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Quantum technologies such as communications, computing, and sensing offer vast opportuni-
ties for advanced research and development. While an open-source ethos currently exists within
some quantum technologies, especially in quantum computer programming, we argue that there
are additional advantages in developing open quantum hardware (OQH). Open quantum hardware
encompasses open-source software for the control of quantum devices in labs, blueprints and open-
source toolkits for chip design and other hardware components, as well as openly-accessible testbeds
and facilities that allow cloud-access to a wider scientific community. We provide an overview of
current projects in the OQH ecosystem, identify gaps, and make recommendations on how to close
them today. More open quantum hardware would accelerate technology transfer to and growth of
the quantum industry and increase accessibility in science.

I. INTRODUCTION

The free and open exchange of scientific tools has become more and more important as automation and devices
increase their role into scientific fields. The past five years have witnessed an explosion of open-source tools for
programming quantum computers. The open nature of these software tools has substantially increased the number of
users of quantum computers, and created a new genre of programmer: the “quantum software engineer” [1-6]. This
has shaped the development of quantum computing as a whole, leading to the creation of new organizations, job
categories, and career paths.

Less attention has been paid to the tools and components actually used to build and control quantum computers
— and quantum technologies such as communications and sensing more broadly — as well as efforts making quantum
computers more accessible in non-commercial ways. We use the term “open quantum hardware” (OQH) to cover
them, and intend for it to explicitly encompass several steps related to the openness associated to hardware in
quantum technology, including: (1) open-source software (OSS) for designing quantum processors and other hardware
components (used for computation, but also for simulation, sensing, and communication), (2) foundries and facilities
for fabricating quantum processors, (3) software for controlling, analyzing and characterizing quantum devices, and (4)
software and hardware for making the infrastructure that enables various levels of open-access — from cloud-accessible
quantum processors to collaborative testbeds providing non-commercial access and testing, from remotely accessible
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FIG. 1. Overarching diagram of the Open Quantum Hardware steps and their interconnection. 1: Design phase,
which can involve a loop between simulation of the Hamiltonian and electromagnetic (EM) simulations used to define the
QPU design and layout. 2: Fabrication step, e.g., through a foundry. 3: Installation and bring-up, which includes testing and
characterization; information collected at this step can be fed back to step 1 to modify designs. 4: Sustained operation, with
overlaps (with step 3), and is composed of data acquisition (with control and calibration) and can involve interfacing with
infrastructure to provide cloud access to the device or experiment.

research labs to the related cloud infrastructure. These steps covering the life cycle of OQH and their overlapping
relations are sketched in Fig. 1.

In this article, we provide an overview of efforts in each of these categories of open quantum hardware (OQH),
highlight notable projects in each category, identify gaps, and provide recommendations for closing them. A major
theme in this review is that there is much opportunity to promote interoperability, reduce cost, and increase the
number of users of quantum technologies.

Enabling the open quantum hardware ecosystem is both the natural complement to the open quantum software
ecosystem (which is itself quite robust and sophisticated [2]), as well as the natural extension of efforts to open up
classical hardware. This ecosystem also represents a prime opportunity for entities building hardware (of all kinds) to
engage in the kind of beneficial, pre-competitive activity which boosts the ecosystem as a whole (and consequently,
those builders themselves).

A first generation of projects in open quantum hardware, such as ARTIQ and pyEPR |7, 8], has pioneered a free
and open dissemination of tools. We are now witnessing the beginning of a more robust and sophisticated OQH
ecosystem [9, 10] which can enable and accelerate scientific progress and discovery on a wider scale. On the one hand,
this ecosystem can further extend beyond quantum computing, on which it is mostly focused, to encompass quantum
technologies such as quantum sensing and communications. On the other hand, it can further integrate and benefit
from the adoption and integration of existing non-quantum open hardware projects and frameworks [11]. What’s more,
given the substantial investments made around the world [12] — especially in Australia [13], Eurasia [14-19], and North
America [20-23]- to support the development of a quantum technologies industry, ensuring those investments yield
the best possible fruit is of great importance. One way to do so is through encouraging the development of open
communities and ecosystems [24-33] around quantum technology.

