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Abstract We consider Riemann—Cartan gravity with min-
imal Palatini action, which is classically equivalent to Ein-
stein gravity. Following the ideas of Lipatov (Nucl Phys B
365:614-632, 1991, Phys Part Nucl 44:391-413, 2013, Sub-
nucl Ser 49:131, 2013, Subnucl Ser 50:213-225, 2014, Int
J Mod Phys A 31(28/29):1645011, 2016, EPJ Web Conf
125:01010, 2016) and Bartels et al. (JHEP 07:056, 2014)
we propose the effective action for this theory aimed at
the description of the high-energy scattering of gravitat-
ing particles in the multi-Regge kinematics. We add to the
Palatini action the new terms. These terms are responsible
for the interaction of gravitational quanta with gravitational
reggeons. The latter replace exchange by multiple gravita-
tional excitations. We propose the heuristic explanation of
its particular form based on an analogy to the reggeon field
theory of QCD. We argue that Regge kinematics assumes the
appearance of an effective two-dimensional model describ-
ing the high-energy scattering similar to that of QCD. Such
a model may be formulated in a way leading to our final
effective theory. It contains interaction between the ordinary
quanta of spin connection and vielbein with the gravitational
reggeons.

1 Introduction

In Regge theory scattering amplitude at large energies /s
and fixed momentum transfer /—t has the form [8,9]:

ARegge(Svt) (08 sl—&-wp(t)’ (1
where p = =1 is the signature of Reggeon with trajec-

tory wp(t). In quantum field theory particles may acquire
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properties of Reggeons when radiative corrections are taken
into account [10-18]. In QCD the effective Reggeon field
theory [7,19-26] describes high energy scattering with
multi -Regge kinematics. In this case we operate with an
effective action local in rapidity space, which describes
interactions between physical gluons inside rapidity clus-
ters (y — n/2,y + n/2) with n < In(s). The whole
rapidity interval is covered by these clusters. Interaction
between physical gluons by an exchange by multiple vir-
tual gluons may be described effectively by an exchange
by single reggeons. In order to describe these effective
interactions the Lipatov’s induced effective action may
be used. The resulting theory contains the action of the
form

Seff = / d*x (Lo + Lina) .- (2)

Here L is bare action while L;,,4 is an extra term. This action
reproduces Eq. (1) for the scattering amplitude and correctly
describes production of particles in direct channels in quasi-
multi-Regge kinematics, it is highly non-linear and gauge
invariant, see [27-58].

So far, this effective action formalism was applied to the
calculations of various QCD processes, see [27-66]. An alter-
native approaches to high energy scattering are based on the
concept of Color Glass Condensate and on the Wilson line
formalism of Balitsky [67-92]. The reggeization of gravita-
tion, similar to the gluon’s reggeization, has been discussed
a while ago [93-96], see also the recent papers [4,97-99].
Certain effective gravitational actions were applied to the
description of scattering [ 100-103]. However, to the best of
our knowledge, Regge effective theory for the high energy
scattering in quantum gravity with torsion has not been con-
structed.

Construction of [1-7] operates with the conventional gen-
eral relativity, and the approach to the reggeization has been
proposed. The necessary terms of effective action have been
considered in [1-7], and are obtained up to the second order
in the weak field approximation. Technically this approach
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experiences difficulties related to the lack of the machinery
similar to that of the Wilson lines in QCD. In the present
paper we suggest a way to resolve this difficulty based on
the consideration of Einstein gravity in first order formalism
with independent vielbein and spin connection.

We begin from the Riemann—Cartan—Finstein (RCE)
gravity with minimal Palatini action, which is classically
equivalent to Einstein gravity. This theory, however, is ini-
tially formulated as a gauge field theory with SO(3, 1)
gauge group. Therefore, the formalism of [7,19-26] can be
directly transferred to the framework of RCE gravity. We
formulate the effective Regge theory for this model. Wil-
son lines of [7,19-26] have their counterparts in the RCE
gravity. The constructed effective action is to be invariant
with respect to the corresponding gauge transformations.
The price for the methodological simplification is the com-
plication of calculations. In the RCE gravity there are two
independent fields: spin connection w,, and vielbein €j;. An
attempt to reduce the theory to the one expressed through
the field of metric assumes (in a certain approximation)
that the equations of motion with respect to connection are
to be solved. Then connection is expressed through viel-
bein. The vielbein, in turn, is related to the field of met-
ric. The final form of effective action contains metric field
only. After this reduction it is really hard to recognize in
the final expressions the initial gauge invariant ones. This is
the reason for the complicated form of expressions proposed
in [1-7].

The paper is organized as follows. First of all, we repeat
the dimensional reduction procedure similar to the one of
[104-107]. This is done in Sect. 2. Due to kinematics of
high energy scattering the effective theory in the center
of inertia reference frame has to be two-dimensional. The
effective theory operates with the gauge invariant quantities-
the Wilson lines of SO(3, 1) group (taken along the light
cone), and the invariant translation along the light cone
given by vielbein. The coefficients in effective action may
be fixed comparing its form with that of bare action in the
ultrahigh energy limit, when gauge field may be thought
of as constant during the time of collision. In Sect. 3
we use Hubbard—Stratonovich transformation in order to
bring the effective two-dimensional theory to the four-
dimensional form with the auxiliary fields. These auxil-
iary fields interact with ordinary vierbein and spin connec-
tion. Exchange by one quantum of such fields replaces the
exchange by multiple gravitational excitations. This proce-
dure, however, remains ambiguous. It admits an addition of
extra terms that disappear in ultra-relativistic regime. This
way in Sect. 4 we modify the obtained effective action in
order to make it symmetric under the time reversal. We
also analyse briefly the classical equations of motion for
the gravitational excitations in the presence of the men-
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tioned effective excitations. In Sect. 5 we end with the
conclusions.

