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Capitolo 1

L’Assione e lo Strong CP Problem

Escludendo la gravita, che opera su ordini di grandezza molto inferiori, negli ultimi decenni il Modello
Standard ha dimostrato di prestarsi con grande successo alla descrizione della maggior parte delle teorie
legate alle interazioni fondamentali. Tutti gli esperimenti svolti fino ad ora non hanno mai mostrato
violazione della simmetria di carica C o della coniugazione carica-parita CP per le interazioni di tipo
forte, mentre € stato dimostrato che interazioni deboli violano P, C e CP. Tuttavia, sin da subito un
problema emerse con ’adozione dello Standard Model: la violazione di P e CP delle interazioni deboli
comportebbe le stesse violazioni nelle interazioni forti a meno di introdurre ulteriori termini che ne
modificano la forma originaria. Il nome con cui questa questione, ad oggi irrisolta, & globalmente nota
¢ Strong CP Problem [1]. Per poter quantificare il grado di violazione delle simmetrie P e CP nelle
interazioni forti si ¢ pensato di introdurre un parametro 6gcp nella formula della densita di azione

2 ~
dello Standard Model Lgp = ... + HQCD?)gﬁGZVGaW , dove con G}, si indicano i tensori dell’intensita
del campo forte nella Quantum Chromodynamics (QCD) e gs e la costante di accoppiamento relativa,
mentre G & ottenuto applicando il tensore di Levi Civital: G = %e‘“’o‘ﬁ Gl

1.1 La Violazione CP nella QCD

Ad oggi si ¢ in grado di confermare, grazie ad alcune importanti misurazioni di fenomeni come la
Radiazione di Fondo [2], Pattendibilita di alcune teorie legate alle fasi primordiali della formazione
dell’Universo. Durante il Big Bang si suppone che enormi ed uguali quantita di materia ed antimateria
siano state create e che, molto velocemente, una volta entrate in contatto, abbiano dato luogo ad un
processo di annichilazione, liberando grandi quantita di energia. Tuttavia, una parte della materia
non ¢ stata sottoposta a questo processo ma e ”sopravvissuta” dando origine all’'Universo come lo si
conosce. Un tentativo di spiegazione di questa anomalia & stato avanzato da A. Sakharov [3] tramite
la teoria della CP Violation.

La simmetria CP & una simmetria discreta data dalla composizione della coniugazione di carica C, che
sostanzialmente trasforma una particella nella sua corrispondente antiparticella applicando un’inver-
sione dei principali numeri quantici della stessa, insieme con la trasformazione di parita P, che applica
un’inversione delle coordinate spaziali. In generale, ci si aspetta che questa simmetria sia naturalmente
rispettata da tutte le interazioni ma cio non accade: come dimostrato da C.S. Wu le interazioni di
tipo debole violano questa simmetria [4].

II Modello Standard nella sua forma classica risulta essere una teoria quantistica di tipo locale, Lorentz
covariante e causale e, di conseguenza, per essa si dovrebbe assumere una totale conservazione della
simmetria CPT [5]. La violazione CP rientrerebbe in questo modello come effetto sostanzialmente
irrilevante e, nello specifico, insufficiente a giustificare il disequilibrio tra materia e antimateria che
viene osservato, che si presenta come una manifestazione di antisimmetria barione/antibarione [3].

n questa introduzione usiamo 7 = ¢ = 1, la metrica di Minkowski (1, = diag(+1, -1, —1,—1)) e €*'** = +1.



Generalmente, nell’ambito della rappresentazione Lagrangiana delle teorie quantistiche di campi, la
violazione della simmetria CP viene modellizzata introducendo delle costanti di accoppiamento di fasi
complesse irriducibili [6].

Un meccanismo efficace & quello di Kobayashi-Maskawa, che assume che la componente della Lagran-
giana relativa alle interazioni forti sia CP invariante e postula 'introduzione di un ulteriore termine
lagrangiano legato ad una particella di massa sufficientemente grande e consistente con le conoscenze
note rispetto ai processi semi leptonici [7]. Questo sistema, funzionale a descrivere realisticamente
la violazione, non fornisce tuttavia una spiegazione soddisfacente rispetto all’origine fisica di questo
termine anomalo, in quanto si osserva una discrepanza tra il rapporto materia/antimateria osservato
sperimentalmente e quello predetto dalla suddetta teoria [3].

L’ipotetica violazione della simmetria CP nella QCD viene descritta da 6gcp, che ¢ un angolo con
periodo 27. La teoria ad esso associata prevede l'effettuarsi di eventi detti instantoni [9] che violano
P e CP quando l'angolo differisce da 0 e 7: considerando che le interazioni forti obbediscono alla
conservazione di P e CP, si ritiene che 0gcp debba essere vicina ad uno di questi due valori. Ogcp = 0
o 7 non ¢ un risultato atteso, perché comporterebbe la conservazione di P e CP nelle interazioni
deboli (cosa che non accade), perod tramite misure sperimentali ¢ stato calcolato un limite superiore
per I'angolo a partire dalla misura del momento di dipolo elettrico del neutrone d,, < 3 -10"2%¢ - cm
con dp ~ 3- 10_169QC p-e-cm [1, 10]. Il motivo per cui la stima sperimentale di questo angolo risulti
essere cosi ridotta e, quindi, il motivo per cui non sembrerebbe esserci manifestamente violazione di
CP nell’ambito delle interazioni forti & il quesito cardine dello Strong CP Problem. Tendenzialmente,
I'approccio utilizzato per lo studio delle caratteristiche dell’angolo 0gcp prevede l'utilizzo di una
Lagrangiana di tipo chirale: in tali casi € importante tenere in considerazione il fatto che solamente
la combinazione lineare delle fasi § = 0 + 6, ¢ invariante rispetto alla rotazione chirale dei quark, dove
6, (la fase delle masse dei quark) e 6 (la fase associata al termine topologico GG) sono i due termini
che si ritiene contribuiscano alla violazione di CP [11].

Peccei e Quinn [12] ipotizzarono che questo problema potesse essere risolto postulando 'esistenza di
una simmetria U, pQ(1)2 che permetteva di aggirare I’anomalia legata alla costante 6gcp apportando
una modifica al Modello Standard: introduceva, infatti, un campo pseudo-scalare a(x) e la costante
di decadimento dell’assione f,* e quindi un nuovo termine nella lagrangiana della QCD:

a g2
fa 32m2

Lpg=¢ Gt G- (1.1)

In questo modo si perdeva la dipendenza della componente lagrangiana dalla costante 6gcp. Il campo
a(z) venne associato al bosone di Nambu-Goldstone?, chiamato in questo caso assione, responsabile
della rottura spontanea della simmetria Upg(1).

Tuttavia, numerosi esperimenti hanno portato ad escludere il modello PQWW? originale (che preve-
deva una costante di accoppiamento dell’ordine della scala elettrodebole) tra questi anche la mancata
osservazione di assioni formatisi a partire da scontri tra fasci di particelle o decadimenti e lo studio
dei limiti nei processi evolutivi delle stelle [13].

Nonostante cio, il modello introdotto da Peccei e Quinn non e stato scartato completamente ma si
¢ sostenuta 'ipotesi, proposta sin da subito soprattutto da J. E. Kim [I11], che la simmetria venga
rotta esclusivamente ad energie elevate e che quindi la costante f, sia molto grande. In tale ipotesi,
la massa dell’assione risulta essere molto piccola (m, ~ 6 -1 x 107%eV se f, = 1 x 10" GeV®) ¢ la
particella forma accoppiamenti molto deboli.

2Upq(1) risulta una simmetria esatta e rotazionale rispetto alla Lagrangiana del Modello Standard.

3La costante f, ha dimensione di energia.

41 bosoni di Nambu-Goldstone sono particelle scalari prive di massa che compaiono nello spettro delle possibili
eccitazioni quando viene rotta una simmetria (teorema di Goldstone).

5Peccei-Quinn-Weinberg-Wilczek, gli ultimi due sottolinearono effettivo legame tra gli istantoni e il campo a(z).

5Grand Unification Energy: energia sopra la quale le interazioni di tipo forte, debole ed EM diventano indistinguibili.
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1.2 Proprieta degli Assioni e Materia Oscura

Risulta abbastanza evidente l'inadeguatezza del Modello Standard nella descrizione della Materia
Oscura (DM). Per ottenere informazioni su questa importante componente dell’Universo si deve fare
affidamento su osservazioni astrofisiche di fenomeni prettamente gravitazionali: questi sembrano sug-
gerire che la Materia Oscura sia caratterizzata dal fatto di essere sostanzialmente ”fredda” e molto
”lenta”, cioe poco interagente.

A questo proposito, un’ulteriore ipotesi che ha avuto successo negli ultimi anni nell’ambito dello studio
degli assioni ¢ I'idea di un ”assione invisibile”, cio¢ una particella di cui ¢ possibile scegliere la costante
f. in modo che la massa m, rimanga all'interno di un determinato range di valori (da 1 x 10713eV a
1 x 1072eV) dove il limite inferiore deriva da valutazioni relative alla scala di Planck, mentre quello
superiore ¢ identificato a partire da studi relativi alla super radianza dei buchi neri rotanti [15, 16].

Considerando, dunque, la famiglia degli assioni originatisi con il Big Bang, & possibile attuare una
suddivisione in due gruppi: gli assioni ”caldi”, che derivano dal plasma primordiale e gli assioni ”fred-
di”, che derivano da un riallineamento nel vuoto dei campi assionici generati dalle particelle pit calde.
Una delle caratteristiche pit interessanti degli assioni ”freddi” e che, a causa della scarsa tendenza
a formare accoppiamenti con altre particelle, le oscillazioni del campo assionico tendenzialmente non
vengono dissipate sotto altre forme di energia [1]. Si puo ipotizzare, quindi, che la presenza degli
assioni contribuisca in modo consistente alla densita energetica dell’Universo e che questa si possa
considerare come una forma di Materia Oscura: laddove ’anomalia nella densita assionica risulti esse-
re piu consistente si osserveranno maggiori fluttuazioni barioniche e quindi uno scompenso tra materia
ed antimateria [17].