To describe the potential of OQH, we can look at the open quantum software ecosystem, which has flourished within
the past five years, thanks to seeds planted over ten years ago. As a result, researchers (theorists and experimentalists
alike) as well as quantum software engineers worldwide can use open-source software to advance quantum technology
and quantum science in many directions, generally building upon an existing stack. An illustrative case is that of the
Quantum Toolbox in Python (QuTiP) [34, 35], first released in 2012, which enables the exploration of the effects of
noise on a variety of quantum systems interacting with the environment. Building on top of QuTiP, several other tools
have emerged, focusing on specific niches such as nontrivial system-environment dynamics [36, 37], notably getting
closer and closer to the simulation of QPUs and their diagnostics [38, 39].

When looking at similar efforts in the classical open hardware space, the astounding success of the Arduino
project [40] (microcontrollers) as well as the Raspberry Pi [41] (single-board computers) speaks to the power of



Functionality Examples

Processor Design DASQA [45, 46], KQCircuits [47], PainterQubits/Devices.jl, pyEPR [8], Qiskit
Metal [48], QuCAT [49]

Simulation and diagnostics KQCircuits [47], Pulser [50], Qiskit Metal [48], QuTiP [34, 35], QuTiP-QIP [39],
sc-qubits [38]

Control and data acquisition ARTIQ [7], Duke-ARTIQ [51], Qua® [52], QCoDeS [53], QICK [54], Quantify [55],
QubiC [56], qupulse [57], Sinara Open Hardware [58, 59|

Remotely Accessible Labs® Forschungszentrum Jiilich through OpenSuperQ [60], Quantum Inspire [61]

Testing (testbeds) Lawrence Berkeley National Lab’s AQT, Sandia National Labs’ QSCOUT [62],

Sherbrooke’s Distriq DevTeQ

Fabrication (foundries) LPS Qubit Collaboratory, UCSB quantum foundry, QuantWare®

@ partially open-source
b excluding commercial providers
¢ private company with support for Qiskit Metal

TABLE I. OQH examples grouped by functionalities. The different functionalities in open quantum hardware and
examples of representative projects: Processor design, §II A; simulation and diagnostics, §II B; and control and data acquisition,
§IIB4. We also list programs related to facilites in OQH: Remotely accessible labs (where here we exclude here the many
commercial providers and cloud services, that are discussed in §IID 1); testing (testbeds), §II D 2; and fabrication (foundries),
§IID 3.

putting open hardware in the hands of end-users. We can reasonably expect similar benefits within the quantum
hardware ecosystem. Compared to only open-source software, an open hardware ecosystem also provides legibility,
transparency, and reproducibility of hardware devices, a crucial consideration for supply chains and their management.

Finally, the pre-competitive activity which can take place by opening up quantum hardware extends these benefits
by mobilizing institutional momentum from key players who can help the ecosystem adopt a broad ethos of openness,
interchangeability, interoperability, and benchmarking, as fostered by bodies like the Quantum Economic Development
Consortium (QED-C) in the USA and similar entities in other geographies [42-44]. In doing so, this allows for
additional adoption and use of quantum hardware in academic labs and testbeds (a point returned to in Sec. IID 2).

This article is organized as follows: Sec. II gives a high-level overview of the state of the art in OQH, divided among
blueprints and software for hardware design (Sec. I A), and software for control and data acquisition (Sec. II B), itself
divided into data acquisition (§ IIB 1), pulse-level control on hardware (§ II B 2), pulse-level simulation (§ II B 3), and
optimal control, calibration and characterization (§ IIB4). In Sec. IIC we provide an outlook on the current status
and specific need for OQH for quantum error correction. In Sec. IID we review facilities for OQH, such as remotely
accessible labs (Sec. IID 1), Testbeds (§ IID 2) and Foundries (§ IID 3). Throughout Sec. II's subsections, we focus
on some example projects to bring definiteness to the discussion. In Section IIT we discuss gaps in OQH and make
recommendations to close them. Finally, in Section IV, we give our conclusions.

II. OPEN QUANTUM HARDWARE TODAY

Open quantum hardware encompasses open-source software that is used for designing, analyzing, building, control-
ling, and programming quantum chips, foundries which build quantum chips, and cloud-accessible labs and testbeds
that provide alternative, non-commercially-driven access to them. In this section, we review the state of open quan-
tum hardware along each of these categories. It should be noted that within each of these categories, there can exist
multiple stacks — configurations of components which are all inter-operable with one another, but not necessarily with
components used in a different stack. Ensuring inter-operability of components across stacks would help ensure a
more robust and sophisticated ecosystem. In Table I we summarize the different categories, providing examples of
existing open hardware projects. The particular choices of components is again meant to be representative.