2 The effective 2D model for the high energy scattering

Here we present the dimensional reduction procedure simi-
lar to that of [104]. The main idea is that due to kinematics
of high energy scattering the effective theory in the center
of inertia reference frame of the two colliding gravitating
particles has to be two-dimensional (coordinates of time and
direction of collision are compactified). The effective the-
ory operates with the gauge invariant quantities-the Wilson
lines of SO (3, 1) group (taken along the light cone), and the
invariant translation along the light cone given by vielbein.
The reason for this is that the high energy particle moving
close to the light cone interacts with the gravitational field
via these two quantities.

In order to clarify the essence of proposed construction
let us come back briefly to the case of QCD considered in
[104]. Extension to the case of gravity is straightforward. In
our construction we consider motion of two particles in the
center of inertia frame, and suppose that they move almost
along the two sides of the light cone, i.e. with velocities close
to the speed of light. This occurs when energies of the two
colliding particles are large. Moreover, the momentum trans-
fer is assumed to be small compared to the energies of the
colliding particles. As a result, there is almost no deviation
of the worldlines from the straight lines. In this situation the
collision time is very small. Roughly it may be estimated as
1/A, where A is of the order of the total energy in the center
of mass reference frame.

We may take as dynamical variables of the effective theory
the Wilson lines along the world trajectories of the colliding
particles, i.e. along the sides of the light cone. Within these
Wilson lines integration is restricted by the time of collision.
The two Wilson lines depend on the remaining two coordi-
nates that determine the sighting distance of collision. This
way we come to the effective two-dimensional theory. The
leading terms of the effective action for the Wilson lines may
be fixed by dimensional reasons up to unknown coefficients.
In order to determine the latter we consider the ultrahigh
energy case, when the collision time is so small, that inside
the considered Wilson lines the gauge field does not have
time to change. Therefore, it can be thought of as constant.
In this limit the considered effective action should be reduced
to the original action of pure gauge theory. This requirement
fixes the mentioned constants up to a certain ambiguity.

In the resulting theory the Hubbard—-Stratonovich trans-
formation introduces the new field dual to the Wilson lines.
This field may be thought of as the field of reggeon. The direct
check shows that this way the effective action of Lipatov is
reproduced.
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Now let us come back to the consideration of Einstein—
Cartan gravity. We assume that the background metric is flat,
and the gravitational excitations appear only as interaction
between the colliding high energy particles. As for the case
of QCD, the latter move along the two sides of the light
cone in the center of inertia reference frame if the momen-
tum transfer is small compared to the total energy. Next, we
repeat all steps of the above construction. Now the spin con-
nection, whichisthe SO (3, 1) gauge field replaces the SU (3)
gauge field. The vierbein may be considered as translational
gauge field. Therefore, in the effective 2D theory the dynam-
ical variables are the two types of parallel transporters: of
the group SO (3, 1) and of the group of translations. Again,
dimensional reasons allow the reasonable choice of the lead-
ing terms in effective action, while the coefficients entering
this action are fixed comparing it with the Palatini action.

Thus we choose the following dynamical variables. The
2D components of the gauge field w; (x ™, x 7, X1 ) € s0(3, 1)
(i = 2,3) and the extra so(3, 1) fields wy (x, x™, X1),
w_(xT,x™,X,) that originate from the light cone compo-
nents of the original 4D spin connection. It is assumed that
metric is close to the flat one, and by the light cone compo-
nents we understand the light cone components in the unper-
turbed metric of Minkowski space. This means, in particular,
that the world trajectories of light only approximately are
along this “light cone”. We start from the Palatini action

S = —mdTr /d4x leletel G 3)

where G, is the field strength, m p is the Plank mass. In
order to write down the classical equations of motion that
are the part of perturbative expansion (see below) we pre-
fer to use the representation written in terms of the vielbein
¢ without using its inverse e/, . The corresponding form of

"
Palatini action is:

2
m
] = 7” / d*x M7 &pcq €6 e (D). @)

We chose the 4-vector n* = (1, 1, 0, 0) and denote 1 =
(1,0, 0). The light-cone notations are:

_ x0 — x! + x0 +x1
X =x4 = , Xt =x_= ,
T2 V2
XL =(0,0,2% x7). ©)

As it was mentioned above, it is assumed that metric field
guv 18 close to its Minkowski form diag (1, —1, —1, —1).
Then vielbein e may be chosen close to diag (1, 1, 1, 1) by
an appropriate so(3, 1) gauge transformation. Then nonzero
light-cone components of unperturbed g are g7~ = ¢+ =
—g?? = —g3 = 1, while nonzero light-cone components
of unperturbed vielbein e/ are eo+ = efr = 1/4/2, ey =

—el = 1//2, e% = eg = 1. We rewrite action in the light-
cone coordinates as follows

S = —m%Tr /d4x |e|ege£G?jb —m3Tr /d4x |e|egengg
—2m3 /d4x lele®el Goi i, j, k,1=2,3;a,B,y,8 ==% (6)

or, equivalently, as

2
m ..
_ P 4 ijpo c d ~ab
S = 2 Tr fd X e Eabed € € Gl-j
2

m
+TPTr /d4x PP ¢ pa ef, efi Gig

+TP /d4x £ eubed e; ef, Gyi
i,j,k,1=2,3;a,8,y,6 ==. @)

The direct dimensional reduction 3 + 1D — 2D works
as follows. We should consider the 3 4+ 1 D space-time, in
which the coordinates x* belong to the interval 0 < xT < A,
where A = % and A is the parameter of the dimension of
mass, which is supposed to be much larger than the typical
energies of the virtual gravitational excitations radiated and
absorbed during the scattering process.

