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Finding the exact counterdiabatic potential is, in principle, particularly demanding. Following recent progress
about variational strategies to approximate the counterdiabatic operator, in this paper we apply this technique to
the quantum annealing of the p-spin model. In particular, for p = 3 we find a new form of the counterdiabatic
potential originating from a cyclic ansatz that allows us to have optimal fidelity even for extremely short
dynamics, independently of the size of the system. We compare our results with a nested commutator ansatz,
recently proposed in Claeys, Pandey, Sels, and Polkovnikov [Phys. Rev. Lett. 123, 090602 (2019)] for p = 1 and
p = 3. We also analyze generalized p-spin models to get a further insight into our ansatz.
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I. INTRODUCTION

It is possible to solve a complex optimization problem by
finding the ground state of a Hamiltonian H,, that encodes the
problem of interest. Adiabatic quantum computation [1] and
quantum annealing [2,3] achieve this task by slowly dragging
the system to the desired state, having first initialized it in
the ground state of a known (simple) Hamiltonian H,. The
adiabatic theorem assures that a time-dependent Hamiltonian
Hy(t), such that Hy(0) = H, and Hy(T') = H,, will lead toward
the wanted solution if, at + = 0, the system is prepared in
the ground state of Hy(0) and if T is large enough to avoid
transitions to excited states.

The ultimate bound to the efficiency of this approach is
related to the presence, and to the scaling with system size,
of vanishing small gaps in the instantaneous spectrum of
Hy(t). The evolution time must be tuned so that at t =T
there is a large probability of finding the system in its ground
state (longer annealing times obviously leave also the system
more prone to errors and thermal noise [4]). According to
the adiabatic criterion, this means that 7" must be longer than
h/A?, where A is the minimal gap between the ground state
and the first excited state. When the spectral gap closes in
the thermodynamic limit, as in the case of a quantum phase
transition [5], the evolution time 7" must grow with the system
size as well to compensate for the closure of the minimal
gap. In order to reach the ground state of a hard optimization
problem, the adiabatic evolution passes through exponentially
small (with the system size) gaps during the dynamics.

Finding ways to reduce the computation time 7', while
keeping the fidelity of the time-evolved state (at t = T') close
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to the ground state of H,, is a central question in this context
that still needs an adequate answer. In the past few years,
there have been several attempts to circumvent this problem,
resorting to quantum optimal control approaches applied to
the evolution of a complex system. A particularly appealing
approach that received increasing attention recently is the
implementation of shortcuts to adiabaticity [6-9] to quantum
annealing.

A shortcut to adiabaticity (STA) [or counterdiabatic driv-
ing (CD)] amounts to finding a time-dependent Hamiltonian
which evolves the state of a system as if the evolution was
adiabatic. Given the bare Hamiltonian Hy(?), it is possible
to find a term Hq(¢) such that that the dynamics governed
by H(t) = Hy(t) + H.q(¢) has vanishing diabatic transitions
between pairs of energy eigenstates at all times [7]. Since its
initial formulation, STAs have found numerous applications.
An overview of the field can be found in Ref. [10].

The exact CD Hamiltonian H 4(¢), derived by Berry [7],
can be expressed in terms of the exact instantaneous eigen-
states and eigenvalues of Hy(t). In a many-body system,
H_q(t) becomes progressively nonlocal and hence is not easy
for a practical implementation, when Hy(¢) is close to a
quantum phase transition [11,12]. More importantly from a
conceptual point of view, the severe limitation in the use of
the exact form of Hy(t) arises because (i) exact eigenstates
cannot be determined (this would correspond to a prior knowl-
edge of the solution of the optimization) and (ii) Hqq(?) may be
ill defined due to small denominators near the quantum critical
point.

A big step forward in overcoming these limitations has
been achieved by Sels and Polkovnikov [13], who derived
a variational principle to determine approximate forms of
H.y. This new variational approach to STA solicits detailed
scrutiny of its potentialities in speeding up quantum annealing
protocols. Some very recent papers addressed this question
[14-16]. Hartmann and Lechner [14] analyzed the approxi-
mate optimal counterdiabatic driving in the so-called Lechner-
Hauke-Zoller (LHZ) lattice gauge model [17], Claeys et al.
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[15] studied a nonintegrable one-dimensional (1D) Ising
model, Hatomura [16] adopted a mean field approximation
for the CD driving of the infinite-range Ising model.

In this work, we continue along this program and apply
the variational approach by Sels and Polkovnikov to the
quantum annealing of the ferromagnetic p-spin model, which
is currently subject of intense investigation [18-31]. Despite
being exactly solvable, the p-spin model has a nontrivial
phase diagram and is deeply related to NP-hard optimization.
Furthermore, it encodes a Grover-like search [32,33] for large
and odd p.

