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Abstract We study the intermediate inflation in the mimetic
Dirac—Born-Infeld model. By considering the scale factor as
a = ap exp(btﬂ ), we show that in some ranges of the inter-
mediate parameters b and §, the model is free of the ghost
and gradient instabilities. We study the scalar spectral index,
tensor spectral index, and the tensor-to-scalar ratio in this
model and compare the results with Planck2018 TT, TE, EE
+ lowE + lensing + BAO + BK14 data at 68% and 95%
CL. In this regard, we find some constraints on the inter-
mediate parameters that lead to the observationally viable
values of the perturbation parameters. We also seek the non-
Gaussian features of the primordial perturbations in the equi-
lateral configuration. By performing the numerical analysis
on the nonlinearity parameter in this configuration, we show
that the amplitude of the non-Gaussianity in the interme-
diate mimetic DBI model is predicted to be in the range
—16.7 < feauil < —12.5. We show that, with 0 < b < 10
and 0.345 < B < 0.387, we have an instabilities-free inter-
mediate mimetic DBI model that gives the observationally
viable perturbation and non-Gaussianity parameters.

1 Introduction

A new approach to General Relativity has been proposed by
Chamseddine and Mukhanov in 2003, called mimetic gravity.
The important property of their approach is that the confor-
mal symmetry is respected as an internal degree of freedom
[1]. Chamseddine and Mukhanov in their interesting pro-
posal, have written the physical metric in terms of an aux-
iliary metric and a scalar field. In fact, the metric is given
by

8y = —5’90 ¢,Q¢,a g’;un (1)
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where the free non-dynamical scalar field ¢ encodes the con-
formal mode of the gravity. Also, the definition (1) shows that
if we perform a Weyl transformation on the auxiliary metric
(8,v), the physical metric (g,,,) remains invariant. Using the
Eq. (1) gives the following constraint on the scalar field [1]

glw(b,p.(b,v =-1. 2)

In the action of the mimetic gravity introduced in Ref. [1],
there is a contribution of the matter fields coupled to g, that
leads to an extra term in the Einstein’s field equations. In
the sense that the dependence of this extra term to the scale
factor is a3, it is considered as a source of dark matter. The
mimetic gravity scenario has been explored in another math-
ematical approach, by adding the Lagrange multipliers in the
action of the theory [2,3]. In Ref. [4], some ghost-free mod-
els of the mimetic gravity have been discussed. The authors
of Ref. [5] have considered a potential for the mimetic field
in a Lagrange multiplier approach, leading to some inter-
esting results. In fact, they have shown that if we take the
appropriate potential terms, it is possible to consider the
mimetic field as inflaton, quintessence, or phantom fields.
The mimetic gravity has attracted a lot of attention and the
authors have extended it to the braneworld scenario [6], non-
minimal coupling model [7,8], f(G) gravity [9], Horndeski
gravity [10,11], f(R) theories [12—14], unimodular f(R)
gravity [15] and Galileon gravity [16]. In studying the per-
turbations in mimetic gravity models, it is necessary to have
the ghost and gradient instabilities-free models. In Ref. [17]
it is shown that the direct coupling between the curvature of
the space-time and the higher derivatives of the mimetic field
can help to overcome such instabilities in some ranges of the
parameters space. See the papers in Refs. [18-30] for more
works on the (in)stability issue.

On the other hand, to solve some problems of the standard
model of cosmology, the inflation paradigm has been intro-
duced, where a single canonical scalar field (inflaton) with a
flat potential has been considered. The flat potential causes
the slow-roll of the inflaton and enough exponential expan-
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sion of the early universe. In this simple model, the domi-
nant modes of the primordial perturbations are predicted to
be scale-invariant, adiabatic and Gaussian [31-46]. However,
there is a lot of attention to the extended inflation models pre-
dicting the non-Gaussian distributed perturbations [46-55].

One interesting inflation model is the DBI (Dirac—Born—
Infeld) inflation [56-61]. In the string based DBI model,
where the radial position of a D3 brane characterizes
the scalar field [56,58], it is possible to have large non-
Gaussianity that many authors are interested to [58-67].
Another string-based scalar field is the tachyon field [68,69]
which is an interesting scalar field in the inflation models
[61,70-72]. We have included the DBI and tachyon field in
the mimetic models in our previous works. In Ref. [73],
we have assumed that the scalar field of the DBI model is
a mimetic scalar field. By considering the Lagrange mul-
tiplier approach and assuming the power-law inflation, we
have studied the inflation and perturbations in this model
and shown that this model in some ranges of the model’s
parameter space is free of the ghost and gradient instabili-
ties. We have also shown that, in those ranges of the model’s
parameter space, the values of the perturbations parameters
are observationally viable. In fact, with the Mimetic DBI
(MDBI) model, there is no need to consider such compli-
cated higher-order terms in the action of mimetic gravity.
In Ref. [74], we have considered the tachyon field in the
mimetic gravity setup and within the Lagrange multiplier
approach. We have adopted both power-law and intermediate
scale factors and studied the inflation in the tachyon mimetic
model. We have shown that, in both cases, the mimetic model
is free of instabilities in some ranges of the model’s parame-
ters. Also, those ranges of the parameters that lead to instabil-
ities free tachyon mimetic model, give observationally viable
perturbation parameters.

