
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

The A = 8 isotriplet in Fermionic Molecular
Dynamics
To cite this article: KR Henninger 2016 J. Phys.: Conf. Ser. 724 012019

 

View the article online for updates and enhancements.

Related content
8B structure in Fermionic Molecular
Dynamics
K R Henninger, T Neff and H Feldmeier

-

Lagrangian formulation for fermionic and
supersymmetric non conservative systems
N E Martínez-Pérez and C Ramírez

-

Fermionic matter under the effects of high
magnetic fields and its consequences in
white dwarfs
E Otoniel, M Malheiro and J G Coelho

-

This content was downloaded from IP address 131.169.4.70 on 03/01/2018 at 22:58

https://doi.org/10.1088/1742-6596/724/1/012019
http://iopscience.iop.org/article/10.1088/1742-6596/599/1/012038
http://iopscience.iop.org/article/10.1088/1742-6596/599/1/012038
http://iopscience.iop.org/article/10.1088/1742-6596/654/1/012005
http://iopscience.iop.org/article/10.1088/1742-6596/654/1/012005
http://iopscience.iop.org/article/10.1088/1742-6596/630/1/012039
http://iopscience.iop.org/article/10.1088/1742-6596/630/1/012039
http://iopscience.iop.org/article/10.1088/1742-6596/630/1/012039


The A = 8 isotriplet in Fermionic Molecular Dynamics
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E-mail: k.henninger@gsi.de

Abstract. Nuclear structure of the A = 8 isotriplet is investigated in the Fermionic Molecular
Dynamics (FMD) model. All three nuclei have importance to astrophysics, and exhibit
clustering or haloes. FMD uses a wave-packet basis and is well-suited for modelling such
structures. For a multiconfiguration treatment we construct the many-body Hilbert space from
antisymmetrised angular-momentum projected 8-particle states. First results show formation
of a proton halo in 8B, and reasonable reproduction of the T=1 states in 8Be.

1. Introduction
Determination of stellar nucleosynthetic reaction rates may rely on input from nuclear structure
calculations: experimentally, these reactions are very low-yield at astrophysical energies, giving
large uncertainties and necessitating theoretical input [1]. Weakly-bound nuclei appear as in-
termediates in these reactions, meaning that calculation of these reaction rates often requires
modeling of weakly-bound nuclear structure. Modeling such is, however, challenging, due to
proximity to the continuum, which requires that one access both scattering states and compact
(“shell-model like”) configurations in one’s chosen model, ideally in a consistent way. This is
particularly relevant to the asymptotic part of the wave function (i.e. at distances large com-
pared to the nuclear radius), where the scattering solutions contribute strongly (“coupling to
the continuum”). Asymptotic structure may influence reaction rate heavily [2], making accurate
modeling thereof an important goal.

Fermionic Molecular Dynamics (FMD) [3] is a microscopic nuclear model whose chief bene-
fit is in accessing clustering and shell-model like states in a consistent way, due to its flexible
basis (see e.g. [4]). The aim of this study is to model the nuclei 8Li, 8Be and 8B in the FMD
model, with a view to astrophysical applications.

Decay of 8B to 8Be gives rise to almost the entire high-energy solar-neutrino flux [5], mak-
ing 8B structure important both for determining the solar core temperature [5] and reducing
uncertainty in the Standard Solar Model, where the S factor (S17) for 7Be(p,γ)8B is imprecisely
known [6,7]. Other features in this isotriplet include the two-alpha cluster structure of the 8Be
ground state, which is challenging to model, especially if modeling the higher-lying, compact
T=1 states consistently. 8Li is of interest as the “mirror” of 8B: phenomena like Thomas-Ehrman
shift [8–10] are worth a revisit in mirror pairs where one nucleus has a proton halo.
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2. Fermionic Molecular Dynamics
Starting with protons and neutrons as basic nuclear constituents, we choose intrinsic many-body
configurations |Q〉 that are Slater determinants of single-particle states |q〉, or [11]:

|Q〉 = Â {|q1〉 ⊗ ...⊗ |qA〉} (1)

where Â is the antisymmetrisation operator. The single-particle states corresponding to the
protons and neutrons are:

|q〉 =
∑
i

|ai,~bi〉 ⊗ |χ↑
i , χ

↓
i 〉 ⊗ |ξi〉ci, (2)

where a superposition of wave-packets |ai,~bi〉 in the spatial part aids description of extended

distributions (e.g. haloes). Parameters ~b relate to the mean position and mean momentum of
the wave-packets and parameters a to their width [12]. The ket |χ↑, χ↓〉 is the most general
spinor. The isospin part |ξ〉 defines a particle as a proton or neutron, allowing no superpositions
of the two.

