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Abstract

Quantum computers hold unprecedented potentials for machine learning applications. Here, we
prove that physical quantum circuits are probably approximately correct learnable on a quantum
computer via empirical risk minimization: to learn a parametric quantum circuit with at most n°
gates and each gate acting on a constant number of qubits, the sample complexity is bounded by
O(n°t1). In particular, we explicitly construct a family of variational quantum circuits with
O(n*!) elementary gates arranged in a fixed pattern, which can represent all physical quantum
circuits consisting of at most n° elementary gates. Our results provide a valuable guide for
quantum machine learning in both theory and practice.

1. Introduction

Opver the past few decades, machine learning, especially deep learning, has made dramatic progress [1, 2] in
a wide range of tasks, such as playing the game of Go [3, 4], protein structure prediction [5], and computer
vision [6], etc. More recently, the interplay between machine learning and quantum physics has attracted
tremendous interest [7—11], giving birth to an emergent research Frontier of quantum machine learning. A
number of notable quantum algorithms, such as the Harrow—Hassidim—Lloyd (HHL) algorithm [12],
quantum generative models [13], and quantum support vector machine [14], have been designed to
enhance, speed up, or innovate machine learning with quantum devices. These algorithms bear the
intriguing potentials of exhibiting exponential advantages compared to their classical counterparts,
although subtle caveats do exist and require careful examinations in practice [15].

In 1984, Valiant introduced the probably approximately correct (PAC) learning model [16], which gives
a complexity-theoretical foundation and a mathematically rigorous framework for studying machine
learning. Since then, the PAC learning model has been extensively studied in various machine learning
scenarios to understand why and when efficient learning is possible or not [17, 18]. With the rapid progress
in quantum computing [19-21], practical applications of quantum machine learning have become more
and more realistic [22-26]. A natural problem is then to generalize the PAC learning model to quantum
learning scenarios. Indeed, notable progress has been made along this direction [27-37]. For example, in
reference [28] Chung and Lin have studied the sample complexity of learning quantum channels and
demonstrated that we can PAC-learn a polynomial-size quantum circuit with a polynomial number of
samples. In addition, in reference [33] Bu et al investigated the Rademacher complexity of quantum circuits
in the framework of quantum resource theories [38]. They introduced a resource measure of magic for
quantum channels based on the (p, g) group norm and found useful bounds for how the statistical
complexity scales with resources in the quantum circuits. Yet, this fledgling research direction is still in its
rapidly growing early phase and many important issues remain barely explored.

In this paper, we study the problem of the sample complexity for learning parametric quantum circuits.
We focus on the supervised learning scenarios and prove that all the unitary physical quantum circuits are
PAC learnable on a quantum computer via empirical risk minimization. More concretely, we prove the
following two theorems: (1) any physical n-qubit quantum circuit consisting of at most n° unitary gates
with each gate acting on a constant number of qubits can be represented in an exact fashion by a family of
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variational quantum circuits with O(n°"!) elementary gates arranged in a fixed uniform pattern; (2) this
family of variational quantum circuits is PAC learnable. Since most quantum circuits that can be efficiently
implemented on a quantum computer, such as the circuits for the Shor’s algorithm [39] or the HHL
algorithm [12], contain at most a polynomial number of gates, our results imply that they are all PAC
learnable with a quantum computer.

2. Results

2.1. Notations and the general setting

We define the concept class C as the collection of all the n-qubit parametric quantum circuits with at most
n° unitary gates, each gate acting on at most b qubits (b, ¢ are constant numbers independent of 7). We note
that C is general enough to include most quantum circuits in practical applications. Here, we study the
learnability of the quantum circuits in C under the PAC learning framework [18]. Let C € C be any n-qubit
circuit in this concept class. When we input an n-qubit pure state |1);, to C, we will get an output n-qubit
pure state 1)) oy = C|1))in. Therefore, C can be viewed as a function f¢ : X — ), where its domain X" and
range ) are both the set of all n-qubit pure states. In this work, we write x € A’ as an abbreviation of the
n-qubit quantum state [¢(x)), and similarly for y € ). With these notations, we sometimes write y = fc(x)
to denote |1 (y)) = C|i(x)) for simplicity.