La massa dell’assione viene calcolata tramite una teoria basata su una lagrangiana chirale di interazione
assione-pione’ che porta alla relazione m fa ~ My fr. Questi avvenimenti sono ben descritti dalla teoria
degli istantoni e permettono di associare all’assione una massa pari a [18]:

12
1x 10 Ge\/)' (1.2)

Jfa

Sono state sviluppate diverse teorie riguardanti la capacita di accoppiamento degli assioni con altre
tipologie di particelle: ovviamente essi interagiscono con i fotoni e questo processo e alla base della
teoria di modifica delle equazioni di Maxwell che sara trattata nel capitolo successivo, ma questa
particella & anche interessata da interazioni con fermioni, cioe nucleoni ed elettroni, con costanti di
accoppiamento molto piccole. L’accoppiamento con i fotoni ¢ di particolare importanza perché su di
esso si basano i principali esperimenti di ricerca degli assioni che compongono la Materia Oscura, detti
esperimenti di tipo Haloscope.

ma = (5,700 = 0,007) peV<

Gli assioni assumono anche un ruolo importante nell’ambito dell’evoluzione delle stelle. Questo pro-
cesso, infatti, risulta essere sottoposto a delle limitazioni a causa dell’azione di questa particella.
All’interno del nucleo delle stelle, avviene la conversione di un fotone in assione a causa dell’inte-
razione mediata dal campo Coulombiano di un nucleo atomico: questo processo viene denominato
effetto Primakoff. Nello specifico, le stelle sono portate ad emettere assioni tramite dei processi molto
simili all’emissione Compton e alla Bremsstrahlung elettroniche: ’energia che viene persa porta ad
un rallentamento del ritmo di combustione dell’elio all’interno dei nuclei e sostanzialmente provoca
un raffreddamento anticipato dei corpi. Per la ricerca degli assioni prodotti nel Sole, esistono degli
esperimenti specifici denominati Helioscope [19].

Si noti che tale interazione pud avvenire solamente perché le due particelle sono due bosoni con gli stessi numeri
quantici.






Capitolo 2

Separazione delle Equazioni di Maxwell
per la ricerca tramite aloscopio

Il fatto che gli assioni possano essere ”invisibili” ha portato ad ipotizzare che essi giochino un ruolo
importante nella composizione della DM, ma risulta anche molto probabile che essi abbiano delle
interazioni contenute con i campi elettromagnetici, cosa che li renderebbe effettivamente rilevabili
tramite una qualche tipologia di esperimento.

Quest’ultima, ipotesi comporta la necessita di operare alcune modifiche alle equazioni di Maxwell
considerando un accoppiamento dell’assione al campo EM nella forma aF - B: tale accoppiamento
porta ad una conversione dell’assione in fotone per effetto Primakoff! [20)].

La ricerca del fotone Primakoff tramite esperimenti Haloscope € alla base dei principali sistemi speri-
mentati per la conferma dell’esistenza dell’assione. Un problema fondamentale di questo procedimento
¢ che le modifiche che vengono applicate alle equazioni di Maxwell non rispettano naturalmente alcune
condizioni al contorno necessarie alla ricerca tramite aloscopio perché generalmente il campo indotto
dall’assione non e naturalmente separabile dal campo esterno. Tuttavia, una apposita approssimazione
permette di disaccoppiare il campo generato dall’assione da quelli esterni.

Come si vedra in seguito, ¢ possibile applicare le equazioni di Maxwell modificate ad aloscopi di diverse
forme valutando i valori dei campi elettromagnetici risultanti, osservando la presenza di una piccola
differenza tra l’energia immagazzinata dal campo magnetico e quello elettrico.

2.1 Le equazioni di Maxwell modificate

La lagrangiana effettiva delle interazioni elettromagnetiche, inclusa la componente di interazione con
il campo dell’assione, risulta?:

1 ~
Losa = = P Fyuy = ATl + %aFWFW + Ly, (2.1)

dove Ly = 1(0"a)(0,a) — 3w2a® & la lagrangiana dell’assione con un potenziale U(a), mentre Lo =
—ﬁF W E,, — Ay JE & la Lagrangiana standard dell’elettrodinamica. Inoltre la costante di accoppia-

N o« 3
mento ¢ ggyy = #}ZCQW .

LAl di 14 del caso specifico osservato nelle stelle, effetto Primakoff & la produzione risonante di mesoni pseudoscalari
neutri da parte di fotoni ad alta energia che interagiscono con un nucleo atomico. Puo essere visto come il processo
inverso del decadimento del mesone in due fotoni ed & stato utilizzato per la misurazione della larghezza di decadimento
dei mesoni neutri.

2In unita SI.

3 fa € la costante di decadimento dell’assione in GeV mentre ¢4, € la costante di accoppiamento adimensionale e vale
—1.92 nel modello KSVZ [21, 22] e 0.75 nel modello DFSZ [23, 24].



Le equazioni di Maxwell che si ottengono sono le seguenti*:

V- (E - cgayraB) = %, (2.2a)
V-B=0, (2.2b)
OB
E=——— 2.2
V x ET (2:2¢)
10
V x (¢B + gayyaE) = EE(E — CGayyaB) + cude. (2.2d)

A causa dell’anomalia dell’assione, questo set di equazioni di Maxwell non rispetta naturalmente alcune
condizioni al contorno naturali e necessarie per la ricerca dei fotoni Primakoff. In generale, dunque,
si assumono le seguenti condizioni per una loro effettiva applicazione [25]:

e corrente nulla J, = 0,

e densita di carica nulla p, = 0,

e campo elettrico esterno nullo E.,; = 0,

e campo magnetico esterno non nullo B,; = B,

e campo magnetico a rotore nullo V x B = 0,

e campo magnetico indipendente dal tempo B = 0.

Con queste premesse dall’equazione (2.2d) otteniamo

V><(B+ga%aE):(VxB)—I—ga%(VxaE):(VxB)—i—ga%(VaxE—i—anE)

(2.3)
Garyy Garyy OB 10 1 <8a> Jayy <8B )
= B =7 E)— —=—=—F— - — — —— .
(V< B) + c (Va x E) ot 2ot I\ gy ¢ "ot
Sostituendo nell’ultima riga E con E..; e B con B, si ottiene
1 da
V X Bext = *Ega'y'y(a>Bea:t (24)

e si nota che la condizione al contorno di rotore del campo magnetico nullo non & automaticamente
rispettata dal termine di destra in quanto non e affermabile a priori che la derivata del campo assionico

sia nulla. Per evitare questo problema si sono introdotti due nuovi campi E, e B, [20] tali che
Gary Oa 1 0F,
VX Bg=— Beyi— = 5——. 2.5
“ c ot 2 ot (25)

Inoltre, a partire dall’equazione (2.2¢), possiamo definire I'equazione di Maxwell-Faraday

0B,
ot

Vx E,= (2.6)

che ¢ una generalizzazione della legge di Faraday®. Sulla base della relazione espressa nell’equazione
(2.5) possiamo quindi stimare il campo elettrico®

E, = —cgoyyaBeyt + f(1). (2.7)

Invece applicando il teorema di Stoke nell’'uguaglianza di sinistra si ottiene una stima per B,

/ VxB, dA=¢ B, dl=—2%AB.. (2.8)
A DA ¢

4In appendice 5.1 sono mostrati i calcoli necessari a ricavarle.

50gni campo elettromagnetico definito dinamicamente dalle condizioni al contorno di partenza deve soddisfare la
legge di Faraday, dunque deve valere anche per i campi assionici.

6f(r) si stima dalle condizioni al contorno imposte e deriva dal processo di integrazione.



dove A e l’area di integrazione e il campo magnetico esterno si assume uniforme B, = BpgZz. Dunque

assumendo per la cavita dell’aloscopio una simmetria assiale (per esempio cilindrica [20]) possiamo
stimare
B, = —ggﬂrBoaQs. (2.9)
c

Essendo soluzioni complete, i campi E, e B, devono rispettare la legge di Maxwell-Faraday

V % By =V X (~Cgu,aBo + F(r)) = ~52r By, (2.10)

ma notiamo’ che cid non avviene a meno di imporre é = 0.

Il problema principale ¢ che il campo generato dall’assione non e chiaramente disaccoppiato dal campo
elettromagnetico esterno applicato per l'interazione dell’assione. Per risolvere questa questione si
utilizza una approssimazione nelle equazioni di Maxwell [20] e, assumendo che I’anomalia assionica
perturbi il campo esterno in maniera contenuta, possiamo espandere i campi come

E = Z(ga’w)mEm = Eo + gayyE1 + 9277E2 + .. (2.11a)
m

B = Z(ga’w)mBm = By + gav’yBl + 927732 + .. (2.11b)
m

e generalmente vengono troncati al primo ordine in quanto gg,, ~ 1 x 1078 GeV. Applicando questa
approssimazione, quindi, si sta assumendo che lo spazio considerato sia interessato da campi esterni
Ey e By e che ci sia un termine aggiuntivo di reazione dovuto all’interazione assione-fotone

E=Ey+ Epeq, (2.12a)

B = By + Byea, (2.12b)

in cui Ereq = gayyE1 € Brea = gayyBi1. Quindi, si possono applicare le condizioni specifiche della
ricerca con aloscopio. Rimangono valide le equazioni di Maxwell relative ai campi esterni mentre si
ottiene un nuovo set relativo ai campi da reazione:

V- Erea = 0, (213&)
V- Brea = 07 (213b)
8Brea
\Y Erea = - ) 2.13
X 6t ( C)
10
V X Bpeq = cﬁa(Erea - Cga'y'yaBO)- (213d)

Poiché il campo dell’assione nell’esperimento dell’alocopio puod essere considerato come omogeneo
M
possiamo scrivere a(t) = age” !, dove w, ¢ la frequenza di oscillazione dell’assione.

2.2 L’Aloscopio come cavita cilindrica

L’aloscopio € uno strumento considerato fondamentale per la ricerca e la rivelazione degli assioni. Si
tratta di una cavita metallica cava che viene posizionata in una zona sottoposta ad un forte campo
magnetico. Questo campo permette di far interagire ’assione entrante con un fotone e di generare un
campo elettromagnetico oscillante secondario: quest’ultimo viene rilevato sotto forma di fotone (detto
”di secondo ordine”) tramite delle particolari tecniche di amplificazione del segnale.

In generale, per essere efficiente, un aloscopio deve avere un volume ottimale, cioé abbastanza grande
da aumentare le probabilita di rivelazione di interazioni assioniche ma anche con dimensioni lineari tali
da adattarsi alla lunghezza d’onda del fotone per permettere all’onda EM corrispondente di raggiungere
la situazione di risonanza. Un’altra proprieta necessaria per questo strumento € un buon fattore di

"La dimostrazione esplicita si trova in appendice 5.2.



merito, ovvero un coefficiente definito da alcune caratteristiche intrinseche del materiale e legate alla
forma dello strumento che definisce il numero di rimbalzi che un fotone effettua mediamente sulle
pareti della cavita prima di essere assorbito.

Nella maggior parte degli esperimenti che vengono effettuati per la ricerca di assioni relativi alla
Materia Oscura (come gli esperimenti ADMX [27, 28] o HAYSTAC [29]), la cavita risonante utilizzata
¢ di forma cilindrica e le condizioni al contorno necessarie consistono in un campo magnetico esterno
uniforme e una superficie conduttiva. Per semplicita assumiamo che il campo magnetico sia presente
solamente all’interno della cavitad (Bey: = Bo se 1 < 19 € Bey = 0se m > 1).

