented work would be pointless thus, within our

theory, the choice imposes itself.

A The vector potential

In this Appendix, we detail the steps needed to solve for the

vector potential in the set of Eq (10). Because of the large

amount of calculations, we adopt a rational notation that,

albeit unorthodox, is helpful. Accordingly, throughout the

manuscript we keep a notation allowing constant control of

dimensional consistency. Thus, quantities with L�1

dimension are indicated with symbols of the k family,

quantities with the dimension T�1 with x and similar

symbols. Adopting this strategy to avoid errors is simpler.

In equation (35) k is the integration variable.

We start from the separation in Eq. (11) and substitute it

into the second equation (10) to obtain

o2
0Tn

Tn
� $2an

an
þ ,2 x0

� �
¼ 0; ð26Þ

since an and Tn are function of independent variables, we

set

$2anðrÞ ¼ �
�
Kn
�2

anðrÞ ð27Þ

giving for Tn

o2
0Tn

Tn
þ ,2 x0

� �
¼ �

�
Kn
�2
; ð28Þ

with Kn the separation constant.

The spatial part for the generic nth component can be

solved, again, by separation of the variables; thus

anðrÞ ¼ an;1ðx1Þan;2ðx2Þan;3ðx3Þ ð29Þ

with the second index after the semicolon flagging the

variable the amplitude an is depending from. By following

standard procedure we arrive at

1

an;1

d2an;1

dðx1Þ2
þ 1

an;2

d2an;2

dðx2Þ2
þ 1

an;3

d2an;3

dðx3Þ2
¼ �

�
Kn
�2 ð30Þ

so that

1

an;1

d2an;1

dðx1Þ2
¼ �

�
kn

1

�2 ) an;1ðx1Þ ¼ an;1
kn

1
eikn

1
x1

: ð31Þ

Straightforward reiteration for x2 and x3 gives
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an
knðrÞ ¼ an;1

kn
1

an;2
kn

2
an;3

kn
3

eiðkn
1
x1þkn

2
x2þkn

3
x3Þ ð32Þ

or, concisely:

an
knðrÞ ¼ an

kn eikn�r: ð33Þ

The notation might seem overburdening but is meant to

recall that the amplitudes an does indeed depend from kn.

From Eq (27)

ðKnÞ2 ¼ kn � kn ¼ ðknÞ2: ð34Þ

The vector potential at the initial time is, then, given by

2Afkngðr; 0Þ ¼ a1
k1 eik1�r; a2

k2 eik2�r; a3
k3 eik3�r

� �
þ cc: ð35Þ

As a warning, kj is not the jth component of the vector k

but the vector pertaining to the jth coordinate. Thus,

speaking about the spatial part, any component of the

vector potential is a plane wave.

To obtain the full expression of the vector potential we

need to solve for the temporal part. Eq. (26) gives

o2
0Tn

kn

�
x0
�
þ ð-knÞ2

�
x0
�
Tn

kn

�
x0
�
¼ 0

ð-knÞ2
�
x0
�
� ðknÞ2 þ ,2

�
x0
�

(

: ð36Þ

B The scalar potential

In this Appendix, we detail the steps leading to the

expression of the scalar potential. We evaluate the diver-

gence of A

2$ � Aðr; x0Þ ¼

þ i

Z
d3k2a2

k2ðk2Þ2
eik2�r cos

�
hk2

�
x0
�
þ uk2

�

þ i

Z
d3k3a3

k3ðk3Þ3
eik3�r cos

�
hk3

�
x0
�
þ uk3

�
þ cc:

ð37Þ

By setting

F knðx0Þ ¼
Z

cos
�
hkn

�
x0
�
þ ukn

�
dx0 ð38Þ

we obtain

� 2Uðr; x0Þ ¼ 2

Z
$ � Aðr; x0Þdx0

¼ i

Z
d3k1 a1

k1 eik1�r �
�
a1
k1

��
e�ik1�r

h i
F k1

�
x0
�
ðk1Þ1

þ i

Z
d3k2 a2

k2 eik2�r �
�
a2
k2

��
e�ik2�r

h i
F k2

�
x0
�
ðk2Þ2

þ i

Z
d3k3 a3

k3 eik3�r �
�
a3
k3

��
e�ik3�r

h i
F k3

�
x0
�
ðk3Þ3:

ð39Þ

It is well known that the static solution of Proca

equation for the scalar potential with constant mass term

, ) l is the Yukawa potential [39, 51]

UðrÞ ¼ q
e�lr

r
ð40Þ

thus we require the initial condition (i.e. at x0 ¼ 0)

Uðr; 0Þ ¼ q
e�,ð0Þr

r
; ð41Þ

by equating the Fourier transform of Eqs (39)and (41) we

arrive at:

� q

p2 þ ,2ð0Þ ¼ p2i a1
p þ

�
a1
�p

��h i
p1

n

þ a2
p þ

�
a2
�p

��h i
p2 þ a3

p þ
�
a3
�p

��h i
p3
o
F pð0Þ:

