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ABSTRACT
We introduce a galaxy cluster mass observable, μ�, based on the stellar masses of cluster
members, and we present results for the Dark Energy Survey (DES) Year 1 (Y1) observations.
Stellar masses are computed using a Bayesian model averaging method, and are validated
for DES data using simulations and COSMOS data. We show that μ� works as a promising
mass proxy by comparing our predictions to X-ray measurements. We measure the X-ray
temperature–μ� relation for a total of 129 clusters matched between the wide-field DES Y1
redMaPPer catalogue and Chandra and XMM archival observations, spanning the redshift
range 0.1 < z < 0.7. For a scaling relation that is linear in logarithmic space, we find a slope of
α = 0.488 ± 0.043 and a scatter in the X-ray temperature at fixed μ� of σlnTX|μ�

= 0.266+0.019
−0.020

for the joint sample. By using the halo mass scaling relations of the X-ray temperature from
the Weighing the Giants program, we further derive the μ�-conditioned scatter in mass, finding
σlnM|μ�

= 0.26+0.15
−0.10. These results are competitive with well-established cluster mass proxies

used for cosmological analyses, showing that μ� can be used as a reliable and physically
motivated mass proxy to derive cosmological constraints.
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1 IN T RO D U C T I O N

Galaxy clusters are fundamental cosmological probes for large
galaxy surveys such as the Dark Energy Survey (DES; The Dark
Energy Survey Collaboration 2005). The estimation of the cos-
mological parameters from clusters abundance is allowed by the
dependence of the dark matter halo mass function on cosmology
(Press & Schechter 1974; Sheth & Tormen 2002; Tinker et al. 2008),
but it requires estimates of cluster total masses from the observables
of our galaxy survey. In practice, we seek cluster mass observables
(or mass proxies) that tightly correlate with the total cluster mass.
In other words, they exhibit a low scatter in total mass at fixed mass
proxy (and vice versa).

Several cluster finders are based on the cluster red sequence (e.g.
Koester et al. 2007; Hao et al. 2010; Oguri 2014; Rykoff et al.
2014). Amongst those, redMaPPer (Rykoff et al. 2014) has been
extensively studied and its mass proxy, the richness λ, calibrated
for large photometric surveys such as the Sloan Digital Sky Survey
(SDSS) and the DES over the past decade (Rozo et al. 2009a, b,
2011; Melchior et al. 2016; Rykoff et al. 2016; Simet et al. 2017;
Costanzi et al. 2019). On the other hand, there exists broad evidence
that the content of clusters includes a non-negligible fraction of
bluer, star-forming galaxies that do not follow the red-sequence
colour–magnitude relation, in particular towards increasing redshift
(Oemler 1974; Butcher & Oemler 1978; Butcher & Oemler 1984;
Donahue et al. 2002; Zhang et al. 2017). This effect is known as the
Butcher–Oemler effect. Whether the inclusion of the blue cloud can
improve cluster mass estimates for cosmology is a matter of debate
(e.g. Rozo et al. 2011) and depends on the survey characteristics. At
higher redshifts, the blue fraction becomes more significant (though
the number count of blue galaxies over all members can also reach
∼ 30 per cent below redshift ∼0.3; Zu & Mandelbaum 2016) and
the red sequence is not as distinguishable in colour–magnitude space
as at lower redshift. In these regimes, the inclusion of the bluer
members may play a significant role in cluster abundance studies
of DES and other ongoing and future photometric surveys (the
Large Synoptic Sky Telescope, LSST, Ivezić et al. 2008; Euclid,
Laureijs et al. 2011) that push towards higher redshifts, z = 1 and
beyond.

One clear advantage of including blue galaxies in cluster cat-
alogues is in studying cluster properties and their evolution with
redshift, in particular the Butcher–Oemler effect and quenching
mechanisms. Moreover, cluster finders able to identify also cluster
members that do not belong to the red sequence (Miller et al. 2005;
Soares-Santos et al. 2011) already exist. For these reasons, we
develop a low scatter mass proxy for cluster finders that is not
red sequence based.

Previous works (e.g. Andreon 2012) have exploited stellar masses
as a possible cluster mass proxy. We here extend those studies
by using a larger sample of X-ray clusters for calibration and
by complementing the stellar mass estimates with a membership
probability scheme presented in a companion paper, Welch et al.
(in preparation). A feasibility study for stellar mass computation
with DES data has already been carried out in Palmese et al. (2016),
where they found that stellar masses of cluster members can be
recovered within 25 per cent of Hubble Space Telescope Cluster
Lensing and Supernovae Survey with Hubble (CLASH) values.
The use of the stellar mass content as a probe of total cluster mass
is empirically but also physically motivated by the stellar-to-halo
connection (see e.g. Wechsler & Tinker 2018 for a review), which
follows a linear relation in the logarithm of masses at cluster scales.
An analysis of the scaling relation for the stellar content with halo

mass thus has interesting implications not only for cosmological
analysis, but also for the stellar-to-halo mass relation (SHMR),
which is of interest to understand galaxy evolution within clusters
(see Palmese et al., in preparation for implications on the SHMR
from the whole DES redMaPPer sample). In fact, the SHMR can be
expressed as a joint likelihood of mass and observable properties.
Because of this, the stellar mass can potentially be more tightly
related to the total mass of clusters on the individual halo basis, than
galaxy number counts would. On the other hand, projection effects
due to foreground and background galaxies being confused with
cluster members, are perhaps one of the most problematic issue
in cluster cosmology with richness (Costanzi et al. 2019). These
effects are likely to affect our stellar mass observable in a similar
way to λ, because of the similarities between the two methods.
However, these effects could be alleviated by the fact that the very
massive central galaxies tend to dominate the total mass, making
our mass proxy less sensitive to field galaxies contamination (as
recently shown in Bradshaw et al. 2020).

We therefore apply our method to a well-established cluster
catalogue, the DES Year 1 (Y1) redMaPPer catalogue, matched
to X-ray observations. Nevertheless, this mass proxy can easily be
used with other, non-red-sequence based, cluster finders. We also
test our cluster stellar mass estimates against simulations.

The X-ray temperature and luminosity of clusters represent a
well-known, low scatter mass proxy for cluster mass, for which
total mass scaling relations have been studied in depth (e.g. Mantz
et al. 2016). The formalism by Evrard et al. (2014) allows us to link
the scaling relations of different mass proxies when a lognormal
covariance is assumed around the mean scaling relations of the
mass proxies. It is thus possible to derive an estimate of the scatter
on the total mass of clusters by using the scaling relations between
our mass proxy and the X-ray temperature, and between the X-ray
temperature and the total mass of clusters. Such estimates provide
essential prior information for our mass proxy–mass scatter in a
cosmological analysis with cluster abundance.

In this work, we present a stellar mass-based cluster mass proxy,
called μ�, and assess its performance as a mass proxy using
archival X-ray data. This paper is divided into five sections. In
Section 2, we describe the DES galaxy catalogue, the Y1 redMaPPer
catalogue, and the X-ray cluster catalogues used. In Section 3,
we present a new method to compute galaxy stellar masses that
uses a Bayesian model averaging (BMA) technique. We then
introduce the scheme to produce our stellar mass proxy μ� and
briefly describe the membership probability assignment. We also
present the method used to compute the X-ray scaling relations and
the mass scatter. Section 4 contains measurements of the TX–μ�

relation and scatter constraints, both for the temperature scatter and
the total cluster mass scatter. Section 5 contains discussion and
conclusions.

Throughout this work, we assume a �CDM flat cosmology with
H0 = 70 km s−1 Mpc−1, �m = 0.3, �� = 0.7. The notation adopted
for the cluster mass and radius follows the one often used in the
literature. The radii of spheres around the cluster centre are written
as r�m and r�c where � is the overdensity of the sphere with
respect to the mean matter density (subscript m) or the critical
density (subscript c) at the cluster redshift. Masses inside those
spheres are therefore M�m = � 4π

3 r3
�mρm and similarly for M�c.

In the following, we quote � = 200, which roughly corresponds
to the density contrast at virialization for a dark matter halo at
z = 0. Logarithms indicated as ln are in base e, and Log are in
base 10. Errors are 68 per cent confidence level unless otherwise
stated.
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2 DATA

2.1 DES Year 1 data

The DES1 is an optical-to-near-infrared survey that imaged
5000 deg2 of the South Galactic Cap in the grizY bands over 575
nights spanning almost 6 yr. The survey was carried out using
a ∼3 deg2 CCD camera (the DECam, see Flaugher et al. 2015)
mounted on the Blanco 4-m telescope at the Cerro Tololo Inter-
American Observatory (CTIO) in Chile. DES started in 2012 with a
testing period (2012 November–2013 February) called DES Science
Verification (SV).2 The data used here come from the first year of
observations (2013 September–2014 February, Diehl et al. 2014)
and cover 1839 deg2 with up to four passes per filter. The data are
available at http://des.ncsa.illinois.edu/releases/y1a1.

The survey strategy is designed to optimize the photometric cali-
bration by tiling each region of the survey with several overlapping
pointings in each band. This provides uniformity of coverage and
control of systematic photometric errors. This strategy allows DES
to determine photometric redshifts of ∼300 million galaxies to an
accuracy of σ (z) � 0.07 out to z � 1, with some dependence on
redshift and galaxy type, and cluster photometric redshifts to σ (z) ∼
0.02 or better out to z � 1.3 (The Dark Energy Survey Collaboration
2005). It has already found ∼400 million objects, including stars
and galaxies, from the first three years of operations (Abbott et al.
2018), and ∼ 80 000 galaxy clusters from the first year.

The DES Data Management (DESDM) pipeline was used for data
reduction, as described in detail in Sevilla et al. (2011), Desai et al.
(2012), and Mohr et al. (2012). The process includes calibration
of the single-epoch images, which are co-added after background
subtraction and then cut into tiles. The source catalogue was created
using SOURCE EXTRACTOR (SEXTRACTOR, Bertin & Arnouts 1996)
to detect objects on the riz co-added images. The median 10σ

limiting magnitudes of Y1 data for galaxies are g = 23.4, r = 23.2,
i = 22.5, z = 21.8, and Y = 20.1. Drlica-Wagner et al. (2018) made
further selections to produce a high-quality object catalogue called
the Y1A1 ‘gold’ catalogue.

