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Abstract: We report a greater than factor of two improvement in the hadronic energy resolution of a

simulated Cherenkov calorimeter by estimating the energy with machine learning over traditional

techniques. The prompt signal formation and energy threshold properties of Cherenkov radiation

provide identifiable features that machine learning techniques can exploit to produce a superior

model for energy reconstruction. We simulated a quartz-fiber calorimeter via the GEANT4 framework

to study the reconstruction techniques in single events. We compared the machine learning-based

reconstruction performance to the traditional simple sum of signal and dual-readout techniques

that use both Cherenkov and scintillation signals. We describe why this game-changing approach

to Cherenkov hadron calorimetry excels and our plans for a dedicated beam test to validate these

findings with a fast, radiation-hard hadron calorimeter prototype.

Keywords: calorimetry; Cherenkov calorimeter; high-granularity; neural network; GNN; CNN

1. Introduction

The response of Cherenkov calorimeters to hadrons is vastly different compared to the
response to electrons. It displays strong non-linearity and rather poor energy resolution for
hadrons. For instance, the CMS Hadronic Forward (HF) calorimeter is comprised of fused-
silica fibers embedded in a steel absorber [1]. It covers the forward region (3.0 ≤ η ≤ 5.2)
where the radiation levels are measured in hundreds of Megarads. As expected, the
fused-silica fibers have shown good radiation tolerance, and fast Cherenkov signals make
the energy reconstruction free from signal pileup at the LHC. The HF has been working

well for the measurement of tagging jets from pp → qqH, where typically p
jet
T ≈ 50 GeV,

corresponding to E ≈ 500 GeV at η ≈ 3.0. On the other hand, lower typical jet energies
in the barrel and end-cap regions, well below 100 GeV, render the use of Cherenkov
calorimetry challenging outside the forward region. We explore ways of overcoming this
limitation for future experiments in this paper.

We used a Monte Carlo (MC) simulation to study the performance of a neural network
(NN) to reconstruct the energy of hadronic showers in a highly granular sampling ionization
calorimeter [2]. In hadron-nucleus interactions, a large fraction of hadron energy goes into
nuclear dissociation and becomes invisible. In the MC study, we viewed each hadronic
shower as a 3D image with a 2 × 2 × 2 cm3 pixel resolution and let the Convolutional
Neural Network (CNN) estimate the invisible energy based on the features of the “image”.
The CNN was trained with single charged pions of 0.5–150 GeV. The CNN trained in
this way was able to estimate the invisible energy and restore the response linearity to
single pions, electrons (0.5–150 GeV), and u-quark jets (20–1000 GeV), and it surpassed the
hadronic resolution attainable with a comparable dual-readout (DR) calorimeter [3]. We
used only the fast part of the signal (≤5 ns) to create these images that are mostly produced
by relativistic particles and the source of Cherenkov signals.
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In the following, we discuss salient characteristics of hadronic showers based on a
simple MC calorimeter setup (Section 2) and the performance of a NN in reconstruct-
ing the hadronic energy using Cherenkov signals in a highly granular fiber calorimeter
(Sections 3 and 4).

2. Characteristics of Hadronic Showers

Using Geant4 [4], we simulated hadronic showers in both a solid copper absorber and
a sampling calorimeter configuration with alternating plates of 17 mm copper absorber and
3 mm active material. We used the FTFP_BERT physics list to describe hadronic interactions.
The calorimeter was 1.5 m deep (8.8 interaction lengths) and 1 × 1 m2 in the transverse
plane. In the sampling calorimeter configuration, two active materials were chosen: silicon
plates to generate the ionization and quartz plates to generate the Cherenkov signals.
Neither the details of charge collection in the silicon plates and light collection in the quartz
plates nor the details of the readout electronics or photo-detectors were simulated.

