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Hardware-efficient variational quantum algorithms for time evolution
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Parameterized quantum circuits are a promising technology for achieving a quantum advantage. An important
application is the variational simulation of time evolution of quantum systems. To make the most of quantum
hardware, variational algorithms need to be as hardware-efficient as possible. Here we present alternatives to the
time-dependent variational principle that are hardware-efficient and do not require matrix inversion. In relation
to imaginary time evolution, our approach significantly reduces the hardware requirements. With regards to
real time evolution, where high precision can be important, we present algorithms of systematically increasing
accuracy and hardware requirements. We numerically analyze the performance of our algorithms using quantum
Hamiltonians with local interactions.
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I. INTRODUCTION

Small quantum computers are available today and offer the
exciting opportunity to explore classically difficult problems
for which a quantum advantage may be achievable. The sim-
ulation of time evolution of quantum systems is an example
of such problems where the advantage of using a quantum
computer over a classical one is well understood [1–5]. This
simulation is also important for our understanding of quantum
chemistry and materials science which are key application
areas for future quantum computers [6–9]. One of the main
challenges in the design of time evolution algorithms is to re-
duce their experimental requirements without sacrificing their
accuracy.

Although significant progress has been made based on the
original quantum algorithm for simulating time evolution [2],
this algorithm faces obstacles on current quantum hardware
which lacks quantum error correction [10–12]. Promising al-
ternatives are variational hybrid quantum-classical algorithms
[13,14] and variational quantum simulation [15,16]. In these
approaches, a parameterized quantum circuit (PQC) is pre-
pared on a quantum computer and variationally optimized to
solve the problem of interest. Promising examples of quantum
advantage obtained with PQCs have already been identified
for time evolution [17,18] and in other contexts such as
for nonlinear partial differential equations [19,20], dynamical
mean field theory [21,22], and machine learning [23].

In this paper, we focus on making the variational simu-
lation of time evolution as efficient as possible in terms of
quantum hardware resources. Existing proposals are based on
the time-dependent variational principle or variants thereof

*marcello.benedetti@cambridgequantum.com

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

[15,16]. These approaches require matrix inversion which
poses computational challenges for ill-conditioned matrices.
Our contribution is a set of alternative techniques that do
not need matrix inversion and that allow one to system-
atically increase the simulation accuracy, together with the
hardware requirements, according to experimental capabili-
ties. We analyze the hardware/accuracy trade-off and show
that for imaginary time evolution our algorithm significantly
reduces the hardware requirements over existing methods and
produces accurate ground state approximations. For real time
evolution, the accuracy per time step is essential. We present
a hierarchy of algorithms where the accuracy can be sys-
tematically improved by utilizing more hardware resources.
Figure 1 illustrates the performance of some of the algorithms
developed in this paper.

Our strategy is inspired by several tensor network concepts.
Firstly, we apply the Trotter product formula to the time
evolution operator and optimize the Ansatz one Trotter term
after another. A similar procedure is used in the time-evolving
block decimation algorithm [24–27] as well as with projected
entangled pair states [28–30]. Secondly, for a given Trotter
term, we restrict the optimization to its causal cone. This is
an important concept for the multiscale entanglement renor-
malization Ansatz [31,32] as well as for matrix product states
[33]. The same concept is used in the design of noise-robust
quantum circuits [34] and to simulate infinite matrix product
states on a quantum computer [35]. Thirdly, we perform the
optimization coordinatewise [36–39], i.e., we optimize a set
of parameters at a time while keeping all the others fixed. A
similar approach is widely used in tensor network optimiza-
tion where tensors are optimized one after another [40,41].

In this work, we call hardware-efficient any variational
quantum algorithm that (i) can use parameterized quantum
circuits tailored to the physical device [42] or (ii) exploits
other concepts that reduce the number of qubits or gates
[43,44] such as causal cones. There exist alternative efficient
schemes based on measuring and resetting qubits during com-
putation [45–47] and for periodic quantum systems [48,49].
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FIG. 1. Numerical simulation of our hardware-efficient time
evolution algorithms. We consider the quantum Ising chain Ĥ =
−J (

∑n−1
j=1 σ̂ z

j σ̂
z
j+1 + λ

∑n
j=1 σ̂ x

j ) with J = 1, λ = 0.2 and length n =
8 (dotted line), 10 (dashed line), and 12 (solid line). We use a
PQC Ansatz of depth D = 2, which is the smallest nontrivial Ansatz
among those considered in this work. The resulting causal cones
require quantum hardware with only six qubits. (a) Imaginary time
evolution of a randomly initialized PQC. We use ANGLE UPDATE with
1 sweep for 50 time steps of size 0.05, then 50 time steps of size
0.03, and then 50 time steps of size 0.01. E (θ ) is the variational
state’s energy and Egs is the exact ground state energy. The algorithm
achieves relative energy errors below 10−3. (b) Real time evolution of
the initial state |00 . . . 0〉. We use CONE UPDATE with six sweeps and
time step size 0.01. We plot the squared Euclidean distance between
the variational state |ψ (θ)〉 and the exact evolved state |ψ〉 versus
time t (in units of 1/J). A 0.05 distance is obtained at the end of the
simulation.

The paper has the following structure. Section II summa-
rizes our methods, Sec. III presents our mathematical and
numerical results, and Sec. IV contains our concluding dis-
cussion. The technical details are in the appendices. In a
companion paper [50], we apply our algorithm to combina-
torial optimization problems of up to 23 qubits.

II. METHODS

A. Taking apart time evolution

In the following, we focus on real time evolution. To obtain
imaginary time evolution one simply needs to substitute t by
−it .

The simulation of real time evolution consists of approxi-
mating the action of the operator e−it Ĥ on an initial state |ψ0〉
of n qubits. The Hamiltonian is assumed to have the gen-
eral form Ĥ = ∑K

k=1 hkĤk , where Ĥk are tensor products of

Pauli operators, hk are real numbers, and K ∼ O(poly(n)). We
approximate the evolution by a sequence of short-time evolu-
tions using the well-known Trotter product formula. With N
time steps of size τ = t/N one obtains e−it Ĥ ≈ U (τ )N , where
U (τ ) = e−iτhK ĤK · · · e−iτh1Ĥ1 . The accuracy of this approxi-
mation can be improved using higher-order Trotter product
formulas [51].

