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1. Aspects of Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the theory that is strongly believed to properly
describe the dynamics of the strong interactions. This theory is a successor of the quark
model, introduced by Gell-Mann and Nishijima in the 1960s. It was designed as an ordering
scheme for the plethora of hadrons that were being discovered in experiment during the
1950s and 1960s. While the so-called Eightfold Way of Gell-Mann and Ne’eman [1, 2]
was very successful - for the prediction of the Ω− baryon and its properties, Gell-Mann
actually received the Nobel price in 1969 - it had problems explaining for example the
spin-3/2 baryon ∆++. This particle required the combination of three up quarks with
parallel spins and therefore seemed to violate Pauli’s exclusion principle. This apparent
shortcoming was remedied in the 1970s by the introduction of an additional charge of the
quarks. In order to solve the ∆++ mystery, there should be three different values of this
so-called colour charge, as has been verified since.

In modern-day language, QCD is formulated as a gauge theory, similar to quantum
electrodynamics (QED). The local gauge group in this case is SU(Nc) with Nc = 3 the
number of colours. The requirement of local gauge invariance leads to the introduction of
an octet of gauge bosons mediating the strong interactions, called gluons. While the quark
fields transform under the fundamental representation of the gauge group, the gluon fields
live in the adjoint representation. Due to the non-Abelian nature of the gauge group,
three- and four-gluon interactions occur in addition to quark-gluon interactions, which
distinguishes the strong interaction from, e.g. QED.

The experimentally detected hadrons appear in QCD as colour-neutral bound states of
three quarks (baryons) or quark-antiquark (mesons). In particular, it is an experimental
fact that no single coloured particle has ever been measured. This circumstance is one of
the long-standing problems of theoretical physics: What is the physical mechanism behind
the confinement of coloured quarks and gluons into colour singlet states?

While confinement is easily characterised in terms of experimental observation, its the-
oretical derivation from the QCD Lagrangian is intricate. To date, various different char-
acterisations of confining theories are on the market. For example, a linearly rising, static
interquark potential at large distances or a temporal Wilson loop developing an area law.
For a discussion of different ideas see e.g. [3]. Moreover, thus far we still lack a proof that
QCD indeed is confining, and actually according to some of the proposed criteria, it is
not. The mechanism underlying confinement hence is still not fully understood.

In order to comprehend hadron masses within QCD, confinement alone is not enough.
Especially, the mass difference between the lightest mesons, the three pseudoscalar pions
π±, π0 with mπ ≈ 140 MeV and the other hadrons needs to be explained. In QCD this
is ascribed to the dynamical breaking of chiral symmetry. The pions occur as the pseudo
Goldstone bosons of this spontaneous symmetry breaking. Their non-vanishing mass is
understood as the impact of the explicit breaking of chiral symmetry by finite quark
masses.
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1. Aspects of Quantum Chromodynamics

The theoretical treatment of QCD is exacerbated by the running of the gauge coupling.
Contrary to QED, where the coupling is small at large distances, due to an antiscreening
effect of gluons the strong coupling is large in the infrared. At small distances, on the other
hand, the coupling is small and QCD is characterised by asymptotic freedom. This was
first demonstrated in 1973 in the Nobel price winning works of D. Gross, F. Wilczek and
D. Politzer [4, 5]. This circumstance allows perturbative calculations in the high-energy
region, which show remarkable agreement with experiment. At low energies, a perturbative
treatment, however, is bound to break down, which is signaled by a divergence in the
(perturbatively calculated) strong coupling constant - the so-called Landau pole ΛQCD.

In this thesis, we will pose the question whether there is a relation between chiral
symmetry breaking and confinement, and especially between the related finite temperature
phase transitions. Both, chiral symmetry breaking and confinement are related to the
intermediate and low momentum region, where due to the increase of the gauge coupling,
the use of non-perturbative tools is mandatory.

In the following, we will first give a brief review of the symmetries and symmetry break-
ing patterns of QCD, in order to set the stage and clarify notation. Furthermore, order
parameters for the two transitions will be discussed. Especially, we generalise a well-
known quantity related to confinement to arbitrary gauge groups and discuss its proper-
ties in detail. Subsequently, the expected phase structure of QCD at finite temperature
and quark chemical potential will be reviewed, followed by a short introduction to some
non-perturbative techniques. Special emphasis is put on the non-perturbative functional
renormalisation group (FRG), which is well-suited for the study of phase transitions and
will be used throughout this thesis.

1.1. Symmetries and Symmetry Breaking Pattern

Let us start by recalling the QCD symmetry structure. The Lagrangian density of this
non-Abelian gauge theory can be written as

LQCD = ψ̄i,f
(
iγµDij

µ − m̂f,f ′δ
ij
)
ψj,f ′ −

1

4
F aµνF

µν
a , (1.1)

where (ψ̄i,f ) ψj,f ′ label the (anti-)quark fields that transform under the (anti-)fundamental
representation of the global flavour group SU(Nf ), labelled by the indices f, f ′ = 1, . . . , Nf .
Quarks transform furthermore under the fundamental representation of colour gauge group
SU(Nc)loc with colour indices i, j, · · · = 1, . . . , Nc. Moreover, the matrix m̂ denotes the
quark mass matrix generated by the Higgs-sector of the standard model. In this work we
will not concern ourselves with the origin of the quark masses and rather treat them as
external parameters of the theory.

In analogy to QED, the QCD Lagrangian is constructed such that it is invariant under
local gauge transformations with a space-time dependent parameter θa(x)

U = e−iθa(x)t
a ∈ SU(Nc) , (1.2)

where ta = λa/2, a = 1, . . . , N2
c − 1 are the Hermitean generators of the Lie algebra

su(Nc). The λ
a denote the Gell-Mann matrices, which are traceless and obey the relation

tr(λaλb) = 2δab. In order to achieve this invariance, the ordinary derivative has to be

2



1.1. Symmetries and Symmetry Breaking Pattern

replaced by the covariant one
Dµ
ij = ∂µδij − iḡAµij . (1.3)

In this manner, gauge fields Aµij(x) are introduced that couple in a minimal fashion, with
gauge coupling ḡ, to the quark fields. The gauge fields by construction transform according
to the adjoint representation of the gauge group and can be written componentwise via
the generators Aµij = Aµataij .

While a mass term for the gauge field would spoil the gauge invariance of the theory, a
kinetic term is perfectly allowed and hence included. It can be constructed as the trace of
the field strength tensor

F aµν = ∂µA
a
ν − ∂νAaµ − ḡfabcAbµAcν , (1.4)

where fabc denotes the structure constants of SU(Nc). The inclusion of this term∼ F aµνF
µν
a

gives rise to gluon self-interactions that result in the formation of flux tubes between colour
charged objects and in this manner are related to confinement. In particular, the forma-
tion of a colour string limits the range of strong interactions to ∼ 10−15 m, despite the
fact that the mediators of this interaction are massless.

Note also that the invariance of Eq. (1.1) completely determines the interactions between
quarks and gluons by the colour and flavour independent gauge coupling ḡ.

1.1.1. Chiral Symmetry

Let us now briefly discuss the global symmetry structure of the theory. In the so-called
chiral limit, i.e. for vanishing quark masses, the apparent symmetry of the Lagrangian,
apart from the colour gauge group, is given by

G = U(Nf )R ⊗ U(Nf )L . (1.5)

The unitary groups can be decomposed into U(Nf ) = U(1)/ZNf ⊗ SU(Nf ). One of these
U(1) groups is referred to as axial U(1). On the level of the Lagrangian, this symmetry
seems to be present, however, this invariance is broken due to quantum effects. This is
referred to as the axial anomaly [6–9] and relates, for example, to the mass of the η′ meson.

The second U(1) symmetry, on the other hand, is unbroken and results in the conser-
vation of baryon number

B =
1

3

∫
d3x ψ†ψ . (1.6)

While the QCD Lagrangian possesses the symmetry

G′ = U(1)/ZNf ⊗ SU(Nf )R ⊗ SU(Nf )L , (1.7)

it is generally believed that the vacuum is not invariant under the full symmetry group -
part of the symmetry is broken spontaneously. To understand this in more detail, consider
the SU(Nf )R × SU(Nf )L part of G′, which corresponds to an invariance under separate
SU(Nf )R,L transformations of the left- and right-handed quark fields defined via

ψR,L =
1

2
(1± γ5)ψ , (1.8)

3



1. Aspects of Quantum Chromodynamics

with γ5 = iγ0γ1γ2γ3 the product of the Dirac matrices. Due to its relation to the “handed-
ness” of (massless) quarks, this invariance is called chiral symmetry. While the Lagrangian
allows separate transformations

ψR → VR ψR , ψL → VL ψL , (1.9)

in the vacuum |Ω〉 only simultaneous rotations VR = VL, corresponding to SU(Nf )L+R
are possible. Chiral symmetry is hence broken spontaneously

SU(Nf )R ⊗ SU(Nf )L → SU(Nf )L+R . (1.10)

The spontaneous breaking of chiral symmetry is accompanied by the condensation of
quark-antiquark pairs forming the quark condensate

〈ψ̄ψ〉 = 〈Ω|ψ̄ψ|Ω〉 6= 0 , (1.11)

which acts as an order parameter. Lattice simulations with dynamical u, d, s quarks con-
firm the above claim and give a chiral condensate 1

2〈ūu+ d̄d〉 ' − (234(04)(17) MeV)3 [10].
By the formation of the condensate in the vacuum, a quark mass is generated dynamically,
which contributes to the mass of the observed hadrons.

Note that the chiral symmetry is actually only well-defined for vanishing bare quark
masses. A mass term, ψ̄m̂ψ, mixes quark fields of opposite chirality and hence breaks
chiral symmetry explicitly. In Nature, the u and d quark masses, mu,d ≈ 2− 5 MeV, are
rather small compared to the relevant scale ΛQCD sin 200 MeV, making SU(2)R⊗SU(2)L
a good approximate symmetry. The mass difference of the next heavier strange quark to
the lightest ones is also relatively small, ms ≈ 100 MeV, and experiment suggests that
also SU(3) is a good approximate symmetry.

The Goldstone theorem relates the spontaneous breaking of chiral symmetry Eq. (1.10)
to the appearance of N2

f − 1 massless Nambu-Goldstone bosons. For the case of Nf = 2,
these are associated with the three pions. Their non-vanishing masses can be attributed
to the explicit breaking of chiral symmetry.

In this thesis we are especially interested in the behaviour of QCD under the influence
of external parameters such as temperature T and quark chemical potential µ. Owing
to thermal fluctuations, the chiral condensate melts at high temperatures and vanishing
chemical potential and chiral symmetry is restored. A complete restoration of chiral
symmetry is, however, only possible in the chiral limit. The related phase transition
temperature, Tχ, can be computed in, e.g. lattice, functional and model approaches, see
also the following chapters of this thesis. By now, different methods agree on the fact that
the transition at the physical mass point is a crossover as a result of the explicit breaking
of chiral symmetry, and occurs in the range Tχ ' 150− 200 MeV.

1.1.2. Center Symmetry

Next, we consider the limit of infinitely heavy quarks, in which QCD exhibits a global
ZNc-center symmetry. To study this symmetry we consider QCD in Euclidean space-time.
Using the imaginary-time formalism, space-time is compactified to a torus S1 × R3 with
Euclidean time direction x0 ∈ (0, β = 1/T ]. One easily finds that in addition to the

4



1.1. Symmetries and Symmetry Breaking Pattern

standard, periodic gauge transformations

U(~x, x0 + β) = U(~x, x0) , (1.12)

also topologically non-trivial transformations

U(~x, x0 + β) = h U(~x, x0) , h ∈ SU(Nc) (1.13)

are permissible [11,12]. Periodicity of the gauge field Aµ(~x, x0 + β) = Aµ(~x, x0), however,
provides a restriction for the prefactor h, namely h ∈ ZNc , or in more detail

h = zI , z = e2πin/Nc , n ∈ {0, . . . , Nc − 1} , (1.14)

where I is the Nc-dimensional unit matrix. In the presence of dynamical quarks with finite
mass, the invariance of the action under these twisted transformations is explicitly broken.
Applying a center transformation Eq. (1.13) to the fermion field yields

Uψ(~x, x0 + β) = −z Uψ(~x, x0) . (1.15)

Thus, the transformed fermion field respects the antiperiodic boundary conditions only if
we restrict z = 1.

We would like to emphasis that this global center symmetry is defined in Euclidean
space-time. It should not be considered as a subgroup of the local gauge group SU(Nc),
that is a symmetry group of the Lagrangian also in Minkowski space-time. In particular,
the center symmetry - in contradistinction to the local gauge symmetry - can also be
broken spontaneously, cf. [13]. This effect is of relevance, since it provides a link to the
confinement transition. This connection will be studied in more detail in the following.

1.1.3. Properties of the Polyakov-Loop

It is well-known that the renormalised Polyakov-loop1 acts as an indicator for the sponta-
neous breaking of center symmetry in the pure gauge sector of QCD. For later convenience,
we will, however, extend its definition to general gauge groups with non-trivial center and
matter in arbitrary representations R thereof. The properties of this quantity discussed
here will play an important role in our classification of gauge theories in Chap. 4.

For matter transforming in the representation R of the gauge group, the definition of
the Polyakov-loop variable reads

LR[A0] =
1

dR
P eiḡ

∫ β
0 dx0 A0(x0,~x) , (1.16)

where dR is the dimension of the representation R, A0 is the temporal component of the
gauge field and P denotes path ordering of the exponential. Note, that we implicitly
assume the use of Polyakov-Landau-DeWitt gauge in the following. Then, the ground
state 〈A0〉 is an element of the Cartan subalgebra of the gauge group and is defined as

1Note that in lattice studies the Polyakov-loop need not be appropriately renormalised a priori. The
unrenormalised quantity suffers from a UV divergence due to a divergent self-energy contribution.
Hence, in the continuum limit the Polyakov-loop vanishes also in the deconfined phase. This problem
can be solved by proper renormalisation, cf. [14].

5



1. Aspects of Quantum Chromodynamics

the minimum of the associated order parameter potential. Under an arbitrary center
transformation of the ground state 〈A0〉,

〈A0〉 −→ U 〈A0〉 , (1.17)

the Polyakov-loop transforms according to

trRLR[〈A0〉]
U−→ zNRtrRLR[〈A0〉] . (1.18)

Here, NR denotes the so-called N -ality of the representation R and z ∈ ZNc is a center
element as defined in Eq. (1.14).

To discuss some more properties of the generalised Polyakov-loop Eq. (1.16), we expand
〈A0〉, which by construction is an element of the Cartan subalgebra of the gauge group,
in terms of the generators of this subalgebra

βḡ〈A0〉 = 2π

dC∑
a=1

T (a)φ(a) = 2π

dC∑
a=1

T (a)v(a)|φ| , (1.19)

where v(a) denotes a unit vector and the T (a)’s are the generators of the gauge group in
the representation R. Furthermore, dC denotes the dimension of the Cartan subalgebra.
For SU(Nc), for example, this value is dC = Nc − 1. The set {φ(a)} will be called the
coordinates of 〈A0〉 in the following.

Fundamental Representation

The fundamental representation (R=F) has N -ality NR = 1 and we obtain the transfor-
mation property

trFLF[〈A0〉]
U−→ z trFLF[〈A0〉] . (1.20)

Similarly it can be seen that 〈trFLF[A0]〉 transforms in the same manner under center
transformations of the gauge field A0. Hence we conclude that both trFLF[〈A0〉] and
〈trFLF[A0]〉 represent order parameters for center-symmetry breaking.

Let us now explore the relation of Φ = 〈trFLF[A0]〉 to the deconfinement transition. It
can be shown, see e.g. [15], that Φ is related to the free energy Fq of a static test quark

Φ ∼ e−βFq . (1.21)

We have seen above that the Polyakov-loop vanishes in the center-symmetric phase. This
implies that the free energy of a static fundamental charge (fundamental color source) is
infinite, i.e. this is the confined phase. In particular, the related quark-antiquark potential
is linearly rising at large distances in this phase and no string breaking occurs. On the
other hand, in the deconfined phase the free energy Fq is finite and so is the Polyakov-
loop. Hence, center symmetry is spontaneously broken in this regime. In this way the
Polyakov-loop distinguishes the confined from the deconfined phase for static test charges
in the fundamental representation.

6



1.1. Symmetries and Symmetry Breaking Pattern

Remark 1.1:
As already pointed out, in full QCD the presence of dynamical quarks breaks center
symmetry explicitly. Hence, the Polyakov-loop is only an approximate order parameter,
similar to the chiral condensate. Note, however, that both, the chiral condensate and
the Polyakov-loop can be used as order parameters for the related crossover transitions at
finite mq. This has been confirmed by lattice studies and will be exploited in the following.

Remark 1.2:
At finite chemical potential the Polyakov-loop Φ and its conjugate Φ̄ are not simply re-
lated by complex conjugation. Actually, both of them are real valued and positive in the
definition used in, e.g., Chap. 3. In fact, the Polyakov-loop is related to the free energy of
quarks and while its conjugate is related to that of antiquarks

Φ ∼ e−βFq , Φ̄ ∼ e−βFq̄ . (1.22)

Since the quark chemical potential µ measures the excess of quarks over antiquarks in our
setup, at finite chemical potential the Polyakov-loop and its conjugate do not agree, but
we have Φ̄ ≥ Φ.

We have seen above that the center-symmetric, low temperature phase is signaled by

〈trFLF[A0]〉 = trFLF[〈A0〉] = 0 . (1.23)

From this expression it follows - in the class of Polyakov-Landau-DeWitt gauges - that the
position 〈A0〉 of the center-symmetric ground state is uniquely determined by, cf. [16]

trF(LF[〈A0〉]n) = 0 , (1.24)

where n = 1, . . . , dC. Actually, this equation holds only for the center-symmetric ground-
state for n mod Nc 6= 0. For n mod Nc = 0 and Nc even, we find

trF(LF[〈A0〉]n) = (−1)
n
Nc

1

Nn−1
c

, (1.25)

while odd Nc result in

trF(LF[〈A0〉]n) =
1

Nn−1
c

. (1.26)

Let us now consider the opposite regime of asymptotically high temperatures. Then we
are in the perturbative regime where 〈A0〉 → 0 and accordingly trFLF[〈A0〉]→ 1, see e. g.
Refs. [16–20]. Since trFLF[·] is a monotonic function of temperature in the domain defined
by the trajectory of 〈A0〉(T ), trFLF[〈A0〉] is monotonic and trFLF[〈A0〉] > 0 in the phase
with broken center symmetry, see also the discussion below.

From the above we can determine the coordinates {φ(a)} of the center-symmetric ground
state for some specific gauge groups. For the example of SU(2) we have {1/2} and for
SU(3) the coordinates are given by {2/3, 0}.

Moreover, the order-parameter potential in the adjoint algebra is periodic. It is in-
variant under discrete rotations about the origin, with rotation angles determined by the

7



1. Aspects of Quantum Chromodynamics

gauge group under consideration. The periods in the different directions depend on the
eigenvalues of the corresponding generators T (a). Center transformations of the ground
state 〈A0〉 can then be viewed as discrete rotations of the coordinates {φ(a)} around the
center symmetric point.

Let us consider SU(2) first, where we have a reflection symmetry with respect to
φ = 1/2. The associated center transformation can then be written as

φ −→ Uφ = 1− φ (1.27)

with φ ∈ [0, 1/2]. Under such a center transformation, the order parameter

trFLF[〈A0〉] ≡ trFLF[φ] = cos (πφ) (1.28)

transforms according to

trFLF[〈A0〉] −→ trFLF[
U 〈A0〉] = −trFLF[〈A0〉] , (1.29)

as expected from Eq. (1.20).

For SU(3), center transformations of the ground state 〈A0〉 can be written as rotations
by angles of 2πn/3, n = 0, 1, 2 around the center-symmetric point {2/3, 0}. The behaviour
of the order parameter under such transformations is indeed as in Eq. (1.20).

Adjoint Representation

Considering Eq. (1.18), we observe that there may exist representations R, for which
trRLR[〈A0〉] does not represent an order parameter for center-symmetry breaking, namely
when NR = 0 (zero N -ality). For example, consider the adjoint representation (R=A). In
this case, we find the following transformation behaviour

trALA[〈A0〉] −→ trALA[
U 〈A0〉] = trALA[〈A0〉] (1.30)

under a twisted transformation. For example for SU(2), we have

trALA[〈A0〉] ≡ trALA[φ] =
1

3
[1 + 2 cos (2πφ)] , (1.31)

which is insensitive to the center transformations defined in Eq. (1.27). Hence we conclude
that trALA[〈A0〉] is not an order parameter for center-symmetry breaking, see also [21,22].

Also in the adjoint representation we find equivalent transformation properties for
trALA[〈A0〉] and 〈trALA[A0]〉: Both quantities are insensitive to center transformations.
This is related to the fact that quarks in the adjoint representation do not break the un-
derlying center symmetry of the gauge group, in contrast to quarks in the fundamental
representation. From a phenomenological point of view, there is indeed no strict notion of
confinement of quarks in the adjoint representation, even in the static limit. In this case,
static quarks can be screened by the gluonic degrees of freedom and form a colour-singlet
state, as can be seen from the decomposition of the tensor product of two adjoint multi-
plets. Therefore, a quark-antiquark pair at large distances can split up into two singlet
states. The associated quark-antiquark potential thus flattens at large distances and does

8



1.1. Symmetries and Symmetry Breaking Pattern

Figure 1.1.: The quantities trFLF[〈A0〉] and trALA[〈A0〉] for SU(3) Yang-Mills theory
as a function of temperature. For T < Td we have trFLF[〈A0〉] = 0 and
trALA[〈A0〉] = −1/8, see Eqs. 1.24 and 1.36. Data for 〈A0〉 has been taken
from [19,20]

not rise linearly, as is the case for static quarks in the fundamental representation, see
e. g. Refs. [21–25] for lattice studies. In particular, the Polyakov-loop 〈trALA[A0]〉 is
non-vanishing for all temperatures [21, 22]. On the other hand, 〈trALA[A0]〉 is related to
the free energy of a static adjoint quark, and it follows that the free energy is finite, even
in the center-symmetric phase at low temperatures. However, note that the behaviour of
the quantities 〈trALA[A0]〉 and trALA[〈A0〉] changes qualitatively at T = Td, even though
they do not represent order parameters for center-symmetry breaking. As we shall discuss
below, this is due to the fact that 〈trALA[A0]〉 and trALA[〈A0〉] can be related to the
order parameters 〈trFLF[A0]〉 and trFLF[〈A0〉], respectively. This behaviour is illustrated
in Fig. 1.1, where we show the temperature dependence of trFLF[〈A0〉] and trALA[〈A0〉]
for SU(3) Yang-Mills theory.

General Representations

Let us now summarise a few more useful relations for trRLR[〈A0〉]. First, consider again
the fundamental representation. It is useful to note that this quantity can be related to
the standard Polyakov-loop via the Jensen inequality

f(〈·〉) ≥ 〈f(·)〉 , (1.32)

which holds for concave functions f . For the Polyakov-loop, this yields

trFLF[〈A0〉] ≥ 〈trFLF[A0]〉 , (1.33)

which is known to hold for SU(2) and SU(3) gauge theories in the deconfined phase [16,
19,20]. For general gauge groups and representations R this inequality does not necessarily
hold, since it relies on trRLR[·] being a concave function in the relevant domain. Provided
that 〈A0〉(T ) lies sufficiently close to the origin, which is true, e.g., for sufficiently large
temperatures T , the inequality may, however, hold for any gauge group and representation.
For a more detailed discussion of the relation Eq. (1.33) the reader is referred to Ref. [26].

9



1. Aspects of Quantum Chromodynamics

We want to state two more simple, but useful inequalities that hold for arbitrary repre-
sentations. The first one:

0 ≤ 1

dR
|trR(LR[〈A0〉]n)| ≤

1

(dR)n
, (1.34)

follows from the generalised triangle inequality. Furthermore

− 1

(dR)n
≤ 1

dR
Re [trR(LR[〈A0〉]n)] ≤

1

(dR)n
(1.35)

holds for n ∈ N.

For later reference, we now evaluate the quantity trRLR[〈A0〉] for specific values of
〈A0〉. At very high temperatures T � Td, we have 〈A0〉 → 0 and trRLR[〈A0〉] → 1,
independent of the gauge group and the representation. At low-temperature (T < Td),
on the other hand, the value of trRLR[〈A0〉] does depend on both, the gauge group and
the representation. For example, we have trFLF[〈A0〉] = 0 for T < Td. For the adjoint
representation, on the other hand, we find

trA(LA[〈A0〉]n) = −
1

(dA)n
= − 1

(N2
c − 1)n

(1.36)

with n mod Nc 6= 0 and

trA(LA[〈A0〉]n) =
1

(dA)n−1
(1.37)

for n mod Nc = 0. Note especially the sign in Eq. (1.36): The quantity trA(LA[〈A0〉]) is
negative in the confined phase, in contrast to its counterpart in the fundamental repre-
sentation.

In SU(Nc) gauge theories, relation (1.36) can be proven straightforwardly by the tensor
product decomposition of the triplet and the anti-triplet into the adjoint multiplet and a
singlet

Nc ⊗Nc = (N2
c − 1)⊕ 1 . (1.38)

Recall furthermore that the character of the product representation is given by the product
of the characters of the representations. Using this relation, we immediately find

dA trA(LA[〈A0〉]) = |dF trF(LF[〈A0〉])|2−1 , (1.39)

and similar relations for trA(LA[〈A0〉]n) with n > 1 (n ∈ N).

In addition to representations for which trR(LR[〈A0〉]) vanishes (e.g. R=F) or is neg-
ative (e.g. R=A) in the low temperature phase T < Td, this quantity can also assume
positive values in the center-symmetric phase. One example for this is the ten-dimensional
representation (R = 10) of SU(3). Using again the tensor product decomposition

3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1 , (1.40)

10



1.2. Phase Structure of QCD
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Figure 1.2.: Sketch of the expected QCD phase structure in the (µ, T ) plane. See text for
a detailed discussion. Picture taken from [27].

together with Eq. (1.38) for Nc = 3 we find

d(10) tr10(L10[〈A0〉]) = [dF trF(LF[〈A0〉])]3 − 2 |dF trF(LF[〈A0〉])|2 + 1

= 1 (1.41)

for T < Td. Similar relations hold for tr10(L10[〈A0〉]n) with n > 1 (n ∈ N). As for
the adjoint representation, the N -ality of the ten-dimensional representation of SU(3) is
zero, N10 = 0.

Summarising, we have found that the quantity trRLR[〈A0〉] can vanish as well as assume
positive or negative values in the center symmetric phase T < Td, depending on the
representation R. This allows us to classify gauge theories. In Sec. 4.2, we shall see
that this classification is to some extent related to the question whether the chiral phase
transition temperature is smaller or larger than the deconfinement phase transition in a
given gauge theory.

1.2. Phase Structure of QCD

This thesis focuses on achieving a more profound understanding of the QCD phase struc-
ture, especially in the plane spanned by temperature and quark chemical potential. Present
experiments are able to probe the phase structure. By variation of the collision energy

√
s,

different regions in the phase diagram with µ = µ(
√
s) can be probed. The experimental

data points can be interpreted with the help of the hadron resonance gas (HRG) model,
see [28] for a review, resulting in the so-called chemical freeze-out curve Tfr(µ). A direct
comparison of experimental outcomes and theoretical predictions is aggravated by the fact
that the freeze-out points measured in experiment do not necessarily agree with the chiral
and/or deconfinement transitions. The resulting freeze-out curve should, however, lie close
to the QCD phase transition line, as proposed in [29]. Lattice simulations actually suggest
that the two lines differ more and more as the chemical potential is increased [30,31].

Let us now recapitulate some aspects of the QCD phase structure shown in Fig. 1.2:
The low temperature and density region is home to our every-day world of hadrons, i.e.

11



1. Aspects of Quantum Chromodynamics

confined, massive bound states of quarks and gluons prevail. Chiral symmetry is broken
spontaneously in this regime. Going up in temperature, lattice and model calculations
agree that a crossover transition occurs leading to the so-called quark-gluon plasma (QGP)
phase. Contrary to previous expectations based on asymptotic freedom, however, the
recent years have shown that the QGP created at the Relativistic Heavy-Ion Collider
(RHIC) is not weakly interacting and this phase has since been renamed strongly-coupled
QGP, see e.g. [32] for a review.

At very high temperatures chiral symmetry is restored, since thermal fluctuations lead
to a melting of the chiral condensate, and furthermore deconfinement sets in. It has been
found in various studies that the phase transitions associated with these two effects lie
remarkably close to each other. To be precise, lattice groups report Tχ ≈ 154 ± 9 MeV
(HotQCD Collaboration) [33] and Tχ ≈ 147−157 MeV (Wuppertal-Budapest group) [34].
From a phenomenological point of view, this observation has important consequences for
our understanding of the dynamics in heavy-ion collisions as well as of the generation of
hadron masses in the early universe. In fact, a comprehensive picture of the dynamics close
to the finite-temperature phase boundary of QCD is required for a reliable description of
data from heavy-ion collision experiments [35].