In phase space, the nucleon wave functions are Gaussian wavepackets, e.g. in co-ordinate space
we have:

〈~x|q〉 = exp

{
−(~x−~b)2

2a

}
. (3)

It is necessary to project out of intrinsic states |Q〉 the eigenstates of angular momentum and
parity, via projection operators [12]:

P̂ π =
1

2
(1 + πΠ̂)

P̂ JMK =
2J + 1

8π2

∫
dΩDJ

MK(Ω)
*
R̂(Ω),

where DJ
MK(α, β, γ) is the Wigner D-matrix, R̂(α, β, γ) and Π̂ are rotation and parity operators

and Ω = {α, β, γ} symbolises the Euler angles.

To obtain a good approximation to the nuclear ground state, the parameters {qν} describing
the intrinsic basis states |Q〉 are evaluated by requiring [4]:

min
{qν}

〈Q|Ĥ − T̂cm|Q〉
〈Q|Q〉

, (4)

where including the operator T̂cm ensures that centre-of-mass kinetic energy is subtracted out.
Using Eq.(4) is called Projection after Variation (PAV), as the variational principle is applied
and then projection operators act on the minimised state. It is more accurate to vary energy of
the projected state (Variation After Propection (VAP)), as then it is certain the projected state
has minimum energy [4].

To improve the description, additional basis states can be generated by performing minimisation
(Eq.(4)) subject to various constraints. These constraints could be on e.g. radii, moments or
deformation parameters [4]; allowing inclusion of many different configurations in the basis thus
created. The Hamiltonian may then be diagonalised in this basis. One may also create basis
states in which one explicitly imposes that the nucleus is composed of 2 or 3 clusters [4], which
may then be added to the constrained VAP basis to improve the description of the asymptotic
region.
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2.1. Interactions for FMD
FMD requires the Hamiltonian to be in operator form, so short range correlations are treated
via the Unitary Correlation Operator Method (UCOM) (see refs [13–15]).

The UCOM involves applying a unitary correlation operator Ĉ to the many-body state, to in-
corporate the short-range correlations. This gives rise to an effective Hamiltonian Ĥeff , as [14]:

〈Ψ|Ĉ†ĤĈ|Ψ〉 = 〈Ψ̃|Ĥ|Ψ̃〉
= 〈Ψ|Ĥeff |Ψ〉,

where Ĥeff = Ĉ†ĤĈ and Ĉ|Ψ〉 = |Ψ̃〉.

This transformation of the Hamiltonian induces many-body terms, i.e. [14]:

Ĥeff = Ĥ
[1]
eff + Ĥ

[2]
eff + Ĥ

[3]
eff + · · · , (5)

where the number in square brackets indicates number of bodies involved. The estimated
contribution of the three- and higher-body terms turns out to be very small compared to the
two-body contribution [13]. The transformed Hamiltonian up to two-body is therefore what
one calls the UCOM Hamiltonian. One compensates for “missing” three-body and higher terms
by adjusting the strength factor of the spin-orbit term, according to what best reproduces the
nuclear observables. In these calculations, we use a UCOM-transformed Argonne v18 (AV18)
interaction [16], as No-Core Shell Model calculations using this interaction show it to give good
descriptions of light p-shell nuclei [14].

3. Calculations
A VAP basis set was created for each of the three nuclei (8Li, 8Be and 8B), using constraints
on matter radius. Using the same constraint for all three nuclei ensures that one may compare
results. The maximum basis size was chosen by adding states to the basis, diagonalising, and
looking for convergence behaviour in energies of the low-lying states (see Fig. 1).