We variationally simulate the sequence of Trotter terms
one term at a time. Consider the kth term, e−iτhk Ĥk , and
let |ψk−1〉 be the variational approximation to the previous
step. We minimize the squared Euclidean distance ‖|ψ (θ)〉 −
e−iτhk Ĥk |ψk−1〉‖2 via the variational parameters θ by maximiz-
ing the objective function:

Fk (θ) = Re(〈ψk−1|eiτhkĤk |ψ (θ)〉), (1)

where Re(·) denotes the real part of a complex number, see
Appendix A for details. This optimization is carried out for
all K terms in U (τ ). The process is repeated N times, after
which the simulation of time evolution is completed.

Figure 2 illustrates a few steps of the method. The varia-
tional state consists of a PQC (light rectangle) acting on the
|0〉 ≡ |0〉⊗n state of the computational basis. At each step, a
term of the Trotter formula is selected (blue rectangle) and
simulated by the variational method.

B. Parameterized quantum circuits and causal cones

We consider PQC Ansätze composed of generic two-qubit
unitaries acting on nearest neighbors, as shown in Fig. 3(a).
The required 1d qubit-to-qubit connectivity matches that of
many existing quantum computers. These Ansätze are uni-
versal for quantum computation if we adjust their depth
accordingly. We refer to the unitaries U [i, j] (light blue rect-
angles) as blocks. In practice, they are made of gates from the
hardware’s gate set.

An interesting property is that the expectation of an opera-
tor acting on a few qubits depends only on the blocks inside its
causal cone. Figure 3(b) illustrates an example of causal cone
for a two-qubit operator. The expectation can be estimated
with a quantum circuit of six qubits and five blocks, regardless
of the overall size of the PQC Ansätze.

We perform the optimization of the objective function
in Eq. (1) using only the blocks inside the causal cone
of the Trotter term. Thus our variational algorithm requires
just the preparation of circuits on quantum hardware of a
size restricted by the causal cone. This allows us to work
with variational states of size greater than the size allowed
by the quantum computer. For example, periodic bound-
ary conditions can be included with no additional hardware
requirements. In Fig. 3(a), block U [ n

2 , 2] operates on the first
and last qubits. It is easy to see that such a physical qubit-
to-qubit connectivity is not required when using causal cones.
The number of required physical qubits depends only on the
depth of the Ansatz and on the Trotter term. For long-range
operators or operators acting on more than two qubits one can
obtain several causal cones.

Throughout this paper we consider the Ansatz in Fig. 3(a)
with the first nontrivial depth D = 2. The performance of our
algorithms could be systematically improved by successively
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FIG. 2. The Trotter product formula applied to the time evolution operator results in repeated products of U (τ ), where τ is the time step,
acting on the initial state |ψ0〉 = U (θ0 )|0〉. We approximate time evolution one term after another, each time finding the optimal variational
parameters θ1, θ2, . . .

increasing the depth D. For example, when the variational
error becomes too large during the time evolution, we can
include a new column of blocks initialized to 1 at the end
of the PQC to increase its expressive power. In this way,
our Ansatz can be dynamically adapted to guarantee a certain
variational error during the entire evolution, analogous to how
this is commonly done in the time-evolving block decimation
algorithm [26].

C. The coordinatewise update rule

Let us specialize our discussion to PQCs of the form
U (θ) = UD · · ·U1 where each gate is either fixed, e.g., a
CNOT, or parameterized as Ud = exp(−iθdGd ), where θd ∈
(−π, π ] and Gd is a Hermitian and unitary matrix such
that G2

d = I . This standard parametrization has nice prop-
erties that we exploit to design optimization algorithms. In
Refs. [36–39], the authors showed that when all parameters
but one are fixed the energy expectation value has sinu-
soidal form. Therefore there is an analytic expression for the
extrema. Here we show that the same is true for the objective
function in Eq. (1).

We define the coordinatewise objective for the dth parame-
ter as fk,d (x) ≡ Fk (θ1, · · · , θd−1, x, θd+1, · · · , θD), where all
parameters but one are fixed to their current value. In Ap-

pendix B, we show that this is a sinusoidal function fk,d (x) =
Ak,d sin(x + Bk,d ) with amplitude Ak,d and phase Bk,d . Thus
one can use a coordinatewise optimization procedure as in
Refs. [36–39] that neither requires the gradient nor the Hes-
sian. The procedure sweeps through all parameters and sets
each of them to their locally optimal value x∗ = π

2 − Bk,d . At
x∗ the coordinatewise objective attains its maximum value of
Ak,d .

The estimation of Ak,d and Bk,d is efficient and leads to a
simple update rule. For the dth parameter and for the kth term,
we have

θd ← π

2
− arctan2

(
fk,d (θd ), fk,d

(
θd + π

2

))
+ θd , (2)

where θd in the right side is the current value of the pa-
rameter. This formula requires evaluating the objective at
x = θd and x = θd + π

2 . However, in Appendix C, we show
that fk,d (θd ) = Ak,d−1 is known from the previous step.
Thus the method finds the maxima with a single evaluation,
fk,d (θd + π

2 ).

D. Hardware-efficient implementation

In general, our method optimizes a new PQC for each
Trotter term. Let us denote the (k − 1)th quantum state as

FIG. 3. (a) PQC Ansatz for n qubits and depth D. We consider open or periodic boundary conditions. For periodic boundary conditions
the unitary block U [ n

2 , 2] connects the first and the last qubit. (b) The computation of an expectation simplifies if one considers only the
blocks inside the causal cone. We optimize the objective function in Eq. (1) using only the variational parameters inside the causal cone. This
technique enables us to attack problems of size larger than that of the available quantum hardware.
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FIG. 4. Hadamard tests required for our algorithms. For illustrative purposes, we show a simple PQC Ansatz made of five CNOTs and five
parameterized gates ui (light blue). (a) In CONE UPDATE, the previous and current PQCs differ by at most five gates. The test requires only local
transformations such as the controlled-ũi (yellow). (b) In ANGLE UPDATE, the two PQCs differ by one gate. (c) ANGLE UPDATE can be further
simplified by removing the ancilla qubit and the controlled operation, and introducing an operation oi (pink). This further simplification is
presented in Appendix E.

|ψk−1〉 = V |0〉, and the kth state as |ψ (θ)〉 = U |0〉, where V
and U are PQCs. The objective in Eq. (1) and the update
rule in Eq. (2) can be estimated using a well-known primitive
called the Hadamard test.

The Hadamard test can be challenging to execute on hard-
ware when U and V are unrelated quantum circuits due to
the potentially large number of controlled operations. The
process can be largely simplified if U and V differ only
locally, e.g., in few gates or circuit regions. For instance, if
one circuit can be efficiently transformed into the other using
local adjoints of gates, then the Hadamard test consists of a
rather simple quantum circuit. Figure 4(a) shows an example
with five variational parameters. Gates ui represent U . Gates
controlled-ũi represent the local transformations taking U to
V . The subspaces where the ancilla (top qubit) is |0〉 and |1〉
contain U |0〉 and V |0〉, respectively. Finally, a measurement
yields the quantity in Eq. (1). This is discussed in detail in
Appendix D.