We consider the supervised learning scenario [18] and denote the training set of size m as
S={l1, ) (x2,%5) - .» (Xm> ¥,,) }- Under the PAC learning framework, to learn the unknown circuit C,
assume we have m independent #n-qubit input samples {x1,x3,...,%,} € X", we can input them into C,
and obtain output states {y1,%2,...,¥m} € V™. The essential task of supervised learning is then to learn
from S a hypothesis function (here a quantum circuit F) that can approximate the target function fc(x).
This might be accomplished by minimizing certain loss functions over a set of variational model
parameters. More concretely, we construct a variational quantum circuit F consisting of multiple gates with
some of them having tunable parameters. By tuning these parameters, we can use F to represent different
functions f, : X — ), and we define our hypothesis space F as the collection of all the functions f, that F
can represent. Given m independent samples and a tunable quantum circuit F, we can use the following
process to make our circuit F become a good approximation of C. We can tune the parameters of F
according to the training set S, so that when we put the state x; (i = 1,2, ..., m) into the input of F, the
output of F will be a good approximation of y;. By the PAC learning theory, assuming that F has good
generalization power, fi,’s decent performance on the training set can imply its good performance over the
whole sample space.

The effectiveness of the above process is based on two assumptions. First, the space of F should be large
enough, so that given any set of samples S = (x;, yi)i=1,,.,m>» we can always find a function f, € F, such that
fn(xi) can approximate y; with a small error for all i = 1,2, ..., m. Second, the space of F should not be too
large or complex, so that F has favorable generalization power to generalize its performance from the
training set S to the true probability distribution that S is sampled from. This is a reflection of the Occam’s
razor principle [18]. Therefore, we need to design a variational quantum circuit class F, which meets the
following two requirements simultaneously in order to learn fc:

e R1: For any C € C, there exists a hypothesis function f;, € F, such that f,(x) = fo(x) forall x € X.

e R2: The hypothesis space F satisfies the PAC learnability.

We note that the first requirement R1 is stronger than the first assumption, because the function f, in R1
is the same as fo. Hence, the training error f, on the set of samples S is necessarily zero, whereas the first
assumption only requires that f; has a small training error for S. In supervised learning, obtaining
high-quality training samples is usually resource-demanding in practice. Thus, studying the sample
complexity becomes crucial. In the following, we will study the sample complexity of learning parametric
quantum circuits and rigorously prove that any physical quantum circuit is PAC learnable.

2.2. A family of universal variational circuits

To meet R1, we should ensure that F has representation power for all the n-qubit parametric quantum
circuits C in C. We observe that any quantum circuit C can be decomposed as a sequence of O(n) number
of H gates, R,(0) gates, and CNOT gates (see the proposition 1 in appendix A). Thus in our construction of
F, we also use these three kinds of gates and arrange them into a uniform pattern, so that its scaling to
quantum circuits with more qubits is clear. The construction of F is illustrated in figure 1, which is based on
block assembling, i.e., assembling some relatively small gadgets to form a more complicated block. By
convention, we denote the three Pauli matrices by X, Y, and Z. A well-known result about quantum circuit
states that any single-qubit unitary gate can be expressed as e R,(3)R.(7)R,(5), where a, 3,7, and § are
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Figure 1. Pictorial illustration for the construction of the hypothesis quantum circuits. (a) The elementary (level-1) block L.
This block contains four Hadamard gates and three single-qubit rotations along the x direction with rotation angles
parameterized by §, 7, and §3, respectively. (b) The level-2 block B; constructed based on four level-1 block and two CNOT gates
with the first qubit being the control qubit and the 7th qubit being the target one. (c) The constructed hypothesis quantum
circuit, which consists of Mn repeated layers of B,B,_; . .. B,.

!
|

four real numbers, and R,(0) = e 1%%/2 and R,(#) = e */2 are the rotation operators along the z-axis and
x-axis on the Bloch sphere, respectively [40]. Inspired by this, we define a set of basic gadgets (we call them
level-1 blocks) to be L = {HR,(8)HR,(7)HR(0)H|S,~,d € [0,2m)}. In this way, we can tune the
parameters of a level-1 block so that it can represent all the single-qubit unitary gates up to an irrelevant
global phase factor e, In addition, when we set 3 = v = § = 0, the level-1 block will reduce to the identity
gate.

Using level-1 blocks we can construct level-2 blocks B; (i = 2,3, ..., n). First we put two level-1 blocks
(denoted as L) at qubit 1 and qubit 7, and then insert two CNOT}; gates, as shown in figure 1(b). Here, we
use CNOT); to denote the controlled-NOT gate between the first and ith qubits, with the first qubit being
the control qubit and the ith one being the target one. With this, the desired hypothesis quantum circuit F
can be constructed as:

F=(B,By1...B)"", (1)

where M is a constant independent of the number of qubits #. We mention that the hypothesis circuit F has
a uniform structure for arbitrary system sizes. In addition, only the x-rotations contain variational
parameters, and it is straightforward to obtain that the total number of parameters used for defining F
scales as O(n<t1).