ð42Þ

The right-hand side of the equation must be real, thus we

set

an
p þ

�
an
�p

�� ¼ ibn
p ð43Þ

giving

q

p2 þ ,2ð0Þ ¼ p2 b1
pp

1 þ b2
pp2 þ b3

pp3
n o

F pð0Þ ð44Þ

and
Z

d3k1
�
a1
k1

��
e�ik1�rðk1Þ1F k1ðx0Þ

¼ �
Z

d3k1
�
a1
�k1

��
eik1�rðk1Þ1F k1ðx0Þ:

ð45Þ

From Eq. (39) we obtain

On the time dependence of the photon 929



�2Uðr; x0Þ ¼ i

Z
d3k1 a1

k1 þ
�
a1
�k1

��� �
eik1�rF k1ðx0Þðk1Þ1

þ i

Z
d3k2 a2

k2 þ
�
a2
�k2

��� �
eik2�rF k2ðx0Þðk2Þ2

þ i

Z
d3k3 a3

k3 þ
�
a3
�k3

��h i
eik3�rF k3ðx0Þðk3Þ3

¼ �
Z

d3k1b1
k1 eik1�rF k1ðx0Þðk1Þ1

�
Z

d3k2b2
k2 eik2�rF k2ðx0Þðk2Þ2

�
Z

d3k3b3
k3 eik3�rF k3ðx0Þðk3Þ3

¼ �
Z

d3kðbkk1 þ bkk2 þ bkk3ÞF kðx0Þeik�r

¼ � q

p2

Z
d3k

F kðx0Þ=F kð0Þ
k2 þ ,2ð0Þ eik�r

ð46Þ

or, performing the angular integrations:

U
�
r; x0

�
¼ 2q

pr

Z 1

0

k
F k

�
x0
�
=F kð0Þ

k2 þ ,2ð0Þ sinðkrÞdk: ð47Þ

C An integral involving Bessel functions

By using the generating function of the Bessel functions

[52] in the identity

cos
�
ax � b cos

�
jx
�
þ c
�

¼ cos
�
ax þ cÞ cos

�
b sinðjxÞ

�
þ sin

�
ax þ cÞ sin

�
b sinðjxÞ

�

¼ cos
�
ax þ c

�
J0ðbÞ þ 2

X1

n¼1

J2nðbÞ cosð2njxÞ
" #

þ 2 sin
�
ax þ c

� X1

n¼0

J2nþ1ðbÞ sin
�
ð2n þ 1Þjx

�
" #

ð48Þ

it is possible to obtain a closed form for F kn

�
x0
�
. We set

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ,2

0

q
; b ¼ ,0,1

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ,2

0

p ; c ¼ ukn ð49Þ

and proceed:

F knðx0Þ ¼

þ 2
X1

n¼1

J2nðbÞ
sin½ða � 2njÞx0 þ c�

2ða � 2njÞ þ sin½ða þ 2njÞx0 þ c�
2ða þ 2njÞ


 �

þ 2
X1

n¼0

J2nþ1ðbÞ
sinf½a � ð2n þ 1Þj�x0 þ cg

2½a � ð2n þ 1Þj�




� sinf½ða þ ð2n þ 1Þj�x0 þ cg
2½a þ ð2n þ 1Þj�

�

¼ J0ðbÞ
a

sin
�
ax0 þ c

�
þ
X1

n¼1

JnðbÞ
sin½ða � njÞx0 þ c�

a � nj

þ
X1

n¼1

ð�1ÞnJnðbÞ
sin½ða þ njÞx0 þ c�

a þ nj

ð50Þ

with the substitution n ! �n in the first summation and

use of the relation J�nðxÞ ¼ ð�1ÞnJnðxÞ to gather the

expression under the same summation is possible:

F knðx0Þ ¼ J0ðbÞ
a

sin
�
ax0 þ c

�
þ
X�1

n¼�1
J�nðbÞ

sin½ða þ njÞx0 þ c�
a þ nj

þ
X1

n¼1

ð�1ÞnJnðbÞ
sin½ða þ njÞx0 þ c�

a þ nj

¼ J0ðbÞ
a

sin
�
ax0 þ c

�
þ
X�1

n¼�1
ð�1ÞnJnðbÞ

sin½ða þ njÞx0 þ c�
a þ nj

þ
X1

n¼1

ð�1ÞnJnðbÞ
sin½ða þ njÞx0 þ c�

a þ nj

¼
X1

n¼�1
ð�1ÞnJnðbÞ

sin½ða þ njÞx0 þ c�
a þ nj

:

ð51Þ
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P G Martin, E Martı́nez-González, S Masi, S Matarrese, P

Mazzotta, P R Meinhold, A Melchiorri, L Mendes, E Menegoni,
A Mennella, M Migliaccio, M-A Miville-Deschênes, A Moneti,
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