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Abstract We consider the growth rate of matter perturba-
tions in the Einstein dark energy theory. The theory con-
sists of the Einstein—Hilbert Lagrangian plus the trace of
the energy momentum tensor, coupled non-minimally to a
dynamical vector field. We will show that the theory has
three fixed points corresponding to the dust, radiation and de
Sitter universes. Due to the present of trace of the energy—
momentum tensor in the Lagrangian, the fixed points occurs
in different locations compared to ACDM theory. We will
analyze the theory with and without cosmological constant.
We will fit the model parameters using two independent data
sets corresponding to the Hubble parameter H and also fog.
The theory is then shown to be consistent with observational
data.

1 Introduction

After introducing the general theory of relativity [1], Einstein
in 1919 tried to formulate the elementary particles interac-
tions through general relativity [2]. He then considered an
electromagnetic like matter field with energy—momentum
tensor S, representing elementary particles [2]. Since this
tensor is trace-less, he modified the Einstein equation to
describe the new interaction as

1
R;w - ZRgva = KzS;w- (D

Moreover, Einstein assumed that elementary particle field
satisfies Maxwell’s equation. So taking the covariant deriva-
tive of the above equation yields
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where j" is the electric current. It is evident that in the volume
outside the elementary particles and in the absence of charges
we obtain from the above equation that

R = Ry = constant.

Einstein, also assumed that the standard equation of general
relativity still holds, so we also have

1
R;w - ERg/w + Ag;w = K2Tp.1u (2)

where T}, is the energy—momentum tensor of the baryonic
matter. In vacuum, from the above equation we obtain

R =4A,

which by comparison with the result from the elementary
particles equation we obtain

A .
4

3)
This shows that the cosmological constant can be considered
as an integration constant from the elementary particles field
equation [2]. By using Egs. (1)—(3) one can obtain the so-
called matter-geometry symmetric Einstein equation

1 1
R/w - ZRg/w = Kz <T/w - ZTg/w) , 4)

and

1
S;w = T;w - ZTng,

where S, as was mentioned before is the energy—momentum
tensor of the elementary particles in the form of electromag-
netic fields. For a dust universe we obtain a very interesting
result from the above equations. In this case TO0 = —p and
then we obtain S8 = —3/4p. This means that the Einstein
model predicts that the ingredient of matter in the universe is
75% electromagnetic and 25% gravitational. This theory has
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also been introduced as the unimodular gravity, which can be
formulated in different ways. In this theory the determinant
of metric tensor is constrained to be a number or scalar den-
sity. As a consequence the cosmological constant appears as
a constant of integration. The action of unimodular gravity
with a fixed metric determinant i.e. \/—g = €¢ [3] is

Sue = / d [VoaR ()| 4 Se )

where A is the Lagrange multiplier and S, is the action of
matter fields. It should be noted that the action Sy ¢ is invari-
ant under a restricted group of diffeomorphisms in which the
determinant of metric tensor is unchanged. The field equation
of this model is the same as Einstein—Hilbert equations with
cosmological constant, together with the constraint \/—g =
€o. By assuming the conservation of the energy momentum
tensor one can obtain V,A = 0. Henneaux and Teitelboin
introduced a unimodular action which is fully diffeomor-
phism invariant [4]. The action of this model is as follow

SHT=/d4x (V78R = 2. (V77— 1) + S ©)

where T/ is a vector density. The equation of motion for the
metric tensor is the same as Einstein—Hilbert field equations
with cosmological constant but the determinant of the metric
is constrained to be ./—g = 9, T*. The actions Sy and Syr
are classically equivalent and by a change of coordinates they
are related to each other. There is an alternative action which
is fully diffeomorphism invariant [5] as

Spuc = /d4x~/—g I:ICZR A+ V”VHA] 4+ Sn, (D

where the vector field V# is the Lagrange multiplier to keep
constraint V, A = 0. In this action the constraint on the value
of the metric determinant is replaced by V,, V# = 1. By inte-
grating by part of the action Sy 7, one can easily show that the
two actions Sy and Spy are equivalent at classical level.
In [3] the authors use the path integral to show the differences
between the above mentioned models of unimodular gravity
at quantum level. However, the introduction of unimodular
gravity in a more general way has been reviewed in [6-8].