The cluster catalogue used here is the cosmology Y1 redMaPPer
catalogue v6.4.14 with richness λ > 5, which consists of 87 297
clusters. This sample is then matched to archival X-ray observations
from Chandra and X-ray MultiMirror Mission (XMM). We use
these X-ray data to measure an X-ray temperature at the position of
redMaPPer clusters, rather than cross-matching with existing X-ray
cluster catalogues. The 2D distribution of richness and redshift of
the matched samples is shown in Fig. 1. The centre position (given
by the galaxy with the highest central probability pcen) and the
cluster redshift are the only outputs used from this catalogue. The
galaxies associated with each cluster are taken from the Y1A1 gold
catalogue. We select objects with MODEST CLASS = 1 in order to
exclude sources that are likely not to be galaxies.

While the cluster catalogue is based on Y1 data, the photometry
comes from the deeper Year 3 data (median 10σ co-added catalogue
depths for a 1.95 arcsec diameter aperture: g = 24.33, r = 24.08,
i = 23.44, z = 22.69, and Y = 21.44 mag; Abbott et al. 2018). The
photometry is the result of the Multi-Object Fitting (MOF) pipeline
that uses the NGMIX code.3

In order to compute the membership probabilities (as described
in Section 3.2), we use photometric redshifts (photo-z’s) from the

1www.darkenergysurvey.org
2For public data release see: http://des.ncsa.illinois.edu/releases/sva1.
3https://github.com/esheldon/ngmix

Figure 1. Distribution in richness λ and redshift for the DES Y1 redMaPPer
clusters matched to Chandra and XMM archival data (XCS in the figure)
using the methods presented in Hollowood et al. (2019) and Giles et al. (in
preparation).

template-based Bayesian photometric redshifts (BPZ) algorithm
(Benı́tez 2000). The catalogue used in this work uses the same
procedure as outlined in Hoyle et al. (2018). Briefly, six basic
templates taken from Coleman, Wu & Weedman (1980) and Kinney
et al. (1996) were corrected for redshift evolution and any residual
calibration errors. Corrections were performed via finding the best-
fitting template for a subset of the PRIMUS spectroscopic data
set (Cool et al. 2013) and computing median offsets between
the observed photometry and template predictions within each
template type, in a sliding redshift interval, �z = 0.06. The
magnitude and galaxy type redshift prior was then calibrated using
the COSMOS + UltraVISTA photometric redshift catalogue of
Laigle et al. (2016). Our BPZ run produces redshift probability
distributions for 0 < z < 3.5 in steps of dz = 0.01. We use
the mean of the probability distribution function (PDF) and an
estimate of the width of the PDF: Welch et al. (in preparation) show
that this is a good enough approximation to estimate membership
probabilities with our method. The member galaxy properties are
instead computed assuming the much more precise cluster redshift.

2.1.1 Completeness of the stellar mass sample

The galaxy sample described in Section 2.1 is cut in r-band
absolute magnitude. Absolute magnitudes were estimated using
K-corrections computed from galaxy templates generated by KCOR-
RECT v4.2 (Blanton & Roweis 2007). We took each galaxy’s redshift
to be the same as its photo-z, found the closest KCORRECT template
on a grid of redshift and colours (g − r, r − i, and i − z), and
used that template’s K-correction from observed i band to rest-
frame r band to calculate Mr. An absolute magnitude cut Mr

brighter than −19.8 was then applied to the galaxy catalogue.
This cut ensures that our galaxy sample is volume limited across
the redshift range considered. In Fig. 2, we show the observed
r-band magnitudes that the galaxies in our sample would have
if they had an absolute magnitude Mr = −19.8 as a function of
redshift. These are computed using the K-corrections and distance
modulus output by our galaxy spectral energy distribution (SED)
fitting code using BMA (described in Section 3) for galaxies
with a membership probability > 15 per cent (corresponding to the
median of the membership probability distribution), in order to be
representative of a realistic cluster galaxy population. We show that
the 90th percentile of the distribution in redshift bins is below the
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95 per cent completeness limit of the DES Y1A1 gold catalogue
(22.9 in i band) over the redshift range covered by the redMaPPer
cosmology catalogue. We compare to the Y1 magnitude limit as our
galaxy catalogue contains objects detected in Y1, even if they are
matched to the deeper Y3 photometry. We can conclude that with
the chosen cut we are ∼ 90 per cent complete.

In order to estimate the completeness in stellar mass, we look
at the mass M lim

� each galaxy would have, at its redshift, if its
absolute magnitude were equal to M lim

r = −19.8. This can be
achieved by converting the mass-to-light ratio fitted by BMA
through Log(M lim

� ) = Log(M�) + 0.4(Mr − M lim
r ), where Mr and

M� are the galaxy estimated absolute magnitude and stellar mass.
From Fig. 2 it is clear that, if all the galaxies were at M lim

r or fainter,
� 90 per cent of them would have a stellar mass � 1010 M�. We
therefore are � 90 per cent complete above M� = 1010 M� over the
whole redshift range. The scatter in mass at each redshift is given
by the scatter in M/L of the different models. We therefore cut our
stellar mass sample at M� > 1010 M�.

2.2 X-ray catalogues

The μ�–X-ray mass observable relations are computed using
archival XMM and Chandra data. The DES Y1 redMaPPer cluster
catalogue is used to find galaxy clusters in the X-ray data bases at the
same positions. Consequently, the samples are not X-ray selected.
However, X-ray temperature and luminosity measurements are not
available for all of the redMaPPer clusters, either due to a lack of
archival observation, or the number of photons is not enough to
estimate the luminosity or temperature. In this work, we only focus
on temperatures rather than luminosities, since the latter exhibit a
larger variance if non-core excised (Fabian et al. 1994; Mantz et al.
2016). Supplemental survey masks would need to be modelled in
order to recover the core-excised measurements.

The XMM (Jansen & Laine 1997) is a European Space Agency
space mission launched in 1999. The XMM Cluster Survey (XCS)
consists in a search for galaxy clusters in archival XMM–Newton
observations. The DES Y1 redMaPPer sample was matched to
all XMM ObsIDs (with usable EPIC science data) under the
requirement that the redMaPPer position be within 13 arcmin of the
aim point of the ObsID. X-ray sources for each ObsID were then
detected using the XCS Automated Pipeline Algorithm (XAPA;
Lloyd-Davies et al. 2011). At the position of the most likely central
galaxy of each redMaPPer cluster, we matched to all XAPA-defined
extended sources within a comoving distance of 2 Mpc. Cutout DES
and XMM images are then produced and visually examined to assign
a XAPA source to the optical cluster.

In order to derive the cluster X-ray temperature, we use the XCS
Post Processing Pipeline (XCS3P) as described in Giles et al. (in
preparation), and briefly describe the methodology here. Cluster
spectra are extracted and fitted using the XSPEC (Arnaud 1996)
package, performed in the 0.3–7.9 keV band with an absorbed
MeKaL model. The cluster spectra are extracted within r2500c,
centred on the XAPA-defined centre of the cluster emission, and
estimated through an iterative procedure. An initial temperature
is estimated using the XAPA source detection region, and r2500c

estimated from the r2500c–kT relation of Arnaud, Pointecouteau &
Pratt (2005). For clusters falling on multiple observations, we
utilize all available cameras (i.e. PN, MOS1, and MOS2) in a
simultaneous fit, provided the individual camera spectral fits are
reliable. Cameras are only included in the simultaneous fit if the
temperature is within the range 0.08 keV < TX < 30 keV, and
contains both upper and lower 1σ errors. The iteration process

Figure 2. Analysis of the completeness of the galaxy sample. Top panel:
observed i-band magnitudes that the galaxies in our sample would have if
they had the absolute magnitude used as our limit (M lim

r = −19.8). The
bottom edge of the shadowed region represents the DES Y1 95 per cent
completeness limit from Drlica-Wagner et al. (2018). Bottom panel: limiting
mass M lim

� that each galaxy would have, at its redshift, if its absolute
magnitude were equal to M lim

r = −19.8. The limiting mass is below
1010 M� at all redshifts; we therefore cut our sample at this stellar mass.
The shadowed region represents this cut. The dashed lines are the 50th and
90th percentile of the distributions.

is performed until r2500c converged to within 10 per cent. To take
into account the background, we used a local background annulus
centred on the cluster with an inner and outer radius of 2r2500 and
3r2500, respectively. All other detected sources in the field, extended
and point sources, were excluded from the analysis. However, our
detection routine does not exclude point sources at the centre of the
extended emission. We do not therefore distinguish these sources
from what could be a cool core, and accept this as part of the intrinsic
scatter. This could present a problem at high redshift where AGN
emission could dominate over the emission, but again we accept
this as part of the intrinsic scatter. A recent study in XXL clusters
at high redshift (z ∼ 1) determined that this was not significant
for robust extended X-ray source detections (Logan et al. 2018).
Furthermore, a calculation of coefficient of variation (Koopmans,
Owen & Rosenblatt 1964) of TX is performed, defined as the ratio
of the standard deviation (σ ) to the mean (μ), given by Cv =
σ (TX)/μ(TX). The values for σ (TX) and μ(TX) are taken from the
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distribution of temperature measurements from all iterations. In this
work, we adopt a value of Cv < 0.25 as an indicator of a reliable
measurement of the iterative temperature, excluding clusters with
CV > 0.25 from the sample. The final sample is composed of 58
clusters in the DES Y1 wide field, and the list of clusters is reported
in Appendix A.

