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Abstract

A more complete understanding of entanglement entropy in a covariant manner
could inform the search for quantum gravity. We build on work in this direction
by extending previous results to disjoint regions in 1 4+ 1D. We investigate the
entanglement entropy of a scalar field in disjoint intervals within the causal set
framework, using the spacetime commutator and correlator, iA and W (or the
Pauli—Jordan and Wightman functions). A new truncation scheme for disjoint
causal diamonds is presented, which follows from the single diamond trun-
cation scheme. We investigate setups including two and three disjoint causal
diamonds, as well as a single causal diamond that shares a boundary with a
larger global causal diamond. In all the cases that we study, our results agree
with the expected area laws. In addition, we study the mutual information in
the two disjoint diamond setup. The ease of our calculations indicate our meth-
ods to be a useful tool for numerically studying such systems. We end with a
discussion of some of the strengths and future applications of the spacetime
formulation we use in our entanglement entropy computations, both in causal
set theory and in the continuum.
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1. Introduction

Entanglement entropy has often been considered a pathway to quantum gravity, ever since its
introduction by Rafael Sorkin [1], where a connection to black hole entropy was shown. In
that work, the entanglement entropy of a quantum scalar field in the exterior of a black hole
was shown to scale as the spatial area A of the event horizon, in units of the UV cutoff, A/ é%w.
Likewise, the entropy of a black hole was known to scale as the area of the event horizon [2],
leading to the proposal that the Bekenstein—Hawking entropy may be wholly or in large part
entanglement entropy. Much subsequent research has investigated potential origins of black
hole entropy [3—7], including entanglement entropy as a leading candidate [8—11]. Presently,
it remains an important open question as to what the true microscopic source of black hole
entropy is.

In addition to its role in quantum gravity, entanglement entropy has proven to be a rich
topic with many applications in other areas of physics. A number of interesting theorems
have been derived using entanglement entropy in quantum field theory, and especially in
conformal field theory. These include c-theorems which relate a function of the coupling con-
stants of the theory to the Virasoro central charge [12—14]. In AdS/CFT, Ryu and Takayanagi
found that the entanglement entropy is equal to 1/4 the area of a minimal surface [15, 16].
In condensed matter physics, features such as topological order and properties of Fermi sur-
faces have been studied using entanglement entropy [17—19]. In quantum information, entan-
glement entropy is used to constrain processes such as teleportation, and to study the properties
of states [20].

Just as there are many different applications of entanglement entropy, there are many dif-
ferent methods for computing it. These include heat kernel methods [10], the replica trick
[21, 22], the Ryu—Takayanagi formula [15], Euclidean path integral methods [23, 24], using
spatial correlators [8, 25], and using spacetime correlators [26, 27]. The spacetime correlator
method is what we use in this paper. The choice of technique used depends both on the physical
features and requirements of the theory, as well as what is practically solvable. In this paper
we are interested in the entanglement entropy of a Gaussian scalar field in disjoint 1 + 1D
spacetime intervals (causal diamonds) in a causal set. Causal sets do not admit a meaningful
notion of a state on a hypersurface, which is clear upon consideration of a maximal antichain',
the analogue of a spatial hypersurface. Due to the random spatio-temporal discreteness of the
causal set, causal connections can pass through the antichain without making an imprint on
it. This means that the maximal antichain cannot carry all the information associated with
spacetime elements to its past and future, and therefore cannot serve as a Cauchy surface.
This renders unusable many of the conventional spatial methods for computing entanglement
entropy.

The method for computing entanglement entropy from spacetime correlation functions of
the field, which we work with, was first introduced in [26]. We will review this formulation in
section 2. In addition to the requirement from causal set theory to work with spacetime rather
than spatial quantities, there are also more general physical motivations to do so. An ultraviolet
cutoff is required to obtain a finite and well-defined entanglement entropy, and if the entropy
is computed on a spatial hypersurface, the cutoffs used are spatial and therefore not covariant.