A. Blueprints and software for hardware design

Blueprints for hardware design are classic examples of “open hardware” [46, 63-71]. In modern device design,
software tools have been developed to tackle various aspects of this task, known as computer-aided design (CAD). In
quantum computing research, while quantum device design is often published in peer-reviewed papers and micrographs
are included in the supporting materials and figures, generally, CAD drawings are not shared in the open. Notable
exceptions include pyEPR [8], Qiskit Metal [48], and KQCircuits [47], three projects enabling various capabilities for
chip design of superconducting-circuit (SC) qubits.

Superconducting circuits incorporating non-linear devices, such as Josephson junctions and nanowires, are among
the leading platforms for emerging quantum technologies. Using pyEPR, one can design and optimize SC circuits and
control dissipative Hamiltonain parameters in a systematic, simple and robust approach. This reduces the number of
required ab-initio simulations. pyEPR has been used on a variety of circuit quantum electrodynamics (cQED) devices
and architectures, from 2D to 3D, including “2.5D" (flip-chip), demonstrating 1% to 10% agreement for non-linear
coupling and modal Hamiltonian parameters over five-orders of magnitude and across a dozen samples.

Finite Element Methods (FEM) simulations, as those shown in Figure 2, can be obtained with PyEPR using the
energy participation ratio approach (EPR). EPR unifies the design of dissipation and Hamiltonians around a single
concept — the energy participation, a number between zero and one — in a single-step electromagnetic simulation.
After the FEM simulations have validated the qubit properties (and possibly its coupling to a cavity), one is ready
to fabricate the SC QPU. To this end, a photomask is generated to place the SC qubits on the substrate of a
processor. You can find a typical CAD drawing of a superconducting flip chip QPU and an example mask generated
by KQCircuits [47] in Figure 3 and more information about KQCircuits in the frame below (Ezample 1).

Cavity mode (9.0 GHz) Qubit mode (linearized)

E-field substrate substrate

contours

junction

~N

cavity

=

outline transmon pads
O BT TN Max (o) — LV Ee
E-field magnitude Current-density magnitude

FIG. 2. Finite Element Methods (FEM) chip simulations Design and FEM simulations of a cavity (left) and qubit
(right) modes, using PyEPR [8]. The contour plot of cavity modes displays the intensity of the electric field at 9.0 GHz. The
Current-density magnitude of a transmon qubit, showing transmon pads connected by a Josephson junction [adapted from

Ref. [8]].



FIG. 3. Photomask layout and chip design. An open-source photomask (left) provided in KQCircuits as a demo example.
An individual SC quantum processor layout (right) based on flip chip technology, where blue is one substrate, red is the other
substrate and in green denotes the bump bonds. The chip contains four transmons capacitively coupled and two buses for
multiplexed readout. The code for the mask can be accessed here here and for the chip here.

Example 1. HARDWARE DESIGN.

KQCircuits: KLayout Python library for integrated quantum circuit design.

KQCircuits [47] is an open-source Python library created by IQM, a full-stack quantum computing startup,
for designing superconducting quantum circuits. It automates the layout and simulation part of the design
process, outputting chip layouts and photomask files in OASIS or GDSII formats, standard formats for the
specification of data structures of photomasks, and integrated circuit layout. The layout files are sent to a
mask manufacturer to produce a physical mask which is then used for the fabrication process. As a part of
the mask export process, KQCircuits also produces other files such as netlists, to help with design verification.
While KQCircuits itself cannot be used to perform simulations, it can be used to export automated simulation
scripts and files for popular electromagnetic field simulation toolkits, such as Ansys HFSS/Q3D [72], pyEPR [8]
(Energy Participation Ratio simulation), Sonnet [73], and Elmer [74]. These simulations use the parameterized
geometry as the physical mask layouts produced by KQCircuits. A comparison between KQCircuits and Qiskit
Metal is provided in Table II.

KQCircuits generates multi-layer 2-dimensional-geometry representing common structures in quantum process-
ing units (QPU). An important part of KQCircuits are the definitions of parameterized geometrical objects,
or “elements”, and a framework for easily defining new ones. Generating the designs using code makes it easy
to quickly create different variations of designs and helps to avoid costly human errors. The combination of
many elements into a full QPU design is made easier by features such as named reference points used for auto-
matic positioning of elements relative to each other and Graphical User Interface (GUI) editing. Furthermore,
KQCircuits includes a library of premade chips, many of which have been manufactured and used for testing
at IQM.

