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Why Quantum Computing?

762904558518855853

2. Quantum Simulation

HARD

Image: mit.edu

Build a Quantum 
Computer

Shor’s factoring 
algorithm 1994

Simulate one QM 
system with another

Image: needull.com

Not efficient for 
all problems

1.2 × 1018 calculations / sec

Image: Wikipedia

Frontier

Image: science.org

1. Prime Factorization

776531401 × 982451653×? ?
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Outline
 Basic requirements and challenges

 Introduction to superconducting qubits

 Benefits of 3D SRF cavities

 Gate schemes and measurements

 Current achievements and outlook

⟩|𝟎𝟎

⟩|𝟏𝟏

200 𝜇𝜇m

1

0

-1
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Basic Requirements for a Quantum Computer

Quantum two 
level systems

0 1

Couple multiple qubits

𝛼𝛼 0 + 𝛽𝛽|1⟩
⟩|𝟎𝟎

⟩|𝟏𝟏

Create arbitrary 
states

Measure 
quantum states

⟩|𝟎𝟎

⟩|𝟏𝟏

⟩|𝟎𝟎

⟩|𝟏𝟏

Scalable architecture
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Challenges: Decoherence

Noise

Relaxation (T1)

Decoherence

𝛼𝛼 0 + 𝛽𝛽|1⟩

0

0 + 𝑒𝑒𝑖𝑖𝑖𝑖 |1⟩

Incoherent mix of 0 and |1⟩

Dephasing (T𝜙𝜙)
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Challenges: Gates and Connectivity

Fast & high-fidelity

Coherence time
Gate time

All-to-all

Linear chain

Square lattice

Heavy hexagon

Octagonal
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Different Platforms

phys.org

Quantum dotsNV centers

sciencemag.org

NMR

chemie.tu

Neutral atoms

NIST

Superconducting circuitsTrapped ions

phys.org
laserfocusworld.com SQMS

Photonic crystals
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Superconducting Circuits

𝐿𝐿𝐽𝐽 𝐼𝐼 =
𝜑𝜑0

𝐼𝐼02 − 𝐼𝐼2 1/2

Josephson Junction

Lossless nonlinear inductor

200 nm𝐼𝐼(𝑡𝑡) = 𝐼𝐼0 sin 𝛿𝛿(𝑡𝑡)
𝑉𝑉(𝑡𝑡) = 𝜑𝜑0𝛿̇𝛿(𝑡𝑡)
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Transmon Circuit

Josephson Junction

200 nm

Transmon

𝐿𝐿𝐽𝐽 𝐼𝐼 =
𝜑𝜑0

𝐼𝐼02 − 𝐼𝐼2 1/2

Lossless nonlinear inductor

𝐼𝐼(𝑡𝑡) = 𝐼𝐼0 sin 𝛿𝛿(𝑡𝑡)
𝑉𝑉(𝑡𝑡) = 𝜑𝜑0𝛿̇𝛿(𝑡𝑡)
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Transmon Circuit

Josephson Junction

200 nm

Tunable Transmon

200 𝜇𝜇m𝐿𝐿𝐽𝐽 𝐼𝐼 =
𝜑𝜑0

𝐼𝐼02 − 𝐼𝐼2 1/2

Lossless nonlinear inductor

𝐼𝐼(𝑡𝑡) = 𝐼𝐼0 sin 𝛿𝛿(𝑡𝑡)
𝑉𝑉(𝑡𝑡) = 𝜑𝜑0𝛿̇𝛿(𝑡𝑡)

1
cos𝜙𝜙𝑒𝑒𝑒𝑒𝑒𝑒

𝜙𝜙𝑒𝑒𝑒𝑒𝑒𝑒
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Transmon: Anharmonic Oscillator

Harmonic Oscillator Anharmonic Oscillator

0

1

2

3

⟩|0

⟩|1

⟩|2
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Transmon: Anharmonic Oscillator