Rastall [9] is the first person who considered the modi-
fied equation (4) with the baryonic energy—momentum tensor
instead of elementary S, tensor. He also assumed a general
coupling for the Ricci scalar

Ryuv + ARguy = k> T,

This equation predicts that the energy—momentum tensor
is no longer conserved and there is a chance to transform
directly to geometry V,T*" o« V,R.
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Rastall theory have been investigated vastly in the litera-
ture [10-20]. Also, many generalizations and modifications
of the idea has been proposed. One of the most interesting
of them is to consider a theory containing a non-minimal
coupling between matter Lagrangian and geometry [21-24].
The action can then be written in the form

S= [ V=gt (CR+ SR L) + L), ®)

where L, is the matter Lagrangian. This theory has a general
property of the Rastall theory which is the non-conservation
of the energy—momentum tensor. This causes the matter
fields to be converted directly to geometry. Cosmological
implications of this theory is vastly investigated [21-24].
Other generalizations of this idea includes non-minimal cou-
pling between matter energy—momentum tensor and geom-
etry such as f(R,T) [25-36], f(R, T, R,,T"") [37,38]
gravity theories. Also, one can consider non-standard inter-
actions between matter fields such as f (T, T, T*") theories
where T is the trace of energy—momentum tensor [39-41],
or derivative matter couplings [42-44] where one considers
interactions of the form V, L, V*L,,.

In this paper, we are going to consider the cosmologi-
cal implications of the Einstein dark energy theory intro-
duced in [45], where the spirit of Einstein idea is putted
together with the properties of Rastall gravity. In this way, we
will consider an Einstein—Hilbert action coupled with a dark
energy vector field denoted as A, which is minimally cou-
pled to geometry, but non-minimally coupled to the baryonic
energy—momentum tensor through the interaction of the form
Ly A A*. We also considered the Rastall theory by adding
a term proportional to the trace of the energy—momentum
tensor. It should be noted that the present theory is different
from the unimodular gravity since in the Einstein dark energy
theory the vector field does not constraint the metric field and
it is an independent dynamical field. Also, since the vector
field has a non-minimal coupling with matter Lagrangian,
the matter fields do not conserve in this theory as opposed to
the unimodular gravity.

In [45], the authors have shown that the theory can describe
the late time accelerated expansion of the universe. However,
the theory was not fully satisfactory with recent observational
data. In this paper, by adding a non-minimal interaction term
between matter fields and the dark energy vector field, we will
analyze the cosmological implications in more details and
show that the modified theory is in fact capable of explaining
the recent observational data in both background and first
order perturbation levels. We also estimate the values of the
model parameters to obtain the best fit of the theory with
experiments by two sets of data corresponding to the Hubble
[46] and fog [47] functions. We have also considered the
dynamical system analysis of the model and show that the
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theory has three fixed points. The theory we are consider-
ing does not have a conservation of the energy—momentum
tensor. This implies that the behavior of the energy density
in dust/radiation dominated universes are not the same as in
general relativity. As a result two of the fixed points of the
Einstein dark energy model are the would be dust and radi-
ation dominated fixed points which now behaves differently
due the the presence of non standard matter couplings in
the theory. The third fixed point corresponds to the de Sitter
expansion of the universe. Similar to general relativity, this
fixed point is stable. So, the theory can in principle explain
the thermal history of the universe. Also, we will analyze
the theory at the perturbative level and obtain the evolution
equation corresponding to the growth rate of matter pertur-
bations.

The structure of the paper is as follows. In the next section
we review the Einstein dark energy model and obtain main
dynamical equations of the model. In Sect. 3, we consider
the background cosmological implications of the model and
in Sect. 4 we investigate its dynamical analysis. In Sect. 5,
the matter scalar perturbations on top of flat FRW universe
is considered and at the end we will conclude the paper.

2 The model

In this section we present the field equations for the Einstein
dark energy model, and derive some of its basic theoretical
consequences [45]. Let us assume that the universe is filled
with a cosmological dark energy vector field A, (x"). We
define the dark energy strength tensor as

Crv = Vuhy — VA, ©)

The dark energy strength tensor identically satisfies the
Maxwell type equations

ViCuv + VuCoi + Vi Ciy = 0. (10)

We define the energy—momentum tensor 7}, of the baryonic
matter fields as

2 9 (v=gLn)
V-8 gt

where L, is the Lagrangian of the total (ordinary baryonic
plus dark) matter. In the following, by T we denote the trace
of the matter energy—momentum tensor.

The Einstein dark energy model is described by the fol-
lowing action

. (11)

Ty =—

/d x\/_|:/< (l—ﬂl)R+@T——CWC‘“’

+aLly AMA“+V(A2)+£m], (12)

where f1, By are two arbitrary dimensionless constants and
« is a coupling constant with mass dimension M2 repre-
senting the interaction between matter and the dark energy
vector A . Also, the potential term V is an arbitrary function
of A% = A A™. In this paper, we will consider the constant
potential correspondlng to the cosmological constant, and
also a power-law case.