The Chandra X-ray Observatory is a NASA telescope launched
in 1999. In order to obtain X-ray temperatures for archival Chandra
data, we use the Mass Analysis Tool for Chandra (MATCha)
pipeline, described in Hollowood et al. (2019). This pipeline finds,
downloads, and cleans archival Chandra data for each of its input
cluster candidates. It then iteratively finds a galaxy cluster centre
(until converged within 15 kpc), and iteratively fits X-ray temper-
atures within 500 kpc, r2500c, and r500c apertures (until converged
within 1σ ). As with XCS3P, MATCha performs its fitting using
XSPEC, with an absorbed MeKaL model. As in XCS3P, MATCha
performs its fits within the 0.3–7.9 keV band. For consistency
between the XCS and Chandra samples, we apply to both the same
SNR > 5 cut. The SNR is defined by the number of counts in a
500 kpc region within the 0.3–7.9 keV energy range, compared
to the counts in a background region (taken as an annulus outside
of the inner region). A more detailed description of the detection
process can be found in Hollowood et al. (2019). We choose to
use temperatures within r2500c for this sample because they are
more accurate for nearby clusters, where the r500c apertures become
too big compared to the Chandra chip. Our Chandra sample is
composed of 64 clusters in the DES Y1 wide field, and the list
of clusters used is reported in Appendix A. For comparison, the
redMaPPer catalogue used in this work contains 357 and 212
clusters in the XMM and Chandra fields, respectively.

In order to perform a joint fit between the two X-ray samples
and improve our population statistics, we correct for a systematic
misalignment between the Chandra and XMM temperature mea-
surements, as estimated by Rykoff et al. (2016)

Log(T Chandra
X ) = 1.0133Log(T XMM

X ) + 0.1008 , (1)

where the temperatures are in keV. In the following, we use
equation (1) to convert XMM temperatures. The calibration relation
found in Farahi et al. (2019a) using the same cluster sample used
here (apart from a few clusters falling in the supernovae fields,
which we did not include in this analysis), has 15 clusters with
both Chandra and XMM temperatures, and is consistent with the
relation reported above. In our joint analysis, we use the Chandra
temperatures, and convert the XMM ones to the Chandra frame for
the remaining clusters using equation (1).

3 ME T H O D

3.1 Stellar mass estimation

3.1.1 Stellar mass with Bayesian model averaging

A major cause of uncertainty in stellar mass estimation from broad-
band photometry is in the model assumptions (see e.g. Mitchell
et al. 2013) that are needed in model fitting techniques. These
assumptions mainly involve redshift, star formation history (SFH),
the initial mass function (IMF), the dust content, and the knowledge
of stellar evolution at all stages. Rykoff et al. (2016) showed that the
redMaPPer photometric redshifts for DES are excellent, with errors
of the order σ z/(1 + z) ∼ 0.01 up to z ∼ 0.9. This allows us to safely
assume the cluster redshift for the cluster members and to avoid
exploring the photo-z dependence of stellar masses, as was done in

another DES study by Capozzi et al. (2017). Despite the fact that
in this work we can safely assume that the cluster redshift is a good
estimate of the real galaxy redshift, all the other assumptions remain
unconstrained. We therefore choose not to ignore the uncertainty on
model selection and use a set of robust, up-to-date stellar population
synthesis (SPS) models and average over all of them, marginalizing
over the model uncertainty. The method used here is called BMA
(see e.g. Hoeting et al. 1999). BMA has already been successfully
applied to galaxy SED fitting parameter estimation in Taylor et al.
(2011).

Our code can be used to estimate physical parameters of galaxies
(stellar masses, specific star formation rates, ages, metallicities) as
well as cluster stellar masses and total star formation rate (SFR)
when provided with cluster membership probabilities, and it is pub-
licly available at https://github.com/apalmese/BMAStellarMasses.

The BMA starting point is Bayes’ theorem, through which we
can write the posterior probability distribution p(θ̄k|D,M) of the
set of parameters θ̄k given the data D and the model Mk

p(θ̄k|D,Mk) = p(D|Mk, θ̄k)p(θ̄k|Mk)

p(D|Mk)
, (2)

where p(D|Mk, θ̄k) is the likelihood, p(θ̄k|Mk) is the prior prob-
ability of the parameters given the model Mk, and p(D|Mk) is
the evidence. In our case, the set of parameters θ̄k define the
stellar population properties (e.g. stellar mass, SFH parameters,
metallicity) of model Mk, and the data D are the galaxy’s observed
magnitudes.

The model averaged posterior distribution of the parameters θ̄k

is given by the sum of the single model Mk posteriors, weighted by
the model prior

p(θ̄k|D) =
∑

k p(θ̄k|D, Mk)p(Mk)∑
k p(Mk|D)

. (3)

From BMA it also follows that the posterior distribution of a quantity
� is the average of the single model posteriors for that quantity,
weighted by their posterior model probability

p(�|D) =
∑

k

p(�|D,Mk)p(Mk|D) . (4)

The posterior model probabilities can be computed by

p(Mk|D) = p(D|Mk)p(Mk)∑
k p(D|Mk)p(Mk)

, (5)

where

p(D|Mk) =
∫

p(D|Mk, θ̄k)p(θ̄k|Mk)dθ̄k . (6)

In our case, p(θ̄k|Mk) is simply a delta function, as the parameters θ̄k

(i.e. the SFH parameters, metallicities, etc.) fully define our models
Mk.

From equation (6), one can write

〈�〉 =
∑

k

�̄kp(Mk)Lk , (7)

where �̄k is the mean � value from the model Mk, which is
defined by the set of parameters θ̄k including metallicity and SFH
parameters. Lk is the likelihood p(D|Mk) that we will reconstruct
from the χ2 distribution. The model prior p(Mk) is uniform over all
models.

In our code, the mass-to-light ratio M�/L is the quantity �. Its
posterior mean over all the models considered is then used to
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Table 1. Parameters of the models used in the BMA SED fitting.

Parameter Values

Z 0.03, 0.019, 0.0096, 0.0031
ti (Gyr) 0.7, 1.0, 1.5, 2.0
tt (Gyr) 7, 9, 11, 13
τ (Gyr) 0.3, 1.0, 1.3, 2.0, 9.0, 13.0
θ (deg) −10, −20, −30, −40, −50, −80

estimate the stellar mass M� of each single galaxy through

Log(M�/M�) = 〈M�/L〉 − 0.4(i − DM + 〈kii〉 − 4.58) , (8)

where 〈M�/L〉 is the weighted mean stellar mass-to-light ratio in
solar mass units, i is the observed i-band magnitude, DM is the
distance modulus, 〈kii〉 is the weighted mean of the K-correction
irestframe − i, and 4.58 is the i-band absolute magnitude of the Sun.
Weighted means are considered over all models.

In this work, we use the flexible stellar population synthesis
(FSPS) code by Conroy & Gunn (2010) to generate simple stellar
population spectra. Those are computed assuming Padova (Girardi
et al. 2000, Marigo & Girardi 2007, Marigo et al. 2008) isochrones
and Miles (Sánchez-Blázquez et al. 2006) stellar libraries with four
different metallicities (Z = 0.03, 0.019, 0.0096, and 0.0031). We
choose the four-parameter SFH described in Simha et al. (2014)

SFR(t) =
{

A(t − ti)e(t−ti )/τ if t < tt
SFR(tt ) + �(t − tt ) otherwise

, (9)

where ti is the time at which star formation commences (∼1 Gyr), tt

is the time when the SFR transitions from exponential to a linear fall
off (∼9 Gyr), τ is the exponential time-scale, and � is the slope of
the linearly decreasing SFR as a function of time t after tt. Defining
θ as � ≡ tanθ , we make the four parameters vary on a grid of values
within the following ranges: τ ∈ [0.3, 13] Gyr, ti ∈ [0.7, 2] Gyr, tt

∈ [7, 13] Gyr, and θ ∈ [ − 10, −80] deg. Table 1 reports the grid of
values used for these parameters.

For each observed galaxy, we construct the likelihood Lk in
equation (7) as Lk ∝ e−χ2

k
/2, with

χ2
k =

∑
j

(Ci − Ck,j )2

σ 2
Cj

, (10)

where the sum is over the colours g − r, r − i, and i − z. Cj are the
observed colours, while Ck, j are the colours predicted by the model
Mk for the colour j. The scaling for the theoretical model is given
by the i-band filter. σCj

are the observed errors added in quadrature
with a lower limit of 0.02.

3.1.2 Validation of the BMA method

In order to test our method for stellar mass estimation, we use as
reference a catalogue that overlaps with DES observations. Laigle
et al. (2016) used LEPHARE to compute stellar masses with multiband
data in 16 filters from UV to infrared over the 2 deg2 COSMOS field.
From this sample, matched to DES data, we remove all objects at
z = 0 to eliminate stars, and at z > 1.5, as higher redshift galaxies are
beyond the interests of this work. Galaxies with i-band magnitude
above 23.0 are also cut out. The remaining sample comprises
galaxies with SNR > 10 in DES, for which we compute stellar
masses using the BMA code and DES data. The bias distribution
given by the difference in log galaxy stellar mass between the two
samples Log(MCOSMOS

� ) − Log(MBMA
� ) is shown in Fig. 3. Mean

bias and scatter (that we quantify as the standard deviation of the

Figure 3. Comparison of galaxy stellar masses from Laigle et al. (2016)
using COSMOS data with those computed with the BMA algorithm using
DES data in different redshift bins. The lines represent the mean value of the
distributions with the same colour. The histograms have been smoothed with
a Gaussian kernel for visualization purposes, and arbitrarily renormalized.
The total number of galaxies used is ∼ 120 000.

distribution) are below the typical error on galaxy stellar masses
from SED fitting (∼0.2 dex) in the redshift range 0.2 < z < 0.6,
where we expect good performance for optical surveys such as
DES. At higher redshift, it is harder to constrain the optical to near-
infrared (NIR) SED with the DES bands and therefore the scatter
increases. Also at low redshifts (z < 0.2), the 4000 Å break is harder
to constrain, as it is blueward of the g-band effective wavelength.
The ∼0.1 dex bias that can be seen from Fig. 3, particularly towards
higher redshift, is mostly due to the degeneracies between stellar
mass and dust extinction. In fact, we find that the bias is almost null
for passive, mostly dust-free galaxies, while it is more pronounced
for star-forming dusty galaxies. Because our set-up does not include
dust, the resultant masses are biased high (because the presence
of dust makes them redder). Including dust in our models would
introduce further systematics since our wavelength coverage does
not extend to rest-frame infrared wavelengths, particularly at higher
redshifts. Laigle et al. (2016) are able to constrain dust extinction
because of the information brought by the infrared data available
to them. Overall, differences between the two catalogues will also
be partially due to the fact that the COSMOS stellar masses are
not ‘true’ stellar masses, and will depend on the assumptions and
methodology in Laigle et al. (2016). Among those assumptions,
the synthetic templates assumed by Laigle et al. (2016) are from
Bruzual & Charlot (2003), and thus will differ from the models
assumed here. We conclude that the observed bias is due to a choice
of templates, rather than to the BMA method itself.