Clearly, we only need to optimize the blocks in the causal
cone of the Trotter term, see Fig. 3(b). We call this approach
the CONE UPDATE. In CONE UPDATE, each Hadamard test re-
quires O(NbNp) controlled gates where Nb is the number of
blocks in the causal cone, and Np is the number of parameters
in a block.

The closer U and V remain during the execution of
the algorithm, the fewer controlled gates are required for
the Hadamard test. This suggests a systematic way to reduce
hardware requirements by introducing approximations to the
objective. The first level of approximation consists of replac-
ing |ψk−1〉 in Eq. (1) with the current variational state |ψ (θ)〉
after a block has been updated. This way, U and V differ
by O(Np) parameters, greatly simplifying the Hadamard test.
Note that the replacement is performed once for each of the Nb

blocks in the causal cone. Hence, to effectively simulate time
step τ , we use a time step τ/Nb in the objective. The division
of τ by Nb is not necessary when τ is a hyperparameter as,
e.g., in imaginary time evolution. We call this approach the
BLOCK UPDATE.

The second level of approximation consists of replacing
|ψk−1〉 in the objective with |ψ (θ)〉 after an angle has been
updated. This guarantees that U and V differ by one parameter

at all times. Since the replacement is done NbNp times, we use
a time step τ/(NbNp) in the objective. It is not necessary to
divide τ by NbNp when τ is a hyperparameter, e.g., in imagi-
nary time evolution. We call this approach the ANGLE UPDATE.
Figure 4(b) shows an example with five parameters and where
the Hadamard test requires a single controlled gate. ANGLE

UPDATE can be further simplified by replacing the indirect
measurement with direct ones [52,53]. This removes the need
for the ancillary qubit and the controlled gate resulting in the
circuit shown in Fig. 4(c). The coordinatewise update rule for
this case are derived in Appendix E.

III. RESULTS

A. Error analysis

In our methods, there exist two sources of error. Firstly,
there is a Trotter error resulting from the Trotter product
formula that is used to split the time evolution operator. Sec-
ondly, there is a variational error due to the limitations of our
PQC Ansatz and optimization methods. Both errors can be
quantified and systematically decreased.

The Trotter error is determined by the order of the Trotter
product formula and can be decreased by using higher order
formulas [51]. A pth-order Trotter product formula has an
error scaling as O(τ p+1) per time step τ for sufficiently small
values of τ . Then the total Trotter error for the complete time
evolution over N = t/τ time steps scales as O(τ p).

The variational error is determined by the expressive power
of the Ansatz and can be decreased by adding new blocks to
the PQC and performing more optimization sweeps. A sweep
consists of updating all parameters inside the causal cone
of a Trotter term exactly once. For the kth Trotter term, the
variational error is simply the objective function in Eq. (1).

We obtain numerical evidence that our method can benefit
from a second-order Trotter product formula. We perform real
time evolution of the |0〉 state under the quantum Ising chain
with J = 1, λ = 0.2, n = 6, and t = 2. In order to achieve a
small variational error we use our most accurate algorithm,
CONE UPDATE, with six sweeps. Figure 5 shows the squared
Euclidean distance between the variational state |ψ (θ)〉 and
the exact evolved state |ψ〉 as a function of the time step τ
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FIG. 5. Error as a function of the time step τ for hardware-
efficient real time evolution with total time t = 2 using firs-t and
second-order Trotter product formulas. We observe that for the larger
values of τ , i.e., fewer time steps making up the total evolution, the
Trotter error is larger than the variational error. For the smaller values
of τ , i.e., more time steps in the entire evolution, the variational error
accumulates over more time steps and rapidly becomes larger than
the Trotter error. This observation is consistent with similar studies
that were carried out for matrix product states [56].

used in the algorithm. The second-order method resulted in
smaller errors for all values of τ .

Recently, machine learning heuristics have been employed
to assist time evolution algorithms and reduce both the varia-
tional and Trotter errors [54,55].

B. Comparison of hardware requirements

We compare the hardware requirements of our update
methods in Table I. Here Nb denotes the number of blocks
inside the causal cone of one Trotter term, Np denotes the
number of parameters per block, and we assume that every
block has the same number of parameters. We conclude that
ANGLE UPDATE requires the smallest amount of resources per
sweep and no matrix inversion which makes this a stable
and efficient algorithm for simulating time evolution. BLOCK

UPDATE interpolates between ANGLE and CONE UPDATE in a
natural way.

Table I also shows the hardware requirements for the
TDVP methods of Ref. [16]. Compared with these TDVP
methods, our update procedures have the advantage that they
do not need matrix inversion. Matrix inversion is numerically

unstable when the condition number of the matrix is large
and small errors in the matrix can become large errors in
the matrix inverse [57]. The TDVP methods of Ref. [16]
compute the matrix elements from mean values over several
measurements. For a desired accuracy ε per matrix element,
this procedure requires O(1/ε2) measurements. To determine
the accuracy of the time-evolved parameters after a TDVP
udpate, we need to take into account the condition number
κ of the matrix because the TDVP update needs the matrix
inverse. We show in Appendix F that for a desired accuracy ε

in the time-evolved parameters the required number of mea-
surements scales as O(κ2/ε2) in the worst case. Therefore, for
ill-conditioned matrices, the TDVP methods of Ref. [16] may
need to compute matrix elements very accurately and require
many measurements.

We obtain some numerical evidence by computing the
median condition number κ̃ of 100 random initializations of
our Ansatz. To avoid instabilities, we ignore singular values
smaller than 10−7. With 15 parameters we have κ̃ ≈ 16, with
45 parameters we have κ̃ ≈ 5001, and with 75 parameters we
have κ̃ ≈ 17085. This rapid increase of the condition number
as a function of the number of variational parameters indicates
a challenging scaling of TDVP cost for our choice of Ansatz.

C. Numerical experiments

We present numerical experiments that validate our meth-
ods (details are provided in Appendix G). First, we look into
the accuracy of CONE, BLOCK, and ANGLE UPDATE. This is
important, in particular, for real time evolution where the
variational state should closely track the true evolved state
at all times. In other words, the objective in Eq. (1) should
be very close to one for any Trotter term. It is interesting to
analyze the accuracy as a function of the number of sweeps.