2.1. Time Structure

The time structure of the ionization signals in silicon in the sampling configuration is
shown in Figure 1. Here, the time is defined as the local calorimeter time, t = tG4 − z/c,
which is corrected for the travel time of all particles along the z-axis. Three significant
features emerge: (1) a very fast signal (t ≤ 1 ns) due to pure electromagnetic shower and
prompt pions, (2) a semi-fast signal (t ≤ 5 ns) due to protons from the intra-nuclear cascade
process [5], and (3) a slow component (t ≤ 100 ns and beyond) due to electrons produced
by photons from neutron capture in Cu/Si. As silicon plates do not contain free protons,
no slow proton signal from the neutron-proton scattering is observed. We used very fast
signals (t ≤ 1 ns) in this part of the analysis.
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Figure 1. Time structure of hadronic showers in a sampling calorimeter composed of 17 mm Cu ab-

sorber with 3 mm silicon layer as active material. The time is the calorimeter local time, t = tG4 − z/c,

which is corrected for the travel time along the z-axis for all particles. (a) (t < 5 ns) is a zoomed-in

view of (b) (t < 100 ns).

2.2. Images of Hadronic Showers

The spatial distributions of particles in the solid copper absorber from a single 30 GeV
π+ are shown in Figure 2. Pions and protons display a clear vertex-track structure.
Positrons are produced in e+e− pairs following the gamma emissions from π0 → γγ

decays that are associated with the hadronic vertices. These pions, protons, and positrons
make up the fast and semi-fast components of the shower. Neutrons and gammas are
slow components and spread widely in the calorimeter. Electrons also spread widely.
Some electrons are partners of positrons from π0 decays, and many others are from the
Compton process of the widespread gammas. As seen in these images, the fast components
of hadronic showers provide a distinctive vertex-track structure for the network to utilize
in improved energy reconstruction.
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Figure 2. Images of shower particles for a single 30 GeV π+ in a solid copper absorber

(100 × 100 × 150 cm3): Slow neutrons and γs from neutron capture by nuclei spread widely and

form a fuzzy image (bottom right), while fast π+, π−, and protons display a clear view of hadronic

vertices and tracks (top left). The e+ (top right) and e− (bottom left) are shown separately. The e+s

arise mainly from the fast component of the shower in e+e− pairs by gammas from π0 → γγ decays,

whereas the e−s also arise from the slow component due to the Compton scattering of widely spread

γs in addition to counterparts of positions in the fast component.

2.3. Loss of Kinetic Energy in Hadron-Nucleus Interactions

Substantial kinetic energy is lost in hadron-nucleus interactions. As shown in Figure 3,
the average energy loss is 2 or 4 GeV in π+Cu interaction for 30 and 200 GeV incident
pions, respectively. The multiplicity of secondary hadrons from hadron-nucleus interactions
correlates with the lost kinetic energy (Figure 3c). The CNN likely recognizes this correlation
at each hadronic vertex.

2.4. Invisible Energy in Hadronic Showers

The lost kinetic energy becomes invisible and fluctuates event by event. Figure 4
shows the strong correlation between invisible energy and the number of hadronic vertices
produced in hadron-nucleus inelastic interactions in the form of fast ionization (<5 ns) and
Cherenkov signal in silicon and quartz plates. Thus, the invisible energy can be estimated
with good precision if we can count the number of vertices. The “image” of a vertex is easily
distinguishable: a point with outgoing tracks. We use Dynamic Graph CNN (GNN) [6] to
estimate the invisible energy in the energy reconstruction.
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(a) (b)

(c)

Figure 3. Loss of kinetic energy in hadron-nucleus interactions: (a) in the 200 GeV π++Cu interaction,

(b) average energy loss in π++Cu interactions as a function of π+ beam energy, shown in linear and

log scales, and (c) correlation between the kinetic energy loss and the charged pion multiplicity in the

30 GeV π++Cu interactions [2].

(a) (b)

Figure 4. Invisible energy vs the number of hadronic vertices in a sampling calorimeter: (a) with

ionization signal in Cu (17 mm) + Si (3 mm) and (b) with a Cherenkov signal in Cu (17 mm) + Quartz

plate (3 mm) for 30 and 200 GeV π+s. “Invisible energy” is defined as the difference between the

beam energy and the simple sum of the ionization signal or Cherenkov signal. “Hadronic vertex”

is defined as a vertex of hadron-nucleus inelastic interaction excluding neutron-nucleus interaction.

The energy scale of the signals was calibrated with electrons.