One of the main advantages of the BMA method is that it allows
to formally incorporate the model uncertainty into the stellar mass
uncertainty. This is particularly important for star-forming galaxies.
As it turns out from the discussion above, stellar mass estimates of
red and passive galaxies are found to be more robust. We find that
the uncertainties derived from BMA for this type of galaxy are
comparable to those from a more standard approach such as the one
adopted in LEPHARE, using a similar set of templates and the same
input magnitudes. On the other hand, blue star-forming galaxies
uncertainties are larger by a factor 1.5–2, reflecting the fact that
there are a number of models that could similarly fit that data.
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Figure 4. Comparison of BMA clusters stellar mass to Millennium simula-
tion true values at different redshifts. The dashed lines indicate no difference
between the BMA estimates and the true values.

We also test our results against the Millennium simulation semi-
analytic model from De Lucia & Blaizot (2007),4 and show the
results for the sum of stellar mass in clusters (selected as haloes
with M200c > 1014 M�), in Fig. 4. We run the BMA algorithm
using the simulated magnitudes for the griz SDSS filters, which are
very similar to the DES ones. In this case, the scatter of the bias
distribution is even lower (standard deviation is ∼0.04 dex) than
what found in the comparison with the COSMOS results, showing
that our method works well against other SED fitting methods and
simulations.

3.2 From galaxy stellar masses to μ�

The cluster mass proxy μ� is computed by weighing the stellar mass
of each galaxy in the cluster by its membership probability pmem, i

μ� = 10−10 M−1
�

∑
i

pm,iM�,i , (11)

where the factor 10−10 simply gives to the mass proxy an order
of magnitude similar to that of the number of observed cluster
galaxies. The sum is over all the galaxies from the DES Y1A1
gold catalogue having Mr < −19.8 and within 3 Mpc from the
centre of the cluster as given by the redMaPPer Y1 catalogue.
The membership probability is computed as described in Welch
et al. (in preparation), where the membership assignment scheme is
presented in detail, together with measurements of the red sequence
for redMaPPer clusters. The probability is given by

pm = pR pz , (12)

where the components represent the probability of the galaxy being
a member given its redshift (pz) and its distance from the cluster
centre (pR). The radial probability pR is assigned by assuming a
projected Navarro–Frenk–White (NFW; Navarro, Frenk & White
1996) profile, with R200c computed by counting galaxies within 3
Mpc and finding the halo profile by assuming a halo occupation
distribution (HOD) model. The redshift probability pz is computed
by comparing the photo-z p(z) of single galaxies to the cluster

4http://gavo.mpa-garching.mpg.de/Millennium/Help?page = databases/mi
llimil/delucia2006a

redshift. The membership probability presented here differs from
the one provided by redMaPPer because it uses photometric redshift
information, instead of a red-sequence calibration. The computation
of the radial probability is similar, as it assumes the same function
for the galaxy profile, while the radius may be different as our
method utilizes the HOD model.

We also provide a colour probability pc, the probability that a
galaxy belongs to either the red sequence or the blue cloud given its
colour. This is estimated through a Gaussian mixture model (GMM)
similar to Hao et al. (2009). This method fits two Gaussians to the
colour distribution of the galaxies in each cluster, weighted by
their radial and redshift probabilities. The Gaussians fit the colour
distribution of the red sequence and blue cloud of cluster galaxies
well. The area of the Gaussians wred and wblue satisfies wred +
wblue = 1 and is used to compute the colour probability

pc = wredpred + wbluepblue , (13)

where pred (pblue) is the probability that a galaxy belongs to the red
sequence (blue cloud) given its colour and the GMM estimates.
The cluster colour distribution is derived after a local background
subtraction is performed by measuring the colour distribution of
galaxies in the cluster outskirts (between 3 and 5 Mpc). This is
done for the colours g − r, r − i, and i − z. The inclusion of
the colour probability as an extra term multiplied to the right-hand
side of equation (12) is tested in Section 4. See Welch et al. (in
preparation) for a full description of the membership probability
scheme.

The errors on μ� were computed using jackknife resampling.
Intuitively, this method allows us to estimate the variance on our
estimator by considering a galaxy cut from the cluster at each time.

We note that the impact of the stellar mass bias seen in Fig. 3
for COSMOS galaxies does not have a significant effect on μ�. In
fact, the bias is reduced to 0.05 dex for a sample of galaxies such as
those used in this work for Y1 clusters (M� > 1010 M�, z < 0.7),
with most of the contribution coming from star-forming galaxies.
If we assume that the star-forming galaxies can constitute up to
∼ 30 per cent of cluster galaxies in number, and that their typical
masses are 1010.5 M� (versus 1010.7 M� of the passive galaxies,
as computed from the COSMOS M� > 1010 M�, z < 0.7 sample),
the maximum bias introduced on μ� is 2.6 per cent, which is well
below the typical 10 per cent errors in μ�.5 In reality, this upper
bound is further reduced by the radial membership probabilities pR,
because the passive, red-sequence galaxies dominate in the centre
of clusters (e.g. Mahajan & Raychaudhury 2009).

3.3 Hot gas temperature–stellar mass relations

Following previous works (e.g. Rozo et al. 2009a; Rozo et al. 2011;
Evrard et al. 2014; Farahi et al. 2019a; Mulroy et al. 2019), we
assume that the likelihood of a cluster to have a true value of the
X-ray temperature Ttr, given that it has a stellar mass true value
μtr

� , is a lognormal function. Following the notation in Evrard et al.

5Note that up to ∼ 30 per cent of cluster galaxies are blue (Zu & Mandel-
baum 2016), but not necessarily star forming. Even if most blue galaxies
are star forming compared to red-sequence galaxies, there exist a smaller
fraction of blue galaxies which are passive, and red galaxies that are sta
forming (e.g.Mahajan & Raychaudhury 2009). However, even if we assumed
a conservative fraction of 50 per cent for the content of star-forming galaxies
in clusters, the expected upper limit (∼ 4.7 per cent) of the bias would still
be below our uncertainties.
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Table 2. Scaling relation parameters from this work following equation (15) for X-ray temperatures. The upper part of the table
shows our results for the temperature over the whole 0.1 < z < 0.7 redshift range. The bottom section presents results in different
redshift bins for the temperatures from the joint Chandra + XMM sample. Values represent the median of the parameters posterior
distribution, and the errors are the 16th and 84th percentiles. Temperatures are in units of keV.

Sample πlnTX |μ� αlnTX |μ� σlnTX |μ� ln(μ̃�)

XMM 1.306+0.035
−0.035 0.449+0.054

−0.055 0.277+0.026
−0.029 6.61

Chandra 1.887+0.032
−0.032 0.463+0.072

−0.072 0.229+0.025
−0.027 7.07

Chandra + XMM 1.711+0.024
−0.025 0.488+0.043

−0.043 0.266+0.019
−0.020 6.85

Chandra + XMM (z < 0.3) 1.781+0.041
−0.042 0.501+0.084

−0.084 0.262+0.029
−0.033 6.79

Chandra + XMM (0.3 < z < 0.5) 1.753+0.035
−0.036 0.497+0.056

−0.055 0.263+0.027
−0.031 7.03

Chandra + XMM (z > 0.5) 1.682+0.066
−0.065 0.54+0.13

−0.14 0.311+0.051
−0.064 6.91

(2014) and Farahi et al. (2019a):

P (T tr|μtr
� , z) = 1√

2πσlnT |μ�

exp
[

− (ln T tr − 〈ln T tr|μtr
� , z〉)2

2σ 2
lnT |μ�

]
,

(14)

where σlnT |μ�
is the intrinsic scatter of the hot gas temperature at

fixed stellar mass, μtr
� . We perform a Bayesian linear regression

(Kelly 2007) to estimate a linear relation between the logarithm of
the X-ray temperature and the logarithm of stellar mass. The free
parameters include normalization, slope, and the scatter about the
mean relation. Namely, we fit

〈ln T |μ�, z〉 = [
πT |μ�

+ 2

3
ln(E(z))

] + αT |μ�
ln
(μ�

μ̃�

)
, (15)

where μ̃� is the median μ� of the sample and E(z) = H(z)/H0 is
the Hubble parameter evolution. The normalization term containing
E(z) takes into account the redshift dependence of the temperature,
as expected for a self-similar evolution of the intracluster medium in
virial equilibrium (Kaiser 1991; Bryan & Norman 1998). We use the
publicly available PYTHON version of Kelly (2007) to perform this
regression, which provides samples from the posterior distribution
of the normalization, πT |μ�

, slope, αT |μ�
, and scatter about the

mean relation, σlnT |μ�
. The regression code takes into account

uncertainties associated with both the dependent and independent
variables by assuming a mixture model. Such errors are assumed to
be lognormal, and they are transformed to lognormal space through
σ ln T = σ T/T.

3.4 Mass scatter inference

We follow Evrard et al. (2014) and Farahi et al. (2019a) model
to infer the halo mass scatter at fixed μ�. Evrard et al. (2014)
proposed a population model that computes a closed form solution
for conditional properties of an observable, here TX, given a
selection observable, here stellar mass μ�, as a function of their halo
properties. We employ their model to infer the halo mass scatter. In
the following, we denote the log of halo mass by ln M. According
to their population model, the scatter in temperature at fixed μ� can
be written as

σ 2
lnT |μ�

α2
T |M

= [
σ 2

ln M|μ�
+ σ 2

ln M|T − 2rμ�T σln M|μ�
σln M|T

]
. (16)

We employ σln M|T = σT | ln M/α2
T |M and solve for σln M|μ�

, which is
the quantity of interest. After rearrangement, the solution yields

σ 2
ln M|μ�

= σ 2
ln M|T

⎡
⎣
(

σ 2
lnT|μ�

σ 2
ln T |M

− (1 − r2
μ�T

)

)1/2

+ r2
μ�T

⎤
⎦

2

, (17)

where rμ�T is the correlation coefficient between μ� and temperature
deviations about their mean values at fixed halo mass. The values
used for rμ�T and σ 2

ln T |M will be discussed in Section 4.3.