Thus far it could, however, not be established whether the agreement of the chiral
and deconfinement transition persists at finite chemical potential. In this connection, the
notion of quarkyonic matter was put forward in the recent years. We will briefly repeat
here the argument given in more detail in Ref. [36]: In the ’tHooft large-Nc limit, where
ḡ2Nc and Nf are kept fixed while Nc → ∞, with ḡ denoting the gauge coupling, one
finds that the theory is still confining in the vacuum with a spectrum of mesons and
glueballs. Baryon degrees of freedom are heavily suppressed in the confined phase due to
their large mass MB ∼ Nc. At finite temperature, a first-order transition to a deconfined
phase of quarks and gluons occurs, for which the pressure acts as an order parameter,
as discussed below. The related transition temperature Td ∼ ΛQCD is independent of
the chemical potential Td(µ) = Td(0), since the coupling of quarks to gluons in large-Nc

is of O(1/Nc). In the high temperature phase T > Td, gluons prevail and accordingly
the pressure behaves as O(N2

c ). Increasing chemical potential at T = 0, one finds that
no Fermi surface is formed before the baryon chemical potential reaches the baryon mass.
Hence, the low temperature, confined phase T < Td, µB < mB is populated by mesons and
glueballs. This results in a pressure of O(1), since baryons are exponentially suppressed.
For µB > mB, a dense phase of baryons forms in which the pressure is of order O(Nc).
This phase is referred to as the quarkyonic phase. An illustration of the resulting phase
structure is shown in Fig. 1.3. Furthermore, one can deduce by an analogy to a Skyrme
crystal that chiral symmetry can in principle be broken or restored in the confined phase.
The blue (curved) line in Fig. 1.3 denotes a possible chiral transition line, guided by the
Skyrme crystal.

While the original arguments for quarkyonic matter are constructed in the large-Nc

limit and without any reference to chiral symmetry, it was speculated subsequently that
also at Nc = 3 a new phase could exist. This phase is also called quarkyonic phase, but is
characterised by restored chiral symmetry while confinement persists, see e.g. [37–41]. In
the present work we will demonstrate how fluctuations affect such a splitting of the two
phase transitions. In particular, we find that by inclusion of the matter backcoupling to
the gauge sector the quarkyonic phase shrinks, cf. Chap. 3.
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1.2. Phase Structure of QCD

Figure 1.3.: QCD phase structure in the large-Nc limit. The blue (curved) line indicates a
possible chiral phase transition in the quarkyonic region. See text for a more
detailed discussion. Picture taken from [36].

At low temperatures and high chemical potentials, several model results, e.g. [42–49]
point to the existence of a first-order transition in the QCD phase diagram. This suggests
the existence of a QCD critical point of second order that marks the end of the first-order
transition line. Such a critical endpoint (CEP) is related to long-range fluctuations in the
form of a diverging correlation length ξ. The determination of its existence, location and
properties are in the focus of present and future experiments such as the Nuclotron-Based
Ion Collider Facility (NICA) at the Joint Institute for Nuclear Research (JINR), RHIC
at Brookhaven National Laboratory (BNL) and the Compressed Baryonic Matter (CBM)
experiment at the Facility for Antiproton and Ion Research (FAIR). From the theoretical
side it is of utmost importance to provide a profound knowledge of the characteristics of
the conjectured CEP. The experimental task of detecting the CEP is not as easy as it may
naively seem, since the fireball created in a heavy-ion collision is a system of finite size, in
which no second-order phase transition in the strict sense can occur. Subject to critical
slowing down, the correlation length remains finite and is estimated to be of the order of
2 − 3 fm [50, 51]. This is only slightly larger than the natural scale of 0.5 − 1 fm away
from the critical point. One task for experimentalists could be to detect a non-monotonic
behaviour of, e.g. the number fluctuations. It has been suggested recently that it should
be worthwhile to study higher moments of fluctuations, since these are related to higher
powers of the correlation length, e.g. 〈(δN)2〉 ∼ ξ2−η with η ≈ 0.12, or 〈(δN)4〉 ∼ ξ7,
cf. discussion in [52–54]. The behaviour of these observables and expected signals for
experiment can also be conveniently studied within effective models.

Concerning the full phase diagram we want to add that at high chemical potential
an abundance of phases might exist that are related to the phenomena of colour-flavour
locking and colour superconductivity, see e.g. [55] for a review. Various pairing patterns
of colour and/or flavour structures are possible that are relevant for, e.g. the physics of
neutron stars [56–58]. Furthermore, additional external parameters such as an external
magnetic field have been studied in the literature, see e.g. [59–61]. Especially, the response
of strongly interacting matter to an external magnetic field is a highly relevant question in
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1. Aspects of Quantum Chromodynamics

heavy-ion collisions, where such large magnetic fields do occur, but have not been studied
extensively thus far. The presence of an external magnetic field is furthermore related the
phenomenon of magnetic catalysis.

Despite their interesting features, these aspects of the QCD phase structure will not be
addressed further in this thesis. We will rather focus on the phase structure at moderate
chemical potentials and study several thermodynamic observables.

1.3. Non-Perturbative Approaches to QCD

In order to address the above-mentioned aspects of QCD - and especially its phase struc-
ture - various techniques can be used. As pointed out above, perturbation theory, that
has provided us with amazing results in, e.g. low-energy QED, is bound to fail in low-
energy QCD due to the running of the strong coupling constant that is just opposite to the
running of the electric charge. Moreover, the phenomena of spontaneous chiral symmetry
breaking and confinement are inherently non-perturbative. It is thus clear that for a study
of the phase structure at finite temperature and chemical potential, non-perturbative tools
are indispensable.2

One such method has already been mentioned above, namely lattice gauge theory. In
this approach, Euclidean space-time is discretised into a lattice with spacing a and vol-
ume V , see e.g. [62] for an introduction. Discretised versions of the gauge and fermion
actions can then be used together with Monte-Carlo techniques to simulate QCD from
first-principle, including non-perturbative contributions. In order to make contact with
continuum QCD, in the end the continuum limit a → 0 and the thermodynamic limit
V →∞ have to be performed. This is only possible by extrapolation. The calculation at
small pion mass is another obstacle of this method, since it requires a substantial amount of
computer time to invert the Dirac operator at physical masses. Nevertheless, in the recent
years it was possible to reach the physical mass point. Lattice gauge theory is hence well-
suited to study the finite-temperature phase transitions. Its application at finite chemical
potential is, however, hampered by the fact that the fermion determinant, which is used
as a probability weight in lattice QCD, becomes complex in this regime. Sophisticated
techniques such as re-weighting, Taylor expansion in µ/T or analytic continuation from
imaginary chemical potential have been developed in the last years to overcome this prob-
lem, see e.g. [63–66]. However, lattice results for the QCD phase structure are still limited
to small chemical potentials.

A complementary, non-perturbative approach is the use of so-called Dyson-Schwinger
equations (DSEs), see [67–70] for reviews on this topic. The DSEs constitute the equations
of motion for the n-point functions of the theory. If one could solve the whole (infinite)
tower of them, the theory would be solved. However, the DSE for a given n-point function
always contains higher (n+m)-point functions withm > 0, and in particular there exists no
finite closed subset thereof. Hence, truncations are mandatory in practise. In contrast to
the renormalisation group equations introduced below, regularisation and renormalisation
have to be performed explicitly within this framework.

Recently, results for the Nf = 2 and Nf = 2+1 flavour QCD phase diagram calculated
from DSEs have been put forward in [71–73]. As we will demonstrate, these results agree

2We want to point out that the list of functional methods given here is not exhaustive.
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1.3. Non-Perturbative Approaches to QCD

nicely with ours for Nf = 2, computed via the FRG. 3

The method of choice for this thesis is yet another functional, non-perturbative tech-
nique: the functional renormalisation group (FRG) introduced below.

Owing to an increase in experience and computational resources in the last years, the
application of these sophisticated methods to QCD starts to become feasible. However,
first-principle studies of QCD still pose a formidable task and can only be accomplished one
step at a time, see e.g. [75] for the current status of first principle studies of the QCD phase
diagram. An additional, legitimate and very helpful tool is the use of effective models,
that are designed to describe some aspects of the full theory, while being easier to handle.
This approach is chosen in the present thesis in order to achieve insights into the phase
structure at finite temperature and quark chemical potential. A detailed account on some
effective models and their relation to QCD will be given in Chap. 2. We want to point out
that, where applicable, good agreement between lattice simulations and functional studies
of effective models is observed. This suggests that by now functional methods are in a
position to provide competitive, and in particular reliable, results in the context of QCD.

1.3.1. Special Focus: Functional Renormalisation Group

It is well-known that physical processes may look different, when observed with different
resolution. For the description of macroscopic phenomena, a detailed knowledge of the
microscopic dynamics and degrees of freedom is often not necessary. QCD, for example,
describes the interactions of quarks and gluons at high momenta, while its low energy
sector is conveniently described by hadrons.

In fact, we would like to derive a macroscopic description from the underlying mi-
croscopic theory, in order to achieve an understanding of the mechanisms giving rise to
the macroscopic phenomena. The functional renormalisation group (FRG) is especially
well-suited to study this question. 4

In quantum field theory, the quantities of interest defining the theory are a hierarchy
the n-point Greens functions. They can be derived from the generating functional that is
defined via the path integral.5 However, in the evaluation of the path integral one usually
encounters divergences that must be taken care of by regularisation and renormalisation.

The idea of the renormalisation group, as put forward by Wilson [77], is the following:
In the description of a theory at a given RG scale k, the knowledge of higher scales is not
necessary. One can rather describe the system at this scale effectively by a theory, where
higher momenta have been integrated out. The integration over all momenta is hence not
performed at once, but momentum-shell by momentum-shell from the ultraviolet (UV)
down to the infrared (IR). In this manner it is possible to relate the different regimes of a
theory - e.g. the weakly and strongly interacting ones.

Starting from a local initial action ΓΛ in the UV6, the RG flow describes the change

3Presently, also the case of Nf = 2 + 1 flavours is being studied within the FRG, see e.g. [74].
4Note that while the motivation given here relates to the momentum space version of the FRG it is also
possible to formulate it in position space, where one can think of it in terms of Kadanoff’s block-spin
transformations [76].

5A proper mathematical definition of the measure needed in the path integral is an open problem for
interacting quantum field theories, while the Wiener measure is applicable for non-interacting theories.

6In theory, the action should be defined in the UV, i.e. at the scale Λ → ∞. In practise, however, one
will always use a finite initial scale Λ < ∞. If this scale is chosen high enough, one can, for example,
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1. Aspects of Quantum Chromodynamics

Figure 1.4.: Illustration of some RG trajectories in theory space that connect the initial
action at the UV scale Λ to the full quantum effective action in the infrared.
Picture taken from [78].

of the - now scale dependent - effective average action Γk → Γk−δk. In fact, this flow
can involve a change in degrees of freedom. The high-energy degrees of freedom may not
show up in the low-energy description, but only indirectly influence the physics via their
contribution to the scale dependent change in the arising couplings.

It is instructive to picture the RG flow in theory space, which is the space spanned by
the couplings of all operators that are allowed by the symmetries and field content of the
given system, see Fig. 1.4 for an illustration. In general, this space is infinite dimensional.
The initial action ΓΛ denotes one point in theory space, that corresponds to fixed values
of a set of - usually renormalisable - couplings in ΓΛ and all other couplings set to zero.
The RG flow then maps out a trajectory in theory space, and in particular couplings that
vanished initially are allowed to develop non-zero values dynamically. In the infrared,
k → 0, we are left with an action Γk→0 which includes all quantum fluctuations, as
desired, but might contain entirely different operators than present in ΓΛ. In practise,
one distinguishes operators whose contribution increases towards the infrared (relevant
operators) and those that vanish (irrelevant operators).7

In this setting, an intuitive understanding of universality can be achieved. Already
before the RG was introduced it was known that entirely different physical systems show
remarkably similar behaviour at second-order phase transitions. In particular, the critical
exponents describing the systems at the critical point agree. This phenomenon can be
understood with the help of the RG: Despite the fact that such systems are described
by different microscopic actions, in the RG evolution the same operators turn out to be
relevant. The IR behaviour of these systems is hence dictated by symmetry, field content
and dimensionality only and agrees for systems which lie in the same universality class.

Let us furthermore add, that there exist different implementations of the above presented
RG idea, for example Wilson RG [77], Polchinski RG [79], Wetterich RG [80], proper-time

use perturbative results to fix ΓΛ.
7In fact there is also a third category of marginal operators, which do not belong to any of the aforemen-
tioned classes and require special analysis.
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1.3. Non-Perturbative Approaches to QCD

RG [81] etc. In this thesis, the exact renormalisation group equation (ERGE) will be used.

Remark 1.3:
Note that while the standard proper-time RG involves a RG-improvement by hand - i.e.
is not exact - there exists an RG regulator function which yields the same flow equation as
the Wetterich equation if the optimised regulator [82] is used in the latter. In general it is
known that the standard proper-time RG can be made equivalent to the ERGE by adding

a term ∼ ∂tΓ
(2)
k . The resulting equation is referred to as generalised proper-time RG.

Since there exists a derivation from first principles for Wetterich’s equation, we choose to
employ this variant in the present work.

A brief derivation of Wetterich’s equation is provided in App. A, where also some com-
mon truncation schemes are introduced.
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In the recent years, a lot of progress in our understanding of QCD and its phase structure
has been achieved. In this connection one should be aware that these insights have, to a
large extent, been gained by the use of effective models. For example, lattice simulations
are hampered by the notorious sign problem at finite chemical potential. Also functional
first-principle studies of full QCD still pose rather sophisticated tasks, due to the highly
non-trivial nature of this non-Abelian gauge theory. Hence, effective models provide a
very fruitful alternative approach. These are designed to describe some aspects of the
underlying theory, but are easier to handle. Despite the fact that effective models by
construction leave out some features of the full theory, valuable insights can be achieved
in such an approach. For example, the spontaneous breaking of chiral symmetry can be
very well described within Nambu–Jona-Lasinio type models and their partially or fully
bosonised relatives, as demonstrated in this chapter.

Moreover, as will be discussed in more detail below, some of these models can be related
to QCD in a systematic fashion within the RG framework. On the one hand, this allows
improvements towards the full theory and on the other hand enables an understanding of
the influence of different aspects of the theory on the given observables.

In the following, we start from the purely fermionic Nambu–Jona-Lasinio (NJL) model
and discuss how chiral symmetry breaking can be studied on the basis of this model.
Subsequently, a bosonisation technique will be introduced that allows to reformulate and
extend this model to the well-known quark-meson model, whose advantages in comparison
to the NJL model will be in the focus of the following section. Furthermore, to get a more
accurate description of QCD, our aim is to include some aspects of confinement into our
effective models. It has been proposed recently that this can be achieved by coupling the
Polyakov-loop to chiral effective models. This procedure will be outlined in Sec. 2.2. This
chapter will be closed by some remarks on the systematic connection of effective models
to QCD.

2.1. Chiral Symmetry

It has been known since the 1960s that chiral symmetry and its spontaneous and explicit
breaking can be conveniently described within a purely fermionic model [83]. For some
applications it may, however, be useful to employ models with additional degrees of free-
dom, such as mesons. From the phenomenological point of view, this is very intuitive: We
expect the low energy sector of QCD to be well described by a theory of quarks and light
mesons. While such an interpretations can also be applied to the purely fermionic formu-
lation, it might be preferable to have explicit bosonic degrees of freedom in the model. In
practise, both formulations have their advantages and will be discussed in the following.
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2.1.1. Nambu–Jona-Lasinio Model

We start by discussing a purely fermionic effective model that has a very wide range
of applicability: the Nambu–Jona-Lasinio (NJL) model [83]. This theory was originally
designed to describe the interaction of nucleons and mesons and is constructed in analogy
to the description of Cooper pairs in superconductivity. The fermionic degrees of freedom
were soon reinterpreted as quarks and the NJL model was henceforth also used as an
effective model for the chiral symmetry breaking in QCD.

The foundation of the construction of effective models are symmetries. In the case of
the NJL model we consider Nf flavours of massless Dirac fermions. These should obey
chiral symmetry and interact via a four-fermion coupling λ̄ψ

LNJL = ψ̄i/∂ψ +
λ̄ψ
2

[(
ψ̄ψ
)2 − (ψ̄γ5~τψ)2] . (2.1)

As one can easily check, the kinetic term as well as the combination of four-fermion
operators in the brackets are invariant under chiral SU(Nf )V ×SU(Nf )A transformations

ψ −→ eiθaλ
a/2ψ ,

ψ̄ −→ ψ̄e−iθaλ
a/2 , (2.2)

ψ −→ eiγ5θaλ
a/2ψ ,

ψ̄ −→ ψ̄eiγ5θaλ
a/2 . (2.3)

As in QCD, additional axial and vector U(1) phase transformation are permissible. Note
that in addition to the interaction term shown in Eq. (2.1), which is a scalar-pseudoscalar
term, also a vector (ψ̄γµψ)

2 and an axial-vector channel (ψ̄γµγ5ψ)
2 are allowed by chiral

symmetry. In the vacuum, this list of permissible combinations of four-fermion operators
is exhaustive. However, only two of these chiral invariants are independent, since they
are related via so-called Fierz-transformations [84]. In principle, one should use a Fierz-
complete ansatz and include also the vector and axial-vector interactions in the Lagrangian
Eq. (2.1). At finite temperature, however, due to broken Lorentz invariance by the heat-
bath more terms arise, making it tedious to construct a complete set of operators. We
will comment further on the justification of the present truncation when we perform our
FRG study in Chap. 4.

At this point we explicitly specify the number of flavours choosing Nf = 2, which will be
used in all calculations of this thesis. Then, the vector ~τ = (σ1, σ2, σ3) denotes the Pauli
matrices that couple the quark spinors in flavour space. Despite the fact that a fermion
mass term in the Lagrangian is forbidden by chiral symmetry, mass can be generated
dynamically in the NJL model by the spontaneous breaking of chiral symmetry. It is
well-known [83] that this symmetry breaking is triggered by strong quark self-interactions
and results in the generation of a chiral condensate 〈ψ̄ψ〉 6= 0, which acts as an order
parameter. Furthermore the condensate contributes to the dynamical generation of mass
for the fermions.

20



2.1. Chiral Symmetry

Remark 2.1:
Note that in NJL-type models, multi-fermion interactions appear explicitly in the La-
grangian. In full QCD, on the other hand, quark self-interactions are not free parameters,
but are generated dynamically and driven to criticality by the gauge degrees of freedom.
This can be understood in simple terms from a RG analysis of the fixed-point structure
of four-fermion interactions in gauge theories, see e.g. [85–88].

In four space-time dimensions, the NJL model is perturbatively non-renormalisable.1

Hence one needs to introduce an ultraviolet cutoff Λ that constitutes an additional pa-
rameter of the model. Moreover the regularisation scheme belongs to the definition of
the model as well. The role of the UV cutoff will be discussed in more detail in Chap. 4,
where we make use of a similar ansatz for the action in order to study gauged four-fermion
interactions coupled to the Polyakov-loop in various gauge groups. This will allow to gain
analytic insights into the interplay of chiral symmetry breaking and confinement at finite
temperature. However, it will also be shown there that a study of low-energy observ-
ables is rather tedious in this formulation. This is related to the fact that e.g. meson
masses correspond to poles in the four-fermion couplings. In the above-introduced action,
however, the coupling is independent of momentum, which is referred to as the point-like
approximation. Clearly, such a formulation does not allow the study of the chirally broken
phase. Still, as we will demonstrate in Chap. 4, it is worthwhile to study this model since
it allows to gain analytical insights into the mechanisms at work when the chiral sym-
metry breaking scale is approached from the symmetric phase. Moreover, this limitation
can be overcome by deriving a partially bosonised version of the NJL-type model via a
Hubbard-Stratonovic transformation [90,91]. In such a formulation, the study of infrared
observables is made possible. This is the task of the subsequent section.

2.1.2. Quark-Meson Model

In order to relate the two-flavour NJL model to another well-known effective theory - the
linear σ-model coupled to quarks - we make use of a Hubbard-Stratonovic transformation.
To this end, consider the generating functional

Z[η̄, η] = N1

∫
D[ψ̄, ψ] exp

{
−SNJL +

∫
x
η̄ψ +

∫
x
ψ̄η

}
, (2.4)

which contains the action SNJL and also fermion sources η, η̄ have been introduced.

As a first step, we insert unity via a Gaussian-type integral over the auxiliary meson
fields φ̄T = (σ, ~π). These will subsequently be interpreted as composites of the fermionic
fields σ ∼ (ψ̄ψ) and ~π ∼ (ψ̄iγ5~τψ) and carry no internal colour or flavour structure

1 = N2

∫
Dφ exp

{
−
∫
x

m̄2

2
φ̄2
}
. (2.5)

Assuming translational invariance of the path integral, we can perform a shift in these

1In two dimensions, however, the theory is renormalisable. It is then referred to as the Gross-Neveu
model [89].
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additional variables

σ → σ +
ih̄

m̄2
ψ̄ψ (2.6)

~π → ~π +
ih̄

m̄2
ψ̄iγ5~τψ , (2.7)

and further demand that the arbitrary parameters h̄, m̄2 obey

λ̄ψ =
h̄2

m̄2
. (2.8)

With this prescription, the four-fermion operators cancel and we are left with a theory of
quarks coupled to scalar and pseudoscalar meson fields

S =

∫
d4x

{
ψ̄i/∂ψ + ih̄ψ̄(σ + i~τ · ~πγ5)ψ +

1

2
m̄2φ̄2

}
. (2.9)

Now it should be clear what we previously mean by the term “partially bosonised”: By
the above procedure we eliminated the four-fermion interaction term while retaining the
fermion kinetic term. Furthermore, a fermion-boson interaction term via the Yukawa
coupling h̄ψ̄(σ + i~τγ5)ψ was generated. We hence have achieved a “mixed” quark-meson
formulation. Note that it is also possible to fully bosonise the system, resulting in a purely
bosonic description, cf. Sec. 4.3.1.

After the above described manipulation, a chiral transformation of the fermion field,
as discussed in the previous section, acts on the meson fields (σ, ~π) in form of an O(4)
rotation.

We would like to point out that as it stands, Eq. (2.9) is equivalent to the purely
fermionic formulation Eq. (2.1). In particular, since we have performed the partial boson-
isation at the cutoff scale, also this formulation depends on Λ.

Apart from its relation to the NJL model one can also consider the partially bosonised
action as the definition of an independent effective model. It is then not necessary to
introduce a cutoff - the model is renormalisable. It is usually referred to as the quark-
meson (QM) model.

In practice the action Eq. (2.9) is usually augmented by a kinetic term for the mesonic
fields and a more general mesonic potential U(φ̄) obeying the symmetries. Also wave-
function renormalisations Zψ,φ for the quark and meson fields can be introduced

SQM =

∫
d4x

{
Zψψ̄i/∂ψ +

1

2
Zφ(∂µφ̄)

2 + ih̄ψ̄(σ + i~τ · ~πγ5)ψ + U(φ̄)

}
. (2.10)

The connection to the NJL model is then recovered by requiring Zψ|Λ = 1, Zφ|Λ = 0,

λ̄ψ = h̄2

m̄2

∣∣∣
Λ

and U(φ̄) = 1
2m̄

2φ̄2 . In particular, the presence of the meson fields and

the Yukawa interaction allows to partially resolve the momentum dependence of the four-
fermion interaction λψ(p), see also our discussion in Sec. 4.3.3. Hence, by this generalisa-
tion, interactions beyond the point-like approximation λψ(|p| � k) are included.

From the Lagrange equations of motion for the meson fields we find that 〈σ〉 = −i h̄
m̄2 〈ψ̄ψ〉

acts as an order parameter for the spontaneous breaking of chiral symmetry in this formu-
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lation. To discuss this in more detail, we extend the mesonic potential by a term quadratic
in the boson fields ∼ λ̄φφ̄

4 with λ̄φ > 0. Since the mass parameter m̄2 describes the cur-
vature of the chiral order parameter potential at the origin, the sign of m̄2 is related to
the question whether chiral symmetry is broken in the ground state or not. In the case
m̄2 > 0, the effective potential possesses one stable minimum at 〈σ〉 = 0. For m̄2 < 0, on
the other hand, the potential has the form of a “Mexican hat“, i.e. it develops a family
non-trivial minimum 〈σ〉 6= 0. In the ground state, the system spontaneously chooses one
of these minima, hence chiral symmetry is broken. The expectation value 〈σ〉 6= 0 then
acts as a mass term for the quark fields via the Yukawa term ih̄〈σ〉ψ̄ψ . Hence, the value
m̄2 = 0 separates the chirally broken (m̄2 < 0) from the chirally symmetric (m̄2 > 0)
regime. In terms of the NJL formulation this corresponds to

λ̄ψ =
h̄2

m̄2
→∞ as m̄2 → 0 . (2.11)

In fact, the two criteria are equivalent in the large-Nc limit due to the absence of fluctuation
effects of the Goldstone modes [92].

Now it is clear why the fermionic formulation in the point-like approximation, as given in
Eq. (2.1) is not well-suited for a study of low-energy observables: At the chiral symmetry
breaking scale kcr the four-fermion coupling diverges and thus prevents a study of the
chirally broken phase. It is, however, possible to study the onset of chiral symmetry
breaking within the NJL-type formulation, as will be demonstrated in Chap. 4. In the
partially bosonised formulation, on the other hand, no divergence occurs and we are finally
in a position to study both, the chirally symmetric and the chiral symmetry broken phase.2

The QM model is expected to lie in the same universality class as QCD and has been
studied extensively in the literature, see e.g. [93–97]. In the present work we mostly employ
the following ansatz for the meson potential in the ultraviolet

U(φ̄) =
λ

4
(σ2 + ~π2 − v)2 − cσ . (2.12)

In this ansatz, finite bare quark masses are introduced via a term linear in the sigma field.
Note that within the renormalisation group approach applied in this thesis, Eq. (2.12)
should not be understood as restricting the potential to quartic order in φ̄. Rather, it
corresponds to a more general ansatz taking into account all powers of the chiral invariant
ρ complying with O(4) symmetry. While we specify the quadratic and quartic couplings
explicitly in the UV, all higher (perturbatively non-renormalisable) couplings, such as
those of six- and eight-boson operators, are set to zero at the UV scale Λ. During the
RG evolution, these couplings can dynamically acquire non-vanishing values, which is
accounted for in our numerical implementation.

2.2. Statistical Confinement

While the NJL and QM models are well-established effective models for the chiral sector of
QCD, they do not include any gluonic degrees of freedom and hence are unable to describe

2Note that it is also possible to extend the purely fermionic formulation such, that the chirally broken
phase becomes feasible. In this thesis we, however, prefer to use the partially bosonised formulation.
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confinement. In the recent years, extensions of these models by Polyakov-loop variables
have been put forward, see e.g. [98,99] that include confinement in a statistical sense.

As discussed in Sec. 1.1, the fundamental Polyakov-loop acts as an order parameter
for confinement in the pure gauge system. Lattice simulations of QCD with dynamical
quarks have moreover confirmed that this quantity shows a crossover behaviour from the
low-temperature, confined to the high-temperature phase also in the presence of dynamical
quarks. It hence seems well-justified to extend the chiral effective models by introduction
of Polyakov-loops to include some aspects of confinement.

The augmentation of the QM model by the Polyakov-loop discussed in the following
is referred to as the Polyakov–quark-meson (PQM) model. A similar construction can
be performed in the NJL model, resulting in the so-called Polyakov–Nambu–Jona-Lasinio
(PNJL) model.

In practise, an effective potential term U(Φ, Φ̄) for the Polyakov-loop is added to the
action of the QM model. This potential mimics a background of gluons in which the quarks
and mesons interact. Furthermore, by implicitly assuming the use of Polyakov-Landau-
DeWitt gauge3, the temporal component of the gluon field is coupled to the quarks in a
minimal fashion

SPQM =

∫
d4x

{
Zψψ̄(i/∂ + ḡγ0A

µδ0µ)ψ +
1

2
Zφ(∂µφ̄)

2 + ih̄ψ̄(σ + i~τ · ~πγ5)ψ

+ U(φ̄) + U
(
Φ, Φ̄

)}
. (2.13)

For the effective Polyakov-loop potential U(Φ, Φ̄), a Landau-Ginzburg like ansatz is
made. The requirements that are imposed are U(1) and ZNc symmetry. While the poten-
tial itself is symmetric under ZNc transformations, in the regime of spontaneous breaking
of center symmetry, its ground state need not. In this thesis we consider this potential
for Nc = 3 colours only, hence it has to accommodate the associated first-order phase
transition at finite temperature that is observed in lattice studies of the pure Yang-Mills
system.4 With these requirements, a minimal polynomial ansatz for the Polyakov-loop
potential reads

Upoly
T 4

= −b2(T ;T0)
2

ΦΦ̄− b3
6

(
Φ3 + Φ̄3

)
+
b4
4

(
ΦΦ̄
)2
, (2.14)

with the temperature dependent coefficient

b2(T ) = a0 + a1

(
T0
T

)
+ a2

(
T0
T

)2

+ a3

(
T0
T

)3

. (2.15)

On the lattice, the Polyakov-loop as well as thermodynamic quantities such as the free
energy can be measured. This data is used to fix parameters in the ansätze Eq. (2.14) and
Eq. (2.15). This was done for example in [101] by a fit to pure Yang-Mills lattice data and
results in

a0 = 6.75 , a1 = −1.95 , a2 = 2.625 , a3 = −7.44 (2.16)

3With this choice of gauge, A0 is an element of the Cartan subalgebra of SU(Nc), which subsequently
allows to express the explicit gluon contribution in the covariant derivative in terms of Polyakov-loops,
see e.g. [100].

4For Nc = 2 a second-order transition is observed, see also our discussion in Chap. 4.
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and
b3 = 0.75 , b4 = 7.5 . (2.17)

These values will also be used in the present work. The parameter T0 denotes the scale of
the deconfinement transition and is deduced from the lattice to be T0 = 270 MeV in the
pure gauge system. The influence of dynamical quarks on this parameter is an essential
point and will be discussed in detail in Sec. 3.2.

Presently, there are also other versions of the Polyakov-loop potential on the market,
such as a logarithmic version [44], that includes the Haar-measure of the gauge group. A
benefit of the logarithmic potential is, that it automatically restricts the Polyakov-loops
to the physical domain Φ, Φ̄ ≤ 1. In contrast, the polynomial version allows also for
Φ, Φ̄ > 1, cf. [99], and one has to apply a suitable normalisation to ensure Φ, Φ̄ → 1 for
asymptotically high temperatures.