Harmonic Oscillator Anharmonic Oscillator

0

1

2

3

⟩|0

⟩|1
Qubit ⟩|𝟎𝟎

⟩|𝟏𝟏
⟩|2
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Operating Temperature

Anharmonic Oscillator

⟩|0

⟩|1

~50 fF ~20 nH

𝑓𝑓01 ≈
1

2𝜋𝜋 𝐿𝐿𝐽𝐽𝐶𝐶
~ 5 GHz

𝑘𝑘𝐵𝐵 𝑇𝑇 ≪ ℎ 𝑓𝑓01

~ 240 mK20 mK

⟩|2
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Operating Temperature

Anharmonic Oscillator

⟩|0

⟩|1

~50 fF ~20 nH

Dilution fridge ~ 10 mK

𝑓𝑓01 ≈
1

2𝜋𝜋 𝐿𝐿𝐽𝐽𝐶𝐶
~ 5 GHz

𝑘𝑘𝐵𝐵 𝑇𝑇 ≪ ℎ 𝑓𝑓01

~ 240 mK20 mK

⟩|2
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Circuit QED Architecture

Dilution fridge ~ 10 mK
2.5 cm

In

O
ut
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Circuit QED Architecture

Dilution fridge ~ 10 mK

𝐻𝐻 =
𝜔𝜔𝑞𝑞
2
𝜎𝜎𝑧𝑧 + 𝜔𝜔𝑐𝑐𝑎𝑎†𝑎𝑎 + 𝑔𝑔(𝑎𝑎†𝜎𝜎− + 𝑎𝑎𝜎𝜎+)

≈
𝜔𝜔𝑞𝑞
2
𝜎𝜎𝑧𝑧 + 𝜔𝜔𝑐𝑐𝑎𝑎†𝑎𝑎 +

𝜒𝜒
2

(𝑎𝑎†𝑎𝑎)𝜎𝜎𝑧𝑧

=
𝜔𝜔𝑞𝑞
2
𝜎𝜎𝑧𝑧 + 𝜔𝜔𝑐𝑐 +

𝜒𝜒
2
𝜎𝜎𝑧𝑧 𝑎𝑎†𝑎𝑎

𝑔𝑔 ≪ Δ,𝜒𝜒 = 2𝑔𝑔2/Δ

Δ = 𝜔𝜔𝑞𝑞 − 𝜔𝜔𝑐𝑐

Tanay Roy - Fermilab
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Circuit QED Architecture

Dilution fridge ~ 10 mK

Ph
as

e

Pr
ob

ab
ili

ty |0⟩|1⟩
90𝑜𝑜

−90𝑜𝑜

0𝑜𝑜

Frequency

Resonance 
curves

𝟎𝟎|𝟏𝟏⟩

Phase
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Traditional Multi-qubit Architecture

Computational space: 2𝑁𝑁

UCSB, Nature 519 (7541) IBM

Linear or planar geometry

Can we do better?
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Traditional Multi-qubit Architecture

Computational space: 2𝑁𝑁

UCSB, Nature 519 (7541) IBM

Linear or planar geometry

Can we do better?

Scaling: 𝑑𝑑𝑁𝑁, 𝑑𝑑 > 2 Qudit
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Problem of Relaxation

UCSB, Nature 519 (7541) IBM

Linear or planar geometry

Can we do better?Q:  a few 106T1~ 100 𝜇𝜇s
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Zoo of Cavities

Science 342, 6158

PRL 127, 107701

Nat. Phys. 16, 247

Yale, U. Pittsburgh

U. Chicago, Rutgers

PRX Quant. 4, 030336

Weizmann

Under 
exploration
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High-Q 3D SRF Cavities

Q > 1010 at 10 mK T1 > 300 ms

Romanenko et al. PRApplied 13, 034032

>1000 times better than 
transmons5 GHz SRF:

Q > 1011 at 1 K T1 > 2 s1.3 GHz SRF:
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High-Q 3D Cavities as Qudits