In the continuation of the previous works, in this paper, we
study other aspects of the MDBI model. Now, we consider
the MDBI model with an intermediate scale factor [75-77]
that gives another type of potential. In this regard, we show
that the intermediate MDBI model also is an instabilities-
free mimetic model that is consistent with observational data.
Therefore, with this new work on the MDBI model, we prove
that to have an instabilities-free mimetic model there is no
need to restrict ourselves to one type of potential (or scale fac-
tor). The MDBI model is a simple mimetic model that gives
a viable cosmological model with both power-law and inter-
mediate scale factor (corresponding to two types of poten-
tial). This makes the MDBI model more favorable. Also, in
this paper, we study the non-Gaussian features of the pri-
mordial perturbations that is one of the important issues in
the inflationary models. The prediction of the intermediate
MDBI model for the sound speed of the perturbations and
also the amplitude of the perturbations in equilateral con-
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figuration is the issue that hasn’t been studied in the MDBI
model previously.

This paper is organized as follows: in Sect. 2, we review
the MDBI model in the Lagrange multiplier approach. In this
section, we present the perturbation parameters (the scalar
spectral index, the tensor spectral index, and the tensor-to-
scalar ratio) that are functions of the Lagrange multiplier.
The amplitude of the non-Gaussianity in the equilateral con-
figuration is also presented in this section, which is related to
the Lagrange multiplier via the sound speed of the model. In
Sect. 3, we introduce the intermediate MDBI model where
the scale factor is given by a = ag exp(bt?). By this scale
factor, we find the Hubble parameter in terms of the interme-
diate parameters 8 and b. Then, by obtaining the potential
and the Lagrange multiplier in terms of the Hubble parameter,
we find the slow-roll parameters in the intermediate MDBI
model. Also in this section, we study the model numerically
and show that the intermediate MDBI model in some ranges
of its parameter space is free of the ghost and gradient insta-
bilities. In Sect. 4, by performing numerical analysis, we
compare the results with Planck2018 observational data. In
this regard, we show that the intermediate MDBI model for
some values of 8 and b, which lead to the instabilities-free
model, gives observationally viable values of the perturbation
parameters. We also present some predictions of the model
on the non-Gaussian feature of the primordial perturbations.
In Sect. 5, we present a summary of our work.

2 Mimetic DBI model

The action of the DBI mimetic gravity, in the presence of the
Lagrange multiplier and a potential term, is given by

S = f d“x\/—_g[z—f2 —F @V +aF($)ded'¢
A" 0+ 1) — v<¢>], 3)

where R is the Ricci scalar, V (¢) presents the potential of the
scalar field, 7~ !(¢) is the inverse brane tension (note that,
the D3-brane passes a compact manifold which geometry of
its throat is related to the F~1(¢)). Also, « is the gravita-
tional constant, defined as k> = 8’:—4G The parameter « is a
coupling parameter which is corresponding to the string the-
ory parameter. Although we adopt a DBI-like Lagrangian in
our work, the scalar field ¢ is not a DBI field. It is a mimetic
field obeying the constraint (2). This means that its dimen-
sion is [T] = [M]7 1, demonstrating the dimension of time
(note that we work in natural units where the speed of light
is ¢ = 1 and also i = 1). Since the action should be dimen-
sionless, to have dimensional consistency, there should be
a coupling parameter @ with dimension [M]* = [T]™* in
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the Lagrangian term, as shown in Eq. (3). This parameter
is corresponding to the string theory parameter presented in
[56]. Also, A is a Lagrange multiplier by which we enter the
mimetic constraint (2) in the action.

If we vary action (3) with respect to the metric, we find
the following Einstein’s field equations (G, = K2T,w)

G/w = K2|: - g;wf_l\/l +aF gt a,u¢ e — g,qu

g A(gl” 80 D + 1) — 208, Db
1

ety du(1+ F g™ 0,0 au¢)2]. )
By using the flat FRW metric as the background,
ds? = —dr* 4 a*(1)8;;dx"dx’ 5)

the field equations (4) give the following Friedmann equa-
tions in this model

]:_1
3H? = [—
‘ V1 —aFp?
2H+3H2=K2[f1,/1—af¢'s2+v+x(d>2—1)]
(7

The equation of motion of the mimetic field ¢ in the MDBI
model is obtained by varying the action (3) with respect to ¢

+V—A<1+q52)], 6)

ad 3Hag . .
— + " 2n($+3H
(1 —aFd2)?  (1—aF¢?)? ( )
. T 3aF¢*—2
+V =1 - ¢ = ——[—_] . (8)
¢ F2Lo(1 — aFdd)s

Also, by varying action (3) with respect to A we reach the
constraint (2).