In the effective 2D model instead of the algebra elements
w+ we operate with the group elements of the original 4D
theory. Wilson lines taken in vector representation are:

A
T.(x1) = Pexp (/ a)()?l)dfr)
0

A
T (x1) = Pexp (/ w+(fu)dr) . 8)
0

Equation (8) represents elements of Lorentz group while
the following expressions represent elements of the group
of translations:

A
F(x1) = f e Fydxt
0

A
Fbxy) = fo b (F1)dx 9)

F and 7 together form the elements of Poincaré group. We
denote

—_ o _wta _4¢"—d

q9 =4+ NG /2

q+=q7=f10—41 _
V2 V2

g1 =10,0,43,94)

With these notations

guxt =q°x° —Gi =g xT +q_x" — (G1XD)
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For the dimensional reasons the possible effective action of
the mentioned 2D theory may be written as

S, = m%; / d*3, <8+_ip Eabed ez F¢ DiT_f_‘b
6TV eapea ¢ F DIT). (10)

Here a,b,c,d, p,o0 = 0,1,2,3 whilei = 1, 2. The coeffi-
cient in front of this action is to be fixed comparing it to the
Palatini action in the ultra-high energy regime, when w does
not depend on x*. The dimensional reduction also assumes
smallness of the product wi A, therefore Eq. (7) may be
rewritten with the help of 7. The integration over xT is
effectively reduced to the integration over the intervals of
lengths 1/ A because we describe the high energy scattering
in the center of inertia reference frame, and the scattered par-
ticles have such a large energy that during the collision the
fields w*, w, have not time to change. 1/A is of the order of
the collision time. The uncertainty relation assumes A ~ /s.
The discussion of the different approaches to the description
of this dimensional reduction may be found in [140,141].

Because of the large value of A we neglect the dependence
of w on x*. The value of A is of the order of magnitude of
/s while the typical momentum transfer is /—f < /5.
Therefore, we neglect in Eq. (7) the terms containing A in
the denominator. As a result we are left with

S = m} / d*x &7 egpeq e el (Dia)‘ib)
—i—m%, / dix it Eabed €5 eZ (Dia)ih> , (11)

where D; is the covariant derivative with respect to the 2D
gauge field.

The equivalence between Egs. (10) and (11), when w, e
do not depend on xT while w+ A K 1, can be demonstrated
by the following calculation. We have for the first term in
Eq. (10) to the leading order precision:

m%,/dsz’frﬂp Eabed ez D,'be]-—i

A
o 4 A = (L )dxt - _
m%;/dle8+ i0 g bed ez Di@fn ®~ (X1)dx / € (R )dx™ =
0

A A
m3 fdzzleﬁ'ﬂ Eabed / dx™* / dx~ 4 Diw ™" (X )e (1)
0 0
=m3, fdzildx*'dx_a'*'_i” Eabed egDiw_‘“be”_. (12)
Calculating similarly the other term of Eq. (10) and summing
them together we come finally to expression of Eq. (11).
This form of the action may be used in the framework of

the 3+ 1 D theory for the bare description of the high energy
scattering at s /(—) > 1, and by 7 we should understand

Tote) = To x| Tl

=Pexp</

—00

o0
o G x, ﬁ)d}#)
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T (x1) =T (x",x1) . T-(xtxp)
xt=0
0
— Pexp (/ a)+(x+,f_,5c'l)di_). (13)
—0Q

Parallel transporters in vector representation are denoted by
a

[Q+(.x+, -x_a xl)] b

)C+

- [P exp(/_ w_(i+,x_,)?J_)di+>]1

CRESS

- [Pexp(ﬁ

SO(@3, 1) indices are lowered and lifted using metric tensor

w+(x+,;z—,m)d;z—)]: (14)

o0

a -
nap» of Minkowski space: [Qi]_b = Qibn,;b. In addition to
the vierbein eZ (x) thatis transformed via the SO (3, 1) gauge
transformation (it acts on index a) localized at x we define
quantity transformed via gauge transformation at (minus)
infinity:
ESGt xm x) = e (et x T 3D (T, x T x D nan
EC(xTx7 x) = e (xt x7, ¥R (e, X7, X)) Nab-
(15)

Besides, we define the translational parallel transporters
along the “’light cone”:

FLGw) = F0T )|
o0
fi(xi)u):/ ES (T, x, ¥dxt
o0

Fow) = POt

Fe(xt, xp) =/

—00

o0

E¢(xT, %7, X1)dx™. (16)

This is the basic idea of the present paper: we consider
the 3 4+ 1 D theory, and take as a first approximation to the
effective action the action of the reduced 2D theory, where
instead of the group elements of Eq. (8) the Wilson lines of
Eq. (13) are substituted. Next, we take into account an extra
exchange by the virtual soft gravitons and thus come to the
effective action a la Lipatov.

Let us recall that the considered theory is gauge theory
of SO(3, 1) group and also the gauge theory of the group
of translations. Basing on an analogy to QCD we then sup-
pose that in the center of mass reference frame the scattering
amplitude of two gravitating particles (for the case when
s > |t], in eikonal approximation) contains the leading fac-
tor

D) ~( [ @xiét i [Frn @ T - 1]
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| F-(0) & (T-0) — D |R(x1)) . (17)

e,

Here g is the momentum transfer orthogonal to the axis of
collision while averaging is over the gravitational fields e and
o. This expression contains the parallel transporters (both in
the group of translations and in the SO(3,1) group) along
the light cone. These parallel transporters should appear in
Schwinger representation of the theory as the sum over tra-
jectories of the colliding particles. In Eikonal approximation
the sum over trajectories is reduced to the trajectories along
the light cone. The appearance of the parallel transporters
follows from gauge invariance. It is supposed that like in the
case of QCD they give dominant contribution compared to
the form-factor R that accounts for the other contributions. In
Eq. (17) we use symbols ® and & to represent symbolically
that various combinations like 77, 7F, FF are present.
The corresponding indices are contracted with the indices
of R and with the indices corresponding to the states of the
colliding particles.