For an arbitrary quantum circuit U, we say that it can be represented by the variational circuit F if there
exists a solution to the parameters (denoted collectively as €) in F such that F = U up to an irrelevant
global phase. Now, we are ready to give the first theorem stating that for any C € C, we can use F to
represent it:

Theorem 1. For any C € C, there exists a hypothesis function fi, € F, such that f,(x) = fo(x) forallx € X.

Proof. We first give a high-level intuition for the proof. We note that any gate acting on a constant number
of qubits can be decomposed into a quantum circuit with a constant number of elementary gates, namely
the CNOT gates, H gates, and R, () gates. Thus, any C € C can be decomposed into a quantum circuit with
O(n°) elementary gates. In addition, as our hypothesis quantum circuit F consists of Mn® layers and every
two layers can represent one arbitrary elementary gate acting on any pair of qubits through tuning the
parameters properly, we can prove that C can be represented by F in an exact fashion.
The complete proof is as follows. First, we note that C consists of O(n‘) elementary gates by the
definition of C. By proposition 1 in appendix A, the circuit C can be written as a product form
UUp_1 ... Uy, where [ = O(#°), and each U; is either CNOT); or a single-qubit unitary gate V; on qubit j.
Denoting B,B,,_1 . . . B, as one layer of level-2 blocks, then we define a block string of d layers as follows:

(B,By_1...By)".
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We define T as the minimal number so that a block string of T layers can represent UjU;_; ... U,. As our
hypothesis circuit F contains Mn° layers in total, we will show that to represent U;U;_; . .. Uy, the minimal
number of layers needed in the block string is no greater than Mn‘. Then, when the previous T layers in F
have represented C exactly, by the first part of proposition 2 in appendix A, we can set the remaining

(Mn® — T) layers to be the identity gate on the n qubits. Therefore, we can show that F can represent C in an
exact fashion and complete the proof of theorem 1.

To show that T' < Mn¢, we will prove that for each U;, i = 1, 2,..., I, we only need two layers to
represent U; exactly. Then putting them together, we can prove that we need only 2[ layers to represent
UUp_q ... Uy, which yields T' < 21.

We fix any i € {1,2,...,1}. By proposition 2, one layer B,B,_; ... B, can represent any single-qubit
unitary gate V; acting on any qubitj = 1,2,...,7 up to a global phase €. Moreover, two layers
(BBy_1 . ..B,)* can represent CNOT}; for any j = 2,3, ..., 1. We note that Uj is either a single-qubit gate
V; acting on some qubit j, or a two-qubit gate CNOT};. Therefore, we only need two layers at most to
represent U; exactly.

As we have shown that T' < 2] = O(n°), by choosing a large enough constant M, we can prove that
T < Mn® and complete the proof of the theorem. ]

Theorem 1 shows that given any quantum circuit C € C, there always exists a solution to the parameters,
such that the circuit F can simulate the quantum circuit C acting on the n-qubits with zero error. Therefore,
given any training set S = (x;, ¥i)i=1.,..» sampled independently from some distribution P over X’ x ), if
we have y; = fo(x;) forall i = 1,2, ..., m, we can find an instance f, € F with zero training error. In fact,
this theorem has a wider range of applications. When a quantum circuit consists of fewer than n‘ gates, we
can add some identity gates after it, so our theorem covers all the quantum circuits containing no more
than n¢ gates. In other words, we can use only O(n“™!) gates, which are arranged in a uniform pattern, to
represent all the circuits with #n° gates or fewer. We remark that the number of gates in many famous
quantum circuits, such as quantum support vector machine [14], HHL algorithm [12], and quantum
Fourier transform [41], scales polynomially with the number of qubits. Therefore, all of these circuits above
can be represented exactly by our circuit F.

