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CrossMark
Abstract

Real 3-manifold triangulations can be uniquely represented by isomorphism
signatures. Databases of these isomorphism signatures are generated for a
variety of 3-manifolds and knot complements, using SnapPy and Regina, then
these language-like inputs are used to train various machine learning archi-
tectures to differentiate the manifolds, as well as their Dehn surgeries, via
their triangulations. Gradient saliency analysis then extracts key parts of this
language-like encoding scheme from the trained models. The isomorphism
signature databases are taken from the 3-manifolds’ Pachner graphs, which are
also generated in bulk for some selected manifolds of focus and for the sub-
set of the SnapPy orientable cusped census with < 8 initial tetrahedra. These
Pachner graphs are further analysed through the lens of network science to
identify new structure in the triangulation representation; in particular for the
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hyperbolic case, a relation between the length of the shortest geodesic (systole)
and the size of the Pachner graph’s ball is observed.

Keywords: triangulations, machine learning, network science, 3-manifolds,
isomorphism signature

Contents
1. Introduction 2
2. Preliminaries 4
2.1. Triangulation IsoSigs 4
2.2. Existing results surrounding Pachner graph paths 6
3. Data generation & analysis 7
3.1. Pachner graph network analysis 9
3.1.1. Orientable cusped census 14
4. ML IsoSigs 21
4.1. Differentiating manifolds 22
4.1.1. NNs 24
4.1.2. Transformers 27
4.2. Differentiating Knots 29
4.2.1. Supplementing with Dehn Surgery 30
5. Conclusions and outlook 31
Data availability statement 32
Acknowledgment 32
Appendix A. IsoSig encoding 32
A.1. Example: triangular bipyramid 34
Appendix B. Pachner graphs 35
References 43

1. Introduction

Low-dimensional topology, as the study of manifolds of dimension 2,3, and 4, has yielded
countless invaluable results and insights. Initially it was driven by the quest of the Poincaré
conjecture (stating that a 3-manifold homotopy equivalent to the 3-sphere is homeomorphic to
it) and W. Thurston’s geometrisation conjecture [1] which were finally proven by G. Perelman
through Ricci flow regularisation techniques [2, 3]. But during the eighties the discovery of
the first relevant examples of topological quantum field theories by Witten [4] established the
field as a central testing ground for most physical theories. Therefore, beyond their intrinsic
interest within mathematics, this field has long had large influence within physics [5], and more
recently, its influence has been cemented in the development of the younger field of computer
science [6], where in particular concepts such as triangulation and meshing are essential for
rendering and visualisation.

As computational power has exponentially developed in recent decades, so too has the
potential for implementation of resource-expensive computational methods. Many problems
completely intractable before have now become rather accessible, largely through methods of
‘big data’ and ‘big compute’. However mathematical research presents a unique challenge,
where datasets can often be generated infinitely and sampled cheaply, exhaustive computation

2



J. Phys. A: Math. Theor. 58 (2025) 095201 F Costantino et al

becomes infeasible, demanding statistical practises. It is here, from a presently prominent sub-
field of computational science that a wealth of new techniques have been made available for
approaching mathematical research; that field being: machine learning (ML).

ML covers a broad range of techniques for computational statistics, and the subfield itself
can be split into three core subsubfields, which each have already seen compelling successes in
mathematics and mathematical physics. These are: supervised learning [7-26] (introduced in
[27]), unsupervised learning [28, 29] (introduced in [30]), and reinforcement learning [31-36]
(introduced in [37]); with notable introduction to string theory in [38—41]. This work focuses
on techniques from the first of these subsubfields, in particular using supervised learning meth-
ods to classify and study 3-manifolds.

The direct application of ML methods within low-dimensional topology is increasingly
widespread. Initiated in [42], where neural networks (NNs) were first used to predict knot
invariants, after the surprisingly accurate prediction of the hyperbolic volume of a knot com-
plement from its Jones polynomial [43], the study carried on in [44] where it was shown that
NN could effectively distinguish high complexity knot presentations of the trivial knot from
non-trivial ones. In [45, 46], notable knot invariants (the Jones polynomial, Rasmussen’s s-
invariant, and Khovanov homology) where mutually predicted by NNs with high accuracies,
indicating new possible hidden relations between these invariants; and further knot invariant
interrelations were identified in [47]. An especially useful application of these ideas has been
developed in [48], where the recognition of ribbon knots has been pushed beyond the bounds
of human capabilities through these techniques. Besides knots, ML methods have been used
for the study of a particular kind of closed 3-manifolds [49], where graph 3-manifolds (3-
manifolds whose Jaco—Shalen—Johansson decomposition contain no hyperbolic piece) where
studied via their presentation through surgeries on plumbing graphs and various ML algorithms
where implemented to reduce presentations of such 3-manifolds to easier ones via so-called
Neumann’s moves.

In this paper a different approach to representation of 3-manifolds is considered, and one
that has many direct practical applications: triangulations. As proved by Casler [50], every
3-manifold admits a triangulation, i.e. a decomposition into 3-dimensional simplexes (tetra-
hedra). By compactness only a finite number of these is sufficient and the (finite) datum of how
to glue them can be summarised most succinctly in a single string of characters: the isomorph-
ism signature (IsoSig). IsoSigs, defined in [51] and reexplained in appendix A, are especially
compact encodings of 3-manifold triangulations, making bulk storage and study of triangu-
lations far more accessible. Our first interest in this paper is to examine how amenable ML
methods, and in particular NN, are to extracting the highly-convoluted information about the
triangulations from this highly-compressed representation.

Eight 3-manifolds were selected for focus in this study, chosen due to their importance
within the field and variety of properties: $*,5% x S!, RIP3, L(7,1) and L(7,2) (homotopy
equivalent but not homeomorphic lens spaces), the three torus 77, the Poincaré homology
sphere PHS, and the ‘smallest closed hyperbolic’ 3-manifold with lowest volume Hgc (a.k.a.
the Weeks manifold). After producing thousands of different triangulations of each of these
manifolds we trained NNs (and transformers) to distinguish them pairwise, observing some
striking performances, which gradient saliency techniques allowed interpretation of in terms
of the IsoSig components (see section 4.1).

A single 3-manifold can be encoded via infinitely many distinct triangulations, where each
IsoSig completely and uniquely encodes one of these triangulations. It is a classical theorem
[52] that two such triangulations of the same 3-manifold can always be connected to each other
by a finite sequence of local modifications, known as Pachner moves, which are of two types
(the 2 — 3 move with its inverse, and the 1 — 4 move with its inverse). Therefore one can define
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an abstract graph associated to each 3-manifold, known as the Pachner graph, whose nodes
are triangulations and edges are associated to Pachner moves between them.

In this work, Pachner graphs were generated up to depth 5 for the eight 3-manifolds of
focus, starting from a minimal triangulation. As well as these Pachner graphs providing the
IsoSig data used in ML, their graph structure is of its own independent interest. Through a
range of network analysis techniques these Pachner graphs were comparatively studied, with
results in section 3.1. Techniques related to network clustering, shortest paths, centrality, and
cycles were employed; notably identifying L(7,2)’s most central triangulation was not the ini-
tial (minimal) one but one which was at distance two from it, containing 9 tetrahedra. Also,
the Weeks manifold (and other hyperbolic manifolds not of focus here) exhibited significantly
faster Pachner graph growth with depth, reaching computational limits and leading us to con-
jecture that Pachner graphs of closed hyperbolic 3-manifolds grow much faster than those of
non-hyperbolic 3-manifolds.

Further investigations extended network analysis to the Pachner graphs of the snappy [53]
census of cusped orientable hyperbolic 3-manifolds’, focusing on those with up to 7 tetra-
hedra (there are 4815 of them), see section 3.1.1. Our analyses evidenced an unexpected beha-
vior which led us to conjecture 1 that the growth of the Pachner graph for these manifolds is
inversely related to the length of the shortest closed geodesic (a.k.a. the systole). Additionally
in section 4.2, knot complements where learnt via their cusped triangulation IsoSigs; focusing
on eight knot complement 3-manifolds: the unknot, the trefoil knot, the figure eight knot, the
knots 51,5, 61, and 8,. The results are comparable to those for closed 3-manifolds and in inter-
estingly show no learning in distinguishing the figure eight knot from the knot 5,, which are
the two knots with smallest hyperbolic volume. We also supplemented the analysis for these
knot complements by a similar analysis for their O and 1-surgeries: in section 4.2.1 we showed
how the unknot and the trefoil knot are very accurately distinguished by these surgeries.

Computational work was completed in python, with use of the regina [54] and snappy
[53] libraries for manipulating IsoSigs, as inspired by work in [51, 55]. Pachner graphs were
constructed and analysed using networkx [56], whilst ML used the sci-kit learn [57]
and tensorflow [58] libraries. Coding scripts and data are made available at this work’s
respective GitHub?® repository, including an introductory notebook with useful functions for
ones own further investigations manipulating and visualising Pachner graphs.

2. Preliminaries

2.1 Triangulation IsoSigs

Any compact connected 3-manifold M with boundary can be realised by gluing a finite set of
T tetrahedra (3-simplices) along their faces via affine maps and then by deleting a small open
neighborhood of the vertices of the tetrahedra. Such a structure is called an ideal triangulation
and it induces a triangulation of OM by means of 4T triangles (as each tetrahedron contributes 4
triangles to the triangulation of 9M)°. In the special case of a closed manifold one can consider

7 A word of caution here is needed: cusped hyperbolic 3-manifolds are encoded in snappy via their ideal triangula-
tions, namely the (non-compact) manifolds are homeomorphic to the complement of the vertices in the triangulations
encoded by the given IsoSigs. So our Pachner graphs describe such ideal triangulations for these cusped hyperbolic
3-manifolds.

8 https://github.com/edhirst/IsoSigPGML.git.

9 Since we allow self-gluing of tetrahedra, in some literature this is referred to as a ‘A-triangulation’.
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triangulations of M minus a finite set of disjoint open balls: indeed one can recover M from
M\ B? in a unique way by gluing back a B* along its boundary S°.

Each triangulation can be encoded by numbering the tetrahedra along with their vertices,
indicating which pairs of faces of two tetrahedra of the triangulation are glued and how (there
are 6 possible identifications for each pair of faces). All these data can be encoded in a single
string of characters defined in [55], called the IsoSig of the triangulation.

IsoSigs, are an exceptionally compact representation method for 3-manifold triangulations,
introduced in detail with examples in appendix A, they are formed of a sequence of letters from
the alphabet {a,b,...,2z,A,B,...Z,0,1,...,9,+,-}, encoding numbers in base 64 which
enumerate in turn: the number of tetrahedra in the triangulation, the destination sequence of
face gluings, the type sequence listing boundaries, and the permutation sequence dictating
the vertex matchings of the face gluings. The encoding relies on many tricks for removing
redundancies to make the IsoSig encoding especially efficient compared to traditional methods
of listing each of these components separately. Importantly for the IsoSig representation, the
following holds:

Theorem (Theorem 6 in [55]). If two IsoSig strings S; and S, encode two triangulations then
the triangulations are combinatorially isomorphic iff S| = S.

