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Abstract. The ATLAS experiment is projected to collect over one billion events/year during
the first few years of operation. The efficient selection of events for various physics analyses
across all appropriate samples presents a significant technical challenge. ATLAS computing
infrastructure leverages the Grid to tackle the analysis across large samples by organizing data
into a hierarchical structure and exploiting distributed computing to churn through the
computations. This includes events at different stages of processing: RAW, ESD (Event
Summary Data), AOD (Analysis Object Data), DPD (Derived Physics Data). Event Level
Metadata Tags (TAGs) contain information about each event stored using multiple
technologies accessible by POOL and various web services. This allows users to apply
selection cuts on quantities of interest across the entire sample to compile a subset of events
that are appropriate for their analysis. This paper describes new methods for organizing jobs
using the TAGs criteria to analyze ATLAS data. It further compares different access patterns
to the event data and explores ways to partition the workload for event selection and analysis.
Here analysis is defined as a broader set of event processing tasks including event selection and
reduction operations (“skimming”, “slimming” and “thinning”) as well as DPD making.
Specifically it compares analysis with direct access to the events (AOD and ESD data) to
access mediated by different TAG-based event selections. We then compare different ways of
splitting the processing to maximize performance.

1. Introduction

The Large Hadron Collider (LHC) [1] at the CERN laboratory, near Geneva, Switzerland, is a proton-
proton collider with center of mass energy of 14 TeV. Over the next 10 years this facility will provide
sufficient collisions to yield sensitive tests of the Standard Model and its various extensions such as
SUSY. Two general purpose detectors, ATLAS [2] and CMS [2], as well as two special purpose
detectors, ALICE [2] and LHCb [2], have been built to measure the properties of these collisions
which can then be used to calculate physics results.

The amount of data produced by the detectors is large both because of the number of channels and
because of the event rate. At ATLAS the raw data from the detector corresponds to approximately 2
MB per event with an event rate of 200-500 Hz. The raw data will then go through a standard series of
reconstruction and particle definition steps, which will yield Event Summary Data (ESD), Analysis
Object Data (AOD) and Derived Physics Data (DPD). Section 2 describes these data products, but
exact definitions and uses are beyond the scope of this paper and are discussed in other documents
such as the ATLAS Computing Technical Design Report [3]. The estimated total data production is
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O(10 PB/yr) and thus requires a navigational infrastructure coupled with a distributed parallel
processing system.

This paper is divided into three sections. Section 2 describes the standard ATLAS data products.
In Section 3 is an analysis of ATLAS data access patterns and a study of several modifications to
different components of ATLAS software in order to improve analysis. Finally, Section 4 introduces
further optimizations of the system and measures with the resulting performance improvements.

2. ATLAS data management and TAG information

ATLAS facilities are structured in a hierarchical manner. The Tier O computing facility is adjacent to
the experiment at CERN. Tier 1 facilities are distributed among various national institutes and
laboratories, and Tier 2 facilities are smaller regional computing facilities located either at universities
or other research institutes. Even smaller-scale computing resources, so-called Tier 3 facilities, will be
used for final-stage analysis over highly summarized data products. The large amount of data
produced by ATLAS will require different levels of processing across these facilities. Successive
refinements of data needed for analysis will produce progressively smaller filtered samples tailored for
certain physics requirements. Generally, smaller and refined samples will have more replicas far from
the Tier 0. The software tools to move the data and the ones to process it have been tailored
appropriate to the scale at each Tier. For example, data is moved across Tier O through Tier 2 using
automatic replication and subscription services. Client tools may be used to copy or access datasets
within a Tier or, for smaller sized datasets, between facilities. Datasets are comprised of one or more
files in various formats. Centrally managed production files are processed with the Athena framework
[4] and are stored using the LCG POOL [5] as persistency framework. For local analysis files ROOT
Trees [6] are often used which are easy to handle if there are not too many elements.

2.1. ATLAS data formats

The ATLAS detector produces data in units of events. Events that are selected by the triggers are
written to output streams in RAW data format. Monte Carlo productions use the same event structure
as detector data. The same event (2MB in size) may belong to more than one stream. ATLAS raw
data is processed into reconstructed data objects that are then repackaged and distributed to facilities
according to task. The ESD (Event Summary Data, 1 MB/event) is used primarily for fast
reprocessing and detector studies. It contains reconstructed data with calorimeter, tracking, and trigger
information. They are initially produced at the Tier 0 and distributed to the Tier 1 centers. The AOD
(Analysis Object Data, 0.2 MB/event) is the first data product intended for general analysis. It
contains reconstructed particles such as electrons, hadronic jets, etc. AOD data are produced at the
Tier 0 and Tier 1 facilities and then distributed to the Tier 2 centers for subsequent analysis with
Athena, ROOT or other tools. TAG (1 KB/event) contains event level metadata such as trigger
information and is distributed to all Tier 2 centers, allowing users to quickly present select input
events within a stream for their job inputs.