The paper is organized as follows. In Sec. II, we introduce
the basic concepts of STA and describe the variational proce-
dure developed in Ref. [13]. In the same section, we show the
approximate counterdiabatic operator adopting two different
ansétze for the variational potential: The first one is based on
the nested commutator (NC) approach [15], and the second
one is based on a simple cyclic ansatz (CA), and the origin
of this name will be clear in the following. In Sec. III, we
discuss different properties of the p-spin model for p = 1, 2,
and 3 in detail. This section contains a detailed discussion
of the results we obtained. We compare the two approaches
and show that, in the case p = 3, the CA outperforms the NC
ansatz considerably, leading to an almost-perfect recovery of
the ground state in the final time 7'. This effect occurs even for
very large system sizes, the scaling of the fidelity being almost
independent of the number of spins. Given the excellent
performance of the CA for the p-spin model, in Sec. IV, we
move away from this highly symmetric case and consider
different generalizations that do not have constant all-to-all
couplings. The question is to see if the CA has sufficient
power and flexibility to be used in a generic situation. To this
aim, we consider different finite-range and random variants of
the p-spin model and compare the two variational ansétze also
in these cases. Finally, in Sec. V, we summarize our results
and briefly discuss future directions.

II. QUANTUM ANNEALING AND
COUNTERDIABATIC DRIVING

As already mentioned in the Introduction, a typical anneal-
ing schedule can be formulated as follows. A (many-body)
quantum system is governed by a time-dependent Hamilto-
nian of the form

Ho[r ()] = [1 — A(1)]H; + A(1)H, ey

with the constraint that Hy(0) = H(0) and Hy(T) = H(T),
which implies A(0) = 0, A(T) = 1. In the rest of the paper
we will further impose that A(0) = A(T) = 0. A convenient
parametrization that automatically includes all these require-
ments has the form

_ | T in? (0
A(t) = sin |:2 sin <2T):|' 2)

The goal is to reach, as close as possible, the ground state
of H(T) if the initial state is the ground state of H(0).
Having introduced the instantaneous eigenstates of Hy(A(t))
as Hoy(M(1)) len(1)) = €y €x (1)), ideally we require that

[V (T)) = |eo(T)) . 3

A. Shortcut to adiabaticity

Achieving the condition in Eq. (3) is the goal of adiabatic
quantum computation via quantum annealing. If one wants
to speed up the evolution, then an additional control on
the dynamics is required. The proposals collectively named
shortcuts to adiabaticity or counterdiabatic drivings [6-8,34],
reviewed in Ref. [10], are based on the idea that the evolution
of a quantum state can coincide with the instantaneous ground
state of Hy[A(¢)] if an additional time-dependent contribution
Hq(¢t) is added to the Hamiltonian. The exact quantum state
governed by the Hamiltonian Hy[A(¢)] + Hq(?) is given by
[ (t)) = |eo(t)) at any time (here, for simplicity, we consid-
ered the case in which one follows the ground state).

Berry [7] derived the exact CD potential to add to the bare
Hamiltonian Hy () to completely suppress diabatic transitions
between pairs of energy eigenstates at all times. It reads

)= ihz (€m(1)[8:Ho(1)]€1(1))

€ —€m

Hcd(t

lem @) (e ()] (4)
m#l

Albeit exact, this potential is ill defined at the quantum critical
point due to exponentially small denominators. Furthermore,
even in the cases where Eq. (4) can be analytically computed,
the resultant operator can be highly nonlocal and impos-
sible to implement on the available hardware. Finally, and
most important for its application to quantum annealing, the
Hamiltonian in Eq. (4) requires the knowledge of the exact
eigenvalues and eigenvectors of the Hamiltonian at any time.

A big step forward in offering a solution to these problems
comes with the variational approach to counterdiabatic driv-
ing formulated in Refs. [13,35].

B. A variational approach to counterdiabatic driving

A variational principle for the counterdiabatic potential H.q
can be derived as follows. If one parametrizes the CD potential
as H.q(t) = A(t)A,(¢), then A, satisfies

iR(0,Hy + Fuq) = [Ax, Hol, &)
with
Fas ==Y 036m |€m) (€nl . (6)

It is possible to introduce the operator [13,35]:

i

whose diagonal elements in the energy eigenbasis do not
depend on A} and whose off-diagonal elements in the energy
eigenbasis are zero if A} = A, (i.e., if G, = —F,4). Therefore,
the true counterdiabatic potential A, minimizes the Hilbert-
Schmidt norm of G, i.e., the operator distance between Gj
and —F,;:
3S(AY)

a5 =0,

S(A¥) = Tr [GZ(A1)]. (8)
SAj A’;:A,\ g [ g )\]

In the next section we are going to apply the above-
mentioned variational approach to the p-spin model. As in any
variational approach, the next important step is an educated
guess of (in this case) the operator A,. We will consider two
variational forms of the operator A;:
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(i) An operator Ay) as defined in Ref. [15], expressed in
the form of NC:

1
AP =ih " oylHo. [Hy. . .. [Hy. 9:Holl]
——— —
k=1 2%—1

l
= ihZQkOZk—l- (9)
k=1

It turns out that this form can be manipulated effi-
ciently. Important details of the method are discussed in
Appendix A. In principle, the larger is /, the more accurate
is the approximation of the CD potential.