3. Analysis and Results Using GNN

We simulated a dual-readout fiber calorimeter (using GEANT4 with the FTFP-BERT
physics list). We reconstructed the energy of hadrons using scintillation and Cherenkov
signals by a simple sum of signals and the application of a GNN. The DR technique [3]
was applied and evaluated to form a benchmark as well. We used Dynamic Graph CNN
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(GNN) [6], as in our previous analysis [2]. Its new neural network module (EdgeConv)
incorporates local neighborhood information because it can be stacked or recurrently
applied to learn global shape properties. The GNN was trained to reproduce the incident
particle energy with a large set of simulated pions in the range of 0.5–150 GeV: training
(700,000), validation (100,000), and testing (300,000).

Cherenkov and scintillation fibers (1-mm diameter) were placed in a copper absorber
(2-m long) with center-to-center fiber spacing of 1.5 mm. The simulated light yields were set
at 100 and 400 ph/GeV for the Cherenkov and scintillation photons, respectively. Signals
from multiple fibers were summed to form a transversely segmented structure. In the
case of 2D, the segmentation was 1 × 1 cm2 in the transverse plane. In the case of 3D, we
segmented the calorimeter into 3 × 3 cm2 in the transverse plane and utilized the time
of arrival of Cherenkov photons to measure the z-position along fibers. The binning was
50 ps (about 2.5 cm), and the signal was smeared by a Gaussian distribution to evaluate
the effect of timing resolution. The response of the photo-detectors and readout electronics
were not simulated.

As shown in Figure 5, the 2D segmented calorimeter response reconstructed by GNN
is constant within 2% except for ∼10% deviation at the lowest energy of 4 GeV.
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Figure 5. Response of the calorimeter to 4–150 GeV π+: (green) the simple sum of the Cherenkov

signal, (blue) simple sum of scintillation signal, (black) dual-readout method, (yellow) GNN 2D

reconstruction, and (light blue) GNN 3D reconstruction. In all cases, the calorimeter is calibrated

with electrons and the signal distributions are fitted by a Gaussian distribution.

The energy resolutions obtained by the simple sum, GNN, and the dual-readout (DR)
technique are shown in Figure 6. The resolution by the DR method is shown as a reference
in both plots in Figure 6. In the scintillation case, the 2D GNN improves the resolution
from 5% to 3% and surpasses the resolution by the DR method. In the Cherenkov case, the
GNN methods improve the resolution from 13% to 5% with 2D and to 4% with 3D. The
resolution by the 3D reconstruction is comparable to the DR resolution and better in the
energy range below 20 GeV.
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Figure 6. Energy resolution of various reconstruction methods for 4–150 GeV π+ beams: (a) simple

sum of signal and GNN reconstruction using only the scintillation and (b) only the Cherenkov signal.

The resolution by the DR technique is shown in both plots as a reference.

4. Discussion

As with our previous work [2], the ideas presented here focused on the fast compo-
nents in hadronic showers in a highly segmented calorimeter. In the approach outlined
here, there is neither the traditional compensation (e/h = 1) mechanism with slow neutrons
nor the event-by-event evaluation of fem a lá DR-based. Although further studies are clearly
needed, we posit that the network effectively takes advantage of the distinctive features
of the shower images, such as hadronic vertices, that result in unusually good energy
resolution. The strong correlation between the invisible energy and the number of hadronic
vertices observed gives us a basis to form this conjecture.

In a hadron-nucleus interaction, the total momentum is conserved. If the interaction
produces several protons and neutrons in an inter-cascade process, the initial momentum
gets split among protons and neutrons in addition to the prompt pions. For example, when
p = 1 GeV is imparted to a proton, it has a kinetic energy of 0.43 GeV, which is available
to create ionization or a Cherenkov signal, while a large fraction of the initial momentum
is taken away by the proton mass. The number of inelastic hadronic vertices reflects the
number of protons and neutrons produced in the shower and may indicate the invisible
energy due to the mass effect in the shower. The GNN is capable of recognizing the vertices
in the 3D view of the shower.

4.1. A Simple Check of 2D Cherenkov Reconstruction

The 2D GNN reconstruction improved the energy resolution by more than a factor
of two from the simple-sum method. To check if the 2D image of a Cherenkov signal
has enough information to estimate the invisible energy and restore the beam energy, we
scanned the 2D images of the Cherenkov signal and found that more activity in the 2D
image implies more invisible energy. A couple of examples are shown in Figure 7. The
trend is summarized in Figure 8. It shows a clear correlation between the number of hits in
the 2D area and the invisible energy. This correlation does not depend on the incident beam
energy. We believe that the GNN can easily utilize this information (simple hit counting)
to estimate the invisible energy and restore the beam energy. It may use more complex
information, such as the amplitude of each hit and the correlation of hits in the 2D space, to
further improve the invisible energy estimation.