Where two triangulations are isomorphic if they are combinatorically equivalent, such that
some relabelling of tetrahedra, faces, edges, and vertices makes them the same. It should be
noted though, that a 3-manifold admits infinitely many different (non-isomorphic) triangula-
tions, which are all related to each other via the so-called bistellar or Pachner moves [52].
When applying a Pachner move, in general the IsoSig of a triangulation changes (for most
moves even the number of tetrahedra changes). One can then build a graph P whose nodes are
the isomorphism types of triangulations of a fixed manifold and whose edges represent that
the two triangulations can be transformed into one another via a possible Pachner move!?. By
the above cited fundamental result this graph is connected [52]. Before proceeding we remind
the reader that these moves are of four types: 2—3, 3 —2, 1 —4 and 4 — 1 moves where for
instance a 2 — 3 move consists in exchanging two tetrahedra with a suitable combination of
three tetrahedra and a 1 —4-move consists in subdividing a tetrahedron into four tetrahedra
by coning from its barycenter to its vertices. The moves 3 —2 and 4 — 1 are the inverses of
respectively the 2 — 3 and the 1 —4-moves. Note that the number of vertices of the triangu-
lation does not change under 2 — 3 and 3 — 2 moves, but does change under 1 —4 and 4 — 1
moves, exactly by one unit. Diagrammatics for these moves are shown in figure 1.

The ‘Pachner graph’ P described above is naturally endowed with two functions which
we will denote v and ¢ respectively given by the number of vertices and of tetrahedra of a
triangulation. We will denote P, the full subgraph of P of triangulations whose number of
vertices is n: a particularly interesting subgraph is P;. At first sight one might be puzzled
by this but we remind the reader that in our triangulations the tetrahedra are not embedded
and self-identifications are possible. In fact it was proved independently by Matveev [59] and
Piergallini [60] that for every 3-manifold the subgraph of P, formed by nodes corresponding
to triangulations with at least 2 tetrahedra is non-empty and connected [59, 60]; there are only
3 triangulations with only 1 tetrahedra and they correspond to manifolds L(3,1),L(5,1) and
§3, so excluding them is not a problem.

10 Note that there may be (likely rare) scenarios where two different moves can transform an input triangulation into
the same output triangulation, in these cases we still only connect the respective nodes by a single edge.
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g2 W
(a)

(b)

Figure 1. Diagrammatics of the four Pachner moves, including (a) the 2 — 3 Pachner
move with its inverse 3 — 2, and (b) the 1 — 4 Pachner move, with its inverse 4 — 1. For
the 2 — 3 move the coloured lines bound a face which is replaced by an edge which
then bounds the three tetrahedra inside. For the 1 — 4 move a vertex (coloured) is intro-
duced into the centre and then connected to the remaining vertices, splitting the single
tetrahedra into four.

2.2. Existing results surrounding Pachner graph paths

In this subsection we review some main results concerning the existence of algorithms for
distinguishing 3-manifolds and their complexity. Our account is by no means complete
nor exhaustive and we redirect the reader to the excellent survey by Lackenby [61] and to
Matveev’s book [62]. The rough overall message is that although algorithms exist for basic-
ally all interesting tasks in 3-dimensional topology, when their theoretical complexity bounds
are known, they are huge. Still, extensive experiments have been run for ‘small’ triangulations
and they contrast sharply with the theoretical bounds.

One of the main facts to keep in mind is that a theoretical algorithm exists to tell whether
two triangulations belong to the same 3-manifold or not. There are various proofs of this fact
[63, 64], but they all use the proof of the Geometrisation Conjecture by Perelman. However,
the best ‘known’ upper bound for the complexity of these algorithms, due to G. Kuperberg, is

huge and is of the form 22" where 1 is the number of tetrahedra in the triangulations and the
length of the tower of powers is a universal yet unknown constant [63].

The special case of recognising the 3-sphere is known to be NP and has a more expli-
cit algorithm, due to Rubinstein [65]. The number of Pachner moves needed to connect a
n-tetrahedra triangulation of S3 to the standard one has been bound by Mijatovi¢ [66] to be
61065,22200007°

The fact that an algorithm exists to tell whether two triangulations belong to the same man-
ifold implies that there is also a theoretical computable function which bounds the distance
of two triangulations in the Pachner graph of a given 3-manifold (see [61] theorem 4.3) based
only on their numbers of tetrahedra. But for general 3-manifolds this is purely theoretical at
present!!.

We also mention that, although the theoretical bounds, when they exist, are huge, concrete
experiments have been carried out and show quite a different behavior. In [55] Burton showed
that if one restricts to 1-vertex triangulations with less than 10 tetrahedra (there are about
8210° of them!) then these can be connected to simpler ones (i.e. triangulations with less
tetrahedra) by a sequence of Pachner moves whose length does not exceed 17 (of course this

11 All the previous results can be largely improved when the 3-manifolds are link exteriors in the sphere, but we will
not review the main results here as in this paper we are mainly concerned with closed orientable manifolds.
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is possible only if one does not start from a minimal triangulation). In particular if one restricts
to triangulations of S* only 9 moves are needed. Furthermore in the same paper it is observed
that the sequence of simplifying moves can be found so that the number of tetrahedra during
the sequence never increases by more than 3.

Since a theoretical algorithm exists, but is likely exceptionally slow and computationally
expensive, there is strong motivation for discovery of other methods for identifying equival-
ence of triangulations (that they represent the same 3-manifold and are in the same Pachner
graph). Existing results show promise for identifying paths to triangulations with fewer tet-
rahedra, but not between triangulations with general numbers of tetrahedra. It is hence well
motivated to tackle this broader general equivalence problem, where this work initiates the
application of ML methods for this.

3. Data generation & analysis

To examine and learn the 3-manifold triangulation isomorphism via I[soSigs, we select a variety
of 3-manifolds to focus on, in particular those which span a range of interesting properties.
Eight 3-manifolds were selected for these investigations, they include: the 3-sphere S°; the
product of the 2-sphere and the 1-sphere S x S'; 3-dimensional real projective space RIP?, the
lens space L(7, 1), the lens space L(7,2); the 3-torus T°; the Poincaré homology sphere PHS;
and the smallest closed hyperbolic manifold Hsc. The 3-manifold abbreviations, along with
the initial IsoSigs used to generate the datasets of equivalent triangulation IsoSigs are given in
table 1. The IsoSig encoding is of particular interest due to its exceptionally compressed nature,
and a thorough introduction to its structure is given in appendix A. Of these manifolds S? x
S! is the only one not admitting a constant curvature isotropic complete Riemannian metric
(we shall say for short a ‘non-isotropic manifold’), whilst the others are split amongst their
curvatures, with (S*, RIP?, L(7,1),L(7,2),PHS) positive curvature, T° zero curvature, and Hsc
negative curvature. In addition they have properties as listed in table 2.

This selection of manifolds is somewhat arbitrary, but includes a list of the prototypical
manifolds often considered in other works. Specifically S, T°, represent the heuristically
‘simplest’ manifolds with {40} curvatures, while Hsc is selected as a representative with
— curvature. In fact, this choice is the hyperbolic 3-manifold with minimum volume (given in
table 2, contrasting to the other selected manifolds which all have 0 volume). §? x S' is a com-
mon choice for considering composite manifolds which may be considered as a direct product
of lower dimensional manifolds. RIP? is the simplest 3d projective space, a particular import-
ant construction with a broad range of uses. Then, PHS is the only homology 3-sphere with
finite fundamental group (other than S? itself), making this an interesting comparison case for
differentiating with S. Finally the two Lens spaces were the first constructions of 3-manifolds
which were not differentiable by their homology and fundamental group alone (table 2 shows
that these properties match). Under special (more trivial) conditions of the Lens space con-
structions both §* and S? x S! can be produced, making these four a particularly interesting
and potentially difficult set to differentiate between.

For each 3-manifold’s initial triangulation and IsoSig, a dataset was generated of equival-
ent triangulations (each represented with their respective IsoSig) from the manifold’s Pachner
graph computed exhaustively up to as high a depth (i.e. integer number of moves away from
the initial IsoSig) as feasible within memory limits. The Pachner graphs were generated with
moves {2 — 3,3 — 2} (with further functionality in the code to consider {1 — 4,4 — 1} moves).
Preliminary investigations by these authors for this work using supervised NN to classify 3-
manifolds from IsoSig triangulations showed promising performances with accuracies > 0.99
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Table 1. The eight 3-manifolds of focus in this investigation, listed with the initial
1-vertex triangulation IsoSigs used to generate their Pachner graphs, and the respect-
ive number of tetrahedra in these initial triangulations.

Manifold Name Initial IsoSig Number of Tetrahedra
$3 cMcabbggs 2
$2 xS cMcabbjaj 2
RP? cMcabbgqw 2
L(7,1) eLAkbcbddhhjhk 4
L(7,2) cMcabbjqw 2
7 gvLOQedfedf frvawrhh 6
PHS fvPQcdecedekrsnrs 5
Hsc = Weeks jLvAzQQcfeghighiiuquanobwwr 9

Table 2. table of selected manifold properties. Properties include the sign of the
curvature (note $2 x S is non-isotropic so curvature is not applicable); Euler character-
istic, hyperbolic volume, homology group, and fundamental group (given as generators
and relators).

Manifold

Property $3 §2x st RIP? L(7,1) L(7,2) T PHS  Hsc
Curvature + - + + + 0 + -
Volume 00 0 0 0 0 0 0.94
Homology 0 Z zZ/2 Z]7T  Z]7 Z+Z+7ZO0 Z/5+1Z/5

Gx a a a a a,b,c a,b a,b
Fund group beBC,

R x x aa aaaaaaa aaaaaaa abAB, abbaB, ababAbbADb,

aCAc aaaabAb abaBaaBab

for near-perfect learning. However, these architectures relied heavily on the IsoSig length for
distinguishing manifolds; where gradient saliency methods revealed that the only used input
was the first padded entry indicating that change of IsoSig input length was the dominantly
used feature in the classification.

Since the IsoSig length is heavily correlated with the number of tetrahedra, when we initiate
generation using triangulations with a similar (e.g. small) number of tetrahedra then the graphs
will display the same IsoSig lengths throughout, however the frequency distribution of the
observed lengths varies, and this is what the architectures can leverage to provide efficient
estimates of the considered manifold (note the final depth often all have the same length and
dominate these distributions). For the manifolds considered the IsoSig lengths observed in
the deep Pachner graph generation were: (9,11,14,17,19,22,25,27,30,33,35,38,41). The
respective distributions are shown in figure 2.

Thus the ML focus was shifted to IsoSigs of the same length, such that the architectures
could not shortcut to good performance and the true IsoSig language representation would
have to be learnt. The datasets were created by randomly sampling all those of length 30
characters (the most evenly populous across the Pachner graphs) from the generated Pachner
graphs (often exhibiting millions of IsoSigs). The sampled datasets of length 30 IsoSigs were
all of size 2000, except for T3 with 391 and Hsc with 136, where this was the number of length
30 IsoSigs in the generated Pachner graphs. Therefore investigations with these two manifolds

8
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IsoSig Length

Figure 2. IsoSig length frequency distributions across the deep Pachner graphs gener-
ated for the 8 manifolds considered.

had bias in their datasets from these different sizes, which is mitigated by considering the MCC
performance measure (over accuracy) which accounts for imbalanced classes [67].

The code scripts were written in python, using the regina library [54] for manipulating
triangulations and applying Pachner moves, whilst also using the orientable cusped census
hosted on snappy [53] to source some manifold IsoSigs. Scripts created Pachner graphs, as
networkx objects [56], by exhaustively searching all vertices, edges, faces, and tetrahedra of
each triangulation that Pachner moves could be applied to. Where performing a move gener-
ated a new triangulation the respective IsoSig was listed as a new node in the graph, connected
by an edge (labelled with the move type) to the IsoSig the move was applied to. Conversely,
where performing a move lead to a previously generated IsoSig an edge was introduced con-
necting the respective nodes already in the graph (ignoring the trivial inversion of moves). This
Pachner graph generator function started from an initial input IsoSig and was adaptable to per-
form (input-specified) Pachner moves up to an input-specified depth from the initial IsoSig;
outputting the Pachner graph and the list of IsoSigs, one for each triangulation of the manifold.