The energy—momentum tensor S, of the dark energy field
can be obtained by varying its kinetic term with respect to
the metric, which gives

1
Sp,u = C,uotcva - Zguvcaﬂcaﬁ7 (13)

with the property S- = 0.

By varying the gravitational action with respect to the
metric tensor, it follows that the cosmological evolution of
the universe in the presence of a vector type dark energy
is described by the generalized Einstein gravitational field
equations,

K2(1 - ,BI)GLW - _Sp,v

2
1, 1 ,
o LnAuhy = 38T ) = S8V + AudyV

1 1 1
= 5(1 + ﬂZ)T;w - 5,32 (Em - §T> 8uvs (14)

where prime denotes derivative with respect to the argument.
By varying the action (12) with respect to the vector poten-
tial, we obtain the equation

Vy,CHY =2AM (V' +aLly). (15)

It should be noted that due to the non-minimal coupling
between matter and geometry, the matter field is the source
for the dark energy vector field.

By taking the divergence of the metric field equation (14)
and using Eq. (15) one obtains the conservation equation of
the energy—momentum tensor as

)
- =T
2

1
gV
1+/32+ozA2['82 (’”

+ a(Longpuy — W)V*‘(A%}. (16)

VAT, =

It can be seen from the above equation that there are two
sources for the non-conservation of the energy—momentum
tensor. The first one is due to the presence of the trace of
the energy—momentum tensor 7' and the second one comes

@ Springer
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from the non-minimal coupling between matter and the dark
energy vector potential in the action. In the case = 0 = >
the energy—momentum tensor becomes conserved. We will
defined a vector field

1 1
b= g ran A% (60 57)

+ a(Longun — ,W)WA%], (17)

which is the right-hand side of Eq. 16 and represents the
amount of non-conservation of the energy—momentum ten-
sor. In the case of f, = 0, the energy—momentum tensor
becomes conserved.

3 Cosmological implications
Let us consider the flat FRW universe with conformal time ¢
ds* = a’npdxtdx”, (18)

where a = a(t) is the scale factor. The Hubble parameter
can be defined as H = a/a, where dot represents derivative
with respect to the conformal time.

For the dark energy vector field, we assume that only the
temporal component is non-vanishing

Ay = a[Ao(0), 0], (19)

which is dictated by the isotropy and homogeneity of the
FRW space time in the Cartesian coordinates. We also assume
that the universe is filled with a perfect fluid with Lagrangian
density £,, = —p and energy—momentum tensor

Ty = (p+ p)uyuy + pguv, (20)

where p is the energy density and p is the thermodynamics
pressure.

The Friedmann and Raychaudhuri equations can be
obtained from (14) as

6K 5 5
— (L= H? = (1 +aAdp
+ %ﬂz(ﬁ —3p) — (V +2A5V"), 1)
20— p) (212_ ) (H2 + 2H)
= (@Aj—Dp - %ﬁz(p +5p) V. (22)

The field equation of the vector field is
V' =ap. (23)

@ Springer

From the above equation, one can see that in the case of a
constant potential V = const., the non-minimal coupling
between the matter and the dark energy vector field should
vanish.

The non-conservation equation of the matter field (16) is
reduced to

142 A2)p =2
+§,32_Ol 0 ,O_EﬂZp
+3(1 4 B2 —aAHDH(p + p) = 0. (24)

Now, let us assume a specific form of the potential as

A2 n
V(A?) = —pBs (—7) : (25)

where 7 is a dimensionless constant and 33 is a constant with
mass dimension M*.

In the case n = 0, one has V = — 3 which mimics the
cosmological constant. So, we define the modified cosmo-
logical constant in this model as A = B3/2«2. In the case of
n = 0, A coincides with the standard cosmological constant.
However, the value of A will differ from the cosmological
constant for n # 0.

Let us assume that the universe is filled with pressure-less
dust and radiation. The energy density and pressure becomes

1
P = 5Prs (26)

P = Pm + Pr, 3

where m /r denotes dust /radiation respectively.
Defining the following dimensionless parameters

_ Pi
T = Hyt, H = Hyh, i = — >
0 0 Pi 6IC2H02
= 6k2HZ S, o = ak’, Ay =kKkAj, 27
0

where H is the current Hubble parameter, one can write the
metric field equations as

+ a1 A (B + fr) + (21 — I)QAAﬂ, (28)
(1= B1)(h> +20') = _QZBﬂzﬁm 3@, A
+ (1+4B2 —alA%)ﬁr}, (29)

where prime here denotes derivative with respect to the
dimensionless time t. The vector field equation can be writ-
ten as
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2(n—1 — _
NN = 6y (B + ). (30)

