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A flexible and dynamic environment capable of accessing distributed data and resources efficiently,
is a key aspect for HEP data analysis, especially for the HL-LHC era. A quasi-interactive
declarative solution, like ROOT RDataFrame, with scale-up capabilities via open-source standards
like Dask, can profit from the "HPC, Big Data and Quantum Computing" Italian Center DatalLake
model under development. The starting point is a prototypal CMS high throughput analysis
platform, offloaded on local Tier-2.

This contribution evaluates the scalability, identifies bottlenecks and explores the interactivity of
such platform, on two use-cases: a CMS physics analysis with high-rate triggered events and a
study of the CMS muon detector performance in phase-space regions driven by analysis needs,
accessing detector datasets. The metrics used to evaluate the scaling and speed-up performance
will be reported and results will be discussed, emphasising the differences with the legacy analysis

workflows.
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1. Introduction

In the coming years, the Large Hadron Collider (LHC) will receive a significant upgrade - the
High-Luminosity LHC (HL-LHC) [1] - which is expected to generate approximately 100 PB of data
annually from collision events [2]. This will demand an immense amount of computing resources,
including CPU and storage, which will become unsustainable after a few years of operation with the
current computing infrastructure [3]. It is therefore fundamental to develop new industry-standard
analysis paradigms, combining declarative programming solutions and interactive workflows. Be-
hind this, a DatalLake-like infrastructure with distributed computing elements capable of running
different applications coming from the High Energy Physics (HEP) domain.

Funded by Italy’s National Recovery and Resilience Plan (NRRP), the *High-Performance Com-
puting, Big Data, and Quantum Computing National Centre’ (ICSC) will supply the necessary
resources' enabling the deployment of a high throughput analysis platform on a national level.
This contribution provides a technical overview of the platform, along with two use cases from the
CMS Collaboration [4]: a muon detector performance study and a technical performance overview
of a physics data analysis with high-rate triggered events.

2. The high throughput platform

A schematic diagram describing the proposed architecture [5] is shown in Figure 1. By
connecting to an entrypoint URL, the user reaches a JupyterHub? instance that, after authentication
and authorization via INDIGO-IAM?, allocates the required resources for the user’s working area.
Afterwards, the user is redirected to a JupyterLab* user interface where it is possible to store all
the code required to perform the analyses. The working environment is highly customizable using
container-based technologies (e.g. Docker”, Singularity/Apptainer®): using centralized services like
CVMES [6], container images can be stored by the users and pulled directly inside the platform.
Thanks to this solution, analysts are able to use specific software and tools for their applications,
plotting frameworks, statistical tools, etc...). This part of the infrastructure is built on top of a
Kubernetes (K8s) cluster’, hosted at the INFN-CNAF (Italy) cloud service.

On the back-end side, a HTCondor-based overlay connecting to the remote computing resources:
for this contribution, the resources hosted at the Italian Tier-2 of Legnaro (CMS pledged) have been
used.

2.1 Distributing the workload

As already mentioned, the key technological feature of this platform is the distribution of
computational workflows. This is accomplished by parallelizing the computation through two main
steps, closely resembling the MapReduce paradigm [7]: first, submitting multiple jobs to process

11CSC main page: https://www.supercomputing-icsc.it
2JupyterHub main page: https://jupyter.org/hub

3Indigo—IAM main page: https://indigo-iam.github.io/v/current/
4JupyterLab main page: https://jupyter.org/lab

SDocker main page: https://www.docker . com/

6Apptainer/Singularity main page: https://apptainer.org/
7Kubernetes main page: https://kubernetes.io/
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Figure 1: A sketched diagram of the proposed high throughput platform. The offloading on heterogeneous
resources is still under development.

different portions of the input dataset; second, combining the partial results to generate the final
output, such as histograms and relevant statistics. Among the various open-source software tools
available for these tasks, the Dask Python library® has been selected. This choice is based on Dask
scalability, flexibility, and seamless integration with already existing Python code. It efficiently
manages large datasets by distributing tasks across multiple cores and nodes, while offering a user-
friendly API compatible with standard data analysis libraries. The datasets can be stored and read
within the local filesystem of the user Jupyter instance; alternatively, since more often experimental
data are located in WLCG [8] remote storage sites, they can be accessed via XRootD’ and/or
WebDAV [9] protocols.

2.2 A Declarative software framework for HEP

As mentioned above, this platform relies on declarative software solutions. Based on the
ROOT toolkit [10], the RDataFrame interface'’ has been used. It provides users with an high-level
declarative approach, allowing them to apply filters, define columns, and execute computations
efficiently without writing explicit loops. In this way, analysers can concentrate more on the physics
itself, freeing them from the repetitive code required for data access, event looping, computation
distribution, and result aggregation.

3. Performance evaluation on CMS use cases

In order to evaluate the performance of the platform, a selection of use cases from the CMS
Collaboration have been chosen, sharing a common challenge: analysing big amounts of data as
quickly and as interactively as possible.