T1
1 > 300 ms

Romanenko et al. PRApplied 13, 034032

Qudit

0

1

2

3

T1
2 > 150 ms

T1
𝑛𝑛 > T1

1 /𝑛𝑛 T1
10 > 30 ms Still much better than transmon qubits
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𝑋𝑋

𝑍𝑍|0⟩

|1⟩

Tanay Roy - Fermilab

Qubit Visualization
⟩|𝜓𝜓 = 𝛼𝛼 0 + 𝛽𝛽|1⟩ = cos

𝜃𝜃
2

⟩|0 + 𝑒𝑒𝑖𝑖𝑖𝑖 sin
𝜃𝜃
2

⟩|1

𝑋𝑋

𝑌𝑌

𝜃𝜃

𝜙𝜙

|𝜓𝜓⟩
|0⟩

|1⟩

𝑍𝑍

Bloch Sphere
⟩|𝟎𝟎

⟩|𝟏𝟏

𝐸𝐸01/ℎ Rabi Oscillation
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𝑋𝑋

𝑍𝑍|0⟩

|1⟩

Tanay Roy - Fermilab

Single-Qubit Gates
⟩|0 → 0 + 1 / 2𝜋𝜋/2 pulse: 
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𝑋𝑋

𝑍𝑍|0⟩

|1⟩

Tanay Roy - Fermilab

Single-Qubit Gates
⟩|0 → 0 + 1 / 2𝜋𝜋/2 pulse: 

⟩|1 → 0 − 1 / 2
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𝑋𝑋

𝑍𝑍|0⟩

|1⟩

Tanay Roy - Fermilab

Single-Qubit Gates
⟩|0 → 0 + 1 / 2𝜋𝜋/2 pulse: 

⟩|1 → 0 − 1 / 2

⟩|0 → 1𝜋𝜋 pulse: 

⟩|1 → 0
𝑋𝑋 = 1 0

0 1

𝐻𝐻 =
1
2

1 1
1 −1
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𝑋𝑋

𝑍𝑍|0⟩

|1⟩

Tanay Roy - Fermilab

Single-Qubit Measurement
𝛼𝛼 0 + 𝛽𝛽|1⟩

⟩|𝟎𝟎

⟩|𝟏𝟏
P(0) = |𝛼𝛼|2 P(1) = |𝛽𝛽|2

Measure
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Transmon vs. Cavity Drive
Qubit: 𝛼𝛼 0 + 𝛽𝛽|1⟩ Qudit: 𝛼𝛼0 0 + 𝛼𝛼1 1 + ⋯+ 𝛼𝛼𝑑𝑑|𝑑𝑑⟩

Re(𝛼𝛼)

Im(𝛼𝛼)

�𝐷𝐷(𝛼𝛼)

𝛼𝛼 = 𝑐𝑐�
𝑛𝑛=0

∞
𝛼𝛼𝑛𝑛

𝑛𝑛!
|𝑛𝑛⟩

Coherent 
state

Classical
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Transmon vs. Cavity Drive
Qubit: 𝛼𝛼 0 + 𝛽𝛽|1⟩ Qudit: 𝛼𝛼0 0 + 𝛼𝛼1 1 + ⋯+ 𝛼𝛼𝑑𝑑|𝑑𝑑⟩

Re(𝛼𝛼)

Im(𝛼𝛼)

�𝐷𝐷(𝛼𝛼)

Quantum
states?
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Qudit Operation
𝛼𝛼0 0 + 𝛼𝛼1 1 + ⋯+ 𝛼𝛼𝑑𝑑|𝑑𝑑⟩

𝛼𝛼0 0 − 𝛼𝛼1 1 + ⋯+ 𝛼𝛼𝑑𝑑|𝑑𝑑⟩

𝑛𝑛 → 𝑒𝑒𝑖𝑖𝑖𝑖 𝑛𝑛

Re(𝛼𝛼)

Im
(𝛼𝛼

)

Re(𝛼𝛼)