3.1. Pachner graph network analysis

The Pachner graphs used for IsoSig data generation are interesting combinatorial objects in
their own right. As one performs Pachner moves with the hope of simplifying a triangulation,
or looking to seek some specific triangulation property, one is effectively performing a walk on
this graph. The graph network structure hence determines the potential success of these search
algorithms, and more information about their network properties can guide the refinement of
these search algorithms to make them as optimal as possible.

Therefore, with this in mind, we study these 1-vertex Pachner graphs P for the considered
3-manifolds, using only {2 — 3,3 — 2} moves, generated to as large a depth as can be per-
formed in 240 core hours on a high-performance compute cluster [68]. Then with these large
1-vertex Pachner graphs we perform extensive analysis of their network properties: degrees,
clustering, shortest paths, centrality, cycles. The distribution of number of tetrahedra in the

9
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(a) Depth 3 (b) Depth 4

Figure 3. 1-vertex Pachner graphs for the S° manifold, generated with {2 — 3,3 — 2}
moves up to the respective specified depths, from the initial triangulation with IsoSig:
cMcabbggs. The nodes are labelled with the number of tetrahedra in the respective
triangulation.

triangulations was also tracked, since seeking a 3-manifold triangulation with the minimum
number of tetrahedra is highly sought-after in the field (for simplicity in computing topological
properties and constructing composite 3-manifolds).

Example Pachner graphs for the S manifold, generated to depths 3 and 4 are shown in
figure 3. The equivalent Pachner graphs for the remaining 7 considered manifolds are shown
in appendix B. Each of these Pachner graphs were generated from the initial IsoSig given in
table 1, using moves {2 — 3,3 — 2}; within these each Pachner graph node is an independent
IsoSig / triangulation, with edges representing the moves connecting them (undirected since
each 3 — 2 move changes the IsoSig in the opposite direction to the equivalent 2 — 3 move).
The Pachner graph nodes are labelled with the number of tetrahedra in the respective triangula-
tion. Since each of the initial IsoSigs represent 1-vertex triangulations, and only {2 — 3,3 — 2}
moves are considered which preserves the number of vertices in the triangulation, these
graphs are (part of) the respective unique 1-vertex restricted Pachner graph P; for each
manifold [55].

These Pachner graph images highlight well the rapid growth rate of triangulations. As can
be seen for S* in figure 3, it is only when depth 4 is considered that cycles begin to occur in this
Pachner graph, at which point many cycles start to occur. These cycles also indicate shorter
paths between different triangulations, compared to returning to the initial triangulation. The
graphs also exemplify how number of tetrahedra tends to increase as one moves further from
the initial triangulation in a Pachner graph.

To probe further the graph structure we turn to tools from network science, in particular
applying an analysis technique from each of its core subfields: node analysis, clustering ana-
lysis, shortest path analysis, centrality analysis, cycle analysis. In addition, keeping track of
the number of tetrahedra in each triangulation.

The Pachner graphs for the 8 selected manifolds of focus in this work were generated until
memory limits deemed network analysis computationally infeasible (in each case these were
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Figure 4. The growth rates of the Pachner graphs with depth for the 8 selected manifolds
of focus in this work. Plot (a) shows how number of nodes increases with depth, whilst
(b) shows the respective decreases in graph density.

RAM limits of 200GB). Fortunately many of these Pachner graphs failed generation at the
same depth of 5, making comparison between them at this depth more meaningful. However,
the final hyperbolic manifold Hsc grew too quickly and thus failed generation earlier, this
makes its comparison less useful, but it is still included for completeness.

The Pachner rapid growth rate is well represented in figure 4, where the number of nodes in
the Pachner graphs at each depth are shown. This plot clearly shows the final hyperbolic man-
ifold having a much quicker growth rate leading to memory failure at lower depth. Generally,
there will be more positions in a triangulation to apply a 2 — 3 move than a 3 — 2 move and
so the number of tetrahedra tends to increase with depth, equivalently with more tetrahedra
there are more positions to apply moves and thus this positive growth rate of triangulations
in the Pachner graph appears. Respectively the graph density drops with depth, as each time
a new node is introduced to the Pachner graph with N nodes, (N — 1) potential edges are not
introduced. As depth increases this contribution to density clearly beats any increase in density
from introducing cycles, as displayed in the apparent convergence in density towards 0 with
depth in figure 4.

These network analysis results are presented for the eight manifolds’ 1-vertex Pachner
graphs in table 3. This table lists the manifolds as well as the depth they were generated to
(using input initial IsoSigs from table 1); each measure is discussed below with definitions.

Nodes: For each Pachner graph, the number of nodes is then listed, representing the number of
unique triangulations generated. One striking fact is that the number of nodes for the depth 3
Pachner graph of the hyperbolic manifold Hgc is bigger than the number of nodes of the depth
5 Pachner graphs for the remaining (non-hyperbolic) manifolds. But for these remaining man-
ifolds, we note the number of nodes does not seem to correlate with topological properties
as the more populous graphs represent manifolds with varying curvatures, fundamental group
sizes, etc; and the high number of S* nodes contradicts an argument that it is based on the num-
ber of tetrahedra in the initial IsoSig. Respectively the graph density is listed, where density is
the ratio between the number of edges in the graph and the number of edges in the complete
graph with the same number of nodes (i.e. the maximum number of possible edges), which
expresses the usual approximate inverse correlation behaviour with the number of nodes.

1
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Table 3. Network analysis properties for the 1-vertex Pachner graphs of the 8 manifolds of focus in this work, generated to as a high depth as
computationally feasible. Note that all were to depth 5, except for the last hyperbolic manifold which terminated generation at a lower depth.
Analysis includes counts of the number of graph nodes, the graph density, the triangle and square clustering coefficients, the Wiener index in full
and normalised form, the index of the most central node via eigenvector centrality as well as the range in centrality values across the graph, the
decomposition of a minimum cycle basis, and the index of the node with the minimum number of tetrahedra and that minimum number.

Clustering  Wiener index Centrality Minimum cycle basis # Tetrahedra
Manifold (depth) Number of nodes Density  (tri, squ)  (full, norm) (centre, range)  [[length, frequency]] (index, min)
$2(5) 2979 0.0009 (0,0.018) (30734710,6.93) (7,0.160) [[4, 861], [6, 201], [8, ©,2)
18]]
2 x St (5) 1123 0.0023  (0,0.018) (4041442,6.41) (11, 0.220) [[4, 305], [6, 611, [8,2]1 (0,2)
RP? (5) 1636 0.0017 (0,0.018) (8738384, 6.53) (13,0.198) [[4, 4801, [6, 108], [8, 0, 2)
12]]
L(7,1) (5) 3161 0.0010 (0,0.022) (33280736, 6.66) (20, 0.201) [[4, 1812], [6, 132], [8, 0, 4)
911
L(7,2) (5) 1368 0.0020 (0,0.019) (5996840, 6.41) (2,0.202) [[4,417],16,78],[8,911 (0,2)
T3 (5) 1280 0.0030 (0,0.027) (4250674,5.19) (13, 0.215) [[4, 1119], [6, 22]] 0, 6)
PHS (5) 2060 0.0017  (0,0.022) (12064060,5.69) (6, 0.215) [[4, 1469], [6, 49]] 0, 5)
Hsc (3) 3553 0.0010 (0,0.016) (34673464,5.49) (0, 0.230) [[4, 2489], [6, 49]] ©0,9)
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Clustering: Next the graph triangle and square clustering coefficients are listed [69, 70], which
represent the proportion of 3 and 4 cycles that could exist in the graph that are there; i.e. all
combinations of 3 nodes could be connected into a 3-cycle, the triangle clustering coefficient
is the ratio between the number of 3-cycles in the graph to the number of combinations of
choosing 3 nodes. The first observation is that all the Pachner graphs exhibit no 3-cycles,
this is because any Pachner move changes the number of tetrahedra by 1, hence any 2 moves
either change the number of tetrahedra by 2 or keep it the same (adding then removing, or
removing then adding). Therefore any third move following these two must change the number
of tetrahedra by 1 again, such that the total change in the number of tetrahedra after 3 moves
cannot be 0 and then the same as the original triangulation. This argument actually lifts quite
nicely to any odd cycle, such that all cycles in a 1-vertex Pachner graph must be even. The
square clustering coefficients may then be non-zero, with all graphs exhibiting 4-cycles, and
T3 having the highest proportion.

Shortest Paths: The Wiener index [71] is the sum of the lengths of the shortest paths over all
pairs of nodes'?, and is hence also presented in a normalised form with respect to the number of
pairs of nodes (number of nodes N choose 2). A smaller normalised Wiener index indicates the
graph is easier to walk around, with a high connectivity, which is the case for the non-positive
curvature manifolds with the lowest values.

Centrality: Centrality measures determine the most central nodes, and how skewed the con-
nectivity is away from uniform constant degree. The centrality measure examined in this work
is eigenvector centrality, which assigns scores to the nodes based on their respective entries in
the normalised eigenvector corresponding to the unique largest eigenvalue of the graph’s adja-
cency matrix (via the Peron—Frobenius Theorem [72, 73]) [74]. A graph’s adjacency matrix is
intrinsically linked to potential paths through it, and such raising it to the kth power counts the
number of k-paths between the indexed nodes. This limiting behaviour is then dictated by the
largest eigenmode, and hence the eigenvector centrality score provides a means of determining
the limiting connectivity of nodes. In table 3, the node index with the highest centrality score
is listed, as well as the range of these scores across the graph. Interestingly, only for Hgc is
the most central node the initial IsoSig triangulation, indicating the other Pachner graphs may
be more symmetrically generated about alternative initial IsoSigs. In some cases, such as for
L(7,1) the index is as high as 20, such that it is the 20th triangulation produced when exhaust-
ively generating the Pachner graph, and is 2 moves away from the initial triangulation; it is a
9-tetrahedra triangulation. Iteratively, this measure may be used in this way to search for useful
starting triangulations. The range of centrality scores are largest for the non-positive curvature
manifolds, which then turn out to have more skewed Pachner graphs and knowledge of the
most central node becomes important as a key triangulation many paths will pass through (this
could be a useful information when designing paths to minimise the number of tetrahedra).

Cycles: Cycles in a Pachner graph represent availability of different paths to move between
selected nodes. As mentioned previously, since 3 — 2 and 2 — 3 moves each change the number
of tetrahedra by 1, this leads to all cycles being even. 2-cycles enact the inverse of any move, so
are trivial on these undirected graphs. This causes 4-cycles to be the first cycles that can occur,

12 j e. select a pair of nodes in the graph, find the shortest path between them (if there are multiple select one arbitrarily),

count the number of edges in the path to get the length of this path, repeat for all pair of nodes in the graph, take the
sum.
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whose frequency is assessed through the square clustering coefficient. In general, a (2k)-cycle
amounts to k 2 —3 moves and k 3 —2 moves and there are no a priori restrictions on their
order. Where the number of moves is small relative to the number of tetrahedra, cycles are
likely caused by the more trivial case where each of the k 2 — 3 moves may be paired with
its respective inverse 3 — 2 move removing the same tetrahedra introduced, but in a different
order such that the intermediary triangulations are distinct. However as the number of moves
gets larger there’re less untouched tetrahedra to perform the new moves on, and then moves
start to overlap in the same part of the triangulation leading to less trivial cycles.