In this paper, we are going to consider the MDBI setup as
an inflation model. The slow-roll parameters in the inflation
model are given by the following definitions

_ ldng
H? SSH a0

where c; is the sound speed of the perturbations, defined as

©))

€=—

2 =Lx (the subscript ““, X shows derivative with respect
s 0.X

toX =— % dy¢ 3" ¢). In our model, the square of sound speed

is given by

, afl —a]—"q'bz)_% —2X
[o—

N

- , (10)
a(l—aFg?) 2 -2

which should satisfy the constraint 0 < cf < c? (note that ¢
is the local speed of light). In the case of ¢ = 1, the constraint
becomes as 0 < cf < 1[78,79].

To seek the observational viability of the MDBI model, it
is important to compare the values of the perturbation param-
eters with Planck2018 data [80,81]. The Planck collaboration
has considered that in the case of the statistical isotropy, the
two-point correlations of the CMB anisotropies are described
by the angular power spectra [82—86]. In fact, the following
expressions for the contributions from the scalar and tensor
perturbations in the CMB angular power spectra have been
used [87]

ao,s oodk s s

cl”' =/0 7A‘l’a(k) A} (k) A (k) (11)
ab,T __ * dk T T
it = s Aj (k) Aj (k) Ar (k) (12)

wherea,b =T, E, B. Also, [ is the multipole moment num-
ber, A} , and AIT 4 are the transfer functions,! and A (k)
(J = d’, T)is the primordial power spectrum, identified by
the physics of the primordial universe [87]. In one procedure
to compare the inflationary parameters with data, the Planck
collaboration has expanded the scalar and tensor power spec-
tra in a model-independent form as [81,87]

1 d k)., 1 d? ©)?
k O\~ 12 dmeIn (E)Jré,,]n';fz In (H) +o
As(k) = Ay k_

*

(13)

Ar (k) = Ar <k_>

*

, (14)

where, A; is introduced as the amplitude of the scalar (for

j = s) or tensor (for j = T) perturbations. Also A is the

> dlnk
the running of the scalar (for j = s) or tensor (for j = T)
2
spectral index and 11(1111_”1;2 is the running of the running of the
scalar spectral index. The ratio between the tensor and scalar

amplitudes

;= -AT(k*)
C As(ky)

(15)

is an important perturbation parameter, named tensor-to-
scalar ratio.

To perform numerical analysis and compare the results
with Planck2018 data, we should obtain the perturbation
parameters in the MDBI model. The scale dependence of
the scalar spectral index, at the time of sound horizon exit of
the physical scales (c;k = aH), is identified by

d1n A
ne—1 =225 . (16)
dink |,y

Calculating the perturbation parameters at pivot scale k = ki
causes that the running term doesn’t appear in the definition

! These functions are computed by using the Boltzmann codes such as
CMBFAST [88] or CAMB [89].
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(16). For the MDBI model, the amplitude of the scalar spec-

tral index is given by [73]
H2

= 17

T 82 Wied 1n

where

(faézkm—km—i-a)d)z

- €18)
2H? (1 — aF¢?)” )

Ws=

Positive values of W, makes the model free of the ghost
instability. Now, we find the scalar spectral index as follows

ng=1—6e+2n—s, (19)

which is expressed in terms of the slow-roll parameters.
Equation (14) gives the following tensor spectral index

_ dln Ar
"= ik

: (20)
k=aH

The parameter Ar, the amplitude of the tensor perturbations,
is given by

26> H?
Ar = 25 1)
g
leading to
nr = —2¢. (22)

We can find the tensor-to-scalar ratio from Eqs. (15) and (22)
as follows

r=16¢e€, (23)
or
r=—8csnr. 24

Equation (24) is an important equation, named the consis-
tency relation, which in the simple single filed inflation with
a canonical scalar field simplifies to r = 16¢.

To get more information about the viability of an inflation
model, it is useful to study the non-Gaussian feature of the
primordial perturbations. Although the two-point correlation
characterizes the Gaussian perturbations, to get the additional
statistical information related to the non-Gaussian distribu-
tion, we should consider three and higher-order correlations.
In the interaction picture, the 3-point correlation for the spa-
tial curvature perturbation W is given by [46,50,90]

(W (k) W(ko) W(ks)) = 27)°8% (k) + ko

+k3)By (ki, ko, k3) , (25)
where
2m)* A
Bu ki, ko, ks) = % Go (K1, ko, k) 26)

i=1"

@ Springer

and A; is given by (17). The parameter Gy in Eq. (26) is
defined as

3 1 1 1 3/1
21— (1= ) 2= —1)ss,
Gu 4( cz>1+4< cz>2+z<c3 )3

27)
where the shapes of the non-Gaussianity are given by
S —32k2k2—LZk2k3 (28)
1= K it g2 inje
i>j i#]
1 3, 2 212 1 2.3
82=§Zki+EZkikj—FZkikj, (29)
i i>j i#]
(k1 ky k3)*
83 = —x3 (30)
and
K=kl +ky+k;3. 31

Equation (26) shows that the three-point correlator depends
on the three momenta k; , k» and k3. Note that these momenta
should satisfy the translation and rotational invariance. By
defining the following dimensionless parameter, called “non-
linearity parameter”,

itk
we can measure the amplitude of the non-Gaussianity. The
nonlinearity parameter depends on the shape of the non-
Gaussianity. Different values of the momenta lead to dif-
ferent shapes and there is a maximal signal for each shape in
a special configuration of the three momenta.