Im
(𝛼𝛼

)
0

𝒟𝒟(𝛼𝛼 = 1)

Quantum state

Selective number-dependent 
arbitrary phase (SNAP) gate

1 → 𝑒𝑒𝑖𝑖𝑖𝑖 1

PRL 115, 137002 (2015)

1 → 𝑒𝑒𝑖𝑖𝑖𝑖 1
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Qubit Frequency Dependence

𝐻𝐻 = 𝜔𝜔𝑐𝑐𝑎𝑎†𝑎𝑎 + 𝜔𝜔𝑞𝑞 + 𝜒𝜒𝑎𝑎†𝑎𝑎
𝜎𝜎𝑧𝑧
2 𝜔𝜔𝑞𝑞′ (|0⟩𝑐𝑐) = 𝜔𝜔𝑞𝑞

𝜔𝜔𝑞𝑞′ (|1⟩𝑐𝑐) = 𝜔𝜔𝑞𝑞 + 𝜒𝜒

𝜒𝜒 > 𝛾𝛾

|0⟩|2⟩ |1⟩|3⟩

𝜒𝜒𝜒𝜒𝜒𝜒

𝜔𝜔𝑞𝑞′ (|𝑛𝑛⟩𝑐𝑐) = 𝜔𝜔𝑞𝑞 + 𝑛𝑛𝑛𝑛
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Visualization of SNAP 
Selective number-dependent 
arbitrary phase pulse

|0⟩|2⟩ |1⟩|3⟩
= 0 0 + 1 0 + 2 0 + ⋯

0 1 + 1 0 + 2 0 + ⋯

− 0 0 + 1 0 + 2 0 + ⋯

cos𝜔𝜔𝑞𝑞𝑡𝑡 (𝜋𝜋 pulse)

cos𝜔𝜔𝑞𝑞𝑡𝑡 (𝜋𝜋 pulse)

0 + 1 + 2 + ⋯ 𝑐𝑐 0 𝑞𝑞

𝜒𝜒 > 𝛾𝛾
𝜔𝜔𝑞𝑞
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Visualization of SNAP 

|0⟩|2⟩ |1⟩|3⟩

𝑒𝑒𝑖𝑖𝑖𝑖 0 0 + 1 0 + 2 0 + ⋯

= (𝑒𝑒𝑖𝑖𝑖𝑖 0 + 1 + 2 + ⋯ ) 0

0 + 1 + 2 + ⋯ 𝑐𝑐 0 𝑞𝑞

= 0 0 + 1 0 + 2 0 + ⋯

0 1 + 1 0 + 2 0 + ⋯

cos(𝜔𝜔𝑞𝑞𝑡𝑡 + 𝜃𝜃′)

Selective number-dependent 
arbitrary phase pulse

cos𝜔𝜔𝑞𝑞𝑡𝑡 (𝜋𝜋 pulse)

𝜒𝜒 > 𝛾𝛾
𝜔𝜔𝑞𝑞
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Universal Gate Set

Qudit: 𝛼𝛼0 0 + 𝛼𝛼1 1 + ⋯+ 𝛼𝛼𝑑𝑑|𝑑𝑑⟩

SNAP gate

Qudit: 𝛼𝛼0𝑒𝑒𝑖𝑖𝜃𝜃0 0 + 𝛼𝛼1𝑒𝑒𝑖𝑖𝜃𝜃1 1 + ⋯+ 𝛼𝛼𝑑𝑑𝑒𝑒𝑖𝑖𝜃𝜃𝑑𝑑|𝑑𝑑⟩

Universal control

Re(𝛼𝛼)

Im(𝛼𝛼)

�𝐷𝐷(𝛼𝛼)