Basis size
[no. states]

8Li 8Be 8B

E
n
er
gy

[M
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]

2+(1)

1+(1)

3+(1)

0+(0)

2+(0)

Figure 1: Energies of the low-lying states of the A = 8 nuclei, plotted with basis size, indicating
convergence behaviour as basis size is increased. States are labelled with spin, parity and isospin as
in the key.

In order to compare results for the whole isomultiplet, it was decided to add the isospin partner
states into each basis. These are obtained for the 8Li-8B mirror pair via rotations in isospin
space, or

|Q̃〉 = exp
{
iπT̂2

}
|Q〉 = exp

iπ∑
j

t̂2(j)

 (A{|t(1), t3(1)〉 ⊗ . . .⊗ |t(A), t3(A)〉}) , (6)
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where |t(j), t3(j)〉 represents the isospin state of the jth nucleon, |Q̃〉 is a state in 8B and |Q〉 is
a state in 8Li, say. For transforming states in 8Li or 8B to states in 8Be, formally one applies
the isospin raising and lowering operators. In practise, one successively changes each of the five
protons to a neutron in each radius-constrained 8B basis state |Q〉 (or vice versa); giving 5 new
8Be basis states for each |Q〉 of 8B or 8Li. The two methods are equivalent: With isospin raising
and lowering operators, one would obtain a linear combination of these aforementioned states,
but we will reach such a linear combination when diagonalizing the Hamiltonian in this basis.

Besides creation and selection of basis states, one also has to consider the strength factor of
the spin-orbit term, as this incorporates the three- and higher-body terms in the interaction.
We initially perform all calculations using a spin-orbit strength factor of 2, and then used calcu-
lated transition-strengths and energies as an indicator for adjusting the strength. In the case of
weakly-bound nuclei with spatially-extended structures, (such as 8B), one may need less spin-
orbit strength. In 8Be, the T=1 states are more compact than the (α-cluster based) T=0 states,
and will thus be affected more strongly by three- and higher-body forces. We thus try larger
values of the spin-orbit strength factor when treating 8Be. Results and selected strength factors
are discussed below (Section 4).

4. Results
4.1. Observables
For all three nuclei, one obtains energy-levels that compare quite favourably to experiment
(Fig. 2), and especially to the calculated thresholds, in all three cases. The final basis set used for
each nucleus is summarised in Table 3. The calculated thresholds are ground-state energies of the
relevant core nuclei, calculated in radius-constrained FMD basis sets of comparable dimension
to those for the nuclei of interest. In the case of 8Li, the 7Li+n threshold was calculated (making
7Li the core nucleus), for 8Be, the two α particle threshold, and for 8B the 7Be+p threshold.

8Li 8Be 8B

Exp. Calc. Exp. Calc. Exp. Calc.

7Li+n

α+α

7Be+p

Figure 2: Experimental and calculated level-schemes for nuclei of the A=8 isotriplet. Basis sets used are
described in Table 3. Note the different y-axes for energy. The thin horizontal lines indicate experimental
and calculated thresholds for the decay process indicated (red labels).
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Table 1: Transition strengths for some intense transitions in the A=8 nuclei. Measured values from
[17–19]. “Exp.” and “Calc.” indicate experimental and calculated energies. Numbers in round braces
indicate the strength of the spin-orbit term. Transition strengths were calculated in the “full” basis
(supplied in Table 3).

States Energies [MeV] Transition strengths
Exp. Calc.

(1.5)
Calc.
(2.0)

Calc.
(3.0)

Exp. Calc.(1.5) Calc. (2.0) Calc. (3.0)

8Li 1+ → 2+ 0.980 1.261 1.622 2.541 5.00(16) µ2
N 5.080 µ2

N 5.317 µ2
N 5.825 µ2

N
8Be 2+ → 0+ 3.03 3.387 3.367 3.117 25(8) e2fm4 21.175 e2fm4 18.515 e2fm4 12.281 e2fm4

8B 1+ → 2+ 0.77 1.207 1.570 2.521 4.71(21) µ2
N 4.267 µ2

N 4.385 µ2
N 4.915 µ2

N

Table 2: Calculated rms radii for ground states of the A=8 isotriplet. References for the experimental
values are in square brackets. Radii were calculated in the “full” basis (as in Table 3). Numbers in round
braces indicate the strength of the spin-orbit term.