KQCircuits works on top of KLayout [11], an open-source layout design software that is mainly used for classical
electronics. Advantageously, existing KLayout functionalities can be used for quantum hardware other than
classical, while KQCircuits only needs to add features specific to QPU design. This connection with KLayout
can also help to bring together the wider electronics open-source hardware community and open quantum
hardware community.

& J

In terms of remaining challenges for chip design tools, we note that computational electromagnetic simulation
of quantum circuits is still heavily reliant on the use of proprietary and expensive tools such as Ansys HFSS or
Sonnet or CST Studio (full-wave and capacitance simulations in particular). Open-source tools such openEMS or
MEEP or Scuff-EM which are used elsewhere in the field of microwave simulations find very little adoption and
application in quantum device design. Notable open-source exceptions are Elmer [74] and Palace [75]. Elmer is an
open-source parallel multi-physics Finite Element Methods (FEM) software used for quantum device simulation on



https://github.com/iqm-finland/KQCircuits/blob/main/klayout_package/python/scripts/masks/quick_demo.py
https://github.com/iqm-finland/KQCircuits/blob/main/klayout_package/python/kqcircuits/chips/demo_twoface.py

Software

Purpose

Simulations

Circuit analysis

Input/output (I/0)

Qiskit Metal

KQCircuits

Full-stack quantum pro-
cessor design.

Design parametrization
and  automation  for
quantum Processors.
Extensive  components,
chips and masks library.

Ansys HFSS/Q3D, An-
sys, GDS, etc. by plug-
ins. Work in progress on
open-source EM renders.

Ansys HFSS/Q3D, Son-
net, Elmer (open-source)
supported.

EPR, impedance, quasi-
lumped LOM, lumped.

EPR, cross sectional EM
properties, London equa-
tions and netlist export.

Python based. Con-
nects to Ansys, GDS, etc.
by plugins. Work in
progress on open-source
EM renders.

Import/export GDSII
and OASIS format.
Netlist export. Auto-

mated simulation scripts
and files export.

TABLE II. Open hardware design of SC qubit processors. Qiskit Metal, supported by IBM, and KQCircuits, developed
at IQM, are two software packages for open hardware design for SC qubit processors. We highlight their purpose, integration
with FEM simulation software, circuit analysis characteristics and input and output file formats. EPR: Energy Participation
Ratio, GDS: Graphic Design System, HF'SS: High-Frequency Structure Simulator, LOM: Lumped Oscillator Model.

desktop and High Performance Computing (HPC), e.g., 3D layouts capacitance matrices, cross section of layouts,
London equations, which in the framework of OpenSuperQPlus (European Open-Access Quantum Computer Project
[60]) is developed with the partnership between CSC and IQM. Elmer along with Gmsh [76] has also been integrated
as a backend for mesh generation and FEM simulation in Qiskit Metal. Palace (Parallel, Large-scale Computational
Electromagnetics) [75], is an open-source parallel FEM software capable of full-wave electromagnetics simulations
developed at AWS, with out-of-the-box support for use of large scale cloud HPC resources.

B. Control and data acquisition

In this section, we discuss the features and components involved in the execution and readout of quantum exper-
iments. This field is not easily defined, as the operation of a QPU or quantum technology experiment is informed
already at the highest level with the definition of abstract instructions, e.g., for quantum programming, gates in
the form of a quantum circuit in a high-level software development kit (SDK). To narrow the field, we focus here
on control that gets “closer to the metal", e.g., lower than gate-level quantum circuit compilation in quantum com-
puting. This field is already populated by a number of projects, spanning from pulse-level simulation of devices
for diagnostics, characterization and calibration, to pulse-level control and data acquisition during experiments runs
[7, 34, 38, 39, 53, 54, 77-93]. We highlight that core to these tasks is the exchange of data through application
programming interfaces (APIs).

1. Data acquisition

Quantum hardware for control and readout of quantum systems includes a user interface to operate the instrument,
for instance, through a touch-based front panel or remotely accessible GUI. However, to implement more complex
tasks such as characterization, tuning, calibration and general operation of QPU elements that involve coordination
and timing between several different pieces of programmable hardware, it is essential to add a software layer that runs
on a control computer and communicates with hardware directly through a programming interface. This software
layer orchestrates the flow of control and data acquisition commands and is responsible for the overall operation of
the QPU via the quantum hardware.