However, as has been demonstrated in Refs. [57,91-93],
for the k-inflation and higher-order derivative models, the
maximal peak of the signal occurs at the equilateral con-
figuration, where k1 = ky = k3. In this regard, here also,
we obtain the parameter Gy in this configuration and at the
leading-order as [57-59]

equil 17 3 1
=—k|{l——=], 33
o = 5 (1- ) (33)

leading to the following nonlinearity parameter

. 85 1
equil = (1=-=). 4
f o ( c%) (34)

This equation is very important to explore the non-Gaussian
feature of the primordial perturbations in an inflation model
and compare with observational data.

In the following, we study the intermediate inflation in the
MDBI model and perform some numerical analysis on this
model.
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3 Intermediate MDBI model

One of the interesting scenarios in inflation models is inter-
mediate inflation. In the intermediate inflation, the scale fac-
tor evolves faster than the power-law inflation (¢ = ¢”) but
slower than the standard de Sitter inflation (a = exp(H?))
[75=77]. In fact, in the intermediate inflation the evolution of
the scale factor is given by

a=ag exp (b tﬁ) , (35)

where b is a constant and 0 < 8 < 1. This scale factor leads
to the following Hubble parameter

N\"F
H(N)=N 2 B. (36)
To obtain the main perturbation parameters in the intermedi-
ate inflation, we should follow [94,95] and find the potential
in terms of the Hubble parameter and its derivatives. From

and also we have H = H(N). From Egs. (6) and (37) we
get

OH*X —3H?>Xak? —9H*—12H3H’

—2MXk?
—4H*H"”?X —4H*H"”
—2MXi? ’ (38)
where
M=6H>+4HH —ar?,
2
vo 1o weM (39)

(3H2+2HH')*

The slow-roll parameters in terms of the Hubble parameter
and its derivatives are given by the following expressions

3 31 XN2+J\/2 N? N N?
€= — — — — —_— —_— —_—

2 2«2 M M KCMX  k2M
+9H42(—3H2XK20¢—9H4—12H3H’—4Hzf1’29(—4HZH’2)"

now on, we assume f‘l(cp) = V(). KZMX
Note that, in Ref. [58], it has been demonstrated that for (40)
Ad S5 throat, the warp factor }'_1(¢) is equal to =. Also,
P d ¢* where H = H(N) and N' = 2HH' + 3H?>
NN (3 @+ 12N+ K (X +3) &+ (X + 1) (KN = FNK) X]
n= -3 2
eH[(X+ 1)/\/2+IC]
. (41)
with
4 2 2 4 3/
in the case with AdSs x X geometry, the potential of a DBl ~ * = 9H' X =3 H XicCa =9 H" — 12 H'H
—4H*H?X — 4 H*H" (42)

field is quartic. Another interesting case is clarified in Refs.
[96,97]. In those papers, the authors have shown that with
F ~ " andV ~ e~"? (withm to be a constant), we can get
the Lagrangian of the DBI model. Following Refs. [96,97],
we consider F~1(¢) = V(¢) in our calculations. In fact,
it is always possible to have viable DBI inflation with these
choices of functions. However, in this paper, we construct the
potential (and therefore, F) for intermediate inflation from
background equations. In this way, there is no need to choose
an arbitrary function for V and F.

Now, we introduce a new scalar field ¢. This field is identi-
fied by the number of e-folds N and parameterizes the scalar
field ¢ as ¢ = ¢ (¢). From these points and by using Eq. (7),
we obtain the potential in the intermediate inflation as fol-
lows

2
[2HH/ 4 3H2]
V =

. (37
/{2[—/{2a+4HH’+6H2]

Note that, in the above and forthcoming equations, a prime
refers to the derivative of the parameter with respect to N,

[(7 %(a+2V)V’+V)»’(afV))«/VfaJrgV’a}oﬂ

1
Zﬁ(wﬁ—% V)@= V) (r@= V)YV —a+5V3)
43)

s =

In the intermediate inflation, the slow-roll parameter € takes
the following form

B 2428

e:%N%/s[(z‘“ﬂﬁ "N
T T e (_E ( E))
12( 2? N a+(-3+(N+3)8
><(,B—1)N3>,B)e

2 2 5 2 B=D) @)
[l

—2 In(N)+2 In(b)
B

—3N3 ,3}
Nar
(44)

The slow-roll parameters 1 and s are very long and com-
plicated, so we avoid writing these parameters here. By using
the above equations, we can express the perturbation parame-
ters in terms of the model’s parameters. In Ref. [73], we have

@ Springer
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Fig. 1 Ranges of the model’s parameters that lead to the gradient instability-free intermediate MDBI inflation (left panel) and the ghost instability-
free intermediate MDBI model (right panel). These figures have been plotted for N = 60

1
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C
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0 ' . y . —
0 10 20 30 40 50 60

N

120

100+

-

0 f f T T T T
0 10 20 30 40 50 60

N

Fig. 2 Theevolution of c? and W of the intermediate MDBI model versus the e-folds number during inflation, with b = 10and 0.340 < B < 0.400.