The Polyakov-loop potential proposed by Fukushima [98] takes into account not only
the longitudinal, but also the transverse parts of the gluon field since these are expected
to contribute to the pressure at high temperatures. Apart from the discrepancy at high
temperatures it is found that all three versions agree reasonably well at moderate tempera-
tures, cf. [37]. In view of the project discussed in Chap. 3 we want to add that Fukushima’s
parametrisation of the Polyakov-loop potential is different from the polynomial and loga-
rithmic versions in one aspect: the deconfinement scale T0 is not directly accessible in this
variant.

The results shown in the subsequent chapters were achieved by use of the polynomial
potential. The general features persist also when the other versions are used. However,
we want to add that Fukushima’s parametrisation is not well suited for our present appli-
cation.

By now it is also possible to compute the glue potential using functional methods, see
e.g. [16, 75] for results from the RG. Functional results can on the one hand be used as
additional crosschecks of the employed approximation. On the other hand, they provide
new input to augment the ansatz for the potential towards the full theory. These compu-
tations are rather sophisticated, thus we resort to the above introduced parametrisation
of the glue potential in this thesis.

Let us briefly elaborate on the statistical confinement introduced by the Polyakov-loop.
This can already be understood in a mean-field approximation, where the meson fields
are replaced by their expectation values 〈σ〉 ≡ σ, 〈~π〉 ≡ 0. The remaining integration over
the quark fields is Gaußian and can be performed analytically. The grand potential of the
PQM model in this approximation is given by

ΩMFA(σ,Φ, Φ̄) = Ωqq̄(σ,Φ, Φ̄) + U(σ) + U(Φ, Φ̄) , (2.18)

with the quark contribution

Ωqq̄(σ,Φ, Φ̄) = −2NfNc

∫
d3p

(2π)3
Eq (2.19)

− 2TNf

∫
d3p

(2π)3

{
log
(
1 + 3Φe−(Eq−µ)/T + 3Φ̄e−2(Eq−µ)/T + e−3(Eq−µ)/T

)
+ log

(
1 + 3Φ̄e−(Eq+µ)/T + 3Φe−2(Eq+µ)/T + e−3(Eq+µ)/T

)}
.
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The first term in Eq. (2.19) is known as the fermion vacuum term. In the standard mean-
field approximation this term is neglected. However, it was shown recently [53, 102] that
this term indeed has crucial influence on the phase structure. In the chiral limit, the
QM model shows a first-order chiral phase transition at vanishing chemical potential if
the vacuum term is neglected, contradicting universality arguments [103]. After proper
renormalisation and inclusion of this term one indeed observes the expected second-order
chiral transition.

For the time being we are only interested in the implementation of confinement in the
PQM model. To study this aspect, we can safely neglect the vacuum term, which carries
no explicit dependence on the Polyakov-loop. Hence we do not expect it to have a large
influence on our subsequent discussion. Note, however, that in the FRG study presented
in the following chapters, this term is naturally included.

From Eq. (2.19) it can be seen that at low temperatures, where the Polyakov-loops
assume small values, Φ, Φ̄ ≈ 0, the argument of the logarithm simplifies

Ωqq̄ ∼ −4TNf

∫
d3p

(2π)3

{
log
(
1 + e−3(Eq−µ)/T

)}
. (2.20)

This expression corresponds to the occupation number of a system of baryon-like degrees
of freedom, characterised by three times the energy of a quark: E ∼ 3Eq. One- and two-
quark excitations are suppressed by the Polyakov-loop variable in this regime, which is
interpreted as statistical confinement. In the high-temperature region, on the other hand,
the Polyakov-loop tends to unity and we find

Ωqq̄ ∼ −2TNf

∫
d3p

(2π)3

{
log
(
1 + 3e−(Eq−µ)/T + 3e−2(Eq−µ)/T + e−3(Eq−µ)/T

)
+ log

(
1 + 3e−(Eq+µ)/T + 3e−2(Eq+µ)/T + e−3(Eq+µ)/T

)}
,

= −2TNf

∫
d3p

(2π)3
3
{
log
(
1 + e−(Eq−µ)/T

)
+ log

(
1 + e−(Eq+µ)/T

)}
, (2.21)

Hence, also one- and two-quark states are excited at high temperatures, which is inter-
preted as deconfinement in the statistical sense.

The same mechanism is present also in the FRG approach to the PQM model.

2.3. Connection of the PQM Model to full QCD

We would like to take a moment to stress the relation of the above presented PQM model
to full two-flavour QCD. To this end, consider the RG flow equation of two-flavour QCD
shown in Fig. 2.1. The loops correspond to the gluon, ghost, quark and mesonic contri-
butions, respectively. The signs and prefactors reflect the statistics of the fields. In the
depicted flow equation, the ghost loop results from gauge fixing and the explicit meson
degrees of freedom are introduced by partial bosonisation. Recall, that while the FRG
flow equations always are of one-loop structure, they are not of one-loop order in the per-
turbative sense. In particular, the system in Fig. 2.1 is fully coupled and exact, i.e. no
higher contributions are omitted.

The simple additive structure has important consequences for the PQM model: We
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∂tΓk[A,C, ψ, φ] =
1
2 +1

2− −

Figure 2.1.: FRG flow equation for two-flavour QCD after partial bosonisation and gauge
fixing. The loops represent the gluon, ghost, quark and meson contributions,
respectively, while the signs and prefactor reflect the statistics of the corre-
sponding fields.

can easily identify the different parts of the model in terms of full QCD fluctuations. For
example, the fluctuating quark-meson sector of the model is given by the last two diagrams
in Fig. 2.1. In turn, the glue and ghost loops in Fig. 2.1, evaluated in the background of
a Polyakov-loop Φ, give the Polyakov-loop potential in full QCD.

We are hence in the position to write down the flow equation of QCD, where the gluonic
degrees of freedom have been integrated out. It is composed of a flow for the free energy
which only involves the last two loops in Fig. 2.1 and the first two loops lead to the
Polyakov-loop glue potential Ωglue. Furthermore, there are modifications of the matter
interaction which are included in the initial conditions in the quark-meson sector that
capture the correct vacuum physics. The resulting effective potential for QCD can be cast
in the following form

ΩQCD(Φ, Φ̄, σ, ~π) = Ωglue(Φ, Φ̄) +

∫ 0

Λ
dk ∂kΩmatter,k(Φ, Φ̄, σ, ~π) + Ωmatter,Λ(Φ, Φ̄, σ, ~π) .

(2.22)
Let us stress that the glue potential implicitly depends on the matter sector due to the
coupled nature of the flow equation. This is in contradistinction to the Polyakov-loop
potential discussed previously, whose parameters are obtained by fitting to pure Yang-
Mills lattice data. The glue potential, on the other hand, only agrees with the Yang-
Mills potential if we neglect the matter fluctuations, such as the vacuum polarisation, cf.
Fig. 2.2. This entails that with Fig. 2.2 we have access to the change of the Polyakov-loop
potential in the presence of matter fluctuations. In Chap. 3 we will highlight the effect
of the backcoupling on the phase structure and point out a way to reintroduce it in the
Polyakov-loop potential.5

Figure 2.2.: Quark loop contribution to the gluon propagator that adds to the backcoupling
of the matter sector to the gauge sector.

5As pointed out above, by now it is also possible to calculate the glue potential in an FRG approach
directly from the flow equation shown in Fig. 2.1, cf. [75]. These results can be used as inputs to
effective models in order to improve the description of the glue sector.
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The matter part of Eq. (2.22) is indeed given by the PQM flow equation to be derived
below, subject to the approximation of classical dispersions of quarks and mesons. At
sufficiently large initial cut-off scale Λ the initial matter part of the free energy, Ωmatter,Λ,
is just a local Yukawa-type action of quarks and mesons, its parameters are fixed to
phenomenology in the vacuum with fπ,mπ andmσ. We also remark that the independence
of the full free energy from the initial cut-off scale Λ, that is ∂ΛΩQCD = 0, enforces Λ-
dependent terms in Ωmatter,Λ. These terms can be determined from the flow at Λ, see
the reviews [92, 104–108] and our discussion below. Phenomenologically, they can be
understood as the high-energy part of the vacuum fluctuations, see [53,102].

Due to this close relation of the RG flow of the PQM model to full QCD it is possible
to systematically enhance the model towards full QCD. This path will be followed in the
subsequent chapter, where we discuss the influence of fluctuations on QCD matter in terms
of the PQM model.
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3. Impact of Quantum and Thermal
Fluctuations

In the previous chapter the PQM model was introduced as a powerful effective model
for QCD. Furthermore, it was argued that it is closely related to full QCD and this
connection can be understood on the basis of the FRG flow equation. This circumstance
will be exploited in the present chapter when we study the influence of fluctuations on the
phase structure and thermodynamics.

First, the Wetterich equation in the PQM truncation to leading order in the derivative
expansion is introduced. This yields a flow equation for the effective potential which
provides the basis to calculate the phase structure and thermodynamics, in analogy to
standard statistical physics. In this context, special emphasis is put on the influence of
the matter backcoupling on the gauge sector, which will be introduced below.

Moreover, in order to understand the mechanisms at work in QCD, it is interesting to
study the reaction of the system to systematic deformations. Here, we vary the pseudo
Goldstone boson mass in order to study the mass sensitivity of the phase structure. In-
teresting differences to the physical mass point are observed at high chemical potentials.
Finally, we close this chapter by critical comments on the model and its limitations.

Some of the results presented in this chapter have been published in [46,48].

3.1. Fluctuations in the PQM Model

As the basis for our study of the PQM model, we consider the flow equation in lowest
order derivative expansion, Eq. (A.16), for the meson fields. To this end, we set the wave-
function renormalisations to a constant Zφ,ψ ≡ 1 and Yφ,ψ ≡ 0. Then, we are left with the
standard kinetic terms and the effective average potential Ωk, resulting in the ansatz for
the effective average action1

Γk =

∫
d4x

{
ψ̄( /D + µγ0 + ih(σ + iγ5~τ~π))ψ +

1

2
(∂µφ)

2 +Ωk[σ, ~π,Φ, Φ̄]

}
, (3.1)

withDµ = ∂µ+ḡA0δµ0 . The only scale dependent quantity in this expression is Ωk[σ, ~π,Φ, Φ̄]
and its flow is calculated by plugging this ansatz into the flow Eq. (A.15). A derivation of
the resulting flow equation can be found in [100], where the proper-time renormalisation
group was used. As pointed out above, within the present truncation the proper-time flow
equation is exactly the same as the ERGE.

1Note that since we take the wave-function renormalisations to be scale-independent and constant in this
case, there is no distinction between the renormalised and unrenormalised quantities and we will leave
out the bars for simplicity.
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The resulting flow equation for the two-flavour PQM model finally reads [46,100,109]

∂tΩk =
k5

12π2

{
1

Eσ
coth

(
Eσ
2T

)
+

3

Eπ
coth

(
Eπ
2T

)
−

4NcNf

Eq

[
1−Nq(T, µ; Φ, Φ̄)−Nq̄(T, µ; Φ, Φ̄)

]}
. (3.2)

The structure of this equation is rather intuitive: the first line contains the contributions
for the sigma and three pion modes, while the second line describes the coupling of the
quarks and antiquarks to the Polyakov-loops. Note the different sign between the mesonic
and fermionic contributions, which denotes the different statistics. One can also nicely see
the factorisation of the thermal contribution to the threshold function accomplished by
use of the optimised RG regulator function.

In the fermionic contributions, Polyakov-loop enhanced quark/anti-quark occupation
numbers appear which are explicitly given by

Nq(T, µ; Φ, Φ̄) =
1 + 2Φ̄e(Eq−µ)/T +Φe2(Eq−µ)/T

1 + 3Φ̄e(Eq−µ)/T + 3Φe2(Eq−µ)/T + e3(Eq−µ)/T
,

Nq̄(T, µ; Φ, Φ̄) ≡ Nq(T,−µ; Φ̄,Φ) . (3.3)

In the limit of vanishing background gluon fields, i.e., when Φ, Φ̄ → 1, the extended
occupation numbers simplify to the usual Fermi-Dirac distribution functions for quarks
and antiquarks

Nq(T, µ; 1, 1) =
1

1 + exp((Eq − µ)/T )
, (3.4)

Nq̄(T, µ; 1, 1) =
1

1 + exp((Eq + µ)/T )
, (3.5)

and the flow of the quark-meson model [94,110] is recovered.

Furthermore, the quasi-particle energies in Eq. (3.2) are given by Ei =
√
k2 +m2

i ,

i = q, π, σ, and the masses are defined as

m2
q = h2ρ ,

m2
π = 2Ω′

k ,

m2
σ = 2Ω′

k + 4ρΩ′′
k . (3.6)

Here and in the following, primes denote derivatives with respect to the chiral invariant
ρ = φ2. Note that we use screening masses, that are defined at vanishing momentum, in
this work. Recently it has been pointed out in a two-colour study [111,112] that the use of
pole masses might result in quantitative corrections. An extension of the present system
including pole masses is postponed to future work.

Since the flow Eq. (3.2) includes that of the QM model as a limiting case, see Eqs.
(3.4) and (3.5), we expect to describe the essential physics of the chiral phase transition
properly. Moreover, our extension by the Polyakov-loops allows in addition to study
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the impact of statistical confinement on the chiral sector. Also critical exponents can be
computed with remarkable accuracy within this truncation, cf. [113]. The boson anomalous
dimension, which is related to the wave-function renormalisation, on the other hand,
vanishes. However, its value is expected to be small and hence we neglect its influence for
the time being. In Chap. 5 we discuss an extension of the present truncation including
these effects.

Let us emphasis that we do not specify the form of Ωk any further. In particular, we do
not introduce an expansion in powers of the chiral invariant ρ to derive the β-functions of
the arising coefficients, as is done in e.g. [109]. Rather, we consider the scale dependence
of the full effective potential. For the numerical solution, we discretise the chiral invariant
ρ in a grid. In this manner, the full effective potential is at our disposal. Especially, this
enables the study of the first-order phase transition we expect at high chemical potentials.
First-order transitions manifest themselves via multiple minima in the effective potential.
Within a Taylor expansion of the effective potential it is, not possible to resolve more
than one minimum. Using the above mentioned discretisation, on the other hand, this is
feasible.

We remark furthermore that in this study the Yukawa coupling is considered to be scale
independent. In Ref. [94] it was shown that the contribution of the running Yukawa cou-
pling has only small influence at vanishing chemical potential. At high chemical potential,
a scale dependence of this coupling is expected to yield a better description of the quark
Fermi surface, which will be in the focus of Chap. 5.

It remains to determine the initial effective action ΓΛ or, more precisely, the effective
potential ΩΛ at the arbitrary initial scale Λ, for which we have chosen Λ = 950 MeV. For
the computation of thermodynamic quantities, the UV scale Λ provides a restriction on
the accessible temperature range, since thermal modes with 2πT ≥ Λ are excluded. The
inclusion of the missing high-momentum modes can be achieved in an effective way by
adding to the original flow, Eq. (3.2), a flow equation for an interacting Polyakov-loop
quark system for scales k > Λ: Ω∞

Λ [σ, ~π,Φ, Φ̄]. This term is not only relevant for the
correct thermodynamics but also includes fermionic vacuum fluctuations. Note that an
explicit gluon contribution to the flow equation is neglected here because the effective
Polyakov-loop potential is fitted to reproduce the Stefan Boltzmann (SB) limit at high
temperatures. In total, the field-dependent part of ΩΛ consists of a sum of the quark-
meson potential Eq. (2.12), the external glue input in form of the Polyakov-loop potential
U and the UV term

ΩΛ[σ, ~π,Φ, Φ̄] = U(σ, ~π) + U(Φ, Φ̄) + Ω∞
Λ [σ, ~π,Φ, Φ̄] . (3.7)

To be precise, Ω∞
Λ [σ, ~π,Φ, Φ̄] is computed by integrating

∂kΩ
k
Λ(T, µ) = −NcNf

k4

3π2Eq

[
1−Nq(Φ, Φ̄;T, µ)−Nq̄(Φ, Φ̄;T, µ)

]
, (3.8)

from k = ∞ to k = Λ, cf. [46, 109, 114]. In the high-temperature regime, where this

contribution is relevant, we employ Eq =
√
k2 +m2

q with the constituent quark mass

mq ≈ 0, cf. Eq. (3.6). The fermion zero-mode contribution up to the cutoff is already
included in the RG flow Eq. (3.2) and we expect the additional contribution from the UV
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3. Impact of Quantum and Thermal Fluctuations

term at large scales to be small. Furthermore, this term carries no temperature, chemical
potential or meson field dependence and is hence neglected.

Using the above defined initial condition Eq. (3.7), Eq. (3.2) can be solved numerically,
as indicated above, resulting in Ωk→0, i.e. the effective potential in the infrared.2 This
quantity serves as the basis for the equations of motion (EoM) that define the order
parameters χ0 = {σ0,Φ0, Φ̄0}:

∂Ωk→0

∂σ

∣∣∣∣
χ0

(T, µ) =
∂Ωk→0

∂Φ

∣∣∣∣
χ0

(T, µ) =
∂Ωk→0

∂Φ̄

∣∣∣∣
χ0

(T, µ) = 0 . (3.9)

For the numerical solution of the coupled Eqs. (3.9), we utilise a stochastic technique.
This is necessary, since standard multi-dimensional root-finding algorithms, e.g. Newton
solvers, do not yield high enough accuracy within tolerable runtime in the present case.
Especially for the computation of thermodynamical quantities it is, however, important
to have good control over the EoM. The algorithm used in this project yields a speedup
of at least a factor 10 and is outlined in App. D.

3.2. Backcoupling of the Matter Sector

In the PQM model, the coupling of the gauge and matter sectors is realised via the
fermion determinant. As discussed previously, in order to describe full QCD properly, the
Polyakov-loop potential should mimic the glue potential of QCD. It is important to note
that the full glue potential includes also vacuum polarisation contributions from the matter
sector, see e.g. Fig. 2.2 for an example of a quark loop modifying the gluon propagator.
Such contributions are expected to have crucial influence on the phase structure, especially
at finite chemical potential. This is related to the fact that the presence of dynamical
quarks lowers the deconfinement transition temperature.

In the standard ansatz for the Polyakov-loop potential Eq. (2.14), however, the aris-
ing coefficients are fitted to pure-gauge lattice results. Within the RG framework, this
corresponds to the loops shown in Fig. 3.1. In this approximation, no modifications by

∂tΓk[A,C] = 1
2 −

Figure 3.1.: Flow equation for the pure YM system that is used as input for the Polyakov-
loop potential.

the matter sector are taken into account. Especially, polarisation contributions, such
as Fig. 2.2 are neglected. Furthermore, the deconfinement scale in the effective model,
denoted by T0, is related to the dynamical scale of QCD: T0 ∼ ΛQCD. By use of the
pure gauge system Fig. 3.1 , this scale is replaced by the one of Yang-Mills (YM) theory

2For practical applications, it is useful to note that the flow effectively freezes for scales below the lightest
particle in the system, i.e in the present case for k < mπ. This can be seen analytically from the
threshold functions, cf. App. C. It is hence sufficient to evolve the potential to scales below mπ.
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3.2. Backcoupling of the Matter Sector

T0 ∼ ΛYM. If the dynamics of the quarks are included, this scale should be lowered. This
effect is not accounted for in the standard construction of the Polyakov-loop potentials. In
contrast, in full QCD the glue potential is defined via the first two loops in Fig. 2.1, which
by the coupled nature of the flow equation includes the matter backreaction. One should
thus expect that the scale T0 receives a flavour Nf and chemical potential µ dependence3

in full QCD
T0 −→ T0(Nf , µ) . (3.10)

This generalisation is necessary in order to capture the relevant effects of QCD and in
particular, the backcoupling is not included in the fermion determinant, hence Eq. (3.10)
does not represent a double counting.

For an estimate of the Nf and µ dependence, hard dense and hard thermal loop argu-
ments are well-suited and we use perturbative arguments to fix the relative scales [46,99].
To this end, consider the perturbative one-loop beta-function of QCD

β(α) = −b(Nf )α
2 (3.11)

with coefficient

b(Nf ) =
1

6π
(11Nc − 2Nf ) . (3.12)

depending on the number colours and flavours. We assume an RG-scheme that minimises
part of the higher-order effects. The gauge coupling is then given in leading order by

α(p) =
α0

1 + α0b(Nf ) ln(p/Λ)
+O(α2

0) , (3.13)

with initial value α0 = α(Λ) at some UV-scale Λ. The scale ΛQCD = Λe−1/(α0b(Nf )) is
determined by the Landau pole in Eq. (3.13).

Making use of the identification p ∼ T we find that the temperature dependence of the
coupling is also governed by Eq. (3.13), resulting in the relation

T0(Nf ) = T̂ e−1/(α0b(Nf )) , (3.14)

where T̂ and α0 are free parameters, cf. [46,99]. With Eq. (3.14) we can now determine the
Nf -dependence of the critical temperature T0(Nf ). We fix T̂ at the τ -scale, T̂ = Tτ = 1.77
GeV, which constitutes a reasonable UV scale. The pure Yang-Mills input, T0(Nf = 0) =
270 MeV, is used to fix the initial value α0 = 0.304. Using these values we find that
our ratio T0/Tχ in the chiral limit compares well with that computed in a two-flavour
QCD calculation with the RG, see [115]. The Nf -dependent critical temperature T0 in the
Polyakov-loop potential is summarised in Tab. 3.1.

The presence of massive flavours leads to suppression factors in the β-function of the
order T 2

0 /(T
2
0 + m2). For example for 2 + 1 flavours, Tab. 3.1 shows the result for a

current strange quark mass ms ≈ 150 MeV. Furthermore, the QCD calculation in the
chiral limit [115] can be used to estimate the systematic error of our estimate for T0(Nf )
and we find the error to be of the order +15

−20 MeV.
As argued previously, in addition to the flavour dependence of T0 we introduce a chem-

3In general, also a dependence on the quark mass mq should be taken into account, see Tab. 3.1 and the
following discussion.
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3. Impact of Quantum and Thermal Fluctuations

Nf 0 1 2 2 + 1 3

T0 [MeV] 270 240 208 187 178

Table 3.1.: Critical Polyakov-loop temperature T0 for Nf flavours.

ical potential dependence via a µ-dependent coefficient b in the running coupling, which
should push the confinement-deconfinement transition temperature down close to the chi-
ral transition line. This can be achieved by defining

T0(Nf , µ) = Tτe
−1/(α0b(Nf ,µ)) (3.15)

with

b(Nf , µ) = b(Nf )− bµ
µ2

(γ̂ Tτ )2
. (3.16)

The factor γ̂ determines the curvature of T0(µ) and bµ ' 16
π Nf . Similar to the Nf -

dependence discussed above, the µ-dependence in Eq. (3.15) compares well to that found
in QCD [115].

We remark that the resulting chemical potential dependence of T0 also agrees well with
the parametrisation determined in [116] by the requirement to reproduce the experimental
freeze-out behaviour characterised by several thermodynamic observables computed from
the statistical model.

3.3. Phase Structure

From the order parameters obtained by solving the coupled EoM Eqs. (3.9) the phase
structure in the (T, µ)-plane can be computed. To this end, we fix the parameters h, λ, v
and c of the effective potential at the initial scale Λ such, that physical values of the
low-energy observables

fπ = 93 MeV ,

mπ = 138 MeV ,

mσ = 540 MeV ,

mq = 297 MeV (3.17)

are reproduced in the vacuum T = µ = 0 MeV. Several comments concerning these
parameters are in order. First, the pion decay constant and pion mass are not independent.
Using chiral perturbation theory, they can be related to the explicit chiral symmetry
breaking parameter c via m2

πfπ = c. Moreover, the quark mass in this approach is given
by mq = hσ0, cf. Eq. (3.6). The expectation value of the massive sigma field is related
to the pion decay constant σ0 = fπ. Hence, the Yukawa coupling is easily fixed by the
desired values of the IR observables: h = mq/fπ. The remaining two parameters then
determine the meson masses.

In this approach, we consider the three pseudo Goldstone bosons (pions) as well as the
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Figure 3.2.: Order parameters (left) and their temperature derivatives (right) for the pa-
rameter set defined in Eq. (3.17) at vanishing chemical potential. The chiral
and deconfinement transitions, defined via the peak in the temperature deriva-
tive of the order parameter, happen at approximately the same temperature.

massive sigma meson, σ = f0(600). The experimental value for the mass of the sigma
meson spans the region 400 ≤ mσ ≤ 1200 MeV with a width of Γ = 250 − 500 MeV.
However, most results hint at a pole position near (500− i 250) MeV, cf. [117], hence the
low choice of mσ.

After fixing the parameters of the initial action in the vacuum, these values are left
untouched when the system is solved at finite temperature and chemical potential. These
results are then predictions of the model.

Once the initial condition are fixed completely, the EoM can be solved numerically,
cf. App. D, resulting in the order parameters σ0,Φ0, Φ̄0 as well as their derivatives as
a function of temperature and chemical potential. The resulting curves for µ = 0 are
presented in Fig. 3.2. In the left panel the order parameters are shown, where the chiral
condensate4 was normalised by its vacuum value σvac = 93 MeV. While the normalised
chiral order parameter is non-vanishing at low temperatures and decreases strongly in the
transition region 150 ≤ T ≤ 250 MeV, the Polyakov-loop does just the opposite.5

As expected, at vanishing chemical potential the Polyakov-loop and its conjugate are
degenerate.

Remark 3.1:
Due to the crossover nature, the phase transition temperatures are not well-defined. In this
work, we choose the peak position of the temperature derivative of the order parameter -
corresponding to the inflection point - to define the curves Tχ(µ), Td(µ), see also Fig. 3.2
(right). In agreement with lattice simulations [118, 119] we observe a crossover transition
in all variables at approximately the same temperatures Tχ = 194MeV and Td = 180MeV.

4Recall that we have 〈ψ̄ψ〉 ∼ 〈σ〉 =: σ0.
5Center-symmetry breaking is one of the rare phenomena, where the low-temperature phase is the one
with restored symmetry, signalled by the (almost) vanishing order parameter.
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Figure 3.3.: Chiral and deconfinement phase transition lines without matter backcoupling
(left) and with matter backcoupling T0(µ) (right) at physical pion mass. The
inclusion of T0(µ) results in a shrinking of the quarkyonic phase characterised
in this context by confinement, but chiral symmetry restoration.

Remark 3.2:
We want to emphasis that we sometimes refer to the transition defined by the Polyakov-
loops as the deconfinement transition, even though our model is not confining in the strict
sense. This is to be interpreted as a language simplification only.

Comparing the present FRG results to those from a mean-field calculation, see e.g. [99],
shows that by the inclusion of meson fluctuations, the transition region is broadened. The
order parameters (de-)increase more gradually when the mesonic fluctuations are taken
into account. This tendency is already observed when fermionic fluctuations are included
via the vacuum term in the mean-field approximation.

The phase structure for the present parameter set Eq. (3.17) is summarised in Fig. 3.3,
where we also demonstrate the impact of the matter backcoupling. Let us start by dis-
cussing the result for µ-independent T0 = 208 MeV, shown in the left panel of Fig. 3.3.
The blue (short-dashed) line denotes the chiral crossover transition, while the black (long
dashed and dashed-dotted) lines correspond to the Polyakov-loop and its conjugate. As
explained above, the degeneracy of Φ and Φ̄ is lifted at finite chemical potential and even
the peaks in the two temperature derivatives do not exactly agree. Nevertheless, they lie
rather close to each other and overall show the same trend. The gray band denotes the
width of dΦ/dT at 80% of its maximum height and serves as an indicator of the strength
of the transition. With constant T0 the deconfinement transition is almost independent
of chemical potential, while the chiral transition bends towards the T = 0 axis at higher
chemical potential, as expected. Due to this effect, starting from µ ≈ 200 MeV, the de-
confinement transition line lies above the chiral one and a ’confined’ phase with partially
restored chiral symmetry opens up. This phase is sometimes referred to as the quarkyonic
phase.

At high chemical potential and low temperatures we find a critical point of second order
that separates the chiral crossover from the first-order chiral transition region. The critical
endpoint (CEP) is located at (µCEP, TCEP) ≈ (293, 32) MeV. In comparison to the results
from a standard mean-field approximation one observes, that neglecting fluctuations, the

36



3.4. Mass Sensitivity

CEP lies at much higher temperatures and smaller chemical potentials. Already the proper
inclusion of the fermion vacuum term, cf. [102], however, pushes the CEP towards higher
chemical potential and low temperature.

The fact that the chiral transition bends inwards at high chemical potential and low tem-
perature is characteristic for RG studies. Despite this fact, at T = 0 the chiral transition
hits the chemical potential axis perpendicularly, in agreement with the Clausius-Clapeyron
relation.

Let us now turn to the phase structure after inclusion of the matter backcoupling, i.e.
with T0(µ). The resulting phase structure is shown in the right panel of Fig. 3.3. Due to
the lowering of the deconfinement scale T0 when the chemical potential is increased, the
transition lines defined by the Polyakov-loops acquire a stronger µ-dependence. In fact,
they bend approximately equally strong as the chiral transition and the two transitions
(almost) coincide throughout the whole phase diagram. In particular, the chirally restored
but confined (quarkyonic) phase present in the previous case is not observed any more.
Also, when we consider the gray shaded band, signaling the strength of the transition, we
observe that this band shrinks as we approach the critical point. This indicates that both
transitions get sharper towards the CEP located at (µCEP, TCEP) ≈ (292, 23) MeV. The
influence of the backcoupling on thermodynamic quantities is discussed in one of the next
sections.