La geometria piu semplice da considerare in questo caso risulta essere quella relativa ad un solenoide
infinitamente lungo che, nella realta, non puo essere ottenuto. Ovviamente un solenoide fisico presenta
dei campi residui di ritorno all’esterno delle sue estremita, tuttavia essi si possono considare in maniera
molto limitata rispetto ai campi interni al solenoide e comportano correzioni non dominanti.

Se si assume di avere un solenoide infinito con sezione di raggio R nella direzione Z (come assunto in
[30]), in coordinate cilindriche, la densita di corrente sulle pareti & descritta da

J. = Bod(p— R)$ (2.14)

e dunque le equazioni di Maxwell non modificate portano alla seguente soluzione

_ Byz p<R,
By = { 0 o> R. (2.15)

Inoltre, imponendo che la corrente non possa scorrere attraverso le pareti del solenoide in direzione 2
e che p. = 0 (cosi che Ey = 0), ricaviamo le seguenti equazioni d’onda per il campo elettrico e quello

magnetico
2 Ya 82 ()
V2E, — > B ={ ¢ DBoazz p<R (2.16a)
c20t? 0 p> R,
0? 8@( ) -
2
Nella trattazione [30] non consideriamo le soluzioni transienti ma ci concentriamo solo su quelle
oscillanti, in questo modo possiamo proporre le soluzioni mostrate di seguito
Elz(p, ) wE( ) Hwal ) (2173)
Big(p,t) = ¢p(p)e™! (2.17b)

Si noti che le uniche componenti di interesse, per la simmetria del problema, sono il campo elettrico
in direzione Z e quello magnetico in direzione ¢.

Considerando un’apposita sostituzione di variabile (p’ = w,p) otteniamo i campi modificati risolvendo
le specifiche equazioni d’onda, che risultano essere equazioni di Bessel®

n [ apJi(p)) P <w.R,

wﬂ“{bﬂﬁ@)d>%& (2.182)
N aEJO(p ) ga'wCLOBO Pl < w.R,

¢E(p) - { bEH+( ) pl > waR (218b)

dove possiamo esprimere i coefficienti nella forma compatta che segue

ap iH{ (waR)

bg | _ TayytoBowalt | iJi(weR)

ag | 2 —H; (waR) (2.19)
bB — J1 (waR)

8In appendice 5.3 sono esposti i calcoli espliciti per ricavare le equazioni ed una introduzione alle funzioni di Bessel.

8



1.0 4
/'C"\
“%lﬁ 0.8 1
9_/ 0‘6 B
=
50
5 0.4-
&
=2 021
i R=0.0014,
0.0 P n o T T T S O R T T T T T
S| 0.25-
i
< 0.00-
=
U’:D
2 —0.251
@
=
@ 00 R=12,
H;_“\ 0‘2 -5
”31‘
g o SNNRINININININNINNING
2
2
wn
= 02
i R =054,
0.5 1.0 1.5 20 2.5 3.0 35 4.0
piIR
Figura 2.1: Le immagini, tratte dal documento [30], rappresentano ’andamento analitico dell’intensita dei
campi al variare dei possibili valori di A\, espresse in unita di %. Nel primo dei tre grafici si

puo visualizzare il limite di onda lunga considerato nell’analisi.

2.2.1 1l limite in ”onda lunga”

La variabile p’ = 2}\% e legata alla lunghezza d’onda assionica, che e, di conseguenza, una grandezza
di fondamentale importanza per la ricerca della particella. Se consideriamo il limite in cui A\, >> R
entrambi i bordi del solenoide si possono considerare in fase e i campi si sovrappongono in maniera
coerente [30]. Dal punto di vista dei calcoli, questa approssimazione semplifica notevolmente la tratta-
zione: possiamo riscrivere i sistemi mostrati in (2.18) sostituendo le funzioni di Bessel con i rispettivi

limiti asintotici, ottenendo quanto segue”

i
§ga'wwaaOBﬂp p<R

o~ - 2.20a
wB(P) %gawvwaaOBo% p < R ( )

1 (V(@eR) — 1) + £ p<R
~—- Bo(waR)* ¢ 2 2R 2.20b
YE(p) 29a'wa0 0(waRR) %gawwaaoBoR?Q p<R ( )
Nel sistema (2.20b) si ¢ definita la funzione +/(z) = log (£) +~v — &, con v la costante di Eulero-

Mascheroni [31]. Come si pud notare nel grafico 2.1, se si considera il limite di onda lunga, i campi
elettrici all’interno dell’aloscopio risultano essere fortemente soppressi. Sulla base di questi calcoli,
risulta evidente che la ricerca di campi elettrici indotti all’interno della cavita non € un buon metodo per
la rivelazione degli assioni e questa considerazione si pud dimostrare per qualunque forma geometrica
della cavita aloscopica. In generale, comunque, si ottiene che i campi elettrici indotti dagli assioni
risultano soppressi se si assume che le cariche e le correnti dei campi esterni siano costanti nel tempo
e che 'aloscopio abbia una dimensione lineare caratteristica molto inferiore a A,.

9In questo caso si esprimono i sistemi rispetto a p.
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Capitolo 3

La controversia: vettore di Poynting di
Abraham e Minkowski

Le prime proposte per la ricerca degli assioni tramite 1'utilizzo di aloscopi furono avanzate da P.
Sikivie [19] e si basano sulla tecnica descritta precedentemente. Fondamentalmente, questi esperimenti
sfruttano il termine di anomalia elettromagnetica dovuto all’accoppiamento di due fotoni con I'assione
incidente: per sperare di rilevare ’assione con una discreta sensibilita ¢ necessario fare affidamento su
un primo fotone associato ad un campo magnetico continuo e costante di intensita elevata, I'interazione
di quest’ultimo con l’assione genera cosi un secondo fotone abbastanza energetico da poter essere
rilevato.

La possibilita di valutare 'interazione del campo elettromagnetico iniziale con 'assione ¢ dovuta al
fatto che il processo di conversione di quest’ultimo in fotone € un processo non conservativo che
trasforma l’energia incanalata in un campo con frequenza di oscillazione pari alla massa dell’assione.

L’utilita dello sfruttamento del vettore di Poynting per descrivere con efficacia la distribuzione dell’e-
nergia e delle forze nei materiali dielettrici e risultata particolarmente evidente negli ultimi anni con
I'introduzione delle cosiddette curl forces, ovvero forze Newtoniane che dipendono solo dalla posizione
ma che non sono conservative (per esempio forze con rotore non nullo) [32]. Queste curl forces sono tali
da non poter essere generate a partire da una Hamiltoniana composta da un’energia cinetica isotropa
ed un classico potenziale scalare ma richiedono, ad esempio, una funzione quadratica del momento che
sia anisotropa. Di norma, esse non giocano un ruolo fondamentale nella fisica delle particelle, tuttavia
formano una sottoclasse interessante di sistemi dinamici di tipo reversibile: nonostante siano non con-
servative sono anche non dissipative, dunque generalmente vengono usate per descrivere sistemi per
i quali I'inversione della velocita ad un certo istante permette alla particella di ripercorrere la stessa
traiettoria. Come si vedra in seguito, nella trattazione dei campi elettromagnetici modificati dalla
perturbazione assionica e descritti tramite i vettori di Poynting compare una componente che si puo
descrivere ed interpretare come termine dinamico legato ad una curl force.

Il teorema di Poynting puo essere formulato in quattro diverse versioni [33] ma due, nello specifico,
risultano utili per ’analisi del bilancio energetico nel rilevamento dell’assione:

e vettore di Minkowski Spp = —1-D x B, dove D = ¢¢gE + P ¢ B = po(H + M),

€OHO

e vettore di Abraham Sgy=F x H.

Se si € in presenza di un termine di polarizzazione con rotore non nullo ¢ necessario che il materiale
utilizzato sia un elettrete (cioé un dielettrico con polarizzazione elettrostatica) oppure, in generale,
un materiale in grado di accumulare energia. Inoltre, questo termine si comporta come un dipolo
oscillante attivo ed impone la modifica delle leggi di Faraday a causa della presenza di una curl force
(che deve derivare da un potenziale vettoriale elettrico e non puo discendere da un normale potenziale
scalare).



Nell’elettrodinamica che descrive l'interazione assionica con un campo gia esistente, entra quindi in
gioco proprio il termine preannunciato che puo essere associato ad una curl force ed agisce nel momento
in cui avviene ’accoppiamento tra il fotone energetico e 1’assione.

In alcune recenti trattazioni [34] si ¢ tentato di quantificare da un punto di vista energetico ’azione
di accoppiamento dell’assione sfruttando il teorema di Poynting nelle due forme sopra citate con
l'obbiettivo di dimostrare che l'applicazione dei due vettori porta a due risultati differenti (nello
specifico si sosteneva che il vettore di Minkowski fosse in grado di considerare anche il termine legato
alla curl force, ignorato con il vettore di Abraham).

Tuttavia, secondo un’analisi successiva effettuata da un secondo gruppo di ricerca e qui riproposta [35],
questa differenza nei risultati risulta essere legata esclusivamente ad un processo di approssimazione
errata e dunque, come ¢ anche naturale pensare, 'utilizzo di due differenti metodi di descrizione del
fenomeno non ne comporta una diversa manifestazione fisica.

3.1 Forma alternativa delle equazioni di Maxwell modificate

Nel capitolo precedente si erano calcolate le equazioni di Maxwell modificate dal termine di accoppia-
mento assionico per poi limitarsi a mostrare quelle relative ai campi di reazione E,cq € Byeo'. Per
favorire la trattazione successiva, risulta pitt conveniente scrivere le equazioni includendo i termini di
modifica all’interno delle sorgenti stesse: € importante notare che le due forme esposte sono del tutto
equivalenti da un punto di vista fisico.

Di seguito si riportano le equazioni riarrangiate e troncate al primo ordine nella costante di accoppia-
mento gqy~: si sottolinea che in questa parte della trattazione, per snellire la scrittura, i termini con
pedice 1 includono gia al loro interno la costante g,y quindi svolgono la stessa funzione dei termini
precedentemente indicati con pedice rea.

V- (Ei(r,t) — garya(t)eBo(r,t)) = ';L;, (3.1a)
V x %(Bl(rvt) + %ga'wa(t)EO(rat)) - 50;(E1 (T,t) - ga'yva(t)CBO(rvt)) = J67 (31b)
V- cBi(r,t) =0, (3.1c)
V x By(r.t) + 1331 (r,t) =0, (3.1d)

Questa scrittura e equivalente a considerare la seguente trasformazione perturbativa dei campi

cBi(r,t) = c¢Bi(r,t) + gayya(t)Eo(r,t), (3.2a)

E\(r,t) = Ei(r,t) — gayya(t)cBo(r,t). (3.2b)

Le equazioni (3.2a) e (3.2b) si possono interpretare come trasformazioni di simmetria rotazionale
variabili nel tempo: nel caso di assioni associati alla materia oscura, il termine di rotazione rimarrebbe
comunque molto piccolo a causa dell’ordine di grandezza limitato della costante di accoppiamento.