! An antichain is a subset of the causal set consisting of causally unrelated elements. A maximal antichain is one that
is inextendable, i.e. one cannot add more elements to the set such that they all remain causally unrelated.
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Ambiguities can then arise in making a choice of frame and cutoff, which are physically unde-
sirable, especially in the context of gravity. The entanglement entropy formulation we work
with has the advantage of admitting the use of a covariant spacetime UV cutoff.

In section 3 we review the single interval entanglement entropy in a causal set, and we
present new results for the case where the interval shares a boundary with the global region.
We then discuss the multiple interval case in sections 4 and 5. We consider two and three dis-
joint regions, though our work easily generalises to any number of disjoint intervals. Treating
disjoint intervals turns out to be another strength of working with the spacetime correlator
formulation of entanglement entropy. This is because the details of the multiple interval cal-
culation follow very closely those of the single interval case, which has been well studied in
[28-30], and only additionally requires the use of greater computational power.

2. Entropy from spacetime correlation functions

Conventionally, entanglement entropy is defined to be

S = — Tr(prea 10 prea), M

where p,.4 is the reduced density matrix after tracing out some degrees of freedom from an
initially pure global state p. The degrees of freedom traced out lie within one of two causally
complementary partitions of the spacetime (or in practice, Cauchy hypersurface).

The definition of entanglement entropy we work with is equivalent to (1), but has been
rewritten explicitly in terms of spacetime correlation functions. For a derivation and further
details we refer the reader to [26]. It was shown in [26] that the entropy of a Gaussian scalar
field in a spacetime region R is

S:ZA log |Al, (2)
X

where )\ are the eigenvalues obtained by solving the generalised eigenvalue problem
Wou = iAAv, Av #£0. 3)

iA is the Pauli—Jordan function, or spacetime commutator of the field operators, and W is the
Wightman, or two-point correlation function. For a Gaussian scalar field theory,

iA(x,y) = (0][®(x), (]]0) = [P(x), P(Y)], (€))
and
W(x, y) = (0[@(x)®()[0), (&)

where x,y € R. Note also the relations iA(x, y) = W(x,y) — W(y, x) = Im(W(x, y))/2.If we
restrict A and W to a subdomain of R with nonempty causal complement, the entropy that
is calculated via (2) will correspond to the entanglement entropy between the subdomain and
its complement. It is worth highlighting again that the formulas above are covariant and they
solely involve spacetime correlation functions.

The formulas (2) and (3) have been used in several settings both in the continuum the-
ory and in causal set theory to compute entanglement entropies [29—33]. It has also been
shown that these formulae capture the entanglement entropy even in non-Gaussian and inter-
acting theories, up to first order in perturbation theory [27]. For theories where iA and W are
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known both in the continuum and in the causal set, the causal set calculations are easier to
perform than the continuum ones. This is because ;A and W are finite dimensional matrices
and the generalised eigenvalue problem (3) can be numerically solved relatively easily. In the
continuum, iA and W are infinite dimensional, and must be made into finite dimensional
matrices with respect to a choice of cutoff (see e.g. [29]). This can be a challenging task in
practice.

In this work we focus on the causal set case, for practical ease, and also because it is more
fundamental and equipped with a natural UV cutoff. In the causal set, the entanglement entropy
is finite, and the degrees of freedom are finite and well-defined with respect to the discreteness
scale, though as we will see, extra ‘truncations’ are necessary to obtain meaningful results.

3. Entanglement entropy of a single 1 + 1D causal interval

In order to use (2) and (3) to study the entanglement entropy, we need a vacuum state, or
Wightman function W. The only known means to define a Wightman function in causal set
theory is via the Sorkin—Johnston (SJ) prescription [34—37]. This prescription is very much
in the same spirit as the entropy formulation we reviewed in the previous section, as it relies
solely on spacetime quantities to define a vacuum state, and does not make reference to any
spatial quantities on hypersurfaces. We review this prescription below.

3.1. The SJ prescription

The starting point of the SJ prescription is the retarded Green function. Since a unique
retarded Green function exists only in globally hyperbolic spacetimes, the SJ vacuum is unique
only in globally hyperbolic spacetimes. We will always work with causal set sprinklings’
approximated by 1 + 1D causal intervals (diamonds) in Minkowski spacetime, as illustrated in
figure 1. These intervals are globally hyperbolic, and therefore have a unique retarded Green
function and SJ state. We will work with a massless theory, for simplicity, and a Gaussian
theory, since this is what the SJ prescription provides.