2.3. PAClearnability of F

In the PAC setting, we usually assume that the input samples are randomly generated from certain
unknown probability distribution. As a result, when the hypothesis space covers the underlying distribution
and the training dataset is large enough, both the training and generalization error should be small. In this
paper, our hypothesis space F has been proved in theorem 1 to be able to cover all the parametric quantum
circuits in C. Now, we study the sample complexity for training a circuit F € F to represent C € C. To this
end, we define a measure of the distance between two pure states in )/, which is used as the loss function
L:Y x Y —[0,1]. Specifically, we define the loss function L£(y;, y,) to be the trace distance of two
quantum states [1)(y,)) and |9 (y,)):

L0mp) = S IO 0] = [0 @0

where || - ||; denotes the trace norm of a matrix. Given a hypothesis function f;, € F and the training set
S = (%i» ¥i)i=1,,.,m sampled independently from some distribution P, we can define the empirical risk of f;,
which is also known as in-sample error:

RO = > L0 fix).
i=1

The risk of a hypothesis function f;, € F is then defined as the average loss of f, over the probability
distribution P:

R(f) = /X EO (AP ).

Our goal is to find a hypothesis f, € F and minimize its risk R(f,). As the parametric quantum circuit Cis a
black box in our setting, we do not know the probability distribution P. In the learning process, we use the
training set S and find an empirical risk minimizer h € F over S. For convenience, given the training set S
and the probability distribution P, we define i = arg il/leljrtl R(H) to be the empirical risk minimizer, and
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h = arg inin R(K) to be the risk minimizer. Now we formally introduce the definition of the PAC
'eF
learnability for completeness [42]:

Definition 1 (PAC learnability). A hypothesis space F is PAC learnable, if there exists a function
v:(0,1)? = N, such that for all (¢, §) € (0, 1)? and all probability measures P over X’ x ), when the size of
training set |S| > v(e, §), we have

Py (R(iz) —RMh) < e) >1-94. (2)

Here Pg(A) denotes the probability that event A happens over repeated sampling of the training set S.

We note that when we randomly select a state x € &, input it into the circuit C and get an output state
y = fc(x) € Y, the resulting probability distribution P of state pairs (x, y) will satisfy R(h) = 0, because we
can find an instance f, € F equal to fc by theorem 1. Therefore, if our F is PAC learnable, after we prepare
the training samples S and get an empirical minimizer h, with probability 1 — &, the average loss of h over P
will be no larger than ¢, i.e., R(h) < e. Now we are going to prove that F is PAC learnable, and the sample
complexity v is polynomial with 7, 1/¢, and In %.

Theorem 2. The hypothesis space F satisfies the PAC learnability, with sample complexity
v(6,8) = O(L(n™ In 2 +1n 3)).

Proof. The essential idea for the proof relies on the discretization of F. First, we construct a finite set of
hypothesis functions 7, such that for each function f, € F, we can find a function f] € F’ close enough to
fn- Then we use lemma 2 in appendix B to show that 7' is PAC learnable. Finally, for any f; € F and its
corresponding f;, as f, and f; are close enough, we can prove that their risk and empirical risk are close as
well. Therefore, we obtain that F is PAC learnable.

For clarity, we denote [ as the total number of R,(6) gates in the circuit F, and observe that [ < 12Mn‘*!,
We recall that F is defined as the collection of all the functions f; : X — ) that the circuit F can represent
by tuning the value of the parameters @ = (6,,6,, . ..,0;), where 0; € [0, 27) is the variational parameter
characterizing the ith x-rotation. Now we define a finite set 7' C F in this way: F’ is the collection of all
the functions f; : X — ) that circuit F can represent by tuning the value of all the ¢, in {0, ¢, 2e, . .., Ne},
where e = =1, N = LZ’TJ and K is a large enough constant. As there are [ = O(n“™!) rotatlonal gates in
circuit F in total, we have

c+1

127Knet1 70

Fl=| =2 ,
7 { 6 }

which is finite. As a result, we can plug 7' and €’ = ¢/6 into lemma 2 to obtain that when
S| > Z(n|F|+1n 3),

Ps (Vi e Fi|R(R) —R(F)| < g) > 1-6. (3)
We fix all the parameters @ in circuit F, and we will get an arbitrary hypothesis function f, € F. Then
we can round all the parameter € of circuit F into their nearest multiples of e in {0, ¢, 2e, . . ., Ne}, and we

will get a new hypothesis function ﬁ, € F'. By proposition 5, we obtain that for any f; € F,

[RG) = RG] < < @
R~ RG| < . 5)

Combining the three inequalities (3)—(5) together, we arrive at
Ps(Vfie FR(R) —R(A)| < 5) >1-6, (6)

when [S| > & (In |F'| +In 2). To prove that F is PAC learnable, we recall our notations that
h = arg inl;_l R(K),and h = arg inigfz(h’ ). Combining the inequality (6) and proposition 6, we obtain that
gs gs