We use the Ansatz in Fig. 3(a) with depth D = 2, periodic
boundary conditions, and randomly initialized parameters.
Regardless of the number of qubits n, there are only two
possible causal cones: a four-qubit cone enclosing Nb = 3
blocks, if the term is located in front of a block, and a six-qubit
cone enclosing Nb = 5 blocks, if the term is located in front
of two blocks [the latter case is shown in Fig. 3(b)]. We select
random Trotter terms of the form exp(− i

10 σ̂ j ⊗ σ̂ j+1), where
σ̂ is chosen randomly from {1, σ̂ x, σ̂ y, σ̂ z}, and we perform
CONE UPDATE with a time step of 0.1. Recall that for real time
evolution ANGLE and BLOCK UPDATE require a corrected time
step. For BLOCK UPDATE, we use a step of 0.1/(NsNb) and for
ANGLE UPDATE we use 0.1/(NsNbNp), where Ns is the number
of sweeps.

Figure 6(a) shows the mean objective and standard de-
viation for the case of four-qubit cones. CONE UPDATE

TABLE I. Characteristics of CONE, BLOCK, and ANGLE UPDATE along with the TDVP methods of Ref. [16]. A sweep consists of updating
all parameters inside the causal cone of a Trotter term exactly once.

Update method Circuits per sweep Matrix inversion Controlled gates per circuit

CONE O(NbNp) No O(NbNp)
BLOCK O(NbNp) No O(Np)
ANGLE O(NbNp) No O(1)
TDVP O(N2

b N2
p ) Yes O(1)
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FIG. 6. Mean objective function in Eq. (1) and standard deviation for 25 random initial states and Trotter terms of the form exp(− i
10 σ̂ j ⊗

σ̂ j+1), where σ̂ is chosen randomly from {1, σ̂ x, σ̂ y, σ̂ z}. (a) The Trotter term is located in front of a block in our PQC Ansatz. Its causal cone
encloses four qubits and three blocks, for a total of 45 parameters. (b) The Trotter term is located in front of two blocks in our PQC Ansatz,
which is a less favorable position. Its causal cone encloses six qubits and five blocks, for a total of 75 parameters.

outperforms and converges to the optimal value of one, while
BLOCK and ANGLE UPDATE do not benefit from an increased
number of sweeps. The six-qubit case is shown in Fig. 6(b),
where a similar behavior is observed. However, none of the
methods converge to the optimal value of one, reflecting the
limitations of the shallow PQC Ansatz.

Second, we verify that CONE, BLOCK, and ANGLE UPDATE

can find ground states via imaginary time evolution. We use
the 1d quantum Ising Hamiltonian:

Ĥ = −J

(
n−1∑
j=1

σ̂ z
j σ̂

z
j+1 + λ

n∑
j=1

σ̂ x
j

)
. (3)

For n = 8 qubits, we use the PQC Ansatz in Fig. 3(a) with
depth D = 2 and open boundary conditions. Here the time
step plays the role of a hyperparameter because we are in-
terested in finding the ground state as quickly as possible. We
use τ = 0.1 in all cases.

Figure 7(a) shows the mean energy and standard deviation
obtained in 20 time steps for J = λ = 1 in the Hamiltonian,
i.e., for the critical point of the corresponding infinite system.
For our choice of hyperparameter τ , all methods reach similar
low energies. Figure 7(b) shows the results for J = 1 and λ =
4, i.e., where the corresponding infinite system is far from the
critical point. All methods converge rapidly, producing states
that are very close to the ground state. We emphasize that the

FIG. 7. Mean energy and standard deviation of 20 random initializations for imaginary time evolution on the 1d quantum Ising model for
eight qubits. All the causal cones enclose six qubits at most, thus we are attacking a problem that is larger than the quantum hardware. The y
axis is the energy relative to the ground state, where E (θ ) is the variational state energy and Egs is the ground state energy. The time step is a
hyperparameter, which we set at τ = 0.1 in all cases. (a) The transverse field is set to λ = 1 where the corresponding infinite system is critical.
(b) The transverse field is set to λ = 4 where the corresponding infinite system is noncritical.
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FIG. 8. Circuits for an alternative hardware-efficient algorithm.
Instead of maximizing Eq. (1), this version maximizes the state
overlap Fk (θ) = |〈ψk−1|eiτhk Ĥk |ψ (θ)〉|2, where |ψk−1〉 = V |0〉 and
|ψ (θ)〉 = U (θ)|0〉. (a) The probability of measuring |0〉 is equiva-
lent to the state overlap. (b) The state overlap can alternatively be
computed using this shorter-depth circuit representing the destructive
Swap test [58,59].

circuits for ANGLE UPDATE are much simpler than those for
CONE UPDATE.

Finally, we test our algorithms on larger instances of up to
12 qubits. The experiments and results are shown in Fig. 1 and
explained in the figure caption of Fig. 1.

IV. DISCUSSION

Variational simulations of time evolution can be performed
without inverting a possibly ill-conditioned matrix at each
time step. To this end, we derived suitable algorithms whose
hardware requirements can be adjusted to match the experi-
mental capabilities.

One of the main applications of imaginary time evolution
is to find ground states. Our most efficient algorithm, ANGLE

UPDATE, performed remarkably well at this task. In practice,
once ANGLE UPDATE converges one could switch to more
demanding algorithms, such as BLOCK or CONE UPDATE, in
order to fine-tune the result.

For real time evolution, the task is to simulate the time-
dependent Schrödinger equation. We presented numerical
evidence that BLOCK and CONE UPDATE achieve the high accu-
racy required. We also expect our ANGLE UPDATE to be useful

for specific applications, such as the computation of steady
states, where accuracy per time step is not crucial.

A recent publication [21] contains simulations of real time
evolution based on the maximization of the state overlap. As
illustrated in Fig. 8, combining this method with our cone
strategy leads to a promising hardware-efficient algorithm
that can additionally make use of hardware-efficient overlap
computation [58,59]. Here the coordinatewise update rules
are already known [36–39] as the overlap maximization is
equivalent to the expectation minimization for the Hermitian
operator M = −|0〉〈0|.

A number of recent papers implement tensor network
techniques via parameterized quantum circuits (PQCs),
see Refs. [17,20,34,35,45,60–62] for examples. Our work
contributes to this line of research, bringing PQC and tensor
network optimization closer together.

