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Abstract
Quantumdiscord is an importantmeasure of quantumcorrelations that goes beyond the
paradigm of quantum entanglement. However, calculating quantum discord involves
optimization over measurements, which is computationally challenging and often
infeasible. This raises the intriguing question of Gaussian extremality—whether the
quantum discord of a reference Gaussian state can provide a meaningful bound to
the quantum discord of the original state. In this paper, we investigate this question
by comparing the Gaussian discord of a reference Gaussian state with the quantum
discord.

Keywords Quantum discord · Gaussian extremality · Continuous variable quantum
system

1 Introduction

AsBell has first shown, quantum correlations can exhibit stark differences from classi-
cal correlations [1–3]. For pure states, correlations and entanglement are synonymous
and are captured by the entropy of entanglement. However, for mixed states, the situa-
tion is different: An unentangled state may exhibit finite correlations and furthermore
demonstrate nonclassical—i.e., quantum correlations [4, 5]. Quantum discord (QD) is
perhaps the most prominent example of correlations of this kind [6, 7]. It is defined as
the difference between two classically equivalent expressions for the mutual informa-
tion and involves a minimization over measurements. While QD is equal to quantum
entanglement for pure states, it can be nonzero even for separable mixed states.

The QD is notoriously difficult to calculate due to the required minimization, even
when the full density matrix is available. In fact, it is known to be an NP-complete
problem [8]. Consequently, closed-form analytical expressions are rare and studies
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on QD primarily focus on a limited class of finite-dimensional systems [9–17]. The
challenge is even greater for continuous variable (CV) systems. Numerical optimiza-
tion is generally impractical for such systems, making it necessary to determine the
optimal measurement analytically. Remarkably, this has been accomplished for CV
Werner states [18] and a specific class of Gaussian states [19]. In the latter case, the
QD is equal to the Gaussian discord (GD), in which the measurement is restricted to
Gaussian measurements (and therefore provides an upper bound to the QD) [20, 21].
Computing the QD of states lying outside these classes of CV states remains extremely
difficult. One must therefore resort to upper and lower bounds to QD for almost all
non-Gaussian CV states. An upper bound can be obtained by restricting the set of
measurements, as done in GD, but obtaining a lower bound remains challenging. In
this regard, it is interesting to ask whether Gaussian extremality holds for QD.

A measureM is said to be extremalized by a Gaussian state [22] if eitherM(ρ) ≥
M(ρG) or M(ρ) ≤ M(ρG) holds for all states. Here, ρG is the reference Gaussian
state (RGS) whose first- and second-order moments are equal to those of ρ. It was
first introduced in Ref. [22], where it was shown that quantum entanglement measures
satisfying certain criteria are minimized by Gaussian states when the first- and second-
ordermoments are given.Distillable entanglement and squashed entanglement fall into
this class,while logarithmic negativity does not. Itwas also shown that quantummutual
information, which quantifies the total (both classical and quantum) correlation, does
not obey Gaussian extremality [23, 24].

Our primary question is whether the RGS has theminimumQDamong the quantum
states having the same first- and second-order moments. If it does, we can easily
determine whether the QD of a given state is nonzero by calculating the GD of its
RGS, as a nonzero GD guarantees a nonzero QD for Gaussian states [25, 26]. We
show that this is not the case by providing explicit counterexamples. The rest of this
work is organized as follows. In Sect. 2, we first introduce the necessary backgrounds.
We then calculate theQD for two types of non-Gaussian states—specifically, amixture
of Bell states in the cat basis and a photon number entangled state—and the GD for
their RGSs in Sect. 3. Our results show that no definite ordering exists between them.
Pertinent implications of our results are discussed in Sect. 4 before we conclude in
Sect. 5.

2 Background

2.1 Quantum discord

The QD is defined as

D(ρAB) = I (ρAB) − JB(ρAB), (1)

where I (ρAB) is the quantum mutual information that quantifies the total correlation
in ρAB , while JB(ρAB) quantifies the classical part of the correlation [7]. The quantum
mutual information is defined as
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I (ρAB) = S(ρA) + S(ρB) − S(ρAB), (2)

where S(ρ) = −Tr[ρlnρ] is the von Neumann entropy and ρA (ρB) is the reduced
density matrix of the subsystem A (B). The classical correlation is defined as

JB(ρAB) = S(ρA) − min
{�B

j }

∑

j

f j S(ρA| j ), (3)

which involves a minimization over all sets of measurements {�B
j } on the subsystem

B. Given a measurement, f j and ρA| j are the probability of the j th measurement
outcome and the post-measurement state of the subsystem A, respectively. The two
quantities I (ρAB) and JB(ρAB) are identical in the classical domain; therefore, the
difference between them measures the total quantum correlations in ρAB .