In the case of a 3D shower image, GNN may use its superior image recognition
capability to improve the invisible energy estimation over the 2D reconstruction. The 2D
images may be easily saturated by dense multi-particles in a jet, while 3D images are more
tolerant to such saturation effects.
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Figure 7. A 2D (xy) heat map of a Cherenkov signal in a 40 × 40 cm2 area: the grid size (1 × 1 cm2)

corresponds to the transverse segmentation of the fiber calorimeter and the color scheme indicates the

signal amplitude in log(E). (a) An example of a large invisible energy event (beam energy 126 GeV

and invisible energy 53 GeV) and (b) an example of a small invisible energy event (beam energy

127 GeV and invisible energy 1 GeV).

Figure 8. The correlation between the number of hits in the 2D map and the invisible energy is

calculated with the energy sum of a Cerenkov signal.

4.2. Longitudinal Segmentation by Timing

In a fiber calorimeter, the shower particles and Cherenkov photons travel approxi-
mately in the direction of the incoming particle but at different speeds. The arrival time of
the photons at the downstream end of the calorimeter can be expressed as t = L1/c+ L2/kc,
where c = speed of light and kc = speed of light in fiber (k ∼ 0.6) and L1 and L2 as shown
in Figure 9. Thus, a 2D fiber calorimeter can be turned into a 3D segmented one. The main
advantages of such a device are (1) fewer channel counts than with a fully 3D segmented
device, (2) protection of photo-detectors and readout electronics from radiation as they
can be located behind the absorber, and (3) easier calibration without the need for depth
calibration. Of course, the resolution of the timing measurement determines the effective
longitudinal segmentation. The performance of the 3D GNN with various timing reso-
lutions is summarized in Table 1. The energy resolution with ∆(t) = 150 ps matches the
resolution by the DR method, Figure 6.

Shower particles may hit the same fibers at different depths. A readout system
(photo-detectors and readout electronics) requires the multi-hit capability for this kind
of longitudinal segmentation. Silicon Photomultipliers (SiPMs) show excellent timing
resolution for single hits, but there is currently no straightforward capability for analyzing
the time structure of signals. This technology requires further R&D.
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Figure 9. Schematic view of a Cherenkov fiber calorimeter using timing for the longitudinal segmentation.

Table 1. The energy resolution of the 3D GNN reconstruction with various timing resolutions for

longitudinal segmentation.

Timing Resolution Position Resolution Energy Resolution
∆(t), ps ∆(z), cm σ/E, %

0 0.0 3.6
100 5.0 3.9
150 7.5 4.0
200 10.0 4.2

4.3. Verification of GNN Cherenkov Calorimetry

Our Monte Carlo study shows the effectiveness of neural networks in reconstructing
the energy of incident hadrons from highly granular Cherenkov calorimeters. Although
the result is impressive, it is based purely on a Monte Carlo simulation and needs to be
verified with a prototype calorimeter in a real beam.

The effectiveness already appeared in the 2D reconstruction. We plan to modify the
transverse segmentation of an existing fiber calorimeter prototype module to test the 2D
reconstruction without timing information. Once we confirm the effectiveness, we move to
3D tests and more detailed simulations to optimize calorimeter designs and NN techniques
for use in future experiments.

5. Conclusions

High granularity Cherenkov calorimeters combined with NN technology are poised
to provide excellent performance in future high-energy experiments. The results presented
here are unusually impressive and call for more detailed and systematic simulations
complemented by data from a calorimeter prototype in a beam test. The combination of
high granularity and powerful networks enables us to look into the mechanism of energy
loss in hadron-nucleus interactions beyond the traditional views of hadronic showers. An
improved understanding of the interplay between shower images and the commensurate
interpretation of energy loss mechanisms will help us develop new detectors and algorithms
for precision energy measurements.

Longitudinal segmentation by the timing of the Cherenkov photons will be a cost-
efficient approach toward a highly segmented calorimeter and will naturally lend itself to
energy reconstruction using NNs. It is clear that high-performance readout electronics and
fast photo sensors are needed for this purpose.
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