Furthermore, consider the curvature κ of the chiral transition line defined via

Tχ(µ)

Tχ(0)
= 1 + κ

(
µ

Tχ(0)

)2

+O

((
µ

Tχ(0)

)4
)
. (3.18)

This observable can also be calculated in lattice simulations despite the fermion sign prob-
lem. In Tab. 3.2 we collect the results for the curvature at µ = 0 of this work and compare
to other functional approaches and lattice results. Within the functional approaches, good
agreement is observed. Different FRG calculations with constant T0 = 208 MeV result in
almost coinciding values of κ, while the inclusion of the matter backcoupling increases its
value and brings our result close to the Dyson-Schwinger (DSE) result of Ref. [73]. Despite
the nice agreement within the functional approaches, there is a rather large discrepancy to
the lattice, which is significantly smaller. In part, this deviation may be related to finite
volume effects on the lattice, see e.g. [120] for a FRG model study of finite volume effects
on the curvature. On the other hand, it may also hint at the existence of physical effects
not included in the present models.

3.4. Mass Sensitivity

Next, we study the mass sensitivity of the chiral phase structure. It turns out that at small
Goldstone-boson mass, and especially in the chiral limit, an interesting phase structure
emerges that is not observed at physical pion mass.

As discussed above, the vacuum masses of, e.g., the Goldstone bosons can be varied by
changing the UV parameters of the flow Eq. (3.2). In order to maintain comparability
with the results at the physical mass point presented above, we fix λ, v and h to their
values at the physical point also when studying the mass sensitivity in this section. Only
the explicit symmetry breaking parameter c, that is directly related to the pion mass is
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3. Impact of Quantum and Thermal Fluctuations

Method Ref. κ

PQM FRG (T0 fixed) this work −0.1434(39)
PQM FRG (T0(µ)) this work −0.2889(47)
PQM MFA (T0 fixed) [60] −0.17∗

PQM FRG (Taylor, T0 fixed) [60] −0.156∗

DSE (2-flavour, HTL) [73] −0.23∗

DSE (2-flavour) [73] −0.37∗

DSE ((2+1)-flavour) [73] −0.28∗

lattice ((2+1)-flavour) [31] −0.059(2)(4)

Table 3.2.: Curvature of the chiral transition line at µ = 0 MeV from different approaches.
[∗ no error bars available]

changed.

Note that by keeping all parameters apart from c fixed, the sigma meson mass is also
lowered considerably to mσ ≈ 250 MeV in the chiral limit. The dependence of the chiral
phase transition, and in particular the location of the CEP, on mσ has previously been
studied, see [121].

3.4.1. Chiral Limit

The chiral limit is defined as the limit of vanishing explicit chiral symmetry breaking and
is hence characterised by a vanishing pion mass. In this case, the chiral transition at
zero chemical potential in our FRG approach is a well-defined transition of second order,
in agreement with O(4)-universality arguments, cf. [103]. Fig. 3.4 shows the chiral and
deconfinement order parameters (left) as well as their temperature derivatives (right) at
µ = 0. The chiral condensate goes to zero continuously and vanishes exactly for T ≥ Tχ.
The Polyakov-loop variables, however, show a crossover transitions also in this limit due
to the broken center symmetry at mq <∞.

For the chiral condensate, chiral perturbation theory (χPT) predicts the behaviour [122]

〈ψ̄ψ〉(T )
〈ψ̄ψ〉(T = 0)

= 1− T 2

8f2π
−O

((
T

fπ

)4
)

(3.19)

at low temperatures. This is shown as the short-dashed line in Fig. 3.4. We observe, that
the chiral condensate in the PQM model is flatter at low T . This seems to be related to
the coupling to the Polyakov-loop: In the pure QM model, σ(T ) has been found to agree
very well with the χPT prediction [123].

As can be seen in the right panel of Fig. 3.4, the sharp transition in the chiral sector
leaves its traces also in the deconfinement sector. Since the two transitions do not agree
exactly in this case, the second order chiral transition induces an additional sharp peak
in dΦ/dT . Due to this supplementary structure, the exact determination of the Polyakov-
loop transition and its width is not easily possible. In Fig. 3.5 (left) our result for the phase

38



3.4. Mass Sensitivity

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300  350

χ q
/µ

2

T [MeV]

σ0/σvac
Φ0
—Φ0

 0

 0.005

 0.01

 0.015

 0.02

 0  50  100  150  200  250  300  350

T [MeV]

-d(σ0/σvac)/dT
dΦ0/dT
d—Φ0/dT

Figure 3.4.: Order parameters (left) and their temperature derivatives (right) in the chiral
limit at vanishing chemical potential. The short-dashed line in the left figure
denotes the chiral perturbation theory result.

structure is shown. The gray (solid) line denotes the chiral second order transition while
the black (dashed and dashed-dotted) lines correspond to the Polyakov-loop transitions, as
before. The light-gray band again indicates the width of the transition associated with the
Polyakov-loop Φ at 80% of its maximum height. Due to the superposition of the chirally
induced peak, the lower boundary of this region is pushed towards lower temperatures.
Note that the chirally induced peak persists throughout the phase diagram and agrees
within ∼ ±2 MeV with the chiral transition line defined via the peak in dσ/dT .

In the following we concentrate on the chiral phase transition. Compared to physical
masses, the chiral transition temperature Tχ(µ = 0) goes down by approximately 20 MeV:

Tχ(µ = 0)|mπ=138 MeV = 194 MeV ,

Tχ(µ = 0)|mπ=0 MeV = 171 MeV , (3.20)

which is expected due to the decrease in constituent quark mass as mπ → 0.

Increasing the chemical potential, we find that at low temperatures a new structure
emerges: the chiral transition splits into two branches.6 On the inner branch of the
transition we find a critical point at (µCP, TCP) = (255, 27) MeV below which the transition
is of first order. The outer branch, however, remains of second order. In contradistinction
to the results of Ref. [95], only one critical point is found in the present work. We want
to point out that this is not an effect of the coupling to the Polyakov-loop. Rather we
observe that by increasing the UV cutoff, the two critical points merge.

Moreover, the chiral splitting modifies the behaviour of the sigma meson mass with
chemical potential. At low temperatures two minima, corresponding to the two branches
of the chiral transition, appear in the mσ(µ). This is illustrated in Fig. 3.5 (right) for
T = 30 MeV, i.e. just above the critical point. In contrast to the sigma mass, the pion
mass remains zero until chiral symmetry is completely restored at the outer transition
branch.

6 A similar behaviour had previously been observed in a RG study of the pure quark-meson model [95].
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Figure 3.5.: Left: Phase structure in the chiral limit, mπ = 0 MeV. In contrast to the
physical point, a splitting in the chiral transition occurs at low temperatures
and high chemical potential. Right: Pion and sigma meson mass in the split-
ting region (T = 30 MeV) in the chiral limit. The splitting is reflected by
two minima in the sigma meson mass, while mπ stays zero until the second
transition branch is reached.

3.4.2. Small Pion Mass

In the previous section we discussed a novel feature of the chiral phase structure that
arises at vanishing pion mass, namely the splitting of the transition line at high chemical
potentials. In the following it will be demonstrated how this splitting region changes when
the pion mass is increased towards the physical mass point.

To this end, the chiral phase structure for mπ = 50 MeV is shown in Fig. 3.6 (left).
Due to the non-vanishing explicit chiral symmetry breaking, the transition is of crossover
type at low µ once again. In the low temperature/high chemical potential region, we still
observe a splitting in the chiral transition and also the second minimum in the sigma
meson mass persists. As the vacuum pion mass is increased towards its physical value,
however, the outer branch of the transition is weakened. This effect can for example be
studied via the chemical potential dependence of the sigma meson mass, see Fig. 3.6
(right). In this figure we compare mσ(µ) at a fixed temperature (T = 24 MeV) in the
splitting region, for several vacuum pion masses: mπ = 0, 25, 50, 75, 138 MeV. Note
that for all values of the pion mass, the first transition branch is of first order at this
temperature. While there are two sharp minima in the chiral limit, one can clearly see
how the depth of the outer minimum decreases as we approach physical pion masses. Even
at the physical mass point some remnants of the splitting remain, see also uppermost line
in Fig. 3.6 (right). However, the derivative of the chiral order parameter, which we use to
pin down the transition line, does not show two distinct peaks anymore. This is why no
splitting region is shown in our phase diagram for the physical mass point, see Fig. 3.3.

Note also that the position of the critical point in temperature direction, TCEP, is hardly
affected by the change in the pion mass. In all considered cases we find a critical point
at TCEP ≈ 20 − 30 MeV. This is in contradistinction to previous results in the PQM
model that showed a strong dependence of (µCEP, TCEP) on mσ when fπ, mπ and mq

are kept fixed, see [121] for mean-field results. When fluctuations beyond the mean-field
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Figure 3.6.: Left: PQM phase structure for mπ = 50 MeV. Observe, that for small
values of the vacuum pion mass, the splitting in the chiral transition per-
sists. Right: Sigma mass in the splitting region (T = 24 MeV) for mπ =
0, 25, 50, 75, 138 MeV from left to right. As mπ increases, the second mini-
mum is weakened.

approximation are taken into account, this observation still holds.

The location of the critical point along the chemical potential axis, µCEP, on the other
hand, is changed more drastically as mπ is varied. This can be understood by noting
that the critical chemical potential at vanishing temperature, µχ(T = 0), is related to the
quark Fermi surface and hence the quark mass. This mass, however, increases with mπ,
and as a result so does µχ(T = 0), and subsequently µCEP.

3.5. Equilibrium Thermodynamics

In order to get a more profound insight into the nature of the phase transitions and also
to study the impact of the Polyakov-loop, we calculate some thermodynamic observables.
Moreover, these results can be compared to existing lattice data at vanishing and small
chemical potential.

3.5.1. Thermodynamic Observables

Evolving the flow equation Eq. (3.2) for the effective average potential to the infrared and
evaluating it on the EoM, Eqs. (3.9), one obtains the thermodynamic grand potential

Ω(T, µ) = Ωk→0(T, µ)|χ0
. (3.21)

As the basis for the thermodynamic quantities discussed in this work, the pressure is
defined as the negative value of the grand potential,

p(T, µ) = −Ω(T, µ) + Ω(0, 0) , (3.22)

which is additively normalised to zero in the vacuum. All thermodynamic observables
follow from this expression in the standard way. For example, the first derivatives of the
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ε = −p+ Ts energy density

cV = ∂ε
∂T specific heat

c2S = ∂p
∂ε

∣∣∣
s
= s

cV
speed of sound

χq =
∂2p
∂µ2

quark number susceptibility

Table 3.3.: Collection of some thermodynamic observables.

pressure with respect to T and µ yield the entropy and quark number density

s =
∂p(T, µ)

∂T
,

nq =
∂p(T, µ)

∂µ
, (3.23)

respectively. For normalisation we use the Stefan-Boltzmann pressure corresponding to a
gas of free, massless quarks and gluons. This expression is expected to be approached at
high temperatures and densities. For Nf flavours and Nc colours this yields

pSB
T 4

=
NfNc

6

[
7π2

30
+
(µ
T

)2
+

1

2π2

(µ
T

)4]
+ (N2

c − 1)
π2

45
. (3.24)

The term in the brackets denotes the fermionic contribution while the last term corre-
sponds the gluonic pressure. Appropriate derivatives of this expression will be used to
normalise other thermodynamic observables.

In addition to the entropy and quark number densities we consider the trace anomaly

∆

T 4
=

Θν
ν

T 4
=
ε− 3p

T 4
, (3.25)

which is related to the trace of the energy-momentum tensor Θµν , which vanishes in a
scale invariant theory. This quantity thus yields a measure for the breaking of conformal
invariance in the system. Sometimes this quantity is also referred to as interaction measure,
since it quantifies the deviation from the equation of state of an ideal gas ε = 3p, as can
be seen from the second equality in Eq. (3.25).

Some more thermodynamic quantities are collected in Tab. 3.3. Of these, especially
the quark number susceptibility is of interest, since it is related to the correlation length
χq ∼ ξ2−η with η denoting the anomalous dimension. The correlation length ξ governs
the exponential decay of the corresponding correlation function, hence its divergence at a
second-order transition is indicative for the prevailing long-range order. Thus, a strongly
peaked, and actually diverging, susceptibility signals the presence of a critical endpoint of
second order, which might be present in the QCD phase diagram.

3.5.2. Physical Mass Point

First, we consider some thermodynamic observables at the physical mass point. Fig. 3.7
shows the pressure, normalised by the Stefan-Boltzmann pressure, without (left) and with
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Figure 3.7.: Pressure normalised by the Stefan-Boltzmann pressure with constant
T0 = 208 MeV (left) and T0(µ) (right), both for physical masses. Includ-
ing the matter backcoupling, the pressure rises already at lower temperatures
owing to the decreased deconfinement temperature.

the matter backcoupling (right) for three values of chemical potential. At low tempera-
tures, the pressure is dominated by the lightest degrees of freedom, i.e the pions. Around
the chiral phase transition, the sigma meson and also the quark masses decrease. At even
higher temperatures, the sigma meson degenerates with the pions due to the restoration
of chiral symmetry. The mesons acquire a large thermal mass ∼ 2πT and decouple from
the system. In this region, the almost massless quarks are the dominant degrees of free-
dom that govern the pressure. Exactly this effect is seen in Fig. 3.7 (left) with constant
T0. Note also that the pressure is a monotonically rising function of temperature. Only
at µ = 290 MeV a non-monotonic behaviour is observed in Fig. 3.7, which can be un-
derstood by the fact that at this chemical potential the very low temperature region is
chirally symmetric and the chirally broken regime is entered for T ≈ 30 MeV, cf. Fig. 3.3.
Furthermore, the transition at low temperature is of first order, resulting in a kink in the
pressure, as shown in the subplot. At high temperatures, the pressure reaches approx-
imately 80% of its Stefan-Boltzmann value for constant T0 and all considered chemical
potentials.

Turning on the matter backcoupling to the glue sector, we find a pressure as shown
in the right panel of Fig. 3.7. The overall behaviour is of course similar to the one with
constant T0. However, one can now clearly see the impact of the deconfinement transition.
Due to the fact that Tχ ≈ Td holds for all chemical potentials, the pressure rises more
rapidly. This is most drastically seen at µ = 290 MeV: with constant T0 the pressure is
suppressed up to T ≈ 150 MeV, which is the region where the Polyakov-loops start to rise
significantly. Including T0(µ), the Polyakov-loop transition moves down to Td ≈ 90 MeV
and p increases much earlier. Furthermore, the pressure reaches more than 90% of its
Stefan-Boltzmann value at high temperatures.

A similar behaviour is observed in the entropy density shown in Fig. 3.8, again for fixed
T0 (left) and T0(µ) (right). The entropy density measures the active degrees of freedom
in the system and hence rises at the deconfinement transition. The first-order transition,
is hence signalled by a jump in the entropy density, cf. Fig. 3.8, green (dashed-dotted)
line. Also in this observable a strong impact of the matter backcoupling is observed: the
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Figure 3.8.: Entropy density normalised by the Stefan-Boltzmann value with T0 = const.
(left) and T0(µ) (right) at the physical point. The impact of the matter
backcoupling is similar to its effect on the pressure.

entropy density rises much earlier due to the lowered deconfinement temperature at µ > 0.

Remark 3.3:
These results confirm our previous arguments, that the matter backcoupling to the gauge
sector is an essential effect that needs to be included in our study of the phase structure
as well as in the computation of thermodynamic quantities. Therefore, all results shown
in the following contain T0(µ).

In the left panel of Fig. 3.9 the interaction measure ∆/T 4 is shown. This quantity
measures the departure of the system from an ideal gas, where ε = 3p and corresponds to
∆ ≡ 0. At low temperature, ∆/T 4 vanishes, but has a peak at higher temperatures, after
which goes to zero like 1/T 2. On the lattice the same behaviour is observed [118, 124].
There, the inflection point, rather than the peak of the interaction measure is identified
with the phase transition temperature. This agrees nicely with our definition of Tχ via
the inflection point of the order parameter.

The equation of state (EoS) measure p/ε and the speed of sound c2S are additional
observables that quantify the behaviour of the system. In the case of a free gas, p/ε→ 1/3
since ε = 3p. This is indeed the case in our model for high temperatures, cf. Fig. 3.9
(right), solid curve. Around the phase transition temperature, both observables have a
minimum in agreement with lattice results [118, 124]. This observation can be related to
the fact that the specific heat cV is expected to diverge at the CEP and to show a peak
at the crossover transition. The speed of sound is proportional to the inverse of cV , hence
the minimum at the critical temperature.

Within a different truncation of the grand potential, where the mean-field Polyakov-loop
EoM instead of the RG EoM have been used, it was possible to calculate thermodynamic
observables also at high chemical potential and low temperature, see Fig. 3.10. In this
figure the quark number density (left) and the quark number susceptibility (right) around
the critical endpoint are shown, both including the matter backcoupling. As expected,
the slope of the quark number density increases as the CEP of second order is approached
from above. Directly at the CEP, the slope is infinite within numerical accuracy, leading
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Figure 3.9.: Interaction measure ∆/T 4 (left) and a combined plot (left) of the equation
of state measure p/ε (solid line) with the speed of sound (dashed line). The
matter backcoupling is included in both figures and mπ = 138 MeV.
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Figure 3.10.: Quark number density (left) and quark number susceptibility (right) around
the CEP for physical masses and including the matter backcoupling.

to a diverging susceptibility, cf. right panel. For T < TCEP a first order transition is
present, resulting in a jump in the quark number density.

3.5.3. Small Pion Mass

In order to study the mass sensitivity of thermodynamic quantities, the pressure and some
derived observables7 were computed at mπ = 50 MeV.

Fig. 3.11 shows the pressure (left) and entropy density (right) in this case. In general,
the same structure as at physical masses is observed. Note, however, that the plateau in
the pressure at vanishing chemical potential and intermediate temperatures is at a higher
value than at the physical point. This is due to the fact that pions, which are lighter in the
present case, dominate the pressure in this regime. Moreover, the pressure is normalised
to p(0, 0) = 0, like at the physical mass point. This forces the curve to go to zero
at vanishing temperature and chemical potential. Judging from the interaction measure,

7Also in this section and the following, the matter backcoupling is included in all shown results.
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Figure 3.11.: Pressure (left) and entropy density (right), both normalised by the corre-
sponding Stefan-Boltzmann expression for mπ = 50 MeV. The same trends
as for physical masses are seen.
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Figure 3.12.: Interaction measure (left) and EoS measure p/ε together with the speed of
sound (right) for a pion mass mπ = 50 MeV.

Fig. 3.12 (left), this may, however, not be the proper normalisation. We observe, that
∆/T 4 decreases slightly at low temperatures. The numerical complexity of the system,
however, thus far prohibits a more precise study of the low temperature region.

Interestingly, the pressure initially decreases as µ is increased at low temperatures, see
Fig. 3.11 (left). In fact, this is also observed at physical pion mass and in the pure QM
model. This effect is enhanced as the pion mass is lowered, cf. Fig. 3.13 below.

For completeness we also show the EoS measure and the speed of sound for this vacuum
pion mass in Fig. 3.12 (right). It is observed, that the peak preceding the minimum at
approximately T = Tχ increases in height as the pion mass is lowered, compare e.g. to
Fig. 3.9. This effect is observed in both quantities p/ε as well as c2S . The depth of the
minimum as well as the high-temperature limit, on the other hand, are unchanged.

3.5.4. Chiral Limit

We end our discussion with the thermodynamics in the chiral limit and show the pressure
and entropy density in Fig. 3.13. Due to the vanishing pion mass for T < Tχ, the pressure
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Figure 3.13.: Normalised pressure (left) and entropy density (right) in the chiral limit.

behaves approximately like that of a free gas of pions, p/T 4 = 3π
2

90 . However, instead
of a flat plateau, we observe a slight, unphysical decrease in p(T ) at vanishing chemical
potential below the phase transition. It could not be clarified thus far, what induces this
unphysical behaviour. However, we observe an inversion of the mass hierarchy in this
region: At the physical point, we have mσ > mq > mπ in the low temperature domain.
In the chiral limit, however, we have mq > mσ > mπ in the same region. Owing to this
effect, the contributions to the pressure change. Already at mπ = 50 MeV there exists a
temperature region wheremσ < mq. This could be checked e.g. by defining the chiral limit
as mπ = 0 with all other vacuum observables as at the physical point. If the behaviour
of p(µ = 0) should indeed be related to the mass ordering in the system, it would also be
interesting to check the influence of pole masses on this effect.

Turning to the entropy density, Fig. 3.13 (right), we note a kink in s/sSB at high chemical
potential and low temperature. This effect seems to be related to the influence of the chiral
second-order transition on the Polyakov-loop sector. As we already discussed, the sharp
transition induces an additional peak in dΦ/dT , cf. Fig. 3.4. Similarly, it influences the
thermodynamic observables around the phase transition. Hence, we refrain from showing
higher thermodynamic observables in the chiral limit.

3.5.5. Low Temperature Region

After discussing some thermodynamic observables and their mass dependence vs. temper-
ature in the last section, we now turn to a study of the low T/high µ region. This regime is
especially interesting, since a critical point appears in this region whose properties should
be studied in detail. However, the computation of thermodynamic quantities in this region
is seriously hampered not only by computational demands, but also by some shortcomings
of the Polyakov-loop potential. These will be illustrated in the following.

Let us start by discussing the pressure and quark number density at physical pion mass
and temperatures T ≤ 50 MeV, where the lowest temperature is chosen slightly above the
critical endpoint, see Fig. 3.14. The subplot shows the pressure normalised by the Stefan-
Boltzmann value. While the pressure rises monotonically at T = 50 MeV, as it should,
below this temperature a non-monotonicity appears. This effect was already pointed out
in [48]. In the quark number density shown in Fig. 3.14, this effect is seen more drastically

47



3. Impact of Quantum and Thermal Fluctuations

 0

 0.2

 0.4

 0.6

 0.8

 1

 250  260  270  280  290  300  310  320  330

n q
/n

q,
S

B

µ [MeV]

T = 50 MeV
T = 40 MeV
T = 30 MeV

 0

 0.05

 0.1

 270  280  290  300  310

p/pSB

Figure 3.14.: Quark number density in the low temperature region for physical pion mass.
The insert shows the pressure. At low temperatures the pressure develops a
non-monotonicity that results in negative densities. Discussion see text.

than in the pressure. Already at T = 40 MeV, the non-monotonic behaviour of p yields
a bump in nq just before the phase transition. As the temperature decreases, this effect
becomes more and more pronounced and eventually leads to negative pressure values and
densities. This effect is clearly unphysical and unfortunately inhibits the study of the
critical endpoint and, e.g., its universality.

We attribute this effect to an unrealistic implementation of the Polyakov-loop potential.
In mean-field studies with or without the vacuum term [53,102], no similar effect had been
observed. It thus seems that the influence of the Polyakov-loop potential on the mesonic
potential, including fluctuations, is too strong. Note also that the same phenomenon is
found when the logarithmic version of the Polyakov-loop potential is used.

As discussed in Sec. 2.2, the parameters of the Polyakov-loop potential are fitted to lat-
tice data from the pure Yang-Mills system. Moreover, the Polyakov-loop is a well-defined
order parameter for the deconfinement transition in exactly this limit, corresponding to
infinitely heavy quarks. Physical quark masses or even the chiral limit, on the other hand,
are far away from this regime, suggesting that some modifications are in order when finite
masses are considered. The influence of dynamical quarks is to some extent taken into
account by our modification T0(Nf , µ), but a fully dynamical treatment within the FRG is
still missing. A comparison to the glue potential in full QCD discussed in [75] indeed shows
that our Polyakov-loop potential is steeper. This might result in the observed unphysical
behaviour.

For smaller pion mass we observe that the decrease in the pressure as a function of µ
sets in at even higher temperatures, see Fig. 3.15 for results with mπ = 50 MeV. Already
at T = 90 MeV a significant drop in the pressure, and subsequently in the quark number
density, is observed. Despite this problem we show the quark number susceptibility χq
in this case in Fig. 3.15 (right). Of course the drop in the density leads to an additional
oscillation in the susceptibility. Note, however, that at T = 30 MeV (green, dashed-dotted
curve), we pass through the chiral splitting region in the phase diagram and observe two
peaks in χq, corresponding to the two transition branches. At this temperature, the
two transitions are of similar strength, leading to peaks of comparable height. As the
critical point is approached, we expect that the related peak increases, and eventually the
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Figure 3.15.: Quark number density (left) and quark number susceptibility (right) above
and in the chiral splitting region with mπ = 50 MeV. At smaller than phys-
ical pion mass, the decrease in the pressure sets in at even higher T than
at physical pion mass. Despite this effect, a double-peak structure in the
susceptibility is observed that can be related to the splitting in the chiral
transition line.

susceptibility should diverge at a critical endpoint of second order.

3.6. Comment on the Applicability of the Model

We want to close this chapter with a comment on the applicability of the presented model
and its results.

One finding of particular interest from the theoretical as well as the experimental view-
point is the presence of a critical point at low temperature and µ = µq > 200 MeV. With
regard to the location of the CEP, one should, however, always keep in mind that the
present model neglects baryonic degrees of freedom completely. Especially in the high
chemical potential region, where the CEP is located in our computation, baryons and
their fluctuations are certainly of importance for a correct description of QCD. These are
expected to have an influence the location of the CEP as well.

On the other hand, we clearly observe that the inclusion of mesonic fluctuations has the
tendency to push the CEP towards higher chemical potential as compared to the mean-
field approximation without the fermionic vacuum term. Already the inclusion of the
fermion vacuum fluctuations beyond the standard mean-field approach shows a similar
trend of lowering the temperature coordinate of the CEP, TCEP. Note that in the RG
approach presented here, the vacuum contribution is always included.

Furthermore, the presently predicted locations of a QCD critical point within lattice
QCD are well within the region of reliability of the PQM model. In view of these results
we can exclude a CEP at low µ/T ≈ 1− 2.
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4. Gauge Theories with Matter in Different
Representations

In the present chapter, we study the interrelation of chiral symmetry breaking and decon-
finement in gauge theories with non-trivial center.

One factor that has an impact on the interplay of these two phenomena has already
been identified in the previous chapter, namely the matter backcoupling to the gauge sec-
tor. Here, we restrict ourselves to the case of vanishing chemical potential and study a
different influence, namely the colour representation of the matter fields. It is well-known,
that basic properties of the theory can change when we vary the representation of the
matter content: quarks in the adjoint representation, for example, do not break the center
symmetry of the gauge sector. The presence of quarks in the fundamental representation,
however, does break center symmetry explicitly. Since center-symmetry breaking is con-
nected to the question of quark confinement, see e.g. [125] and our discussion in Sec. 1.1,
one may expect that a variation of the representation of the quark fields leaves its imprints
in the phase structure of the theory. In fact, it has been found in lattice simulations of
SU(Nc) gauge theory with adjoint quarks [23–25] that the chiral phase transition tem-
perature is significantly larger than the deconfinement phase transition temperature, in
contradistinction to QCD with two light quark flavours in the fundamental representation.

The renormalisation group represents a valuable tool also in this application. In particu-
lar, the fixed-point structure of four-fermion interactions is used in the following to achieve
an analytical understanding of the mechanism relating the two transitions. Furthermore,
a Hubbard-Stratonovich transformation, as discussed in Sec. 2.1.2, allows to connect the
purely fermionic formulation to a partially bosonised version, which is better suited for
the study of low-energy observables. This enables us to put forward a phase diagram in
the plane spanned by the temperature and, e.g., the pion decay constant, which can be
compared to other methods, in particular also lattice simulations, since no sign problem
is present in this case.

This chapter follows closely our discussion in [126].

4.1. Extended Matter Sector of QCD

In order to analyse the interplay of chiral symmetry restoration and deconfinement at
finite temperature in QCD, it is convenient to add a relevant coupling to the theory which
can be considered as an external parameter. In particular, we introduce a four-fermion
coupling λ̄ψ

SQCD → SQCD +

∫
d4x λ̄ψ

(
ψ̄Cψ

)2
,

where SQCD denotes the classical action of QCD, cf. Sec. 1.1. The operator C will be
determined below. In QCD, similar four-fermion interactions are generated by gluon
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exchange. For a description of the low-energy regime, it makes therefore sense to include
these types of interactions explicitly. Loosely speaking, such a deformation allows us to
“detune” the chiral and the confining dynamics of the theory. For lattice studies of this
class of theories, see e. g. Refs. [127,128].

The above defined theory is referred to as λψ-deformed QCD. Due to the additional
coupling, this theory effectively depends on two parameters: λ̄ψ and ΛQCD.

1 In particular,
they both influence the values of low-energy observables. By tuning λ̄ψ we can hence
produce different values of, e.g. the pion decay constant fπ. The limit λ̄ψ ≡ 0, takes us
back to usual QCD, where the only input parameter is given by ΛQCD, or equivalently by
the value of the strong coupling αs at some high momentum scale. In this case, ΛQCD

solely sets the scale for all physical observables O: O ∼ ΛQCD.

Subsequently, the dependence on the two parameters ΛQCD and λ̄ψ is exploited. A
model will be set up which shares many aspects with the full theory, but can also be
analysed analytically to a large extent.

Also in beyond the standard model applications, similar theories with an additional
relevant parameter have attracted a lot of attention in recent years, see e.g. [128, 129].
Especially, the case of SU(2) gauge theory with two adjoint quark flavours is of interest
there, since it is a candidate for minimal walking technicolor, see e.g. [130–133].