The last key aspect of this work is the use of causal cones
to enable simulations of finite systems larger than the size
of the underlying quantum hardware. Causal cones are also
an ingredient in the construction of noise-resilient quantum
circuits [34,63,64]. We envision that such techniques that de-
tach the logical model from some of the hardware limitations
will ultimately enable us to attack large problems and obtain
a quantum advantage.
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APPENDIX A: VARIATIONAL SIMULATION
OF TIME EVOLUTION

In this Appendix, we detail our method for the variational
simulation of time evolution. To keep the discussion general,
we consider an arbitrary complex time z ∈ C. Later we will
specialize to purely real time and purely imaginary time evo-
lution.

We want to simulate the time evolution operator e−izĤ

applied to an initial state |ψ〉 of n qubits. We assume that the
Hamiltonian is given in general form Ĥ = ∑K

k=1 hkĤk , where
Ĥk ∈ {1, Ẑ, X̂ , Ŷ }⊗n is a tensor product of Pauli operators, hk

is a real number, and K ∼ O(poly(n)). There can be terms Ĥk

in Ĥ that do not commute with each other.
A commonly used technique to simplify the problem con-

sists of expanding the time evolution operator into a product.
A product formula, such as the Trotter formula, produces a
sequence of short-time evolutions which approximates the full
evolution. Let us apply the first-order Trotter product formula
for N ∼ O(poly(n)) time steps of size ζ = z/N :

e−izĤ |ψ〉 ≈ (e−iζhK ĤK · · · e−iζh1Ĥ1 )N |ψ〉
= e−iζhK ĤK,N · · · e−iζh1Ĥ1,N · · ·

e−iζhK ĤK,1 · · · e−iζh1Ĥ1,1 |ψ〉. (A1)
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In the second line, Ĥk,m has an additional subscript indicating the mth application of the kth term. Now assume we are able to
obtain a variational approximation to the first operation:

e−iζh1Ĥ1,1 |ψ〉 ≈ |ψ (θ∗
1,1)〉, (A2)

where θ1,1 is the vector of variational parameters and θ∗
1,1 indicates their optimal value. Then we can substitute this in Eq. (A1)

and proceed with a variational approximation to the second operation:

e−iζh2Ĥ2,1 e−iζh1Ĥ1,1 |ψ〉 ≈ e−iζh2Ĥ2,1 |ψ (θ∗
1,1)〉 ≈ |ψ (θ∗

2,1)〉. (A3)

where again we assumed the optimal value for the variational parameters. Iterating the above procedure for all the NK terms we
obtain an approximation to the full time evolution e−izĤ |ψ〉 ≈ |ψ (θ∗

K,N )〉. To simplify the notation let us condense indexes k and
n into a single index l , and let us write |ψ (θ∗

l )〉 = |ψl〉 whenever the parameters have been optimized.
In order to find the variational approximation at step l , we use the squared Euclidean distance as a cost function:

Cl (θl ) = ‖|ψ (θl )〉 − e−iζhl Ĥl |ψl−1〉‖2 = 〈ψ (θl )|ψ (θl )〉 + 〈ψl−1|ei(ζ̄−ζ )hl Ĥl |ψl−1〉 − 〈ψ (θl )|e−iζhl Ĥl |ψl−1〉 − 〈ψl−1|eiζ̄hl Ĥl |ψ (θl )〉
= const. − 2Re(〈ψl−1|eiζ̄hl Ĥl |ψ (θl )〉). (A4)

Here Re(·) denotes the real part of a complex number, and ζ̄ denotes the complex conjugate of ζ . We have assumed an Ansatz
for which 〈ψ (θl )|ψ (θl )〉 is constant. This is the case, for example, if the Ansatz is implemented by a PQC. We have also used
that Ĥl is Hermitian. The minimization of Cl (θl ) is equivalent to the maximization of the following objective function:

Fl (θl ) = Re(〈ψl−1|eiζ̄hl Ĥl |ψ (θl )〉). (A5)

Let us now specialize to the two cases of interest. For real time evolution we write z ≡ t where t ∈ R is the total time, and
ζ ≡ τ = t/N is the time step. Since the terms Ĥl are tensor products of Pauli operators, we have that Ĥ2

l = 1. Using this property
and the definition of matrix exponential eA = ∑∞

n=0 An/n!, it can be verified that eiτhl Hl = cos(τhl )1 + i sin(τhl )Ĥl . Plugging
this in the objective function, we obtain

Fl,real(θl ) = cos(τhl )Re(〈ψl−1|ψ (θl )〉) − sin(τhl )Im(〈ψl−1|Ĥl |ψ (θl )〉). (A6)

For imaginary time, we write z ≡ −it , where t ∈ R is the total time, and ζ ≡ −iτ = −it/N is the time step. Following the
same argument above, it can be verified that e−τhl Hl = cosh(τhl )1 − sinh(τhl )Ĥl . Plugging this in the objective function, we
obtain

Fl,imag(θl ) = cosh(τhl )Re(〈ψl−1|ψ (θl )〉) − sinh(τhl )Re(〈ψl−1|Ĥl |ψ (θl )〉). (A7)

In Appendix B, we show that the coordinatewise version of Eq. (A5) has a sinusoidal form. This fact is inherited by Eqs. (A6)
and (A7), and is exploited to design the optimization algorithm in Appendix C. In Appendix D, we present quantum circuits for
the estimation of the objectives.

APPENDIX B: SINUSOIDAL FORM OF THE COORDINATEWISE OBJECTIVE FUNCTION

In Refs. [36–39], the authors showed that for certain standard PQCs the expectation tr(MUρU †) as a function of a
single parameter has sinusoidal form. This yields an efficient coordinatewise optimization algorithm that does not require
explicit computation of the gradient or the Hessian. Here we present a similar derivation for objective functions of the form
Re(tr(MUρV †)) where U is a PQC and V is a fixed circuit. Note that there is nothing preventing us from parametrizing V and
carrying out the same derivation.

Let us consider a circuit of the form U (θ) = UD · · ·U1, where each gate is either fixed, e.g., a CNOT, or parameterized
as Ud = exp(−iθd Gd ), where θd ∈ (−π, π ] and Gd is a Hermitian and unitary matrix such that G2

d = 1. For example, tensor
products of Pauli matrices are suitable choices for Gd ∈ {1, X̂ , Ŷ , Ẑ}⊗n. For the parameterized gates, we use the definition of
matrix exponential to get Ud = cos(θd )1 − i sin(θd )Gd . Without loss of generality, let us consider a pure initial state ρ = |0〉〈0|
where |0〉 ≡ |0〉⊗n.