As we have discussed before, in the case of = 0 which
corresponds to the case of cosmological constant, one should
impose a1 = 0. So A1 does not contribute to the background
cosmological evolution of the universe. In the case n # 0,
one can obtain the value of A from the vector field equation
(30) as

Alzl:al(/sm"‘ﬁr):r(”l”‘ G1)

n<2,

The baryonic matter conservation equation can be written in
dimensionless coordinates as

[@+ B> — 20185, +6(1 + o — 1 AD e |
+[20 = 018D + 801 + p2 — a1 AD b | =0. (32)
From the structure of the above equation, we will assume that

each bracket in (32) vanishes independently and as a result
we have two conservation equations for dust and radiation as

- 1+ B — AT | _

/

+6h| —————; =0, 33

Pm [2+/32—2a11\§ " (33)

_ 148y —a A2 |

py + 4h {%] pr = 0. (34)
C A

It should be noted that in the case 8o = 0 = «1, the above
equations becomes standard conservation equations for dust
and radiation.

Let us define redshift parameter as

1
l+z=-. (35)
a
Derivatives with respect to t can be converted to the deriva-
tives with respect to the redshift as

d d
— = —(1 h(z)—. 36
e (I+2)h(2) e (36)
Using Egs. (28) and (30) and transforming to the redshift
coordinates, one can obtain the dimensionless Hubble param-
eter as

__ ! -1 1 _ _
h(z) = —= ,6(1 +2) [(1 + 2/32) om(2) + pr(2)

1 (al(ﬁm(z) + ,5r(z))>"i|nll }1/2

1— _
+( n)[QA .

(37)

The deceleration parameter in terms of redshift can be written
as

dinh
dz =

qg= (142 (38)

Noting that #(0) = 1, p(0) = Q2o = 0.305 and p,(0) =
Q,0 = 5.3 x 107 in redshift coordinates [48], one can see
from Eq. (37) that the modified cosmological constant den-
sity parameter can be expressed by other parameters as

U -1
= <i>n 20— D&mo+ 20 ]
o 281 — 1) + 2+ B0 + 220
(39)

Also, we should note that on top of FRW space-time, the
temporal component of the vector field f, is non-vanishing
and in dimensionless coordinates is given by

_ 38201+ Dh(py, +25))

fo
L+ B2 —ar1A?

(40)

In Fig. 1 we have plotted the evolution of the Hubble parame-
ter h together with the deceleration parameter ¢ as a function
of redshift. We have assumed three different values for the
constant n = — 0.02, 0, 0.1. It should be emphasized that in
Sect. 5, we will obtain the best fit values of the model param-
eters 81 and B, using two independent data sets of Hubble
parameter and fog. The best fit values of the parameters,
together with their 1o and 20 confidence intervals are shown
in Table 1, for three values of n = —0.02, 0, 0.1. In the Fig.
1, we have used the best fit values. It can be shown from
the figure that the Einstein dark energy model can explain
the observational data on the Hubble parameter very well.
In the case n # 0, one can see that the Hubble parameter
becomes larger than ACDM value for redshifts greater than
z ~ 1.5. In the case of cosmological constant V(A% = —B3
however, the Hubble parameter is very close to the ACDM
curve. However, the EDE prediction of the Hubble param-
eter for redshifts z > 1.5 is a little smaller than ACDM
value. This shows that the size of the universe is smaller for
non-vanishing values of 7. The evolution of the decelera-
tion parameter shows that the universe have more deceler-
ation compared to the ACDM model at redshift larger than
z ~ 1.5. It should be mentioned that the Einstein dark energy
model with a cosmological constant behaves a little different
from the other cases with non-vanishing 5. This is due to
the fact that in the case of n = 0, the non-minimal coupling
between matter and dark energy vector field vanishes, which
makes the universe to gain more acceleration.