The retarded Green function in 1 4+ 1D Minkowski spacetime for a massless scalar field is

1
Gr(x,y) = 5@(#)@@0 -, (6)

where © is the Heaviside step function, and 7 is the proper time, defined via 72 = (x° — y%)* —
(x' — y')?. This propagator is very simple, returning a value of one half if y is in x’s past
lightcone. It is reminiscent of the causal matrix in the causal set, which is defined as

1 x <y and x £y
ny = (7)

0 otherwise.

We have used the notation that the indices ., designate the matrix element relating causal set
elements x and y, and x < y denotes that x causally precedes y. Indeed, the causal set retarded
(and advanced) Green function, Kg (and Ky, ), is defined precisely using the causal matrix:

1 1
Kg = ECT, and K, =K} = EC, (8)

2 For a review of causal set theory we refer the reader to [38, 39].
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Figure 1. A causal set sprinkling of a causal diamond or interval in 1 4+ 1D Minkowski
spacetime.

where we have used the symbol K for the causal set Green function, to distinguish it from the
continuum one G, and the superscript T refers to the transpose operation.

From Kg o we can construct A = Kr — K. Because iA is Hermitian and antisymmetric,
it can be expanded in its eigenbasis as

N
lA = Z A,"U,"U;r, (9)

where N is the number of elements in the causal set. A; denotes an eigenvalue of iA, with v;
being the corresponding eigenvector.

The SJ Wightman function, Wg;j is defined to be the positive part of the expansion of iA in
its eigenbasis in (9), i.e.

Wy = Z A,”U,”Uj, A; > 0. (10)

The SJ Wightman function defines a pure state for the entropy formulation we reviewed earlier,
as it yields A = 0 or 1 in (3), and hence a vanishing entropy in (2). Its restriction to a subre-
gion with nonzero causal complement, however, will yield nontrivial \’s, and a nonvanishing
entanglement entropy.

For the spacetime interval in figure 1, Wy has been well studied both in the causal set and
continuum [28]. Away from the boundaries of the diamond, which is where we will primarily
place the subintervals we work with, the state resembles that of the Minkowski vacuum with
an IR cutoff. Close to the left or right corner of the diamond, the state resembles that of the
Minkowski vacuum in the presence of a static mirror or reflecting boundary at that corner.

3.2. Truncations

For reasons which we will not delve into, it turns out that a stricter condition than Av # 0 in
(3) is necessary to obtain meaningful results in the causal set. Not only must we exclude the
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kernel of iA, we also need to exclude a large number of additional components corresponding
to eigenvectors with nonzero but small magnitude eigenvalues [30]. To understand how we
decide which components to keep and which to exclude, it is instructive to first review some
aspects of /A and its eigendecomposition in Minkowski spacetime.

In lightcone coordinates u = %’ and v = ”7;, the Pauli—Jordan function in the continuum

theory is [28]
iIA(w,v;u',v") = ;(@(u—u’)+@(v—v’)— 1). (11)
Its eigenfunctions f satisfy
/RiA(u,v;u', V) fu, v)dudv = Af@d,v), (12)

where the domain of integration, R, is the causal diamond with origin at the center and
u € [—L,Llandv € [—L, L]. This causal interval is the continuum approximation to the causal
set in figure 1.
The eigenfunctions with non-zero eigenvalues® satisfying (12) are [28, 35]
nmw
n

fiu, v) = e kK _ g7ikv, k = TonE 7Z\0 (13)

and

g, v) = e e % _ 2 cos(kL),

(14)
ke K ={k e R|tan(kL) = 2kL and k # 0}.
Each fi(u, v) and g;(u, v) has corresponding eigenvalue
L
Ay = © (15)

and for large k, the g, eigenvalues tend to those of fi,i.e. Ay = % When calculating entangle-

ment entropies in the continuum via the definition in section 2, a minimum eigenvalue serving

as the UV cutoff is arbitrarily set [29], given by Ay = ﬁ Via dimensional considerations,

and a direct comparison of values, it is seen that the eigenvalues in the causal set are related to
N

those in the continuum by rescaling with a factor of the density p = 775, such that