Expanding the objective function we have Re(〈0|V †MUD · · ·Ud · · ·U1|0〉). To express this as a function of a single parameter
θd we simplify the notation absorbing all gates before Ud in a unitary which we call UB, and we absorb all gates after Ud in a
unitary which we call UA. Using this notation, we write

fd (x) = Re(〈0|V †MUAUdUB|0〉) = Re(〈0|V †MUA(cos(x)I − i sin(x)Gd )UB|0〉)

= Re(〈0|V †MUAUB|0〉) cos(x) + Re(〈0|V †MUA(−iGd )UB|0〉) sin(x). (B1)

Noting that Ud (0) = I and Ud ( π
2 ) = −iGd , we rewrite the above as

fd (x) = Re(〈0|V †MUAUd (0)UB|0〉) cos(x) + Re

(
〈0|V †MUAUd

(
π

2

)
UB|0〉

)
sin(x) = f (0) cos(x) + f

(
π

2

)
sin(x). (B2)
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We now use the harmonic addition theorem a cos(x) + b sin(x) = √
a2 + b2 sin(x + arctan( a

b )) to obtain

fd (x) = A sin(x + B), A =
√

fd (0)2 + fd

(
π

2

)2

, B = arctan2

(
fd (0), fd

(
π

2

))
. (B3)

The objective function as a function of a single parameter has sinusoidal form with amplitude A, phase B, and period 2π . Note
that we must use the arctan2 function in order to correctly handle the sign of numerator and denominator, as well as the case
where the denominator is zero.

There is nothing special about the evaluations at 0 and π
2 in Eq. (B3). Indeed, we can estimate A and B from√

fd (φ)2 + fd

(
φ + π

2

)2

=
√

A2 sin2(φ + B) + A2 sin2

(
φ + π

2
+ B

)
= |A|

√
sin2(φ + B) + cos2(φ + B) = A, (B4)

fd (φ)

fd
(
φ + π

2

) = sin(φ + B)

sin
(
φ + π

2 + B
) = tan(φ + B). (B5)

for any φ ∈ R.
From the graph of the sine function, it is easy to locate the maxima at θ∗

d = π
2 − B + 2πk for all k ∈ Z. Taking B from

Eq. (B5), we obtain

θ∗
d = arg max

x
fd (x) = π

2
− arctan2

(
fd (φ), fd

(
φ + π

2

))
+ φ + 2πk. (B6)

In practice, we choose k such that θ∗
d ∈ (−π, π ].

A similar derivation can be done for objective functions of the form Im(tr(MUρV †)). For the dth parameter, we write
fd (x) = Im(〈0|V †MUAUdUB|0〉) and we obtain the maxima exactly as in Eq. (B6). Figure 9 shows the sinusoidal forms for a
random choice of U, V , and M on n = 4 qubits.

APPENDIX C: THE UPDATE RULE WITH A SINGLE EVALUATION

In this Appendix, we take a closer look at the quantity of interest, Eq. (A5), and derive our coordinatewise update rule.
Consider the lth term in the Trotter product formula. The coordinatewise objective for the dth parameter is sinusoidal:

fl,d (x) = Fl (θ1, · · · , θd−1, x, θd+1, · · · , θD) = Re(〈0|V †eiζ̄hl ĤlUD · · ·Ud (x) · · ·U1|0〉)

=
√

fl,d (φ)2 + fl,d

(
φ + π

2

)2

︸ ︷︷ ︸
Al,d

sin

(
x + arctan2

(
fl,d (φ), fl,d

(
φ + π

2
)

)
− φ︸ ︷︷ ︸

Bl,d

)
, (C1)

where Al,d is the amplitude, Bl,d is the phase, and φ ∈ R can be chosen at will. The third line is obtained by applying the results
in Eqs. (B3), (B4) and (B5).

Optimizing this objective using Eq. (B6) would require evaluations of fl,d (φ) and fl,d (φ + π
2 ). However, we can recycle

information from previous steps and use a single evaluation. The approach is as follows. Say we have found the maximum
θ∗

d−1 for the (d − 1)th parameter. At no additional cost, we calculate fl,d−1(θ∗
d−1) = Al,d−1. Now we move to the dth parameter.

Setting φ in Eq. (C1) to the current parameter value, φ = θd , we happen to know fl,d (φ) = fl,d (θd ) = fl,d−1(θ∗
d−1) = Al,d−1.

Hence, we only need to evaluate fl,d (φ + π
2 ) = fl,d (θd + π

2 ).
In summary, we obtain the update rule

θ∗
d = arg maxx fl,d (x) = π

2
− arctan2

(
fl,d (θd ), fl,d

(
θd + π

2

))
+ θd , (C2)

where θd is the current parameter value, and fl,d (θd ) is known from the previous parameter update. Equation (C2) is our
coordinatewise update rule for the variational simulation of time evolution.

APPENDIX D: HADAMARD TEST FOR CONE UPDATE

In this Appendix, we discuss the Hadamard test used in CONE UPDATE. Recall that the proposed method initializes a PQC at
each step and trains it to simulate the action of a short-time evolution operator on the previous variational state. Let us denote
the state obtained at the (l − 1)th step as |ψl−1〉 = V |0〉 and the state for the lth step as |ψ (θl )〉 = U |0〉. Here V and U are PQCs
acting on the easy-to-prepare state |0〉 ≡ |0〉⊗n.

The Hadamard test can be challenging to execute on existing hardware when U and V are unrelated quantum circuits due to
the potentially large number of controlled operation. CONE UPDATE uses the fact that U and V differ only locally to simplify the
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FIG. 9. Sinusoidal form of the objective functions used in this work. This example is for a random choice of U,V , M, and ρ on n = 4
qubits. The maxima (square and diamond) can be found in closed form. This requires the evaluation of the objective function at two arbitrary
parameter values spaced π

2 apart.

Hadamard test. One circuit can be efficiently transformed into the other using adjoints of gates. To show this we start from U |0〉,
add one ancilla qubit in the state |0〉 which is then acted upon by a Hadamard gate, so that we get 1√

2
(|0〉 + |1〉) ⊗ U |0〉. Now we

include the local transformations from U to V as gates controlled by the ancilla qubit. As an example, if U contains a rotation gate
Rz(a) and V contains Rz(b) at the same location, then we only need to attach a controlled-Rz(b − a) rotation. The subspaces where
the ancilla is |0〉 and |1〉 will contain U |0〉 and V |0〉, respectively. In other words, the result is 1√

2
(|0〉 ⊗ U |0〉 + |1〉 ⊗ V |0〉).