Unconditional 
operation on cavity

Conditional operation on 
cavity enabled by a transmon

Cavity
drive SNAP
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Qudit Measurement

|0⟩|2⟩ |1⟩|3⟩

𝜓𝜓 = 𝛼𝛼0 0 + 𝛼𝛼1 1 + ⋯+ 𝛼𝛼𝑑𝑑|𝑑𝑑⟩ Ask the transmon if 
there are 𝑛𝑛 photons

𝜓𝜓 =
1
4

0 +
3
4

2

Transmon jumps to 
1 if yes

P(0)=0.25P(1)=0P(2)=0.75



37 Tanay Roy - Fermilab

First Milestone

Incorporate Transmon into a 
TESLA cavity
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First Milestone

Incorporate Transmon into a 
TESLA cavity



39 Tanay Roy - Fermilab

First Milestone

Incorporate Transmon into a 
TESLA cavity Achieved photon counting

0
1

2345
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Second Milestone

Prepare quantum states

0

1

2

3 Fock |1⟩
1

-1

0 Pa
rit

y

Wigner tomography

0     2     4     6 8    10   12   14
Time (ms)

Vo
lta

ge
 (m

V)

0.25

0.27

0.29

𝑇𝑇1 ≈ 3.2 ms

Time (ms)
0                1                2                3

Vo
lta

ge
 (m

V)

0.25

0.26

0.27 𝑇𝑇𝜙𝜙 ≈ 2.1 ms
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Second Milestone

Prepare quantum states

0

1

2

3

| ⟩𝟎𝟎

| ⟩𝟏𝟏

| ⟩𝟐𝟐

| ⟩𝟑𝟑

𝜒𝜒𝜒𝜒𝜒𝜒

Qubit spectroscopy
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Advantages

 𝑇𝑇1 = 3.2 ms vs. ~100 us
 𝑇𝑇𝜙𝜙 = 2.0 ms vs <100 us

Longer coherence

 Effectively log2 𝑑𝑑 qubits
 Enables qudit encoding

Larger Hilbert Space

 One input, one output
 Reduced control hardware

Efficient control

0

1

2

3
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Further Improvements

𝑇𝑇1 > 50 ms when no transmon

Find loss sources 
and eliminate

Transmon

cite

Geometry ShieldingSubstrate
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Further Improvements

𝑇𝑇1 > 50 ms when no transmon

Find loss sources 
and eliminate

Substrate Transmon Geometry Shielding

• Material: silicon or sapphire
• Manufacturer
• Treatment during fabrication
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Further Improvements

𝑇𝑇1 > 50 ms when no transmon

Find loss sources 
and eliminate

Substrate Transmon Geometry Shielding

• Qubit sets Purcell limit
• Improve 𝑇𝑇1 of transmon

Credit: Shaojiang Zhu arxiv:2304:13257

𝑇𝑇1 ≈ 430 𝜇𝜇s
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Further Improvements

𝑇𝑇1 > 50 ms when no transmon

Find loss sources 
and eliminate

Substrate Transmon Geometry Shielding

• Surface loss
• Participation of lossy components

Credit: Taeyoon Kim
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Further Improvements

𝑇𝑇1 > 50 ms when no transmon

Find loss sources 
and eliminate

Substrate Transmon Geometry Shielding

• Infrared shielding
• Magnetic shielding

Multilayered shield

Credit: Oleg Pronitchev
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Multi-qudit Architecture

Crosstalk issues

StorageManipulator CouplerTransmon

RAMCPU BUS

Faster scaling: 𝑑𝑑𝑁𝑁 > 2𝑁𝑁All-to-all coupling

High-Q 3D cavitiesModerate-Q cavities
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Summary
 Achievements
 Integrated transmon into TESLA
 Obtained 𝑇𝑇1~3.2 ms, 𝑇𝑇𝜙𝜙~2.1 ms 
 Prepared several quantum states

 Future directions
 Implement quantum algorithms
 Keep improving hardware
 Scale up

0     2     4     6 8    10   12   14
Time (ms)

Vo
lta

ge
 (m

V)

0.25

0.27

0.29

𝑇𝑇1 ≈ 3.2 ms
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Brand New SQMS Facility at Fermilab
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Thank You!
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