Si nota che queste trasformazioni possono essere lette anche come manifestazione del quadrivettore
duale che contiene sia il potenziale magnetico (scalare) che il potenziale elettrico (vettoriale) che &
proprio responsabile dell’espressione della curl force che interviene nell’interazione tra l’assione e il
campo magnetico [341]. Alternativamente possiamo direttamente esprimere le equazioni tramite i campi

Le equazioni relative ai campi esterni applicati risultavano invariate. Vedi equazioni (2.13).
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usati per i materiali dielettrici

V - Di(r,t) = pe, (3.3a)
V X Hy(r,t) — %Dl(r,t) = J, (3.3b)
V-¢Bi(r,t) =0, (3.3c)
V x E; (T,t) + 881531 (T,t) =0, (3.3d)
dove
B

H, = ?01 — My — Mg, M1 = —gayyagoEo, (3.4)

Pal
D = eoEq + P + Py, - = _gaw'yCBO- (3'5)

0

Il comportamento del sistema € molto simile a quello di un elettrete ed un magnete permanenti a
causa del fatto che V X Py A0e V- My # 0. E importante sottolineare che in fase di derivazione
delle equazioni di Maxwell modificate & necessario non attuare I’approssimazione Va = 0 altrimenti
non sarebbe possibile ricavare le relazioni esposte in (3.4) e (3.5).

La maggior parte degli esperimenti haloscope considera strumenti che hanno un’interazione limitata
con gli assioni, cioe uno scambio di energia tra il campo EM secondario assionico e quello primario
contenuto. In questi casi, ¢ sempre presente una corrente Jg che genera il campo magnetico principale
By e, se si verifica l'interazione di un assione con la corrente elettrica J., si manifesta una ”corrente
magnetica” Jp,1. Inoltre, se si assume che sia presente solamente un campo magnetico primario e che
il sistema sia nel vuoto, questa ”corrente magnetica” si ottiene da

1 0
—VxDi+—B; = —gawa,uoc.]eo = —Jm1- (3.6)
€0 ot

3.2 Trattazione con 1 fasori

Poiché e conveniente risolvere il sistema delle equazioni modificate concentrandosi solo sulle soluzioni
oscillanti, trascurando le componenti transienti, si definiscono di seguito i fasori dei campi interessati.
Si noti che di seguito si utilizzera la convenzione presente in [34] e si indicheranno i fasori vettori in
grassetto sormontati da una tilde e i vettori classici sormontati da una freccia.

E\ (7 t) = Re[Ey(F)e” ™1, (3.7)
E\(7,t) = Ey(F)e” ™1, (3.8)
A = ge~wat, (3.9)

La legge di Ampere modificata risulta quindi

1 ~ ~ - S
—V x By = Jg —iwiegFB1 + iwaga,va[)CABo, (3.10)
Ko

mentre la legge di Faraday con i campi modificati ¢ declinata come segue

1 ~ ~ -
—V x Dy =iw By — gawvc,UOAJO- (311)
€0

Ovviamente per ognuna di queste forme si puo definire la corrispondente complessa coniugata effet-
tuando il processo di coniugazione su ogni singolo termine.
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3.2.1 Calcolo della potenza generata tramite il teorema di Poynting

In primo luogo, per introdurre la trattazione successiva, si considera la forma generica del vettore di
Poynting istantaneo di due campi F; e Bi, che qui denominiamo 51, e si applica il teorema di Poynting
al campi espressi in forma di fasori, ottenendo quanto segue:

. 1 - = 1

1 )
Re(Ey x B¥) + — Re(FEy x Bje 1), 3.12
o o (Eq 1) 3o (Er 1 ) (3.12)

Tale vettore di Poynting risulta composto da due parti: una componente (la prima nel termine di
destra dell’equazione (3.12)) risulta un termine in corrente continua, coincidente con il valore medio
nel tempo del vettore S stesso, mentre il secondo rappresenta un termine oscillante ad alta frequenza
Quindi si puo definire in modo standard il fasore del vettore di Poynting e da esso ricaviamo la densita
di potenza S; = ﬁE’l x Bj legata all’oscillazione dell’onda elettromagnetica. Quando i due campi
E; e Bj sono in fase, il vettore di Poynting complesso risulta essere complessivamente reale mentre se
il vettore ¢ immaginario, i due campi sono fuori fase.

Il primo caso, ovvero quando i campi sono in fase, & cio che si ottiene, ad esempio, tramite un’antenna
emittente nel limite di distanza molto elevata (vedi (2.2.1)). In questo caso, la potenza ricavata
integrando appositamente il vettore di Poynting coincide con quella persa dall’antenna.

Lo stesso esempio di perdita energetica si ha anche nei sistemi che presentano una componente resistiva
non trascurabile: I'energia dei fotoni incidenti viene persa sotto forma di calore durante il processo di
interazione (fenomeno denominato perdita per radiazione).

Se i due campi sono fuori fase, invece, ¢ possibile interpretare 'interazione del fotone con il campo
esistente come un’oscillazione di potenza e i due campi E; e Bj risultano quasi statici (questo fenomeno
avviene solo a distanze inferiori della lunghezza d’onda del fotone).

In appendice 5.4 sono mostrati i passaggi espliciti per ricavare il valore del vettore di Poynting, sia nel
caso di Minkowski che di Abraham, calcolando la componente reale e quella immaginaria del rispettivo
fasore in maniera da poter effettuare un effettivo confronto tra i due approcci. Nello specifico, dopo
aver ricavato le divergenze dei fasori S7 e S} associati ai vettori di Poynting (vedi (5.35) e (5.38)) si ¢
utilizzato il teorema delle divergenze per calcolare la potenza radiata verso l'esterno dell’aloscopio. Gli
integrali relativi alle componenti reali ((5.36a) e (5.40a)) restituiscono il valore della potenza mediata
nel tempo uscente dall’aloscopio, mentre quelli calcolati sulle componenti immaginarie ((5.36b) e
(5.40b)) restituiscono la potenza radiativa emessa all’esterno dello strumento.

Per sistemi chiusi (come la cavita dell’aloscopio) gli integrali delle componenti reali devono essere nulli
mentre la potenza radiativa legata alla parte immaginaria del vettore di Poynting puo rappresentare
l'oscillazione dell’energia tra una sorgente di un campo magnetico e i campi esterni in cui si trova
immersa e, di conseguenza, non deve forzatamente essere nulla [34].

Ovviamente si nota che le due scritture degli integrali definiti rispetto al vettore di Minkowski e di
Abraham non coincidono: nello specifico, con il primo modello si ottengono dei termini in eccesso
che non risultano nel vettore di Abraham. I termini aggiuntivi che figurano nel vettore di Minkowski
evidenziano la struttura di curl force dell’anomalia introdotta dall’assione.

3.3 Teorema di Poynting per I’analisi Haloscope

11 funzionamento dell’aloscopio per la ricerca di assioni da Materia Oscura, detto ADMX (Axion Dark
Matter Experiment) [27, 28], si basa sul principio di funzionamento della cavita risonante (schematiz-
zato anche in figura 3.1). La cavita risulta essere immersa in un campo magnetico esterno By: quando
un assione interagisce con il campo magnetico genera una determinata potenza, Ps, che raggiunge
successivamente la cavita ed e interpretata come componente reale del vettore di Poynting. A questo
punto, anche all’interno della cavita inizia a circolare una potenza P., il cui valore effettivo dipende

da un fattore moltiplicativo, @) specifico per la singola cavita.
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Figura 3.1: Figura dimostrativa del processo di conversione dell’assione in una cavita risonante, strumento per
la ricerca di assioni associati alla Materia Oscura. L’immagine ¢ tratta dal documento [34].

La cavita e definita risonante nel momento in cui la potenza attiva immessa dalla sorgente assionica
risulta nulla: in questo caso non & presente una quota di energia che oscillera tra la parte interna della
cavita e la sorgente, dunque il sistema si puo considerare chiuso.

Dentro la cavita, invece, il surplus energetico portato dalla sorgente genera una oscillazione tra il campo
elettrico e quello magnetico; la potenza che circola nel volume dell’aloscopio puo essere descritta dalla
componente immaginaria del vettore di Poynting ed ha la seguente regola di dipendenza dalla potenza
della sorgente: P, = Q1 Ps.

Chiaramente, all’interno della cavita risonante il campo elettrico e quello magnetico non risultano
essere in fase tra di loro?: il prodotto delle due componenti vettoriali fuori fase genera un contributo
al vettore di Poynting completamente immaginario e che dipende da un angolo ¢ (detto angolo di
perdita) il quale puo essere quantificato tramite il fattore @ dell’aloscopio: se tale fattore ¢ molto
elevato, si definisce tan§ ~ é

L’effetto anomalo generato dall’assione sul campo elettrico € molto limitato: per calcolarlo & con-
veniente porre a zero la potenza reattiva in condizioni di risonanza. Con questa scelta qualunque
fenomeno di eccitazione viene rilevato come variazione della fase relativa lasciando comunque il fasore
del campo elettrico reale nella quasi totalita (cio coincide con un angolo § molto piccolo).

Per calcolare la potenza che viene dissipata all’interno dell’aloscopio bisogna considerare i contributi
di perdita energetica interni al volume e quelli superficiali. Le componenti della potenza dissipata nel
volume si calcolano a partire da un termine che figura nel fasore reale di entrambi i vettori di Poynting:
(B - J — Ef - Jo1) (si vedano le equazioni (5.36a) e (5.40a)).

I termini dissipativi del campo elettrico, sia nel volume che sulla superficie della cavita risonante,
sottostanno alla legge di Ohm, per cui sono in fase con le correnti e con il campo magnetico. Definendo
oe come la conducivita dell’aloscopio, possiamo scrivere la corrente nel volume come J.1 = 0. Eq ~
%El. Dunque la potenza dissipata nella cavita risulta essere

Wa €0 waU1

20 Q1

Invece il termine dissipato sulla superficie si calcola considerando la corrente di superficie con K; =
n x Hy ed e equivalente al termine volumetrico.

(3.13)

, /El.Efdvz

Nella pratica dell’esperimento, il sistema non puo essere considerato chiuso ma si deve calcolare la
potenza che fuoriesce dalla cavita a causa dell’effetto di accoppiamento assionico: questo termine

28i associa il campo elettrico, senza perdite energetiche, ad un fasore completamente reale e quello magnetico ad
un fasore immaginario: il loro prodotto vettoriale risulta immaginario. Se il campo elettrico ¢ sottoposto a perdite
energetiche esso guadagna componente immaginaria.
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influisce a sua volta sul fattore ( aumentandolo e, dunque, generando un effetto al secondo ordine che
puo essere valutato successivamente.