@ Springer



282 Page 6 of 12

Eur. Phys.J. C (2021) 81:282

Al
sl
I
oL
i f
0 7\ L L L L L L
0.0 05 1.0 15 2.0 25 3.0
z

Fig. 1 The Hubble and deceleration parameters as a function of the
redshift z for three different values for the constant n = — 0.02 (dot-
dashed), n = 0 (dashed) and n = 0.1 (dotted). We use the best fit values

15 2.0 2.5 3.0

z

for the model parameters presented in Table 2. For the Hubble parame-
ter, we have also plotted te experimental data together with their errors
[46]. The ACDM curve is depicted as a red solid curve

Table 1 The fixed points of the dynamical system (43) and (44) together with eigenvalues and also their behaviors

(S2m, €2/) Weff Type Behavior
2(1-B1) B .
M ( Th ,0) pEw Saddle Dust-like
R ©0,1-781) %(1 +4p7) Unstable Radiation-like
(Qm, S (2+22ﬁ(2,]:"£;3);22"(ﬁ]71)) -1 Stable de Sitter
Q fo
': ll *
10 - ',' K ,/
K 'l /
. / /s
0 o Va
8 S J 4
," :, l,
K '/ ’l
o 4 ’
6 [ "' "' ,/
o 7
B4 e
4r o R
* 'd
s Rad
Rt e
0.2 2t setiad -7
Pttt _ -
‘ ‘ ‘ ‘ ‘ Loy L ‘ ‘ ‘ -,
05 L0 15 2.0 25 3.0 05 1.0 15 2.0 25 3.0

Fig. 2 The evolution of the matter density abundance as a function of
the redshift z for three different values for the constant n = —0.02
(dot-dashed), n = 0 (dashed) and n = 0.1 (dotted). We use the best
fit values for the model parameters presented in Table 2. The ACDM
curve is depicted as a red curve

In Fig. 2, we have plotted the evolution of the density
abundance 2,,, defined as
Q. — Pm a?

As can be seen from the figure, the baryonic matter density
becomes larger than the conservative ACDM model. The
difference can be seen as an amount of non-conservation of

the energy momentum tensor. This can also be seen from Eq.
40 which we have plotted in Fig. 3.

@ Springer

Fig. 3 The evolution of the non-conservation of the energy—
momentum tensor fy as a function of the redshift z for three different
values for the constant = — 0.02 (dot-dashed), n = 0 (dashed) and
n = 0.1 (dotted). We use the best fit values for the model parameters
presented in Table 2

For redshifts greater than z > 0.2 the non-conservation of
the energy—momentum tensor fy becomes non-zero which
causes the matter density abundance to behave differently
from the ACDM theory.

We have also plotted the temporal component of the dark
energy vector field in Fig. 4 for non-vanishing values of the
parameter 7. In the case of vanishing 7, this quantity vanishes
as we have discussed earlier. It should be noted that from the
structure of the equations, the coupling constant « does not
appear alone in the field equations. The only appearance of
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this constant is in the expression for the temporal compo-
nent of the dark energy vector field (31). So, in order to plot
the temporal component of the dark energy vector, we have
modulated A by (a1/n)'/%. It can be seen from the figure

Q, — )+ 2,
QL=7(74+f<Qm,sz,-)+ 0F2(n = 1) (€ + ) )

2)(Q + ) —n(2 =281 — B22m)
(44)

where prime represents derivative with respect to In @ and we
have defined

f(th Qr) =

22 + Qr)( — 24281 +3(1 + B2) 2 + 4(1 + ,32)Qr) — (2 + 29,)(2 281 + 2B + 4,8252,)

(Br = D — D + /)

(45)

2n(B1 — Dy — P2 (2 +22,) (32, +42,)

The model is a two dimensional autonomous dynamical sys-
tem. In order to determine the behavior of the universe at the
fixed points, we define an effective equation of state param-
eter

3n—=DBr—D

46
6(n — D(B1 — D(Qm + £2/) 40

that the dark energy vector field tends to zero as the redshift
increases. The maximum value of the vector occurs at present
time with z = 0. Also, it should be mentioned that the qual-
itative behavior of the vector field is the same for different
but non-vanishing values of 7.

4 Dynamical system analysis

Let us rewrite the Friedmann equation (37) in the form

o (1) C]T 2 ]
2 (3) ) =g (e ]
x[ﬁ1—1+(1+lﬂz> (’3’”“2>+2<5’“2)} 41
2 2 )|

The above equation suggests that the theory could be ana-
lyzed by two dynamical variables

= 2
Pma

_ lara2
S =T

Qm = Qr = /’l2 5 (42)
which are the standard dust and radiation density abundances.
Using the conservation equations (33) and (34), one can write
the dynamical system of the model as

Q

Q== (— 24 f (. )+

652(77 - 1)(Qm + Qr) )
Q+ B + Q) =12 =281 + f22) )’
(43)

The dynamical system (43) and (44) has three fixed points
which we have summarized in Table 1. The fixed point M
behaved like a matter dominated universe if 8, = 0. So,
this point behaves a little different from the standard matter
dominated epoch in general relativity. This also can be seen
from the conservation equation (33). This fixed point is a
saddle point. In Fig. 5, we have plotted the stream plot of the
dynamical system (43) and (44) for three different values of
n = —0.02,0,0.1. We have also shown the fixed points in
the figures.