(i) For p=1,3, we also study a new form, which we
name CA, where the corresponding variational operator AS"
has a particularly symmetric form when applied to the model
considered here. It is expressed by

v
ASA = Z aiS; + Z aabceachaSbSo (10)
i=1

abc

Details on this ansatz are discussed in Appendix B.

In the next sections, we scrutinize these two possibilities
testing to which extent it is possible to optimize the annealing
schedule in these cases. The new variational ansatz, especially
tailored to this specific model, leads to exceptional good
fidelities for the p-spin model.

III. FERROMAGNETIC p-SPIN MODEL

The ferromagnetic p-spin model is defined by the Hamil-
tonian

J
H, = -2I'S,, H,=-———(5,), an
np1

where S;, Sy, S; are total spin operators:

i .
=53 etna )
i=1

For odd p, the ground state of H, is ferromagnetic and
nondegenerate, whereas for even p there are two degenerate
ferromagnetic ground states, related by a Z, symmetry. In the
following, we choose ' =J =1l and & = 1.

We consider three prototypical cases of this model
[18-31,36]:

(i) p = 1: In this case, the qubit system acts as a single
spin § = n/2. The operators Oy_; are all proportional to S,
as shown below. Thus, one variational parameter is sufficient
to recover the limit / — oo of the NC ansatz. We will numer-
ically show that this corresponds to the exact counterdiabatic
potential, up to numerical errors.

(i) p = 2: The system exhibits a second-order quantum
phase transition, where the minimal gap A scales as A ~
n~1/3[37,38]. In this case, the CD operator derived within the
nested commutator ansatz improves the success probability of
quantum annealing by increasing the fidelity as a function of
the order I. We show that the number of NC required grows
with the number of qubits 7.

(i) p = 3: The system exhibits non degenerate ground
state. It shows a first-order QPT. The exponent p = 3 is the

smallest odd integer for which the p-spin model has this
property. Even for this (relatively) simple case, a large number
[ of NC in Eq. (9) is needed in order to have a significant
improvement in the success probability of quantum annealing.
Moreover, this number increases with the system size. How-
ever, in the following we show that the cyclic ansatz yields
an almost perfectly-efficient and size-independent counterdia-
batic driving in the symmetry subspace with maximum spin.

Note that the p-spin model Hamiltonian is SU(2) invariant,
and hence states with different total spin S belong to discon-
nected subspaces. If we apply a quantum annealing protocol
using the Hamiltonian of Eq. (11) as target Hamiltonian and
H, = —) ;0 as starting Hamiltonian, then we can work
out the whole procedure within the maximum spin subspace,
whose dimension is N = n + 1. This will allow us to perform
numerical simulations for large system sizes. Moreover, while
in the definition of S;(&) of Eq. (8) the traces are evaluated
over the 2" basis states of the full Hilbert space, in this specific
case we can define another family of functionals S;(&), in
which the traces are restricted to the N =n+ 1 states of
the maximal spin subspace. In this subspace, S;(&) obeys
variational equations analogous to those for S;(a).

We will show that both the nested commutator ansatz and
the CA can be studied in the whole Hilbert space or in the
maximum spin subspace, with different performances. These
two approaches are compared in Appendix C.

A. Results for p =1

The p = 1 case is trivial; it is, however, useful to set the
stage for further calculations. The Hamiltonian of the p-spin
model for p = 11s

Ho(A) = =2(1 — A)S, — 2A8;. (13)

It is easy to see that Oy = 2(Sx — S;), while Oy_; « S, for
all k£ > 0. Thus, the ansatz of Eq. (9) contains only one
variational parameter (! = 1) and is

AV = as,. (14)

Details on the minimization of the corresponding quadratic
action is given in Appendix A.

We numerically simulate the dynamics of the p-spin sys-
tem in the symmetric spin sector, for 7' = 1, for system
sizes ranging from n = 10 to 100. The time evolution operator
U(t) = Ty exp[—i fot H(t')dt'] is approximated discretizing
the time interval [0, T'] into N, steps of dtr and using the
following rule:

N,
U(t) ~ l_[efiH(tH*dt/Z)dt. (15)
i=1
The probability of being in the instantaneous ground
state is

Pys(1) = l{eoOIU )Y (1 = 0))17, 16)

and the fidelity is
F =Pt =T), 7
i.e., the probability of being in the ground state at the anneal-
ing time t = T. In the absence of the CD term, the fidelity F

is very small in the analyzed cases for this choice of T (F =~
1 x 1073 for n =10, F <1 x 10" for n = 50 and above).

013283-3



G. PASSARELLI et al.

PHYSICAL REVIEW RESEARCH 2, 013283 (2020)

10°
107
w p=1
10—10
—e— No CD
s NC, /=1
10~

10 20 30 40 50 60 70 80 90 100
n

FIG. 1. Fidelity F as a function of the system size, for the bare
annealing (blue line with circles) and for the CD driving (orange
line with squares) for p = 1. The ansatz of Eq. (14) yields a size-
independent fidelity, dependent only on the truncation errors of the
numerical integrator.

The scaling of the fidelity as a function of the system size is
summarized in Fig. 1 for sizes up to n = 100. This clearly
shows that the ansatz of Eq. (14) indeed, in this simple case,
gives the exact counterdiabatic potential of Eq. (4).