3 Candidates to the role of gravitational reggeons

Below we will show, that the effective action similar to
the one proposed by Lipatov appears, when we consider
the ordinary Palatini action S°[] supplemented by the 2D
model introduced above. We justify this procedure as fol-
lows. Bare effective 2D action for the high energy scattering
is the action of the deduced above model. We consider the
fields 7, F4 as candidates to the role of bare gravitational
reggeons. Exchange by these fields between the gravitating
particles during the high energy scattering substitutes the
exchange by multiple ordinary gravitational excitations. This
occurs because the scattering amplitude of two particles in
high energy scattering is proportional to the correlators of
the parallel transporters along the light cone (recall that 7
is the parallel transporter of SO (3, 1) group while F is the
translational parallel transporter).

Interaction of quantities 7, .+ with the ordinary gravi-
tational excitations (with Palatini action) results in modifica-
tion of the bare propagators. We propose the hypothesis that
the corresponding dressed propagators are actually the prop-
agators of proper gravitational reggeons. The direct check of
this hypothesis requires the investigation of the asymptotic
form of the corresponding propagators as well as the other
conditions of reggeization. This remains out of the scope of
the present paper.

Here we present the construction similar to that of QCD
that has led to the Lipatov effective action for the reggeons.
We obtain corrections to the above mentioned effective two
dimensional action due to interactions with the ordinary vir-
tual excitations of vielbein and spin connection. In order to
take into account these corrections we add the action of pure

gravity S©[w] to the action of the 2D model of Eq. (10).
At the same time in the latter we substitute the covariant
derivative D; by the ordinary one, which means that we
fix the boundary conditions with the vanishing values of
wi (oo, x7, X 1) and w; (xT, £00, X)) fori =2, 3.

Since the effective two-dimensional model appears in the
dimensional reduction of gravity, it is already included into
the action S©. Therefore, we cannot simply add one to
another. We should add an additional prescription, which
allows to avoid overcounting in the further perturbative cal-
culations. The prescription for this avoiding is actually very
simple. Its essence is the understanding that our candidates to
the role of the reggeons appear as the classical solutions of the
equations of motion. Namely, we will see that the theory with
the action that consists of Eq. (10) and $® may be rewritten
in terms of the auxiliary fields .A and £ that are in certain
sense dual to spin connection and vierbein respectively. In
the presence of nonzero A and £ the classical solution for
the ordinary spin connection @ and e is highly nontrivial, it
depends in a complicated way on A and £. The most natu-
ral way to construct the perturbation theory assumes that the
perturbations around this classical solution are considered.
However, this procedure would lead to the double count-
ing the degrees of freedom. Therefore, in order to avoid the
overcounting we should build the perturbation theory around
o = 0 and flat vierbein e corresponding to Minkowski space.

We consider the two sets of variables: the non-local 2D
fields 7+ (x 1), F+(x 1) and the local fields w(x+, x~, x1),
e(x™, x~, x1). We suppose, that the local fields tend to the
trivial values at infinity. This means, in particular, that e
entering Eq. (10) is trivial being defined at (xy,x_) =
(—00,0) and (x4,x_) = (0, —00). Correspondingly, the
transverse covariant derivative becomes the usual derivative.
Thus we consider gravity with the following modified action

Slw] = S°[w]+m3, / d?x1 &7V eapea 82
X (AT DFL () + 4T )FE (1)) (18)

In the following we will use matrices A? that are the gen-
erators of the SO (3, 1) group. (The matrix proportional to
unity is added to the set of the generators.) We normalize
those matrices of the generators in adjoint representation in
such a way that Tr A4 AL = 59 Next, we introduce the new
variable A* = A; = A%2* € 50(3,1) ® s0(3,1) + C.
Here the components A% are the complex numbers.

Using expressions of Egs. (15), (16) in the following we
omit the SO(3, 1) indices for simplicity. We assume that at
x— = %00 and at x4 = o0 the vielbein is trivial e}, = &j;.
Considering SO(3, 1) gauge transformations 4 we assume,
that 7 — 1 at x* — Z-o0. The original theory is invari-
ant under reparametrizations x — X such that x = x at

x* — +00. However, in the theory with action of Eq. (18)

@ Springer
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invariance under reparametrizations is broken by the choice
of the straight lines going along the axis x* and x~. To
demonstrate this it is enough to consider modification under
the reparametrizations of Tj‘:”’ and F ;. To do this we write

Ti(x",x1) = Pexp (f
Cy

T (xT,x1) = Pexp </ w,Ax)dx”) .

a)u(x)dx“>
(19)

Here contours C4 go along the line of x4+ from minus infin-

ity to plus infinity. Reparametrization results in x — x(x),
L ~ Voo ~

dx* = 2L 45V and wu(x) = gxiﬂa)v(x):

axv
95" xh
T (x",x1) = Pexp (/C+ axiucbv()z(m)a%dxp(x))
= Pexp (/ cbv(i)di”>
X(Cy)
T (xF,x1) = Pexp ( / d)ﬂi)di“) . (20)
xX(C-)

We see, that reparametrizations result in modification of the
form of C=: instead of straight lines we have certain curves
given by functions x (x). The similar modification appears in
expressions for 4. We also introduce the following nota-
tions for some operators of interest:

o0
®,(x",x1) = Pexp (/ a)_(x'*',x_,)?L)dx'*') -1

—00

o
®_(xt,x1)=Pexp (/ w+(x+,x_,)?J_)dx_) - 1.