Remark 4.1:
A word of caution should be added with regard to our results presented in the following.
In Secs. 4.2 and 4.3, we mostly study the case of SU(2) gauge theory with two massless
adjoint quarks. We are aware of the fact that this theory could already lie in the conformal
window.2 In this work, however, we assume that the zero-temperature ground state of
SU(2) gauge theory with two adjoint quarks is governed by dynamical chiral symmetry
breaking. Actually, this indeed appears to be the case within our present approximations,
in accordance with Refs. [129,134]. As a first step, it is therefore natural to consider this
theory in our numerical studies. Even if the present approximations should turn out to be
insufficient to describe correctly the chiral ground-state properties of SU(2) gauge theory
with two massless adjoint quarks, we still expect that our results will be similar for gauge
groups of higher rank and broken chiral symmetry in the zero-temperature limit, see also
our discussion in Secs. 4.2 and 4.3.

Let us now discuss the field-theoretical setup in the matter sector, where we employ the
following ansatz for the quantum effective action Γ, cf. Sec. 1

Γk[ψ̄, ψ, 〈A0〉] =

∫
d4x
{
Zψψ̄ (i∂/+ ḡγ0〈A0〉)ψ +

λ̄ψ
2

[
(ψ̄ψ)2 − (ψ̄~τγ5ψ)

2
] }

. (4.1)

Here, Zψ is the fermion wave-function renormalisation and we again restrict ourselves to
Nf = 2 massless quark flavours. The matter fields are assumed to transform under a
representation R of the gauge group. In particular, we discuss the case of an SU(Nc)
gauge group.

1Here and in the following we consider the chiral limit, i.e. the current quark masses are set to zero.
2The term ”conformal window“ for a SU(Nc) gauge theory refers to the range of flavours Nf for which
the theory is asymptotically free at large energies while its low-energy region is conformally invariant.
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Since the ansatz (4.1) is perturbatively non-renormalisable, we define it with an UV
cutoff Λ which then represents an additional parameter. This setup also implies that
the regularization scheme belongs to the definition of the model. The role of Λ for the
fixed-point structure will be discussed in detail in Sec. 4.3.

Concerning the background field 〈A0〉, we do not use the approximation trR LR[〈A0〉] =
〈trR LR[A0]〉 which underlies most PNJL/PQM model studies,3 see e. g. Chap. 3. Al-
though this assumption is convenient and opens up the possibility to incorporate lattice
results for 〈trRLR[A0]〉, it may be problematic in quark representations other than the
fundamental one and away from the limit of infinitely many colours, dR → ∞, see our
discussion below. Moreover, it has been found for fundamental matter that PNJL/PQM-
type studies are to some extent sensitive to different parametrisations of the potential
for 〈trFLF[A0]〉, see e. g. Ref. [137]. Hence it is important to analyse at least some of
the consequences arising from the approximation trR LR[〈A0〉] = 〈trR LR[A0]〉 underlying
these model studies.

For the analytic studies presented here, we will rather make use of the exact relations
given in Sec. 1.1.3. For the numerical evaluation of the quantum effective action, we then
use the numerical results for 〈A0〉 from a non-perturbative first-principles RG study of the
order-parameter potential in Polyakov-Landau-DeWitt gauge, see Refs. [19, 20].

For the investigation of the RG flow of the four-fermion coupling λ̄ψ, we employ the
Wetterich Eq. (A.15). In general, our ansatz Eq. (4.1) in the matter sector can be consid-
ered as the leading order in a systematic derivative expansion. The associated expansion
parameter is the anomalous dimension ηψ = −∂t lnZψ of the quark fields. This “param-
eter” is small as has been found in various previous studies [85, 88, 138, 139]. In fact, it
is identical to zero when we consider the four-fermion coupling in the so-called point-like
limit, λψ(|p| � k), see e. g. Ref. [92]. This is true even if we allow for dynamical gauge
degrees, provided that one considers the class of Landau gauges [140], such as Polyakov-
Landau-DeWitt gauge. As we have discussed above, the latter gauge is implicitly assumed
in this work, see Sec. 1.1.3.

Apart from an expansion in derivatives, the effective action can be expanded in oper-
ators, such as n-fermion operators, cf. Sec. A.2. Regarding four-fermion operators, we
note that the ansatz Eq. (4.1) for the effective action is not complete with respect to
Fierz transformations, not even in the limits 〈A0〉 → 0 and T → 0, cf. our discussion
in Sec. 2.1.1. From a consideration of a Fierz-complete basis, however, we only expect
quantitative corrections to our results presented here. The main qualitative aspects are
expected to persist since the general structure of the loop integrals remains unchanged.
For a Fierz-complete study of the RG flow of four-fermion couplings in QCD, the reader
is referred to e.g. [87, 92,141].

Note that it can be shown that higher fermion operators, such as eight-fermion operators,
do not contribute to the RG flow of the four-fermion couplings in the point-like limit.
Beyond the point-like limit, however, these higher-order operators may very well contribute
to the flow of the four-fermion interactions, see, e. g., our discussion in Sec. 4.3.

In the subsequent section it will be shown that the purely fermionic formulation of
our ansatz Eq. (4.1) for the matter sector is convenient for a general discussion of the
interplay of the chiral and the deconfinement phase transitions, independent of the fermion

3Note that there are also PNJL/PQM-type model studies which do not use this approximation but
consider an integration over the group SU(Nc), see e. g. Refs. [135,136].
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representation. In order to compute low-energy observables, however, a purely fermionic
formulation may not be the first choice since this requires to resolve the momentum-
dependence of the fermionic vertices. In this case, a partially bosonised formulation of
our ansatz might be better suited. The Hubbard-Stratonovich transformation resulting
in such a description has already been discussed in Sec. 2.1.2. For the present case this
yields

Γk[ψ̄, ψ, φ̄, 〈A0〉] =
∫
d4x

{
Zψψ̄ (i∂/+ ḡγ0〈A0〉)ψ + ih̄ψ̄(σ + i~τ · ~πγ5)ψ

+
1

2
Zφ
(
∂µφ̄

)2
+

1

2
m̄2φ̄2

}
. (4.2)

Recall, that chiral symmetry breaking is now signaled by a non-vanishing expectation
value of σ ∼ 〈ψ̄ψ〉.

Studying this action, we choose the initial conditions for the couplings such that

lim
k→Λ

m̄2 > 0 , lim
k→Λ

Zφ = 0 , lim
k→Λ

Zψ = 1 . (4.3)

Together with the identity

λ̄ψ =
h̄2

m̄2
, (4.4)

cf. Sec. 2.1.2, the ansatz Eq. (4.2) can then be mapped to the ansatz Eq. (4.1) at the initial
UV scale Λ. Thus, only the ratio of the Yukawa coupling h̄ and the mass parameter m̄
acquires a physical meaning. As discussed in Sec. 2.1.2, a large (i. e. diverging) four-
fermion coupling signals the onset of chiral symmetry breaking.

We conclude that the fixed-point structure of the coupling λ̄ψ - or, equivalently, of
the couplings m̄ and h̄ - is directly linked to the question of chiral symmetry breaking
in the IR limit. In the following, we analyse how this fixed-point structure is related to
the order parameter for center-symmetry breaking. This will eventually allow us to gain
insights into the relation of chiral symmetry breaking and center-symmetry breaking at
finite temperature.

4.2. Dynamical Locking Mechanism and the Fermionic
Fixed-Point Structure

Now we perform an analysis of the interplay of center-symmetry breaking and chiral
symmetry breaking using the purely fermionic formulation Eq. (4.1). In this study, the
value of the background field 〈A0〉 is considered an external input, which is given by
the ground state of the corresponding order-parameter potential. As discussed above,
the position 〈A0〉 of the ground state is then directly related to the order parameter for
center-symmetry breaking, namely trRLR[〈A0〉].

The RG flow equation of the four-fermion coupling in the point-like approximation can
be computed similar to the derivation shown in App. B and for quarks living in any
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representation. We find

βλψ≡∂tλψ = (2 + 2ηψ)λψ −
2

π2

(
2+

1

dR

) dR∑
l=1

l
(F)
1 (τ, ν

(R)
l |φ|, 0)λ

2
ψ , (4.5)

where the dimensionless renormalised coupling λψ is defined as

λψ = Z−2
ψ k2λ̄ψ . (4.6)

For convenience, we have introduced the eigenvalues ν
(R)
l of the Hermitean matrix given

in Eq. (1.19):

ν
(R)
l = spec

{
(T ava)ij | v2 = 1

}
. (4.7)

The coupling λψ depends on the background field 〈A0〉 and the dimensionless tempera-

ture τ = T/k. The threshold function l
(F)
1 describes a regularised one-particle irreducible

(1PI) Feynman diagram with two internal fermion lines, see Fig. 4.1. The definition of
this function can be found in App. C.

Figure 4.1.: 1PI Feynman diagram corresponding to the threshold function l
(F )
1 appearing

in the β-function of the four-fermion interaction λψ.

The RG flow Eq. (4.5) has two fixed-points: a Gaußian fixed-point (λψ ≡ 0) and a non-
trivial fixed-point λ∗ψ(τ, 〈A0〉), see Fig. 4.2. The non-Gaußian fixed-point can be computed
analytically

λ∗ψ(τ, 〈A0〉) =

(
1

π2

(
2+

1

dR

) dR∑
l=1

l
(F)
1 (τ, 0, ν

(R)
l |φ|)

)−1

(4.8)

= λ∗ψ

(
1 +

1

dR

∞∑
n=1

(−dR)n
[
trR(LR[〈A0〉]n)+trR(L

†
R[〈A0〉]n)

] (
1+

n

τ

)
e−

n
τ

)−1

where

λ∗ψ ≡ λ∗ψ(0, 0) =
6π2

(2dR + 1)
. (4.9)

In the limit of large dR, the rescaled fixed-point dRλ
∗
ψ approaches a constant value. Note

that we have dropped terms depending on ηψ on the right-hand side of Eq. (4.8). As
discussed above, in the presently used point-like limit this is not an approximation.

Remark 4.2:
At finite temperature, the non-Gaußian fixed-point is rather a pseudo fixed-point, i. e.
the fixed-point inherits an implicit scale dependence from the dimensionless tempera-
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Figure 4.2.: Sketch of the βλψ -function of the four-fermion coupling λψ for vanishing tem-
perature (black/solid line), finite temperature and 〈A0〉 = 0 (red/dashed line),
and finite temperature and 〈A0〉 > 0 (blue/dashed-dotted line) at finite dR,
see Eq. (4.5). The arrows indicate the direction of the RG flow towards the
infrared.

ture τ = T/k as well as a dependence on 〈A0〉. Moreover, the line of pseudo fixed-points
λ∗ψ(τ, 〈A0〉) does not represent a separatrix in the (λψ, τ)-plane. However, it represents a
strict upper bound for the separatrix in this plane [92].

Remark 4.3:
The fixed-point value is not a universal quantity, as can be seen from its dependence on
the regularisation scheme. However, the statement about the existence of the fixed-point
and its qualitative dependence on the temperature and 〈A0〉 is universal.

Vanishing 〈A0〉

Before we turn to the case of finite temperature, we briefly discuss a few basic aspects of
the zero-temperature limit. In order to solve the RG flow Eq. (4.5), we have to choose
an initial value λUV

ψ at the scale k = Λ. For λUV
ψ < λ∗ψ, we find that the four-fermion

coupling approaches the Gaußian fixed-point in the IR limit, i. e. the theory becomes non-
interacting and chiral symmetry remains intact. This can be seen from the black (solid)
curve in Fig. 4.2, where the arrows denote the direction of the RG flow towards the IR.
For λUV

ψ > λ∗ψ, on the other hand, we observe that the four-fermion coupling grows rapidly
and diverges at a finite scale kSB. This scale signals the onset of chiral symmetry breaking.
Below this scale, the point-like approximation is no longer justified: the formation of a
quark condensate and the appearance of Nambu-Goldstone modes requires that we resolve
the momentum dependence of the four-fermion coupling in this regime. For example, this
can be done by means of partial bosonisation techniques, see Secs. 2.1.2 and 4.3. In
any case, the chiral symmetry breaking scale kSB sets the scale for all chiral low-energy
observables O

O ∼ kdOSB ∼

[
1−

(
λ∗ψ

λUV
ψ

)] dO
|Θ|

θ(λUV
ψ − λ∗ψ) . (4.10)
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Here, dO is the canonical mass dimension of the observable O and the critical exponent Θ
is defined as

Θ = −
∂βλψ
∂λψ

∣∣∣∣
λ∗ψ

= 2 (4.11)

in this one-dimensional case. In general, when there are several couplings g = (g1, . . . , gn)
present, the critical exponents are the eigenvalues of the stability matrix

Sij = −
∂βgi
∂gj

∣∣∣∣
g=g∗

, (4.12)

which arises when we linearise the flow equations in the vicinity of a fixed-point

∂tgi =
∑
j

Sij(gj − g∗j ) + . . . . (4.13)

The critical exponents Θj and associated eigenvectors describe the behaviour of the RG
flow near the fixed-points. By use of the standard theory of linear partial differential
equations, we can conclude that the critical exponents can be used to classify the directions
in the categories relevant (infrared repulsive, Θj > 0), irrelevant (infrared attractive,
Θj < 0) and marginal (Θj = 0), cf. Sec. 1.3.1. For the study of marginal operators,
higher orders in the expansion around the fixed-point need to be taken into account.

Coming back to the case of Eq. (4.11), we see that Θ = 2 corresponds to a relevant,
infrared repulsive direction, which is indicated by the arrows pointing away from the
non-Gaußian fixed-point in Fig. 4.2. Note that while the position of the fixed-point is
not universal, the value of the critical exponents are. Indeed, they are just the critical
exponents associated with a quantum phase transition at T = 0.

Now we return to our discussion of the properties of the β-function Eq. (4.5) and
fix λUV

ψ > λ∗ψ at T = 0 in the following. The value of λUV
ψ then determines the symmetry

breaking scale kSB and, in turn, the values of the chiral low-energy observables. For our
study of finite-temperature effects and influence of the confining dynamics parametrised
by the background field 〈A0〉, we leave our choice for λUV

ψ unchanged. This ensures com-
parability of our results at zero and finite temperature for a theory defined by a given
value of λUV

ψ .

At finite temperature the fixed-point structure of the theory is deformed compared to
the zero-temperature limit. In this case, the pseudo fixed-point is shifted to larger values
at finite temperature, λ∗ψ(τ, 0) > λ∗ψ, see Eq. (4.8). For a given initial value λUV

ψ >
λ∗ψ, this implies that a critical temperature Tχ exists, above which chiral symmetry is
restored. Strictly speaking, the critical temperature Tχ is defined to be the temperature
for which 1/λψ → 0 for k → 0. From the RG flow Eq. (4.5) one can then obtain a simple
analytic expression for Tχ:

Tχ =

(
Λ

π

)[
1−

(
λ∗ψ

λUV
ψ

)] 1
2

θ(λUV
ψ − λ∗ψ) , (4.14)

which is accordance with our general statement in Eq. (4.10). To derive this expression,
we have assumed that T/Λ� 1.
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Non-Vanishing 〈A0〉 in the Large dR-Limit

Let us now turn to the case of finite 〈A0〉. For fermions in the fundamental representation,
for example, we have trF (LF[〈A0〉]n) → 0 in the center symmetric phase for n ∈ N and
dF = Nc →∞, see Eq. (1.24). Thus, the temperature-dependent corrections to λ∗ψ(τ, 〈A0〉)
vanish identically and we have

λ∗ψ(τ, 〈A0〉) ≡ λ∗ψ(0, 0) for T ≤ Td . (4.15)

We shall refer to this as a locking mechanism for the chiral phase transition. Loosely
speaking, this means that the chiral phase transition is locked in due to the confining
dynamics. For T > Td, we have trFLF[〈A0〉] > 0 and the fixed-point is again shifted to
larger values. This implies that Tχ ≥ Td in the limit Nc →∞, see also Refs. [26,142,143].

Remark 4.4:
We will refer to the temperature Td as the deconfinement phase transition temperature,
even if we study theories with quarks in other representation than the fundamental. It has
been discussed in Sec. 1.1.3 that there exist representations for which the quark-antiquark
potential is not linearly rising at large distances, independent of the temperature. Be-
low Td, however, center symmetry is restored also in these cases. In any case, free, static
colour charges are screened to form colour-neutral states below Td for all representations
considered here.

In the case of adjoint fermions and dA � 1, the temperature-dependent corrections in
Eq. (4.8) do not vanish on all RG scales k for T ≤ Td, since trA(LA[〈A0〉]n) < 0 for these
temperatures, see Eq. (1.36). Therefore the (global) sign of the temperature-dependent
corrections changes compared to the case with 〈A0〉 = 0. This implies that the pseudo
fixed-point is shifted to smaller values at finite temperature rather than to larger values.4

For fixed T and k → 0 (i. e. τ →∞), the pseudo fixed-point approaches

λ∗ψ(τ →∞, 〈A0〉) =
λ∗ψ

1 + 1
d(A)

, (4.16)

and for dA → ∞ we have λ∗ψ(τ → ∞, 〈A0〉) → λ∗ψ from below. Since trALA[〈A0〉] → 1
for T � Td, the fixed-point is “released” and shifted to larger values. For a given initial
value λUV

ψ > λ∗ψ, it then follows again that Tχ ≥ Td for dA →∞.

This analysis can in principle be repeated for any fermion representation, including
fermion representations for which trRLR[〈A0〉] > 0 for T < Td, such as the ten-dimensional
representation, see Eq. (1.41). In the latter case, the temperature-dependent corrections
do not vanish for large values of dR. However, the finite-temperature shift of the fixed-
point is still suppressed by a factor of 1/dR compared to the case with 〈A0〉 = 0. As
a consequence, the chiral transition temperature is increased, but it is not necessarily
pushed above the deconfinement phase transition. Therefore, a strict statement about the
relation of the chiral and the deconfinement phase transition cannot be made for this class
of theories, not even in the large-dR limit.

4Note that an external magnetic field deforms the fixed-point structure in a similar way [61,144].
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Figure 4.3.: Left: Phase diagram in the plane spanned by the temperature and the rescaled
coupling λUV

ψ /λ∗ψ for Nf = 2 massless quark flavours in the fundamental
representation and Nc = 2 colours (red/solid line) as well as for Nc = 3
(blue/dashed line), see also Ref. [26]. Note that there is no splitting of the
phase boundary (i. e. Tχ ' Td) for small λUV

ψ in the large-Nc limit, see

Eq. (4.17) and discussion thereof. Right: Tχ/Td as a function of λUV
ψ /λ∗ψ for

Nf = 2 massless quarks in the fundamental representation (Nc = 2) (red/solid
line) as well as for quarks in the adjoint representation (blue/dashed line).

From the flow Eq. (4.5) we can derive an implicit equation for the chiral phase transition
temperature Tχ provided that we neglect a possible RG scale dependence of trRLR[〈A0〉]

T 2
χ =

1

PR(Tχ)

(
Λ

π

)2
[
1−

(
λ∗ψ

λUV
ψ

)]
θ(λUV

ψ −λ∗ψ), (4.17)

where

PR(T ) = −
6

d(R)π2

∞∑
n=1

1

n2
(−dR)n

[
trR(LR[〈A0〉]n) + trR(L

†
R[〈A0〉]n)

]
. (4.18)

In order to derive this equation, we have again assumed that T/Λ� 1. For 〈A0〉 → 0, we
find PR(T ) = 1, as expected from Eq. (4.14). Since trRLR[〈A0〉] depends on Td, Eq. (4.17)
relates the chiral phase transition temperature Tχ to the deconfinement phase transition
temperature Td.

For fermions in the fundamental representation and Nc → ∞, we have PF(T ) = 0
for T ≤ Td and PF(T ) > 0 for T > Td. Thus, no finite solution of Eq. (4.17) exists
for Tχ < Td. In accordance with our fixed-point analysis, we conclude that Tχ ≥ Td.

For fermions in the adjoint representation and dA � 1, we have PA(T ) ≈ −1/dA for
T ≤ Td. As in the case of fundamental matter fields, this implies again that Tχ ≥ Td. For
fermion representations with 0 < PR(T ) < 1 for T < Td, we observe that the chiral phase
transition temperature is still shifted to larger values compared to the case with 〈A0〉 = 0.
However, a definite statement about the ordering of the two phase transitions temperatures
cannot be made in this case.
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Non-Vanishing 〈A0〉 at Finite dR

Let us now turn to the case of finite values of dR. For fermions in the fundamental
representation, we then find PF(T ) = 1/N2

c > 0 for T ≤ Td. For T > Td, PF(T ) in-
creases monotonically from PF(Td) = 1/N2

c to PF(T →∞) → 1. In fact, right above the
deconfinement phase transition, the quantity PF(T ) increases rapidly since trFLF[〈A0〉] in-
creases rapidly. Since PF(T ) is finite for all temperatures, we find a regime where Tχ < Td
for λUV

ψ /λ∗ψ & 1. In the left panel of Fig. 4.3, we show our numerical results for Tχ/Td as

a function of λUV
ψ /λ∗ψ. For larger values of λUV

ψ /λ∗ψ, a window in parameter space opens
up in which the chiral and the deconfinement phase transition (almost) coincide. In the
limit Nc →∞, this locking window extends down to λUV

ψ /λ∗ψ = 1, as illustrated by a com-
parison of our results for Nc = 2 and Nc = 3 in Fig. 4.3. Note that the locking window
for λUV

ψ /λ∗ψ can be related to a locking window for low-energy observables, such as the
pion decay constant. We shall come back to this in Sec. 4.3.

In the case of adjoint fermions and finite dA, we have PA(T ) ≤ 0 for T ≤ Td. For exam-
ple, we have PA(T ) = −1 for Nc = 2. For T & Td, PA(T ) increases rapidly and changes
its sign. For T � Td, it then approaches PA(T ) = 1. Since we have PA(T ) ≤ 0 even for
finite Nc, we find that the chiral phase transition temperature is larger than the decon-
finement phase transition temperature. This is independent of our choice for λUV

ψ /λ∗ψ > 1
and Nc ≥ 2, see right panel of Fig. 4.3 for our numerical results for Nc = 2. Note that
this observation is compatible with lattice results of SU(2) gauge theory with two adjoint
quarks, see Refs. [23–25]. In our analysis, it can be traced back to the deformation of the
fermionic fixed-point structure in the presence of gauge dynamics.

Remark 4.5:
To obtain the numerical results in Fig. 4.3, we have employed data for 〈A0〉(T ) as obtained
from an RG study of the associated order parameter potential for SU(2) and SU(3) Yang-
Mills theory [19,20]. However, we did not take into account the backreaction of the matter
fields on the order-parameter potential associated with 〈A0〉, as discussed e.g. in Sec. 3.2.
In the case of fundamental matter, we expect that this backreaction will shrink the size
of the locking window, since it further increases the quantity PF(T ) at low temperatures.
For adjoint quarks, the backreaction will also increase PA(T ). Nevertheless, it may remain
negative over a wide range of temperatures. Therefore, we may still have Tχ > Td for all
values of λUV

ψ /λ∗ψ > 1, at least for Nc = 2.

Before we now enter the discussion of the RG flows of the partially bosonised formula-
tion of the matter sector, we would like to comment on the number of parameters in our
study. Up to this point, our discussion suggests that our study only relies on a single pa-
rameter in the matter sector, apart from the UV cutoff Λ, namely on the initial value λUV

ψ .
Strictly speaking, however, the non-trivial fixed-point of the four-fermion interaction is an
artifact of our point-like approximation. In the following we will resolve part of the mo-
mentum dependence of the four-fermion interaction with the aid of the partially bosonised
formulation. We will then find that the matter sector depends on three parameters: the
Yukawa coupling h̄, the bosonic mass parameter m̄ and the UV cutoff Λ, see Eq. (4.2).
This is a substantial difference to, e. g., fermion models in d < 4 space-time dimensions,
where we only have a single parameter in both formulations, see e. g. Ref. [145]. There,
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the non-trivial fixed-point of the four-fermion coupling can be mapped onto a correspond-
ing non-trivial fixed-point in the plane spanned by the renormalised Yukawa coupling h
and the dimensionless renormalised bosonic mass parameter m. In the present case, the
role of the non-trivial fixed-point in the purely fermionic formulation is taken over by a
separatrix in the (h2,m2)-plane in the partially bosonised formulation, see Figs. 4.4 and
4.5 below. The shift of the non-trivial fixed-point of the four-fermion coupling due to the
gauge dynamics then turns into a corresponding shift of this separatrix.

Being aware of this subtlety, the discussion of the fermionic fixed-point structure is still
useful and nicely illustrates the mechanism underlying the interplay of the chiral and the
deconfinement phase transition.

4.3. Partial Bosonisation and the Large-dR Expansion

In this subsection, we briefly discuss how our study of fermionic RG flows is related to the
gap equation for the fermion mass in the large-dR limit.

4.3.1. Gap Equation

Starting from the partially bosonised action given in Eq. (4.2), we can derive the gap
equation for the vacuum expectation value φ̄0 = (〈σ〉,~0) of the scalar fields. To this
end, we first consider the classical action S ' Γk→Λ which appears in the functional
integral. Since only bilinear combinations of the fermions occur in the action S, these
fields can be integrated out straightforwardly. From the resulting expression, we obtain
the fully bosonised effective action ΓB[σ, ~π], which is a highly non-local object. From the
stationary condition,

δΓB[σ, ~π]

δσ

∣∣∣∣
φ̄0

!
= 0 , (4.19)

we then find the gap equation for 〈σ〉:5

1 = 8

(
h̄2Λ
m̄2

Λ

)
Tr

∫
d3p

(2π)3
[
GF (~p

2, ḡ〈A0〉, 〈σ〉)−GF (Λ2, ḡ〈A0〉, 〈σ〉)
]
θ(Λ2 − ~p 2) ,

(4.20)

with the fermion propagator

GF (~p
2, ḡ〈A0〉, 〈σ〉) =

1

~p 2 + (ωn,F + ḡ〈A0〉)2 + h̄2〈σ〉2
(4.21)

depending additionally on the fermionic Matsubara frequencies ωn,F = (2n+1)πT . In the
above equation, the trace Tr runs over colour as well as Matsubara indices

Tr · · · = trR T
∞∑

n=−∞
· · · . (4.22)

5Here and in the following we assume that the ground state is homogeneous.
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In Eq. (4.20) we have dropped the trivial solution 〈σ〉 = 0. The integral on the right-
hand side of the gap equation represents a Feynman integral with two internal fermion
lines and two Yukawa vertices. In order to regularise this integral, we have employed a
regularization scheme6 which corresponds to the one used to derive the RG flow equation
for the four-fermion coupling λ̄ψ in the previous section, see Eq. (4.5). The structure of the
loop integral in the gap equation and on the right-hand side of the flow Eq. (4.5) is indeed
identical.7 However, the prefactor on the right-hand side of the gap equation is only correct
in leading order in the large-dR expansion, in contrast to the associated prefactor in the
flow Eq. (4.5) of the four-fermion coupling - loosely speaking, the trace trR yields a factor
of dR. Our general arguments concerning the relation of the chiral and the deconfinement
phase transition in the previous section are not affected by this prefactor. The latter
plays only a qualitative, but no quantitative role. Therefore our findings concerning the
interplay of the chiral and the deconfinement phase transition can be obtained from the
gap Eq. (4.20) as well, as it should be. In fact, the fixed-points of the (dimensionless) four-
fermion coupling can be viewed as critical values for the dimensionless quantity Λ2h̄2Λ/m̄

2
Λ.

This follows also from our discussion below Eq. (4.2).

4.3.2. RG Flow at Large dR

Next, we discuss the fixed-point structure and the locking mechanism in the partially
bosonised formulation of the matter sector, see Eq. (4.2). This formulation has the ad-
vantage that it allows us to systematically resolve the momentum dependence of the four-
fermion interaction by means of a derivative expansion. Eventually, this enables us to
relate the initial value λUV

ψ of the four-fermion coupling to physical low-energy observ-
ables, such as meson masses and the pion decay constant fπ. The phase diagrams in
the (λUV

ψ , T ) plane can then be translated into phase diagrams in, e. g., the (fπ, T ) plane.
In other words, the partially bosonised formulation gives us access to the phase with
broken chiral symmetry in the ground state.

From the effective action Eq. (4.2), we obtain the RG flow equations for the partially
bosonised formulation In leading order of an expansion in powers of dR, we find the
following equations for the chirally symmetric regime

∂tm
2 = (ηφ−2)m2 +

4

π2

dR∑
l=1

l
(F)
1 (τ, 0, νl|φ|)h2 , (4.23)

∂tλφ = 2ηφλφ −
8

π2

dR∑
l=1

l
(F)
2 (τ, 0, νl|φ|)h4 , (4.24)

∂th
2 = (2ηψ + ηφ)h

2 , (4.25)

ηφ =
2

3π2

dR∑
l=1

mF
4 (τ, 0, νl|φ|)h2 , (4.26)

6Often, a sharp cutoff is used to regularise the gap equation. In this case, the Λ-dependent term in the
square brackets in Eq. (4.20) is absent, cf. e.g. Ref. [92].

7Recall also that h̄2
Λ/m̄

2
Λ can be identified with λ̄UV

ψ ≡ λ̄ψ,Λ.
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ηψ = 0 , (4.27)

with the renormalised couplings

h2 = Z−1
φ Z−2

ψ h̄2, m2 = k−2Z−1
φ m̄2 and λφ = Z−2

φ λ̄φ . (4.28)

The threshold functions can be found in App. C. We add that despite the fact that
the heat-bath distinguishes a direction at finite temperature, we do not distinguish be-

tween wave-function renormalisations longitudinal (Z
‖
ψ,φ) and transversal (Z⊥

ψ,φ) to the
heat-bath. In the following we identify the corresponding wave-function renormalisations,

Z
‖
ψ,φ = Z⊥

ψ,φ ≡ Zψ,φ. In Ref. [139], it has indeed been found for the case 〈A0〉 = 0
that the difference is small at low temperatures and only yields mild corrections to,
e. g., the thermal masses close to and above the chiral phase transition. In our study
of the partially bosonised formulation, we also include the RG flow of the four-boson cou-
pling λ̄φ associated with an additional term ∼ (λ̄φ/8)φ̄

4 in the ansatz Eq. (4.2). Since
we have φ̄ ∼ (ψ̄Oψ), this type of interaction parametrises higher-order fermionic self-
interaction terms. These interactions are generated dynamically in the RG flow due to
Yukawa-type quark-meson interactions. The initial value of the associated coupling is set
to zero in our studies, i. e. λ̄φ

∣∣
k=Λ

= 0. This allows us to map the partially bosonised
theory onto our purely fermionic ansatz for the matter sector at the initial RG scale Λ.