La potenza della sorgente Ps, cioe generata dall’assione, si trova come integrale del fasore reale del
vettore di Poynting e con le assunzioni fatte e imponendo anche che la frequenza di risonanza coincida
con quella dell’assione, risulta equivalente alla potenza dissipata Py gia calcolata. Il risultato, inoltre,
¢ uguale utilizzando entrambe le declinazioni del vettore di Poynting (Minkowski e Abraham).

Quest’ultima considerazione si dimostra facilmente notando che, almeno in prima approsimazione, gli
integrali delle componenti reali dei fasori Spp ed Sgy coincidono. Infatti, mostrando le equazioni
semplificate rispetto al fattore Cg’f%, si ottiene

Re(Spp) — Re(Sgy) = iwiegBo(aE; — a*E1) + eoBo(aJ!, + a*Je1) — Jo1 (@B +a*By).  (3.14)

Ora e conveniente esprimere le dimensioni tipiche del campo elettrico e quello magnetico derivanti
dalla correzione al primo ordine come: Ei ~ gy, Bo € B1 ~ gay,Bo e cosiderare la corrente effettiva

Jof = ga'y'yBO = _iwa(BOQavwd) [ ]

L’equazione (3.14), come ci si aspettava, diventa
Re(Spp) — Re(Sgn) = iw1€0Bigary - 0 = 0. (3.15)

Si tenga conto del fatto che nel calcolo si & considerata la relazione Jy ~ By, ottenuta ponendo Fg =0
e Va = 0 e calcolando

V x By — 0:F, —|—gd§0 =V x By — gdgo —i—gdéo =V x By =Jg. (3.16)

Dunque, in conclusione, la sensibilita della misurazione della potenza dissipata per aloscopi a cavita
risonante non e influenzata dall’utilizzo dell’'uno o dell’altro vettore di Poynting.

A partire dalla formula della potenza dissipata (3.13) € poi possibile ricavare ’energia accumulata nella
cavita risonante e quindi il valore della potenza che circola al suo interno [34], generata dall’interazione
assionica? )

P, = w,QU, = ngpaneoéBngl; (3.17)

a

3.3.1 Soluzione della controversia per esperimenti haloscope con rivelatori a banda
larga

Una differente tecnica di ricerca degli assioni a massa ridotta consiste nell’utilizzo di rivelatori a
banda larga. In questo caso gli aloscopi possono essere di tipo induttivo o capacitivo® e sono gene-
ralmente costituiti da particolari capacitori con dimensioni adatte alla rivelazione dei campi assionici.
La sensibilita della rivelazione, in questo caso, sara determinata dalla potenza reattiva che deriva
dall’interazione dell’assione con il campo magnetico di fondo.

Alcuni gruppi di ricerca hanno messo in luce una problematica: nel caso di esperimenti a ”banda
larga”, cioe con lunghezza d’onda di Compton assionica superiore alle dimensioni sperimentali dello
strumento, la sensibilita dello strumento alla misura del campo elettrico risulta essere soppressa di un
certo fattore che dipende dalla lunghezza d’onda assionica A, [20, 30]. In seguito a queste osservazioni,
sono stati avanzati dei dubbi che hanno dato origine ad una controversia relativa al possibile utilizzo
preferenziale di uno dei due vettori di Poynting analizzati, ipotizzando che la scelta dell’uno o dell’altro
vettore portasse a prevedere sensibilita differenti per lo strumento utilizzato [31].

Come visto nella formula (5.33) della divergenza per Minkowski, il termine quadratico in gq, (che
compare per ultimo nelle formule indicate) risulta essere confrontabile con gli altri termini e non puo

dpa ¢ il valore della densita dell’assione associato alla materia oscura.
4Si considerano sempre i fasori del campo elettrico come totalmente reali.
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essere escluso a priori: proprio il fatto di trascurare questo termine nella trattazione del vettore di
Minkowski, determina l’errata interpretazione presentata in [34].

Se consideriamo un capacitore a piastre parallelle possiamo applicare alcune semplificazioni: la corrente
di conduzione deve essere nulla nel volume del capacitore ed esso deve essere immerso in un magnete
con campo generato da corrente continua, inoltre, come prima, la frequenza di risonanza coincide con
quella dell’assione.

Con queste accortezze, la potenza calcolata a partire dai fasori immaginari risulta essere, nei due casi

) ) o
film(SDB) -nds = / (WﬁogawCBo -(aE] +a"Ey) + Z%(H—BT By —«E] - E)
0
iwa ~ 73 \2 . 1 * 60 *
_ Bo)2)dV = — B! B - 2E!E
210 (gawwa 0) ) /Zwa(Zuo 1 1 5 1 1 (3.18)
(garyB0)* < Ej+E
- CW;T + foga»y»y(IOCBO . 1?)d‘/,
1 . FEf+F
lem(sEH) - fds = /ma(2B;< By — 6—20E’{ B+ %OgmaocBo : %)dv. (3.19)
Mo

Si nota che gli ultimi termini di entrambi gli integrali possono essere riformulati considerando 1’ap-
prossimazione gia introdotta E1 ~ gqyyBo € B1 ~ guyyBo: cosl facendo si ottengono gli stessi valori
per le due potenze dissipate eliminando quindi I’ambiguita che creava la discordanza tra i due vettori
utilizzati.
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Capitolo 4

Conclusioni

Nel corso di questa tesi si sono esposte ed analizzate le principali caratteristiche dell’assione: come
si e visto, lo studio di questa pseudo particella ¢, da decenni, in continua evoluzione ed in fase di
perfezionamento. Si sono qui forniti i valori delle stime considerate piu attendibili delle principali
grandezze caratteristiche (con particolare riguardo alla massa ed alla costante di accoppiamento con
i fotoni).

Gli apparati per esperimenti di tipo haloscope risultano essere, ad oggi, il miglior setup sperimentale
in grado di permetterci (almeno teoricamente) di rilevare un evento di interazione tra i fotoni e gli
assioni che si ipotizzano costituire, almeno parzialmente, la Materia Oscura. Si e studiato, nello speci-
fico, il processo di perturbazione del campo campo elettromagnetico misurabile nella cavita risonante
dell’aloscopio in seguito ad un accoppiamento assione/fotone, ricavando le equazioni di Maxwell dei
campi modificati e, in seguito, calcolando il vettore di Poynting associato ai campi nelle due versioni
di Minkowski e Abraham. Si sono confrontate le due versioni e si ¢ dimostrato, nel limite delle scelte
di approssimazione fatte, che I'utilizzo dell’una o dell’altra formulazione non influisce sulle previsioni
teoriche relative alle eventuali rivelazioni.

Poiché la maggior parte dei modelli proposti fino ad ora prevede che gli accoppiamenti con i fotoni
siano caratterizzati da costanti molto piccole, non & garantito che si assistera a breve alla scoperta
dell’assione. Comunque, si stanno prospettando numerose opportunita sperimentali da cui, sperabil-
mente, si potranno attendere tanti risultati in tempi brevi. Dopodiché, se tale risultati permetteranno
di annunciare una scoperta o se porteranno a stabilire solamente dei limiti nello spazio dei parametri
solo i dati futuri potranno dirlo.

Tuttavia, € importante sottolineare come 'avanzamento degli studi teorici relativi a questo ipotetico
bosone abbiano recentemente aperto nuove strade per la ricerca della Materia Oscura: se, prima degli
anni Ottanta, la ricerca si concentrava su candidati particolarmente pesanti e che potevano essere
eventualmente rilevati tramite esperimenti al LHC, il fallimento di tali ricerche ha portato, ad oggi,
a considerare altre vie come piu percorribili. La scoperta dell’assione permetterebbe di sviluppare
un nuovo ramo della Fisica Moderna che supera la nostra attuale visione del Modello Standard e, in
generale, della struttura dell’Universo.



20



Bibliografia

Pierre Sikivie. “Invisible axion search methods”. In: Reviews of Modern Physics 93.1 (feb. 2021).
DOI: 10.1103/revmodphys.93.015004. URL: https://doi.org/10.1103%2Frevmodphys.93.
015004.

I A Boriev. “Existence of dark matter with observed properties of cosmic microwave background
radiation substantiates three conservation laws of classical physics and all principles of quantum
mechanics as creates the value of Planck’s constant”. In: Journal of Physics: Conference Series
996 (mar. 2018), p. 012017. DOI: 10.1088/1742-6596/996/1/012017. URL: https://doi.org/
10.1088/1742-6596/996/1/012017.

A. D. Sakharov. “Violation of CP Invariance, C asymmetry, and baryon asymmetry of the univer-
se”. In: Pisma Zh. Eksp. Teor. Fiz. 5 (1967), pp. 32-35. DOI: 10.1070/PU1991v034n05ABEH002497.
C. S. Wu et al. “Experimental Test of Parity Conservation in Beta Decay”. In: Phys. Rev. 105
(4 feb. 1957), pp. 1413-1415. DOI: 10.1103/PhysRev.105.1413. URL: https://link.aps.org/
doi/10.1103/PhysRev.105.1413.

Gerhart Liiders. “Proof of the TCP theorem”. In: Annals of Physics 2.1 (1957), pp. 1-15.
ISSN: 0003-4916. DOI: https://doi.org/10.1016/0003-4916(57)90032-5. URL: https:
//www.sciencedirect.com/science/article/pii/0003491657900325.

Thomas Mannel. “Theory and Phenomenology of CP Violation”. In: Nuclear Physics B - Pro-
ceedings Supplements 167 (2007). Proceedings of the 7th International Conference on Hyperons,
Charm and Beauty Hadrons, pp. 170-174. 1SSN: 0920-5632. DOIL: https://doi.org/10.1016/
j .nuclphysbps.2006.12.083. URL: https://www.sciencedirect.com/science/article/
pii/S0920563206010711.

Makoto Kobayashi e Toshihide Maskawa. “CP-Violation in the Renormalizable Theory of Weak
Interaction”. In: Progress of Theoretical Physics 49.2 (feb. 1973), pp. 652-657. 1SSN: 0033-068X.
DOI: 10.1143/PTP.49.652. eprint: https://academic.oup.com/ptp/article-pdf/49/2/652/
5257692/49-2-652.pdf. URL: https://doi.org/10.1143/PTP.49.652.

Gabriella Sciolla. “The Mystery of CP Violation”. In: MIT Physic Annal (2006). URL: https://
physics.mit.edu/wp-content/uploads/2021/01/physicsatmit_06_sciollafeature.pdf.
T. Schéfer e E. V. Shuryak. “Instantons in QCD”. In: Reviews of Modern Physics 70.2 (apr.
1998), pp. 323-425. DOI: 10.1103/revmodphys . 70.323. URL: https://doi.org/10.1103%
2Frevmodphys.70.323.