An additional class of formats has been specified by ATLAS [7]: Derived Physics Data (DPD).
Primary DPD (D1PD) is a smaller version of the AOD. Secondary DPD (D2PD) is an augmented
version of D1PD with calculated and derived quantities according to the requirements of physics or
performance groups. Tertiary DPD (D3PD) datasets are typically based on ROOT Trees and are
compact enough for local storage and quick iterations required for histogram making and statistical
fitting. Further filtering and streaming will be applied to the production of primary DPD.

2.2. ATLAS data management

Both raw and processed event data are stored in files. In order to distribute this data ATLAS has
deployed a distributed data management infrastructure (DDM) which uses an ATLAS-developed
software component Don Quijote (DQ2) [8]. DQ2 supports grouping of files into datasets and
containers for efficient transfers across the DDM infrastructure. A dataset is a set of related files that
usually are produced or processed in the same location. A container is a set of datasets and usually
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corresponds to a physics dataset, data that shares the same meaning for ATLAS. To trigger data
movement operators register subscriptions to the desired datasets to specific site-locations (i.e. Tier
centers) in the infrastructure. The DDM then tracks where copies of the datasets exist and is then free
to use internal optimizations to deliver the data, either already available or as soon as it becomes
available, to the site that subscribed to it. Any service or client that needs to access the global ATLAS
data store uses the DDM for location information about datasets. A central database in the DDM
system knows the location of all replicas (complete or partial) of every dataset used by ATLAS, and
additional (distributed) catalogs store site-level information about file availability at sites.

2.3. Event tagging and metadata
TAG metadata [9] consists of name-value pairs, and while stored separately from the event data, they
contain navigational references back to the event data for the AOD, ESD, and RAW formats. The
TAG uses the LCG POOL Collections package to provide a method to navigate to the events within
the files in the data store. A set of utilities for accessing the collection data is also provided, although
ATLAS has also extended these for ATLAS-specific applications. LCG POOL Collections also
provide for multiple persistent storage mechanisms. In our case the two mechanisms of interest are
relational databases and ROOT files. In POOL, references to events contain the file ID, object ID, and
position within the file. For the TAG the object ID is always the Data Header for the event. These
tools support multiple data transformations both with and without selection:

* AOD -> AOD-based on TAG (skim off a subset of events)

* TAG -> TAG-based on TAG (store a selection for later use)

* TAG -> new TAG with new attributes (store a selection with new attributes for later selection)

* AOD ->new TAG with new attributes
Combinations of these transformations are also possible.

The TAG data are written to files during AOD and DPD production and packaged and distributed
to remote facilities like other datasets. The data are also loaded into a central relational database for
browsing by users. This database may be replicated to other facilities. Additionally, TAG databases
may be built using the distributed TAG datasets directly. The metadata in the TAG falls into these
categories:

¢ Event ID (run number, event number, etc.)

*  Quality (good calorimetric information, track quality, particle ID, etc.)

e Trigger (which triggers fired)

*  Physics (number of electrons, missing Et, etc.)
A set of event-wise attributes was chosen constituting the TAG content in a review in early 2006 [10].
The content has since been further refined based on new use cases.

3. Data access in ATLAS analysis
A recent ATLAS report [11] describes analysis use cases and summarizes four major activities:
* Data distribution chain in the steady state: a steady flow starting with the RAW data produced
at the detector and ending with AODs and D1PD at the Tier 1 centers
* Dataset creation: production of D2PD or D3PD datasets for general ATLAS consumption,
executed at Tier 2 centers
* Monte Carlo production: simulation of the detector is driven event generation at the Tier 1
centers with detector simulation executed mainly at Tier 2s
* Chaotic data analysis: customized analyses performed by users on DPD and possibly the
(larger) AOD datasets

The ability to efficiently analyze samples for customized analysis frequently requires reducing the
datasets using specialized criteria. Forms of data reduction fall into the following categories:
* Skimming: The extraction of events of interest from the data store
* Slimming: Storing a subset of the data classes rather than a full copy of the event

3



17th International Conference on Computing in High Energy and Nuclear Physics (CHEP(09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 072042 doi:10.1088/1742-6596/219/7/072042

* Thinning: Limiting the objects based on usefulness for their physics

Here physicists will inspect the data for irregularities, compare it to Monte-Carlo data, isolate signal
from background and verify various tests. All of this will be likely repeated multiple times applying
various weighting factors and/or changing the selection.

Analysis jobs usually include iteration on ROOT Trees or running multivariate techniques over
local datasets, but a majority of the processing effort and resources will involve the production of
D3PD or ROOT Trees and histograms starting from ESD, AOD or DPD datasets. These are the use
cases targeted by the optimizations discussed in this paper and described in more detail in this section.
Their execution will follow a sequence of similar steps starting with the selection of the events and
ending with the retrieval of the analysis results.

3.1. Event selection

TAG information can be accessed using POOL command line utilities, the Athena framework, or the
interactive Web frontend ELSSI [12]. The selection process uses the information stored in the event
attributes to select events of interest and can be done interactively, from a script, or from within an
analysis job. Depending on the tool, a user or algorithm can list available attributes, count the events
matching a selection, plot attribute distributions, and finally define a query that will select the desired
events. The selection output is typically a ROOT file containing event metadata and navigational
references (Extraction file).