The arrow shows the direction in which the parameter § increases

shown that the MDBI model with power-law scale factor is
free of ghost and gradient instabilities. Now, in this paper, we
show numerically that the intermediate MDBI model also,
in some ranges of the model’s parameter space, is free of
the instabilities. In this regard, by using Eqgs. (37) and (38)
and by assuming F = V ~!, we can obtain the sound speed
(Eq. (10)) in the intermediate MDBI model. Any range of the
parameter space in which we have cs2 > 0, leads to the gra-
dient instability-free intermediate MDBI model. Note that,
another constraint on the sound speed is ¢; < ¢, where c is the

@ Springer

value of the local speed of light. This constraint is required
from causality. If we consider the scale factor (35) and per-
form some numerical analysis, we find that the range of the
parameter space lead to 0 < cg < 1 (with ¢ = 1). The result
is shown in Fig. 1. Note that, in this figure and forthcoming
figures we have adopted k = 1 and « = 1. The pink region
in the left panel of Fig. 1 shows the ranges of the parameters
B and b leading to the gradient instability-free intermediate
MDBI model. Now, we study W to see if the intermediate
MDBI model is free of ghost instability. To this end, we use
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181

121

V 101

1

Fig. 3 The evolution of the potential in the intermediate MDBI model
versus the scalar filed ¢, with b = 10 and 0.340 < 8 < 0.400. The
arrow shows the direction in which the parameter § increases

Egs. (18), (37), (38) and (39). By performing the numerical
analysis, we find the result shown in the right panel of Fig. 1.
In summary, the intermediate MDBI model in some ranges of
its parameter space is free of gradient and ghost instabilities,
which is a good result.

To ensure there are no instabilities during the whole infla-
tionary evolution, we plot parameters cs2 and W; versus the
e-folds number N, for some sample values of the model’s
parameter. The results are shown in Fig. 2. This figure has
been plotted with b = 10 and 0.340 < B8 < 0.400 (we see
in the next section that, these adopted values of » and 8 are
observationally viable). As this figure shows, both conditions
0< c% < 1 and W > 0 are satisfied during inflation.

Now, we study the behavior of the potential (37) versus the
scalar field. To this end, we consider N = [ Hdt = [ Hd¢
(where we have used the constraint (1)) and from Egs. (36)
and (37) we obtain

1 ¢ 626262 3Bb¢P +28 —2)°
6 x2(3Bb(B— 1)@ +¢ B2 — § k24P +2)
.45

Vig) =

By using this equation, we can perform a numerical study
on the evolution of the potential versus the scalar field. The
result is shown in Fig. 3. At the initial times, where inflation
happens, the potential is large, and also the friction term 3 H .

It is worth checking if inflation ends in this setup. The
inflation ends when one of the slow-roll parameters reaches
unity. In this regard, we study the first slow-roll parameter €
versus the e-folds number N. The result is shown in Fig. 4.
As the figure shows, in this model inflation ends after about
60 e-folds (which is also corresponding to the minimum of

14

081

0.6

0.4+

0 10 20 30 40 50 60
N

Fig. 4 The evolution of the slow-roll parameter € of the intermediate
MDBI model versus the e-folds number during inflation, with b = 10
and 0.340 < B < 0.400. The arrow shows the direction in which the
parameter f increases

the potential) and the graceful exit of inflation towards the
matter-dominated era can be achieved. Note that, since the
scale factor in the intermediate inflation evolves faster than
the one in the power-law inflation and slower than the one
in the exponential inflation, the same situation happens for
the slow-roll parameter €. In this model also, it is possible to
have the seeds for the observed dark matter. In fact, by con-
sidering the conservation of the energy-momentum tensor
(as V# T, = 0), we obtain

1 )
—0, | vV—g |- +2xg"v o
J—g [ § ( STraFoigae 8 ¢>]
F' | 2+3aFg"o,¢0
— oy | 2 0ud g | (46)
F2 2\/1 +aF gt o, dvep
By considering the constraint (2) and H?> = %p, from
Egs. (6) and (46) we have
1 -1
\/?ga,t [«/—g (p—V—]—' 1—01.7:)]
F' T 2-3aF
=-V+= [—} : 47
Frl2J1T=aF 47
After the end of the inflation, at the moment we reach the
minimum of the potential, we have V = F 1 = consrant.