If the measurement is performed on subsystem A instead of B, the definition of
QD changes accordingly and is not equivalent to D(ρAB)—that is, the QD is not
symmetric. However, in this work, we focus exclusively on permutation-invariant
quantum states, where ρAB = ρBA. As a result, the two types of QD are identical for
all examples discussed in this study.

2.2 Gaussian discord

An upper bound for the QD can be obtained if the minimization is carried out over a
subset of all possible measurements. If this subset is chosen to be Gaussian measure-
ments, the resulting quantity is called the GD [20, 21]. It has been conjectured that for
Gaussian states, the GD is equal to the QD [27]. Gaussian states are quantum states
whose phase space distributions are Gaussian [28]. They are completely characterized
by their first- and second-order moments and are thus mathematically more tractable
compared to other quantum states. Given the mean values of the quadrature opera-
tors (first-order moments) x̄ j = 〈x̂ j 〉 and p̄ j = 〈 p̂ j 〉, the covariance matrix (CM;
second-order moments) is defined as

(�AB) jk = Tr[ρ[R̂ j , R̂k]+], (4)

where R̂ = (x̂ A − x̄ A, p̂A − p̄A, x̂B − x̄B, p̂B − p̄B) and [R̂ j , R̂k]+ = (R̂ j R̂k +
R̂k R̂ j )/2. The quadrature operators are defined as x̂ j = â j + â†j and p̂ j = (â j − â†j )/i
with j ∈ {A, B}.

The CM of a bipartite quantum state can be represented in a block diagonal form

�AB =
(

�A �AB

�T
AB �B

)
, (5)

where �A and �B are the local CMs for subsystems A and B, respectively, and �AB

quantifies the quadrature correlations between the subsystems. Let A, B, C and D be
the determinants of �A, �B , �AB and �AB , respectively. The symplectic eigenvalues
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of the CM are then given by ν± =
√

�±√
�2−4D
2 with � = A+B+ 2C. Using these,

the GD of a Gaussian state ρG can be compactly written as [21]

DG(ρG) = h(
√
B) − h(ν+) − h(ν−) + inf

σ0
h(

√
det ε), (6)

where h(x) = ( x+1
2 ) ln[ x+1

2 ] − ( x−1
2 ) ln[ x−1

2 ] and ε = �A − �AB(�B + σ0)
−1�T

AB .
The last expression, infσ0 h(

√
det ε), requires minimization over all pure single-mode

Gaussian states σ0, which can be evaluated as

inf
σ0

det ε =
[ |C| + √

C2 + (B − 1)(D − A)

B − 1

]2
, (7)

if (D − AB)2 ≤ (1 + B)C2(A + D) and

inf
σ0

det ε = AB − C2 + D − √
(AB − C2 + D)2 − 4ABD
2B , (8)

otherwise.

2.3 Continuous variable Bell states

Our main objective is to demonstrate that QD is not extremalized by Gaussian states in
CV systems. To achieve this, we must first be able to calculate the QD for CV states.
Given that this is typically a challenging problem, we mainly focus on a specific
example: the Bell diagonal states constructed in the cat basis. These states behave like
qubit states, for which the QD can be determined easily.

There are two types of cat states called even and odd cat states:

|+〉 ≡ 1√
2 + 2e−2|γ |2

(|γ 〉 + | − γ 〉) , (9)

|−〉 ≡ 1√
2 − 2e−2|γ |2

(|γ 〉 − | − γ 〉) , (10)

where |γ 〉 = e− 1
2 |γ |2 ∑∞

n=0
γ n√
n! |n〉 is a coherent state with amplitude γ . The two states

are orthogonal and can be used to construct the Bell states as follows:

|�±〉 = 1√
2
(|+〉|−〉 ± |−〉|+〉), (11)

|�±〉 = 1√
2
(|+〉|+〉 ± |−〉|−〉). (12)

We will form mixtures of two Bell states with probabilities p and 1−p. The QD of
such rank two Bell diagonal states, ρBD, can be readily worked out [11] and is given
by a simple formula
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D(ρBD) = ln 2 + p ln p + (1 − p) ln(1 − p). (13)

Note the state independence—the QD of rank two Bell diagonal states—only depends
on the probability p.