4 R ESULTS AND DI SCUSSI ON

4.1 X-ray scaling relations

We first fit the scaling relation presented in Section 2.2 for the XMM
and Chandra samples separately. The results of the regression are
reported in Table 2 and shown in Fig. 5. A few outliers are clearly
visible in both samples, particularly in the low-TX regime. Only one
data point (shown in lighter grey in Fig. 5) has a significant deviation
from the mean relation (> 3σlnT |μ�

), and it has been excluded from
the regression. These outliers tend to have a higher μ� than expected
from the mean scaling relation. It is likely that these estimates are
affected by the presence of structure along the line of sight, which
boosts the mass proxy value. A similar behaviour is also found
in Farahi et al. (2019a) for the same clusters for the redMaPPer
richness, which is computed through a very different methodology,
meaning that the outliers are likely related to the galaxies in the
DES catalogue rather than to the method.

We have tested the dependence of the scaling relation results
on the completeness of the cluster catalogue. In fact, the X-ray
catalogue is likely to be incomplete at the low-temperature end.
Farahi et al. (2019a) find that the X-ray matched redMaPPer
catalogue is ∼50 per cent complete at λ ∼ 100. This corresponds
to μ� ∼ 1000 based on the stellar mass–richness relation found in
Palmese et al. (in preparation). We find that, cutting our cluster
sample at μ� > μcut

� = 1000 or higher values, provides scaling
relation constraints that are less stringent than those reported in
Table 2, but still consistent within 1σ .

The weak lensing mass–μ� relation studied in Pereira et al.
(2018) shows a steeper slope (1.74 ± 0.62 at 0.1 < z < 0.33
for SDSS redMaPPer clusters) than the analysis presented here.
We believe that the correlation of stellar mass with total cluster
mass is higher than with the X-ray temperatures because the X-ray
measurement only probes the inner part of the cluster gravitational
potential (within R500c and R2500c for the XMM and Chandra data,
respectively), while the weak lensing probes larger radii, thus
correlating better with the total stellar mass content.

4.2 Intrinsic temperature scatter

We find an intrinsic scatter in temperature at fixed μ� of σlnTX |μ�
=

0.277+0.026
−0.029 for the XCS sample. This value is consistent with the

value found for the redMaPPer optical richness (0.289 ± 0.025)
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Figure 5. Bayesian linear regression of X-ray temperature and μ� for the Chandra and XMM samples (top panels) and for the joint sample (bottom panel).
The red lines are a random sample from the posterior distribution of slope and intercept, and the blue band represents 1σ around the mean value of the intercept
plus the intrinsic scatter. The light grey point has been excluded from the regression because it is an outlier with significant deviation from the mean relation
(> 3σlnT |μ� ).

in Farahi et al. (2019a) within 1σ .6 The scatter on ln TX from the
Chandra sample is even lower (0.229+0.025

−0.027) and it is also consistent
with the redMaPPer richness estimate (0.260 ± 0.032) within 1σ .
The joint scatter for the two samples is 0.266+0.019

−0.020. The redMaPPer
richness is an optimized count observable, and the stellar mass
observable has a consistent scatter. We expect μ� to be affected
by projection effects similarly to λ (as described in Costanzi et al.
2019) or somewhat worse (if the photo-z’s do not perform well). It
should thus have similar or smaller scatter on the basis of individual
haloes than is possible from counts alone.

We perform a number of tests to understand if the membership
probabilities are taken into account in an optimal way. We find
that including the blue cloud galaxies does not bring a significant
increase in the scatter: the inclusion of the second term in the
right-hand side of equation (13), compared to having solely the red-
sequence term or redMaPPer members, brings an additional scatter
which is an order of magnitude smaller than the error on that scatter.
This is consistent with what we would expect for this sample, as
it has been matched to a red-sequence cluster finder. Rozo et al.

6σ here refers to the error on the scatter.

(2011) found that the blue galaxies significantly increase the scatter
of their sample, but the fact that this is not true in our case allows
us to keep this contribution which may become relevant at low-
richness and high-redshift regimes, which should be tested using
a non-red-sequence based cluster finder and matched against other
mass observables. It is beyond the scope of this work to test this
hypothesis. Rozo et al. (2011) also show that differences between
the true and predicted scatter of the mass proxy–mass relation are
irrelevant for a DES-like survey as long as these differences are
about 5 per cent or less (i.e. �σ < 0.05), which further supports our
choice.

We also test the effect of the probability pR in equation (12) on
μ�. We find that the inclusion of this terms makes the mass proxy
robust against an arbitrary radial cut between 1 and 4 Mpc: in fact,
the intrinsic scatter of the temperature–μ� relation is insensitive to
this choice. On the other hand, we tested the use of the red galaxies
only without including the radial probability contribution. In this
case, we find similar trends to previous work (e.g. Andreon 2015):
optimal choices for the aperture do exist when no membership
probability is considered. We find that the scatter can decrease with
increasing radius, by a factor of up to ∼ 15 per cent with respect to
considering the central galaxy only. The maximum improvement is
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found within a radius typically <1.5 Mpc, and outside that radius
mostly background/foreground galaxies are added, and the scatter
increases with increasing radius.

We tested the inclusion of colour probabilities pc in the full mem-
bership probabilities by modifying equation (12) into pm = pRpzpc.
We also tried to combine the colour membership probabilities from
different colours in different redshift ranges. This is justified by the
fact that most of the colour information in a galaxy SED is contained
in the 4000 Å break, that shifts between the bands with redshift.
We therefore use g − r for the range z < 0.35 and r − i in z >

0.35. We find that these tests did not have a significant impact on
the mean scaling relation fit and intrinsic scatter, so it is reasonable
to include the simpler version of the full probabilities as given in
equation (12).

The fact that our scaling relation scatter and slope are insensitive
to the choices made in these tests shows that the membership
probabilities are robust and that cluster size and colours (that enter
in pm through the redshift probability estimation) are taken into
account well.

In order to test the redshift dependence of the scaling relation,
we split the joint cluster sample into three subsamples (z < 0.3, 0.3
< z < 0.5, and z > 0.5) and perform the same linear regression
presented above over the whole redshift range. Slope, intercept,
and scatter are all consistent over the different redshift bins. We
conclude that we find no evidence for a redshift evolution of the
scaling relation out to z < 0.7. We believe that this result is related
to the fact that the stellar mass content of galaxy clusters is mostly
formed before redshift ∼1, and it is consistent with other results
(e.g. Chiu et al. 2018) and simulations (Farahi et al. 2018).

4.3 Total mass scatter

In order to estimate the scatter in mass at fixed μ� presented in
equation (17) we need to have an estimation of the correlation
coefficient rμ�T , the scatter in temperature at fixed total mass and
the scatter in mass at fixed temperature. The correlation coefficient
of pairs of nine observables is estimated by Farahi et al. (2019b) by
employing multiwavelength analysis of 41 X-ray selected cluster
from the LoCuSS clusters sample (Mulroy et al. 2019).7 We
employ their LK–TX correlation coefficient which serves as a good
approximation of the stellar mass–temperature correlation in our
sample. Their posterior estimate of the correlation coefficient is
rμ�T = −0.43+0.49

−0.35. Note that this posterior has support over the
whole range of possible values ([ − 1, 1]), hence the very broad
1σ interval reported here. Since this posterior only excludes the
extreme tails which are not physically realistic, we believe that it is
reasonable to use this correlation coefficient estimate in our analysis,
despite the fact that the details in the derivation of temperatures
and the redshift range (extending only out to z ∼ 0.3) in Mulroy
et al. (2019) may differ from what described here. The additional
parameters needed in equation (17), namely σ ln T|M and σ ln M|T, are
taken from the recent constraints on the scaling relation between
the temperature and total mass from weak lensing for the Weighing
the Giants program (Mantz et al. 2015, 2016). Their posterior
constraints read σ ln T|M = 0.16 ± 0.02 and αT|M = 0.62 ± 0.4.
We employ σ ln M|T = σ ln T|M/αT|M to get an estimate of mass scatter
at fixed X-ray temperature. The posterior distribution of σln M|μ�

7The full posterior chains are publicly available in a figshare repository,
https://doi.org/10.6084/m9.figshare.8001218.

Figure 6. Posterior distribution of the scatter in total mass at fixed mass
observable o (μ� in black and λ in red) for the joint cluster sample. In this
work, we find σln M|μ� = 0.26+0.15

−0.10.

Table 3. Parameters used to estimate the mass scatter in equation (17)
(upper part of the table), and results from this work (lower table).

Parameter Value Sample

σ ln T|M 0.16 ± 0.02 Weighing the Giants
αT|M 0.62 ± 0.04 Weighing the Giants
rμ�T −0.43+0.49

−0.35 LoCuSS

σln M|μ� 0.19+0.15
−0.09 Chandra

σln M|μ� 0.28+0.16
−0.11 XMM

σln M|μ� 0.26+0.15
−0.10 Chandra + XMM

is then obtained by Monte Carlo sampling the right-hand side of
equation (17).

The result for the joint X-ray sample is shown in Fig. 6. For
the Chandra and XMM samples, we find σln M|μ�

= 0.19+0.15
−0.09 and

0.28+0.16
−0.11, respectively, while from the joint analysis σln M|μ�

=
0.26+0.15

−0.10. A summary of the parameters used and of these results
is reported in Table 3. The errors on the scatter are dominated by
the uncertainty on the external parameters described above. In fact,
Fig. 7 shows that the marginalization over the temperature–mass
relation (red line) and over the correlation coefficient (yellow line)
has a very similar impact on the final posterior estimate, and they
dominate the final uncertainty compared to a marginalization over
σln T |μ�

only.
The scatter found here is consistent with what Farahi et al. (2019a)

find for the redMaPPer richness. The slight difference is mostly
driven by the lower scatter in temperature at fixed μ� described in
Section 4.2 for the Chandra sample. We believe that there is room
for further improvement through a more precise estimation of the
correlation coefficient, which is driving the more extended tail in
Fig. 6 for μ� compared to the richness case.