—00

The partition function may be represented as follows
7 = / Dw, D eexp (iSO[w, el +im% / d’x1 877 eaped
oo
x[(/ dx* ¢S (x*, 0, x1) Q+(x+,0,xl)> 578,
—00
« (P effooo dx~ 0T (0,x7,x1) 1)(117
o
+(/ dx~ ei(o,x,xl)g_(o,x,n)> 829,
—0o0
« (P ef_oooo dxT o~ (xT,0,x1) 1)(117 ]
= const / DwD eDADE exp (iSO[a), el
—im%, /d4x8i_+0 Eabed T
x [5i - 5(x+)fi(x—,xL)]3;,’ai
x [ A% () = (T-(F,x0) = 1) 66:0)]

—im% /d4x8i_+" Sabed TT
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x [55 _ 8(x’)fi(x+,xL)]8g8i
x [A5 00 = (T x) = 1) 66e5)]
+im%,fd2)u_si_+a Eabed

o0
X [(/ dx+eﬂ_(x+,0,xj_) §2+(x+,0,xl)>

—00

00 _ _ ab
xégai (Peffoo dx” ot O0x"x1) 1)

— </ dxT e (xT,0,x1) Q_(O,X,XJ_)>

—0o0

X 5§8i (Peffooo dxt om0 1>ab ])
= const / DwD eDADE exp (iSejf[a), e, A, 5]). 21

Here S.rr = S%w, e] 4+ Sina is an effective action for the
interaction between auxiliary fields .4 and £ and virtual gravi-
tons:

Serflw, e, A, €] = SOw, e]
—m%Tr / d*xe"T eupeq 8L ES 91 1 AW
—m3Tr / d*xe"™ 7 eapea 84 EC 31 1 A
+m3 / d*xe" 7 eapea 8L 8(xT)D 1 DUE (x)
+m% / d*xe" eapea 8 8(x7) 81 PUES (x)
md / el eapeq 88801 ADFE (x)
+m% / d*xe" T eapea 84 8(x ) 3L AP F(x)  (22)
which can be also represented as follows:
Serflw, e, A, €] = $°(w, e]l—m3Tr fd“xe"**” Eabed

x 88 €S (xt, X7, x1) AL AP, T, x0)
—m%Tr /d4ng—+“ Eabed 8 € (xT, X7, x1) 81, AP (T, x T, x0)
mp 4o i d
+ > /d xel=te Eabed O Ox+ 01 i
S T (00 o oy ab
x (Pe' Sl dXT 0 (T X7 xy) Pt fA+ dit o= (T x ,xl)) Eﬁ(O,x’,iL)
mp 4 i d
+ > /d xel=te Eabed Og Ox- 01 i
S - 00 o = ab N
x (PE' Jro di 0t (xT X7 X)) P _/X, di~ ot (xt, 8 .x)) ) gi(x+’ 0,%1)
m> :
+ TP /d4x8’7+6 Eabed Sg Oy +
ot
x (/ dit ES(EY, x, x1)
—00
- _ ab b R
— /+ dxt Ei(xﬂxixl)) 91 i A0, x7, %)
X

mp 4 i d
+ 7 /d xe! Tt Eabed 60 ax’
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x (/ di~ ES(et 5, x1)

o]

- /j di~ Ei(x*,i’,xl))ab 9, A% (0,5 ). (23)
The fields coupled to the Wilson lines
AT, ) = ATO0, 27,50, A (T F) = A" (T, 0,51)
satisfy the constraints
AT =94 =0

which guarantee, that A* does not depend on x*. The same
refers to

YT i) =ERO0.xT F), £ TR =€ (0,30,
which satisfy the constraints
3.8 =09.6:=0.

At the same time the kinetic term contains A and £ rather
than A and £. We obtain that in the kinetic term the
field AT (xT, x~, x1 ) depends on x ™ while A~ (x, x 7, x)
depends on x . It is worth mentioning, that the form of the
action for QCD presented in [7,19-26] contains the kinetic
term, in which the reggeon fields depend only on three coor-
dinates: the “—" component depends on xT, x; while the
“4” component depends on x —, x| . The experience of QCD
[104] shows that we may require that in kinetic term .4 and £
obey the above constraints. In the following we will assume
therefore A = Aand € = €.

4 The time reversal invariant form of effective action
and the classical equations of motion

In the following calculations we use the simplified notations
for the ordered exponentials. In these expressions indices are
omitted typically, but they also may be written explicitly if
necessary.

x*

O(wt) = Qj:(x""x_,xj_) = Pexp (/

—0o0

w4+ (x) dxi)

(24)

and

OT(wi) = fli(x+,x_,xj_) = Pexp </ w4 (x) dxi) .
s

(25)
We also denote
(@) = 5 (Jup)" (26)

by J in the exponential we denote expression proportional
to the generators of Lorentz group:

b 1
(Je)” = =3 (65 8b — b 5;). 27)

Seff = SO[w] + S;q is an effective action for the inter-
action between the reggeons and virtual gravitons, and

Sind = —m> f d*x &1 ggpeq 88 €S 9 AP

- m%, d*x €7 eupea 85 EC9; Aj’_b —

2

—md [ dhx e egpeq 88 (a_ 0“”(@_)) 0

2

—m3 [ d*x e egpeq 82 (3+ O”b(w+)) 3.8

2
+mp

— — — — —

A3 67 g0 8 <e’; Ox C(a)+)> 9. A
( k

—l—m%, d*x & eupea (Sff e~ Oy C(aL)) 8,-A‘j_b.

(28)
We make the further modification of Eq. (28):
Sind = —m% / d*x 71 gapeq 89 EC 0 A
_m%) /d4x 60 eapeq 89 € 5, Aib
—m> f dhx e egpea 88 (02 0 (w)) B85

—m? [ d*x 6777 £gpeq 88 (a+ O”b(w+)) B

2
mp
+2

x (¢4 0k (@) + (OT) k(@) € ) A

d*x &7 eped Sg

I’ﬂ2 .
+ TP /d4x git—o Eabed (Sg
x (£ 0 “@-) + (") k(@) ek ) A 29)

The first two rows of this expression repeat the first two
rows of Eq. (28). The last two rows of Eq. (28) are modi-
fied. Namely, in the previous sections we considered basi-
cally the vierbein eé (x) transformed via parallel transporter
that connects point x with x* = —oo. In scattering theory
there is no difference between x* = —oo and x* = +o0,
and we may repeat derivation of effective action taking as
a reference x* = +o00 instead of xT = —o0, so that the
field & 1’; will be transformed under the gauge transformations
defined at x* = 4-00. Both versions of effective theory are
not invariant under time reversal. In the similar situation in
QCD we proposed the form of Lipatov effective action that
is explicitly invariant under the time reversal. Such an effec-
tive theory is constructed combining the two reference points
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x* = 400 and x¥ = —oo. Similar combination has been

applied above for the modification of the last two rows of
Eq. (28), which results in the last two rows of Eq. (29).