ACS — pACOHt. (16)

In the causal set, the value of the cutoff and minimum eigenvalue are not arbitrary. The
cutoff is the discreteness scale, and the minimum eigenvalue is related to it. Given the nature
of the eigenfunctions as approximate linear combinations of plane waves and the eigenvalues
as inversely proportional to wavenumbers, we expect a maximum wavenumber, k., near the
discreteness scale. Larger wavenumbers or shorter wavelengths cannot be meaningfully sup-
ported on the causal set. This upper bound on the wavenumber leads via (16) to a minimum
(in magnitude) expected eigenvalue given by

o _ L _ VN (17)

min kmax 4 T 4

31t is worth noting that this eigenspace spans the solution space of the Klein—Gordon equation.
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Figure 2. A causal set subinterval in the left corner of a larger causal set interval.

where N is the number of elements in the diamond in which the eigenvalue problem is solved.
As first noted in [30], there are residual contributions below this Afy ~ in the spectrum of
iA in the causal set. These need to be removed through truncations. The truncations are
a procedure that take out or set to zero any components that correspond to eigenfunctions
with eigenvalues smaller (in magnitude) than Aj,;, . The truncations need to be done at two
stages of the calculation: during the SJ prescription, and after the restriction to the entangling
subregion but before solving (3). For further details on the truncation process, we refer the

reader to [30, 40].

3.3. Subinterval in a corner

We now use everything we have reviewed above to calculate the entanglement entropy of the
restriction of a massless scalar field to a causal set subinterval in the left corner of a larger one
(such that they share a boundary). The causal intervals are shown in figure 2. Our calculation
is similar to that in [30], the only difference being that the subinterval considered there was
concentric to the larger one and had two boundaries across which there was entanglement. In
our setup there is only one boundary contributing to the entanglement entropy.

For the one boundary setup, in the limit ¢/ < L and the UV cutoft a — 0, the expected
entanglement entropy scaling with the UV cutoff is [13]

1
Scorner =—1In <£> +b, (18)
6 a

where b is a non-universal constant. Note that a logarithmic scaling with the UV cutoff in
1 + 1D is consistent with the spatial area law of entanglement entropy [41].

Our choice of UV cutoff is the causal set discreteness scale a = 1/,/p = 2L/\/Np =
20/+/Ny. In our calculations we hold fixed the volumes of the spacetime intervals L = 50 and
¢/L = 2/5 and vary a by changing the number of sprinkled elements Ny, in the larger diamond.

Our results for the entanglement entropy, computed through (3) and (2), versus @ are

shown in figure 3. g is the minimum eigenvalue of /A in the subinterval and is proportional
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Figure 3. The scaling of entanglement entropy with respect to the UV cutoff, for the cor-
ner diamond configuration. The raw data has been plotted (orange), as well as averaged
data points where binning has been performed (blue). The error bars give the standard
deviation of the bins (blue). A function of the form « In(x) + 3, shown in black, was fit
to the binned points with coefficient v = 0.165 £ 0.0195, and 8 = 1.553 £ 0.0278.

to 1/a. Included in the figure is a best fit logarithmic scaling which is

S =(0.165=£0.0195)In (i—N_/> + (1.553 £ 0.027 8), (19)
m

in good agreement with the expected scaling and coefficient in (18).

4. Entanglement entropy of two 1 + 1D disjoint intervals

The entanglement entropy associated with multiple disjoint intervals has been a topic of great
interest [12, 42—47]. A feature which makes these intervals interesting to study in conformal
field theory, but also very difficult to perform calculations with, is that the entanglement entropy
depends on the full operator content of the theory [43]. This is in contrast to the entangle-
ment entropy of a single interval which only depends on the central charge. Disjoint intervals
also allow for the study of more complex entanglement properties, as well as the study of
mutual information and relative entropy. Relative entropy is argued by some to be a better
measure of microscopic degrees of freedom than entanglement entropy, for reasons including
that it is finite in the UV or continuum limit [48—50]. We will study the mutual information in
section 4.2.