Having another Hadamard gate acting upon the ancilla qubit gives 1
2 (|0〉 ⊗ (U + V )|0〉 + |1〉 ⊗ (U − V )|0〉). Measuring the

expectation of Ẑ ⊗ Ĥl one obtains the real part 〈Ẑ ⊗ Ĥl〉 = Re(〈0|V †ĤlU |0〉).
For the imaginary part, we follow the same procedure, but we include a phase gate after the first Hadamard gate. This

yields 〈Ẑ ⊗ Ĥl〉 = Im(〈0|V †ĤlU |0〉). With the two circuits just described we can estimate the objective function in Eq. (A6) for
real time evolution, and in Eq. (A7) for imaginary time evolution. If the causal cone of Ĥl contains Nb blocks, each with Np

parameterized gates, the Hadamard test requires O(NbNp) controlled operations.

APPENDIX E: HADAMARD TEST FOR ANGLE UPDATE

In this Appendix, we present the implementation of our method that has the lowest hardware requirements. ANGLE UPDATE is
efficient in terms of circuit depth, but still uses an ancilla qubit and a controlled operation which may be challenging to realize
on existing hardware. We can avoid the use of those while requiring the execution of additional circuits. This approach uses the
methods presented in Refs. [52] and [53] to replace indirect measurements with direct ones.

Recall that ANGLE UPDATE consists of replacing the variational state |ψl−1〉 = V |0〉 in the objective function with the
variational state |ψ (θ)〉 = U |0〉 after each parameter update. This approximation guarantees that the two PQCs V and U differ
by just one parameter at all times. Thus we can drop V and express everything in terms of U .

For real time evolution (ζ ≡ τ ∈ R), we start from Eq. (A6). The coordinatewise objective for the dth parameter is

fl,d,real(x) = cos(τhl )Re(〈0|U †
1 · · ·U †

d · · ·U †
D1UD · · ·Ud (x) · · ·U1|0〉)

− sin(τhl )Im(〈0|U †
1 · · ·U †

d · · ·U †
DĤlUD · · ·Ud (x) · · ·U1|0〉). (E1)

The variable x appears only in the gate denoted by Ud (x), while U †
d is fixed and uses the current parameter value θd .

We maximize this objective using Eq. (C2). The first evaluation is at the current parameter value which yields fl,d,real(θd ) =
cos(τhl ). The second evaluation is at the shifted parameter value and is slightly more involved. Using Ud (θd + π

2 ) =
Ud (θd )Ud ( π

2 ) = −iUd (θd )Gd , we have that

fl,d,real

(
θd + π

2

)
= − sin(τhl )Im(〈0|U †

1 · · ·U †
d · · ·U †

DĤlUD · · ·Ud (−iGd ) · · ·U1|0〉). (E2)

Now we can use the technique from Ref. [53] to write the above as the difference of two expectations. Since Gd is a Pauli
operator, we can define projective measurement operators 1√

2
(1 ± Gd ). In turn these can be used to define new observables Ĥl± =
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1
2 (1 ± Gd )U †

d · · ·U †
DĤlUD · · ·Ud (1 ± Gd ) which are easily verified to be Hermitian. With these, a direct calculation shows that

fl,d,real

(
θ + π

2

)
= − sin(τhl )

2
(〈Ĥl+〉 − 〈Ĥl−〉). (E3)

In practice, the projective measurement operators 1√
2
(1 ± Gd ) correspond to measuring the qubit when these operators act in the

eigenbasis of Gd [53]. Putting everything together, Eq. (E1) is maximized in closed form using two expectations:

θ∗
d = arg max

x
fl,d,real(x) = π

2
− arctan2(2 cot(τhl ), 〈Ĥl−〉 − 〈Ĥl+〉) + θd . (E4)

All quantities are estimated by direct measurements, without using ancilla qubits or controlled gates.
For imaginary time evolution (ζ ≡ −iτ with τ ∈ R), we start from Eq. (A7). The coordinatewise objective for the dth

parameter is

fl,d,imag(x) = cosh(τhl )Re(〈0|U †
1 · · ·U †

d · · ·U †
D1UD · · ·Ud (x) · · ·U1|0〉)

− sinh(τhl )Re(〈0|U †
1 · · ·U †

d · · ·U †
DĤlUD · · ·Ud (x) · · ·U1|0〉). (E5)

Again we maximize this objective using Eq. (C2). The first evaluation is at the current parameter value which yields
fl,d,imag(θd ) = cosh(τhl ) − sinh(τhl )〈Ĥ〉θd . The subscript is used to stress that the expectation is computed using the current
parameter value. The second evaluation is at the shifted parameter value. Using Ud (θd + π

2 ) = −iUd (θd )Gd in Eq. (E5), we see
that the first term equals to zero. For the second term, we use the technique from Ref. [52] to express it as the difference of two
expectations. The result is

fl,d,imag

(
θd + π

2

)
= − sinh(τhl )

2

(〈Ĥl〉θd + π
4

− 〈Ĥl〉θd − π
4

)
. (E6)

Here the subscripts are used to stress the use of a shifted value for the the parameter d . Putting everything together, Eq. (E5) is
maximized in closed form using three expectations:

θ∗
d = arg max

x
fl,d,imag(x) = π

2
− arctan2

(
2 coth(τhl ) − 2〈Ĥl〉θd , 〈Ĥl〉θd − π

4
− 〈Ĥl〉θd + π

4

) + θd . (E7)

The three expectations are estimated by direct measurements, without using ancilla qubits or controlled gates.
Recall that in CONE UPDATE, we are able to recycle information from previous steps and reduce the circuit count. In ANGLE

UPDATE, this cannot be done exactly as the objective function changes after each parameter update. For imaginary time,
assuming the change in objective function value is small, we can approximately recycle information from the previous steps as
fl,d,imag(θd ) ≈ fl,d−1,imag(θ∗

d−1), bringing the total number of circuits to two. For small values of τ , the error of this approximation
is proportional to the modification δθd−1 of the previous parameter. A smaller value of τ produces a smaller value of δθd−1, hence
the error of this approximation can be systematically reduced by decreasing τ .