On the software side, there exist quite a few alternatives for QPU control and data acquisition, starting with
QCoDeS [53], which is a Python framework developed by Microsoft Quantum. Another example of Control and
Data acquisition software is ARTIQ [7], which is also used to control hardware, as discussed in Sec. IIB4. Control
and data acquisition software encompasses various elements and instruments: the quantum device, the firmware that
interconnects with the instrument drivers, parameters that are controlled and measured to generate datasets, which
are stored, analyzed and explored via data visualization tools, as depicted in Fig. 4.

To achieve frictionless control of a QPU, the software typically abstracts away the hardware elements using drivers.
For example in the QCoDeS library [53], an instrument driver is a Python class that implements methods to operate
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FIG. 4. Control and data acquisition. The diagram shows some of the most important elements in the software and
hardware stack involved in a quantum experiment. The hardware part of the stack includes the device under test or operation,
the measurement instrument and the firmware. A driver provides interaction between the software and hardware. Drivers
implement parameters that can be controlled (set) or read (get) over several measurements. The result of each measurement
is stored into a dataset, that is read for data analysis, visualization and storage.

the hardware using commands that are sent to the device via the programming interface. Namely, a quantum hardware
instrument, such as an arbitrary waveform generator, can be used to generate a radio frequency pulse for a rotation
of a qubit, e.g., an X gate. In order to program this pulse, the driver implements parameters such as frequency,
amplitude, phase and pulse time. The driver will then use these values to construct the right programming commands
to send to the instrument to set up the pulse. The QCoDeS documentation [53] contains driver examples to control
over 50 instruments.

The data acquisition sofware uses instrument drivers to form an abstraction layer to the several pieces of hardware
that control a QPU. Parameters can also be used in higher levels of abstraction on top of instrument parameters to
represent QPU device elements that are controlled and read via the hardware layer, such as a qubit readout circuit.
The parameters are then used in automated measurement routines with the goal to characterize, calibrate or program
a QPU or its different elements. This requires saving, analyzing and visualizing the data that is recorded by these
instruments in a dataset. Most data acquisition software frameworks therefore also include data storage abstractions
and data visualization tools.

In order to control the QPU elements using quantum programming instructions, the control signals need to be
calibrated for optimal gate and read-out fidelity. As shown in Fig. 1, calibration values are obtained via device
testing and calibration measurements using the data acquisition software, analysis routines and data storage in the
Cloud. More details can be found in section II B 4 on optimal control, calibration and characterization for high-fidelity
quantum operations.

A way to approach the software-hardware interface is through an Instruction Set Architecture (ISA) [94] as it is
done in classical computing. The ISA acts as a contract between hardware and software by explicitly describing the
set of available operations, machine instruction format, supported data types, registers, and memory addressing. A
well-designed ISA can present a very compact and efficient method to access the specialized features of a computing
device. Graphical Processor Units (GPUs) [95] and their success in becoming an integral part of many modern devices
is an example of instruction set design and standardization leading to widespread specialized architecture adoption.

There are a few quantum ISA implementations [96-98], with some that explore this control and data acquisition
approach, such as QUASAR [99] developed at Advanced Quantum Testbed (AQT), Lawrence Berkeley National
Laboratory (LBNL). QUASAR is based on the RISC-V ISA [100] - an open-source architecture that revolutionized
the classical computing field and continues expanding toward emerging technology applications. QUASAR has been
demonstrated in conjunction with QubiC [83] (QubiC is discussed separately in section IIB2, below), executing

experiments, including mid-circuit measurement and feed-forward, on superconducting quantum processors (QPU) at
AQT, LBNL.



Example 2. CONTROL AND DATA ACQUISITION R

QUASAR: A Quantum Instruction Set Architecture

The QUASAR development started in 2017 and went through several iterations. It is a project defining a
quantum Instruction Set Architecture (ISA) to interface software with hardware. The first version was a
tightly-coupled extension that required significant changes to the processor micro-architecture. Later, the
implementation moved towards a more decoupled approach. The current implementation is a RISC-V Rocket
Core [101] extended with the QUASAR co-processor (note that RISC-V is a very popular open standard ISA
in classical open hardware. RISC-V is based on the established reduced instruction set computer (RISC)
principles, and the Rocket Core is a processor that implements RISC-V.) In contrast to classical instruction
sets, quantum ISAs operate on different types of computations. Traditional general-purpose operations are
supplemented with a set of basic quantum gates applied on direct-addressed qubits and/or qubit registers. The
RISC-V core executes the main program; when a quantum instruction occurs at the fetch pipeline stage, it
forwards it via the RoCC interface [102] to be decoded and executed by the QUASAR co-processor. Such an
architectural solution allows the main core to continue performing computations while the quantum backend is
generating the control pulses. Moreover, the RISC-V core can perform complex computations, such as floating-
point arithmetic for phase estimation, and make conditional branching during algorithm execution based on the
qubit measurement data. That makes the QUASAR implementation flexible enough to accommodate complex
hybrid experiments for classical-quantum computations. The RISC-V Rocket core runs a Linux kernel that
facilitates remote communication with the user host machine and provides additional functionalities for the
quantum software stack.