As can be seen in the Pachner graph plots, cycles often intersect, and where two smaller
cycles intersect a larger cycle can easily be created by traversing the exterior of them both. To
circumvent redundancies due to this, it is standard practice to consider a basis for the cycles
[75], and additionally to focus on bases where the sum of the cycle lengths is minimised:
a minimum cycle basis. However there is still redundancy in which cycles form part of this
bases, and therefore the analysis in table 3 instead focuses on its properties, notably counting
the frequencies of cycles of each length in the basis (which is unique across all minimum
cycle bases). As can be seen, all the graphs exhibit 4-cycles, some with an order of magnitude
more than others. Where the number of 4-cycles is higher the number of 6-cycles tends to be
lower (except for RIP*> which has a high number of 6-cycles, and S? x S' with a surprisingly
low number). Up to depth 5 the maximum cycle size which can occur is 10, and in none of the
graphs does this occur, and interestingly it is only for the manifolds with simplest fundamental
group presentation that 8-cycles occur.

Number of Tetrahedra: The final analysis tracks the node index with the fewest number of
tetrahedra, often desirable for use in manifold computation and construction, as well as listing
that number of tetrahedra. All manifolds have index O as their minimum (i.e. index O is the
first triangulation in the generation process which is the initial triangulation), expected since
a minimal triangulation was selected as an initial point for the generation. A final remark to
emphasise is that the node with the minimum number of tetrahedra does not correlate with
centrality, only in the case of Hgc does the most central triangulation have the minimum num-
ber of tetrahedra.

3.1.1. Orientable cusped census.  Beyond the eight selected 3-manifolds that we focus on
in this paper, the snappy Orientable Closed Census provides a list of 11 031 orientable closed
hyperbolic manifolds. These however are represented as cusped manifolds which when filled
have a range of tetrahedra for their initial triangulations from 9 to 37 — too large for sensible
Pachner graph analysis as the number of triangulations would grow too quickly with depth to
compute to a meaningful size.

Therefore we instead consider the respective snappy Orientable Cusped Census, which lists
all 61911 orientable cusped hyperbolic manifolds which can be represented by triangulations
with at most 9 tetrahedra. We partition off the 4815 with < 8 tetrahedra for an exhaustive
analysis of their equivalent Pachner graphs. Each of these manifolds are represented by an
initial triangulation (and hence IsoSig) in the database.

Despite the large number of manifolds in the census, with use of the high-performance
compute cluster it became computationally feasible to generate Pachner graphs for all hyper-
bolic manifolds in this partition of the census, and perform the equivalent network analysis.
Pachner graphs were generated for both move combinations {2 —3,3 —2} and {1 — 4,4 — 1},
up to depth 3, which we denote ‘3_23 and ‘3_14" respectively. The subsequent bulk network
analysis provides insight into the triangulation deformation structure of these Pachner moves,
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Figure 5. Network analysis of the orientable cusped census Pachner graphs (where num-
ber of initial tetrahedra < 8). Analysis considers building the Pachner graphs to depth
3 with either only the {1 —4,4 — 1} moves (denoted 3_14), or only the {2 —3,3 —2}
(denoted 3_23) moves, plotting histograms of: (a) number of nodes in the graph; (b)
graph density; and (c) the graph degree distribution averaged across the census. Note
the degrees take integer values and the vertical lines are offsetted for visibility.

how they each impact the graph structure, as well as general insight into how Pachner graphs
grow. Considering the same set of network analysis techniques used to examine the depth 5
Pachner graphs for the eight manifolds of focus in table 3, we created plots of these properties
for the census as shown in figure 5.

Nodes: First order analysis of the graphs considers the sizes of the node and edge sets. A
histogram for the number of nodes is shown in figure 5(a), demonstrating that the 2 — 3 (and
their inverse 3 — 2) moves often lead to many more nodes. Since the number of possible 1 — 4
moves for a triangulation equals the number of tetrahedra N, whereas the number of possible
2 —3 moves equals the number of common faces (which is half the total number of faces
4N/2 = 2N) this matches the expected approximate scaling that 2N > N for triangulations of
N tetrahedra, causing more possible 2 — 3 moves, and more nodes in the 3_23 Pachner graphs.
The 1 — 4 moves also have much higher frequencies, meaning their graph generation is more
systematic, which is perhaps to be expected since the number of tetrahedra alone (which many
manifolds will share) sets the number of 1 — 4 moves which can be enacted, whilst the specific
triangulation gluing sets the number of 2 — 3 and 3 — 2 moves (and the rarer 4 — 1 moves). The
density in figure 5(b) has a weak inverse relationship to the number of nodes, where adding
nodes to a large graph introduces many more potential edges, and this respectively drops the
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Figure 6. The distribution of the sizes of the Pachner graphs (i.e. number of nodes) as
a function of (a) the volume and of (b) the length of the shortest geodesic (systole). In
blue the points corresponding to one cusped manifolds, in red those corresponding to
2-cusped manifolds, and in green the remaining ones. Plot (c) shows plot (b) with axes
logged to inform on the power law behaviour of the lower bound, including a potential
lower bound of %.

density value. Since the density does drop according to this behaviour this demonstrates that
the Pachner graph edge sets grow slower than the node sets.

We also analysed the size of the Pachner graphs as a function of the hyperbolic volume
of the manifolds and their number of cusps (which varies from 1 to 3 in our dataset). The
result is shown in figure 6(a). Looking at the figure one realises that there are ‘peaks’ in
the sizes of the Pachner graphs for one cusped manifolds and that these peaks correspond
to the first red dots, namely the lowest volume 2-cusped manifolds. This is no random phe-
nomenon. The blue dot with highest size of the Pachner graph and volume < 3.63 turns out to
be ‘v0117’ (in snappy’s nomenclature, [soSig: hLALPkbcbefggghxwnxibk) and drilling out
its shortest geodesic one gets ‘m129” (IsoSig: eLPkbdcddhgggb) which is the second lowest
volume manifold in snappy’s census with number of cusps 2 (it corresponds to one of the two
leftmost red dots in the figure). This leads us to think that the size of the Pachner graph could
be inversely related to the length of the shortest geodesic in the hyperbolic manifold which,
by Thurston—Jorgensen’s theorem on hyperbolic Dehn fillings corresponds to Dehn fillings of
manifolds with one more cusp with very large filling slopes. In order to check this we plotted in
figure 6(b), the sizes of the Pachner graphs with respect to the length £ of the shortest geodesic
in the cusped manifold and the plot clearly shows that such number is bounded below by an
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Figure 7. The distribution of the sizes of the Pachner graphs (i.e. number of nodes) as
a function of (a) the volume and of (b) the length of the shortest geodesic restricted to
the manifolds whose drilling along the shortest geodesic is a fixed one, here ‘m129’
(in snappy’s cusped census). The symmetry is not random and is related to the known
relation between the volume of a manifold and its Dehn fillings along ‘long’ meridians.

unknown decreasing function of ¢. Scaling the plot axes, as in figure 6(c), shows the behaviour
more clearly; the lower bound forms a straight line indicating a power law relationship, and
the gradient is ~ -0.5, indicating a relationship of the form o< ﬁ for this dataset.
Furthermore, a closer look reveals that the dots come in families, corresponding to which
manifold is obtained by drilling the shortest geodesic. This is exemplified in figures 7(a) and
(b) where the same analysis as before is restricted to the manifolds whose drilling is a fixed

one, here ‘m129’ (chosen just as an example). All this seems to corroborate the following

Conjecture 1. The growth rate of the Pachner graph of a cusped hyperbolic 3-manifold M
is bounded below by a function of the inverse of the systole (i.e. the length of the shortest
geodesic in M).

One may be concerned by a potential bias in the previous analysis: as the number of tet-
rahedra grows the relative scarcity of triangulations with big shortest geodesic length also
increases, and this may be causing the observed phenomenon. To check this, we first drew the
histogram of the shortest geodesic lengths for the manifolds with complexity up to 8 in the
Orientable Cusped Census of snappy: see figure 8(a). The figure clearly shows that triangula-
tions with shortest geodesic < 0.2 are fairly common, thus in the right part of the same figure
we restrict the image of figure 7(b) to the interval ¢ € [0,0.2]. The results are consistent with
the observed behaviour.

Degrees: The node degree distribution of a graph can be described by a histogram showing
the frequency of the nodes that have a certain number of edges incident to them. Averaging
the degree distributions over the entire considered census partition produces the plot given
in figure 5(c) (i.e. the mean frequency of 3_23 nodes with degree 1 across the 4815 mani-
folds in this census subset is 368.9). For both move styles all graphs had at least one edge,
so that a move of either form could always be performed on the initial triangulation. This
is shown by a 0 mean frequency of degree zero, so that no Pachner graphs were the trivial
empty graph formed by a single node and no edges. For both move styles the degree dis-
tributions were bimodal, with 2 peaks, indicating that some moves (in both cases) signific-
antly open up the number of new subsequent move possibilities and thus have much higher
degree in this exhaustive graph generation. The peaks in the distributions (particularly for
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Figure 8. On the left the global histogram of the shortest geodesic length on the Oriented
Cusped Census of snappy with < 9 tetrahedra. On the right the restriction of the plot

of the size of the Pachner graph for manifolds with shortest geodesic less than 0.2. In

green, the graph of the function f(¢) = % seems to approximately minor the scatter plot

on the interval [0,0.2], but it is plot here only as an example.

degree 1) are due to the leaves of the Pachner graphs created in the latter moves at the limit
of the generation truncation, however they can occur otherwise as exemplified in figure 3(a).
The 3_23 graphs have a larger relative size between the bimodal peaks than the 3_14 graphs
(368.90/13.94 = 26.46 > 8.48 = 107.04/12.63), so that the 3_14 graphs’ nodes are more
skewed to higher degrees as these moves are more likely to open up many move possibilities,
despite there being less possibilities demonstrated by the degree value for the second peak.
The 3_23 graphs also have a larger difference between their two peaks (18 —1 > 14 —2),
indicating that the edges are less evenly distributed between the nodes. This is linked to the
move possibility scaling, where as a 2 — 3 move changes the number of tetrahedra in a trian-
gulation from N to (N+ 1) the approximate scaling of the 2 — 3 move possibilities grows at
a rate of order 2N (i.e. the number of faces mod the number of tetrahedra per face, 4/2 = 2).
Alternatively as a 1 — 4 move changes the number of tetrahedra from N to N + 3 the scaling
of the 1 — 4 move possibilities grows exactly at a rate of N. Therefore, particularly as moves
increase the number of tetrahedra, there are on average relatively more 2 — 3 moves which can
be made, leading to higher degree nodes'>.

Clustering: As in the previous Pachner graph analysis the triangle clustering coefficients for
graphs across the census were all zero, since these graphs can only exhibit even length cycles.
However the square clustering coefficients had (min,mean,max) across the census for the 3_14
graphs of (0.028,0.038,0.104) and for the 3_23 graphs of (0.000,0.018,0.035), with only the
3_23 graphs having examples of 0 square clustering coefficients, occurring for 2 manifolds.
The full distributions are shown in figure 9(a), they show that 4-cycles are always introduced
with 1 — 4 moves since all the initial triangulations have at least 2 tetrahedra so a I —4 move
on each followed by their inverses in the other order automatically creates a 4-cycle. In gen-
eral 4-cycles are less likely with 2 — 3 moves since the gluings change more non-trivially and

13 Note in this crude leading behaviour approximation we neglect contributions from the less probably inverse 3 — 2
and 4 — 1 moves.
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Figure 9. Core network analysis properties of the Pachner graphs for the orientable
cusped census partition with number of initial tetrahedra < 8. Analysis considers build-
ing the Pachner graphs to depth 3 with either the {1 — 4,4 — 1} (denoted 3_14) or the
{2 —3,3 -2} (denoted 3_23) moves, plotting histograms of: (a) the square clustering
coefficients; (b) the normalised Wiener index; (c) the range of eigenvector centrality
values; and (d) the length of the minimum cycle basis.

hence alternating inverses may be obstructed. The 3_14 graphs again have higher frequencies,
indicating they are more likely to have similar graph structure.