3.1 Muon Detector Performance analysis

Analyses from the Detector Performance Group (DPG) at the CMS experiment, typically, run
on a reduced amount of data (e.g. a single run of data taking, or multiple runs in a single beam fill

8Dask documentation: http://dask.pydata.org
9XRootD protocol main page: https://xrootd.slac.stanford.edu/
10ROOT RDataFrame main page: https://root.cern/doc/master/classROOT_1_lRDataFrame.html
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at LHC). However, for some specific cases, a full processing of entire years might be needed. For
example, to assess or improve any systematic uncertainty of high precision analyses (when they are
dominated by the response of a specific detector), or to reprocess data across multiple years, e.g.
for detector stability studies (ageing, etc...).

This use case involves a specific detector performance study: the Tag-and-Probe analysis [11] of
the Drift Tubes (DT) muon sub-detector [12]. The dataset consists in a skim of Z — uu decay
candidates collected by the CMS experiment during 2023, and corresponding to an integrated lu-
minosity of 27fb~!. Unlike the majority of physics analysis datasets, here also low-level detector
quantities are included. The total size corresponds to about 224GB.

The legacy code is running mainly on C++, reconstructing DT segments and computing the effi-
ciencies. In order to run on the platform, the code has been ported to Python, and runs on a Jupyter
notebook using ROOT RDataFrame. The workflow is the same of the legacy approach: the libraries
and functions are stored in a dedicated C++ header file, where the objects are manipulated using
ROOT RVec objects. This allows to use a RDataFrame approach with Dask as a back-end, thus
enabling the entire analysis flow to be distributed (up to the available resources).

3.1.1 Porting results

The Tag-and-Probe method is used to measure the DT efficiency to reconstruct a local track
segment. Events are selected to contain a pair of oppositely charged reconstructed muons with
some specific criteria, first for the tag muon and subsequently for the probe muon [11]. A DT
chamber crossed by a probe track is considered efficient if a reconstructed segment is near the
extrapolated track (within 15cm). In Figure 2a, it is possible to notice how the changes applied to
the Tag-and-Probe program - running on the high throughput platform (shown in yellow) - do not
affect performance, in agreement with the legacy approach (shown in blue). This agreement also
includes high-energy muons, a generally less explored phase-space, as shown in last bins of Figure
2b.

3.1.2 Technical performance

To evaluate the technical performance, the available statistics has been processed three times,
mimicking an integrated luminosity of about 82fb~!, reaching about 77M events in total. The total
size of the considered dataset reaches now 672GB.

For the legacy execution, the computation has been performed as a single HTCondor job, running on
a single CPU of the AMD EPYC 7302 16-Core processor, with 2GB of memory. The computation
reached a walltime of about 120 minutes. On the other hand, for the distributed processing on the
high throughput platform, the computation has been performed on two AMD EPYC 7413 24-Core
processors'!. The number of CPU used has been gradually incremented up to 92, with 2GB of

memory per CPU, reaching a minimum walltime of about 6 minutes.

3.2 Technical performance of a physics data analysis

The performances of the high throughput platform have been also investigated on a CMS

physics data analysis'>. The main challenge of such analysis relies on the large dataset used,

Resources hosted at the Italian CMS Tier-2 of Legnaro, remotely monitored using in-site metrics stored in a database.
12Eor approval reason, results and figures are not shown. Only a technical overview is given.
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Figure 2: Porting results for the Tag-and-Probe analysis. The markers labelled as ’distributed’ show the
execution running on the high throughput platform, while the markers labelled as ’serial’ show the execution
running on the legacy software.

coming from a high-rate triggered stream called b-parking [13], gathered by CMS during 2018.
The same analysis workflow has been run on a increasing number of Dask workers (sharing the
computational load), showing as expected a decrease in the execution time. The computation has
been performed in a testbed of resources coming from the Legnaro Tier-2. Unlike the node used
for the previous use case, this is equipped with a less powerful network bandwidth (1Gbit/s instead
of 10 Gbit/s) while keeping the number of CPUs and memory per CPU unchanged. With a low
number of workers, as expected, the CPU usage saturates (highlighting the high computational
load); however, for a high number of workers, the worst hardware bandwidth translates in a network
access bottleneck (due to the excessive I/O access required from remote storage resources).

4. Conclusions and outlook

A novel and innovative approach has been presented to handle the large volume of data to
be processed in the HL-LHC phase: an interactive, high throughput platform built on a parallel
and distributed computing system. A use case coming from the CMS detector performance group
shows the benefits of such an approach: a significant decrease in the execution time and the quasi-
interactivity. Every time a re-execution of the analysis is needed (e.g. tweaking some thresholds
or using different selection criteria), now it boils down to run a few Jupyter Notebook cells. This
can result in a great improvement for any future detector performance analysis application. On the
other hand, the use case from the physics data analysis (in addition to the decrease in execution
time) shows a potential bottleneck in terms of network access.

As a future evolution of this work, an effort of extending the entire infrastructure towards a multi-
tenant platform is undergoing, intercepting also the needs of data analysts coming from different
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scientific collaborations. In this sense, a new platform is under development; entirely deployed on
a k8s cluster (thus fully scalable) and offloaded to the new infrastructure under construction by the
Italian National Center for HPC, Big Data and Quantum Computing (ICSC). This new center will
eventually benefit from cutting-edge resources and network bandwidth: therefore, all these tests will
undergo a major scale test, and all the limiting aspects (e.g. network access) will be re-evaluated.
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