J. M. Pendlebury et al. “Revised experimental upper limit on the electric dipole moment of the
neutron”. In: Phys. Rev. D 92 (9 nov. 2015), p. 092003. DOI: 10.1103/PhysRevD.92.092003.
URL: https://link.aps.org/doi/10.1103/PhysRevD.92.092003.

Luca Di Luzio et al. “The landscape of QCD axion models”. In: Physics Reports 870 (lug. 2020),
pp. 1-117. por: 10.1016/j . physrep.2020.06.002. URL: https://doi.org/10.1016%2Fj.
physrep.2020.06.002.

Roberto D. Peccei e Helen R. Quinn. “CP Conservation in the Presence of Pseudoparticles”. In:
Physical Review Letters 38 (1977), pp. 1440-1443.

Georg G. Raffelt. “Axions in astrophysics and cosmology”. In: 30th Rencontres de Moriond: Eu-
roconferences: Dark Matter in Cosmology, Clocks and Tests of Fundamental Laws. 1995, pp. 159—
168. arXiv: hep-ph/9502358.


https://doi.org/10.1103/revmodphys.93.015004
https://doi.org/10.1103%2Frevmodphys.93.015004
https://doi.org/10.1103%2Frevmodphys.93.015004
https://doi.org/10.1088/1742-6596/996/1/012017
https://doi.org/10.1088/1742-6596/996/1/012017
https://doi.org/10.1088/1742-6596/996/1/012017
https://doi.org/10.1070/PU1991v034n05ABEH002497
https://doi.org/10.1103/PhysRev.105.1413
https://link.aps.org/doi/10.1103/PhysRev.105.1413
https://link.aps.org/doi/10.1103/PhysRev.105.1413
https://doi.org/https://doi.org/10.1016/0003-4916(57)90032-5
https://www.sciencedirect.com/science/article/pii/0003491657900325
https://www.sciencedirect.com/science/article/pii/0003491657900325
https://doi.org/https://doi.org/10.1016/j.nuclphysbps.2006.12.083
https://doi.org/https://doi.org/10.1016/j.nuclphysbps.2006.12.083
https://www.sciencedirect.com/science/article/pii/S0920563206010711
https://www.sciencedirect.com/science/article/pii/S0920563206010711
https://doi.org/10.1143/PTP.49.652
https://academic.oup.com/ptp/article-pdf/49/2/652/5257692/49-2-652.pdf
https://academic.oup.com/ptp/article-pdf/49/2/652/5257692/49-2-652.pdf
https://doi.org/10.1143/PTP.49.652
https://physics.mit.edu/wp-content/uploads/2021/01/physicsatmit_06_sciollafeature.pdf
https://physics.mit.edu/wp-content/uploads/2021/01/physicsatmit_06_sciollafeature.pdf
https://doi.org/10.1103/revmodphys.70.323
https://doi.org/10.1103%2Frevmodphys.70.323
https://doi.org/10.1103%2Frevmodphys.70.323
https://doi.org/10.1103/PhysRevD.92.092003
https://link.aps.org/doi/10.1103/PhysRevD.92.092003
https://doi.org/10.1016/j.physrep.2020.06.002
https://doi.org/10.1016%2Fj.physrep.2020.06.002
https://doi.org/10.1016%2Fj.physrep.2020.06.002
https://arxiv.org/abs/hep-ph/9502358

[17]

[18]

[19]

[23]

[24]

Jihn E. Kim. “Weak-Interaction Singlet and Strong CP Invariance”. In: Phys. Rev. Lett. 43 (2
lug. 1979), pp. 103-107. pOI: 10.1103/PhysRevLett.43.103. URL: https://link.aps.org/
doi/10.1103/PhysRevLlett.43.103.

Matthew J. Stott e David J. E. Marsh. “Black hole spin constraints on the mass spectrum and
number of axionlike fields”. In: Physical Review D 98.8 (ott. 2018). DOI: 10.1103/physrevd.
98.083006. URL: https://doi.org/10.1103%2Fphysrevd.98.083006

Masha Baryakhtar et al. “Black hole superradiance of self-interacting scalar fields”. In: Physical
Review D 103.9 (mag. 2021). DOI: 10.1103/physrevd.103.095019. URL: https://doi.org/
10.1103%2Fphysrevd.103.095019.

J. Ipser e P. Sikivie. “Can Galactic Halos Be Made of Axions?” In: Phys. Rev. Lett. 50 (12 mar.
1983), pp. 925-927. pDOI: 10.1103/PhysRevLett.50.925. URL: https://link.aps.org/doi/
10.1103/PhysRevLett.50.925.

Giovanni Grilli di Cortona et al. “The QCD axion, precisely”. In: Journal of High Energy Physics
2016.1 (gen. 2016). DOI: 10 . 1007 / jhep01(2016) 034. URL: https://doi.org/10.1007Y%
2F jhep01%282016%29034.

P. Sikivie. “Experimental Tests of the ”Invisible” Axion”. In: Phys. Rev. Lett. 51 (16 ott. 1983),
pp- 1415-1417. por: 10.1103/PhysRevLett.51.1415. URL: https://link.aps.org/doi/10.
1103/PhysRevLett.51.1415.

H. Primakoff. “Photo-Production of Neutral Mesons in Nuclear Electric Fields and the Mean Life
of the Neutral Meson”. In: Phys. Rev. 81 (5 mar. 1951), pp. 899-899. pDOI: 10.1103/PhysRev.
81.899. URL: https://link.aps.org/doi/10.1103/PhysRev.81.899.

Jihn E. Kim. “Weak-Interaction Singlet and Strong CP Invariance”. In: Phys. Rev. Lett. 43 (2
lug. 1979), pp. 103-107. DOI: 10.1103/PhysRevLett.43.103. URL: https://link.aps.org/
doi/10.1103/PhysRevLett.43.103.

M.A. Shifman, A.I. Vainshtein e V.I. Zakharov. “Can confinement ensure natural CP invariance
of strong interactions?” In: Nuclear Physics B 166.3 (1980), pp. 493-506. 1SSN: 0550-3213. DOTI:
https://doi.org/10.1016/0550-3213(80)90209-6. URL: https://www.sciencedirect.
com/science/article/pii/0550321380902096.

A. R. Zhitnitsky. “On Possible Suppression of the Axion Hadron Interactions. (In Russian)”. In:
Sov. J. Nucl. Phys. 31 (1980), p. 260.

Michael Dine, Willy Fischler e Mark Srednicki. “A simple solution to the strong CP problem
with a harmless axion”. In: Physics Letters B 104.3 (1981), pp. 199-202. 1sSN: 0370-2693. DOTI:
https://doi.org/10.1016/0370-2693(81)90590-6. URL: https://www.sciencedirect.
com/science/article/pii/0370269381905906.

Ben T. McAllister, Stephen R. Parker e Michael E. Tobar. “Axion Dark Matter Coupling to
Resonant Photons via Magnetic Field”. In: Phys. Rev. Lett. 116 (16 apr. 2016), p. 161804.
DOI: 10.1103/PhysRevLett . 116 . 161804. URL: https://link. aps.org/doi/10.1103/
PhysRevLett.116.161804.

Younggeun Kim et al. Effective Approximation of Electromagnetism for Axion Haloscope Sear-
ches. 2018. DOI: 10 . 48550 / ARXIV . 1810 . 02459. URL: https://arxiv . org/abs/1810.
02459.

S. Asztalos et al. “Large-scale microwave cavity search for dark-matter axions”. In: Phys. Rewv.
D 64 (9 ott. 2001), p. 092003. DOI: 10.1103/PhysRevD.64.092003. URL: https://link.aps.
org/doi/10.1103/PhysRevD.64.092003.

N. Du et al. “Search for Invisible Axion Dark Matter with the Axion Dark Matter Experiment”.
In: Phys. Rev. Lett. 120 (15 apr. 2018), p. 151301. po1: 10.1103/PhysRevLett.120.151301.
URL: https://link.aps.org/doi/10.1103/PhysRevlett.120.151301.

L. Zhong et al. “Results from phase 1 of the HAYSTAC microwave cavity axion experiment”.
In: Phys. Rev. D 97 (9 mag. 2018), p. 092001. DOI: 10 . 1103 /PhysRevD . 97 . 092001. URL:
https://link.aps.org/doi/10.1103/PhysRevD.97.092001.

Jonathan Ouellet e Zachary Bogorad. “Solutions to axion electrodynamics in various geome-
tries”. In: Physical Review D 99.5 (mar. 2019). poI: 10.1103/physrevd . 99 .055010. URL:
https://doi.org/10.1103%2Fphysrevd.99.055010.

22


https://doi.org/10.1103/PhysRevLett.43.103
https://link.aps.org/doi/10.1103/PhysRevLett.43.103
https://link.aps.org/doi/10.1103/PhysRevLett.43.103
https://doi.org/10.1103/physrevd.98.083006
https://doi.org/10.1103/physrevd.98.083006
https://doi.org/10.1103%2Fphysrevd.98.083006
https://doi.org/10.1103/physrevd.103.095019
https://doi.org/10.1103%2Fphysrevd.103.095019
https://doi.org/10.1103%2Fphysrevd.103.095019
https://doi.org/10.1103/PhysRevLett.50.925
https://link.aps.org/doi/10.1103/PhysRevLett.50.925
https://link.aps.org/doi/10.1103/PhysRevLett.50.925
https://doi.org/10.1007/jhep01(2016)034
https://doi.org/10.1007%2Fjhep01%282016%29034
https://doi.org/10.1007%2Fjhep01%282016%29034
https://doi.org/10.1103/PhysRevLett.51.1415
https://link.aps.org/doi/10.1103/PhysRevLett.51.1415
https://link.aps.org/doi/10.1103/PhysRevLett.51.1415
https://doi.org/10.1103/PhysRev.81.899
https://doi.org/10.1103/PhysRev.81.899
https://link.aps.org/doi/10.1103/PhysRev.81.899
https://doi.org/10.1103/PhysRevLett.43.103
https://link.aps.org/doi/10.1103/PhysRevLett.43.103
https://link.aps.org/doi/10.1103/PhysRevLett.43.103
https://doi.org/https://doi.org/10.1016/0550-3213(80)90209-6
https://www.sciencedirect.com/science/article/pii/0550321380902096
https://www.sciencedirect.com/science/article/pii/0550321380902096
https://doi.org/https://doi.org/10.1016/0370-2693(81)90590-6
https://www.sciencedirect.com/science/article/pii/0370269381905906
https://www.sciencedirect.com/science/article/pii/0370269381905906
https://doi.org/10.1103/PhysRevLett.116.161804
https://link.aps.org/doi/10.1103/PhysRevLett.116.161804
https://link.aps.org/doi/10.1103/PhysRevLett.116.161804
https://doi.org/10.48550/ARXIV.1810.02459
https://arxiv.org/abs/1810.02459
https://arxiv.org/abs/1810.02459
https://doi.org/10.1103/PhysRevD.64.092003
https://link.aps.org/doi/10.1103/PhysRevD.64.092003
https://link.aps.org/doi/10.1103/PhysRevD.64.092003
https://doi.org/10.1103/PhysRevLett.120.151301
https://link.aps.org/doi/10.1103/PhysRevLett.120.151301
https://doi.org/10.1103/PhysRevD.97.092001
https://link.aps.org/doi/10.1103/PhysRevD.97.092001
https://doi.org/10.1103/physrevd.99.055010
https://doi.org/10.1103%2Fphysrevd.99.055010

Wikipedia. Costante di Eulero-Mascheroni — Wikipedia, L’enciclopedia libera. [Online; in data
26-agosto-2022]. 2021. URL: http://it.wikipedia.org/w/index.php?title=Costante_di_
Eulero-Mascheroni&oldid=119590281.