Shortest Paths: The normalised Wiener index provides a global measure of the average
shortest path length between any two nodes in the Pachner graph, that can be appropri-
ately compared between graphs. The (min,mean,max) values for the 3_14 graphs were
(2.04,4.54,4.87) and for the 3_23 graphs were (3.08,5.08,5.48). In figure 9(b) a histogram
of these values are plotted also, showing that the 3_14 graphs tend to have shorter shortest
paths between nodes so that they can be traversed more easily, and it may be better to enact
first these moves were possible in triangulation simplification methods. The 3_14 graphs have
higher frequencies, again supporting that graphs created by these moves are more similar and
less dependent on the underlying manifold topology.

Centrality: Eigenvector centrality uses the eigenvector values corresponding to the adjacency
matrix’s unique largest eigenvalue to assign centrality scores. Since these scores are relative
their absolute values are less relevant, and instead focus in this work is placed on the range of
values across a given Pachner graph (highest — lowest centrality score). The (min,mean,max)
values of the centrality ranges for the 3_14 graphs were (0.175,0.271,0.553) and for the 3_23
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graphs were (0.190,0.261,0.502); with 487 of the 4815 3_14 graphs having the initial triangu-
lation as the most central, and 485 times for the 3_23 graphs. Therefore, of the 4815 manifolds
only ~ % have the initial node as the most central node in both cases, implying the generation
process is highly non-symmetric. The similar centrality ranges for both move styles indicate
similar adjacency eigendecompositions. Again higher 3_14 frequencies indicate similar graph
structures.

Cycles: As previously observed, Pachner graphs can only exhibit even cycles, and additionally
2-cycles are not possible in this Pachner graph design where undirected edges represent the
ability to move between triangulations (not a unique move). Since the graphs generated in
the census were truncated at depth 3, the largest cycle size possible is 6, and hence the cycle
bases for all these graphs were spanned by 4-cycles and 6-cycles. The average number of 4
and 6-cycles in each minimum cycle basis for the census partition’s generated Pachner graphs
were (155.16,0.00) for 3_14 graphs and (354.58, 12.87) for 3_23 graphs. These results show
that although the Pachner graphs are only generated to depth 3 they are higher interconnected
with a huge number of cycles. The 3_23 graphs have more cycles on average as there are many
more move choices, and hence much more path degeneracy. Surprisingly the 3_14 graphs never
exhibit 6-cycles, presumably because in all scenarios they are visible they were decomposable
into 4-cycles in the basis length minimisation process (as the reordered inversion of any 3 1 — 4
moves to make a 6-cycle would have all reorderings of 2 moves making sub 4-cycles). Higher
frequencies for these 3_14 graphs again indicate similar graph structures with similar cycle
decompositions, less dependent on underlying topology.

Number of Tetrahedra: The number of tetrahedra in each triangulation across a Pachner
graph can only take 1 of 4 values (as only generated up to depth 3), based on an initial trian-
gulation with N tetrahedra and a move set of {2 — 3,3 — 2} then the values are {N,N+ 1,N +
2,N+ 3}, alternatively for move set {1 —4,4 — 1} the values are {N,N+3,N+6,N+9}.
This is because the moves always change the number of tetrahedra by a fixed amount, and
therefore the number of tetrahedra in the initial triangulation is paramount to determining
the spectrum, which is selected for the dataset to be a local minimum. We note that this is
not always a unique minimum as the frequency of triangulations with as many tetrahedra as
the initial triangulation is occasionally > 1. The number of tetrahedra in the initial triangu-
lation takes values of (2,3,4,5,6,7) across the census partition, with respective frequencies
(2,9,56,234,962,3552). Therefore most manifolds are initialised with triangulations with 7
tetrahedra.

Figure 10(a) shows a histogram of the average number of tetrahedra across each Pachner
graph, plotted for all members of the census partition. It shows that the 3_14 graphs have a
higher average number of tetrahedra, expected since the 1 — 4 moves introduce more tetrahedra
than the 2 — 3 moves (and both these are more common than their inverses). There are also
higher frequencies for these graphs as the graph structures are similar with each tetrahedron
available to perform a 1 — 4 move irrespective of its gluing. Moreover, figure 10(b) shows how
the number of tetrahedra in the initial triangulation correlates with the number of nodes in the
generated Pachner graph. Generally, more initial tetrahedra leads to more nodes and larger
graphs, with larger ranges for the graph sizes as the initial number increases; this is related
to more tetrahedra providing more possibilities for moves, facilitating the rapid graph growth
with depth. Since the number of places to apply 2 — 3 moves grows quicker than for 1 —4
moves (each new tetrahedra introduce > 1 new common faces) these 3_23 graphs are more
responsive to the initial number of tetrahedra but also exhibit a greater range of values as the
combinatorics is more susceptible to limitations caused by complicated gluings.
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Figure 10. Distributions of number of tetrahedra in triangulations across the 4815
Pachner graphs of the orientable cusped census partition with number of initial tetra-
hedra < 8. Analysis considers building the Pachner graphs to depth 3 with either the
{1—4,4—1} (denoted 3_14) or the {2 — 3,3 — 2} (denoted 3_23) moves, plotting (a)
a histogram of the average number of tetrahedra across each Pachner graph; and (b)
the number of tetrahedra in the initial triangulation against the number of nodes in the
Pachner graph. Note the number of initial tetrahedra take integer values and the vertical
lines are offsetted for visibility.

Considering the limiting behaviour in the 3_23 graphs of a tree-like Pachner graph (no
IsoSigs are repeated during generation) for the case of only considering 2 — 3 moves (ignoring
the 3 — 2 inverse move), if one were to start with a triangulation of N tetrahedra, in this limiting
case this means there are 2N common faces to perform 2 — 3 moves and hence 2N nodes at
depth 1 of the Pachner graph. Each of these triangulations will have N + 1 tetrahedra, and hence
2(N+ 1) faces for 2 — 3 moves, leading to 4N(N + 1) nodes at depth 2. Similarly, these trian-
gulations will now have N + 2 tetrahedra, 2(N + 2) faces for 2 — 3 moves, leading to 8N(N +
1)(N+2) nodes at depth 3. In this limiting case one would then expect 8N(N+ 1)(N+2) +
AN(N+1)+2N+1=8N>+28N? + 22N+ 1 = 8N* + O(N?) nodes of the Pachner graph.
Mapping this leading order behaviour to the initial N values considered in figure 10(b), the
predicted number of nodes would respectively be (64,216,512,1000,1728,2744) for the N
range [2,7], which does approximately match the observed maximum counts in the plots. The
deviations from the maxima are when this limiting tree-like Pachner graph approximation
breaks down, as triangulations are repeated in generation and the graph exhibits cycles (as
well as minor effects from the less frequently occurring 3 —2 moves). Equivalently in the
3_14 graphs for the limit case of only 1 — 4 moves in a tree-like Pachner graph, an initial tri-
angulation with N tetrahedra has exactly this many tetrahedra to perform 1 — 4 moves, leading
to N Pachner graph nodes at depth 1. Respectively there are then N(N + 1) nodes at depth 2,
and N(N + 1)(N +2) at depth 3, for an overall estimate of N> +4N*> + 4N+ 1 = N> + O(N?).
The respective estimates would then be (8,27,64,125,216,343), again matching the observed
order of the maxima in figure 10(b).

4. ML IsoSigs

In recent decades, ML methods have seen a wealth of successes across many fields academia.
This can largely be attributed to the exponential growth in computational power, allowing the
generation of ever-larger datasets for broader and more thorough analysis.
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Mathematical data has a unique advantage in that it is exact, there is no noise from exper-
imental apparatus, and as such any statistical patterns in data can be interpreted to have more
direct meaning about the data’s underlying structure. However, new mathematical data can
often be generated infinitely, and thus exhaustive computation becomes impossible, relying
on appropriate sampling. Hence there is a true need for statistical methods when performing
analysis on these large datasets. The computational statistical methods we explore here come
under ML.

In this work we examine the IsoSig representation of 3-manifold triangulations, testing
how well can ML methods learn to identify manifolds from these IsoSigs. Already, as demon-
strated in section 2.2, identifying the equivalence of the triangulations is highly computation-
ally intensive. Where sequences of Pachner moves between two triangulations are not known
to exist, the results from ML can provide a probability of existence of such a sequence moves.
Successes in learning IsoSig equivalence for 3-manifolds then opens up the scope for devel-
opment into learning manifold properties and finding explicitly the connecting paths between
triangulations.

For these investigations the IsoSig input data is paired with an output label which identifies
to which manifold the triangulation belongs to. The ML problem is in the style of supervised
classification, where the network seeks to sort IsoSigs corresponding to different manifolds
into separate classes. In this setup, the networks are learning the combinatoric structure of
triangulations which differentiates the manifolds, directly linked to their respective topology.

Specifically, for each of the eight 3-manifolds considered, a large Pachner graph was gener-
ated to depth 8 as described in section 3. From there the frequency distribution of IsoSig lengths
was computed across all IsoSigs in each manifold’s Pachner graph. Then an appropriate length
was selected such that sufficiently large samples could be taken from each Pachner graph to
produce datasets of fixed length IsoSigs'#; the fixed length considered was 30 characters.

For computational processing these IsoSigs were converted to arrays of integers, using one-
hot encoding of each character in the IsoSig. Since the vocabulary consists of 64 characters
{a,b,c,...z,A,B,C,...,Z,0,1,2,...9,+,-}, the encoding of each character is a 64-
dimensional sparse vector of O s with a single 1 in the dimension indexing that character in
the vocabulary. Therefore, because all IsoSigs considered for ML were 30 characters long,
each IsoSig was encoded by a 30 x 64 = 1920-dimensional vector. Despite this representa-
tion being rather memory intensive, requiring more computational resources for training any
architecture, the naturalness of the one-hot encoding style (where each character is an inde-
pendent dimension) makes learning clearer and more interpretable!”.

4.1. Differentiating manifolds

In this section, the ML architectures of NNs and transformers are both applied to the prob-
lem of binary classifying IsoSigs belonging to different manifolds. For the eight 3-manifolds
focused on in this work, this creates (g) = 28 pairs of manifolds to design paired data for, and
perform binary classification on. Creating 28 binary datasets to learn: {IsoSig} — {0,1},
the performance can then be compared between different manifold pairings, providing insight

14 As noted previously, initial testing showed that padding mixed length IsoSigs caused the architectures to focus
exclusively on the distribution of lengths, which was sufficiently different between manifolds to lead to good classi-
fication results. This simplification was avoided by considering a fixed length.

15 The other natural encoding of just mapping each character to a number 0 — 63 was tested however lead to lower
learning performance scores.
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into what topological properties about the manifolds, encoded in the IsoSigs, the networks use
to differentiate between manifolds.

The NN architecture is the prototypical ML model, it is very adaptable, and used ubiquit-
ously with great success throughout many fields. Any NN is made up of sets of neurons organ-
ised into layers, where each neuron takes in a vector of inputs, and outputs a single number.
The neuron acts on the input vector x with a linear function, then a non-linear ‘activation’
function, such that: x — act(w - x + b) for the trainable parameters of weights vector w and
bias scalar b. The full NN function of L-layers then takes the form

JNN := softmax ("V,'L,,‘L_1 -a( e (W,' * Xinput +b[]> ) —l—b,'L) . “.1)

Demonstrating the vectorised linear action of matrix multiplication with the weight matrix
Wi, between layers i,, and i,, then addition of a bias vector b;,. Followed by the « activation
function used to provide the alternating non-linear action; here we use the Leaky-ReLU activ-
ation function, which has significant speed advantages due to its simplicity, and effectively
makes the training process the fitting of a piecewise linear function. Finally the softmax activ-
ation function is used to bound outputs into the range [0, 1] such that they produce a probability
distribution for the classification task. These activation functions are defined

1>finput

xi x>0
Leaky-ReLU (x); = {6)( otherwise 4.2)
eX1
softmax (x) 4.3)

52W7

for some small factor € (~ 0.01). These architectures are very adaptable, possess some uni-
versal approximation theorems supporting their use, and have practically been particularly
successful across other fields of mathematics. More information on this architecture can be
found at [76].