3.2. File location

The navigational references in the Extraction file point to the event in each of the RAW, ESD and
AOD formats. These uniquely identify the file and the position of the event (its Data Header) within
the file. A POOL utility (CollListFileGUID) was developed to list the file unique identifiers (GUIDs)
for each of the format types. This list can be used to organize the input data for analysis jobs that by
policy cannot trigger wide area data transfers from within the job itself and must be accessible by
Athena-supported (local) protocols. In practice this means analysis jobs must run on sites where the
input files are already available, or a pre-staging job must occur in advance of the analysis job.

A JSON-based web service [13] has been developed to translate the list of GUIDs into file and
dataset names, and to locate them on the Grid. Current work involves integrating this service into the
ELSSI Web frontend described above. The Grid locations can be used as analysis execution sites for
the selected events or sources for transfers to other sites from pre-staging jobs. Pathena, the analysis
client used by the Panda production system [14], has been modified to use the TAG Extraction file to
resolve references locally at the analysis site and to put them into the format expected by Athena
(PoolFileCatalog xml).

3.3. Analysis execution

There are two basic modes for TAG-based analysis in ATLAS. The first involves event selection in
advance of job submission; the second involves event selection during job execution. Each introduces
important execution optimization choices in terms of job splitting and file access.

In the first mode, knowledge of the referenced events and files is known at job submission time and
therefore allows one to organize individual jobs so as to minimize the overall execution time. Files in
the input dataset containing no selected events can be skipped. Additionally, improvements to
Pathena included using the information stored in the Extraction file (i.e. the event selection) to
optimize job splitting by optionally varying the number of events or files per job. This allows
experimenting to get the best throughput through the Grid scheduling systems.

The performance of both modes depends critically on the access method for input files. Note that
job input files include both the TAG files (either the Extraction file or a file from the TAG dataset)
and the event input files (i.e. ESD or AOD formats). Data access methods vary significantly in a Grid
execution environment. Files may located on disk local to the compute node, or in a local storage
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element, usually based on a storage system technology such as dCache [15], XROOTD [16], Castor
[17], or a global file system such as GPFS, Lustre or Hadoop [18]. The critical decision is whether to
copy input data to the local disk, or to read directly from the storage element via an appropriate
protocol (i.e. supported by Athena). Different combinations of direct access or local-copy were tested
and compared. In both cases we found it more efficient when Panda copies the TAG files to local
disk. This is not surprising given the relatively small file size of TAG files. For the event data input
files, it was more efficient to read the files directly rather than copy to local disk, provided the storage
system was suitably configured (see Section 4). This is also not surprising since the TAG reference
allows for navigation within the file, accessing and transmitting over the network only the selected
events of interest.

3.4. Result retrieval

It is ATLAS policy to leave the output files on the site where each analysis job was executed. A DDM
command, dg2-get, allows retrieval of all the output produced by the whole analysis even if it resides
on different sites.

4. Analysis performance
The processing times of different analysis jobs have been measured to compare different analysis
workflows and to choose the default procedure for a TAG-based analysis.

Most of the tests were performed on the ATLAS Midwest Tier 2 Center [19]. The cluster has two
hundred multicore CPU servers in a PBS job queue. A gigabit Ethernet switch interconnects the nodes
and a 200 TB capacity dCache storage system. Jobs were submitted locally or via the Grid using
Pathena. Jobs focused on comparing different workflows and on tuning dCache performance.
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Figure 1. dCache timing for TAG-based analysis with different ReadAhead buffer
configurations

Figure 1 shows the effect of dCache ReadAhead buffer in a skim job where almost all events are
selected. Enabling the buffer increases file access speed (lower Real Time) even if it increases also the
system load (System and User Time) because most of the data buffered is discarded (the efficiency was
always below 3%). The length of the buffer is not really important as long as it is enabled. When
accessing all the events the performance is comparable with local copy + local execution.
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In a selective skim, a skim with a low percentage of selected events, direct access is much better.
In fact in a selective skim (about 20% of acceptance rate) the completion time was less than half than
the unselective skim charted in figure 1, where almost 100% of the events are selected.

We also found significant improvement in the overall execution time after options for job splitting
at submission time were added to Pathena. Without the TAG files as input, Pathena would submit a
separate job per input file over an entire dataset, resulting in some jobs which produced no output.
Currently files with no selected events are skipped, reducing the number of jobs or the number of
accessed files. Similarly job splitting based on the number of input events per job is more uniform
when Pathena is TAG aware, and the more even numbers of events to process in each job result in a
shorter completion time of the analysis.

5. Conclusions

This paper presented modifications implemented in the ATLAS software, especially Pathena and the
LCG POOL utilities, to improve TAG-based data analysis. It further explained the advantages of
TAG-based analysis and compared different possible access patterns to the data giving useful insight
on how ATLAS jobs should interact with data storage systems. Further tests will measure the
performance gain in selective skims. Developments discussed here are being integrated in ELSSI (cf.
J. Cranshaw et al. [12]) to provide a streamlined solution for TAG-based data analysis in ATLAS.
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