APPENDIX F: TIME-DEPENDENT VARIATIONAL PRINCIPLE AND MATRIX INVERSION

The time-dependent variational principle (TDVP) can be derived in the following way. Our goal is to time-evolve an Ansatz
|ψ (θ)〉 via the Schrödinger equation:

i
d

dt
|ψ (θ)〉 = Ĥ |ψ (θ)〉, (F1)

where we have set h̄ = 1. The right-hand side of equation (F1) may leave the variational space of |ψ (θ)〉, which is created by all
possible choices for θ. To stay in the variational space, we minimize the squared Euclidean distance:

distTDVP =
∥∥∥∥i

d

dt
|ψ (θ)〉 − Ĥ |ψ (θ)〉

∥∥∥∥2

=
(

d

dt
〈ψ (θ)|

)(
d

dt
|ψ (θ)〉

)
+i

(
d

dt
〈ψ (θ)|

)
Ĥ |ψ (θ)〉 − i〈ψ (θ)|Ĥ

(
d

dt
|ψ (θ)〉

)
+ 〈ψ (θ)|Ĥ2|ψ (θ)〉. (F2)

Using the chain rule

d

dt
|ψ (θ)〉 =

∑
k

∂|ψ (θ)〉
∂θk

dθk

dt (F3)
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FIG. 10. The two-qubit block used in the simulations. Each block has three CNOTs and Np = 15 adjustable parameters consisting of angles
of rotation about the canonical x and z axes.

and the definitions

Bk := dθk

dt
,

Aj,k :=
(

∂〈ψ (θ)|
∂θ j

)(
∂|ψ (θ)〉

∂θk

)
,

Cj :=
(

∂〈ψ (θ)|
∂θ j

)
Ĥ |ψ (θ )〉,

(F4)

we rewrite Eq. (F2) as

distTDVP =
∑

j,k

B̄ jA j,kBk + i
∑

j

B̄ jCj − i
∑

j

C̄ jB j + const. (F5)

In a PQC Ansatz, the variational parameters are rotation angles. Thus, we now restrict θ j to be real and obtain Bj that are also
real. That is, B̄ j = Bj in the equation above. The minimum of this equation in terms of the Bj can be determined by taking the
derivatives and equating them to zero:

∂distTDVP

∂Bj
=

∑
k

2Re(Aj,k )Bk − 2Im(Cj ) = 0. (F6)

This is equivalent to ∑
k

Re(Aj,k )Bk = Im(Cj ). (F7)

Notice that Eq. (F7) can be written as a matrix vector equation by defining Re(Aj,k ) to be the matrix elements inside a matrix
A, and defining Bk to be the vector elements inside a vector B, and defining Im(Cj ) to be the vector elements inside a vector C.
This leads to the final TDVP equation:

AB = C. (F8)

This is an equation for the time-dependence of the parameters in our PQC Ansatz since B = d
dt θ. Therefore, TDVP replaces

the original Schrödinger equation (F1) with a new equation (F8) that time-evolves the variational parameters directly. Although
we focused here on real time evolution, other applications such as imaginary time evolution lead to similar systems of linear
equations [16].

To quantify the accuracy of our solution vector B in Eq. (F8) it is important to emphasize that the matrix A and the vector
C are constructed from a finite number of measurements on a quantum computer and therefore have a finite precision [15,16].
The TDVP algorithm determines the individual elements in A and C as mean values over m measurements of specific quantum
circuits and this mean value computation has the error εMC of classical Monte Carlo sampling scaling like O(1/

√
m). Therefore,

using a number of measurements m for each element in the matrix A and vector C, both are accurate only up to an error scaling
like O(1/

√
m). To analyze the effect of this error in A on the solution of Eq. (F8), we replace A by A + δA where now A represents

the exact A and δA its error. Similarly we replace B by B + δB:

(A + δA)(B + δB) = C,

AδB + δAB = 0,

δB = −A−1δAB,

‖δB‖ �
∥∥A−1

∥∥‖δA‖‖B‖,
‖δB‖
‖B‖ � ‖A‖∥∥A−1

∥∥‖δA‖
‖A‖ ,

(F9)

where we have used AB = C, ignored δAδB, and where ‖ · ‖ is a norm. We observe that ‖A‖‖A−1‖ is the condition number.
Thus κ = ‖A‖‖A−1‖ = σmax/σmin, where σmax denotes the largest and σmin the smallest singular value of A. We also observe
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that ‖δA‖/‖A‖ is the relative error of A which scales like O(1/
√

m). Therefore we have obtained an upper bound for the relative
accuracy of B:

εmax
B ∝ κ√

m
. (F10)

Equivalently, Eq. (F10) states that for a desired accuracy ε in B we need the number of measurements m to scale like O(κ2/ε2).
The same scaling is obtained for finite precision C by repeating the above calculation using C + δC. We conclude that the matrix
inversion required in the original TDVP methods [15,16] leads to a computational cost scaling like O(κ2/ε2) for accuracy
ε. Compared with the standard measurement error O(1/ε2) the additional factor of κ2 can be computationally challenging
especially for ill-conditioned matrices A.

APPENDIX G: NUMERICAL SIMULATIONS

For the numerical simulations, we use the PQC Ansatz shown in Fig. 3(a), with depth D = 2 and number of qubits n ∈ {4, 6, 8}
depending on the experiment. For expectations and Hadamard tests, we always use causal cones to reduce the size of the
simulation. For one-qubit and two-qubit nearest-neighbor Trotter terms, the causal cones involve at most six qubits. This remains
true if we include periodic boundary conditions in the Ansatz, such as the U [ n

2 , 2] block shown in Fig. 3(a).
Each block in the Ansatz is implemented using a two-qubit minimal construction proposed in Ref. [65] and shown in Fig. 10.

This construction has Np = 15 parameters and is universal for two-qubit unitaries up to a global phase. Note however that in all
our experiments the phase is relevant since n > 2.

For real time evolution, we use the following first- and second-order Trotter product formulas:

e−it Ĥ ≈ (e−iτ ĤX e−iτ ĤZZ )
t
τ , (G1)

e−it Ĥ ≈ (e−iτ ĤZZ /2e−iτ ĤX e−iτ ĤZZ /2)
t
τ , (G2)

respectively. For small values of the time step τ , the leading terms for the error per times step in the first- and second-order for-
mulas are τ 2

2 [ĤX , ĤZZ ] and τ 3

12 ( 1
2 [ĤZZ , [ĤX , ĤZZ ]] + 1

2 [[ĤZZ , ĤX ], ĤZZ ] + [ĤX , [ĤX , ĤZZ ]] + [[ĤZZ , ĤX ], ĤX ]), respectively.
Here we denote by ĤZZ = −J

∑
j σ̂

z
j σ̂

z
j+1 and ĤX = −Jλ

∑
j σ̂

x
j a decomposition of the quantum Ising Hamiltonian in Eq. (3)

into two noncommuting parts. All terms inside ĤZZ and inside ĤX commute with each other and therefore we use the additional
decompositions:

e−iτ ĤZZ =
∏

j

e−iτJσ̂ z
j σ̂

z
j+1 , (G3)

e−iτ ĤX =
∏

j

e−iτJλσ̂ x
j . (G4)

Expectations and Hadamard tests are calculated exactly. We do not include finite-sampling noise or hardware noise. All
numerical simulations are programed in PYTHON using the QUTIPlibrary [66].
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