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Why Quantum Computing?

Erontier ’ 1. Prime Factorization 2. Quantum Simulation
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Simulate one QM
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Build a Quantum
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QOutline

¢ Basic requirements and challenges

Transmon

¢ Introduction to superconducting qubits

» Benefits of 3D SRF cavities Y ™ o

** Gate schemes and measurements

** Current achievements and outlook
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Basic Requirements for a Quantum Computer
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Couple multiple qubits Scalable architecture
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Challenges: Decoherence

Decoherence
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Challenges: Gates and Connectivity
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Different Platforms

Trapped ions

Superconducting circuits Photonic crystals
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Superconducting Circuits

Josephson Junction

I1(t) =1, sin.5(t)
V(t) = @od(t)

Lossless nonlinear inductor ‘

_ Po
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Transmon Circuit

s B

Josephson Junction

I1(t) =1, sin.5(t)
V(t) = @od(t)

Lossless nonlinear inductor

Po
(Ig _ 12)1/2

L) =

Transmon
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Transmon Circuit

Josephson Junction

I1(t) =1, sin.5(t)
V(t) = @od(t)

Lossless nonlinear inductor
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Po 1

L,(I) =
]() (13 _12)1/2 COS Pyt

Tunable Transmon
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Transmon: Anharmonic Oscillator
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Transmon:

Harmonic Oscillator

Anharmonic Oscillator

Anharmonic Oscillator
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Operating Temperature

—

1 AN

fOl ~ an ﬂ.Ei\ /|2>
~ 5 GHz
/ \ Anharmonic Oscillator

20 mK ~ 240 mK

~50 fF ~20 nH
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Operating Temperature
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~ 5 GHz
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Anharmonic Oscillator = (ald
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Dilution fridge ~ 10 mK
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Circuit QED Architecture

Tanay Roy - Fermilab

Dilution fridge ~ 10 mK
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Circuit QED Architecture
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qubit cavity | read-out line
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Circuit QED Architecture
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Traditional Multi-qubit Architecture

Linear or planar geometry

@@@ooo@

(0] OO
© /o)

S

Computational space: 2V

Can we do better?
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Traditional Multi-qubit Architecture

Linear or planar geometry

@@@ooo@

(0] OO
© /o)

S

Computational space: 2V

Can we do better? UCSB, Nature 519 (7541) B

Scaling: dV,d >2 Qudit
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Problem of Relaxation

Linear or planar geometry
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Zoo of Cavities

- (b)

= cavity 1

N O]

= transmon qubit

= cavity 2

= cavity coupler

Nat. Phys. 16, 247 Science 342, 6158
Yale, U. Pittsburgh

PRL 127,107701

U. Chicago, Rutgers
Under

exploration

Weizmann
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Romanenko et al. PRApplied 13, 034032

1.3 GHz SRF:

5 GHz SRF:
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High-Q 3D SRF Cavities

Q> 101 at1K

Q> 1019 at 10 mK

=
=

10"

Q 10"k

1095'

108

102 pr

B 1.3GHz m 1.3 GHz- after 340 °C
A 5GHz 4 5 GHz- after450 °C
® 26GHz

TLS model fits

Tl >2s

T; > 300 ms

Tanay Roy - Fermilab

m'df1 B
Temperature (K)

>1000 times better than
transmons
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High-Q 3D Cavities as Qudits

Romanenko et al. PRApplied 13, 034032
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Tlll) > 300 ms Tl|2> > 150 ms Q
Tlln) > Tlm/n T1|10) > 30 ms Still much better than transmon qubits
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Qubit Visualization
lY) = «|0) + B|1) = cos (8) |0) + ¢ sm( > 1)

0)4 2

Bloch Sphere
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Rabi Oscillation
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/2 pulse:

Single-Qubit Gates
0) = (10) + [1))/v2

0)4 2

Tanay Roy - Fermilab
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/2 pulse:

Single-Qubit Gates

0) = (10) + [1)/v2
1) > (10) = [1)/v2

10y 4 Z

Tanay Roy - Fermilab
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/2 pulse:

i pulse:

Single-Qubit Gates

0) = (10) + [1)/v2
1) > (10) = [1)/v2

1
i ﬁi —11)
10) - |1) —
1) - |0) = 1)
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Single-Qubit Measurement

«|0) + B|1) Measure 0)4 £

A »
SP RSy AN

1)
P(0) = |a|? P(1) = |B|*
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Transmon vs. Cavity Drive

Qubit: «|0) + B|1)

A 1

*»

Qudit: ay|0) + aq|1) + -+ + ay4|d)

Coherent
state

Im(a)

|a>=cZOj—n_!|n>

D(a)

Classical

| Re(a)
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Transmon vs. Cavity Drive

Qubit: «|0) + B|1)

A 1

*»

Qudit: ay|0) + aq|1) + -+ + ay4|d)

W == 37E )

Im(a)

Quantum
states?

D(a)

| Re(a)
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Qudit Operation

D(a=1) ”
0) = | a0l0) + ay[1) + -+ ag4ld) In) > e™[n)
1) - e'™|1) 1 [ Selective number-dependent J
arbitrary phase (SNAP) gate
[ Quantum state } ap|0) — ai|1) + -+ ay4|d) PRL 115, 137002 (2015)
0.270
47 47 [0.225
0.180
27 2 L 0.135
S S - 0.090
= ° . € ° ‘ - - 0.045
Iy . T 5 L 0.000
|1) - e'*|1) L —0.045
4 _q - - —0.090
T T T T — —0.135
-4 -2 0 2 4 -4 -2 0 2 4
Re(a) Re(a)
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Qubit Frequency Dependence

Oz

H = we.ata + (wg + xata >

13) 12)  |1) |0)
00O
X>Y

R
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wq([0)c) = wyq
wé}(|1>c) =wq t X
(o
(o
(o

wg(In)e) = wg +ny
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Visualization of SNAP

Selective number-dependent
arbitrary phase pulse

10)

3 12) 1)
x>V
<:>=5

Tanay Roy - Fermilab

(10) +11) +12) + - ) |0)q

=0)[0) 4+ [1)]0) + |2)]0) + ---
1 cos wyt (1 pulse)

10)|1) + [1)]0) + [2)]0) + -+
1 cos wyt (1 pulse)

=0)[0) + [1)[0) + [2)[0) + -
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Visualization of SNAP

Selective number-dependent (10) + (1) + [2) + == )10},
arbitrary phase pulse

=10)[0) + [1)[0) + [2)][0) + -
10)

3) 12) D) lcos wyt (m pulse)
co0o0 /\ /\ 10)]1) + [1)[0) + [2)[0) + ---
1 cos(wgt +8")
x>y w0, e'?10)10) + [1)10) + [2)]0) + -
®§

(e]0) + 1) + [2) + -+)|0)
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Im(a)

D(a)

| Re(a)

Unconditional
operation on cavity

35

Universal Gate Set

Qudit: a|0) + a1|1) + - + a4|d)

SNAP gate

Qudit: yet?]0) + a;e'f1|1) + - + ayzetfd|d)

Cavity
drive

Universal control

I
¥

SNAP

Tanay Roy - Fermilab

Conditional operation on
cavity enabled by a transmon
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Qudit Measurement

) = apl0) + aq|1) + - + aq4ld)

3) 12y (1) 10)

00O

/N

P(2)<0.75 (1)=0 P(0)=0.25

36 Tanay Roy - Fermilab

Ask the transmon if
there are n photons

Transmon jumps to
|1) if yes

Nl 3.
lY) = Z|O>+ Z|>
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First Milestone

Incorporate Transmon into a
TESLA cavity

Tanay Roy - Fermilab
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First Milestone

Incorporate Transmon into a
TESLA cavity
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First Milestone