In the large-dR limit, the flow of the four-boson coupling (and also of higher bosonic
self-interactions ∼ φ̄2n) does not contribute to the RG flows of Zφ, Zψ, h and m, at least
in the chirally symmetric regime. This corresponds to the fact that the RG flow of the
four-fermion coupling is decoupled from the RG flow of fermionic n-point functions of
higher order, such as eight-fermion interactions.

Remark 4.6:
Since we consider the large-dR limit in this subsection, we only have purely fermionic loops
appearing on the right-hand side of the flow equations. We would like to stress that the
large-dR expansion should not be confused with the widely used local potential approxi-
mation (LPA) where the running of the wave-function renormalisations is not taken into
account.

Let us now relate the RG flow of the partially bosonised formulation to the RG flow
of the purely fermionic formulation. Using Eq. (4.4) together with the flow Eqs. (4.23)
and (4.25), we recover the flow equation Eq. (4.5) of the four-fermion coupling λψ in the
large-dR limit, i. e.

∂t

(
h2

m2

) ∣∣∣∣∣
dR→∞

≡ ∂tλψ

∣∣∣∣∣
dR→∞

, (4.29)

see also Eq. (4.47). Thus, only our choice for the ratio h2/m2 at the initial RG scale
determines whether chiral symmetry is broken in the IR limit k → 0. Since the flow
equation for the ratio h2/m2 is identical to the one for λψ, we already anticipate that
our statements concerning the ordering of the chiral and the deconfinement transition
temperatures still hold in the partially bosonised formulation.

After having shown the equivalence of the RG flow of h2/m2 and λψ in the chirally
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Figure 4.4.: T = 0 RG flow for fundamental fermions and Nc = 3 in leading order in
the 1/dR-expansion in the (h2,m2)-plane. The red (solid) line represents the
separatrix (critical manifold). The arrows indicate the direction of the RG
flow towards the infrared, see text for an interpretation.

symmetric regime, we now discuss the number of parameters in the matter sector of our
model. Relation Eq. (4.29) seems to suggest that we only have one parameter, namely the
ratio h2/m2 at the initial RG scale. Indeed, the value of the symmetry breaking scale kSB
depends only on our choice for h2/m2 at the initial RG scale. This connotes that a non-
trivial IR repulsive fixed-point also exists in the plane spanned by the couplings h2 andm2.
From the above set of flow equations, however, we read off that the system has only a
Gaußian (non-interacting) fixed-point (h2∗,m

2
∗)Gauß = (0, 0), but no non-Gaußian fixed-

point. This seems to be in contradiction to Eq. (4.29) and to our results from the purely
fermionic formulation. However, apart from the Gaußian fixed-point, we also observe that
a separatrix exists in the plane spanned by h2 and m2. The latter separates the (h2,m2)-
plane into two disjoint regimes, see Fig. 4.4. In the large-dR limit, the functional form of
the separatrix can be computed analytically. At T = 0 we find

h2sep.(m
2) =

3π2m2

dR
≡ λ∗ψ,∞m2 , (4.30)

where λ∗ψ,∞ is the value of the fixed-point λ∗ψ in the large-dR limit.

Choosing initial conditions (h2Λ,m
2
Λ) in the domain to the left of the separatrix, we find

that the system flows into the regime with m2 < 0, in which chiral symmetry is broken
in the ground state. On the other hand, the system remains in the chirally symmetric
regime, if we initialise the flow in the domain to the right of the separatrix, see Fig. 4.4.
Loosely speaking, we have found that the separatrix takes over the role of the non-Gaußian
fixed-point λ∗ψ which is present in the point-like approximation of the purely fermionic
formulation.

To further clarify the fate of the seemingly missing non-trivial fixed-point in the (h2,m2)-
plane, we briefly consider the case 2 < d < 4. In this case, a non-trivial fixed-point
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indeed exists in NJL-type and Gross-Neveu-type models, see e. g. Ref. [145]. This follows
immediately from a consideration of the RG flow of the dimensionless renormalised Yukawa
coupling h2 = kd−4Z−1

φ Z−2
ψ h̄2

∂th
2 = (d− 4 + ηφ + 2ηψ)h

2 . (4.31)

This differential equation has a Gaußian fixed-point and a non-Gaußian fixed-point h2∗
for 2 < d < 4 since ηφ ∼ h2 and ηφ > 0, as shown in [145]. In the (h2,m2)-plane, we
therefore have a non-trivial fixed-point with an IR attractive and IR repulsive direction
for 2 < d < 4. This non-trivial fixed-point represents the intersection point of two separa-
trices in the (h2,m2)-plane and corresponds to the non-trivial fixed-point of the associated
four-fermion coupling. For d→ 4, this fixed-point merges with the Gaußian fixed-point.

The non-existence of the non-Gaußian fixed-point in d = 4 implies that the Yukawa
coupling h and the UV cutoff Λ should be considered as parameters of the theory, in
addition to the ratio h2Λ/m

2
Λ. In fact, for any finite UV cutoff we can define a critical

value for the ratio h2/m2 ∼ λψ, above which spontaneous chiral symmetry breaking
occurs in the long-range limit k → 0. However, since no non-trivial fixed-point with
an IR attractive direction exists in the (h2,m2)-plane, the value of the Yukawa coupling
at the symmetry breaking scale kSB depends strongly on the initial conditions for the
bosonic mass parameter and the Yukawa coupling itself. Once the system enters the
regime with m2 < 0, the RG flow of the Yukawa coupling effectively “freezes”. In this low-
energy regime, the fermions acquire a mass and fermionic loops are therefore generically
suppressed, see also our discussion below. Hence we have three parameters in our simplified
model ansatz for the matter sector, namely h2Λ/m

2
Λ, h

2
Λ and Λ.

Let us now analyse the dynamics at finite T and 〈A0〉. Our discussion of Eq. (4.29) and
of the RG flow in the (h2,m2)-plane at zero temperature already suggest that our general
arguments concerning the relation of the deconfinement and the chiral phase transition
from Sec. 4.2 are still valid. This is not too surprising: the point-like approximation in
the purely fermionic formulation is a reasonable approximation in the chirally symmetric
regime where the bosonic mass parameter m2 is large over a wide range of scales and
therefore suppresses the non-trivial momentum-dependence of the vertices.8 In any case,
we now have to study the behaviour of the separatrix in the (h2,m2)-plane for finite
temperature T and finite 〈A0〉. To this end, we may even consider the dimensionless
temperature τ = T/k as an additional coupling of the theory. Thus, the separatrix is no
longer a one-dimensional manifold as it is the case at zero temperature. It rather represents
a two-dimensional manifold. Again, the functional form of this critical manifold can be
computed analytically. For τ = T/Λ� 1, we find

h2sep.(m
2, τ) =

λ∗ψ,∞m
2

1− π2PR(T )τ2
, (4.32)

where PR(T ) is defined in Eq. (4.18). We observe that the shape of the critical manifold
depends on the temperature and the order parameter for center-symmetry breaking, see

8Recall that the bosons mediate the interaction between the fermions in the partially bosonised formula-
tion. In this spirit, the boson propagators parametrise the momentum dependence of the four-fermion
coupling, see e. g. Ref. [92] for a detailed discussion.
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h
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m
2

T = 0T > 0 & 〈A0〉 = 0 〈A0〉 > 0

Figure 4.5.: Sketch of the separatrices of the RG flow in leading order in the 1/dR-
expansion in the (h2,m2)-plane. The black dot denotes the Gaußian fixed-
point. The separatrices are sketched for three different cases: vanishing tem-
perature (black/solid line), finite temperature and 〈A0〉 = 0 (red/dashed line),
and finite temperature and 〈A0〉 > 0 (blue/dashed-dotted line). The depen-
dence of the separatrices on the temperature and 〈A0〉 reflects the behaviour
of the non-Gaußian fixed-point of the four-fermion coupling, see Fig. 4.2. The
arrows indicate the direction of the RG flow towards the infrared.

Fig. 4.5.

The critical manifold allows us to define a necessary condition for chiral symmetry
breaking at finite temperature. Solving Eq. (4.32) for τ , we obtain τsep.(m

2, h2). Choosing
now τ < τsep. for a given set of initial values (h2Λ,m

2
Λ), the theory necessarily approaches

the regime with broken chiral symmetry in the IR limit. For τ > τsep., on the other hand,
the theory remains in the chirally symmetric regime. For a given value of the UV cutoff Λ
and (h2Λ,m

2
Λ), the quantity τsep. is therefore nothing but the dimensionless chiral phase

transition temperature, τsep. = Tχ/Λ. In fact, Tχ = Λτsep. agrees with the result from
Eq. (4.17). Thus, our general statements in Sec. 4.2 concerning the interplay of the chiral
and the deconfinement phase transition still hold.

Let us now discuss how the phase diagrams in the (T, λUV
ψ )-plane can be translated into

phase diagrams in, e. g., the (T, fπ)-plane. To this end, we need to follow the RG flow
down to the long-range limit. As discussed in Sec. 4.1, the mass parameter m2 assumes
negative values in the regime with broken chiral symmetry in the ground state and the
vacuum expectation value 〈φ〉 ≡ φ̄0 becomes finite. It is therefore convenient to study the
RG flow of φ̄0 and λ̄φ rather than that of m̄2 and λ̄φ. The flow equation of φ̄0 can be
obtained from the stationary condition

d

dt

[
∂

∂φ̄2

(
1

2
m̄2φ̄2 +

1

8
λ̄φφ̄

4

)]
φ̄0

!
= 0 . (4.33)

To be specific, we find the following RG flow equations for the regime with broken chiral
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Figure 4.6.: Left: Phase diagram for two massless fundamental quarks and Nc = 3 in
the plane spanned by the rescaled temperature Tχ/Td and the value of the
pion decay constant fπ at T = 0. Right: Corresponding phase diagram for
two massless quark flavours in the adjoint representation and Nc = 2. In
both panels, the results from the large-dR approximation are given by the red
(solid) line, whereas in the blue (dashed) line corrections beyond the large-dR
limit are included.

symmetry in the ground state:

∂tφ
2
0 = −(ηφ+2)φ20 −

8

π2

dR∑
l=1

l
(F)
1 (τ,m2

q, νl|φ|)
h2

λφ
, (4.34)

∂tλφ = 2ηφλφ −
8

π2

dR∑
l=1

l
(F)
2 (τ,m2

q, νl|φ|)h4 , (4.35)

∂th
2 = (2ηψ + ηφ)h

2 , (4.36)

ηφ =
2

3π2

dR∑
l=1

mF
4 (τ,m

2
q, νl|φ|)h2 , (4.37)

ηψ = 0 , (4.38)

where φ20 = k−2Zφφ̄
2
0 and the dimensionless renormalised constituent quark mass reads

m2
q = h2φ20 .

In the following, we identify the pion decay constant fπ with Z
1/2
φ φ̄0 and the dimensionless

renormalised meson masses are given by

m2
π = 0 and m2

σ = λφφ
2
0 .

Since we are working in the large-dR limit in this section, the latter do not appear explicitly
on the right side of the flow equations.

Recall that the scale for mq and mσ is set by the symmetry breaking scale kSB which
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is determined by our choice for h2Λ/m
2
Λ. The role of the Yukawa coupling as an additional

parameter becomes now apparent from the relation

m2
σ = λφφ

2
0 ∼ h4φ20 ∼ h2m2

q ,

which follows from the flow equations of the couplings. Since the flow of the Yukawa
coupling is not governed by the presence of a non-trivial IR attractive fixed-point, its value
depends on kSB and the initial value hΛ, as discussed above. Therefore, the ratio m2

σ/m
2
q

depends on our choice for hΛ. On the other hand, the initial value of the coupling λφ
does not represent a free parameter of the theory. It is set to zero at k = Λ and therefore
generated dynamically in the RG flow, see also Eq. (4.2).

Using the flow equations (4.23)-(4.27) and (4.34)-(4.38), we can now proceed and com-
pute the phase diagram in the plane spanned by the temperature and the value of the
pion decay constant at T = 0. In Fig. 4.6 (left) we show our results for quarks in the
fundamental representation and Nc = 3. For adjoint matter and Nc = 2, our results can
be found in the right panel of Fig. 4.6. To obtain these results, we have used Λ = 1GeV.
Moreover, we have again employed the data for the ground-state values of 〈A0〉 as obtained
from a RG study of SU(Nc) Yang-Mills theories [19,20].

In the case of fundamental matter and Nc = 3, we observe that the upper end of
the locking window (Td ≈ Tχ) roughly coincides with the physical value of the pion
decay constant, provided that we fix the initial condition of the Yukawa coupling such
that mq ≈ 300MeV for fπ ≈ 90MeV, see left panel of Fig. 4.6. This observation is
in accordance with results from lattice simulations and general expectations. For fπ .
30MeV, we find Tχ < Td. More precisely, we observe that Tχ ∼ fπ for small values of fπ.
For fπ & 100MeV (mq & 350MeV), we then have Tχ > Td. In this regime, the quarks
are very heavy and the two phase transitions are disentangled. Concerning the role of the
Yukawa coupling, we find that the lower end of the locking window is shifted to smaller
values of fπ when we increase the initial value of the Yukawa coupling. Moreover, we find
that the size of the window does not strongly depend on our choice for hΛ. This is not
unexpected since we have found in our analysis of the fermionic fixed-point structure that
the size of the locking window is solely related to the value of the ratio h2Λ/m

2
Λ = λUV

ψ .

However, the translation of the upper and lower end of the locking window in λUV
ψ -space

into values of physical observables does indeed depend on our choice for both hΛ as well
as h2Λ/m

2
Λ, as discussed above.

For adjoint matter and Nc = 2 as well as Nc = 3, we find that Tχ > Td, even for
very small values of fπ. We refer to Fig. 4.6 for our results for Nc = 2. To obtain these
results, we have used hΛ = 3. However, Tχ > Td holds for arbitrary values of hΛ in the
large-dR limit, as suggested by our fermionic fixed-point analysis. In fact, our results in
the large-dR limit are in accordance with our results in Fig. 4.3, as it should be. For
increasing fπ, we observe that the chiral phase transition temperature increases further.
Thus, we have Tχ > Td for all values of fπ.

Finally we want to add that it is also possible to tune the parameters h2Λ/m
2
Λ and m2

Λ

such that we obtain Tχ/Td ≈ 7.8 for Nc = 3, as found in lattice simulations [24] of adjoint
QCD without λψ-deformation. This requires that the UV cutoff Λ is adjusted to larger
values in order to ensure that T/Λ is sufficiently small for the temperature range under
consideration, see Ref. [146] for a related PNJL model study in a mean-field approximation.
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4.3.3. RG Flow Beyond the Large-dR Approximation

In the following we study the robustness of our results of the previous sections with respect
to 1/dR-corrections. This includes an analysis of the role of Goldstone-mode fluctuations,
which are absent in the large-dR limit.

Our RG approach allows us to systematically include 1/dR-corrections. Due to the one-
loop structure of the Wetterich equation, these corrections correspond to 1PI diagrams
with at least one internal boson line. In the chirally symmetric regime (φ0 ≡ 0), we then
find the following set of equations:

∂tm
2 = (ηφ−2)m2 − 3

2π2
l
(B)
1 (τ,m2)λφ +

4

π2

dR∑
l=1

l
(F)
1 (τ, 0, νl|φ|)h2 , (4.39)

∂tλφ = 2ηφλφ +
3

π2
l
(B)
2 (τ,m2)λ2φ −

8

π2

dR∑
l=1

l
(F)
2 (τ, 0, νl|φ|)h4 , (4.40)

∂th
2 = ηφh

2 − 2

π2
1

dR

dR∑
l=1

l
(FB)
1,1 (τ, 0, νl|φ|,m2)h4 , (4.41)

ηφ =
2

3π2

dR∑
l=1

mF
4 (τ, 0, νl|φ|)h2 . (4.42)

In the regime with broken chiral symmetry (φ0 6= 0), the flow of the couplings is deter-
mined by the following equations:

∂tφ
2
0 = −(ηφ + 2)φ20 +

3

2π2
l
(B)
1 (τ,m2

σ) +
3

2π2
l
(B)
1 (τ,m2

π)−
8

π2

dR∑
l=1

l
(F)
1 (τ,m2

q, νl|φ|)
h2

λφ
,

(4.43)

∂tλφ = 2ηφλφ +
9

4π2
l
(B)
2 (τ,m2

σ)λ
2
φ +

3

4π2
l
(B)
2 (τ,m2

π)λ
2
φ −

8

π2

dR∑
l=1

l
(F)
2 (τ,m2

q, νl|φ|)h4 ,

(4.44)

∂th
2 = ηφh

2 − 1

π2
1

dR

dR∑
l=1

[
3 l

(FB)
1,1 (τ,m2

q, νl|φ|,m2
π)− l

(FB)
1,1 (τ,m2

q, νl|φ|,m2
σ)
]
h4 ,

(4.45)

ηφ =
2

3π2

dR∑
l=1

mF
4 (τ,m

2
q, νl|φ|)h2 , (4.46)

The appearing threshold functions9 can be found in App. C. For simplicity, we do not
include the running of the fermionic wave-function renormalisation in the present study,
although it can be taken into account straightforwardly, as illustrated in, e. g., Refs. [85,
88, 138] for the case 〈A0〉 = 0. As discussed in the previous subsection, this is not an
approximation in the large-dR limit. Beyond the large-dR limit, it has been found in

9Note that the functions l
(B)
1 , l

(B)
2 and l

(FB)
1,1 depend implicitly on ηφ.
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e.g. [85, 88, 138] that the anomalous dimension ηψ is still small. This can be traced back
to the fact that the running of Zφ is solely governed by 1PI diagrams with at least one
internal boson and fermion line. Such diagrams are suppressed in the regime with broken
chiral symmetry due to the large mass of the fermions, but they are also suppressed in
the chirally symmetric regime due to the large mass of the bosons. As a consequence, the
running of Zψ only yields mild corrections to the symmetry breaking scale kSB. In the
following we will only take into account 1/dR-corrections in those RG equations which are
also non-zero in the large-dR limit. The inclusion of the running of Zψ is left to future
work.

Remark 4.7:
In the flow equations for the Yukawa coupling and the bosonic wave-function renormal-
isation, we have dropped terms proportional to φ0. Concerning the Yukawa coupling, it
has been found that these terms only yield mild quantitative corrections [85, 147]. With
regard to the bosonic wave-function renormalisation, these terms are of crucial importance
for an accurate computation of the critical exponents [93, 138] which is beyond the scope
of the present work.

Using the flow equations of the Yukawa coupling and the bosonic mass parameter in the
chirally symmetric regime, we can study again the RG flow of the ratio h2/m2. We now
find

∂t

(
h2

m2

)
= (2+2ηψ)

(
h2

m2

)
+

3

2π2
l
(B)
1 (τ,m2)λφ

(
h2

m4

)
(4.47)

− 4

π2

dR∑
l=1

l
(F)
1 (τ,m2

q, νl|φ|)
(
h2

m2

)2

− 2

π2
1

dR

dR∑
l=1

l
(FB)
1,1 (τ,m2

q, νl|φ|,m2)

(
h4

m2

)
.

Making the identification λψ ≡ (h2/m2), the first term on the right-hand side as well as the
terms in the second line can be straightforwardly identified with terms appearing in the
RG equation of the four-fermion coupling λψ, see Eq. (4.5). These are the leading order
terms of the large-dR expansion. The second term on the right-hand side corresponds to
a 1/dR-correction and effectively couples the flow of h2/m2 (∼ four-fermion coupling) to
the flow of the four-boson coupling (∼ eight-fermion coupling). Since it can be shown that
the RG flow of fermionic self-interactions is fully decoupled in the point-like limit [92],
this term resolves part of the momentum dependence of the four-fermion interaction. The
expression in the third line also represents a 1/dR-correction and can be traced back to
the running of the Yukawa coupling. Without the terms in the third line, it is not possible
to reproduce the prefactor of the term ∼ λ2ψ in the flow equation Eq. (4.5) in the limit

m2 � 1 (point-like limit). As also pointed out in Ref. [26], this can be seen immediately
from the relation

l
(FB)
1,1 (τ,m2

q, νl|φ|,m2)
(m�1)−→ 1

m2
l
(F)
1 (τ,m2

q, νl|φ|) . (4.48)

For finite m2, the expression in the third line on the right-hand side of Eq. (4.47) also
resolves part of the momentum structure of the four-fermion vertex beyond the point-like
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limit.

Let us now discuss our results for the phase diagrams in the (T, fπ)-plane beyond the
large-dR limit. In Fig. 4.6, we show our results for quarks in the fundamental representation
and Nc = 3 as well as for quarks in the adjoint representation and Nc = 2. We have
chosen these representations and values for Nc since they play a prominent role from a
phenomenological point of view. For quarks in the fundamental representation, we observe
that our results agree with those from our large-Nc study, at least on a qualitative level.10

This means we still have three distinct regimes: one regime with Tχ < Td for small values
of fπ, one regime with Tχ ≈ Td (locking window), and a regime with Tχ > Td for large
values of fπ. Also, the size of the locking window is roughly the same as in the large-Nc

approximation. However, the lower and the upper end of the window have been shifted
to larger values of fπ. The locking window begins at fπ ≈ 100 MeV and ends at fπ ≈ 150
MeV. Thus, the physical value of the pion decay constant is slightly below the lower end of
the locking window. For quarks in the adjoint representation and Nc = 2, we find that our
results are less strongly affected by corrections arising beyond the large-dA approximation,
see Fig. 4.6 (right). To be specific, we observe that Tχ > Td for fπ > 0, even if we take
1/dR-corrections into account. The results only differ with respect to the slope of the
chiral phase transition temperature as a function of fπ. As in the case of fermions in the
fundamental representation, the slope is steeper in the large-dA limit. We conclude that
fluctuations of the Nambu-Goldstone modes tend to lower the sensitivity of Tχ on fπ.

The results for adjoint quarks in Fig. 4.6 have been obtained by choosing hΛ = 3 for the
initial value of the Yukawa coupling. The value of the pion decay constant can then be
varied by varying only the initial value of the bosonic mass parameter mΛ. As in the case
of fundamental quarks, it is in principle possible to fix the initial condition for the Yukawa
coupling by requiring that the constituent quark mass assumes a given value for a given
value of the pion decay constant. For adjoint quarks, we refrain from fixing the initial
condition hΛ in this way but rather illustrate how our results depend on the choice for hΛ,
see Fig. 4.7. We observe that the dependence of Tχ on fπ becomes stronger for larger
values of hΛ. Most importantly, however, we find that Tχ > Td for Nc = 2, independent
of our choice for hΛ > 0. We stress that the mechanism underlying this observation is the
deformation of the (fermionic) fixed-point structure due to the presence of the confining
gauge dynamics.

Let us finally comment on the order of the chiral phase transition in the (T, fπ) phase
diagram. In Ref. [26], it was found for fundamental fermions and Nc = 3 that the chiral
phase transition is of first order within the locking window. To be more precise, we
observe that the chiral phase transition is of first order for 100MeV . fπ . 150MeV for
Nc = 3. Above and below the locking window, the chiral phase transition is of second
order. In particular, the observation of a first-order region might be a shortcoming of our
approximations: we have simply used the data for 〈A0〉(T ) from a study of pure SU(3)
Yang-Mills theory, but neglected the backreaction of the matter sector on the confinement
order parameter. Within the locking window, the first-order phase transition in the gauge
sector induces a first-order chiral phase transition. As argued in Ref. [26], a first-order

10Note that we have fixed the initial value of the Yukawa coupling by requiring that mq ≈ 300MeV for
fπ ≈ 90MeV. The same initial value for the Yukawa coupling has then been used to compute the phase
transition temperature for all other values of fπ as well. Thus, we have only varied the initial value of
the bosonic mass parameter m2 to change the value of fπ. Recall that λψ ∼ h2/m2.
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Figure 4.7.: Ratio Tχ/Td of the chiral and the deconfinement phase transition temperature
as a function of the zero-temperature value of the pion decay constant fπ for
two massless adjoint quarks and Nc = 2. The lines illustrate the dependence
of our results on the initial condition (UV value) for the Yukawa coupling.
The results have been obtained for hΛ = 2, 3, 4 (from bottom to top).

chiral transition may still occur in the (T, fπ)-plane, even if we go beyond the present
approximation. However, this would then require that the confinement order parameter
rises rapidly for T & Td. A test of this conjecture is beyond the scope of the present work
and left to future studies.

For adjoint matter and Nc = 2, we observe that Tχ > Td for all values of fπ > 0.
Therefore the dynamics at the chiral phase transition is less affected by the confining
dynamics. Loosely speaking, the latter only pushes Tχ above Td. Within the present
approximation, we therefore find that the chiral phase transition is of second order for
all values of fπ > 0. This result is consistent with lattice simulations for Nc = 2, see
Refs. [23, 24].
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5. Scale Dependence of the Yukawa
Coupling

In Chap. 3, the RG flow for the effective potential of the PQM model has been studied
under extreme conditions, namely at finite temperature and quark chemical potential.
While thermal and quantum fluctuations of the meson fields were taken into account, we
did make use of the common approximation of a scale-independent Yukawa interaction
between quarks and mesons. We have argued that this simplification is justified, since
previous studies within a similar truncation have resulted in good values for, e.g. the
order parameters or critical exponents. Due to its contribution to the quark mass, however,
a better description of Fermi-surface effects is expected in a computation including the
running Yukawa coupling.

In the present chapter, which reports on an ongoing project, we will now collect the
necessary information to include the scale dependence of the Yukawa coupling in our
study of the phase diagram. We discuss the contributing diagrams to the RG flow and
compute the corresponding threshold functions. The numerical solution of the system
detailed below is still under way, hence numerical results will be presented elsewhere in
the future.

5.1. Motivation

Let us first start by a brief discussion of the expected scale evolution of QCD from the UV
to the IR at T = µ = 0. This discussion is based on the one given in Ref. [138]. At high
momenta, QCD is known to be described via gluon and quark degrees of freedom. As the
energy scale is lowered, several effects arise that modify the effective description. We can
define the so-called compositeness scale kφ as the scale at which mesons are formed. In this
regime, a description of QCD in terms of quarks, gluons and mesons should become valid.
In particular, kφ is expected to be well separated from the confinement scale ΛQCD. In the
range from kφ down to the chiral symmetry breaking scale kcr, quarks are light and their
interaction with the meson degrees of freedom is described via a strong Yukawa coupling.
Around kcr, also the lightest scalar mesons contribute significantly to the dynamics, since
their mass goes down. Below kcr, the Yukawa coupling decreases again. Its IR value,
however, is fixed by the constituent quark mass mq = hσ0 and we find that h(k → 0)
is still rather large. Hence, a description of QCD in terms of quarks and mesons, as
also discussed in Chap. 2, seems a reasonable choice. Furthermore, the inclusion of a
scale-dependent Yukawa coupling, at least in the chirally symmetric regime is called for.

In the following we will introduce the corresponding flow equations within the PQM
model introduced in Chap. 2.
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5. Scale Dependence of the Yukawa Coupling

5.2. Contributing Diagrams

In Chap. 4, we have already seen that it is possible to calculate the RG scale dependence
of the Yukawa coupling. Furthermore, the associated diagrams can be classified system-
atically within, e.g., a large-Nc expansion. Here, we will extend the truncation used in
Chap. 4 and discuss the arising contributions in more detail.

As initial action for the Polyakov–quark-meson model we use again the following trun-
cation

Γk =

∫
d4x

{
Zψψ̄

[
i /D + ih̄(σ + i~π~τγ5) + iγ0µ

]
ψ +

1

2
Zφ(∂µφ̄)

2 +Ωk(φ̄)

}
, (5.1)

where we restrict ourselves to the case of Nf = 2 flavours and Nc = 3 colours. The quark
and meson degrees of freedom are coupled via a (unrenormalised) Yukawa interaction h̄,
which acquires a scale dependence in the following. In contradistinction to the truncation
used previously, we allow for scale-dependent wave-function renormalisations Zψ, Zφ for
the quark and meson fields, respectively. This is a step beyond the local potential-like ap-
proximation that is often used in (P)QM studies with the FRG, cf. Chap. 3. In particular,
the inclusion of running wave-function renormalisations renders the vertices momentum
dependent.

At finite temperature, the wave-function renormalisations in general split into compo-

nents parallel and orthogonal to the heat bath: Z
‖
ψ,φ, Z

⊥
ψ,φ. For simplicity we will not

make such a distinction here, but use Z⊥
ψ,φ = Z

‖
ψ,φ ≡ Zψ,φ . Directly at the chiral phase

transition temperature we expect the difference between Z
‖
ψ,φ and Z⊥

ψ,φ to vanish, since
there exists only one related critical exponent: ηψ,φ. This exponent is also referred to as
the anomalous dimension and is defined via

ηψ,φ = −∂t lnZψ,φ . (5.2)

Furthermore, a study within the one-flavour quark-meson model, see Ref. [139], indicates
that this approximation is indeed justified.

Now, we determine the contributions to the RG running of the Yukawa coupling in
terms of Feynman graphs. The reader is then referred to App. B for an example of how to
compute the corresponding analytic expressions. Furthermore, a collection of the arising
threshold functions is found in App. C.