4.1. Entanglement entropy

In this subsection, we carry out a similar calculation to the one in section 3.3, but consider-
ing a subregion comprised of two disjoint causal diamonds (with the same volume) within a
larger single diamond that does not share any boundaries with the subintervals. The disjoint
causal intervals are shown in figure 4. We place the subdiamonds away from the boundaries
of the larger diamond, such that they are in the regime where the SJ state resembles that of

8
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@ <

Figure 4. Two disjoint subdiamonds within a larger causal set interval.

the Minkowski vacuum with an IR cutoff. For two intervals, in the limit ¢ < L and a — 0, the
entanglement entropy scaling with a is expected to be [12]

Som = = In <5> 4, (20)
3 a

where b’ is once again a non-universal constant.

Since the global region is a single causal interval, as before, the SJ prescription and the
first truncation go through identically to the previous section. Our second truncation, how-
ever, is different. This is because we are restricting to a different domain, namely that of two
disjoint diamonds. Though the domain and eigenspace are different in this case, knowledge
of the single diamond case is all that is required to generalise everything to two (and more)
intervals.

Let us once again return to the continuum theory, to motivate the second truncation we
implement. Since the eigenspace of iA with non-zero eigenvalues in each domain dictates
which contributions we should keep, let us consider the eigenvalue problem (12) in the union
of the disjoint diamonds

—é Ow—u)+ 0w —2)—Df(u,v)dudv = Afu',v"), (21)
Ra

where the domain of integration, Ry = { U {,, is now a union of two causally disjoint
diamonds. We can also define this region in lightcone coordinates as

—2l4+d)<u< —d and d<v<2l+d
Ro = U (22)
d<u<?2l+d and —2(+d) <v < —d,

where d is the half diagonal separation. It is equal to half the shortest vertex to vertex separation
between the subdiamonds, divided by V2. Since iA is the spacetime commutator, it vanishes
at pairs of points or elements that are spacelike to one another. The two causal intervals are

9
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spacelike to one another, and thus the field at every point in one diamond commutes with the
field at every point in the other diamond. We can then see that iA is block diagonal in the
position basis, with a block for each disjoint interval.

With this in mind, we can break up the integral (21) into a sum of two integrals, each over
one of the subdomains <»; and <»,. The eigenfunctions with non-zero eigenvalues can be con-
structed as piecewise functions, analogous to the single diamond eigenfunctions (13) and (14),
with support on one causal interval at a time*:

e—iku _ e—iku {M,U} c <>l or <>2
Jilu,v) = 0 (23)

otherwise,

k = ”7“ n e 7\, (24)

and

e ke ek 2 cos(kl) {u,v} € $1or dy
gk(u,v) = (25)
0 otherwise,

ke K ={k € R|tan(kl) = 2k¢ and k # 0}, (26)

where for simplicity we have expressed each function in the coordinate system with its origin at
the center of the diamond in which it has support. The eigenvalues are A = ¢/k, as before. We
also empirically verified in the causal set that the eigenfunctions have support on one interval
at a time and are approximately plane wave-like. That the eigenfunctions (23) and (25) are the
full set of eigenfunctions follows directly from the single diamond assertion of this.

Knowing the form of the eigenfunctions now enables us to define a truncation scheme for
the disjoint diamonds. We can follow the same reasoning as in section 3.2 to conclude that the
minimum eigenvalue magnitude in each interval i is

o _ VNi

min, — A s

27)

where N; is the number of elements in the region i. For simplicity, we will consider the case
where the disjoint diamonds have the same volume, such that N ~ N>,> and for ease of
calculation and presentation, we define N, := (N;) ~ N,.

Once again our UV cutoff is the causal set discreteness scale @ = 1/,/p. In our calculations
we hold fixed the volumes of the spacetime intervals L = 90 and ¢, = ¢, = 10, and the dia-
mond half diagonal separation d = 2.2. We vary a by varying the number of sprinkled elements
Ny in the larger diamond.