B. Results for p = 2

For p = 2, there are two degenerate ground states att = 7.
They both belong to the subspace with maximum spin, i.e.,
they are the two fully spin polarized states |n/2) = |11 --- 1)
and [—n/2) = [J{ --- |).

In this case, the fidelity is given by F = P,,»(T)+
P_,(T). For p=2, we simulate the quantum annealing
up to a final time 7 = 1 and study the scaling of F as a
function of the system size in the maximum spin subspace and
for different orders of approximation of the counterdiabatic
operator Af\l) of Eq. (9).

In particular, in Fig. 2 we report the scaling of F' as a
function of n, for / = 1, 3, and 8 compared to bare quantum
annealing with no CD terms. These results are obtained using
a time step of df = 1 x 1073, In the bare annealing case, the

1 %‘::\‘\.:‘
10—5,
w
10-10/ —e— No CD
NC, I=1
p=2 —— NC, /=3
—v— NC, /=8
10—15,

10 20 30 40 50 60 70
n

80 90 100

FIG. 2. Fidelity as a function of the system size for the bare
annealing and for the CD ansatz of Eq. (9) at different orders (p = 2).
Increasing the order of the approximation yields a larger fidelity F'.

100,
10—5,
w
-10 |
10 p=3
s —e— No CD —— NC, /=3 —— CA
1071 NC, /=1 —= NC, /=8

10 20 30 40 50 60
n

70 80 90 100

FIG. 3. Fidelity F as a function of the system size for the bare
annealing and for the CA and NC ansatz at different orders (p = 3).

fidelity rapidly goes to zero as we increase the number of
qubits n. This is easily understood, as increasing the number
of qubits n the energy levels become more and more dense
and, for fixed T, the dynamics quickly leaves the adiabatic
regime. The starting paramagnetic state is metastable for all
t and the p-spin system occupies this state for the whole
dynamics. At the annealing time ¢t = T, the system state

would be
1 &(n
W)~ o ZO <w>

where |n/2 — w) are eigenstates of S, with eigenvalues o,, =
n/2 — w. Only two terms of this sum contribute to the fidelity:

F = [(=n/21y(T)* + [(n/2[p(TH* ~27"  (19)

A single variational parameter (I = 1) yields good im-
provement for small systems, but eventually the fidelity goes
to zero for large n. By increasing the number of variational
parameters, the improvement in F' can even be of several
orders of magnitude for small systems. However, the general
trend is that, for large n, this improvement still gives a fidelity
very close to zero and the proposed variational ansatz seems
to be inefficient in the thermodynamic limit.

Ti-wh o

C. Results for p =3

For p =3, the ground state is nondegenerate. In this
specific case, we discovered an alternative ansatz, which we
named CA, yielding strikingly large fidelities in the symmetric
sector, almost independent of the system size. The CA is
shown in Eq. (10). In Appendix B, we show that for p =3
it takes the compact form

AN =S, e + oS85 HHe) Q0

having only three variational parameters.

We start this section showing the scaling of the fidelity as
a function of the system size. Due to the first-order QPT, we
expect that the fidelity scales as

F =¢e ", (21)
We ask whether the CD driving can change this scaling law.

In Fig. 3, we show the fidelity F' as a function of the
system size for T =1 and we compare the bare quantum
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TABLE I. Table of coefficients for the exponential fit in Eq. (21).

] 4
No CD 0.903 5.96 x 10!
NC, I =1 0.492 2.11 x 10™!
NC, 1 =3 0.999 1.09 x 10!
NC, [ =8 2.438 1.29 x 107!
CA 0.990 5.54 x 1074

annealing with the nested commutator ansatz (I = 1, 3, and
8) and the CA. We perform a fit of the results conjecturing
the exponential behavior of Eq. (21) even in the presence of
CD. The coefficients ¢ and y are summarized in Table I,
comparing the standard quantum annealing, the NC ansatz
(for several orders /), and the CA.

Note that the exponent y in the CA is three orders of
magnitude smaller than both the unitary case and the nested
commutator ansatz. Moreover, in the latter case, we observe
that the fidelity grows with increasing order [ only for small
system sizes, whereas for larger systems the fidelity shows a
maximum as a function of / and then decreases. In fact, the
exponent y for [ = 8 is larger than that for [ = 3.

To summarize, in the presence of a CD the scaling of
F with n remains exponential, but the coefficient y is re-
duced with respect to the bare case. Moreover, the CA yields
an almost constant fidelity up to n = 100, and a large one
(F > 1/2) up to n = 1000, providing a robust mechanism
to counteract the exponentially vanishing spectral gap for
Macroscopic systems.