Rmatter [fm] Rp [fm] Rn [fm] Rcharge [fm]
8Li Exp. 2.37(2) [20] - - 2.29(8) fm [21]

Calc. (1.5) 2.315 2.118 2.430 2.255

Calc. (2.0) 2.243 2.070 2.341 2.211
8Be Calc.(2.0) 2.404 2.408 2.400 2.545

Calc.(3.0) 2.278 2.282 2.274 2.427
8B Exp. 2.38(4) [20] - - -

Calc.(1.5) 2.367 2.492 2.142 2.634

Calc.(2.0) 2.282 2.389 2.091 2.537

Table 3: Details of basis sets.

Nucleus: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaBasis states:
8Li 45 basis states: 27 radius-constrained VAP states for 8Li (9 each for Jπ = 1+, 2+, 3+), 11 cluster

states (7Li+n) and 18 isospin-partner states from 8B (radius-constrained VAP states projected on
Jπ= 1+, 2+, 3+).

8Be 260 basis states: 24 radius-constrained VAP states for 8Li (8 each for Jπ = 0+, 2+, 4+), 11
cluster states (2-α) and 225 isospin-partner states from 8B and 8Li (radius-constrained VAP states
projected = Jπ of 1+, 2+, 3+).

8B 45 basis states: 18 radius-constrained VAP states for 8B (6 each for Jπ = 1+, 2+, 3+), 11 cluster
states (7Be+p) and 27 isospin-partner states from 8Li (radius-constrained VAP states projected
on Jπ = 1+, 2+, 3+).

4.2. Spin-orbit strength factor
As discussed, we choose a spin-orbit strength factor that best incorporates higher-body terms.
We deduce from reproduction of observables (Tables 1-2) that spin-orbit strength factor 1.5 is
preferable for 8Li, and factor 2 for 8B (radii are better-reproduced with factor 1.5, but transitions
and energies with factor 2). Spin-orbit strength strongly affects energy of 8Be T=1 states (Fig. 3).
The T=1 states are well-reproduced when using a spin-orbit strength factor 3.
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Figure 3: Level-schemes for 8Be, comparing experimental and calculated energies when strength factor
of the spin-orbit term is varied. Numbers below each band indicate the strength factor of the spin-orbit
term.

4.3. Comparison to No-Core Shell Model
Our results are compared to current many-body theoretical results from the No-Core Shell
Model (NCSM) in Fig. 4. The NCSM calculations of [19] use an interaction obtained from
chiral effective field theory (χ-EFT). We compare to the energies they obtain using a χ-EFTH
interaction with up to two body terms included because the UCOM-transformed AV18 is
truncated at two-body, as discussed. In order to compare to their calculations using two-body
forces, we performed calculations using the UCOM-transformed AV18 with an L · S term with
strength factor 1. Our calculations compare relatively well with theirs, especially as regards
binding relative to threshold. The model-space of [19] is an 8~Ω space.

8Li 8Be 8B

Exp. FMD NCSM Exp. FMD NCSM Exp. FMD NCSM

Figure 4: Our results for the A=8 isotriplet (FMD), compared to NCSM results of [19] (NCSM). Both
are compared to the experimental levels (Exp). The FMD results shown here were calculated using a
spin-orbit term with strength factor 1, as the NCSM energy-levels shown were calculated using a χ-EFT
interaction truncated at the two-body level. Note the different y-axes for energy. The thin horizontal
lines indicate experimental and calculated thresholds, which are the same as those in Fig. 2. The NCSM
results were calculated in an 8~ω model-space.
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5. Conclusion and Summary
The results obtained here show that our FMD calculations reproduce energies, transition-
strengths and radii of the A=8 isotriplet nuclei favourably, and compare well with the latest
theoretical results. Our results show formation of a proton halo in 8B (a calculated proton
radius of 2.389 fm, neutron radius of 2.091 fm and matter radius of 2.282 fm).We also achieve
reasonable reproduction of the T=1 states in 8Be; which indicates FMD is able to reproduce
both clustering and shell-model like states consistently.
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