At that point, the slope of the potential is zero and so is the
right-hand side of the Eq. (46). In this case, we have

1

= [V=s(o-v-F'Vi=aF)|=0. @8
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n_= 0.9658 1+ 0.0038

r<0.072

10

-0.62 < n < 0.53

104

6-

0 02 04

Fig. 5 The upper panels show the ranges of the model’s parameter
space that lead to the observationally viable values of the scalar spectral
index (the left one) and tensor-to-scalar ratio (the right one), obtained
from Planck2018 TT, TE, EE + lowE + lensing + BAO + BK14 data.
The lower panel shows the range of the model’s parameter space that

and therefore

C
p=—=+V+F 'V1-aF, (49)
a
where C is a constant with dimension [M]*. In this way, the
seeds of the dark matter are obtained and the term a% deter-

mines the amount of dark matter in the intermediate MDBI

@ Springer
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B

leads to the observationally viable values of the tensor spectral index,
obtained from Planck2018 TT, TE, EE + lowE + lensing + BK14 +
BAO + LIGO and Virgo2016 data. These figures have been plotted for
N =60

model. Note that, although in the inflation era (where the
right-hand side of the Eq. (47) is not zero) it is possible to
have a term like a%, this term is diluted away quickly. How-
ever, after the end of inflation, this term has an important role.
Also, by considering the gravitational particle production at

the end of inflation, it is possible to get the observed radia-
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Fig. 6 Tensor-to-scalar ratio 0084
versus the scalar spectral index ’
for the intermediate MDBI 0071
model. To plot this figure, we ’
have adopted 0 < 8 < 1 and 0,064
N =60 ’
0054
I' 0041
0034
0024
0014
0

tion and baryons in the universe [98]. Although the potential
is a function of time and increases again, the gravitational
created particles dominate the potential term near the mini-
mum. Then, by increasing the time, the potential term (and
also, F~'y/1 — F term) dominates the particles and proba-
bly becomes the dark energy component leading to the late-
time acceleration of the universe.

In the next section, we study the observational viability of
this model with the Planck2018 data.

4 Comparing with the Planck2018 observational data

When an inflation model is constructed, it is important to
check if its results are consistent with observational data.
The observational data give some constraints on the pertur-
bation parameters such as the scalar spectral index, the ten-
sor spectral index, and the tensor-to-scalar ratio. Also, the
observational data sets constraints on the amplitudes of the
non-Gaussianity in the equilateral configuration. Therefore,
by studying these parameters in an inflation model and com-
paring the results with observational data, we can explore
the viability of the model. The constraint on the scalar spec-
tral index, from Planck2018 TT, TE, EE + lowE + lensing
+ BAO + BK14 data, based on ACDM+r + ddl'l'fk model, is
ng = 0.9658 % 0.0038. This dataset gives the constraint on
the tensor-to-scalar ratio as r < 0.072. Also, Planck2018
TT, TE, EE + lowE + lensing + BK14 + BAO + LIGO
and Virgo2016 constraint on the tensor spectral index is as
—0.62 < n7 < 0.53. By using these data, we can obtain
some constraints on the intermediate parameters 8 and b.
By substituting Egs. (40), (41) and (43) for the intermediate
inflation in the Egs. (19), (22), (23), we obtain the tensor-to-
scalar ratio, the scalar spectral index and the tensor spectral
index in terms of the parameters § and b. Then, we per-

0955 0.960 096
nS

- Planck2018 TT, TE,EE
+lowE+lensing+BK14

+BAO

b=0.01

b=10

H—:;:

0970 0975 0980

form numerical analysis on these parameters and compare
the results with observational data. Our numerical analysis
shows that, for 0 < b < 10, depending on the values of b,
the scalar spectral index in the intermediate MDBI model is
consistent with observational data if 0.345 < B < 0.387.
This is shown in the left-upper panel of Fig. 5. The tensor-
to-scalar ratio in this model is consistent with observational
data if, depending on the values of b, 0.341 < 8 < 1. Thisis
shown in the right-upper panel of Fig. 5. Also, we have found
that the range 0.044 < S < 1 leads to the observationally
viable values of the tensor spectral index in the intermediate
MDBI model. This is shown in the lower panel of Fig. 5.
We have also studied the tensor-to-scalar ratio versus the
scalar spectral index in the background of Planck2018 TT,
TE, EE+lowE+lensing +BAO +BK14 data at 68§% CL and
95% CL. The results are shown in Fig. 6. From this figure, we
have obtained some constraints on the parameter § that are
summarized in Table 1. The tensor-to-scalar ratio versus the
tensor spectral index in the background of Planck2018 TT,
TE, EE+lowE+lensing +BAO +BK14 data (Fig. 7) is another
studied case that gives some more constraints presented in
Table 1.

Another important property in studying an inflation model
is the non-Gaussian feature of the primordial perturba-
tions. As we mentioned earlier, the amplitude of the non-
Gaussianity is related to the sound speed of the perturba-
tions and in this way, it is related to the model’s parameter
space. In this regard, studying the non-Gaussian features of
the perturbations in the inflation models helps us get more
information about the models. We study the amplitude of the
non-Gaussianity in equilateral configurations. By consider-
ing the constraints on the model’s parameters obtained from
the observational viability of the scalar and tensor spectral
index and the tensor-to-scalar ratio from Planck2018, we ana-
lyze the non-Gaussianity in the intermediate MDBI inflation

@ Springer
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Table 1 The ranges of the parameter 8 in which the tensor-to-scalar ratio, the scalar spectral index, and the tensor spectral index of the intermediate
MDBI model are consistent with different data sets