Berry M. V. e Shukla Pragya. “Hamiltonian curl forces”. In: Proc. R. Soc. A. (2015). DOI:
http://doi.org/10.1098/rspa.2015.0002.

Paul Kinsler, Alberto Favaro e Martin W McCall. “Four Poynting theorems”. In: Furopean
Journal of Physics 30.5 (lug. 2009), pp. 983-993. pOI: 10.1088/0143-0807/30/5/007. URL:
https://doi.org/10.1088%2F0143-0807%2F30%2F5%2F007.

Michael E Tobar, Ben T McAllister e Maxim Goryachev. “Poynting vector controversy in axion
modified electrodynamics”. In: (2021). pOI: 10 .48550/ARXIV.2109.04056. URL: https://
arxiv.org/abs/2109.04056.

Kevin Zhou. Comment on ”Poynting vector controversy in azxion modified electrodynamics”.
2022. por: 10.48550/ARXIV.2203.15821. URL: https://arxiv.org/abs/2203.15821.
Wikipedia. Armoniche cilindriche — Wikipedia, L’enciclopedia libera. [Online; in data 26-agosto-
2022]. 2022. URL: http://it.wikipedia.org/w/index.php?title=Armoniche_cilindriche&
01did=125632527.

Wikipedia. Nabla in coordinate cilindriche e sferiche — Wikipedia, L’enciclopedia libera. [Online;
in data 26-agosto-2022]. 2022. URL: http://it.wikipedia.org/w/index.php?title=Nabla_
in_coordinate_cilindriche_e_sferiche&oldid=126444457.

23


http://it.wikipedia.org/w/index.php?title=Costante_di_Eulero-Mascheroni&oldid=119590281
http://it.wikipedia.org/w/index.php?title=Costante_di_Eulero-Mascheroni&oldid=119590281
https://doi.org/http://doi.org/10.1098/rspa.2015.0002
https://doi.org/10.1088/0143-0807/30/5/007
https://doi.org/10.1088%2F0143-0807%2F30%2F5%2F007
https://doi.org/10.48550/ARXIV.2109.04056
https://arxiv.org/abs/2109.04056
https://arxiv.org/abs/2109.04056
https://doi.org/10.48550/ARXIV.2203.15821
https://arxiv.org/abs/2203.15821
http://it.wikipedia.org/w/index.php?title=Armoniche_cilindriche&oldid=125632527
http://it.wikipedia.org/w/index.php?title=Armoniche_cilindriche&oldid=125632527
http://it.wikipedia.org/w/index.php?title=Nabla_in_coordinate_cilindriche_e_sferiche&oldid=126444457
http://it.wikipedia.org/w/index.php?title=Nabla_in_coordinate_cilindriche_e_sferiche&oldid=126444457

24



Capitolo 5

Appendice

5.1 Calcolo delle Equazioni di Lagrange modificate

Si premette che non verra esplicitata la parte della lagrangiana relativa al potenziale esclusivamente
assionico (£y7) in quanto non influisce nel calcolo variazionale effettuato rispetto al campo A:

1 Ja _
L=——FMWEF,, — A, J¢+=2aF"F,, + L
4o a ple & g0 " po F AU
1
= B = Al 4+ S a0 + Ly
o Ho (5.1)
1 .
= (AT =0 A @Ay = 0,Ay) — Ayt (04 AT — 97 AN F o Ly
L na” — 07 A0, A, — 0,A,) — ATt + YT 00 (2, 0p AV FOP
:—Tm(a —a )((% V—ay M)_ MJe + 100 aa (E“yaﬁ F )"‘LU
Per effettuare questo ultimo passaggio si ¢ sfruttata I'identita di Bianchi G“FW = 0 e lantisimmetria
di Maxwell (F* = —F"F). Definendo il terzo termine come £ = %a@“(swaﬁA”F @8 otteniamo:
8"(%) = g%” (8“@13’#,, + aauﬁw) e 8%, = %a@“ﬁ’w dunque complessivamente:
0L 0L . ~ . g -
8“(8(8MAV)) T 9Av —O0u F" + 3V + OpaF" = =0, F" + ¥ + (%(%CLFW) = 0.

Dunque & possibile ricavare le equazioni di Maxwell ricercate.

e Ponendo v =0, =1 =1, 2,3 otteniamo:

aMFMO - 8#(%6‘15“0) =cp,

V- (E - cgayyaB) = %

e Ponendo p,v = 0,1, 2,3 otteniamo:

OuF™ = 0u( T aF) = .

10
V x (¢B + gayyaE) = EQ(E — CGayyaB) + cude.

e Dall’identita di Bianchi:

O FM =0,
V- -B=0,
VXE:—a—B.
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5.2 Integrazione dalla legge di Faraday

Si effettua il calcolo esplicito della legge di Maxwell per i campi E, e B, dell’assione e si verifica se,
nei vari casi, viene rispettata. Per farlo esplicitiamo la legge in forma integrale, sfruttando il teorema
di Stoke

/Van-dA:%Ea-dl:—jt/BmdA. (5.2)
Dalle soluzioni (2.7) e (2.9) ottenute in precedenza, ricaviamo i campi nel caso specifico analizzato
E, = —cgoyyaBoZ, (5.3)
B, = -2 Bag. (5.4)
2c

5.2.1 Integrazione per un solenoide con area simmetrica rettangolare

Considerando un solenoide di sezione rettangolare simmetrica rispetto all’asse di rotazione con vertici
indicati dalle lettere a, b, ¢, d in cui i lati ab e cd sono paralleli all’asse si ottengono le relazioni seguenti:

b c d a b c
%Ea -dl = / E,dl + / E,dl +/ E,dl —i—/ E,dl = / E,dl — / E,dl =0, (5.5)
a b c d a d

/B dA = B ‘dA+ | B, dA= | BsdA- | B.dA=o. (5.6)
.AS -As ‘AS

Si noti che il campo magnetico e il versore ortogonale all’area del solenoide sono paralleli tra loro,
dividendo la superficie del solenoide in una parte di destra Ay e una di sinistra Ay i due integrali di
(5.6) complessivamente si annullano a vicenda. Dunque si vede che nel caso di area di integrazione
simmetrica le soluzioni rispettano ancora la legge di Maxwell.

5.2.2 Integrazione per un solenoide con area asimmetrica rettangolare

Se si consideara una superficie rettangolare asimmetrica (con il lato da allineato all’asse di rotazione)
Iintegrale di linea si annulla a causa dell’uniformita spaziale del campo magnetico e I'unica componente
da calcolare (facendo riferimento all’equazione (2.10)) risulta

E,-dl = ¢ f(r)dl, (5.7)
jra-g

mentre 'integrale di superficie diventa

. B
/B CdA = — g’WBmz; n/ / rdr = — g” OaLR, (5.8)

che ¢ solitamente non nullo e dipendente dal tempo, infatti si mostra che la sua dertivata temporale
risulta essere

4 __GaryBol o j[
- / B, da=-t00 g o pea, (5.9)

in quanto f ¢ indipendente dal tempo: 'unico modo perché I’equazione sia rispettata e che la derivata
seconda del campo assionico sia costante, in contraddizione, pero, con la natura oscillatoria del campo
assionico. Dunque in generale la legge di Faraday non viene rispettata con una superficie di integrazione
asimmetrica.
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5.3 Soluzione in cavita cilindrica

5.3.1 Armoniche cilindriche

Le armoniche cilindriche sono le soluzioni canoniche delle equazioni di Bessel:

dy | dy
2 2 2y _
. +xdm + (2 — o)y =0, (5.10)

dove « € un numero arbitrario che rappresenta l'ordine della funzione.

Le soluzioni sono generalmente linearmente indipendenti e si esprimono nella forma [30]

T\ 0 —1)"(2 2n
Jo(z) = (5) ZM (5.11)

n=0

Poiché contengono la gamma di Eulero, un caso particolare ¢ quello in cui o € un numero intero n:
per la parita della funzione in «, si ottiene che J_4(x) = (—1)*Jo(z) (o € N).

A causa della ridondanza delle funzioni di Bessel si introducono le funzioni di Neumann Y, (z), dette
Bessel di seconda specie
Jo(z) cos(am) — J_q(x)

Ya(z) = sin(a)

(5.12)

Mentre un’ulteriore riformulazione viene fornita dalle funzioni di Henkel (o di Bessel del terzo tipo)

. Cior Ja(z)
(1) = = ’LOUTia
H, (z) = Jo(z) +iYo(z) = J_a(z) + € isin(ar) (5.13a)
, jar__ Ja()
(2) — — = /Laﬂ-ai
H,7(z) = Jo(z) —iYo(z) = J_a(z) + € isin(an)’ (5.13b)
Inoltre, di particolare rilevanza e la forma della derivata
dJ, n
(@) = —Ja(w) = Jasi (). (5.14)

5.3.2 Funzioni di Bessel del secondo ordine

Se consideriamo una equazione di Bessel del secondo ordine, otteniamo due possibili soluzioni indi-
pendenti (v = J, e u, che viene definita in (5.19)) che rispettano il seguente sistema di equazioni

" /
o+ +xp =0
{ a + vV +a2v =0 (5.15)
Riarrangiando le due equazioni otteniamo
d d
noon L, o, = ', ) = _—B=0 5.16
oWy —vip) Fpy —vip= (v —vip)] = - : (5.16)
dunque 'equazione che identifichiamo come B risulta essere costante rispetto a x. Sfruttando questo
otteniamo che , . p B
pr—vpe @ (E) - 2 517
V2 dx \v xv?’ (5.17)
che integrata fornisce
I dx
—=A+B | —. 5.18
v + T2 (5.18)
Dunque, usando il fatto che v = J,,,(0) otteniamo
dz
1= Ady(2) + B (x) / s = Adu(a) + BYu(a), (5.19)

dove Jp,(x) e Yy, (x) sono definite come in (5.11) e (5.12). In realta v non € per forza un nume-
ro naturale dunque esistono delle complesse rappresentazioni in serie che permettono di esprimere
consistentemente le funzioni di Bessel.
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5.3.3 Operatore Laplaciano in coordinate cilindriche

Per poterlo sfruttare operativamente, definiamo la formula dell’operatore laplaciano applicato ad un
vettore generico A espresso in coordinate cilindriche [37]

A 2 0A A 2 04, -
24 _ 24 p_ ¢ 24, _ ¢ 2 5
VA = (V A, 2 2 00 > (V Ag + 2 00 >¢+(V Az, (5.20)

dove, a sua volta, posso definire (data una generica funzione f nelle coordinate p, ¢ e z)

10 /( 0 1 02 0?