41f there are degenerate eigenvalues, any linear combination of their respective eigenfunctions is also a valid eigen-
function. Therefore, if there was an eigenfunction in <); and another one in <{», with the same eigenvalue, one could
take a linear combination of them which would be non-zero in both diamonds. In the causal set, because the two
diamonds are not identical due to Poisson fluctuations, an exact degeneracy is much less likely, so this makes the
eigenfunctions have support on only one diamond at a time.

3 For the case of unequal volumes, the truncations must be performed separately in each disjoint region. Having equal
volumes facilitates implementing the truncation, as the same minimum eigenvalue magnitude is valid over the entire
union region.
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Figure 5. The scaling of entanglement entropy with respect to the UV cutoff, for the
two disjoint subdiamond configuration. The raw data has been plotted (orange), as
well as averaged data points where binning has been performed (blue). The error bars
give the standard deviation of the bins (blue). A function of the form aIn(x) + S,
shown in black, was fit to the binned points with coefficient o = 0.669 4 0.0207, and
[ =4.642 +0.0077.

Our results for the entanglement entropy, computed through (3) and (2), versus @ are
shown in figure 5. Included in the figure is a best fit logarithmic scaling which is

VN,
S = (0.669 £ 0.0207) In 4—[ + (4.642 £ 0.0077), (28)
s

in good agreement with the expected scaling and coefficient in (20).

4.2. Mutual information

Now that we can compute the entanglement entropy for single intervals as well as unions of two
intervals, we can study the mutual information. The mutual information for disjoint regions A
and B is defined as [51]

Iy.p = =Saup — Sa — Sp. (29)

It is a non-negative quantity and for disjoint intervals such as the diamonds we considered
above, the mutual information is expected to decay as the separation between the inter-
vals increases [52]. This is intuitive as the field degrees of freedom become more and more
uncorrelated as the spacelike separation between them increases. We will confirm this decay
below.

The causal set setup we consider is shown in figure 6. We place the subdiamonds at the
extreme left and right corners of the larger diamond, to maximize the separation between
them. We hold fixed the sizes of the subintervals, /; = ¢, = 5, as well as the sprinkling density
p = 10. We then increase the separation between the two intervals by keeping the subintervals
in the left and right corners of the larger diamond while increasing the size of the larger global
diamond.
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Figure 6. A figure showing the two disjoint diamonds configuration where we investi-
gate the mutual information.

The result for the scaling of the mutual information /., versus the separation between the
two intervals, Ax, measured using the horizontal separation between the innermost corners, is
shown in figure 7. As expected, the mutual information is non-negative and decreases as the
separation Ax increases. The decay trend is approximated by

Ax Ax
Lo =al — |+ _ - 1
12 = @ 108 (Ax + 30) 2 (Ax + 30 ) ’ (30)

with best fit parameters o = —0.0926 4+ 0.00797 and 8 = —1.3783 + 0.01342. The reason
30 appears in (30) is that this is approximately the sum of the diameters of the two subdiamonds,
and how far they are from one another should be considered with respect to this scale. The
curve (30) is shown together with the data in figure 7. Once again, as anticipated, 7., — 0 as
Ax — oo in (30). Also, as expected, there is a divergence as the two disjoint regions approach
one another [50].

5. Entanglement entropy of three 1 + 1D disjoint intervals

As afinal example, we consider the entanglement entropy of three disjoint causal intervals. The
causal set setup is illustrated in figure 8. Once again for ease of applying the truncations, we
set the volumes of the three diamonds to be equal, though more general configurations can be
considered as well. Similar to the case of two diamonds in section 4, none of the subdiamonds
share any boundaries with the larger diamond they lie within, and they reside in the region
where the SJ state resembles the Minkowski vacuum with an IR cutoff.

For three intervals, in the limit £ < L and @ — 0, the entanglement entropy scaling with a
is expected to be

S3int = In <£> +b", &1V}
a

where b” is again a non-universal constant.
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Figure 7. A figure showing the decay of mutual information as two disjoint diamonds
become far separated from one another relative to their own sizes. The vertical axis gives
the value for mutual information and the horizontal axis Ax is the separation between
the two regions.

t

L.

o9

Figure 8. Three disjoint subdiamonds within a larger causal set interval.