Planck2018 TT,

Planck2018 TT,

Planck2018

Lensing +

TE, EE + lowE + TE, EE + lowE + TT, TE, EE + BK14 + BAO-
lensing + BK14 + lensing + BK14 + lowE lensing + Planck2018
BAO BAO BK14 + BAO + TT, TE,
LIGO&Virgo2016 EE + lowE
LIGO&Virgo2016
b 68% CL 95% CL 68% CL 95% CL
0.01 0.345 < B < 0.387 0.334 < B < 0.403 0.375 < g <0.771 0.329 < B
6 0.346 < B < 0.390 0.333 < 8 < 0.410 0.375 < B < 0.499 0.327 < B < 0.500
0.557 < B < 0.980 0.499 < 8
10 0.350 < B < 0.396 0.337 < B < 0.404 0.369 < B < 0.429 0.327 < B < 0.431
0.477 < B < 0.567 0.431 < B < 0.605
0.799 < B < 0.981 0.730 < 8
Fig. 7 Tensor-to-scalar ratio 0.12
versus the tensor spectral index
for the intermediate MDBI - Planck2018 TT, TE,EE
model. To plot this figure, we 0.101 +lowE+lensing+BK14
have adopted 0 < 8 < 1 and +BAO+LIGO&Virgo2016
N =60 0.08-
b=0.01
r 0061 — B
sesss=s  b=10
0.04-
0.02-
0+ .
-15 -1 -05 0 05 1
ny
numerically. Here, we consider the non-Gaussianity parame-
ter £¢4*! which is related to the sound speed by Eq. (34). By o
using Egs. (10), (37) and (38) and also assuming Fl=v, '
we relate the square of the sound speed of the primordial per-
turbations to the model’s parameters. The square of the sound 00194
speed is also related to the tensor-to-scalar ratio via Eq. (23).
In this regard, the constraints on r set some constraints on cg 2
that is shown in Fig. 8. €5 00181
The planck2018 combined temperature and polarization
analysis gives the constraint on the sound speed of the DBI
model as ¢c?B! > 0.086, at 95% CL. Also, this data gives 0.017+
the constraint on the sound speed of the general P(X, ¢)
model (where, X = —%8U¢ 0'¢) as cy > 0.021, at 95% CL.
According to our numerical analysis, shown in Fig. 8, the 0.0161
values of the sound speed in our intermediate MDBI model T P L Y P I P L

are consistent with both constraints.

By having the constraints on the model’s parameters f,
b and therefore csz, we can predict the non-Gaussian feature
of the primordial perturbations in the intermediate MDBI

@ Springer

Fig. 8 The square of the sound speed versus the tensor-to-scalar ratio
for the intermediate MDBI model. To plot this figure, we have adopted
0340 < <04,0<b<10and N =60
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Fig. 9 The left panel shows the ranges of the intermediate MDBI model’s parameters leading to the observationally viable values of the equilateral
non-Gaussianity. The right panels show the prediction of the intermediate MDBI model for equilateral non-Gaussianity. These figures have been

plotted for N = 60

model from Eq. (34). The Planck2018 data gives the con-
straint on the equilateral configuration of the non-Gaussianity
as fe44l = —26 4 47. By using this constraint, we can find
the range of the parameter space leading to the observation-
ally viable values of the equilateral non-Gaussianity in the
intermediate MDBI model. The result is shown in the left
panel of Fig. 9. Also, the right panels of Fig. 9 show the pre-
diction of the model for the equilateral amplitude of the non-
Gaussianity, where we have used the observationally viable
ranges of the parameters b and  which are obtained from
the comparing of the tensor-to-scalar ratio and scalar spectral
index with Planck2018 TT, TE, EE + lowE + lensing + BAO
+ BK14 data at 95% CL. Note that, we have used the same
ranges of the parameters to plot Figs. 6 and 7. However, plot
6 is r — ng behavior and plot 7 is r — ny behavior. From the
slope of the r — ng plot, we see that it is possible to have
larger values of r, but these larger values are corresponding
to smaller values of ng, which are not observationally viable.
Therefore, we haven’t shown those parts of the plot which
are not consistent with observational data. However, the sit-
uation is different for r —nr. As Fig. 7 shows, if we consider
the larger values of 1, the parameter n 7 is still consistent with
observational data.

Up to here, we have numerically studied the perturbation
parameters ng, ny and r and also the non-Gaussianity param-
eter f]f,qL”ll, to find some constraints on the model’s parame-
ters. According to the obtained results, for every parameter,
there are some ranges in the parameter space which make the
model observationally viable. However, we are interested in
the case where all parameters are consistent with Planck2018

data in the same range. By this, we mean that it is interesting
to find a range for the parameters § and b where we have
an instabilities-free and observationally viable intermediate
MDB model. Our data analysis to obtain such ranges shows
that by 0 < » < 10 and 0.345 < B < 0.387, it is pos-
sible to have an instabilities-free intermediate MDBI model
that gives the observationally viable perturbations. Also, with
these ranges, the values of the equilateral amplitude of the
non-Gaussianity are consistent with observational data.