2052 922
5.3.4 Applicazione ad un solenoide cilindrico

Per ottenere una soluzione concreta al problema della cavita cilindrica si sostituiscono le formule dei
campi (2.17) nelle equazioni d’onda mostrate in (2.16) e si risolve I’equazione di Bessel associata nei
due diversi casi (campo magnetico ed elettrico).

Campo magnetico Per quanto riguarda il campo magnetico abbiamo una sola componente in
direzione ¢ dunque il calcolo del laplaciano e della derivata temporale si semplifica particolarmente

/1788,0 (p¥s(p)e™at) — pp(p)e™at + wivp(p)e™s’
= ;wﬁa(P)eiw“t + Wh(p)e™at — hp(p)eat — wB(p)Q al gafw%Bo(S(p . o)

1 1 : W,
= (Y%(p) + ;%(p) T (wa = 3 )us(p) + igarywaao Bo) et = 0.

Notiamo quindi che I'equazione d’onda associata al campo magnetico risulta essere un’equazione di
Bessel del secondo ordine che si puo riscrivere e riarrangiare come segue, sfruttando la sostituzione
introdotta p' = wep

1 1 ) A
(62/ + ;a,,/ + (1- ?))@ﬁB = —igayya0Bod(p' — waR), (5.23a)

~

(p’282/ + 00y + (p - 1)¢p = —i0”Garya0Bod(p — waR) . (5.23b)

A causa della presenza della ¢ di Dirac, la funzione non risulta essere ben definita e, di conseguenza, la
risoluzione integrale dell’equazione d’onda richiede di considerare esclusivamente i punti che non sono
sul bordo dell’aloscopio e di tenere in considerazione le condizioni al contorno [30]. In particolare,
bisogna richiedere che per p’ < wyR la soluzione divergente Y sia soppressa, mentre si richiede che
per p' > wyR la soluzione progressiva uscente! sia rappresentata dalla funzione H f . Cosi facendo si
ottengono proprio le soluzioni (2.18a).

A questo punto si procede con la determinazione della forma esplicita delle espressioni ag e bg con-
siderando le richieste di continuita lungo il bordo del campo magnetico e di discontinuita a gradino
della derivata del campo magnetico, introdotta dalla ¢ di Dirac

apJi(waR) = bpH{ (waR), (5.24a)
0 0 )
bBaip/Hf(w“R) - aBaip/Jl (waR) = _Zga'y’yaOBO- (5.24b)

'Una soluzione entrante non sarebbe matematicamente scorretta, tuttavia implicherebbe che il campo oscillante
dell’assione sia soggetto ad un flusso di potenza entrante anziché uscente, come previsto dalle tesi fino ad ora avanzate.
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Possiamo quindi rielaborare il sistema di equazioni come segue, indicando con gli apici le apposite
derivate e considerando le funzioni come calcolate in p/ = w,R

apJ1J] —bpH; J; =0, (5.25a)
bB(Hf_)ljl — GBJ{Jl = —Z'gaA/«/aoB()Jl (5.25b)

ed infine sommare le due equazioni in modo da ottenere una forma conveniente
be((H")' J; — J Hi'] = —igayyaoBoJi. (5.26)

A questo punto ¢ utile sfruttare I'identita di Abel per semplificare il calcolo delle soluzioni finali. In
generale, data un’equazione differenziale del secondo ordine definita come (5.27) e il Wronskiano come
(5.28)

2
U P@ Y +Q@y =0 (5.27)
Wion)) = [0 B0 = @) hio) i@ ele)  wel (5.29)

L’identita di Abel ¢ definita come segue
W(x) =W (0)exp <—/ P(¢) d§>. (5.29)
0

Quindi, in riferimento all’equazione (5.31) si ottiene
2

W(p) = W) En) — 2

(5.30)

e sfruttando ’equazione (5.26) si puo risalire alla forma esplicita di bp.

Campo elettrico Per ottenere i risultati relativi al campo elettrico si esegue lo stesso procedi-
mento utilizzato per il campo magnetico , considerando pero che il campo elettrico di interesse e
esclusivamente quello lungo la direzione Z e che I'equazione di Bessel di riferimento e la seguente

1 — B ! < waR
2 o Jayya0bo P all,
(82 + —p,ap/ +1)¢p = { 0 > R (5.31)

In conclusione si ottengono esattamente le soluzioni espresse in (2.19).

5.4 Teorema di Poynting nelle versioni di Abraham e Minkowski

5.4.1 Vettore di Poynting per Minkowski

Secondo la versione introdotta da Minkowski, il vettore di Poynting puo essere espresso come fasori
nella seguente forma

1 1
Spp = —D; x B} SHp=—D] xB 5.32
pp =5 D1 x B pp = 5 DI x B (5.32)
Se ne calcola dunque la divergenza
1,1 1 1 1 1,1 -
V-Spp==(—B]-—V xDj——D;-—V xBj)==-(—Bj - jw1 B — BjaJ,
DB Q(Mo - X )y o 1 1o X 1) Q(Mo 1 - JwWwib1 = GayyCbiadeo
1 w1

~ . . - > . 1, ¥
Dy -J., —iww Dy Ej +iwigcaDy - Bo) = Z*(fBl - By —¢yEq - El)
€0 12 po (5.332)
W e = W o . .=
+ Z%Gogawa cBy - E1 + zéeogawacBo -E} — §E1 I+ EgawcaBo I

1 - > W L3 \2
- igawaBT ~Jo — ZQTjO(gawaBO) )
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N 1,1 W o1,
vsDB:i(; %V Dl—fDl %VXBl):Z?(eoEl.El_%Bl,Bl)
Y 1 - 1 _
21 €0Garyy @ *cBo - By — L 5 eogawaCBo E} - QET cJe1 + iga“/'yca*BO -J.1 (5.33b)

1
2gaywa *By - J0+221u (ga'y’yaBO) .

E fondamentale notare la presenza in queste due espressioni del termine finale che risulta essere
esplicitamente quadratico nella costante di accoppiamento g,,~: in alcune pubblicazioni questo termine
viene trascurato perché considerato ininfluente rispetto agli altri, ma si tratta di un errore in quanto
anche tutti gli altri termini sono implicitamente quadratici nella costante e a priori non esiste una
motivazione valida per escluderne uno rispetto agli altri.

Usando ora le relazioni
1 1
Re(S;) = 5(.5'1 +S7) Im(S;) = 5(5’1 - S7) (5.34)

Possiamo ottenere le seguenti espressioni per le divergenze
V-Spg+V-85% (w —w S 1 "
V -Re(Spp) = 5 DB — (@1 1 a)eogaWcBo (aE7 —a*Ey) + Zgach(y
1 1 (5.35a)
(adgy —a"Ja) — ZganeO -(a*cBy + acBy) — Z(El Jo + By Je),

) V-Spg—V-8% (W] +w S 1 .
V -ilm(Spp) = DB 5 DB _ (wr 1 a)eogacho -(aE] +a*Ey) + ZgachO'
. . 1 > .
(aJ} —a*Je) + zganeo -(@*cBy — acBY) — 4(E1 —Ef - Ja) (5.35Db)
iw . iw
21 (” B; - By — E; - Ey) — M“ (gary@Bp)?.

A questo punto si applica il teorema della divergenza ottenendo le equazioni cercate

. V-Spp+V-S7 (w1 — wgq S
%Re(SDB)-ndS—/( DB DB ) —/((14w)eogachg-(aE1 —a*E)

2
1 = 1 -
+ J9aryeBo - (a2 — @' Jer) = L guyyeo - ("B + acBy) (5.36a)
1
—1( 1 J0 + B - Ja))dV,
) R V-Spg—V-8S% (w1 + wyg = x
]{ZIHI(SDB) -nds = / ( bh 5 DB — / ((14)eogacho (aE} +a"Ey)
1 3 ~ % ~ ¥ 1 7 ~ ¥ ~ *
+ ngl’WCBO (aJl] —a*Je) + iganeo - (a*eBy — acByY)
ion 1 . (5.36b)
_Z(El —Ef-Ja )+7(MOB1'31—60E1'E1)
Wq
— 2lu0 (ga'y'yaBO) )dV
5.4.2 Vettore di Poynting per Abraham
Un procedimento del tutto equivalente si utilizza per il vettore di Abraham
1 * * 1 *
dove, in questo caso considerato, H; = iBl' Di nuovo si calcola la divergenza
1 1 B} By
Spi =~V (Ex B E)) - fE ! :
V- Spn =5V ( X 1) = 2M(V>< 1) 1( Mo) (5.38a)
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v Ex Lty =By E - El(V « By, (5.38D)
2 ) 2 po 1o

Analizzando le equazioni di Maxwell modificate dall’accoppiamento assionico, si trova che, in questo
caso, con un campo magnetico costante creato da una corrente continua Jy, solamente la legge di
Ampere viene intaccata, mentre quella di Faraday non subisce variazioni. Ricalcolando i rotori dei

vari campi e sostituendoli nelle espressioni del vettore di Poynting si ottiene

V- Shy =

wi , 1, X w
V.- Sy = 71(%31 By — ¢Ef - E1) + : —2 Gare0d*cBy - El—fEl e (5.39a)
. w Wq 1. .
V. Shy = 21(60131 El——Bl By) — 5 —2 garr€oicBy - B — B Jer. (5.39b)

Dunque si possono esprimere le espressioni cercate necessarie per fare un confronto effettivo con il
vettore di Minkowski

. V-Spy+V -8 [Wa 5 Jo—
%RG(SEH)‘ndSZ/( EH EH ) :/(MeogachO‘(a E, — GEY)

. 2 4 (5.402)
— (B Ja + B - Je))dv,
_ . V-Spy—V-S; .
fZIm(SEH) ~nds = /( EH EH ) — / (M €09arcBo - (AEf + a*Ey)
2 4
2o (5.40D)
4(E1 JH = Ef-Ja) + 71(#03;.31 — «E; - Ey)dV.
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