We note that generalization of these mass scatter findings to
clusters with low temperature, μ� or mass should be taken with
caution. Even if our sample is optically selected, we still require
a detection in X-ray, with some SNR cut. As a result, both our
X-ray sample and the Mantz et al. (2016) sample cover the high-
temperature end of the scaling relations. Moreover, Mantz et al.
(2016) exclude the cores when measuring X-ray temperatures: it is
thus possible that their scatter is smaller than what is applicable to
this work. In order to test the effect of different T–M scatter and
scaling relations on our results, we have assumed different scaling
relation measurements to derive the mass scatter at fixed μ�. In
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Figure 7. Posterior distribution of the scatter in total mass at fixed μ� for
the joint cluster sample, showing the impact of different uncertainties on
the final PDF. The grey region corresponds to the grey PDF in Fig. 6. The
other lines show the same pdf, when some of the parameters in the righ-
hand side of equation (17) are fixed to a known value, and the others are
allowed to vary. The red line assumes that the correlation coefficient is fixed
at rμ�T = −0.43, while the yellow line is computed by fixing the slope and
scatter in the T–M relation. The blue line fixes all those quantities, except
for the T–μ� scatter derived in this work.

particular, we used the results from Mahdavi et al. (2013) and Lieu
et al. (2016), who find a lower and larger scatter than Mantz et al.
(2016), respectively. Since the uncertainties on the scaling relation
from these works are larger than those from Mantz et al. (2016), the
derived mass scatter constraints are weaker, but all consistent with
each other. Regardless of the specific value measured for σln M|μ�

,
which depends on the analysis choices, one of the main results of
this work still holds: the scatter found for this newly established
proxy is comparable with the λ measurement.

Remarkably, the scatter found in this work is also consistent with
what Farahi et al. (2018) find for the total cluster mass at fixed
stellar mass using BAHAMAS and MACSIS simulations, and a
similar approach based on Evrard et al. (2014). We assume that μ�

probes well the stellar mass content of clusters from BAHAMAS
and MACSIS. For the cluster mass probed here (M200c ∼ 1014 M�),
we can derive the stellar mass conditioned scatter in total mass from
their results through: σln M|μ�

� σμ�| ln M/αμ�
� 0.22.

5 C O N C L U S I O N S

In this work, we present a stellar mass-based mass proxy, μ�,
and its application to DES Y1 redMaPPer clusters using DES Y3
photometry. In particular, we present a code that uses BMA to
compute galaxy stellar masses and other galaxy properties. The
outputs of this code, along with galaxy membership probabilities
presented in a companion paper, are used to estimate our mass
proxy. We match Y1 redMaPPer clusters to archival XMM and
Chandra data in order to study the scaling relation of μ� with X-ray
temperature. Assuming that the scatter in temperature around the
mean of the scaling relation at a given μ� is lognormal, and that the
temperature scales linearly with μ� in lognormal space, we find that
our mass proxy correlates well with the X-ray temperature, with a
low intrinsic scatter. Namely, we find that the slope of the scaling
relation is αT |μ�

= 0.488+0.043
−0.043 and the scatter is 0.266+0.019

−0.020 for the
joint XMM and Chandra cluster sample. This scatter is consistent
with what is found in a simulation study by Farahi et al. (2018). The
scaling relation parameters do not show evidence for a deviation
from self-similar evolution.

Constraints on the scaling relation between the temperature
and total mass from the Weighing the Giants program by Mantz
et al. (2016), along with the luminosity–temperature correlation
coefficient estimated by Mulroy et al. (2019) on the LoCuSS sample,
are then used to derive the expected scatter on halo mass at fixed
μ�. We find σlnM|μ�

= 0.26+0.15
−0.10 for the joint XMM and Chandra

sample. The large uncertainty on this parameter is driven by the
marginalization over the temperature–mass relation parameters and
over the correlation coefficient. Consistent values are also found
with the same analysis for the well-established redMaPPer mass
proxy λ, showing that μ� is also a potential mass observable to
be employed in cosmological analyses with cluster abundances. As
such, the mass scatter constrained in this work could serve as a prior
on the scatter assumed in the mass observable–mass relation in a
cosmological analysis of DES Y1 redMaPPer clusters employing
weak lensing measurements.

It is worth noting that using the stellar mass content of galaxy
clusters as mass proxies is empirically and physically motivated, and
that measurements of μ� also allow straightforward constraints on
the stellar-to-halo connection in clusters. In other words, it allows
us to better understand how galaxies evolve in clusters through
estimates of their stellar content, while providing a useful tool for
cosmological analyses. The other motivation for using this mass
proxy rather than galaxy counts is that cluster stellar mass has the
potential to be less sensitive to projection effects, one of the main
sources of systematics for cluster finders when using photometric
data.

Overall, our results show that μ� is a promising low scatter mass
proxy, which can be used as an alternative to λ, or in conjunction
following the formalism by Evrard et al. (2014), for cosmological
and astrophysical analyses with redMaPPer clusters. Future work
will also include the development of a new version of the Voronoi–
Tessellation cluster finder (Soares-Santos et al. 2011) that integrates
this mass proxy into the pipeline (Burgad et al., in preparation).
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(IEEC/CSIC), the Institut de Fı́sica d’Altes Energies, Lawrence
Berkeley National Laboratory, the Ludwig-Maximilians Universität
München and the associated Excellence Cluster Universe, the
University of Michigan, the National Optical Astronomy Obser-
vatory, the University of Nottingham, The Ohio State University,
the University of Pennsylvania, the University of Portsmouth,
SLAC National Accelerator Laboratory, Stanford University, the
University of Sussex, and Texas A&M University.

The DES data management system is supported by the Na-
tional Science Foundation under Grant Number AST-1138766. The
DES participants from Spanish institutions are partially supported
by MINECO under grants AYA2012-39559, ESP2013-48274,
FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-
2012-0234. Research leading to these results has received funding
from the European Research Council under the European Union’s
Seventh Framework Programme (FP7/2007-2013) including ERC
grant agreements 240672, 291329, and 306478.

REFER ENCES

Abbott T. M. C. et al., 2018, ApJS, 239, 18
Andreon S., 2012, A&A, 548, A83
Andreon S., 2015, A&A, 582, A100
Arnaud K. A., 1996, in Jacoby G. H., Barnes J., eds, ASP Conf. Ser. Vol.

101, Astronomical Data Analysis Software and Systems V. Astron. Soc.
Pac., San Francisco, p. 17

Arnaud M., Pointecouteau E., Pratt G. W., 2005, A&A, 441, 893
Benı́tez N., 2000, ApJ, 536, 571
Bertin E., Arnouts S., 1996, A&AS, 117, 393
Blanton M. R., Roweis S., 2007, AJ, 133, 734
Bradshaw C., Leauthaud A., Hearin A., Huang S., Behroozi P., 2020,

MNRAS, 493, 337
Bruzual G., Charlot S., 2003, MNRAS, 344, 1000
Bryan G. L., Norman M. L., 1998, ApJ, 495, 80
Butcher H., Oemler A., Jr, 1978, ApJ, 226, 559
Butcher H., Oemler A., Jr, 1984, ApJ, 285, 426
Capozzi D. et al., 2017, preprint (arXiv:1707.09066)
Chiu I. et al., 2018, MNRAS, 478, 3072
Coleman G. D., Wu C.-C., Weedman D. W., 1980, ApJS, 43, 393
Conroy C., Gunn J. E., 2010, ApJ, 712, 833
Cool R. J. et al., 2013, ApJ, 767, 118
Costanzi M. et al., 2019, MNRAS, 482, 490
De Lucia G., Blaizot J., 2007, MNRAS, 375, 2
Desai S. et al., 2012, ApJ, 757, 83
Diehl H. T. et al., 2014, in Peck A. B., Benn C. R., Seaman R. L., eds

Proc. SPIE Conf. Ser. Vol. 9149, Observatory Operations: Strategies,
Processes, and Systems V. SPIE, Bellingham, p. 91490V

Donahue M. et al., 2002, ApJ, 569, 689
Drlica-Wagner A. et al., 2018, ApJS, 235, 33
Evrard A. E., Arnault P., Huterer D., Farahi A., 2014, MNRAS, 441,

3562
Fabian A. C., Crawford C. S., Edge A. C., Mushotzky R. F., 1994, MNRAS,

267, 779
Farahi A., Evrard A. E., McCarthy I., Barnes D. J., Kay S. T., 2018, MNRAS,

478, 2618
Farahi A. et al., 2019a, MNRAS, 490, 3341
Farahi A. et al., 2019b, Nat. Commun., 10, 2504
Flaugher B. et al., 2015, AJ, 150, 150
Girardi L., Bressan A., Bertelli G., Chiosi C., 2000, A&AS, 141, 371

Hao J. et al., 2009, ApJ, 702, 745
Hao J. et al., 2010, ApJS, 191, 254
Hoeting J. A., Madigan D., Raftery A. E., Volinsky C. T., 1999, Stat. Sci.,

14, 382
Hollowood D. L. et al., 2019, ApJS, 244, 22
Hoyle B. et al., 2018, MNRAS, 478, 592
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APPEN D IX A : C LUSTER CATA LOGUES

In Tables A1 and A2, we provide the optical and X-ray properties of Chandra and XMM clusters. zλ is the cluster photometric redshift
computed by redMaPPer. μ� is the mass proxy computed in this work, while the redMaPPer richness is λ. The full redMaPPer DES Y1A1
catalogues will be available at http://risa.stanford.edu/redmapper/. XCS NAME in Table A2 is the unique source identifier which could be
used to match with the XCS source catalogue (Giles et al., in preparation).