To determine the associated graphs, consider the Wetterich Eq. (A.15). This equation
has to be projected onto the terms ∼ ψ̄φ̄ψ, hence we take derivatives with respect to ψ, ψ̄
and φ̄. In this manner, graphs with three external lines, but still one-loop structure are
generated. Furthermore, a sum over all vertices allowed by our ansatz Eq. (5.1) has to be
performed.

Remark 5.1:
Note once more, that this procedure is not a one-loop approximation in the perturbative
sense. As the Wetterich Eq. (A.15) is fully non-perturbative, so are the present equations
derived from it. Higher-loop contributions are resummed in the couplings appearing in
the flow equations.
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5.2. Contributing Diagrams

∂th = 1

2
(ηφ + 2ηψ)h+ + +

Figure 5.1.: Pictorial representation of the triangle diagram contributions to the RG flow
of the renormalised Yukawa coupling h2.

This procedure finally yields the diagrams shown in Fig. 5.1. To arrive at this relation,
we have introduced the renormalised Yukawa coupling

h =
h̄

Z
1/2
φ Zψ

. (5.3)

Since the wave-function renormalisations depend on the RG scale k, the flow equation of
the renormalised Yukawa coupling depends explicitly on the boson and fermion anomalous
dimensions ηφ, ηψ, respectively.

The graphs in Fig. 5.1 denote fermion-boson triangle diagrams, with solid lines denoting
the quark and dashed lines the meson propagators. As usual, the cross in a circle indicates
the RG regulator insertion. Black dots label renormalised Yukawa vertices ∼ h, while the
gray dots indicate purely mesonic vertices ∼ Ω′′

k. Primes, as before, label the deriva-
tive with respect to the chiral invariant ρ = φ2, which is related to its unrenormalised
counterpart φ̄ via

ρ = Zφρ̄ = Zφφ̄
2 . (5.4)

Note that in the second and third graphs in Fig. 5.1, external sources ∼ 〈φ〉 = √ρ,
denoted by boson lines with a cross, appear. In the chirally symmetric regime, where
〈φ〉 = 0, these thus do not contribute to the flow.

Furthermore, we want to point out that we do not restrict the mesonic potential to e.g.,
quartic order in the mesonic field. Hence, higher vertices with an odd number of source
terms are also included in the above diagrams. Despite the fact that we do not show these
graphs explicitly, all contributions of this kind are included in our generalised mesonic
coupling ∼ Ω′′

k. To make this point more explicit, consider for example a potential that is
at most cubic in ρ

ΩΛ(ρ) =
m2

2
ρ+

λ2
2
ρ2 +

λ3
3!
ρ3 . (5.5)

The second derivative with respect to the chiral invariant ρ reads

Ω′′
Λ(ρ) = λ2 + λ3ρ (5.6)

and the mesonic vertex appearing in Fig. 5.1 contains not only graphs with one external
source ∼ λ2〈φ〉, but due to the additional term also with three ∼ λ3ρ〈φ〉.

Since they contribute to the flow of the renormalised Yukawa coupling, our next task is
to determine the diagrams corresponding to the boson and fermion anomalous dimensions.
As before, the corresponding expressions can be derived by taking appropriate derivatives
of the Wetterich equation. For ηφ, we need two external boson legs, and for ηψ two
fermionic ones.
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5. Scale Dependence of the Yukawa Coupling

Fig. 5.2 shows the graphical representation for the flow of the boson wave-function
renormalisation. The first diagram is a purely fermionic loop. As is also discussed in
Chap. 4, this term is the leading contribution to ∂th in a large-Nc expansion.

ηφ ∼ +

Figure 5.2.: Feynman diagrams contributing to the RG flow of the bosonic wave function
renormalisation ηφ = − ln ∂tZφ.

The second contribution to ηφ is purely mesonic. It is given by a meson loop with
2n, n ∈ N sources ∼ 〈φ〉 attached. As for the triangle diagrams, all these contributions
are naturally included in the coupling ∼ Ω′′

k.

Finally, the Feynman diagrams arising in the flow ∂tZψ are shown in Fig. 5.3. Due to

ηψ ∼ +

Figure 5.3.: Contributions to the fermionic anomalous dimension ηψ.

their structure with one internal boson and one internal fermion line, these contributions
are suppressed. In the chirally symmetric regime, the meson mass is large, which dimin-
ishes the influence of this contribution. In the chirally broken region, on the other hand,
the quark mass is large and hence the diagrams are suppressed in this regime as well.
Actually, in a purely fermionic formulation in the point-like approximation, as discussed
in Sec. 4.2, we have ηψ ≡ 0. Furthermore, previous studies indicate that even beyond the
point-like limit, the influence of the fermion anomalous dimension is small [85,88,138,139].
Hence, this contribution to the flow of the Yukawa coupling is neglected for the time being.
Only ηφ and the triangle diagrams are taken into account.

5.3. Flow Equations

Next, the analytic expressions corresponding to the diagrams determined above have to
be derived. Some of them we already encountered in Chap. 4. In general, the threshold
functions can be derived along the lines of App. B and, e.g., Ref. [138].

Within the truncation introduced above of setting ηψ ≡ 0, we find for the flow of the
Yukawa coupling

∂th =
1

2
ηφh−

1

π2
1

Nc

Nc∑
l=1

{
3`F,B1,1 (T, µ̃l;m

2
π,m

2
q)− `

F,B
1,1 (T, µ̃l;m

2
σ,m

2
q)
}
h3 , (5.7)

where the chemical potential and gauge field dependence is contained in µ̃l. For our initial
study, we neglect the triangle diagrams with mesonic sources ∼ 〈φ〉. The triangle diagram
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5.3. Flow Equations

with one internal meson line corresponds to the threshold function `F,B1,1 , which contributes
with a prefactor 3 for the three pions. The sigma-contribution comes with the opposite
sign.

Note that the running of the Yukawa coupling is rather fast since we have ∂th ∼ h3. As
discussed in Sec. 5.1, a comparison to the constituent quark mass in the infrared leads us to
the conclusion that the final value h in the IR is still large. A correspondingly large initial
value for the Yukawa coupling hence leads to a fast running of the couplings. In particular
it has been discussed in e.g. [138] that this leads to a rapid approach of the couplings to
partial IR fixed-points in the symmetric regime. In this manner, the dependence of the
system on the detailed choice for the effective potential in the UV is reduced.

The full expression of the boson anomalous dimension reads

ηφ =
Nf

3π2

Nc∑
l=1

mF
4 (T, µ̃l;mq)h

2 −
2ρ (2Ω′′

k)
2

3π2k2
m

(B)
2,2 (mπ,mσ) . (5.8)

We already encountered the first term in Chap. 4, while the second one was neglected
there, since it vanishes in the chirally symmetric phase.

Allowing for a non-vanishing boson anomalous dimension furthermore entails modifica-
tions in the flow equation for the effective potential. Explicitly, the mesonic contribution
acquires a ηφ-dependent prefactor

∂kΩk =
k4

12π2

{(
1−

ηφ
5

)[ 3

Eπ
coth

(
Eπ
2T

)
+

1

Eσ
coth

(
Eσ
2T

)]
(5.9)

− 2νq
Eq

[
1−Nq(T, µ; Φ, Φ̄)−Nq̄(T, µ; Φ, Φ̄)

]}
.

A similar modification would arise in the fermionic sector, if we allowed for a fermion
anomalous dimension ηψ 6= 0.

Furthermore, an implicit dependence on the running Yukawa coupling and wave-function

renormalisation appears via the quasi-particle energies Ei =
√
k2 +m2

i , i = q, σ, π with

the masses and all other definitions are as given in Sec. 3.1, but substituting h→ h(k).

The coupled flow equations (5.7), (5.8) and (5.9) can now be solved numerically. An
implementation thereof is currently under way. Within our approach to discretise the
mesonic field on a grid this is, however, more involved than an expansion in a Taylor
series: The use of the mesonic grid induces a field-dependence in the Yukawa coupling
h → h(ρi), which needs to be taken into account consistently. Despite the additional
effort needed, it should be worthwhile to do this also in the present case. Within such
an approach the full phase diagram, including the first-order transition region becomes
feasible and we can study the impact of the newly introduced fluctuations on the full phase
structure.

In Ref. [138] the temperature dependence of the running Yukawa coupling has been stud-
ied within the QM model. The authors found a sharp dip in h(T ) at the chiral transition
temperature in the chiral limit. This dip is induced by the long wavelength fluctuations of
the pion modes that lead to a non-analyticity in the corresponding wave-function renor-
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5. Scale Dependence of the Yukawa Coupling

malisation. Within the above presented setup we can now study the behaviour of this
effect at finite quark masses and finite chemical potential. In particular, the influence on
the phase structure and thermodynamic observables can be studied.

Especially at high chemical potential the influence of the Fermi surface should be better
described within the present truncation. In [148] the QCD transition at T = 0 and non-
vanishing chemical potential was studied with the RG within a two flavour QM model.
There, the authors showed that the quark number density vanishes at low chemical po-
tential µ < mq. At µ = mq the situation changes and a non-vanishing density develops,
while chiral symmetry remains broken. Only at µ > mq appears a jump in the density,
signalling a phase transition of first order. In this work, however, the running of the
Yukawa coupling was neglected in the chirally broken phase. The setup presented here
will allow us to extend this investigation and take into account the RG running h for all
scales.

Moreover, we plan not only to study the QM, but also the PQM model with running
Yukawa coupling. In this manner, we can investigate the combined influences of decon-
finement and the scale dependent Yukawa interaction, which has not been done so far.
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6. Summary and Outlook

This thesis was conducted with the aim to achieve a more profound understanding of the
QCD phase structure. In particular, we are interested in the interplay of chiral symmetry
restoration and deconfinement at finite temperature and quark chemical potential. Since
the study of the QCD phase structure from first principles still poses a formidable task,
we have chosen to employ effective models describing the two effects.

Moreover, for a realistic description of phase transitions, the inclusion of fluctuations
is of utmost importance. Hence, we have included thermal and quantum fluctuations by
means of the FRG, which is widely applicable and is well-suited for the present task.
Notably, this method allows to understand better the relation of effective models to full
QCD: By studying the FRG flow of QCD it is possible to improve the effective models
towards the full theory in a systematic fashion.

This circumstance has been exploited in Chap. 3, where we have studied the phase
structure and thermodynamics of the Polyakov–quark-meson model at finite temperature
and quark chemical potential. We have argued that the standard Polyakov-loop potential
misses an important effect: the backcoupling of the matter content to the gauge sector.
This leads to a deconfinement phase transition temperature Td that is larger than the
chiral restoration temperature Tχ, in contradiction to the lattice results. At finite chemical
potential we have moreover observed that Td hardly changes with µ. Especially, we have
found a phase in which chiral symmetry is partially restored while deconfinement persists,
a so-called quarkyonic phase.

On the other hand, if the matter backcoupling to the glue sector is included, see Sec. 3.2,
we find almost coinciding chiral and deconfinement transition temperatures at zero chem-
ical potential. Moreover, the phase structure at finite chemical potential is modified:
The two transition lines lie in close proximity to each other throughout the whole phase
diagram. With and without the matter backcoupling we find that both transitions are
crossovers at small chemical potentials. On the chiral transition line we find a critical
endpoint of second order that separates the crossover from a first-order transition line at
small temperature and high chemical potential. Due to the inclusion of fluctuations, the
critical point is located at rather low temperatures.

In Sec. 3.4 we have moreover studied the mass sensitivity of the phase structure and
thermodynamics. In the chiral limit, a splitting of the chiral transition line into two
branches emerges at high chemical potential and low temperature. Also in this limit a
critical point is found, which lies on the inner transition branch. The outer branch is of
second order, as is the transition at small chemical potential, in agreement universality
arguments. As the vacuum pion mass is increased away from the chiral limit, the splitting
persist, but the outer branch is weakened. Approaching the physical mass point, it is not
possible to pin down a second transition branch anymore.

We have observed that the presently used Polyakov-loop potentials have some difficulties
in describing the high chemical potential regions properly. Input from, e.g., first-principle
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6. Summary and Outlook

RG studies [115] could be used to get closer to the glue potential of QCD. Moreover, it is
clear that for a correct description of the high chemical potential region, it is necessary to
include baryonic degrees of freedom. These, as well as diquarks are expected to influence
the phase structure and the location of the critical point.

Chap. 4 of this thesis focuses on the interplay of chiral symmetry breaking and confine-
ment at vanishing chemical potential. In particular we have studied the interrelation of
the two finite temperature transitions in gauge theories with non-trivial center. To this
end, we have studied the response of the system to a change of the colour representation of
the matter content. In particular the fundamental and adjoint representation of SU(Nc)
have been studied.

We have used a simple ansatz for the quantum effective action to compute the phase
structure in the (λψ, T )-plane. This formulation has the advantage that calculations can
be performed analytically to a large extent. For theories with quark fields living in a given
representation R, we have found that the interplay of the chiral and the deconfinement
phase transition clearly depends on the sign of trRLR[〈A0〉] in the center symmetric phase.
The relation of trRLR[〈A0〉] to the standard Polyakov-loop (for a given representation R)
has been discussed in detail in Sec. 1.1.3. Our fixed-point analysis in Sec. 4.2 suggests
that Tχ > Td for adjoint quarks, at least in the large-dR limit. This observation is in
accordance with results from lattice simulations [23–25]. For quarks in the fundamental
representation, our findings are also compatible with lattice QCD [149], first-principles
continuum [72,75,115], and earlier analytic (model) studies [26,142,143].

A partially bosonised formulation of the system subsequently allowed us to conveniently
study low-energy observables, such as the pion decay constant fπ. This made it possible
to study the phase structure in the (fπ, T )-plane. We have also investigated how robust
our predictions for these phase diagrams are once 1/dR-corrections, that are associated
with fluctuations of the Nambu-Goldstone modes, are taken into account in the matter
sector. For quarks in the fundamental representation, we have found that the locking
window (Tχ ≈ Td) is shifted to larger values of fπ, but remains finite. At the physical
point (fπ ≈ 90MeV), we have Tχ . Td. For adjoint quarks and Nc = 2, we have found
that Tχ > Td for all values of fπ > 0, even if 1/dR-corrections are taken into account. In
this respect, the finite-temperature dynamics of gauge theories with adjoint matter appear
to be distinct from gauge theories with fundamental matter, at least for Nc = 2. This
observation is also consistent with lattice studies of SU(2) gauge theory with two flavours
of adjoint quarks [23–25].

As an extension of the present analysis one may consider to take into account the
backcoupling of the matter fields on the quantity trRLR[〈A0〉]. Such contributions will
push trRLR[〈A0〉] to larger values in the low-temperature phase. We expect that this will
weaken the mechanisms governing the dynamics in our present study. For fundamental
quarks, for example, this may shrink the locking window. For adjoint quarks, on the
other hand, the quantity trRLR[〈A0〉] may still be negative over a wide range of temper-
atures. Therefore, Tχ > Td may persist for Nc = 2, even if we take these backreactions
into account. It would be interesting to see whether and how the mechanism governing
the interplay of the chiral and deconfinement transitions persists in the presence of a fi-
nite quark chemical potential and/or a finite external magnetic field. The latter deforms
the fermionic fixed-point structure in a way [61, 144] which is indeed reminiscent of the
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deformation discussed here for adjoint quarks.

In Chap. 5 we have presented an extension of the commonly used truncation of the
PQM flow equation in which the RG scale dependence of the Yukawa coupling is taken
into account. We have argued that this augmentation should result in a better description
of the phase structure, especially at finite chemical potential. From the inclusion of a
running Yukawa coupling we expect improvements in our description of the quark Fermi
surface. In particular, we have derived the contributions to the respective flow equation
diagrammatically and in analytic form and discussed their expected influence. Our aim
for the near future is to investigate the impact the scale-dependent Yukawa coupling
at finite temperature and chemical potential. Modifications of the phase structure and
thermodynamic observables will be studied. Furthermore, the inclusion of running wave-
function renormalisations allows to resolve partially the momentum dependence of the
vertices. As has been shown previously [139], this can further improve the quality of, e.g.,
critical exponents.

Summarising, in this work we have demonstrated that by the use of effective mod-
els, significant insights into the QCD phase structure can be achieved. In particular in
combination with the FRG, which allows to include fluctuations, a reliable and realistic
description can be gained. Furthermore, a systematic improvement towards the full theory
is possible in this approach.
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A. Wetterich Equation

A.1. Derivation

The ERGE is a functional differential equation that describes the dependence of the ef-
fective average action Γk on the RG scale k. It is constructed such that Γk interpolates
between the initial action at the ultraviolet scale, ΓΛ = S, and the full quantum effec-
tive action in the infrared Γk→0 = Γ. Going from microscopic to macroscopic scales,
a coarse-graining procedure is introduced which assures that only fluctuations with mo-
menta q2 & k2 are taken into account. This idea is implemented by adding a k-dependent
regulator term

∆Sk[χ] =
1

2

∫
q
χT (−q)Rk(q)χ(p) (A.1)

to the action. Note that the regulator term (A.1) is quadratic in the fields and hence acts
as a mass term for the Fourier modes of the fields χ with momenta smaller than k. In the

previous equation, the shorthand notation
∫
p :=

∫ d4q
(2π)4

is used. For convenience, we have

defined vectors containing all fields and sources present in the theory

χ(p) :=


φ(p)

ψ(p)

ψ̄T (−p)
...

 and J :=


j(p)

−η̄T (−p)
η(−p)

...

 , (A.2)

where φ denotes a set of bosonic fields while ψ̄, ψ are fermionic fields and further fields
can be included in the same fashion as needed.

Requirements on the regulator Rk(q) are introduced in order to achieve the desired be-
haviour of the effective average action. In particular, for fixed q2 we impose the conditions

lim
k→0

Rk(q) = 0 , (A.3)

lim
k→Λ

Rk(q) → ∞ . (A.4)

The first condition ensures that the regulator vanishes in the infrared and the full effective
action is reached. In the opposite limit of k approaching the cutoff Λ, or in principle
infinity, the regulator diverges, leaving us with ΓΛ = S. Fig. A.1 (left) shows an example
for a regulator function that fulfils the above conditions versus momentum q. The RG
scale k is indicated by the vertical dashed line.

We want to mention that, despite the above conditions, there is an arbitrariness in the
choice of the regulator function. In a hypothetical world where infinite computer power is
available and no truncations have to be made, results should not depend on the choice of
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A. Wetterich Equation

Figure A.1.: An example for the RG regulator (left) and its scale derivative (right) that
implement the momentum-shell integration in the ERGE.

the regulator. As is indicated in Fig. 1.4, different regulator functions result in different
RG trajectories through theory space, but emanating from the same initial action they
should result in the same quantum effective action in the infrared. In practise, however,
truncations are necessary in order to turn the RG flow equation into a finite system of
ordinary differential equations, see also Sec. A.2. Starting at a finite UV scale Λ, it might
be necessary to change the initial conditions in order to reproduce the same IR physics
for different regulators. Furthermore, the deep infrared k = 0 can never be reached in a
numerical computation with finite numerical accuracy and the flow has to be stopped at
a finite, if small, scale kmin. A variation of the regulator function can be used to obtain
an estimate of the truncation error.

When the regulator term (A.1) is added to the action, the partition function acquires a
scale dependence

Zk[J ] = N
∫
Dχe−S[χ]−∆Sk[χ]+

∫
q Jχ . (A.5)

This scale dependence is inherited by the other well-known generating functionals of con-
nected and one-particle irreducible (1PI) Greens functions, respectively

Wk[J ] = lnZk[J ] , and Γk[Θ] =

∫
q
JΘ−Wk[J ]−∆Sk[Θ] . (A.6)

Here, Θ denotes the classical field

Θ = 〈χ〉 =
−→
δ

δJ
Wk[J ] and ΘT = 〈χT 〉 =Wk[J ]

←−
δ

δJ
. (A.7)

For convenience we define1

Γ̃k[Θ] = Γk[Θ] + ∆Sk[χ] (A.8)

1Recall that Γk[Θ] is defined by a Legendre transformation of Wk[J ] and the k-dependence appears only
in one of the variables J or Θ, here J = Jk(Θ).
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and compute its scale derivative ∂t = k∂k, where t = log(k/Λ) denotes the RG-time

∂tΓ̃k =

∫
q
(∂tJ(q))Θ(q)− ∂tWk[J ]−

∫
q

δWk

δJ(q)
∂tJ(q) . (A.9)

By the definition of Θ in Eq. (A.7), the first and last terms cancel. The scale derivative
of Wk is calculated from its definition, Eq. (A.6), combined with Eq. (A.5). Since Rk is
the only quantity in this expression that depends on the scale we find

∂tΓ̃k[Θ] = 〈∂t∆Sk[χ]〉 =
〈
1

2

∫
q,p
χ(q)∂tRk(q, p)χ(p)

〉
, (A.10)

with Rk(q, p) = Rk(q)δ(p− q).
Next we introduce the partially dressed, connected two-point function

Gk(q, p) =
δ2Wk

δJ(q)δJ(p)
(A.11)

and decompose

〈χ(q)χ(p)〉 = Gk(q, p) + 〈χ(q)〉〈χ(p)〉 ≡ Gk(q, p) + Θ(q)Θ(p) . (A.12)

Plugging this into Eq. (A.10) we find

∂tΓ̃k[Θ] =
1

2

∫
q,p
{∂tRk(q, p)Gk(p, q) + Θ(p)∂tRk(p, q)Θ(q)} (A.13)

=
1

2
Tr {Gk∂tRk}+ ∂t∆Sk[Θ] . (A.14)

It is now straightforward to reformulate this expression in terms of the effective average

action Γk. Furthermore, we make use of the fact that Γ̃
(2)
k = Γ

(2)
k + Rk is the inverse of

Gk(q, p) to arrive at the celebrated Wetterich equation

∂tΓk[Θ] =
1

2
Tr

{(
Γ
(2)
k [Θ] +Rk

)−1
∂tRk

}
. (A.15)

This equation is infrared as well as ultraviolet finite, since the infrared modes of the

partially dressed propagator
(
Γ
(2)
k [Θ] +Rk

)−1
are regularised by the regulator term Rk

and its scale derivative ∂tRk regularises the ultraviolet, cf. Fig. A.1 (right). The flow
equation of higher n-point functions can be obtained from Eq. (A.15) by differentiating
with respect to the fields. It turns out that the RG equation for an n-point function always
includes the (n + 1)- and (n + 2)-point function. In this manner we encounter a similar
problem in the ERGEs as in the DSEs: There is no finite, closed subset of equations that
could be solved without resorting to truncations.

In Fig. A.2 the pictorial representation of Eq. (A.15) is given. The full dot denotes
the partially dressed propagator, meaning that fluctuations down to the RG-scale k are
included. As k → 0, we are left with the full, dressed propagator. The circled cross
labels the scale derivative of the RG regulator ∂tRk, also referred to as regulator insertion.
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A. Wetterich Equation

∂tΓk[Θ] =
1

2

Figure A.2.: Generic structure of the RG flow equation.

Note that while the equation is of one-loop structure, it is not of one-loop order in the
perturbative sense, but fully non-perturbative.

A.2. Common Truncation Schemes

Despite its simple structure, the appearance of the partially dressed propagator in the
Wetterich Eq. (A.15) makes this object rather complicated - it is a functional partial
differential equation. Thus far, no general mathematical techniques for the solution of this
kind of equations is known. However, one can reduce the problem to a coupled system
of partial differential equations by expanding Γk in, e.g., invariants, as discussed in the
following. By definition, this system is infinite dimensional, as can also be seen by the fact
that the theory space introduced above is infinite dimensional, and one still has to resort
to truncations. Such a truncation must on the one hand be of numerically manageable
size, but on the other hand it needs to capture the relevant physical effects, which may not
be known a priori. As an error estimate, one can subsequently try to increase the chosen
truncation and/or take different contributions into account, which provides insights into
the stability of the system.

Several expansions of the effective average action have been introduced in the past and
we will briefly introduce two common truncation schemes in the following, see e.g. [105] for
a more detailed account. Let us, however, stress that the expansions we use are still non-
perturbative in nature. In certain regimes it is possible to make contact with perturbative
results and use these as crosschecks or even input, but the ERGE results presented here
always include non-perturbative information as well.

For simplicity, in the present section we consider a theory with a N -component scalar
field φ with O(N) invariant ρ = φaφ

a, but an extension to more complicated theories is
straightforward.

Derivative Expansion

One possible truncation consists of an expansion of Γk in derivatives of the invariant ρ:

Γk[ρ] =

∫
dx

{
Ωk(ρ) +

Zφ(ρ)

2
∂µφ

a∂µφa +
Yφ(ρ)

2
∂µρ∂

µρ+O(∂4)
}
. (A.16)

The lowest truncation order, the so-called local potential approximation, takes only the
scalar effective potential Ωk(ρ) and a standard kinetic term into account, with the wave-
function renormalisations Zφ(ρ) ≡ 1 and Yφ(ρ) ≡ 0. Higher truncations then involve
also the (field-dependent) wave-function renormalisations Zφ(ρ) and Yφ(ρ) and higher
derivative terms.
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A.2. Common Truncation Schemes

In this work, we consider models involving quark and/or mesonic fields. For the me-
son fields are mostly make use of the local potential approximation, cf. Chap. 3. It is
well-known that this approximation yields good results for, e.g. critical exponents and
order parameters, see e.g. [139,150]. For a quantitative computation of critical exponents,
however, a more sophisticated approach, including the anomalous dimensions of the fields
is needed [151]. A step in this direction is undertaken in Chap. 5 as well as Chap. 4 of
this thesis.

Vertex Expansion

A further possible truncation bases in the so-called vertex expansion. In this approach,
the effective average action is expanded in powers of the fields

Γk[φ] =

∞∑
n=0

1

n!

∫
dx1dx2 . . . dxnΓ

(n)
k (x1, x2, . . . , xn)φ(x1)φ(x2) · · ·φ(xn) . (A.17)

Insertion of this ansatz in the Wetterich Eq. (A.15) yields flow equations for the vertex

functions Γ
(n)
k . In particular, the resulting flow equations describe the evolution of the

partially dressed vertex functions to the fully dressed ones in the IR.
Note that these flow equations are similar to the Dyson-Schwinger equations, see e.g. [107]

for a more detailed discussion.

Retaining Momentum Dependence

While the derivative expansion allows to calculate universal as well as non-universal quan-
tities defined at vanishing momentum, see e.g. [105], it does not provide access to the
full momentum dependence of vertex functions. An alternative expansion aims at re-

taining the full momentum dependence in the s-point function Γ
(s)
k while approximating

the one in the higher n-point functions Γ
(s+1)
k and Γ

(s+2)
k . This procedure is known as

Blaizot–Méndez-Galain–Wschebor (BMW) approximation of order s and was proposed
in [152,153], see [154] for a recent account. Note that the BMW approximation with s = 0
corresponds to the local potential approximation.
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B. Boson Anomalous Dimension

In this appendix we briefly describe the technique to compute the RG running of the
bosonic wave-function renormalisation. In particular, we compute the fermionic loop ex-
plicitly. The other contributions shown in, e.g., Chap. 5 are derived in a similar fashion.
More details of these calculations can be found for example in [93,155,156].

Recall that the wave-function renormalization Zφ appears as the prefactor of the boson
kinetic term. Hence, to derive its RG flow we have to allow for a configuration that
fluctuates around the constant value.

φi(x) = φ̄i + δφi(x) . (B.1)

To be precise, we choose the field configuration to point in the σ direction, i.e. φ̄i = σδi1 is
constant and δφi(x) = δσ(x)δi1 denotes the small fluctuation in the σ-direction in bosonic
field space. In particular, we allow only for a spatially varying field φ(x)→ φ(~x). For the
space dependence of the fluctuating field we make an ansatz in plane waves

δσ(~x) = δσei
~Q~x + δσ∗e−i

~Q~x . (B.2)

As can be derived easily from our ansatz of the effective action Eq. (2.10), the flow of
the wave-function renormalisation can then be calculated via

∂tZφ =
1

Ω
lim
Q→0

∂

∂ ~Q2

δ2

δσ∗δσ
∂tΓk (B.3)

with the three-volume abbreviated by Ω = (2π)3δ(3)(0). We consider a momentum-
independent wave-function renormalisation here, hence the limit Q→ 0.

A rather comfortable way to derive the flow equation of a given coupling proceeds by
rewriting the Wetterich equation in terms of the matrices Pk, containing the propagators
and regulators, and Fk involving the field dependences. Furthermore, the flow equation is
expanded in a Taylor series:

∂kΓk =
1

2
STr

[(
Γ
(2)
k +Rk

)−1
∂kRk

]
(B.4)

=
1

2
STr

[
∂̃k log

(
Γ
(2)
k +Rk

)]
(B.5)

=
1

2
STr

[
∂̃k log (Pk + Fk)

]
(B.6)

=
1

2
STr

[
∂̃k log (Pk)

]
+

1

2
STr

[
∂̃k
(
P−1
k Fk

)]
− 1

4
STr

[
∂̃k
(
P−1
k Fk

)2]± . . . . (B.7)
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B. Boson Anomalous Dimension

It is important to note that in the above equations the operator ∂̃t is defined to act on the
scale dependence of the regulator Rk only.

The propagator and fluctuation matrix can be easily determined from the definitions
in Eq. (B.5) and Eq. (B.6). The first term in Eq. (B.7) does not contribute to the flow
of Zφ, since we have to project onto the field dependence corresponding to the desired
coupling in order to derive its flow. The field dependence, however, is stored in Fk. All
higher terms then include powers of P−1

k Fk, which can be calculated by simple matrix
multiplication.

Note also that the expansion in Eq. (B.7) does not constitute an additional truncation
of the system. For a given coupling one can uniquely identify all terms that contribute to
its flow - and there are finitely many of them - just by considering the field content.