As above, we hold fixed the sizes of the three intervals, ; = ¢, = 3 = 5, as well as the size
of the larger diamond, L = 50. We vary the sprinkling density (by changing N) to vary a. The
first truncation is the same as before, and in the second truncation, the minimum magnitude
eigenvalue of /A in each interval i is

. _VE o)

min,i 47T s

where N, is the number of elements in the region i.

13
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Figure 9. The scaling of entanglement entropy with respect to the UV cutoff, for the
three disjoint subdiamond configuration. The raw data has been plotted (orange), as
well as averaged data points where binning has been performed (blue). The error bars
give the standard deviation of the bins (blue). A function of the form aIn(x) + £,
shown in black, was fit to the binned points with coefficient o = 0.998 4 0.0691, and
[ =6.821 £ 0.0307.

Our results for the entanglement entropy, computed through (3) and (2), versus g are
shown in figure 9. Included in the figure is a best fit logarithmic scaling which is

S =(0.998 £0.069 1) In \ﬁﬂ +(6.821 £ 0.0307), (33)
™

yet again in good agreement with the expected coefficient of 1 on the logarithm as in (31).

6. Conclusions and future directions

In this paper we have studied the entanglement entropy of a scalar field in disjoint inter-
vals or causal diamonds in causal set theory. We used a spacetime definition of entanglement
entropy in terms of correlation functions and found that it is especially suited to calculations
involving disjoint causal regions. Not only does the definition admit a covariant UV cutoff,
it is also applicable in causal set theory, where conventional hypersurface-based calculations
cannot be used. One reason that the spacetime formalism we use is natural for disjoint regions
is that the spacetime commutator plays a central role in it. The commutator is only nonzero
at pairs of points that are causally related, and this simplifies things considerably. The sub-
tleties that need to be taken care of (e.g. truncations in the causal set case) in the multiple
interval cases boil down to the same ones that are present in the single interval case. In two
spacetime dimensions, the single interval case is well studied, facilitating the multiple interval
generalisations.

We specifically considered the cases of two and three disjoint causal intervals. We studied
the entanglement entropy scaling with respect to the UV cutoff, which is the discreteness scale
in the causal set, and found agreement with the expected area law scalings from other similar
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studies. We also considered the mutual information of two disjoint intervals and verified that
it decays to zero as we increase the separation between the two intervals.

There are many extensions of our work that would be interesting to explore in future
research. As mentioned, we primarily focused on the entanglement entropy scalings with
the UV cutoff. One can also study the scalings with respect to the other length scales in the
problem, namely the sizes of each of the diamonds (including both the global one and the subdi-
amonds). These scalings in the scalar theory have in prior work been analytically challenging to
derive. Our work presents a framework where the numerical study of this is possible. As we
have mentioned, the formalism we use is suited for the study of multiple intervals, as much of
what we know from the single interval case carries over. This is true for higher dimensions as
well, and it would be interesting to extend these results to higher dimensions. In order to do
this, first the single interval case in higher dimensions needs to be better studied. The causal
set entanglement entropy calculations could be a useful tool in other fields as well, as they
make otherwise challenging calculations comparably easier to perform, as demonstrated by
our examples.

Our techniques could also be used to study the nature of the non-universal constant (the
b’s or 3’s above) in the entanglement entropy. There is a large literature on entanglement
entropy in topological quantum field theories (e.g. [17, 18, 53]). In these works, the entangle-
ment entropy separates into a contribution that scales with the boundary of the subsystem and a
remaining contribution that does not. The latter is called the topological entanglement entropy,
and it can be isolated via the addition and subtraction of entropies of subdivisions of the region
of interest. In the same manner, perhaps similar manipulations can be implemented in the con-
text of our work, to isolate some (topological or otherwise) properties of the non-universal
constant.

Finally, we have focused on entanglement entropies in the context of causal set theory. The
causal set calculations are more straightforward than their continuum counterparts, and they are
also more fundamental. However, the formalism we use is equally applicable in the continuum
theory. It would be interesting to investigate entanglement entropies of multiple intervals in the
continuum, in the same manner as we have done above in the causal set. This would offer the
possibility of deriving analytic results in this context.
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