P (R(ia) —R(h) < e) >1-94,

B O(nf+1)
when [S] = £(In|F'| +1In 2). Plugging in | F'| = [Mi‘ , we can prove that the hypothesis space

F is PAC learnable with sample complexity

1 1
v(e,0) = O (—2 (n“rl In 2 +In —)) .
€ € 1)
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This completes the proof of theorem 2. |

We denote £ as the collection of all the functions fc : X — ), where C € C. In fact, we can prove that £
is PAC learnable as well. By theorem 1, our hypothesis space F can cover all the quantum circuits in C.
Thus we can obtain that £ C F. Using the inequality (6), we will arrive at

Ps(¥fie&:R()—R(A) <5) =1-4, (7)

when [S| > % (In |F'| + In 2). Similarly with the method in theorem 2, we combine the inequality (7) with
proposition 6, and we can prove that £ is PAC learnable with sample complexity
v(e, d) = O(eiz(n‘+1 In 2 +41In %)) as well.

We stress the differences between our results and the previous works [28, 33] in the literature. First, in
reference [28] Chung and Lin focused on a finite set of discretized quantum channels, and their algorithm is
based on random orthogonal measurements. Whereas, in our settings we focus on a set of unitary quantum
circuits with continuous variational parameters, thus the size of our concept class is infinite. Moreover, our
proof is based on a family of variational quantum neural networks with an explicit uniform structure,
which would be useful in practical applications. Second, in reference [33] Bu et al considered a more
general class of quantum channels and their bounds of the sample complexity grow exponentially with the
number of qubits n. In contrast, our focus here is variational quantum circuits and the sample complexity
we obtained scales only polynomially with the system size. In other words, while reference [33]’s setting is
more general, the sample complexity bounds obtained in this work is exponentially tighter. Our work and
references [28, 33] are complementary to each other.

It is also worthwhile to clarify that, although we have proved that the sample complexity for learning any
physical quantum circuit is low (namely, it only scales polynomially with the number of qubits involved),
this does not mean that these circuits can be learned efficiently since the time complexity to learn an
unknown circuit can still be exponentially high. In fact, it has been proved recently that training a
variational quantum circuit, even for logarithmically many qubits and free fermionic systems, is NP-hard
[43]. This implies that although we know for sure that our hypothesis F can cover all physical quantum
circuits and only a polynomial number of samples are needed to train a variational circuit F € F, how to
efficiently solve the optimization problem of minimizing the empirical risk remains unclear and might be
an exponentially hard problem in practice.

3. Discussion

We mention that the family of hypothesis quantum variational circuits constructed in this paper is of
independent interest due to its use of only O(n°*!) variational parameters while maintaining notable
representation power. These circuits might be used as variational ansatz for implementing quantum
classifiers [23, 25, 44—48], variational quantum eigensolvers [49—52], or quantum generative adversarial
networks [53—-55], etc. On the other hand, we also remark that similarly to many other variational quantum
circuits constructed in the literature, this family of variational circuits may suffer from the barren plateau
(i.e., vanishing gradient) problem [56, 57] as well. In addition, our work can be appealing as the family of
circuits is constructed without optimizing the structure and the number of parameters. In the future, it
would also be interesting to explore other alternative structures with smaller depths and fewer parameters.
Another interesting problem worth further investigation is to consider a scenario where we do not have
perfect knowledge about the training data, namely that the training dataset may not be fully labeled. How to
extend our results to this scenario remains unknown.

We note that in our proof, the use of PAC learning theory is in fact independent from the learning
model, i.e., it can deal with both the classical and quantum objectives. In our settings, the objects to be
learned are parametric quantum circuits, but we can still use standard classical techniques of PAC learning
theory (like discretization) to obtain the sample complexity bound.

In summary, we have proved that unitary physical quantum circuits are PAC learnable on a quantum
computer via empirical risk minimization. In particular, we proved that to learn a unitary quantum circuit
with at most 7¢ local gates, the sample complexity is bounded by O(n¢t!). Our results are generally
applicable to all unitary quantum circuits of practical interest. There are many notable quantum circuits
(algorithms or kernels, such as Shor’s factorization algorithm [39], the HHL algorithm [12], quantum
support vector machine [14], quantum classification based on discrete logarithm [58], etc) that hold the
intriguing potential of exponential quantum speedup. Our results imply that a polynomial number of
samples are enough to learn these quantum circuits. In reference [59], Bang et al proposed a method for
learning quantum algorithms assisted by machine learning, which shows learning speedup in designing
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quantum circuits for solving the Deutsch—Jozsa problem, and our results imply that the quantum circuits
they used are PAC learnable as well.
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Appendix A. The universality of F

In this paper, all the constants such as b, ¢, K, and M are independent of n, €, and 4. Also, we recall that C is
the set of all the n-qubit quantum circuits with at most n° unitary gates, with each gate acting on at most b
qubits.