The fixed point R behaves like a radiation dominated fixed
point if B = 0. This fixed point is an unstable fixed point
which plays a role of an approximate radiation dominated
phase in our model. Remembering that the dynamical vari-
ables 2,, and €2, are positive, one can see that these two fixed

1/ 2
Ni(nlay)
s,
1.5 ’\"-‘
A
R
*
\\
N\
1.0 [ \,
.
.
jO
A
.
05 limeol
L L L L L -.\ Z
05 1.0 15 2.0 25 3.0

Fig. 4 The evolution of the modulated temporal component of the dark
energy vector Ao as a function of the redshift zfor two non-vanishing
values for the constant = — 0.02 (dot-dashed) and n = 0.1 (dotted).
We use the best fit values for the model parameters presented in Table 2

@ Springer
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Fig. 5 The phase space portrait of the dynamical system (43) and (44). We have plotted the (£2,,, €2,-) planes for three different values of n = — 0.02
(left), n = 0 (center) and n = 0.1 (right). The corresponding fixed points are also shown

points behaves as unstable nodes in the positive triangle of
the phase portrait.

The last fixed point A has an effective equation of state
parameter w.ry = — 1 andis a de Sitter fixed point. This node
is in fact a fixed line as can be seen in Fig. 5 as a solid black
curve. In the case of n = 0, only the point (£2,,, ;) = (0, 0)
lies in the positive quarter. This point is in fact the stable de
Sitter fixed point of the standard ACDM theory. In the case
of n = 0.1 we have a fixed line in the positive quarter and one
can see from the figure that all the curves end up at this line.
We should note that all the points in the line is in fact a fixed
point. As a result in this case the phase space is smaller than
that of general relativity since the curves can not escape the
fixed line to end up at (0, 0) point. The case of n = —0.02
is a little different since no points of the fixed line lie in the
positive quarter of the phase space. In this case all the streams
in this quarter will end up at the origin which is not a fixed
point but as one can see from the figure that is very close to
it.

In summary, in all three cases, the evolution of the universe
can be started from the radiation dominated fixed point which
continue to the matter dominated fixed point and then ends
up at a stable de Sitter epoch. As a result the thermal history
of the universe can be explained in this model.

5 Matter perturbation of the model

In this section we will consider the growth of matter pertur-
bation of the Einstein dark energy model. We will consider
the scalar perturbations of the field equations in the Newto-
nian gauge. In this gauge, the scalar perturbation variables
E, B vanishes and the perturbed conformal FRW universe
can be written as

ds* =[] - (142002 + (1 =2pdF2]. @)

@ Springer

where ¢ and ¥ are the Bardeen potentials. The perturbed
energy momentum tensor is defined as

8T) = —8p = —pé,

8T = (14 w)pd;v,
i _ gl 2

8Tj = 8jc 09,

N

(48)

where, § is the matter density contrast defined as § = 6p/p,
p is the background value of the energy density and v is
the scalar mode of the velocity perturbation. Also, we have
defined the sound speed as dp/dp = csz. The equation of
state parameter of the background matter field can be given
as p/p = w. In the following, we will assume that the per-
turbed and unperturbed matter content of the universe have
the equations of motion of the form ¢ = 0 = w.

The scalar mode of perturbed dark energy vector field is
taken as
Ay =a[Ao+ M, —9;N] (49)
where Aoy = A(?) is the non vanishing background compo-
nent of the vector field A ;.

The conservation equation (16) up to first order in pertur-
bations can be written as

22+ B2 — 2aAD (1 + B2 — 20 AZ) (O — 34))
— 12800 AgH (Ao — M) + (2 + B2 — 2aA})?$ =0,

(50)
and
Q+pr— 2aA(2))[k2(4aAoM — Bad) + aAvoe]
+ 22+ B2 — 20 A3 (1 + BraAD) (6 — K9)
—4H[,322 — —aAg)Z]e =0, (51)
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Table 2 The best values of the model parameters 1 and f,, together with the best values of og and also the initial condition &, for three different

values of the parameter n = —0.02, 0, 0.1

lo confidence level

20 confidence level

Parameter Best fit value
n=0.1 Bi —-0.22

B 0.14

o 0.66

& 1.33
n=20 Bi —-0.17

B 0.05

Gé) 0.76

& 1.33
n=—0.02 Bi —0.18

B2 0.11

o 0.66

& 1.33

—0.28 < B < —0.15
0.11 < B, <0.17
0.64 < 0 < 0.67
0.20 < & < 2.46
—0.22 < B < —0.12
0.01 < B, < 0.08
0.74 < o < 0.78
—92 <& <1188
—0.26 < B < —0.10
0.08 < B < 0.15