Conversely, the transformer architecture is much more sophisticated, and involves many
stages of sub-NNs for encoding and decoding, primarily relying on the concept of attention
[77] to learn context amongst the input strings—note transformers do not require the tensorial
encoding of the IsoSigs, but do require substantial computational resources, so are tested less
extensively in this work.

Generally, transformer models are another class of supervised architectures designed to
handle sequential language-like data using attention mechanisms instead of traditional recur-
rence or convolution. At their core, they employ an encoder—decoder structure, though many
applications focus on encoder-only (e.g. BERT) or decoder-only (e.g. GPT) variants. The
multi-head self-attention mechanism is the cornerstone, which allows the model to dynam-
ically weigh the importance of all input tokens relative to each other. For an input sequence
abcd. . . attention scores are computed using query Q, key K, ad value V matrices, from which
the attention importance weighting between letters of the input is computed as

Attention (Q, K, V) := softmax (QKT> 1% (4.4)
K V) i , .
for dj, the dimensionality of the key vectors. This mechanism enables Transformers to capture
long-range dependencies efficiently.

Transformers work via alternating small NNs providing trainable parameters for the encod-
ing and decoding, and attention layers which preserve the interrelations within the sequence.
Transformers are trained using a supervised loss function in a similar manner to NN, typic-
ally using cross-entropy loss, over a labelled dataset. They are also particularly popular as the
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attention mechanism allows parallelisation in computation, making larger models more feas-
ible than traditional recurrent methods. More information on this architecture can be found at
[78].

As motivated in section 2.2, the task of identifying equivalent triangulations is infeasibly
expensive, and rigorous algorithm design is impractical. Therefore efficient statistical methods
may prove useful in informing on the likelihood of equivalence, thereby practically informing
on optimal resource allocation for more rigorous checks; i.e. if a statistical method says a pair
IsoSigs are very likely to be equivalent, it may be worth committing resources to compute the
connecting path where it would be les likely found for other pairs. Recent years have seen
ML dominate the development of computational statistical methods across fields, and in this
section we provide the first investigation into its efficacy on this equivalence problem and for
general 3-manifolds as a whole. In doing so we consider!® the ubiquitous NN architecture, and
the transformer architecture which has shown particular success on language-like data (alike
our IsoSig encodings).

4.11. NNs.  The NNs used in these investigations were built using tensorflow [58], with
architecture of three dense layers (sizes 256, 128, 64) then a final dense layer of size 2 for
the one-hot encoded binary output; all layers used leaky-ReLLU activation (factor 0.01), L2
regularisation, and dropout (factor 0.01) — except for the output layer using softmax activation
for the binary classification. The NNs were trained with an Adam optimiser to minimise the
binary cross-entropy loss for 30 epochs with a batch size of 64 and a learning rate of 0.001.

Binary classification performances were measured with accuracy (the proportion of cor-
rectly classified test IsoSigs), and Matthew’s correlation coefficient MCC (an unbiased altern-
ative to accuracy). Both measures evaluate to 1 for perfect learning, whereas for no learning in
a binary classification problem accuracy is 0.5 and MCC is 0. Each binary classification invest-
igation was performed 5 times on 5 different partitions of the IsoSig data into train and test
sets, providing statistical confidence in the mean performance measures reported (this process
is known as cross-validation).

The performance measure results are arranged in a matrix format in figure 11. Each entry
in the matrix M;; represents the mean measure score across the cross-validation runs for the
binary classification of IsoSigs pairs between manifolds with index i and index j in the list:
(83,82 x S RIP3,L(7,1),L(7,2),T3,PHS, Hsc)'”. Heat maps of these matrices are also shown
for ease of comparison.

For each matrix the off-diagonal scores respectively have (min, mean, max): (a) Accuracy
(0.4835, 0.800, 0.960), (b) MCC (-0.003, 0.487, 0.834); showing a range from no learning
to near-perfect learning. Comparing between manifolds, the positive curvature manifolds are
harder to differentiate amongst each other. The other binary classifications have surprisingly
high performances in (a) and (b), noting particularly the success of the L(7,1) vs L(7,2) clas-
sification which are notoriously difficult manifolds to differentiate (they are homotopy equi-
valent but not homeomorphic). To exemplify the learning behaviour, for this classification the
accuracy performance measure was tracked throughout the training process on the training
data used for updating the NN parameters and the independent validation data. The accuracy

16 More specialised architectures may well perform better, but we leave this experimentation to future work, since
here we are performing the first tests of these methods for this problem.

17 The diagonal cases M;; do not represent sensible experiments so had values set to 1, whilst the symmetric nature
of the investigations was enforced by setting the lower diagonal equal to the upper diagonal.
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0.5 0.502 1.0 0.778 0.545 0.919 0.839 0.955
0.737 0.796 0.778 1.0 0.705 0.941 0.883 0.953
0.484 0.582 0.545 0.705 1.0 0.908 0.814 0.948
- 0.923 0.909 0.919 0.941 0.908 1.0 0.836  0.937

0.828 0.845 0.839 0.883 0.814 0.836 1.0 0.943
0.947 0.96 0.955 0.953 0.948 0.937 0.943 1.0

1.0 0.49 0.5 0.737 0.484 0.923 0.828 0.947
0.49 1.0 0.502 0.796 0.582 0.909 0.845 0.96

(a) Accuracy

1.0 0.001 0.011 0.477 0.0 0.715 0.658 0.504
0.001 1.0 —0.003 0.594 0.166 0.663 0.692 0.623
0.011 —0.003 1.0 0.56 0.083  0.695 0.68 0.594
0.477 0.594 0.56 1.0 0.409 0.788 0.767 0.57

0.0 0.166 0.083 0.409 1.0 0.664 0.629 0.489
0.715 0.663 0.695 0.788 0.664 1.0 0.317 0.834
0.658 0.692 0.68 0.767 0.629 0.317 1.0 0.458

0.504 0.623 0.594 0.57 0.489 0.834 0.458 1.0
(b) MCC

Figure 11. Matrices and their corresponding heat maps representing the (a) mean
accuracy and (b) mean MCC scores for the binary classification between the data-
sets of length 30 IsoSigs generated using {2 — 3,3 — 2} moves; averaged over the 5-
fold cross-validation runs. Lighter colours represent higher performance scores, where
accuracy evaluates in the range [0, 1], and MCC in the range [—1,1]. The matrix
is manifestly symmetric as the pair order is irrelevant, and the diagonals are trivi-
ally 1 where no classification was required. The manifolds are ordered: (S*,$* x
S' RIP?,L(7,1),L(7,2), T2 ,PHS, Hsc).

scores throughout training, evaluating at each epoch, are shown in figure 12. This plot high-
lights that the performance improves quickly as the general behaviour can be learnt, but does
plateau at the limiting score—indicating there are triangulations which are truly difficult to
differentiate the manifold structure between.

Interestingly, the manifold which is best distinguished from all the other 7 is the Weeks
manifold, the only hyperbolic one in the lot. At the opposite, S, 5> x S' and RIP? = L(2,1) =
SO(3) are not distinguished at all.

4.1.1.1. NN gradient saliency. = We performed an in-depth analysis of the gradient saliency
values used by our NNs to distinguish L(7,1) vs L(7,2). A trained NN represents a function
from inputs to outputs, in the case of these problems this is an input of a single IsoSig, one-hot
encoded from length 30 in a length 64 alphabet to a length 1920 vector and an output of a
length 2 vector with each entry evaluating in the range [0, 1] (as a probability distribution over
the 2 classes) whose larger value indicates the predicted manifold the input IsoSig triangulation
represents.

Computing the derivatives of the NN function outputs with respect to each of the inputs
(i.e. for each index of each encoded letter in the IsoSig) provides a gradient function for each
input. Evaluating these functions on each IsoSig in the test data gives numerical values for how
sensitive the output classification is to each input value. Averaging over all inputs in the test
data, and across multiple cross-validation runs, then normalising the output gradients, provides
relative gradient measures with greater statistical confidence.
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Figure 12. Example NN binary classification training curve, between length 30 IsoSigs
for manifolds L(7,1) and L(7,2) generated using {2 — 3,3 — 2} moves up to depth 8.
The plot shows that the accuracy performance measure for both training and validation
sets increased quickly, converging to the final performance within a few epochs.

Figure 13. Image representation of the gradient saliency results for NN binary classifica-
tion between IsoSigs from manifolds L(7,1) and L(7,2) generated using {2 —3,3 — 2}
moves. Each row is the encoding of one of the 30 IsoSig characters in the length 64
alphabet, reshaping the 1920 length input vector into a (30, 64) size matrix. Lighter col-
ours indicate a more significant sensitivity to that input for the output classification.

For the L(7,1) vs L(7,2) classification, these gradient saliency values were averaged over
100 cross-validation runs, and the final gradient values are represented in figure 13, where
each of the 30 rows is an IsoSig character one-hot encoded into the length 64 alphabet. Lighter
colours indicate more sensitivity of the classification output to that input. The results in the
figure show that the most important parts of the IsoSig input are later characters in the IsoSig
and that these are more likely to be lower case letters from the start of the alphabet.

The rough behaviour of the figure 13, respects the IsoSig encoding structure as described
in appendix A. The first row is 7(n), and as all these triangulations have 10 tetrahedra only the
10th character in the alphabet (j) has a non-zero saliency and a slightly brighter colour. The
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next rows show importance on characters deeper in the alphabet, matching the triple encod-
ing structure of the type sequence where higher index characters are regularly expressed.
Following this is a wide-diagonal-like structure up to the 10th character, which coordinates
with the destination sequence being bound by n, which here is 10. Since the tetrahedra are
numbered as the destination sequence is built this explains why higher index characters are
more important later on as the earlier new tetrahedra seen would be allocated lower num-
bers. The final section of figure 13 shows a box of important values, up to the 23rd character,
matching the permutation sequence behaviour where there’re only 23 permutations in S4 for
relabelling vertices. This part shows that all potentially observed permutations are important
for the architecture’s classification, and since the brightest colour are exhibited in this part this
information tends to be the most useful for distinguishing triangulations of these geometries.

Further examining the actual saliency values (represented by colours in figure 13), averaged
over all of the cross-validation runs as well as each runs test dataset, we can plot a histogram
of the average saliency size, as shown in figure 14(a). This image shows a partition of values
with a selection having normalised absolute gradients > 10~* and the majority having values
< 1075, There is therefore a clear selection of ‘important’ inputs and ‘non-important’ ones.
Taking the input indices corresponding to the larger ‘important’ saliency values > 10, these
can be sorted into what character in the alphabet they correspond to (as plotted in a histogram
in figure 14(b)), or into what character in the length 30 IsoSig they correspond to (as plotted
in a histogram in figure 14(c)).

Figure 14(b) shows that the 363 ‘important’ inputs correspond to only a subset of the
full alphabet—predominantly the beginning of this alphabet with a few letters deeper in.
Equivalently, these same important input features have much higher frequencies towards the
end of the IsoSig as shown in figure 14(c). From this saliency analysis the NNs are hence
relying most on the final entries of the IsoSigs (the permutation sequence) to determine the
manifold, and the value of these entries becomes discriminant. Additionally the occurrence of
specific letters (like h or i with the highest frequency in figure 14(b)) can significantly help
the architectures’ confidence in classification.