In proving theorem 1 in the main text, we used three lemmas, which are appended in the following. The
lemma 1 is proved in reference [40], which we recap here for completeness. The propositions 1 and 2 are
proved in this paper.

Lemma 1 ([40], section 4.5.2). An arbitrary unitary operation on b qubits can be implemented using a circuit
containing at most cob*4" single-qubit unitary gates and CNOT gates, where ¢, is a constant.

Proposition 1. Forany C € C, there exist | = O(n®) unitary gates Uy, Ua, . .., Uy, such that
C= U1 ... U, and each gate Uj is either a single-qubit unitary gate V; acting on qubit j, or CNOT); gate
with the first qubit being the control qubit and the jth qubit being the target one.

Proof. We first prove that C can be decomposed as O(n¢) elementary gates, including CNOT gates and
single-qubit unitary gates. By lemma 1, C can be implemented by at most cob”4’n° = O(n°) unitary gates,
and each gate is either a single-qubit unitary gate or CNOT;; gate with the control qubit 7 and the target
qubit j.

To prove that C can be decomposed as the product of [ = O(#¢) single-qubit unitary gates and CNOT};
gates, we need only prove that when i # 1 and i # j, CNOT; can be decomposed as CNOT};, CNOT};, and
H gates.

When i > 1,j = 1, we can write CNOT;, in this way:

CNOT;; = (H, ® H;)CNOT,;(H, ® H;).
Meanwhile, when i,j > 1 and i # j, we can decompose CNOT;; into CNOT); and CNOT;; in this way:
CNOT;; = (CNOTUCNOTH)Z,

and we have shown that CNOT); can be decomposed as CNOT}; and H gates.
As each decomposition uses only O(1) gates, we can obtain that C can be decomposed as the product of
I = O(n°) single-qubit unitary gates and CNOT}; gates, and the proof is completed. O

In a level-2 block B;, there are two level-1 blocks on qubit 1 and qubit j, respectively. Each level-1 block
has three parameters (3,7, d, and by Z-X decomposition [40], we can tune these three parameters to enable
a level-1 block L; on qubit j to represent any single-qubit unitary gate acting on qubit j up to an irrelevant
global phase. Also, by setting the three parameters to zero, a level-1 block L; can also represent the identity
gate. We will prove that by tuning the parameters of the level-2 blocks, one layer consisting of B,B,,_; . .. B,
can represent any single-qubit unitary gate acting on any qubit j, and CNOT}; can be represented by two
layers.

Proposition 2. (1) One layer B,B,,_, ... B, can represent any single-qubit unitary gate V; acting on any qubit j
up to an irrelevant global phase.
(2) Two layers (B,B,,_1 . .. By)* can represent CNOT,j up to an irrelevant global phase.

Proof. To prove this lemma, we will set most of the level-2 blocks in the layers to be the identity gates and
use at most two blocks to represent the gates we need.
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We prove part one first. We separate the claim into two cases, j = 1 and j # 1. When j = 1, we can let
B,B,_1 . ..Bs represent the identity gate by tuning all their parameters to zero. For clarity, we denote L; as a
level-1 block acting on the jth qubit. Given any unitary gate V; on qubit 1, a level-1 block L; can represent
V1, and both level-1 blocks L; and L, can represent the identity gate. As a level-2 block B, consists of four
level-1 blocks and two CNOT gates, we can tune the parameters of the four level-1 blocks in the following

way so that B, can represent V;:
—

O L]0

Similarly, when j # 1, we can let B,B,,_; ... Bj;, and Bj_, ... B3B, represent the identity gate. Then we
need only let B; represent unitary gate V;. Given any unitary gate V; on qubit j, we can tune the parameters
of the four level-1 blocks in the following way so that B; can represent V;:

S

R VAR .
—Vir L —®

Y

A
Y

Therefore, the proof of part one is completed. Now we will prove part two. We set all the parameters in
the two layers (B,B,_1 . .. By)? to be zero except the two B; blocks. Then we will use two B; blocks to
represent CNOT;. We decompose CNOT;; up to an irrelevant global phase factor e /% in the following
way:

(Wy ® W;3) CNOT; (I; ® W,) CNOTy; (I @ Wh),

where we set W; = R, (%) , W) =R, (%) , W3 =R, (—g) R, (—%), and W, = R, (—%) Here we denote
R,(0) = e 19Z/2 and R,(0) = e 19Y/2 35 the rotation operators along the z-axis and y-axis on the Bloch
sphere, respectively. In addition, W, and the identity gate I; act on the first qubit, and W, W,, and W; act
on the jth qubit.