—0.34 < 1 < —0.09
—0.07 < B2 <0.20
0.62 < o < 0.69
—0.88 <& <3.55
—0.27 < 1 < —0.07
—0.02 < B2 <0.12
0.72 < aé) < 0.80
—19.35 < & <22.02
—0.34 < g1 <—0.02
—0.04 < B <0.18

0.64 < 0 < 0.68 0.63 < 0 < 0.69

where we have defined 6 = V; Viv and Fourier transformed
with wave vector k. Note that in order to simplify the above
equations, we have used the background conservation equa-
tion.

From now on, we will work in the sub-horizon limit where
the wave number is much greater than the Hubble parameter
k > H. The above equations can be combined to eliminate
the variable 6 and we obtain the evolution equation of the
matter density contrast, which can be simplified in the sub-
horizon limit as

Q@+ B2 — 2025 + 2[(1 — By —aADH — 2aA0A0]8

+ 2k2[(1 + B+ aAD)p + Bod — 2A0M] —0. (52
In order to obtain the relations of the variables M and ¢, we
will use the Einstein and also the dark energy vector field in
the sub-horizon limit.

From non-diagonal components of the Einstein equation,

one obtains ¢ = ¢. Also the (0) component of the vector
field equation in sub-horizon limit reads

M=N —HN. (53)

The (i) component of the vector field equation can be sim-
plified in the sub-horizon limit to

. Ao\
HN + | B3n <7> Ayl + H> —ad’p [N =0,
(54)

which gives the dynamical equation for the variable NV. The
(00) component of the Einstein field equation in the sub-

021 <& <24 —0.86 <& <3.53
horizon limit can be written as
8(1 — Bk 0 = 2 + B + 2aA3) pa’s. (55)

Now, substituting the variable ¢ from the Einstein equation
(55) into equation (52), one obtains

Q@+ pr — 20A2)5 + 2[(1 — By —aADH — 2aA0A0]5

s (14 B+ aAd2+ B +2aAd) ,
! [2ﬂ2k i 2(B1 — D2 @il
+4k2aAgN — HN) = 0. (56)

Making Eq. (54) dimensionless and substituting the back-
ground variables from Eq. (31), one obtains

4h(z)2[(1 +ON@) — N(z)] —o, (57)

where we have transformed to the redshift coordinates and
prime represents derivative with respect to z. The above equa-
tion has a solution

N(@) =ci(l +2), (58)

where c; is an integration constant. One can see that the
N dependency in Eq. (56) disappears and one obtains the
evolution equation of the density contrast in dimensionless
form as

(24 B2 — 201 A2)8"
T 2[(1 — By — a1 AN — 2a1A1A’1]5’

31+ B+ a1 ADQR+ B+ 201AT) 5 _
apm

6 =0.
2061 - D

+ [Zﬂzyz +

(59)
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fog

0.5 1.0 1.5 2.0
Fig. 6 The evolution of fog(z) as a function of the redshift z for
three different values for the constant n = — 0.02 (dot-dashed), n = 0
(dashed) and n = 0.1 (dotted). We use the best fit values for the model

parameters presented in Table 2. The ACDM curve is depicted as a red
curve

It should be noted that in the case of vanishing 81, > and «,
the above equation reduces to the standard equation of the
matter density contrast. In the above equation, we have also
defined y = k/Hy, which is the dimensionless counterpart
of the wave number.

Let us solve the equation governing the evolution of the
density contrast. This should be solved together with back-
ground equations (31), (33) and (37). We will use a general-
ized ACDM initial conditions in deep matter dominated era
in which

dé

- = &5
Sl = £, (60)

where z, is some point in the deep matter dominated era
which we will assume to be z, = 7.1. Also £ is a constant
which determines deviation from ACDM model. The case
& =1 corresponds to the ACDM model.

To compare the Einstein dark energy model with obser-
vational data, we will use two independent data sets on the
Hubble parameter in the redshift range z ~ (0, 2) [46] and
also the observational data on fog [47] which is defined as

fog = 03(2) f(2). (61)

Here 0g(z) = 080 8(z). The constant oé) is model dependent.
The growth rate of matter perturbations is defined as

dIné §
= =—(1 —. 62
Tina ( +Z)5 (62)

f

We estimate the values of aé) , &€ and also the model parameters
B1 and B, by maximizing the likelihood function defined as

@ Springer

L= Loe "2, (63)

where L is the normalization constant and the quantity x>
in our case is given by

X* = Xi1 + X oy
. Z Hi,obser — I1j theory 2
i i

2
o — fog; )
+§ :(f 8j,0bser f 8],theory> ’ (64)
J

0j

where H; theory and f o3 sheory are the theoretical values for
the observables H; opser and fog; obser and o; is the error of
the ith data. The total likelihood function is the multiplication
of individual likelihoods of the two sets since the data sets
we are using here are independent.