3 Results

To prove that Gaussian extremality does not apply to the QD, we compare the QD,
D(ρ), with the GD of the RGS, DG(ρG). Because GD provides an upper bound to
QD, D(ρ) > DG(ρG) implies D(ρ) > D(ρG). Our examples below demonstrate that
while D(ρ) > DG(ρG) holds for most states, there are some states for which D(ρ) <

DG(ρG). Note that this condition does not necessarily guarantee D(ρ) < D(ρG) and
cannot be used to conclude that Gaussian extremality does not apply to QD. However,
we show that there are cases in which D(ρ) = 0 while DG(ρG) > 0. This indicates
violation of Gaussian extremality for QD because nonzero GD implies nonzero QD
for Gaussian states [25, 26].

In the first part of this section,we use theCVBell states introduced earlier, assuming
real γ for simplicity. In the second part, we use a particular superposition of vacuum
and two-mode squeezed vacuum (TMSV) states to show that Gaussian extremality
does not apply to pure states either.

3.1 Bell states in cat basis

The CMs of the Bell states in the cat basis, with real γ , are given by

�AB =

⎛

⎜⎜⎝

1 + α0 0 rα0 0
0 1 + α1 0 sα1

rα0 0 1 + α0 0
0 sα1 0 1 + α1

⎞

⎟⎟⎠ , (14)

where α j = 2γ 2{coth 2γ 2 + (−1) j } and

r =
{

+1 for |�+〉 and |�+〉,
−1 for |�−〉 and |�−〉, (15)

s =
{

+1 for |�+〉 and |�−〉,
−1 for |�−〉 and |�+〉. (16)

For pure Bell states |�±〉 and |�±〉, D(ρ) > DG(ρG) holds in all cases as shown
in Fig. 1. Note that the only difference between the CMs of |�±〉 and |�±〉 is the signs
of the correlations r and s. Consequently, the differences in the GDs of the RGSs arise
solely from the determinant of the correlation matrix, Det [�AB], which means that
DG(|�+〉〈�+|G) = DG(|�−〉〈�−|G) and DG(|�+〉〈�+|G) = DG(|�−〉〈�−|G).
The GDs of the two types of RGSs converge as γ → ∞ because Det [�AB] → 0 in
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Fig. 1 Discord measures D(ρ) (orange solid curve) and DG(ρG) (blue dashed or dotted curve) for
|�±〉〈�±| and |�±〉〈�±| plotted as functions of γ . In the legend, �±G and �±G denote reference
Gaussian states for |�±〉 and |�±〉, respectively (Color figure online)

Fig. 2 Discord measures D(ρ) (orange solid curve) and DG(ρG) (blue dashed or dotted curve) as functions
of probability p for �̃ and �̃ with γ = 0.4 (Color figure online)

this limit. In the opposite limit of γ → 0, |�±〉 become superpositions of |0〉|0〉 and
|1〉|1〉while |�±〉 become superpositions of |1〉|0〉 and |0〉|1〉. The determinants of the
correlation matrices for the two types of states are distinct, leading to the difference
in their GDs.

Clearly, we need to consider mixtures of these states if we are to observe the
violation of Gaussian extremality at all. Considering only rank two mixed states for
simplicity, there are six types of mixtures. Of these, two exhibit similar behavior to
Fig. 1, i.e., D(ρ) ≥ DG(ρG), as depicted in Fig. 2. The two types of states are

�̃(p) = p|�+〉〈�+| + (1 − p)|�−〉〈�−|, (17)
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Fig. 3 Discord measures D(ρ) (orange solid curve) and DG(ρG) (blue dashed or dotted curve) as functions
of p for �̃±± and �̃±∓ with γ = 0.4 (Color figure online)

�̃(p) = p|�+〉〈�+| + (1 − p)|�−〉〈�−|. (18)

Note that D(ρ) = DG(ρG) = 0 at p = 1
2 , as the two types of states are classically

correlated and exhibit no quadrature correlations (i.e., �AB is a zero matrix) at this
point. Explicitly, the states can be expressed as:

�̃
( 1
2

) = 1

2
(|+〉〈+| ⊗ |−〉〈−| + |−〉〈−| ⊗ |+〉〈+|) , (19)

�̃
( 1
2

) = 1

2
(|+〉〈+| ⊗ |+〉〈+| + |−〉〈−| ⊗ |−〉〈−|) . (20)

The remaining types of rank two mixed states are

�̃±±(p) = p|�±〉〈�±| + (1 − p)|�±〉〈�±|, (21)

�̃±∓(p) = p|�∓〉〈�∓| + (1 − p)|�±〉〈�±|, (22)

whose discord measures are illustrated in Fig. 3. Note first that D(ρ) = 0 at p = 1
2 ,

which can be readily checked by rewriting the states as

�̃±±
( 1
2

) = 1

2
(|+〉x 〈+| ⊗ |±〉x 〈±| + |−〉x 〈−| ⊗ |∓〉x 〈∓|) , (23)