Hence, we use the B; block in the first layer to represent CNOT}; (I; ® W,) CNOT;; (I} ® W)) in this

way:
—{ [ |——

—{m - |-

Finally, we use the second level-2 block B; to represent W, ® W3, where Wj acts on the first qubit and
W; acts on the jth qubit. Therefore, two layers (B,B,_ ... B;)? can represent CNOT;; up to an irrelevant
global phase, and this completes the proof of part two. |

Appendix B. PAC learnability of F

The following lemma shows that any finite hypothesis space F” is PAC learnable.

Lemma 2 ([42], corollary 1.2). Assume that the hypothesis space F' is finite, § € (0,1], € > 0 and the range of
the loss function is in an interval of length ¢ > 0. Then if the size of the training set |S| > % (In|F| +1n %),
the eventV fi, € F': |R(fi) — R(fi)| < € holds with probability at least 1 — & over repeated sampling of the
training set S.

Our circuit F consists of R,(6), H, and CNOT gates. By assigning two sets of different values to the
variational parameters 8, we can get two distinct circuits F; and F,, and their corresponding hypothesis
functions f; and f, are different. We note that although F, and F, differ in the value of their variational
parameters 6, their ordering of the gates (R.(¢), H, and CNOT gates) are the same. We will show that when
all the variational parameters in circuit F; and F, are close enough, the risk and empirical risk of f; and f,
will be close. To prove this, we first define the distance of two unitary matrices U, U, € C*"*?" as the
2-norm of the matrix U; — Us:

E(U, Uy) = HUl - Usz = Su)I()”(Ul - Uz)W(X)>H2~
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Now we introduce the following lemma about the function E(U,, U,).
Proposition 3. The function E(U;, U,) satisfies the following properties:

(a) Let U, V be the R.(0), R.(6 + €) gates acting on the jth qubit, respectively, where
€€ (0,1),0 € [0,2m),j=1,2,...,n. Then E(U,V) < e.

(b) E(UiU,... U, ViViiy... V) < Zl.zl E (U}, V;), where Uy, Uy, ..., U, Vi, Va, ..., V) are unitary
matrices.

Proof. The second property is shown in [40], section 4.5.3. We need only prove the first property.

E(U, V)= |U = V|,
= [[Re(0) — Rc(0 + €)||2
= [[I = R(),
DL — (I —ieX/2 + (eX/2)%/21) — - )|
< lliex/2)l + || GeX/2)* /(2D + - - -
i) exp(e/2) — 1
<6

where (i) uses Taylor’s expansion of the operator R (¢) = eieX/2

exp(e/2) and that || X|[, = ||, = 1.

,and (ii) uses Taylor’s expansion of

We recall that L(y;, y») is the trace distance of two pure states |¢)(y;)) and |¢(y,)). Then we introduce
the following properties of L(y1, y2).

Proposition 4. The function L:) x Y — [0, 1] satisfies the following two properties:

(a) Forany yi,y2,y5 € YV, we have L(y1,y3) — L(¥2,¥3) < L(y1,12).
(b) Foranyyi,y, € Y, we have L(y1,y2) < ||[v(n1)) — [¥(y2)) [|2-

Proof. The first part of this lemma is the triangle inequality, which is proved in [40], section 9.2.1. Here, we
only prove the second property. We denote F(|¢)(y1)), |¢(12))) = |{(31)]10(32))] as the fidelity between the
two states [¢)(y;)) and |1(y,)). Then we will arrive at

£(y1,yz) = ZIO O] - Dol
@ OO,

where the proof of equation (iii) is given in [40], section 9.2.3.