In Fig. 4, we show the time evolution of the ground-
state probability Py(t) for T =1, for n = 10 [Fig. 4(a)] and
n =20 [Fig. 4(b)] in the maximal spin subspace. The blue
dashed line indicates the fidelity of bare quantum annealing
with no CD. The lightest green line corresponds to a CD
dynamics with / = 8. Darker lines are for all orders starting
from [ =1 (the lighter is the line, the larger is /). The red
dot-dashed line represents the CA. Figure 4 clearly shows
that the nested commutator ansatz of Eq. (9) can improve
the fidelity of quantum annealing for p = 3. However, the
CA yields an even larger fidelity. In comparison, a similar
fidelity could be reached only going beyond order [ = 8.
However, increasing the number of NC the improvement in

the fidelity is gradually smaller, and we guess that in order
to achieve results similar to the one obtained using the CA
an unpractical large number of nested commutator would be
required. Moreover, as n grows, more and more variational
parameters are required to achieve a similar level of fidelity,
whereas the CA requires only three variational parameters.
Hence, in this particular case, the CA is extremely efficient
and outperforms the other known approximation schemes.
This is even more evident increasing the number of qubits. For
instance, Fig. 4(b) shows the same results for n = 20. Here
the fidelity for / = 8 is significantly smaller than the previous
case (F =~ 0.20 versus F ~ 0.68). By contrast, the fidelity of
the CA is almost unchanged with respect to n = 10, while the
ground-state probability at intermediate times is still affected
by the system size.

IV. FINITE RANGE AND RANDOM INSTANCES

The efficiency of the CA could depend on the peculiarities
of the p-spin model, i.e., spin symmetry and infinite-range
interactions. However, it is difficult to prove this statement
theoretically, therefore in the following we will try to limit
the range of the interactions and to break spin symmetry
to gain some insights into this problem. In the absence of
spin symmetry, we need to extend the analysis presented in
Sec. III C to the whole Hilbert space. Of course, this process
is exponentially more demanding, since now we have to
consider all the 2" computational basis states. Therefore, in
this section, we will limit our analysis to small systems, i.e.,
n=3to8.

The total Hilbert space can be decomposed as the direct
sum of the eigenspaces of the maximum total spin operator,
corresponding to § = n/2, and of its orthogonal:

H=Hup @ Hy)p. (22)
In principle, all traces in Eq. (A6) have to be evaluated over
‘H. However, we have already discussed that the variational
procedure can be easily restricted to the interesting subspace.
Using a parameter 0 < n < 1, we can choose whether to
evaluate the traces in the whole Hilbert space or rather in the
symmetric subspace. For any operator O, we replace

Tr(0) — (1 =) Tr(0)y2 + nTr(0)y 5. (23)

Pgs(t)

Pgs(t)

t/T

0.8

FIG. 4. Time dependence of the ground-state probability Py, for p =3, T =1, and (a) n = 10 and (b) n = 20. The blue dashed line
represents the fidelity of the bare evolution without CD driving. The darkest line is the ground-state probability when the NC ansatz of order
| = 11is used. Analogously, the lightest line refers to / = 8 and all lines in between correspond to increasing orders of the NC ansatz [Eq. (9)].

The red dot-dashed line refers to the CA.
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1.0 S — < 1.0 5 == =
\ \.\ P2
@ i T (b) -
i !
0.9 i ! 0.9
: 'l i : 1.00F
— — \ T
= v=1 i/ s v=10 \ b
& i i 2 0.98 \-\_ /./'
0.8 [ 0.8 Voo
1 i \ o/
i 0.96 W
NC, /=8 Vo NC, /=8 0.50 0.75 1.00
0.7{ —— CA \\'_/ 071 —— CA
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
t/T t/T

FIG. 5. Ground-state probability Py(?) as a function of time for n = 8 and p = 3. The annealing time is 7 = 1. The minimization occurs
in the whole Hilbert space (n = 1/2). Panel (a) is for v = 1 and panel (b) is for v = 10 in Eq. (26). In both panels, the green solid line refers
to the NC ansatz (I = 8), while the red dot-dashed line refers to the CA. The inset in panel (b) zooms in on the region t /T € [0.5, 1].

The case n =0 is analogous to Sec. III C. Minimizing in
the whole Hilbert space corresponds to choosing n = 1/2.
The comparison between the two approaches is discussed
in Appendix C. Finally, n = 1 is the minimization in the
orthogonal subspace Hj/z. Here focus our attention to the
cases in which n = 0 and n = 1/2.

A. Finite-range p-spin model

To highlight the infinite-range nature of the p-spin model,
it is more convenient to rewrite its Hamiltonian [Eq. (11)] in
the following form:

1
Hy=——— Z Joj ..o, (24)
Qlyeeny ip
where i; = 1,...,nforall j. As {0}, 07} = 2§; ;, the Hamil-
tonian in Eq. (24) is a polynomial function of order p of Pauli
operators, containing terms of orders P=p,p—2,...,1

(odd p). Each term represents an infinite-range P-body inter-
action between qubits, with uniform coupling constant J.

A possible way for turning this infinite-range p-spin model
into a finite-range model is by weighting J with the “distance”
between the qubits involved in the p-body term. This can
be easily understood by considering the simple case p = 2,
where the Hamiltonian would be

2
H[f=2 = const — - ZJUI.ZU;. (25)
ij

In this case, we can replace J — J; ; = J/|i — j|” and build a
finite-range version of the p-spin model, where the exponent
v determines how punctual the interactions between the qubits
are: v = 0 is the infinite-range model and v — oo represents
nearest-neighbor interacting qubits.