�̃±∓
( 1
2

) = 1

2

(|+〉y〈+| ⊗ |±〉y〈±| + |−〉y〈−| ⊗ |∓〉y〈∓|) , (24)

where |±〉 j are the eigenstates of the Pauli matrix σ j with j ∈ {x, y}. On the contrary,
the GDs (of the RGSs) exhibit nonzero values across all ranges of p. Since a nonzero
GD implies nonzero QD for Gaussian states [25], these results indicate that, at least at
this point, D(ρG) > D(ρ). This is enough to demonstrate that theGaussian extremality
does not hold for QD.
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3.2 Superposition of vacuum and two-mode squeezed vacuum states

By using mixed states constructed from the CV Bell states, we have demonstrated that
the QD of the RGS may be either larger or smaller than the QD of the original state,
thereby proving that Gaussian extremality does not hold for QD. In this section, we
demonstrate that the same conclusion can be reached using pure states only. To this
end, we use the following photon number entangled state:

|ψ(g, λ)〉 = g|0〉|0〉 +
√

(1 − g2)(1 − λ2)

∞∑

n=1

λn−1|n〉|n〉, (25)

with 0 ≤ λ, g ≤ 1. This state can be rewritten as a superposition of vacuum and
TMSV states for λ 
= 0 as follows:

|ψ(g, λ)〉 = gλ − √
(1 − g2)(1 − λ2)

λ
|0〉|0〉 +

√
1 − g2

λ
|TMSV〉, (26)

where the TMSV state is given by

|TMSV〉 =
√
1 − λ2

∞∑

n=0

λn|n〉|n〉. (27)

Depending on the values of g and λ, this state exhibits the following characteristics:

• It represents a TMSV state when g = √
1 − λ2.

• It becomes separable for two cases: (1) g = 1, and (2) g = 0 and λ = 0.
• It manifests as an entangled qubit state when 0 < g < 1 and λ = 0.

The QD of |ψ(g, λ)〉, which is equal to its entanglement entropy, is given by

D(ρ) = −
{

λ2

1 − λ2
ln λ2 + ln[(1 − g2)(1 − λ2)]

}
(1 − g2) − g2 ln g2, (28)

and its CM is

�AB =

⎛

⎜⎜⎝

a 0 c 0
0 a 0 −c
c 0 a 0
0 −c 0 a

⎞

⎟⎟⎠ , (29)

where a = 1+ 2(1− g2)/(1− λ2) and c = 2 g
√

(1 − g2)(1 − λ2) + 2λ(1− g2)(2−
λ2)/(1 − λ2). Due to the simple structure of the CM, the GD of the RGS can be
compactly written as

DG(ρG) = h(a) + h

(
a − c2

a + 1

)
− 2h

(√
a2 − c2

)
. (30)
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Fig. 4 Discord measures D(ρ) (orange solid curve) and DG(ρG) (blue dashed curve) for |ψ(g, λ)〉 a as a
function of g (λ = 0.995) and b as a function of λ (g = 0.995) (Color figure online)

Note that the above RGS is mixed in general, which makes calculating its QD
nontrivial in principle. However, it turns out that for Gaussian states with the above
CM, i.e., two-mode squeezed thermal states, the GD is equivalent to the QD [19].
Consequently, Fig. 4 clearly demonstrates that Gaussian extremality is violated for
pure states as well.

4 Discussion

Our counterexamples have several implications for the properties of QD. In this
section, we elaborate on them in detail.

4.1 D(�) = 0� D(�G) = 0

For certain measures of correlation, such as several measures of entanglement and
quantum mutual information, the vanishing correlation of a quantum state implies
vanishing correlation for its RGS. That is, for a measureM,M(ρ) = 0 ⇒ M(ρG) =
0. In the case of a quantum entanglement measure E , this holds if the measure obeys
Gaussian extremality, i.e., E(ρ) ≥ E(ρG) [22] and nonnegativity, i.e., E(ρ) ≥ 0. In
the case of quantummutual information I , which fails to satisfy Gaussian extremality,
I (ρ) = 0 implies I (ρG) = 0 because (i) I (ρ) = 0 only for product states and (ii) the
RGS of a product state ρ = ρA ⊗ ρB is a product state ρG = ρA,G ⊗ ρB,G. On the
contrary, our result explicitly demonstrates that D(ρ) = 0 is not a sufficient condition
for D(ρG) = 0. Notably, since D(ρG) becomes zero only when ρG is a product state
[25, 26], one observes this phenomenon for all classically correlated states whose RGS
has nonzero quantum mutual information.