In Table 2, we have summarized the best fit values of the
parameters 81, Bo, & and af? together with their 1o and 2o
confidence intervals for three different values of the param-
eter n = —0.02, 0, 0.1. We have used the best fit values of
Table 2 to plot the figures. It can be seen from the table that
the value of the parameter B at best fit and also up to 2o
confidence level is negative. Also, the value of the parameter
Ba is positive at best fit value. In Fig. 6, we have plotted the
evolution of the function fog as a function of redshift for
three different values of the parameter = —0.02, 0, 0.1.
We have also plotted the ACDM curve as ared solid line. One
can see from the figure that the evolution of the function fog
forn = 0, is very similar to the ACDM theory. The difference
can be traced back to the presence of the term proportional
to B>. However, for non-vanishing cases of n the behavior
of this function differs significantly from the ACDM theory.
However, all cases satisfied observational data. The present
value of fog for positive values of the parameter 7 is greater
than that of the ACDM value and for negative values of 7 its
value becomes smaller. One can then see that for redshifts
greater than 0.2, non-vanishing values of 7 fits very well
with observations. In summary, it sees that more data would
be needed to decide the best model which fits the data.

6 Conclusion and final remarks

In this paper we have considered cosmological implica-
tions of the Einstein dark energy model. This model consists
of an Einstein—Hilbert Lagrangian with a coupling propor-
tional to the trace of the energy—momentum tensor, coupled
to a dark energy vector field. The vector field has a non-
minimal coupling with matter fields, which make the energy—
momentum tensor non-conservative. This non-conservation
of the energy—momentum tensor results in creation of matter
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out of geometry. The rate of such a creation is calculated in
[45]. We have also considered a power-law potential term for
dark energy vector field.

‘We have obtained the best fit values of the model param-
eters by using two sets of independent data from Hubble
parameter and also the function fog. At redshifts smaller
than z ~ 3, the behavior of the Hubble parameter is very
similar to the ACDM model for small values of the param-
eter 7. For large values of this parameter, the behavior of
the Hubble parameter is very different and one can not find
a best fit with observational data. As a result larger values
of 7 is ruled out by observations and so we have consid-
ered small values in this paper. Despite the behavior of the
Hubble parameter the matter density abundance behaves dif-
ferently from ACDM model. At larger redshifts, the matter
density abundance is larger than the ACDM value implying
that there are more matter present at those redshifts. How-
ever, the matter density decreases more rapid than ACDM
model implying that the present values of the matter density
abundance is the same as ACDM value. This shows that the
rate of changing matter content of the universe to curvature
is getting smaller at late times. This can also be seen from
the evolution of the function fj in Fig. 4, since the rate of
creation of matter is proportional to this function [45].

Dynamical system analysis of the theory can also show
this behavior. As we have discussed in this paper, the theory
has three fixed points, one of them is an exact de Sitter node.
However, We have two fixed points which behave a little
different from ACDM matter and radiation nodes, since the
constant £, is small. The difference is directly related to
the term B> T in the action which comes from Rastall’s idea.
This makes the theory non-conservative and consequently the
fixed points become different. However, the thermal history
of the universe can be achieved in this theory since all the
required fixed points are present.

We have also considered the first order perturbation analy-
sis of the model and obtain the growth rate of matter density
contrast in the sub-horizon limit. The differential equation
governing the behavior of matter density contrast is affected
by both Rastall’s term 8,7 and also by non-minimal cou-
pling term £,, A, A" term. Since the theory is different from
ACDM theory at every times, we have modified the initial
conditions on the density contrast to cover this new model.
From the best fit values presented in Table 2, one can see that
at deep matter dominated epoch, the rate of change of § is
bigger than that of ACDM theory by about 30%. However,
the value of af? in this theory does not change much compared
to ACDM model. We have also shown that the Einstein dark
energy model can be compatible with observational data for
redshifts greater than 0.2.

In summary we would like to say that the Einstein’s idea
of considering elementary particles as electromagnetic like
fields can be put forward to make some progress in obtain-

ing satisfactory model of dark energy. But more data would
still be needed to decide which model is more friendly with
observations.
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