In addition, we note that for any complex number z € C and its complex conjugate z* € C, as
(2] =1)> > 0, we have 2 — 2|z| > 1 — |z|>. Hence, we get 2 — z — z* > 2 — 2|z| > 1 — |2|?. Let
z= (¥ (y,)|¥(y,)), we obtain that

L1,y = V1= F((), [032))? = /1 — |z
<SV2—z—z = [[p(n) — Vo)

This completes the proof. |

Now we will use the properties of E(Uy, U,) and L(y1, y2) to show that the differences of both the risk
and empirical risk between f; and f, are bounded by €, where the hypothesis functions f; and f, correspond
to the variational circuits F; and F,, respectively.

Proposition 5. We denote 6" = (911:1 ) 951 e Gfl) as a vector containing all the variational parameters in Fy,
where 1 is the number of R.(0) gates in circuit F, and 6. is the value of the variational parameter characterizing
the ith x-rotation of Fy. Similarly, we denote 07 = (012,05, ..., sz) as a vector containing all the variational
parameters in F,.

Let f1,f» € F be the corresponding hypothesis functions of Fy, F,, respectively. Then given any probability
distribution P over X x Y and training set S = (X;, ¥i)i=12,...m> the following two inequalities hold if
16" — 6™ < et (Kis alarge enough constant):

R(fi) —R(L) < &
[R(f) = R(f)| <

€.
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Proof. First, we will prove that E(F, F,) < e when ||8"1 — 8", < 1+ Then we will use it to show the
risk and empirical risk of f; and f, are close.

As F is composed of H gates, R,(#) gates and CNOT gates, we can write F; = UjU;_; ... U; and
F, = ViVi_y ... V), where U; is the ith gate in Fy, and V; is the ith gate in F,. As U; and V; are of the same
type of gates, we can prove that E(U;, V;) < 57 by separating different cases on the types of U; and Vi:

Case I: If U; and V; are both H gates or both CNOT gates, as there is no variational parameter in H or
CNOT, we have U; = V;, and we obtain that E(U;, V;) = 0.

Case II: If U; and V; are both R,(6) gates, as the difference of 6! and ;> is at most T by the first
property of proposition 3, we have E(U;, Vi) < &1

We note that I = O(n“"!) by our construction of F. By the second property of proposition 3 and
choosing a large enough constant K such that I < Kn‘™!, we can get

E(F,F,)=E(UU_,...U,V|Vi_;... V)

1
<Y E(UL, V)
N
€
< Z Knetl se

j=1

Now we can bound the differences of the risk and empirical risk between the two hypothesis functions f;

and f;, respectively. For convenience, we define D(fi, ) as  sup |L(y,fi(x)) — L(y, f2(x))|. We observe that
xeX,ye)

both |R(f}) — R(f)| and |R(f;) — R(f,)| can be bounded by D(f;, f;). Hence, we will prove that D(f;, ) < €,
and we can obtain the two inequalities |[R(f;) — R(5)| < e and |R(f;) — R(fy)| < ¢

(iv

Dl o) <’su§ L (0, /()
)
<su£\|f1(x) — L)

= sup||(F, — B)[¢ ()
xeX
= E(FI)FZ) < €,

where (iv) uses the first property of function £ in proposition 4, and (v) uses the second property of
function £ in proposition 4. This completes the proof of proposition 5. ]

We note that in our proof of theorem 2, we used lemma 2 and proposition 5 to show that
Ve F: ’R ( h) —R (fh) | < 5 holds with probability 1 — ¢. To prove that F is PAC learnable, we
introduce the following technical lemma.

Proposition 6. AssumeV f, € F : |ﬁ ( h) —R (fh)| < 5 holds. We denote h = arg img R(K), and
e

h= argmin R(H). Then we have
WeF

R(h) — R(h) < 2 sup [R(H) — R(H)| <
WeF
Proof. The proof of this inequality is given in [42], section 1.2. We give the proof of the lemma here for
completeness. To bound R(h) R(h), we observe that it can be expressed as the sum of R(h) R(h) and

f%(fz) — R(h). Then we can use sup |R(h’) — R(h’)| to bound R(h) R(h) and R(h) R(h), respectively.
WeF

10
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R(h) — R(h) = R(h) — R(h) + R(h) — R(h)

R(h) — R(h) + sup (R(h) — R(H))

(i WeF

< R(h) — R(h) + sup(R(H) — R(H))
WeF

< |R(h) — R(h)| + sup |R(K') — R(H')|
WeF

< 2sup [R(H) — R(H)| <,

WeF
where (vi) uses that & = argmin R(%’), and (vii) uses that h= arg min R(W). O
WeF WeF
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