5 A short discussion on the difference between the
power-law MDBI and intermediate MDBI models

In Ref. [73], we have studied the power-law DBI and power-
law MDBI models, where a = agt”, with details. We have
obtained the main inflation and perturbation parameters in
both models and performed a numerical analysis on those
parameters. According to our analysis in Ref. [73], the result
of the numerical analysis on the perturbation parameters of
the power-law DBI model is not consistent with Planck2018
observational data. Then, we have considered the power-law
MDBI model. We have shown that the power-law MDBI
model is an instabilities-free model. We have also shown
that the scalar spectral index and the tensor-to-scalar ratio in
the power-law MDBI model are consistent with Planck2018
TT, TE, EE + lowE +lensing data at 95% CL. However,
these perturbation parameters in the power-law MDBI model
are not consistent with Planck2018 TT, TE, EE + lowE +
lensing + BK14 + BAO data, where the combination of the
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Table 2 The prediction of the model for the equilateral amplitude of the non-Gaussianity, obtained from the observationally viable values of the

parameter 8 at 68% CL and 95% CL

b 62 6‘2 ;qLuil [f]qLuil
s A
68% CL 95% CL 68% CL 95% CL
0.01 [0.017,0.021] [0.016, 0.022] [—15.1, —12.2] [—16.1, —11.6]
6 [0.016, 0.020] [0.015, 0.022] [—16.1, —12.8] [—17.2, —11.6]
10 [0.014, 0.019] [0.013, 0.021] [—18.4, —13.5] [—19.9, —12.2]

BICEP2/Keck Array 2014 and Planck2018 data is consid-
ered. Note that, in the case of constant sound speed, it is possi-
ble to get observational consistency, however, our attention is
on the varying sound speed case. In this paper, We have shown
that if we consider an intermediate MDBI model, the pertur-
bation parameters n; and r are consistent with Planck2018
TT, TE, EE + lowE + lensing + BK14 + BAO data at both
68% CL and 95% CL. This is an interesting advantage of the
intermediate MDBI model over the power-law MDBI model.

We have also explored the non-Gaussian feature of the
primordial perturbation in the power-law DBI and power-
law MDBI models, in Ref. [73]. In that paper, it has been
shown that the amplitude of the primordial non-Gaussianity
in the power-law DBI model is too large to be consistent with
Planck2018 observational data. Also, we have shown that the
prediction of the power-law MDBI model for the amplitude
of the equilateral non-Gaussianity is very small (of the order
of 10~%). However, as we have seen in the current paper, the
equilateral non-Gaussianity in the intermediate MBI model
is in the range —16.7 < f¢4“!! < —12.5. This is a result that
is consistent with planck2018 data.

It seems that, by considering both perturbation and non-
Gaussianity parameters, the intermediate MDBI model is
consistent with Planck2018 data and therefore is more favor-
able.

6 Summary and conclusion

Recently, it has been shown that to have a ghost and gra-
dient instabilities-free mimetic gravity model, one can con-
sider a DBI-like term in the action of the mimetic gravity
and adopt a power-law scale factor. In this paper, we have
considered a MDBI model with intermediate scale factor as
a = ap exp(btﬂ ). In this regard, we have studied the inter-
mediate inflation in the MDBI model. We have shown that,
with the intermediate MDBI model, it is possible to have
a mimetic gravity model that is free of ghost and gradient
instabilities in some ranges of the intermediate parameters b
and B. This means that, in those ranges of the parameters,
we have 0 < cs2 < 1 and W; > 0. To seek the observational
viability of the models, we have studied the perturbation and
non-Gaussianity parameters of this model and compare the

@ Springer

results with observational data. From Planck2018 TT, TE,
EE + lowE + lensing + BAO + BK14 data, we have the value
of the scalar spectral index as ny; = 0.9658 =+ 0.0038. This
implies that, for 0 < b < 10, the constraint on the g is as
0.345 < B < 0.387. Planck2018 TT, TE, EE+lowE+lensing
+ BAO + BK14 constraint on the tensor-to-scalar ratio is
r < 0.072, leading t0 0.341 < 8 < 1 for 0 < b < 10. From
Planck2018 TT, TE, EE + lowE + lensing + BK14 + BAO +
LIGO and Virgo2016 data, the constraint on the tensor spec-
tral index is —0.62 < ny < 0.53. In this regard, we find
that for 0 < b < 10, the range 0.044 < B < 1 leads to the
observationally viable values of the tensor spectral index in
the intermediate MDBI model. We have also studied r — n;
and r — nr behaviors of the intermediate MDBI model in
comparison to the observational data at 68% CL and 95%
CL and found some constraints summarized in the tables.

Another important aspect of the inflation models is the
non-Gaussian feature of the primordial perturbations. In this
paper, we have studied the non-Gaussianity in the equilateral
configuration. We have considered the k| = k; = k3 limit,
where the equilateral configuration has a peak. By studying
this configuration of the non-Gaussianity and considering the
observationally viable ranges of the parameters b and 8, we
have predicted the amplitudes of the non-Gaussianity in our
intermediate MDBI model.

As a summary, we have shown that our proposed inter-
mediate MDBI model with 0 < 5 < 10 and 0.345 <
B < 0.387, is instabilities-free and gives the observation-
ally viable perturbation and non-Gaussianity parameters.
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