The same reasoning holds for any value of p. In particular,
we can always replace J by J;, . ;, = J/ dist(iy, . .., i,)". Here
we propose to consider the following form for the distance
function:

dist(iy, . .., ip)

{Zj,k>j lix —1;1/2Z
1

if i;’s are all distinct
otherwise ’

(26)

The parameter Z = (p* — p)/6 is a normalization factor cho-
sen so that dist(1, 2, ..., p) = 1. For p = 3, that normaliza-

tion factor is Z = 4. We also note that this choice of the
distance function does not allow finite-range models for n = 3
with p = 3, as in that case J;, ;,;, = 1 for all combinations of
indices. Of course, for all other values of n, this procedure
breaks the spin symmetry of the p-spin model, and therefore
we will work in the whole Hilbert space and consider n = 1/2.
In Fig. 5, we show the ground-state probability Py(f) as a
function of time for n = 8 and p = 3. The green solid line cor-
responds to NC while the red dot-dashed line corresponds to
the CA. The left-hand (right-hand) panel referstov = 1 (v =
10). This figure can be compared with the right-hand panel
of Fig. 8, corresponding to v = 0. Moving from the infinite-
range model to the finite-range one, we note that the efficiency
of both ansitze, NC and CA, is improved, as both curves are
pushed upward. In particular, for v = 10, the fidelity F in the
CA case is F ~ 0.995, comparable with the nested commuta-
tor ansatz with / = 4. Can we conclude that the reason why
the CA works so well cannot be the fact that the model is
infinite range as it works even better without this feature? It
is difficult to compare to the p-spin model as (1) we are not
working in the symmetric subspace and (2) the two models
have different spectra (different gap, different time of minimal
gap, see the unitary dynamics); however, the results of this
section motivated us to go even deeper and to analyze different
(random) instances and check our ansatz also in that case.

B. Random p-spin model

Previously, we showed that the CA can be efficient also for
models featuring finite-range interactions, as in that case we
can even get larger fidelities than those of the infinite-range
ferromagnetic p-spin model. In this section, we will address
another question. Starting from the Hamiltonian of Eq. (24),
here we randomly suppress some of the coupling constants J
with a certain probability. In this way, we can build a family
of infinite-range models, where the full connectivity of the p-
spin model is progressively lost.

The resulting Hamiltonian is identical to that in Eq. (24),
but the coupling constant J is replaced by a random variable
K satisfying

K— {J with probability P; 27

0  with probability 1 — P;°
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FIG. 6. Fidelity distributions for the random p-spin model for
several values of the probability P; of having nonzero coupling
constants, for n =5 and p = 3. The annealing time is 7 = 1 and
there are no counterdiabatic terms. The vertical dashed line indicates
the fidelity for P, = 1.

This model is the usual infinite-range ferromagnetic p-spin
model when P; = 1. For any P; # 0, 1, this model breaks
the spin symmetry and we have to work in the whole Hilbert
space, with n = 1/2.

For several choices of P;, we performed dynamical simula-
tions for M randomly generated instances of this infinite-range
random p-spin model and measured the fidelity, both with
and without counterdiabatic terms. We focus here on the case
n =15 and p = 3; however, we obtained qualitatively similar
results also for larger system sizes.

In Fig. 6, we show the fidelity distributions for P; =
0.1, 0.3, 0.5, 0.7, and 0.9 . We divided the fidelity interval
[0.30, 0.45] into N, = 100 bins and counted the occurrences
over M = 900 repetitions of the dynamics.

The peaks of the distributions are equally spaced, which
implies that the mean fidelity (F') linearly depends on P;.
According to the Landau-Zener formula, in a two-level ap-
proximation around the avoided crossing the mean fidelity
would be

(Fy~ 1 — AT 2 (AT, (28)

As a consequence (F)~ (A)? o« P; which implies that
1/2
(A) ~P,".

250
mm P=0.9
200 = P=07
mEE P =0.5
@ 150| HEE P=03
S s Pj=0.1
o
O 100
Nested commutators, /=3
50

0.0 0.2 0.4 0.6 0.8 10
F

As P; < 1, all randomly generated instances have smaller
gaps than the infinite-range ferromagnetic p-spin model with
P; =1, and therefore the corresponding fidelity is always
smaller than that of the original model in the absence of
counterdiabatic terms. This is shown in Fig. 6, using a black
dashed line to highlight the fidelity for P; = 1.

In Fig. 7, we show the same fidelity distributions in the
presence of counterdiabatic driving. The left-hand panel is
for the NC ansatz of order / = 3. The right-hand panel is
for the CA. Here we consider N, = 100 bins for the fidelity
interval [0, 1]. Except for a few minor differences, such as
the presence of outliers around F = 0 for P; = 0.1, the two
plots look similar. However, we note that the mean fidelity
in the cyclic case is smaller than that in the NC case for
P; < 1/2, while the opposite is true for P; > 1/2. In both
cases, the presence of counterdiabatic driving allows for a
significantly larger fidelity (~15-20 times), compared to the
case with no CD driving. Increasing the order / of the NC
ansatz, the mean values of all distributions move toward F =
1. Moreover, all distributions become narrower and acquire
nonzero skewness.