4.1.2. Transformers.  Since the IsoSig data closely resembles that of text, one may sensibly
question how transformer architectures, which have seen great performance in many natural
language processing problems [79, 80], perform when classifying this data.

A popular baseline for performing binary classification tasks with transformers is to use
the BERT (Bidirectional Encoder Representations from Transformers) architecture [81]. In
a similar vein to that employed in section 4.1.1, the BERT model is now used to classify
whether a given pair of IsoSigs represent the triangulations of the same manifold. This model
is implemented using the transformers library [82].

Transformers are primarily successful as large language models, and due to this tend to have
a very large number of trainable parameters. To make training feasible, their use often relies
upon the principle of transfer learning, where the models are pre-trained on a large standard
set of data, and then retrained on a smaller specialised set. This use of pre-trained models can
avoid tens of thousands of core hours in retraining, and is what makes these large language
models feasible to use at all. However, the pre-trained models publicly available are trained
on language data (often English language text). This hence, raises appropriate concerns about
the success of transfer learning onto this IsoSig 3-manifold ‘language’ data, which does not
resemble the syntactical and grammatical structure of the English language.

Nevertheless, due to their paramount successes in recent times, it is interesting to exam-
ine their performance in this context. To do so we take the binary classification of the L(7,1)

27



J. Phys. A: Math. Theor. 58 (2025) 095201 F Costantino et al

1200 4

1000 1

@
<3
o

@
o
5)

Frequency

107° 1073 107t
Saliency Value

o

N N
=3 o
o =3

5]
4

107° 1

EoE e NN
© N & 0 ® O N
N ]
o @

Frequency
e
Frequency

o N & O ®

abcdefghijklmnopgrstuvwxzALMPQ 0 5 10 15 20 25 30
Letter Isosig Index

(®) (c)

Figure 14. Saliency analysis for the L(7,1) vs L(7,2) binary classification, averaged
over 100 NNs. A histogram of the average saliency absolute values across the 1920
input vectors is shown in (a), demonstrating a partition into more/less important features.
Subsequently (b) shows a histogram of the more important features with saliency value
> 10~* sorted according to the letter in the alphabet they correspond to; whilst (c) shows
a histogram of the same set sorted according to which of the 30 characters in the input
IsoSig they correspond to.

and L(7,2) datasets, as performed by the NNs to Accuracy and MCC scores of (0.705, 0.409)
respectively, and repeat the training and testing using the BERT model. Using a single layer
output classifier to change the standard 768 output dimension of the BERT model to the 2 bin-
ary classes, along with equivalent hyperparameters such as training with the Adam optimiser
and cross-entropy loss for 30 epochs with a batch size of 64 and learning rate of 0.001. The
transformer performance scores were:

Accuracy = 0.689 , 4.4
MCC = 0.381 . (4.5)

Unfortunately, whilst some learning was achieved, the performance was not as good as the
NN models, likely due to the inappropriate nature of the English language pre-training mis-
leading the classification. In addition to worse performance, the transformers also required
significantly more computational resources (time, power, memory). To exemplify this, whilst
the NN took the order of seconds to train and test, this simplest transformer model took the
order of hours, and required orders of magnitude more memory to run.
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Table 4. The knot IsoSigs used to start the generation of Pachner graphs using only
2 —3and 3 — 2 moves. Each knot was used to construct a knot-complement 3-manifold,
which was then triangulated to give a 1-vertex triangulation. The respective IsoSigs are
listed in this table, along with the number of tetrahedra in this initial triangulation.

Knot Initial IsoSig # Tetrahedra
Unknot cMcabbgds 2
Trefoil cPcbbbadu 2
Figure eight cPcbbbiht 2
5; dLQbcccaekv 3
5, dLQbcccdero 3
DT 6a3 = 6; knot eLPkbcddddcwjb 4
DT 8n; = 8, knot fLLQcbcdeeedowxxd 5

Therefore, although it was relevant experimentation, these results support the motivation to
focus on the NN architecture for learning of triangulation IsoSig properties.

4.2. Differentiating Knots

By a famous result of Gordon and Luecke, the complement of a knot entirely determines the
knot [83]. This allows one to identify knots with 3-manifolds, as the knot complement embed-
ded within $%; and with this motivation the workflow we have set-up may also be directly
extended to study and distinguish knots.

In this work, we again put focus on a selection of knots, in particular focusing on the most
fundamental knots with a low number of crossings. These knots are labelled: {Unknot, Trefoil,
figureEight, 51, 5,, DT 643 (a.k.a. 61), DT 8n; (a.k.a. 8;)}, where the final knot is hyperbolic
non-alternating. The figure eight and the 5, knot are the smallest hyperbolic knots in the 3-
sphere and indeed it turns out that they are more difficult to distinguish. In a similar way one
could expect some difficulties in distinguishing the torus knots 3; (the trefoil) and 5; (the
cinquefoil) but it is not so much the case (see figure 15).

Again all the initial IsoSigs are 1-vertex, and are generated using only 2—3 and 3 —2
moves. The initial IsoSigs for these knot complement 3-manifolds are given in table 4, along
with the respective number of tetrahedra in each initial triangulation.

The Pachner graphs were generated up to a depth that provided a suitable amount of data for
a fixed IsoSig length. Again searching for 2000 IsoSigs per Pachner graph, the selected IsoSig
length was 25 characters. From there the same NN architecture was trained to perform binary
classification between the knot complement manifolds. The binary classification learning was
performed for each pairing of knot-complement 3-manifolds, where the accuracy and MCC
scores are displayed in figure 15.

The results show comparable performances between knots, however with worse maximum
performances compared to the general 3-manifold learning in section 4.1. Some pairings had
close to no learning, better exemplified by the near-zero MCC scores for the (figureEight,
5,) and the (55, DT 6a3) pairings. Generally, as shown by the images, the colours are darker
closer to the diagonal, indicating worse performance, and suggesting that in general the more
disparate the crossing structure of the knot the easier the NNs can distinguish them. Accuracies
for identifying the Unknot are not as high as in the focused Unknot study in [44].
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1.0 0.632 0.612 0.576 0.629 0.714 0.752
0.632 1.0 0.657 0.6 0.71 0.748  0.782
0.612  0.657 1.0 0.5683 0.491 0.612 0.662
0.576 0.6 0.583 1.0 0.584 0.681 0.718
0.629 0.71 0.491  0.584 1.0 0.544 0.658
0.714 0.748 0.612 0.681 0.544 1.0 0.626
0.752 0.782 0.662 0.718 0.658 0.626 1.0

1.0 0.265 0.224 0.153 0.259 0.429 0.505
0.265 1.0 0.313  0.201 0.42 0.499  0.565
0.224 0.313 1.0 0.168 0.0 0.227 0.33
0.153 0.201 0.168 1.0 0.168 0.366  0.437
0.259 0.42 0.0 0.168 1.0 0.092 0.316
0.429 0.499 0.227 0.366  0.092 1.0 0.254
0.505  0.565 0.33 0.437 0.316 0.254 1.0

Figure 15. Matrices and corresponding heat maps representing the (a) mean accuracy
and (b) mean MCC scores for the binary classification between the datasets of length 25
knot complement IsoSigs generated using {2 — 3,3 — 2} moves; averaged over the 5-
fold cross-validation runs. Lighter colours represent higher performance scores, where
accuracy evaluates in the range [0, 1], and MCC in the range [—1, 1]. The matrix is mani-
festly symmetric as the pair order is irrelevant, and the diagonals are trivially 1 where no
classification was required. The manifolds are ordered: (Unknot, Trefoil, figure eight,
51, 52, DT 6as, DT 8ny).

4.2.1. Supplementing with Dehn Surgery. In addition to learning with their knot-
complement manifolds, we also perform two Dehn surgery operations (0-surgery and 1-
surgery) whereby a tubular neighbourhood of a knot is drilled out and then filled with a solid
torus [84].

Dehn surgery is a standard operation in topology allowing modification of the topology of
a 3-manifold by a ‘cut and paste’ operation on the D?> x S'-neighborhood of a knot consisting
in re-gluing the solid torus as S' x D?. This operation is also called 0-Dehn surgery and more
in general n-Dehn surgery consists in regluing the solid torus after twisting the image of the
meridian n-times along the longitude. In particular operating 0 or 1 surgeries along knots in §°
one produces closed oriented 3-manifolds with the homology respectively of $> x S' and of S°.
These manifolds are themselves canonically associated to the knots so their homeomorphism
type is by itself a knot invariant, albeit a complicated one. Here we try and distinguish knots
by distinguishing these surgery manifolds.

Focus is put on the differentiation between the Unknot and Trefoil binary classification
problem, which for the knot complement 3-manifolds classified with accuracy 0.632 and
MCC 0.265, neither particularly impressive scores. In this extension, the initial knot com-
plement triangulation IsoSigs, as given in table 4, had either O-surgery or 1-surgery performed
on them, to produce further 3-manifolds whose IsoSigs are given in table 5. We remind the
reader that the 0 and 1 surgeries on the Unknot are respectively S> x S! and S* and on the left-
handed Trefoil they are two Seifert fibered manifolds, respectively (52,(2,1),(3,1),(6,—5))
and (S2,(2,1),(3,1),(7,—6)) (the latter not being the Poincaré homology sphere, which is the
1 surgery over the right-handed Trefoil). Each of these was used to seed Pachner graph gen-
eration to generate databases of 2000 length 30 IsoSigs. Noting that in this subsection length
30 was used again instead of the length 25 as used in section 4.2, this is because the initial
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Table 5. The surgery Isosigs used to start generation of Pachner graphs using only 2 — 3
and 3 — 2 moves.

Manifold Surgery IsoSig # Tetrahedra
0 cMcabbjaj 2
Unknot 1 cMcabbgag 2
. 0 gvLQQcdefeffnjndspx 6
Trefoil 1 hLLLQkcdefgfgghsdaenjw 7

Table 6. NN binary classification performance scores for the knot complements, the
O-surgeries, and the 1-surgeries, between the Unknot and Trefoil knots. Scores were
averaged over 5 cross-validation runs.

Investigation Accuracy MCC
Knot complement 0.632 0.265
0-surgery 0.935 0.871
1-surgery 0.974 0.949

IsoSigs after surgery lead to length distributions with very few length 25 IsoSigs'®. Another
comment worth emphasising is that whilst the IsoSigs in table 5 have a range of initial number
of tetrahedra, since only a fixed length IsoSig is taken from the graph for ML these IsoSigs will
also correspond to triangulations with the same number of tetrahedra. Additionally, it is worth
noting that the initial IsoSig from 0-surgery of the Unknot is a triangulation with 3-vertices
(whilst the others are still all 1-vertex), this means this Pachner graph is a no longer a 1-vertex
Pachner graph.

With these datasets of 2000 length 30 IsoSigs corresponding to surgeries of these knot
complements, the respective ML binary classification between the knots was repeated for each
surgery operation. The NN architecture used was the same as throughout this work, as quoted
in section 4.1.1. The 5-fold cross-validation performance scores are given in table 6, including
the values for the knot complements without surgery repeated from section 4.2.

Performances are substantially higher after surgery, for either surgery actions. It is interest-
ing to observe that since 0 and 1-surgeries over the unknot are S*> x S' and $* respectively, the
problem discussed here is yet another instance of the problem analysed in section 4.1 and the
accuracies for the O-surgery and 1-surgery cases are comparable with those seen in figure 11.
These performances are quite high and show that one can easily complement the initial per-
formances for the simple knot complements with further parallel analyses. The potential for
distinguishing knots seems therefore quite high.