[ = . TE3RI003 photon splitting
. —~ 0.20 1.0

0.15

0.10

P qubit

0.05

Cavity displacement amplitude

0.00

43075 4.3080 4.3085 4.3090 4.3095
Qubit Frequency (GHz)

Incorporate Transmon into a

TESLA cavity Achieved photon counting
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Second Milestone

[ Prepare quantum states J

0.29

Voltage (mV)
o
N

0.25

40

Wigner tomography
Fock |1)

N
S

PO
AEI\ /0>

Storage Fock01 T1

= T=3241.99+130.10 0.27

T; = 3.2 ms

Voltage (mV)
o
o

R TR RS s 0.25 ’ —— 1=158571%144.95
0 2 4 6 8 10 12 14 0 1_ 2 3
Time (ms) Time (ms)
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Second Milestone

Qubit spectroscopy

[ Prepare quantum states

41

A

N
e

: /

|
)

1

)

|3> T

T T T . T . T . T : T
-15.0 =125 -10.0 = -7.5 = 5.0 :—2.5 0:0 2.5
. .

Demodulated Signal (uV)

Af (MHz)
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Advantages

Longer coherence

= T, =3.2msvs.~100 us
m T¢ = 2.0 ms vs <100 us

Larger Hilbert Space

= Effectively log, d qubits
= Enables qudit encoding

Efficient control

One input, one output
Reduced control hardware

Tanay Roy - Fermilab -MSQM S—-ﬁm
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Further Improvements

T; > 50 ms when no transmon

‘ Find loss sources \

i Substrate l i Transmon ‘ i Geometrx ‘ i Shieldinﬁ l

Tanay Roy - Fermilab
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Further Improvements

Substrate

Transmon

Geometry

Shielding

T; > 50 ms when no transmon

Find loss sources
and eliminate

e Material: silicon or sapphire
* Manufacturer
* Treatment during fabrication

Tanay Roy - Fermilab
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Further Improvements

Geometry

Shielding

T; > 50 ms when no transmon

Find loss sources
and eliminate

Substrate Transmon
* Qubit sets Purcell limit
SL T * Improve T, of transmon
0.421 T
= % T, ~ 430 us
S 04- '\.'. 1 ‘u'
S e
® o 9%,
c 00 _o
20.38 - @3 %0

T T
® best T1=430pus

.9 _oa® [
d eq¥ o o ®" L ®
L .. ° '... 0 '..—Q ..” 9

0.36 ‘ ‘
200 400 600 800

idle time (us)

Credit: Shaojiang Zhu

Tanay Roy - Fermilab

1000 1200 1400

1600 1800 2000

arxiv:2304:13257
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Further Improvements

T; > 50 ms when no transmon

‘ Find loss sources \

46

Substrate | | Transmon | | Geometry | Shielding

* Surface loss
* Participation of lossy components

Credit: Taeyoon Kim

' SUPERCONDUCTING QUANTUM
Tanay Roy - Fermilab w“'@mm’“ MATERIALS & SYSTEMS CENTER



47

Further Improvements

Substrate

Transmon

Geometry

Shielding

T; > 50 ms when no transmon

Find loss sources
and eliminate

* Infrared shielding
* Magnetic shielding

Multilayered shield

Tanay Roy - Fermilab

Credit: Oleg Pronitchev
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Multi-qudit Architecture

Crosstalk issues

All-to-all coupling Faster scaling: aVV > 2V
Moderate-Q cavities High-Q 3D cavities
[ ) ya
Transmon Manipulator Coupler Storage
J N
CPU BUS RAM

. SUPERCONDUCTING QUANTUM
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Summary

“* Achievements IPREEAN SN
> Integrated transmon into TESLA " o

» Obtained T;~3.2 ms, Ty~2.1 ms

» Prepared several quantum states

¢ Future directions =%
: E ' ~
> Implement quantum algorithms T 027 Iy =~ 3.2ms
» Keep improving hardware S e L
0.25 R AT
» Scale up PR TR

Time (ms)
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Brand New SQMS Facility at Fermilab
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