Table A1. Chandra clusters.

zλ RA Dec. λ μ� kTX (keV) Obsid(s)

0.304 79.156 − 54.500 200.65 ± 6.90 2265.61 ± 193.89 10.90+0.84
−0.81 9331,15099

0.419 62.796 − 48.328 171.91 ± 4.49 2393.20 ± 181.40 7.39+0.41
−0.32 13396,16355,17536

0.301 41.353 − 53.029 144.10 ± 4.00 2133.15 ± 192.72 10.24+0.26
−0.26 12260,16127,16282,16524,16525,16526

0.351 342.216 − 44.518 188.40 ± 10.06 2465.34 ± 212.46 14.89+0.59
−0.55 4966

0.368 10.208 − 44.131 138.85 ± 4.72 1381.93 ± 148.01 7.88+1.08
−0.80 13395

0.240 323.810 1.406 136.44 ± 4.69 2207.50 ± 235.86 12.16+1.36
−0.92 15097

0.326 323.800 − 1.050 142.26 ± 6.28 2066.69 ± 217.81 9.48+0.73
−0.53 11710,16285

0.526 308.795 − 52.856 159.39 ± 6.29 1906.99 ± 120.57 7.51+3.04
−1.41 13466

0.278 354.416 0.271 132.86 ± 4.36 1743.45 ± 193.26 9.46+0.66
−0.45 3248,11728

0.605 89.930 − 52.824 165.92 ± 5.63 1580.90 ± 130.39 7.71+0.84
−0.55 12264,13116,13117

0.282 319.704 0.560 130.37 ± 4.73 941.93 ± 122.49 6.25+2.57
−1.30 17162,16271,17162

0.591 356.198 − 42.731 152.04 ± 5.00 2074.08 ± 194.61 14.32+0.52
−0.52 13401,16135,16545

0.418 69.574 − 54.322 124.99 ± 4.26 1522.08 ± 296.48 11.83+1.25
−0.90 12259

0.231 305.837 − 55.597 135.36 ± 6.69 1769.49 ± 166.19 9.88+0.79
−0.66 15108

0.348 10.265 − 44.500 125.67 ± 5.83 1186.05 ± 136.16 5.86+0.63
−0.37 17185

0.425 323.906 − 57.442 130.46 ± 6.13 1601.02 ± 119.29 7.00+1.13
−0.77 13463

0.443 46.070 − 44.025 138.20 ± 6.42 1216.62 ± 118.77 8.67+1.20
−1.07 13402

0.107 52.128 − 55.705 98.49 ± 4.57 1556.41 ± 153.54 6.90+0.33
−0.33 15313

0.343 34.272 − 52.713 121.80 ± 5.16 1713.03 ± 162.38 8.93+2.15
−1.36 12269

0.637 20.796 − 48.356 137.04 ± 5.68 1629.48 ± 175.04 6.26+0.86
−0.61 13491

0.485 328.636 − 0.817 112.56 ± 4.59 1425.71 ± 218.74 9.81+1.63
−1.05 16230

0.482 326.463 − 56.749 124.29 ± 5.23 1851.69 ± 128.73 9.02+1.65
−1.18 13398

0.536 53.827 − 40.595 118.49 ± 4.75 1362.55 ± 116.42 10.25+6.73
−2.71 9416

0.405 46.067 − 49.357 99.65 ± 3.90 1175.95 ± 102.05 6.79+0.61
−0.57 12265

0.585 64.346 − 47.813 103.10 ± 4.53 1319.48 ± 216.97 7.03+0.60
−0.55 13397

0.401 38.687 − 58.521 99.89 ± 3.76 1163.74 ± 93.37 8.33+1.09
−0.96 13403

0.282 38.939 − 51.351 94.42 ± 3.58 1045.47 ± 131.45 7.58+0.79
−0.59 12262

0.261 355.948 0.257 97.13 ± 5.50 872.69 ± 130.77 6.29+0.28
−0.28 5786,17170,17490,18702,18703

0.357 57.068 − 45.263 89.86 ± 3.96 1073.72 ± 132.79 6.18+0.98
−0.80 13465

0.531 56.730 − 54.650 107.99 ± 5.15 791.36 ± 79.59 4.84+0.69
−0.53 12270,13155

0.337 39.257 − 49.636 82.20 ± 3.45 806.08 ± 131.55 5.06+0.51
−0.49 12266

0.317 358.791 − 50.941 93.97 ± 4.67 948.72 ± 103.81 4.70+0.50
−0.37 11998

0.290 38.103 − 44.328 133.10 ± 10.07 1055.20 ± 81.84 11.31+1.35
−1.07 4993

0.207 77.573 − 45.322 84.93 ± 4.41 826.01 ± 114.00 7.91+0.55
−0.50 15111

0.222 36.492 − 41.882 101.77 ± 6.80 867.17 ± 111.58 6.79+0.29
−0.29 15110,17476

0.430 52.737 − 52.470 110.63 ± 6.45 880.08 ± 83.50 5.60+0.82
−0.59 893

0.428 338.315 − 53.653 93.52 ± 4.60 1261.95 ± 150.78 6.76+0.92
−0.81 13504

0.115 341.562 − 52.721 81.27 ± 3.48 1271.34 ± 209.00 10.29+0.71
−0.71 15304

0.188 81.454 − 47.252 72.33 ± 3.17 569.79 ± 70.29 7.67+0.54
−0.45 15122

0.590 44.088 − 56.303 82.09 ± 3.98 803.66 ± 99.32 7.11+1.11
−0.76 13481,14448

0.564 38.178 − 52.956 84.61 ± 3.93 1009.03 ± 165.45 6.14+1.91
−1.17 12263

0.498 30.142 − 48.871 81.69 ± 3.68 1202.31 ± 114.41 11.56+3.81
−2.01 13487

0.649 85.709 − 41.000 113.97 ± 6.46 1248.34 ± 125.15 7.82+1.17
−0.80 914

0.301 80.565 − 48.305 90.48 ± 4.76 1746.10 ± 143.65 4.72+0.58
−0.37 4208

0.645 40.863 − 59.517 90.19 ± 5.08 1108.13 ± 140.96 8.96+1.18
−0.85 13484,15573
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Table A1 – continued

zλ RA Dec. λ μ� kTX (keV) Obsid(s)

0.313 359.138 − 50.953 73.50 ± 3.26 926.14 ± 107.00 2.14+0.48
−0.33 11746

0.109 78.664 − 49.058 70.02 ± 3.39 1243.21 ± 134.28 5.45+0.36
−0.34 4980

0.410 3.330 − 49.111 104.42 ± 7.85 724.34 ± 88.97 7.13+0.87
−0.67 13462

0.246 322.413 0.086 75.56 ± 5.47 912.49 ± 165.76 7.25+0.18
−0.18 552,9370

0.565 46.961 − 50.701 75.10 ± 4.04 935.19 ± 189.65 8.16+1.06
−0.84 13476

0.153 72.485 − 44.673 61.86 ± 3.46 526.95 ± 64.93 4.53+0.16
−0.16 9417,16280

0.629 66.517 − 54.925 73.29 ± 4.06 1189.79 ± 242.52 8.51+3.09
−1.67 13472

0.568 74.117 − 51.276 88.73 ± 5.90 1095.82 ± 158.79 8.11+1.15
−0.86 13474

0.471 53.546 − 46.996 69.12 ± 3.47 743.56 ± 88.51 6.48+0.72
−0.62 13470

0.103 335.945 − 1.647 67.05 ± 4.54 547.98 ± 73.66 6.14+0.23
−0.21 15107,15312

0.455 77.339 − 53.704 81.02 ± 6.04 751.97 ± 98.22 9.85+1.67
−1.13 9432

0.114 334.942 − 52.432 64.35 ± 3.38 1121.34 ± 128.50 4.90+0.53
−0.44 9383

0.657 58.240 − 56.798 65.40 ± 3.67 821.83 ± 157.98 6.63+1.36
−0.93 13490,15571

0.414 43.208 − 48.416 60.15 ± 3.46 782.76 ± 148.14 7.77+1.22
−1.00 13494

0.474 33.797 − 52.201 62.76 ± 6.45 465.57 ± 67.00 5.64+1.52
−1.05 12268

0.310 335.811 − 1.660 34.28 ± 2.80 2848.21 ± 245.38 7.36+6.01
−2.14 15107,15312

0.227 40.947 − 59.618 30.00 ± 2.66 247.16 ± 82.65 3.41+0.99
−0.56 13484,15573

0.164 54.067 − 40.629 43.28 ± 4.13 584.58 ± 84.78 6.30+0.30
−0.29 9416

0.403 58.298 − 47.530 23.65 ± 2.21 154.81 ± 64.28 1.62+0.62
−0.27 16981

Table A2. XMM clusters.