5. Conclusions and outlook

In this work triangulations of 3-manifolds were studied via their IsoSig representation. A selec-
tion of 3-manifolds were chosen to be of focus in this study, along with a selection of knot
complements from knots exhibiting a low number of crossings. Their databases of triangu-
lations were generated through their Pachner graphs, exhaustively performing {2 — 3,3 — 2}

18 This is also why just these two simplest knots are considered since the length distributions for some knot comple-
ments after surgery did not even include any length 25 or 30 IsoSigs.
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moves on an initial triangulation up to some pre-specified depth. The graph structure of these
graph was also analysed through a variety of network analysis techniques.

Pachner graph network analysis made some preliminary connections between the 3-
manifold topological properties and how their respective Pachner graph grows, particularly
using eigenvector centrality and decomposition of their minimum cycle bases. This included
proposal of a conjectural relation (conjecture 1) between the growth rate of the Pachner graph
and the systole of a hyperbolic 3-manifold. ML results showed that through a one-hot encod-
ing of the IsoSigs that simple NN architectures could learn to well distinguish which manifold
a triangulations’ IsoSig corresponded to—a feat very difficult by eye due to the high inform-
ation density of this encoding scheme. Gradient saliency analysis then demonstrated that the
NNs were using the IsoSig characters in a manner which respected the encoding schemes
decomposition into type, destination, and permutation sequences.

Transformers could not reach the same performance scores as the NN, likely due to the
highly unique language-style of this representation. However, the NN architectures could gen-
eralise well to differentiating these IsoSig representations of knot complements, and particu-
larly well manifolds after the operation of Dehn surgery.

At this work’s respective GitHub, code functionality is provided for generating and visu-
ally representing Pachner graphs for generic 3-manifolds; as well as performing a range of
network analysis techniques. Scripts for repeating the ML investigations performed here are
also provided, as well as databases of IsoSigs for the use of interested readers.

Future work would aim to make the connections between Pachner graph network proper-
ties and manifold topological properties more concrete. Further to this, ML methods may be
applied directly to the Pachner graphs, approximating optimal search techniques for problems
such as minimising number of tetrahedra in a representation, or conversely using graph-neural-
network techniques to study them. Additionally the study of more manifolds, and of triangu-
lations deeper into the Pachner graphs would be interesting to corroborate results observed
here.
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Appendix A. IsoSig encoding

Isomorphism Signatures, or IsoSigs, as introduced in [85], are a way of representing 3-
manifold triangulations. In addition to uniquely representing each isomorphism class, they
are both low memory and fast to compute/check/search.
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The algorithm to produce an IsoSig for a given 3-manifold triangulation with N tetrahedra
starts with the generation of canonical labellings. Before defining a canonical labelling we
will first define a labelling, which is generated as follows:

1. Arbitrarily label the tetrahedra from O to N — 1.

2. Arbitrarily label each tetrahedra’s four vertices from 0 to 3. Respectively the face opposite
each vertex i is given the same label i.

3. Using the notation A, s to equal the label of the tetrahedra glued to face f on tetrahedra ¢
(such that A, s € {0, ...,N — 1}); list the gluings as:
(A(),O,A(),l ,A0,2,A073,A]70, ...AN_],3) to define the labelllng

The are many possible labellings that uniquely define a triangulation, we first reduce this
set to only consider canonical labellings, which are defined as labellings with the properties:

e Tetrahedron 7 first appears in the labelling before tetrahedron ¢ iff ¢ < ¢/, for #,#' > 1 since
0 is implicitly first.

e Where tetrahedron ¢ first appears in the list at position A s, the labelling of tetrahedra £’s
vertices matches the labelling of tetrahedra (¢')’s—i.e. each of the three vertices in face f”
of tetrahedra r has the same vertex labelling as the vertex it is glued too in tetrahedra ¢/, the
remaining fourth vertex labelling is then inferred from these three.

For any triangulation, a canonical labelling can be directly generated by first selecting any of
the N tetrahedra as the Oth tetrahedron; then arbitrarily labelling its vertices (of which there’re
4! = 24 ways). From this choice the remainder of the canonical labelling can be inferred by
following the gluings list—each time a new tetrahedron is introduced label it as the next one in
the list and label its vertices using the identity map such that its vertex labels match the current
tetrahedron in accordance with the canonical labelling definition above. Through this labelling
process, it can be seen that there’re 24N canonical labellings for any triangulation [85].

This process of allocating a canonical labelling is clearly still redundant. To resolve this
many-to-one map from labellings to triangulations, all canonical labellings are computed,
encoded as IsoSigs, then the lexicographically smallest encoding is selected to represent the
triangulation. How the labellings are encoded is what gives the IsoSigs their character-based /
language-like representation, as well as being significantly more efficient.

A first step in improving the encoding efficiency is using an alphabet, and when the number
of tetrahedra N is large this becomes particularly effective. The alphabet'® implemented is in
base 64, such that:

Integer 0 B 25 26 B 51 52 B 61 62 63

Character a cee z A cee Z 0 cee 9 + -

Redundant information in the gluings list can also be omitted. In this process, the gluings
list through the triangulation faces A, s is re-encoded into three parts: (i) destination sequence,
(ii) type sequence, (iii) permutation sequence. Next we describe each of these part individually:

19 To encode larger numbers d = [loge, (N) | 4 1 characters can be used by just converting all numbers to base 64,
fixing d characters for all encoded integers, and using padding when necessary. To exemplify, for N = 80, then d =2
characters are needed, and the number 12 would be written as (12, 0) in the (64",64') basis, such that the encoding
would be ma.
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(i) Destination Sequence: Since each face gluing involves two faces, the gluings list for each
face naturally includes the information about each gluing twice. Therefore, from the glu-
ings list (Ao,0,A1,0,...,AN—1,3), each time a face A, s is glued to another face A, s which
has already been listed (i.e. t’ <, or t' =t and f' < f), the entry A, s is omitted from the
gluings list. In addition for more general triangulations with boundary, a character 0 may
be used instead of the tetrahedron number for A;f to evaluate to, when the face f is a
boundary of the triangulation. The destination sequence is then a list of all the unique
gluings (and boundaries).

(ii) Type Sequence: Each term in the destination sequence is then classified as one of three
types. Either type 0 — the face is a boundary (A, s = 0); type 1 — the face is glued to a
new tetrahedron; or type 2 — the face is glued to a previously seen tetrahedron. The type
sequence is then a list of the numbers 0, 1, or 2 for each term in the destination sequence.

(iii) Permutation Sequence: For each non-boundary face, the gluing information is described
by a permutation of the vertices from the face in the first tetrahedron to the face in the
second (each of the three vertices in the face are appropriately paired, and the remaining
fourth vertex in each case can then be inferred). Indexing all the 24 possible permuta-
tions p; s € S4 from O up to 23 (i.e. (0,1,2,3) :=0,(0,1,3,2) := 1, etc), the permutation
sequence is then a number for each non-boundary term in the destination sequence.

The full IsoSig is then a further reduction of this information. The map 7(+) takes any integer
into its alphabet encoding; if N < 63 the IsoSig starts with 7w(N); when N > 63, the sequence
starts?® with 7(63)7(d)e(N), where () encodes each of the digits of N written modulo 64 (so
when N < 64 the d =1 encoding is implicit).

Next the type sequence is encoded and listed, collecting three consecutive terms into each
printable character via 7 (7; + 4711 + 167,42) (since each integer 7 € {0, 1,2}), padding the
end with zeros if necessary. Then the destination sequence is encoded and listed via m(A, ),
but only for the type 2 faces (since type 0 are boundary, and type 1 can be deduced as the next
tetrahedra label since the labelling is canonical). Finally, the permutation sequence is encoded
and listed, but again only for the type 2 faces (since the type 0 faces have no gluing, and the
type 1 faces are implicitly the identity permutations since the labelling is canonical).

This produces the encoding of the canonical labelling, however as previously mentioned
there are 24N of these. To uniquely specify the IsoSig, each of these encoded canonical
labellings is computed, and the lexicographically smallest is selected as the IsoSig. The lex-
icographical ordering used is the ASCII computational standard [86].

A.1. Example: triangular bipyramid

As a simple example let us consider the triangular bipyramid, as depicted in figure 16. This
has two tetrahedra, which is far less than 63, so the encoding begins with c= 7(2) (the d =1
is implicit).

Arbitrarily starting with the top tetrahedron as our tetrahedron 0, let us choose the vertex
labelling such that the single glued face has vertices 0, 1, and 2; with the remaining vertex
labelled 3 (which matches the labelling of the glued face as it is opposite). The gluings list

20 Since 63 is the highest number which can be encoded if the sequence starts 7(63) it is considered as ‘63 or above’,
then the next character is taken to be 7(d) followed by the full 7(N) (which may be 63 again).
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Figure 16. The triangular bipyramid, an example 3-manifold triangulation, where the
coloured edges indicate the glued face.

then reads Ag o = 0, Ag,1 =0, Ap2 = 0, Ap;3 = 1, now this is the first occurrence of this new
tetrahedron (bottom) and hence sets its tetrahedron label to the next integer which is 1; further-
more the canonical nature of the labelling sets the vertex labellings for this second tetrahedron,
each vertex on the glued face in tetrahedron 0 is glued to a vertex of the same labelling in tetra-
hedron 1. The gluings list hence continues A; g =0, A1 =0,A;2 =0, A3 =0. The overall
gluings list is then: (9,0,9,1,0,0,0,0).

This reduces to the destination sequence: (9,0,9,1,0,0,0), removing the repetition of
the initial tetrahedron at the end of the gluings list. The type sequence is then defined as:
(0,0,0,1,0,0,0) over the destination sequence, i.e. there are no non-trivial gluings (type 2’s).
Finally the permutation sequence is computed, which is only defined for non-boundary terms
in the destination sequence: (0).

These sequences are then encoded and combined, after the initial c, the type sequence is
then split into threes and padded as ((0,0,0), (1,0,0),(0,0,0)), becoming 7(0 + 4 x 04 16 x
0)=7(0)=a,7(1+4x0+16x0)=7(1)=Db,7(0+4 x 0416 x 0) = 7(0) = a, which
together is aba. Following this, since there are no type 2 faces, the destination and permutation
sequences are trivially empty, and this defines the full encoded canonical labelling as caba,
which to check is canonical we would have to consider all 24 x 2 = 48 canonical labellings
and choose the lexicographically smallest (which in this case it is!).

Appendix B. Pachner graphs

The Pachner graphs generated with moves {2 — 3,3 — 2} up to depths 3 and 4, for the remain-
ing 8 considered manifolds, starting from triangulations with IsoSigs specified in table 1. The
nodes represent triangulations and are labelled with the triangulation’s respective number of
tetrahedra, edges represent Pachner moves which transform the triangulations they connect
into each other.

The smallest closed hyperbolic manifold Hsc had too many IsoSigs in its Pachner graph
to plot at even depth 3, therefore the depths 1 and 2 are shown instead. To exemplify
the speed of Pachner graph growth, the depth 5 §° Pachner graph is also given at the
end. These are given in figures 17-31.
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Figure 17. §% x S' Depth 3.
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Figure 18. S% x S' Depth 4.
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Figure 19. RIP? Depth 3.

Figure 20. RPP? Depth 4.
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Figure 21. L(7,1) Depth 3.
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Figure 22. L(7,1) Depth 4.
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Figure 23. L(7,2) Depth 3.

Figure 24. L(7,2) Depth 4.
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Figure 25. T° Depth 3.
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Figure 26. T° Depth 4.
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Figure 27. PHS Depth 3.

Figure 28. PHS Depth 4.
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Figure 29. Hsc Depth 1.

Figure 30. Hsc Depth 2.
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Figure 31. S depth 5.
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