It is worth mentioning that looking at both Eqgs. (29) and
(17) one may recognize the dominant contributions to the
scattering amplitude as the ones coming from the propagators
of £ and A. In fact, just as in the case of QCD we may replace
in leading approximation the exchange by multiple quanta of
w and e by the exchange by the single quanta of £ and A.

Now we can consider equations obtained via variation of
Egs. (4) and (29) with respect to 4. We have for the “bare”
action

Swr S = _m%) / d*x ehvPe Eabcd (D//«e,f)) eg (8 wgb)'
(30)

In the absence of the induced part of the action extremum
of the action is achieved at the value of spin connection that
is given by its Riemannian expression through ej. Now we
have the extra term in the action. Its variation is given by

8wy Sind

2 4. LitFd b d
=—mp /d xe'=F 8abcd( vy (@) 8 (0x)! ]> HEL
2
p

3

4 s iTHd . R ant
/d x" &' T eapea Ugg, (6, [x'T7)

x il (x) 8; A% / dx®el O ()

2
m . ~
0 [ A T eupeq Uy, (5, 61

x il (x) 8; A% / dxt 07" p(wy)el. (31)
In Appendix A it is shown that

1
EOT(wi)u[a O(ws)p?
~+00

=%Pexp(‘/xi

+

Xexp (/X w+(x) dxi)ﬂ]b_ (32)

b
Uaﬁa

w+(x) dxi)

alo

Tensors U, UT may be calculated in the similar way. How-
ever, we actually do not need them because the corresponding
terms may be neglected. In our theory the finite cutoff is to be
used for the integration over x. Its appearance reflects the
fact that the considered interactions occur during the short
time distance of collision. We are left with the estimate
/ Tkt~ L

N J5
The term containing this factor gives negligible contribution
to the scattering amplitudes in case of multi-Regge kinemat-
ics when 4/s > +/]t[,and we omit them in classical equations

@ Springer

of motion. This results in the following system of equations
(for the details see Appendix A)

(D[fe[+c1> e - (DUe[—CJ) i+ (DHE[—C]) e = 0.
d d d
(D) ! = (Duely) " = (Dues) e

1
= 26" eany g (Uféb'(wi)) %E]

1o,
—5"san i (U;‘;bl (wi)) 9,1, (33)

Here i, j = 1, 2. This is the system of 24 equations for 24
components of spin connection. Notice also that the left hand
sides of these equations are expressed through torsion tensor
T3, = Dyvey, only. Torsion has to be calculated via solution
of Egs. (33). We do not give the precise solution of this equa-
tion, which is not important at this level of understanding of
the theory. It is worth mentioning that counting the number
of degrees of freedom allows to understand, that Egs. (33) fix
all components of torsion unambiguously. In turn, the spin
connection is given as a sum of Riemannian part and the
contorsion. The latter is expressed through torsion.

Notice, that in the usual Einstein—Cartan gravity torsion
appears when the quantum corrections are taken into account,
and it is equal to zero at the classical level. The dynami-
cal torsion should have an effect on the Regge trajectory of
graviton. It is more important, in our opinion, that the multi-
Regge kinematics and exchange by the reggeized gravitons
provides the non-zero torsion already on the level of classi-
cal equations of motion. This effect is to be enhanced at high
energies.

Palatini action may be represented as follows

S = —mi,/dx|e| (R — %Tz + ﬁsz + %cf) .
Here R is Riemannian curvature while 7', S and ¢ are the
irreducible components of torsion (see Appendix A). Now
variation of this action with respect to vierbein gives us the
classical equations of motion for the latter. We should also
take into account variation of the induced part of the action
(the last two rows in Eq. (29)). Altogether we obtain equa-
tions, in which the derivative of the field A plays the role of
matter, i.e. the source of gravitational excitations.

At the next step we should develop perturbation theory. In
order to avoid the overcounting of degrees of freedom we may
develop it around the state with @ = 0 and e{ = §; as men-
tioned above. However, if we want to consider perturbations
around classical vacuum with wqs[E, Al and e jq5[E, Al
given by the solutions of Eq. (33) (and the corresponding
classical equations for the vierbein), then we are to propose
the scheme that allows to avoid over-counting of the degrees
of freedom that lead to formation of the expected reggeons.
Recall that the induced term of the action of Eq. (29) itself it
obtained after the dimensional reduction of Palatini action.
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By construction it represents bare Palatini action taken for the
particular configurations of gravitational fields correspond-
ing to reggeons supplied by the interactions with gravitons.
These configurations are assumed to be associated with the
classical solutions for fixed A and £. In the similar situation
in case of QCD we modified the kinetic term for the fields
of reggeons. Now we propose the similar mechanism. More
explicitly, we need to compose the effective action

Serrle, o, E, Al = Sole, o] + Sinale, w, &, Al
+ASinal€, Al

Here Sy is Palatini action, S;,4 is given by Eq. (29) while
ASinal€, Al is chosen in such a way that

Sery |ectasl€. Al @ctas[€, AL €, A]
= So[ectas[€. Al @01as €. All.
For this purpose we chose
ASinal €, Al = = Sina|ectas €, Al wetas €, AL E. A

This results in modification of kinetic term for the fields £ and
A in the effective action (the term that does not contain e and
). If we would not make this modification of the kinetic term
for the reggeons, the perturbation theory developed around
classical solutions for e and @ depending on € and A would
give the doubled SO which reflects that the degrees of free-
dom giving rise to (the expected) reggeons would be counted
twice. In case of QCD [104] this procedure leads to doubling
of the kinetic term for the reggeons. In the present case the
corresponding modification may be more valuable.