For the present case, since we are interested in the fermionic loop contribution to the
boson anomalous dimension, it suffices to compute the (ψ, ψ̄) contributions to the fluctu-
ation and propagator matrices, i.e. leave out the contribution from the mesonic potential.
In detail, the reduced propagator and fluctuation matrix read

Pk =

(
0 −∆T

F

∆F 0

)
(2π)3δ(~p− ~p′) ,

Fk =

(
0 −CT (~p− ~p′)

C(~p′ − ~p) 0

)
,

with C(~p′ − ~p) = δσδ(~p′ − ~p+ ~Q) + δσ∗δ(~p′ − ~p− ~Q). The definition of ∆F will be given
below.

Considering the first graph in Fig. 5.2 we conclude that we have to compute contributions
∼ h̄2 to derive the desired flow ∂tZφ. To this end, the quadratic term (P−1

k Fk)
2 has to be

calculated. This operator is subsequently plugged into Eq. (B.3) and we have to perform
the colour, flavour, Dirac and momentum traces as well as the derivatives. Calculating
the fermion trace and derivative w.r.t. δσ, δσ∗ we find

∂tZφ = − h̄
2

2
lim
Q→0

∂

∂ ~Q2
TrF,C,D

∑
n

∫
p
∂̃t

[
∆−1
F (~p)∆−1

F (
−−−→
p−Q) + ∆−1

F (~p)∆−1
F (
−−−→
p+Q)

]
.

(B.8)

The inverse propagator reads

∆−1
F (~p) =

[
−/~p(1 + rF (~p

2))− γ0(ωn,F − ḡA0 − iµ) + imq

]−1

=
−/~p(1 + rF (~p

2))− γ0(ωn,F − ḡA0 − iµ)− imq

~p 2(1 + rF (~p 2))2 + (ωn,F − ḡA0 − iµ)2 +m2
q

=
[
−/~p(1 + rF (~p

2))− γ0(ωn,F − ḡA0 − iµ)− imq

]
GF (~p

2) . (B.9)

GF (~p
2) actually depends on the fermionic Matsubara frequencies ωn,F and the eigenvalues

of the gauge field νl as well. For simplicity, we do not show these dependencies explicitly.

Using this expression and taking into account, that the gluon field is diagonal in colour
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space, we can easily compute also the flavour, colour and Dirac traces

∂tZφ = −
4Nf h̄

2

2

dR∑
l=1

lim
Q→0

∂

∂ ~Q2

∑
n

∫
p
∂̃t

{[
~p
−−−−−→
(p+Q)(1 + rF (~p

2))(1 + rF (
−−−−−→
(p+Q) 2))

+ (ωn,F − νl − iµ)2 −m2
q

]
·GF (~p 2)GF (

−−−→
p+Q 2)

+ (Q→ −Q)
}
. (B.10)

Next, we need to perform the derivative w.r.t ~Q 2. To this end we define

R(y) = (1 + rF (y))GF (y) . (B.11)

This function is then expanded around y = ~p2 and we find for the first expression in the
braces in Eq. (B.10)

~p ·
−−−−−→
(p+Q) R(~p 2)R(

−−−−−→
(p+Q) 2) + ~p ·

−−−−−→
(p−Q) R(~p 2)R(

−−−−−→
(p−Q) 2) = (B.12)

2R

{
~p 2R+ ~p 2 ~Q 2R′ + 2~p 2(~p · ~Q)2R′′ +

1

2
~p 2( ~Q 2)2R′′ + 2(~p · ~Q)2R′ + 4(~p · ~Q)2 ~Q 2R′′

}
where the arguments of R have been omitted in the second line and primes denote the
derivative w.r.t. the argument, evaluated at ~p 2. The same thing can be done for the
second contribution involving GF only.

Now we can take the derivative w.r.t. ~Q2 and perform the limit

∂tZφ = −2Nf h̄
2

dR∑
l=1

∑
n

∫
p
∂̃t

{
R

[
~p 2R′

(
1 +

2

3

)
+

2

3
(~p 2)2R′′

]
+
[
(ωn,F − νl − iµ)2 −m2

q

]
GF

[
G′
F +

2

3
~p 2G′′

F

]}
. (B.13)

The integral can be simplified by a suitable transformation of variables as well as integra-
tion by parts and we finally find the result

∂tZφ =
2h̄2NfT

3π2

dR∑
l=1

∑
n

∫ ∞

0
dx∂̃tx

3/2

{
x

(
d

dx
[(1 + rF (x))GF (x)]

)2

+((ωn,F − νl − iµ)2 −m2
q)

(
d

dx
GF (x)

)2
}
. (B.14)
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C. Threshold Functions

In the FRG flow equations presented in this thesis, several dimensionless threshold func-
tions, which describe the decoupling of thermal and massive modes are used. Furthermore
these functions encode the regulator dependence of the results and are collected in the
present appendix.

For all calculations in this work, the three-dimensional optimised regulator functions
for bosons and fermions [82]

RB(p0, ~p) = Zφ~p
2rB(~p

2/k2) , (C.1)

RF (p0, ~p) = Zψ/~prF (~p
2/k2) (C.2)

with the regulator shape functions

rB(~p
2/k2) =

(
k2

~p 2
− 1

)
Θ(1− ~p 2/k2) , (C.3)

rF (~p
2/k2) =

(√
k2

~p 2
− 1

)
Θ(1− ~p 2/k2) , (C.4)

have been used. The optimised regulator functions maximise the gap in the RG equation
and in this manner stabilise the flow. Furthermore, it was shown that a convex effective
action is smoothly approached in the IR with optimised flows [157]. As can be seen from,
e.g., Eq. (3.2), the thermal fluctuations factorise in the bosonic and fermionic threshold
functions using the optimised regulator, which need not be the case for a generic regulator.

In the following, the shorthand notation x = ~p 2 is used and furthermore the zeroth
component of the fermionic momentum squared, which includes the chemical potential
as well as the four-component of the gauge field, represented by the corresponding eigen-
values νl, is denoted by xF0 = (ωn,F − νl|φ| − iµ)2. A similar abbreviation is used for
bosons: xB0 = ω2

n,B. The Matsubara frequencies for fermions and bosons are given by

ωn,F = (2n+ 1)πT and ωn,B = (2nπT )2, respectively.

Usually, the threshold functions can be defined in an arbitrary dimension d. Since we
consider the case of three spatial dimensions exclusively in this work, only the results
relevant for this dimensionality are shown.

In this notation, the dimensionfull fermion and boson propagators are given by

GF (x) =
1

x(1 + rF (x))2 + xF0 +m2
q

, (C.5)

GB(x) =
1

x(1 + rB(x)) + ω2
n,B +m2

B

, (C.6)

where we allowed for massive fermions as well as massive bosons. The dependence of these
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C. Threshold Functions

propagators on ωn,B, νl and µ is not written explicitly. For later convenience we define the
reduced propagators

ḠF (x
F
0 ,mq) =

1

k2 + xF0 +m2
q

, (C.7)

ḠB(x
B
0 ,mB) =

1

k2 + xB0 +m2
B

. (C.8)

First, we give the expressions for the purely bosonic threshold functions appearing in
Chap. 4. The bosonic loop is given by

l
(B)
0 (T,mB; ηφ) =

T

2 k4

∞∑
n=−∞

∫ ∞

0
dxx

3
2 (∂trB − ηφrB)GB(xB0 ,mB)

=
2

3

k√
k2 +m2

B

(
1−

ηφ
5

)(1

2
+ n̄B(T,mB)

)
, (C.9)

with the Bose-Einstein distribution

n̄B(T, ω) =
1

e
√
k2+ω/T − 1

. (C.10)

Note that this threshold function depends explicitly on the bosonic anomalous dimension
ηφ. In the rest of this thesis, the argument ηφ is sometimes suppressed. The threshold

functions with higher index n can be computed from l
(B)
0 by differentiation

∂

∂ω
l(B)
n (T, ω; ηφ) = −(n+ δn,0)l

(B)
n+1(T, ω; ηφ) . (C.11)

For the fermionic loop diagram, a similar relation holds

∂

∂ω
l(F)n (T, µ̃, ω; ηψ) = −(n+ δn,0)l

(F)
n+1(T, µ̃, ω, ; ηψ) , (C.12)

with

l
(F)
0 (T, µ̃,mq; ηψ) =

T

k4

∞∑
n=−∞

∫ ∞

0
dxx

3
2 (∂trF − ηψrF )(1 + rF )GF (x

F
0 ,mq) (C.13)

=
1

3

k√
k2 +m2

q

(
1−

ηψ
4

)
(1− n̄q(T, µ̃,mq)− n̄q(T,−µ̃,mq)) .

In the above equation, nq denotes the Fermi-Dirac distribution function

n̄q(T, µ̃,mq) =
1

e(
√
k2+m2

q−µ̃)/T + 1
(C.14)

and µ̃ = µ+νl. For the calculation of the flow of the Yukawa coupling, the following thresh-
old function, that corresponds to the fermion-boson triangle diagram shown in Fig. 5.1, is
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needed

`
(F,B)
1,1 (T, µ;mq,mB) =

−T
2

∞∑
n=−∞

∫ ∞

0
dx x1/2 ∂̃t {GB(x)GF (x)}

=
2Tk5

3

∞∑
n=−∞

{
Ḡ2
F (x

F
0 ,mq)ḠB(x

B
0 ,mB) (C.15)

+ ḠF (x
F
0 ,mq)Ḡ

2
B(x

B
0 ,mB)

}
.

Furthermore, we need the contributions to the boson anomalous dimension ηφ. A sketch
of the derivation of the flow equation can be found in App. B. Here, we only give the
final expressions of the arising threshold functions. The purely fermionic contribution to
ηφ reads

m
(F )
4 (T, µ̃,mq) = −2T

∞∑
n=−∞

∫ ∞

0
dx x3/2 ∂̃t

{
x

(
d

dx
[(1 + rF (x))GF (x)]

)2

+ (xF0 −m2
q)

(
d

dx
GF (x)

)2
}

= 4Tk3
∞∑

n=−∞

{
(k2 + xF0 −m2

q)k
2Ḡ4

F (x
F
0 ,mq) + k2Ḡ3

F (x
F
0 ,mq)

− 3

4
Ḡ2
F (x

F
0 ,mq)

}
, (C.16)

while the bosonic contribution is given by

m
(B)
2,2 (T,mσ,mπ) = k2T

∞∑
n=−∞

∫ ∞

0
dx x3/2∂̃t

{(
d

dx
Gσ(x)

)(
d

dx
Gπ(x)

)}

= −2k7T
∞∑

n=−∞
Ḡ2
B(x

B
0 ,mσ)Ḡ

2
B(x

B
0 ,mπ) . (C.17)

The Matsubara sums can be performed analytically also for these threshold functions.
However, we refrain from showing the lengthy expressions here, since the general structure
of the threshold functions can already be seen from the definitions.
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D. Numerical Implementation: Differential
Evolution Algorithm

When solving the flow equation for the effective average potential of the PQM model, as
needed in Chap. 3, the main numerical effort goes into the solution of the equations of
motion (EoM) Eq. (3.9) with high accuracy. A standard technique to find the global min-
imum χ0(T, µ) = {σ0,Φ0, Φ̄0}(T, µ) of this three-dimensional system would be Newton’s
method. This method is known to converge quadratically, if initialised sufficiently close to
the solution. Tests of this and similar methods for the present system, however, showed
that in order to get an acceptable solution, at least O(104) Newton steps are needed. Each
of these steps involves several RG runs that take from several seconds up to minutes. For
the computation of thermodynamic quantities - which involve derivatives - and especially
at low temperatures, a method that needs fewer RG runs is hence desired. To this end the
differential evolution (DE) algorithm for global optimization as introduced in Ref. [158]
was implemented.

In practice, since the effective average potential is discretised on a grid in the mesonic
invariant ρ = σ2, it is easy to determine the minimum in this direction. This is done
directly by our RG solving routine. As a result, the EoM for σ is automatically fulfiled
and one is only left with a two-dimensional system for the Polyakov-loop variables (Φ, Φ̄).
For these, a cost function f(Φ, Φ̄) can be defined as follows1

f(Φ, Φ̄) =

(
∂Ωk→0

∂Φ

)2

+

(
∂Ωk→0

∂Φ̄

)2

. (D.1)

The DE algorithm is subsequently applied to this cost function.

1. In the first step of the algorithm, a generation of N 2-dimensional target vectors
xi,G, containing values (Φi, Φ̄i),is chosen randomly in a user-defined interval.

2. Next, the target vectors are mutated according to the law

vi,G+1 = xr1,G + F (xr2,G − xr3,G) , (D.2)

with r1, r2, r3 ∈ {1, 2, . . . , N} chosen randomly, but distinct and using a user-defined
constant F ∈ [0, 2].

3. In the following crossover step, a trial vector uij,G+1, j = 1, 2, . . . , D is computed
via

uji,G+1 =

{
vji,G+1 if (rand(j) ≤ C) or j = rnr(i)

xji,G if (rand(j) > C) and j 6= rnr(i)

1The additional external variables T, µ are suppressed throughout this section.

97



D. Numerical Implementation: Differential Evolution Algorithm

Here, rand(j) denotes the jth evaluation of the uniform number generator, C ∈ [0, 1]
and rnr(i) ∈ 1, 2, . . . , D is a randomly chosen index. This step is designed to increase
the diversity of the perturbed parameter vector.

4. Subsequently, the selection step is performed, where the cost function f(Φ, Φ̄) is
evaluated at the trial vector and compared to its value of the current target vector.
If the result is smaller, then the corresponding entry in the target vector is replaced
by the one from the trial vector. Note that this step is the only one that involves
the solution of the RG equations.

Using this algorithm it is possible to reach an accuracy of at least O(10−3) in the PQM
EoM after O(102) generations, corresponding to O(103) RG runs. For comparison, the
same number of RG steps in a Newton solver typically yields EoM results of the order
of only O(102). Especially for the computation of thermodynamic quantities this hence
represents a huge improvement in accuracy and runtime.

98



Bibliography

[1] M. Gell-Mann, Synchroton Laboratory Report CTSL-20 (1961).

[2] Y. Ne’eman, Nucl. Phys. 26, 222 (1961).

[3] R. Alkofer, D. Diakonov, J. Pawlowski, H. Reinhardt, V. Zakharov, et al., AIP
Conf.Proc. 1343, 17 (2011), 1012.3192.

[4] D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973).

[5] H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973).

[6] J. Bell and R. Jackiw, Nuovo Cim. A60, 47 (1969).

[7] S. L. Adler, Phys. Rev. 177, 2426 (1969).

[8] K. Fujikawa, Phys.Rev.Lett 42, 1195 (1979).

[9] S. Weinberg, The quantum theory of fields. Vol. 2: Modern applications (Cambridge
University Press, Cambridge, 1996).

[10] H. Fukaya et al. (JLQCD and TWQCD collaborations), Phys.Rev. D83, 074501
(2011), 1012.4052.

[11] G. t Hooft, Nucl. Phys. B138 (1978).

[12] G. ’t Hooft, Nucl. Phys. B153 (1979).

[13] S. Elitzur, Phys. Rev. D12, 3978 (1975).

[14] O. Kaczmarek, F. Karsch, P. Petreczky, and F. Zantow, Phys.Lett. B543, 41 (2002),
hep-lat/0207002.

[15] K. Holland and U.-J. Wiese (2000), hep-ph/0011193.

[16] F. Marhauser and J. M. Pawlowski (2008), 0812.1144.

[17] N. Weiss, Phys.Rev. D24, 475 (1981).

[18] D. J. Gross, R. D. Pisarski, and L. G. Yaffe, Rev.Mod.Phys. 53, 43 (1981).

[19] J. Braun, H. Gies, and J. M. Pawlowski, Phys.Lett. B684, 262 (2010), 0708.2413.

[20] J. Braun, A. Eichhorn, H. Gies, and J. M. Pawlowski, Eur.Phys.J. C70, 689 (2010),
1007.2619.

[21] K. Huebner, F. Karsch, O. Kaczmarek, and O. Vogt, Phys.Rev. D77, 074504 (2008),
0710.5147.

99



BIBLIOGRAPHY

[22] S. Gupta, K. Huebner, and O. Kaczmarek, Phys.Rev. D77, 034503 (2008),
0711.2251.

[23] F. Karsch and M. Lutgemeier, Nucl.Phys. B550, 449 (1999), hep-lat/9812023.

[24] J. Engels, S. Holtmann, and T. Schulze, Nucl.Phys. B724, 357 (2005),
hep-lat/0505008.

[25] E. Bilgici, C. Gattringer, E.-M. Ilgenfritz, and A. Maas, JHEP 0911, 035 (2009),
0904.3450.

[26] J. Braun and A. Janot, Phys.Rev. D84, 114022 (2011), 1102.4841.

[27] B. Friman, C. Hohne, J. Knoll, S. Leupold, J. Randrup, et al., Lect.Notes Phys.
814, 1 (2011).

[28] J. Cleymans, H. Oeschler, K. Redlich, and S. Wheaton, Phys.Rev. C73, 034905
(2006), hep-ph/0511094.

[29] P. Braun-Munzinger, J. Stachel, and C. Wetterich, Phys.Lett. B596, 61 (2004),
nucl-th/0311005.

[30] G. Endrodi, Z. Fodor, S. Katz, and K. Szabo, JHEP 1104, 001 (2011), 1102.1356.

[31] O. Kaczmarek, F. Karsch, E. Laermann, C. Miao, S. Mukherjee, et al., Phys.Rev.
D83, 014504 (2011), 1011.3130.

[32] E. Shuryak, Prog. Part. Nucl. Phys. 62, 48 (2009), 0807.3033.

[33] A. Bazavov, T. Bhattacharya, M. Cheng, C. DeTar, H. Ding, et al., Phys.Rev. D85,
054503 (2012), 1111.1710.

[34] S. Borsanyi et al. (Wuppertal-Budapest Collaboration), JHEP 1009, 073 (2010),
1005.3508.

[35] P. Braun-Munzinger, K. Redlich, and J. Stachel (2003), nucl-th/0304013.

[36] L. McLerran and R. D. Pisarski, Nucl.Phys. A796, 83 (2007), 0706.2191.

[37] K. Fukushima, Phys.Rev. D77, 114028 (2008), 0803.3318.

[38] A. Andronic, D. Blaschke, P. Braun-Munzinger, J. Cleymans, K. Fukushima, et al.,
Nucl.Phys. A837, 65 (2010), 0911.4806.

[39] L. Y. Glozman, V. Sazonov, and R. Wagenbrunn (2011), 1111.0949.

[40] G. Torrieri, S. Lottini, I. Mishustin, and P. Nicolini (2011), 1110.6219.

[41] K. Fukushima (2012), 1204.0594.

[42] D. Son and M. Stephanov, Phys.Rev. D70, 056001 (2004), hep-ph/0401052.

[43] Y. Aoki, Z. Fodor, S. Katz, and K. Szabo, Phys.Lett. B643, 46 (2006),
hep-lat/0609068.

100



BIBLIOGRAPHY

[44] S. Roessner, C. Ratti, and W. Weise, Phys.Rev. D75, 034007 (2007),
hep-ph/0609281.

[45] K. Fukushima, Phys.Part.Nucl.Lett. 8, 838 (2011), 1008.4322.

[46] T. K. Herbst, J. M. Pawlowski, and B.-J. Schaefer, Phys.Lett. B696, 58 (2011),
1008.0081.

[47] S. Gupta, X. Luo, B. Mohanty, H. G. Ritter, and N. Xu, Science 332, 1525 (2011),
1105.3934.

[48] T. K. Herbst, J. M. Pawlowski, and B.-J. Schaefer, Acta Phys. Polon.B 5, 733 (2012),
1202.0758.

[49] A. Ohnishi, K. Miura, T. Nakano, N. Kawamoto, H. Ueda, et al. (2012), 1201.6206.

[50] B. Berdnikov and K. Rajagopal, Phys.Rev. D61, 105017 (2000), hep-ph/9912274.

[51] M. A. Stephanov, K. Rajagopal, and E. V. Shuryak, Phys.Rev. D60, 114028 (1999),
hep-ph/9903292.

[52] D. T. Son, Physics 2, 5 (2009).

[53] B. Schaefer and M. Wagner, Phys.Rev. D85, 034027 (2012), 1111.6871.

[54] M. Stephanov, J.Phys.G G38, 124147 (2011).

[55] M. G. Alford, A. Schmitt, K. Rajagopal, and T. Schafer, Rev.Mod.Phys. 80, 1455
(2008), 0709.4635.

[56] J. C. Collins and M. Perry, Phys.Rev.Lett. 34, 1353 (1975).

[57] E. Witten, Phys.Rev. D30, 272 (1984).

[58] T. Hatsuda and K. Maeda (2009), 0912.1437.

[59] G. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S. Katz, et al., JHEP 1202, 044
(2012), 1111.4956.

[60] V. Skokov (2011), 1112.5137.

[61] K. Fukushima and J. M. Pawlowski (2012), 1203.4330.

[62] C. Gattringer and C. B. Lang, Quantum Chromodynamics on the Lattice (Springer,
2010).

[63] P. de Forcrand and O. Philipsen, Nucl.Phys. B642, 290 (2002), hep-lat/0205016.

[64] O. Philipsen, PoS LAT2005, 016 (2006), hep-lat/0510077.

[65] C. Schmidt, PoS LAT2006, 021 (2006), hep-lat/0610116.

[66] O. Philipsen, PoS CONFINEMENT8, 011 (2008).

101



BIBLIOGRAPHY

[67] R. Alkofer and L. von Smekal, Phys. Rept. 353, 281 (2001), hep-ph/0007355.

[68] C. S. Fischer, J.Phys.G G32, R253 (2006), hep-ph/0605173.

[69] A. Maas (2011), 1106.3942.

[70] C. D. Roberts (2012), 1203.5341.

[71] J. Luecker and C. S. Fischer, Prog.Part.Nucl.Phys. 67, 200 (2012), 1111.0180.

[72] C. S. Fischer, J. Luecker, and J. A. Mueller, Phys.Lett. B702, 438 (2011),
1104.1564.

[73] C. S. Fischer and J. Luecker (2012), 1206.5191.

[74] M. Mitter and B. J. Schaefer, in preparation (2012).

[75] J. M. Pawlowski, AIP Conf.Proc. 1343, 75 (2011), 1012.5075.

[76] L. Kadanoff, Physics 2, 263 (1966).

[77] K. G. Wilson, Adv. Math. (1974).

[78] www.wikipedia.org (2012).

[79] J. Polchinski, Nucl.Phys. B231, 269 (1984).

[80] C. Wetterich, Phys.Lett. B301, 90 (1993).

[81] S.-B. Liao, Phys.Rev. D53, 2020 (1996), hep-th/9501124.

[82] D. F. Litim, Phys.Lett. B486, 92 (2000), hep-th/0005245.

[83] G. J.-L. Y. Nambu, Phys. Rev. 122, 345.358 (1961).

[84] M. Fierz, Z. Physik 104, 553 (1937).

[85] H. Gies and C. Wetterich, Phys.Rev. D69, 025001 (2004), hep-th/0209183.

[86] J. Braun and H. Gies, Phys. Lett. B645, 53 (2007), hep-ph/0512085.

[87] J. Braun and H. Gies, JHEP 0606, 024 (2006), hep-ph/0602226.

[88] J. Braun, Eur. Phys. J. C64, 459 (2009), 0810.1727.

[89] D. J. Gross and A. Neveu, Phys. Rev. D 10, 3235 (1974).

[90] J. Hubbard, Phys.Rev.Lett 3, 77 (1959).

[91] R. Stratonovic, Dokkl. Akad. Nauk. 115, 1097 (1957).

[92] J. Braun, J.Phys.G G39, 033001 (2012), 1108.4449.

[93] N. Tetradis and C. Wetterich, Nucl.Phys. B422, 541 (1994), hep-ph/9308214.

[94] D. Jungnickel and C. Wetterich, Phys.Rev. D53, 5142 (1996), hep-ph/9505267.

102



BIBLIOGRAPHY

[95] B.-J. Schaefer and J. Wambach, Nucl.Phys. A757, 479 (2005), nucl-th/0403039.

[96] J. Braun, B. Klein, and H.-J. Pirner, Phys.Rev. D71, 014032 (2005),
hep-ph/0408116.

[97] B.-J. Schaefer and J. Wambach, Phys.Rev. D75, 085015 (2007), hep-ph/0603256.

[98] K. Fukushima, Phys.Lett. B591, 277 (2004), hep-ph/0310121.

[99] B.-J. Schaefer, J. M. Pawlowski, and J. Wambach, Phys.Rev. D76, 074023 (2007),
0704.3234.

[100] T. K. Herbst, Master’s thesis, Karl-Franzens-University Graz (2009).

[101] C. Ratti and W. Weise, Phys.Rev. D70, 054013 (2004), hep-ph/0406159.

[102] V. Skokov, B. Friman, E. Nakano, K. Redlich, and B.-J. Schaefer, Phys.Rev. D82,
034029 (2010), 1005.3166.

[103] R. D. Pisarski and F. Wilczek, Phys.Rev. D29, 338 (1984).

[104] D. F. Litim and J. M. Pawlowski, World Sci. pp. 168–185 (1999), hep-th/9901063.

[105] J. Berges, N. Tetradis, and C. Wetterich, Phys.Rept. 363, 223 (2002),
hep-ph/0005122.

[106] J. M. Pawlowski, Annals Phys. 322, 2831 (2007), hep-th/0512261.

[107] H. Gies (2006), hep-ph/0611146.

[108] B.-J. Schaefer and J. Wambach, Phys.Part.Nucl. 39, 1025 (2008), hep-ph/0611191.

[109] V. Skokov, B. Stokic, B. Friman, and K. Redlich, Phys. Rev. C82, 015206 (2010),
1004.2665.

[110] B.-J. Schaefer and H.-J. Pirner, Nucl.Phys. A627, 481 (1997), hep-ph/9706258.

[111] N. Strodthoff, B.-J. Schaefer, and L. von Smekal, Phys.Rev. D85, 074007 (2012),
1112.5401.

[112] L. von Smekal (2012), 1205.4205.

[113] D. F. Litim, JHEP 0507, 005 (2005), hep-th/0503096.

[114] J. Braun, K. Schwenzer, and H.-J. Pirner, Phys.Rev. D70, 085016 (2004),
hep-ph/0312277.

[115] J. Braun, L. M. Haas, F. Marhauser, and J. M. Pawlowski, Phys.Rev.Lett. 106,
022002 (2011), 0908.0008.

[116] K. Fukushima, Phys. Lett. B695, 387 (2011), 1006.2596.

[117] K. Nakamura (Particle Data Group), J. Phys. G 37, 075021 (2010).

103



BIBLIOGRAPHY

[118] S. Borsanyi, G. Endrodi, Z. Fodor, A. Jakovac, S. D. Katz, et al., JHEP 1011, 077
(2010), 1007.2580.

[119] A. Bazavov and P. Petreczky (HotQCD collaboration), J.Phys.Conf.Ser. 230, 012014
(2010), qCD phase transition, 1005.1131.

[120] J. Braun, B. Klein, and B.-J. Schaefer, Phys.Lett. B713, 216 (2012), 1110.0849.

[121] B.-J. Schaefer and M. Wagner, Phys.Rev. D79, 014018 (2009), 0808.1491.

[122] P. Gerber and H. Leutwyler, Nucl.Phys. B321, 387 (1989).

[123] B.-J. Schaefer and H.-J. Pirner, Nucl.Phys. A660, 439 (1999), nucl-th/9903003.

[124] A. Bazavov, T. Bhattacharya, M. Cheng, N. Christ, C. DeTar, et al., Phys.Rev.
D80, 014504 (2009), 0903.4379.

[125] J. Greensite, Prog. Part. Nucl. Phys. 51, 1 (2003), hep-lat/0301023.

[126] J. Braun and T. K. Herbst (2012), 1205.0779.

[127] J. Kogut and D. Sinclair, Nucl.Phys.Proc.Suppl. 53, 272 (1997), hep-lat/9607083.

[128] S. Catterall, R. Galvez, J. Hubisz, D. Mehta, and A. Veernala (2011), 1112.1855.

[129] H. S. Fukano and F. Sannino, Phys.Rev. D82, 035021 (2010), 1005.3340.

[130] L. Del Debbio, A. Patella, and C. Pica, Phys. Rev. D81, 094503 (2010), 0805.2058.

[131] S. Catterall, J. Giedt, F. Sannino, and J. Schneible, JHEP 0811, 009 (2008),
0807.0792.

[132] L. Del Debbio, B. Lucini, A. Patella, C. Pica, and A. Rago, Phys.Rev. D80, 074507
(2009), 0907.3896.

[133] F. Sannino, Acta Phys. Polon. B40, 3533 (2009), 0911.0931.

[134] D. D. Dietrich and F. Sannino, Phys.Rev. D75, 085018 (2007), hep-ph/0611341.

[135] E. Megias, E. Ruiz Arriola, and L. Salcedo, Phys.Rev. D74, 065005 (2006),
hep-ph/0412308.

[136] T. Zhang, T. Brauner, and D. H. Rischke, JHEP 1006, 064 (2010), 1005.2928.

[137] B.-J. Schaefer, M. Wagner, and J. Wambach, Phys.Rev. D81, 074013 (2010),
0910.5628.

[138] J. Berges, D. Jungnickel, and C. Wetterich, Phys.Rev. D59, 034010 (1999),
hep-ph/9705474.

[139] J. Braun, Phys.Rev. D81, 016008 (2010), 0908.1543.

[140] H. Gies, J. Jaeckel, and C. Wetterich, Phys.Rev. D69, 105008 (2004),
hep-ph/0312034.

104



BIBLIOGRAPHY
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