As opposed to the case with no CD driving, here there are
some instances showing larger fidelity than that for P, = 1.
This is highlighted in Fig. 7, where the black dashed line
indicate the fidelity of the case P; = 1. This evidence confirms
that the efficiency of counterdiabatic driving does not entirely
depend on the spectral properties of the analyzed model. In
fact, even if the average minimal gap is smaller than that for
P; = 1, there are instances of the P; < 1 case where quantum
annealing with CD is more efficient than the case P; =1
with CD.

V. CONCLUSIONS

To summarize, we have applied the variational approach
(developed in Ref. [13]) to find an approximate CD poten-
tial for the quantum annealing of the p-spin model. This
model is hardly implementable on quantum machines (due
to the p-body interactions). It is a paradigmatic example of
NP-hard problems as it describes nontrivial quantum phase
transitions and can be numerically addressed even in the
large n limit thanks to its symmetries. This approach is
very promising [35] and has been recently applied to other
kinds of model Hamiltonians with p-body interactions [14].

200} wum p=0.9
= P=07
150 ==& P/=0.5
w EEE P =03 Cyclic
c wa Py =0.1
3 100 !
O

50

0.0 0.2 0.4 0.6 0.8 1.0
F

FIG. 7. Fidelity distributions for the random p-spin model, in the presence of counterdiabatic driving. The left-hand panel refers to the
nested commutator ansatz with / = 3. In the right-hand panel, we show data for the CA. In both panels, the black dashed line indicates the

fidelity for P, = 1.
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Our results confirm these expectations. The p-spin model
possesses a spin symmetry, and hence we first restricted our
approach to the maximum spin subspace, where the starting
and final states lay. We used two different ansitze for the
variational potential: One is based on the NC hypothesis [15]
and another based on a cyclic ansatz [see Eq. (10)]. We
focused our attention on the case p = 3, which is the first
odd integer showing a first-order quantum phase transition
with exponentially small gap closure in the thermodynamic
limit. In this case, both ansitze give substantial improve-
ment in the fidelity with respect to the bare dynamics (i.e.,
standard quantum annealing). However, the CA seems to be
much more efficient, in particular when the number of qubits
grows. For both ansitze, we can also perform the variational
optimization in the whole Hilbert space. However, in this
case, the efficiency of the CA is reduced, as discussed in
Appendix C. This is likely due to the fact that the cor-
responding optimal counterdiabatic potential also addresses
diabatic transitions between pairs of energy eigenstates that
are already uncoupled by the spin symmetry. This redundancy
harms the performances of the CA in the relevant symmetry
subspace, where the dynamics occurs. By contrast, restricting
the traces to the subspace with maximal spin, we can readily
implement the spin symmetry of the p-spin model and obtain
better performances. We have also shown new results con-
cerning modified model Hamiltonians accounting for short-
range interactions and random instances. These results may
be relevant for the future implementation of experimentally
viable counterdiabatic operators on the available quantum
processors.
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APPENDIX A: VARIATIONAL ANSATZ

A possible variational strategy consists in restricting the
optimization to physically realistic (local) operators. For in-
stance, the authors of Ref. [13] prove that the following form:

* oy
A = E wjo;,
J

where «; are variational parameters and aj’-‘, k=x,y,z are
Pauli matrices, can successfully approximate the true counter-
diabatic potential of the 1D quantum Ising model with both
transverse and longitudinal biases. Contextually, they also
show that this ansatz is no longer valid when either transverse
or longitudinal biases (or both) are zero. The effectiveness
of the procedure can be improved systematically by includ-
ing higher-order local terms such as o707, | 40707, + H.c.
in the original ansatz. The exact counterdiabatic driving
breaks time reversal, thus an odd number of o” operators
is required at all orders. However, in this approach, it is
a priori unknown which operators have to be included to
have a sufficiently accurate description of the counterdiabatic
potential.

(AD)

In Ref. [15], the authors proposed the following approxi-
mate gauge potential:

l
A = iny " ax[Ho, [Ho, ... [Ho, &, Holl]
N —— e’

k=1 2k—1

I
=il 0Oy 1. (A2)
k=1
For ease of notation, we have defined
Or = [Hp, Or1], k21
{ O = 9, Ho . (A3)
Now the operator G, of Eq. (7) reads
. 1
i
G = duHy + 2 [A Ho] = 0o+ ) 0. (Ad)
k=1
thus the corresponding action is
!
Si(@) = Tr[05] + 2 o Tr[0gOx]
k=1
!
+ Y oy Tr[02;0x], (AS5)

jk=1

we can define & = («y, ..., o) and recast S; as a quadratic

polynomial
S@) =A+2B-a+a’-C-a, (A6)
A =Tr[02], (A7)
Bi = Tr[0 0], (A8)
Cij = Tr[020;]. (A9)

is diagonal. We can introduce the matrix U that diagonalizes
C,i.e., D =UTCU. Then S; is rewritten as