Notice, that we did not calculate yet the dressed propaga-
tor of gravitational Reggeons in our theory. Recall that there
are two types of the corresponding fields £ and .A, which
are the candidates to the role of the gravitational reggeons.
Those two fields are obtained as a result of the Hubbard—
Stratonovich transformation. They are dual correspondingly
to the Wilson line composed of the SO(3, 1) connection,
and the parallel transporter of the group of translations. By
“dual” we mean here that, .4 and £ appear as auxiliary fields
that allow to replace the term with the product of transla-
tional parallel transporter and the SO (3, 1) Wilson line by
the terms linear in the parallel transporters multiplied by A
and & respectively (see Eq. (21)). We expect that taking into
account exchange by the mentioned reggeons (when their
propagators are dressed by loop corrections) in Eq. (17) in
our effective theory the behavior similar to that of Eq. (1) will
be reproduced. The perturbative calculations here, in princi-
ple, are similar to those of [51-58]. But they are much more
complicated. We postpone these calculations to the future
publications. When spin connection together with 4 are inte-
grated out, we will be left with the theory, containing vierbein
and £. Correspondingly, the scattering amplitude of Eq. (17)

will be expressed through the dressed propagator of £. As
expected, it will dominate the scattering amplitude in multi-
Regge kinematics. Then in the reduced theory certain com-
ponents of £ will play the role of the gravitational reggeon
of [1-7].

5 Conclusions and discussion

The Regge Field Theory (RFT) calculus has a long history.
The RFT is a useful tool in the study of high-energy processes
and calculation of corresponding amplitudes. It works rea-
sonably well in an analysis of the high-energy amplitudes and
in the phenomenological description of experimental data
(see [108-139], for example). The idea of [93-96] to gener-
alize Regge calculus to quantum gravity is natural. Modulo
construction of the self consistent theory of quantum grav-
ity it can allow us, in principle, to consider the scattering
processes with the exchange by gravitons. It was the idea of
Lipatov [1-7] to write an effective action in the way similar
to that of QCD. This allows to formulate the problem on the
level of an effective Lagrangian with the reggeized gravitons
included. It is worth mentioning that the effective action of
[1-7] is not completely similar to the one of [19,20], where
the same was done for the QCD.

The main reason for that is that the ordinary Einstein grav-
ity is not a gauge field theory with independent gauge field,
and we cannot directly generalize the results of [19,20] to
the case of Einstein gravity. The Riemann—Cartan-Einstein
formulation of gravity contains an independent gauge field of
SO(3, 1) group. This allows us to guess the SO (3, 1) gauge
invariant effective action for the high-energy scattering. It
includes interaction of ordinary gravitational fields (vierbein
and spin connection) with the fields that may be considered as
candidates to the role of the reggeized vierbein and reggeized
spin connection.

First of all, based on heuristic arguments related to the
dimensional reduction we propose bare form of effective
action for the high energy scattering in Einstein—Cartan grav-
ity, see Egs. (23) and (29). The overall procedure is similar
to the one proposed in [104]. Namely, we consider the effec-
tive two-dimensional description of high energy scattering
as a model operating with the Wilson lines along the light
cone (corresponding to the SO(3, 1) connection) and trans-
lations along the light cone (corresponding to the integral
of vielbein). The dimensional reasons and requirement of
locality (in transverse coordinates) allow us to guess the par-
ticular form of 2D effective action (see also [81,82]). Our
candidates to the role of reggeon fields appear as a result of
the Hubbard—Stratonovich transformation. The similar pro-
cedure performed in [104] (see also [140,141]) has led to
the Lipatov effective action for the high energy scattering in
QCD.
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In case of gravity the direct construction of this type fails
to give the reasonable perturbation expansion in the resulting
theory. It appears that the classical equations of motion in the
presence of the reggeons contain unpleasant singularities. As
a result the lowest order terms in perturbation theory do not
work properly. The problem is solved if the cutoff is added to
the integral along the light cone. Since we deal with the multi-
Regge kinematics, the corresponding terms are proportional
to ~ \/LE These contributions may be disregarded in the limit
5> |t].

It appears that due to the interaction of ordinary fields with
our new effective fields .4 and € torsion manifests itself in the
considered theory already on the level of classical equations
of motion. Let us recall that in the original theory without
these effective fields torsion vanishes on the classical level.
The contortion tensor is determined by A and £ (up to a
certain ambiguity) if we solve equations of motion perturba-
tively. Still, we did not calculate directly the propagators of
A and &, and did not clarify behavior of the simplest scat-
tering amplitudes. Nevertheless, we conclude that the effects
of torsion in high energy scattering can be enhanced due the
exponential growth of the graviton propagator with energy.
This is an additional important lesson of our calculations.
In the effective theory of high energy scattering in Einstein—
Cartan gravity we have the effects of dynamical torsion due
to the interaction of target and projectile.

Solution of the equations of motion can be performed in
the framework of perturbative scheme. One can solve equa-
tions of motion for both spin connection and vierbein step
by step. This provides necessary precision of the effective
Lagrangian. Concerning the intended graviton’s reggeiza-
tion, we notice that certain requirements for the reggeization
are satisfied, see also discussion in [25,26,51-58]. Never-
theless, the reggeization in the effective action formalism
can be directly proven only after the calculation of the cor-
responding propagators of .4 and &, which is not done yet
in the present paper. In general, this task can be performed
similarly to what is done in [25,26] for QCD. This task is
postponed to the future work.