zλ RA Dec. λ μ� kTX (keV) XCS NAME

0.429 43.575 − 58.951 234.50 ± 7.52 2965.79 ± 204.70 7.41+7.59
−7.24 XMMXCS J025417.8−585705.2

0.303 79.153 − 54.522 195.07 ± 6.78 2260.15 ± 192.60 5.76+5.86
−5.66 XMMXCS J051636.6−543120.8

0.352 342.187 − 44.528 178.84 ± 8.71 2464.07 ± 212.98 10.28+10.44
−10.12 XMMXCS J224844.9−443141.7

0.421 62.809 − 48.320 174.46 ± 5.07 2392.56 ± 181.57 5.81+6.87
−4.98 XMMXCS J041114.1−481910.9

0.604 89.932 − 52.827 169.08 ± 5.77 1580.02 ± 130.30 6.89+7.60
−6.28 XMMXCS J055943.5−524937.5

0.301 41.372 − 53.036 146.24 ± 4.04 2151.24 ± 193.82 8.31+8.64
−8.00 XMMXCS J024529.3−530210.7

0.326 323.799 − 1.049 141.08 ± 5.96 2063.03 ± 217.59 6.77+7.67
−6.04 XMMXCS J213511.8−010258.0

0.443 46.066 − 44.031 138.53 ± 6.45 1216.62 ± 118.77 5.86+6.10
−5.64 XMMXCS J030415.7−440153.0

0.231 305.847 − 55.585 136.78 ± 7.18 1643.18 ± 160.40 7.93+8.50
−7.41 XMMXCS J202323.2−553504.7

0.239 323.820 1.433 135.48 ± 5.08 2192.19 ± 234.86 8.51+8.78
−8.26 XMMXCS J213516.8+012600.0

0.425 323.910 − 57.438 130.39 ± 6.17 1682.62 ± 142.32 6.38+7.94
−5.25 XMMXCS J213538.5−572616.6

0.278 354.411 0.271 129.00 ± 4.30 1740.84 ± 193.03 7.15+7.37
−6.94 XMMXCS J233738.6+001614.5

0.494 40.914 − 48.561 126.99 ± 4.31 1663.42 ± 173.41 5.78+5.98
−5.59 XMMXCS J024339.4−483338.3

0.481 326.466 − 56.748 124.41 ± 5.23 1851.19 ± 128.87 7.18+7.77
−6.66 XMMXCS J214551.9−564453.6

0.346 34.298 − 52.754 119.25 ± 4.42 1727.99 ± 165.14 4.94+5.36
−4.58 XMMXCS J021711.6−524512.9

0.649 85.710 − 41.001 115.18 ± 6.49 1248.41 ± 125.17 6.91+7.83
−6.11 XMMXCS J054250.3−410003.5

0.429 52.687 − 52.489 107.32 ± 6.11 878.31 ± 83.43 4.33+4.44
−4.23 XMMXCS J033044.8−522921.9

0.584 64.345 − 47.813 104.70 ± 4.61 1318.88 ± 216.92 7.03+7.35
−6.73 XMMXCS J041722.7−474847.1

0.410 3.328 − 49.114 103.78 ± 7.82 723.43 ± 88.67 6.76+8.47
−5.60 XMMXCS J001318.8−490651.9

0.287 38.073 − 44.348 101.27 ± 6.38 1052.83 ± 81.40 6.25+6.39
−6.11 XMMXCS J023217.6−442053.8

0.401 38.677 − 58.523 100.89 ± 4.00 1163.61 ± 93.36 5.53+5.73
−5.34 XMMXCS J023442.5−583121.0

0.106 52.150 − 55.711 98.55 ± 4.63 1548.93 ± 152.71 4.83+4.92
−4.74 XMMXCS J032835.9−554239.3

0.262 355.924 0.309 93.40 ± 6.24 881.17 ± 131.71 5.45+5.65
−5.27 XMMXCS J234341.7+001831.2

0.523 354.032 − 53.876 92.45 ± 4.25 1451.25 ± 163.74 2.97+3.75
−2.38 XMMXCS J233607.6−535232.4

0.300 80.566 − 48.305 91.43 ± 4.92 1745.27 ± 143.40 3.95+4.17
−3.75 XMMXCS J052215.8−481817.2

0.222 36.473 − 41.913 91.20 ± 4.36 865.47 ± 111.05 5.07+5.19
−4.96 XMMXCS J022553.4−415448.4

0.207 77.570 − 45.321 86.58 ± 4.46 825.73 ± 113.98 6.08+6.23
−5.93 XMMXCS J051016.7−451917.2

0.383 18.680 − 41.398 86.38 ± 4.27 1775.89 ± 260.44 6.21+6.56
−5.89 XMMXCS J011443.1−412351.5
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Table A2 – continued

zλ RA Dec. λ μ� kTX (keV) XCS NAME

0.654 38.258 − 58.325 85.16 ± 5.11 930.11 ± 141.68 5.29+5.60
−5.00 XMMXCS J023301.8−581928.5

0.409 40.159 − 59.768 83.43 ± 4.16 767.95 ± 135.16 6.94+7.45
−6.47 XMMXCS J024038.2−594605.3

0.114 341.592 − 52.740 82.41 ± 3.37 1147.89 ± 195.46 5.24+5.30
−5.18 XMMXCS J224622.0−524422.6

0.540 355.482 − 53.145 80.43 ± 7.59 410.21 ± 49.21 3.96+4.81
−3.37 XMMXCS J234155.7−530843.5

0.124 26.247 − 53.020 78.69 ± 2.83 1120.11 ± 112.26 6.28+6.36
−6.20 XMMXCS J014459.1−530113.7

0.101 326.591 − 57.289 78.00 ± 4.23 1591.22 ± 133.73 3.88+3.94
−3.81 XMMXCS J214621.8−571719.3

0.463 60.968 − 57.328 75.01 ± 4.03 1135.02 ± 142.06 4.33+4.51
−4.17 XMMXCS J040352.4−571939.7

0.189 81.454 − 47.252 72.82 ± 3.19 567.63 ± 70.24 6.67+6.96
−6.39 XMMXCS J052548.9−471507.3

0.246 322.416 0.088 71.23 ± 4.94 913.29 ± 165.84 5.29+5.34
−5.24 XMMXCS J212939.7+000516.9

0.407 58.563 − 59.089 70.42 ± 3.09 982.90 ± 136.59 4.84+5.21
−4.52 XMMXCS J035415.2−590519.1

0.168 351.553 − 53.316 66.85 ± 4.18 581.55 ± 90.59 2.81+3.52
−2.29 XMMXCS J232612.8−531858.4

0.102 335.971 − 1.621 66.39 ± 4.43 529.56 ± 71.17 4.57+4.62
−4.53 XMMXCS J222353.0−013714.4

0.274 349.804 − 54.083 61.95 ± 2.66 399.35 ± 46.23 2.87+3.30
−2.53 XMMXCS J231912.9−540457.7

0.396 307.707 − 56.633 59.90 ± 3.48 495.71 ± 73.44 4.18+4.46
−3.92 XMMXCS J203049.5−563758.6

0.547 55.757 − 55.310 59.51 ± 3.67 609.89 ± 121.03 6.73+7.59
−5.99 XMMXCS J034301.6−551835.5

0.153 72.486 − 44.671 59.12 ± 3.41 527.02 ± 64.94 3.75+3.85
−3.65 XMMXCS J044956.6−444017.3

0.140 313.985 − 54.930 57.74 ± 2.84 1022.11 ± 175.99 3.87+4.00
−3.75 XMMXCS J205556.3−545548.2

0.614 349.097 − 59.076 56.95 ± 3.80 693.10 ± 125.43 2.37+3.00
−1.95 XMMXCS J231623.3−590432.4

0.462 49.316 − 59.590 55.59 ± 4.32 856.54 ± 124.87 5.32+5.65
−5.01 XMMXCS J031715.7−593525.4

0.599 37.777 − 54.064 52.66 ± 3.22 517.48 ± 88.22 5.17+5.86
−4.61 XMMXCS J023106.3−540349.9

0.246 322.517 − 0.352 51.44 ± 2.82 885.71 ± 126.48 2.66+2.94
−2.43 XMMXCS J213004.1−002105.9

0.386 349.335 − 53.960 49.95 ± 2.83 674.86 ± 109.34 4.16+4.82
−3.63 XMMXCS J231720.4−535734.5

0.460 341.458 − 52.910 48.90 ± 3.47 436.30 ± 53.15 4.56+6.20
−3.53 XMMXCS J224549.8−525436.4

0.131 307.990 − 56.408 48.53 ± 3.20 385.03 ± 54.84 4.45+4.56
−4.34 XMMXCS J203157.5−562430.2

0.564 65.610 − 51.674 47.36 ± 3.49 577.55 ± 72.13 2.81+3.04
−2.61 XMMXCS J042226.4−514025.8

0.393 8.617 − 43.315 46.96 ± 3.27 666.66 ± 129.33 3.15+3.30
−3.00 XMMXCS J003428.0−431854.2

0.106 25.128 − 54.522 42.60 ± 2.71 895.62 ± 97.66 3.47+3.57
−3.36 XMMXCS J014030.7−543120.6

0.106 7.567 − 53.420 42.11 ± 3.61 644.67 ± 73.43 3.06+3.15
−2.98 XMMXCS J003016.0−532513.6

0.428 44.337 − 57.547 41.86 ± 3.04 615.71 ± 85.38 5.02+5.82
−4.35 XMMXCS J025720.9−573248.9

0.389 351.429 − 53.277 39.18 ± 2.70 573.12 ± 87.95 1.92+2.55
−1.55 XMMXCS J232543.0−531635.8

0.422 15.126 − 47.822 39.12 ± 2.87 554.71 ± 95.61 2.56+2.78
−2.36 XMMXCS J010030.2−474919.6

0.584 56.091 − 53.678 38.90 ± 3.91 316.50 ± 69.14 1.78+2.23
−1.49 XMMXCS J034421.9−534042.5

0.564 353.376 − 52.253 38.75 ± 3.13 723.56 ± 108.57 2.12+2.85
−1.69 XMMXCS J233330.2−521511.5

0.218 8.443 − 43.292 38.46 ± 2.44 348.25 ± 76.23 2.32+2.43
−2.21 XMMXCS J003346.3−431729.7

0.562 38.041 − 57.766 37.59 ± 3.18 216.50 ± 59.47 3.32+3.88
−2.88 XMMXCS J023209.8−574558.9

0.373 64.187 − 55.419 37.20 ± 2.91 399.58 ± 63.64 2.29+2.90
−1.89 XMMXCS J041644.8−552506.6

0.410 36.868 − 40.850 36.69 ± 2.72 374.30 ± 93.59 4.40+5.26
−3.73 XMMXCS J022728.2−405101.7

0.416 19.957 − 44.076 35.96 ± 2.87 459.85 ± 86.98 2.67+3.35
−2.21 XMMXCS J011949.7−440434.5

0.136 322.613 − 0.008 35.11 ± 2.50 341.51 ± 49.72 2.51+2.86
−2.23 XMMXCS J213027.0−000029.7

0.310 335.811 − 1.660 34.66 ± 2.84 2850.61 ± 245.68 3.85+4.15
−3.58 XMMXCS J222314.6−013936.8

0.422 85.468 − 40.877 33.60 ± 2.92 360.23 ± 96.59 4.36+5.25
−3.69 XMMXCS J054152.3−405236.4

0.318 354.186 − 53.802 32.10 ± 2.58 430.69 ± 107.72 2.31+3.00
−1.89 XMMXCS J233644.6−534806.9
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