4.2 On superactivation of quantum discord

In Ref. [22], it was shown that, for given first- and second-order moments, a corre-
lation measure M is minimized by Gaussian states, i.e., M(ρ) ≥ M(ρG) if it is:
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1) continuous, 2) invariant under local unitary operations and 3) strongly superad-
ditive, i.e., M(ρA1B1A2B2) ≥ M(ρA1B1) + M(ρA2B2) [22]. If the third condition is
changed to strong subadditivity, i.e., M(ρA1B1A2B2) ≤ M(ρA1B1) + M(ρA2B2), the
measure is maximized by Gaussian states, i.e., M(ρ) ≤ M(ρG). Since QD satis-
fies the conditions 1 and 2 [4], our results indicate that the QD is neither strongly
superadditive nor strongly subadditive. However, it is known to be subadditive:
D(ρA1B1 ⊗ ρA2B2) ≤ D(ρA1B1) + D(ρA2B2) [29].

The subadditivity of QD, along with the fact that it is nonnegative, implies that QD
cannot be superactivated [30]. In otherwords, it is impossible to generateQDbyprepar-
ing multiple copies of a quantum state with zero discord: D(ρ) = 0 ⇒ D(ρ⊗m) = 0
for any positive integerm. Now, the Gaussification procedure in [22] can be described
as ρ̃1 = limm→∞ tr2···m[Ûρ⊗mÛ †] = ρG where Û is a product of local unitary oper-
ators Û = ÛA1A2···Am ⊗ ÛB1B2···Bm . Combining the no-go result for superactivation
and the local unitary invariance property, we must have limm→∞ D(Ûρ⊗mÛ †) = 0
whenever D(ρ) = 0 is satisfied. However, we have shown that equal mixtures of
certain Bell states have D(ρ) = 0 while D(ρG) > 0. The implication is that while
QD cannot be superactivated, it can be activated from multiple copies of a classically
correlated state by the help of a local unitary operation and partial trace.

4.3 Bounds on the difference between the quantum discords of� and�G

We have demonstrated that there is no definite ordering between D(ρ) and D(ρG).
Does this mean that their difference can take on any value? Perhaps unsurprisingly,
it is bounded both from below and above. To see this, note first that the QD is upper
bounded by the local von Neumann entropy, i.e., D(ρAB) ≤ S(ρB) [4]. A trivial
lower bound can also be obtained as L(ρAB) = max[0, S(ρB) − S(ρAB)] from the
definition of QD. Combining these, we obtain L(ρAB) ≤ D(ρAB) ≤ S(ρB) and
L(ρAB,G) ≤ D(ρAB,G) ≤ S(ρB,G). Subtracting the second from the first gives

L(ρAB) − S(ρB,G) ≤ D(ρAB) − D(ρAB,G) (31)

for the lower bound and

D(ρAB) − D(ρAB,G) ≤ S(ρB) − L(ρAB,G) (32)

for the upper bound. The lower bound L(ρAB)− S(ρB,G) is always nonpositive due to
the nonnegativity and Gaussian extremality of the von Neumann entropy, specifically
S(ρ) ≥ 0 and S(ρ) ≤ S(ρG) [22]. In contrast, the upper bound S(ρB) − L(ρAB,G)

is always nonnegative due to the nonnegativity of the von Neumann entropy and the
Gaussian extremality of the conditional quantum entropy, i.e., S(ρAB) − S(ρB) ≤
S(ρAB,G) − S(ρB,G) [22].
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5 Conclusion

In this work, we demonstrated that the QD is not extremalized by Gaussian states.
That is, there is no definite ordering between the QD of a bipartite state ρ and
that of its RGS ρG. Our finding suggests that QD-related measures [5] are gener-
ally unlikely to be extremalized by Gaussian states. A specific example of this is the
measurement-induced disturbance [31], which involves performing measurements on
both subsystems in the eigenbasis of their respective reduced density matrices. It is
known to be equal to QD for pure states (and to be greater than or equal to QD for
mixed states) [32], so our result implies that Gaussian extremality does not hold for
measurement-induced disturbance.

Our counterexamples have interesting implications, which are discussed in Sect. 4.
We showed that vanishing QD of a bipartite state ρ does not imply vanishing QD
of its RGS ρG. We have also shown that QD cannot be superactivated, but may be
activated with the help of local unitary operations and partial trace. Lastly, we derived
upper and lower bounds on the difference D(ρ) − D(ρG). It may be interesting to see
whether tighter bounds can be obtained. Another topic worth investigating is Gaussian
extremality of stronger quantum correlations beyond quantum entanglement such as
quantum steering and nonlocality.
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