1

Si@)=A+)_ (2B + Duat}?). (A10)
k=1
with @' = U’ and B' = U” B. The stationary point is
aS; B,
—— = 2B, + 2Dy, =0 =5 a] = ——~, All
a()l]’( k Kk k Dkk ( )

The exact CD driving is recovered in the limit / — oco. In
fact, the matrix elements of Af\l) in the energy basis are

l

(A |en) = ih Y " ar(er — €)™ (er 0 Holem) . (A12)
k=1

to be compared with the exact gauge potential:

. {€r|0,Hol€m)
€A |em) = ih—————""
(erlArlem) =i —

(A13)

The proposed variational ansatz is a power-series approxima-
tion of the factor (Fiw,,,)~" = (€,, — €,)~! and will generally
fail near w,,, = 0.

013283-8



COUNTERDIABATIC DRIVING IN THE QUANTUM ...

PHYSICAL REVIEW RESEARCH 2, 013283 (2020)

1.00 L= <
(a) RN VA —— (b) )
\ / v i
v NS '|
0.95 \ 0.8 " !
K = g e
o 7 . B
h & | a
0.90 ‘ ,
0.6 | ;
NC, /=8 NC, /=8 \\ /A/
- - w
0.85 CA g CcA 9
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
ur t/T

FIG. 8. Ground-state probability Py(f) as a function of time for n = 8 and p = 3. The annealing time is T = 1. Panel (a) shows the
results obtained by the minimization of the action in Eq. (A6) in the symmetric subspace (n = 0). Panel (b) refers to the minimization in the
whole Hilbert space (7 = 1/2). In both panels, the green line refers to nested commutator ansatz (! = 8), while the red dotdashed line refers

to the CA.

Compared with the “heuristic” approach presented above,
this NC ansatz has the obvious advantage that it can be im-
proved by including higher-order terms and more variational
parameters. The downside is that operators Oy are nonlocal
and as difficult to implement as the original proposal by Berry
[7]. As opposed to the exact CD potential, however, these
operators are well defined around the quantum critical point.

In this manuscript, we apply the counterdiabatic scheme to
the ferromagnetic p-spin model. In the case p = 1, we only
need [ = 1 (1 is the order of nested commutators) to recover
the exact CD potential. For / = 1, the quadratic action S («)
[see Eq. (A6)] is trivially minimized by

Tr[0y0,]

(A14)

For the p-spin system of Eq. (13), O, = —8(1 — 1)S, + 8AS,,
thus, in the symmetric sector,

Tr[000,] = 16 Tr [S7 + A(S; — 57) — 5.S:]

_ 162(2 _i>2 _ 1on(n + 1)(n+2)'

12

(A15)

In the same way, it is possible to prove that

64 1 2
[02] = 2 +12)(” D _myn),  (@ale)
so that
1
m=—— Al7

= T8t 82 (A7)

independently of the system size.

APPENDIX B: CYCLIC ANSATZ

In Eq. (10), we propose a general form for the CA. In this
section, we will work out explicitly all the relevant terms in the
case p = 3. Starting from Eq. (10), we first explicitly evaluate

all the terms:
ATA = 1Sy + 038 + 001y Si Sy Sz — 2y S:S, S,
+ 08,8, Sy — 011y SiS.S,y
+ 0y eSSy — 0y Sy S, (B1)

Then, using the angular-momentum commutation rules, we
can simplify the previous expression to

ATA = 1Sy 4 aaS) + ' (8:5,8. + Hee), (B2)

where we have defined o’ = oy, = —Qlyy; = Olpyy =
—0;, = oy, and we have used the fact that (S,S,S, + H.c.) =
(85,8, + H.c.) = (8,85, + H.c.). With this assumption, the
CA requires just three variational parameters.

—Oyx =

APPENDIX C: WHOLE HILBERT SPACE VERSUS
MAXIMUM SPIN SUBSPACE: p =3

In this Appendix, we compare the efficiency of our algo-
rithms both for n = 0 and n = 1/2, i.e., calculating the traces
in the maximum spin subspace or in the whole Hilbert space,
respectively. In Fig. 8, we show the instantaneous ground-state
probability as a function of time for 7 = 1 and n = 8. The
green line is for the NC ansatz of orders / = 8 and the red
dot-dashed line is the CA. The left (right) panel refers to the
casen =0(n=1/2).

Comparing the two panels, we notice that the ground-
state probability for the nested commutator ansatz is almost
independent of 5. By contrast, the CA outcome is strongly
affected by 5. In fact, for n = 0, the fidelity is very close
to F = 1, while, for n = 1/2, the fidelity drops to F =~ 0.7.
Also the instantaneous value of Py(?) has a different behavior
depending on 7. In fact, for n = 0, the fidelity drops before
the avoided crossing and then immediately recovers following
a nonmonotonic behavior, with a maximum at the avoided
crossing (see also Fig. 4). By contrast, for n = 1/2, the
ground-state probability shows a minimum after the avoided
crossing and then grows, with no maximum. Similar results
also hold for other values of the system size n.
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