To conclude, we propose an effective action of the high
energy scattering in Einstein—Cartan gravity. It allows, in
principle, to calculate various amplitudes with the exchange
by multiple gravitons. Construction of this effective the-
ory has been performed on the basis of heuristic arguments
related to the dimensional reduction, on the basis of natu-
ral requirements the needed theory is to satisfy, and on the
basis of an analogy to the Lipatov’s effective action of QCD.
Since we did not present the direct proof that the proposed
effective action indeed describes high energy scattering in
quantum gravity, it should be considered as a hypothesis to
be checked by the further direct calculations. It is also worth
mentioning that the quantum theory of gravity with Einstein

@ Springer

(or Palatini) action does not exist. The simplest action linear
in curvature has to be supplemented by various constraints
and/or extra terms in the action in order to determine the
well-defined quantum theory. Therefore, our construction is
intended to be a part of a certain effective description of
the true self-consistent gravity in its domain, where the term
linear in curvature is relevant, while the extra terms in the
action are not. Thus we are speaking about the energies of
the processes much smaller than the Plank mass. This does
not contradict, however, to the requirement that s > |¢| in
these processes.
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Appendix A: Classical equations of motion for torsion

We consider equations obtained via variation of Egs. (4) and
(29) with respect to w4. We have for the “bare” action the
variation given by Eq. (30)) while for the induced part of the
action the variation is given in Eq. (31)). Tensors entering
these expressions are defined as follows

5/dxi <8iO(a)i)ah) - /dinc’jﬂa s’ (Al)
while
S/dJCjE (eljE Okc(wi)) = /dxiei O “(w+)
x / dx O, V1 s0f () (A2)

and

5 [ axt (07 o) &) = [ (07 siww) o)
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/d[x ]iU o T 8002 (). (A3)

Tensor U can be calculated as follows. We have

+00
= §Pexp (/ wi(x)dxi) b
=00 xj: a

- SfdxiOT(wi)aa 805 O(wsi)p”

= | dxTPex ( o +
= ) w+(x)dx
xj: ao

502" |

+
X
XSa)iﬁexp (/ w4+ (x) dxi>ﬁ b,
—00
(A4)
‘We obtain
1 7 b
Uaﬁa = 50 (0+)afa O(w1)p]
1 +o00 N
= EP exp (/xi w+(x)dx )a[a
x:t
Xexp / wi(x)dx*) . (AS)
( -0 )ﬁ]

We rewrite the above mentioned expression for the variation
of induced action as follows:

8wy Sina = —mp / d*x e sabcd( o (wi)S(wi)“d') hES
m%, 4 1 JiFEd £
+7 d’x e Sabchﬁg(X , [T

x 8wy (x ) 0; Aab/ ]j{: O “(w+)

2

m . ~
+7P/d4X’ T eapeq Ups, (F, [x'T5)

xdwll (x') 8 A% / dxE 0T (wy)ek. (A6)
The second current in this expression contains contribution
proportional to |’ fooo ele dx™*. Actually, in our theory the finite
cutoff is to be used for the integration over x*. It appearance
reflects the fact that the considered interactions occur dur-
ing the short time distance of collision. We are left with the
estimate

/ ko4 1
el dx™ ~ —.
NS Vs
The term containing this factor gives negligible contribution
to the scattering amplitudes in case of multi-Regge kinemat-
ics when /s > /|t], therefore we do not take into account
the second currentin Eq. (31) in our further calculations. This
gives

Swi S"”d = _mZP / d4x (Eiiq:d (jcui:Fd)cl di )(S (a):t)cldl s
(A7)

where
(Jwitd)erd, = €abed (Ufﬁi1 ((U:I:)) 0;&

In order to construct general solution for these equations
we will consider the complete set of equations, the first equa-
tion is obtained after the variation with respect to w-:!

|+ d
g'*Te <€c1dlcd (D[ie;]) e, —

i+Fd
=¢ ® (.]a)i:Fd)Cldl'

1
5 fardied (Dries;) ei)
(A8)

The following system of equations can be obtained (here
i,j=12):

c
€j — Ecidyed (D[j€¥]) e;

—&cidyde (D[ie‘f]) ¢S

= (JwiF e d

ecrdred (Drie)
_(jquii)cldp (A9)

Another system of equations is obtained after variation with
respect to w; withi =1, 2:

"% gapea (Dpes) el 8 (wi)® =0, (A10)
which can be also written as
e eapea ((Duﬂ’i]) el = (Dyjec)) el + (Drsety) 63’) =0.
(A11)
Inorder solve Egs. (A9) and (A11) simultaneously we rewrite

Eq. (All) in a different form and come to the system of
equations:

Eabed (D[jeij)e — Eabed (D[/ )€+ + €abed (D[Jre J) ;!:0
— Eabdc (D[z ,]> €5

—eamai (U4 @) 0585

gabed (Dyie ;]) — Eabed (D[, ¥])

= €aibycj ( @b (wi)>

This expression may be simplified further:
(D[jegf]) e — (D[je[_c]) i]—i- (D[+e[_cl> e;l] =0
g d d d g
(D[ie[;]) ej] — (D[je[;]) el.] — (D[ieg]) e;:]

1 ) .
= 36 ean sy (U @) ) 0:EL

1

_Egahcdga]blfi ( albl(a):t)) ajgip

The left hand sides of these equations are expressed through
torsion tensor 7,7, = Dyyej,; only. We also denote

(A12)

d
T.pvp, = gpa O’ndCTU;l,

It is instructive to introduce the irreducible components of
torsion:

7‘;3 — T % SV — 60!/3//.1}7"0[/3“

I We denote here [ab] = ab — ba.
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and

1 1
qapp = Tapu + gfaﬁﬂwsv - E(Tﬁgom —Tu8ap)-

One can check, that the reggeon field £ appears to be the
source of the linear combination of all three irreducible com-
ponents of torsion.

Introducing the inverse vierbein, EY eZ = 53 , we obtain
the general form for the solution of Egs. (A12):

b b b
o =y, + Ky (A13)
Here ylj‘b is the torsionless spin connection of general rela-
tivity while K is the so-called contorsion tensor expressed
through the above introduced torsion:

vl = (o = co ) 2 (Al4)
Kf/’:_e;(TC“b—T“bC+T”C“>/2, (A15)
Cap® = EF E} 0ueSy, Tp© = EI Ef T (A16)

Torsion has to be calculated via solution of Egs. (A12). We
do not give the precise solution of this equation, which is not
important at this level of understanding of the theory.
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