2. Pulse-level control with hardware integration

In recent years, several pulse-level control software packages have been developed with the idea of providing end-
users with a tool to program all the relevant device-specific physical parameters of the system [7, 39, 54, 77, 79, 103].
This approach allows for a finer level of control over pulses during the application of gates, and also makes it possible to
directly use the Hamiltonian of the system as a resource for computation. Within the gate-level framework of quantum
circuits, pulse-level control and simulation enables a greater level of flexibility and the ability to implement optimal
control schemes. Within the analog quantum simulation framework, pulse-level control notably allows practitioners
to take advantage of the mimetic capabilities of the hardware. Exposing the hardware controls at such a low level
is intended to help quantum developers design software procedures while having the specific characteristics of the
hardware in mind [104].

Control hardware, e.g., field programmable gate arrays (FPGAs), arbitrary waveform generators (AWGs), se-
quencers, have historically been closed-source, either provided by industrial manufacturers or by in-house developed
systems. The ARTIQ/Sinara project is a notable exception, focused on the fast control of ion-based quantum pro-
cessors through FPGAs, as detailed in the box below (Ezample 3).



Example 8. CONTROL AND DATA ACQUISITION.

ARTIQ: Advanced Real-Time Infrastructure for Quantum physics.

The ARTIQ experiment control and data acquisition system was initiated in 2013 at the NIST Ion Storage
Group, in partnership with M-Labs Ltd, to address the deficiencies observed with control systems developed
in-house by physicists or based on existing commercial solutions. A key feature of the ARTIQ system is a
high-level Python-based programming language that helps describe complex experiments, which is compiled
and executed on dedicated FPGA hardware with nanosecond timing resolution and sub-microsecond latency.
Using the abstractions provided by Python, ARTIQ has the capability to handle the entire control stack
from quantum circuits to pulse-level programming. ARTIQ also supports connecting several FPGAs together
and synchronizing their clocks in the sub-nanosecond regime, which greatly expands the input/output (I/0)
scalability of the system.

Initial versions of the ARTIQ system ran on physicist-designed hardware based on FPGA development kits
with custom I/O expansion boards. In order to improve the quality, availability and reproducibility of the
hardware, the Sinara project [59] was started in collaboration with Warsaw University of Technology. The
Sinara project developed a modular system with carrier FPGA cards (Kasli, Kasli-SoC) controlling various
so-called Eurocard Extension Modules (EEMs) catering to the needs of each experiment — such as digital
1/0, Analog to Digital Converter (ADC), Digital to Analog Converter (DAC), Direct Digital Synthesis (DDS),
Phase-Locked Loop (PLL) synthesizer, AWG. There is ongoing work by Duke University on firmware [51] and
by Warsaw University of Technology on hardware [58] to port ARTIQ to the RF-SoC platform, with similar
capabilities to QICK.

Combined with the ARTIQ software, the Sinara hardware has encountered substantial success, with almost a
thousand quantum physics experiments relying on ARTIQ/Sinara systems.

ARTIQ), including its gateware, the firmware, and the ARTIQ tools and libraries are licensed as LGPLv3+.
The Sinara hardware designs are licensed under CERN OHL. This ensures that a user of ARTIQ or Sinara
hardware designs obtains broad rights to use, redistribute, study, and modify them.
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More recently, other FPGA-based projects have emerged beyond ARTIQ), for SC qubits control, such as QubiC [56]
and QICK [54], two projects based on software, firmware and hardware composed of radio-frequency system-on-chip
(RF-SoC) boards. Open-source FPGA-based control efforts for SC qubits started in 2018 with QubiC, developed at the
Advanced Quantum Testbed (AQT) based at LBNL (more information on this facility is given in Sec. II D 2, discussing
Testbeds). The first version of QubiC was implemented on the XilinX VC707 platform [83, 105] informed by actual
quantum information science experiments at AQT. To reduce cost, complexity, and space requirements, customized
hardware components were designed and fabricated, such as in-phase and quadrature (I/Q) mixing modules integrating
filters, amplifiers, and bias _Ts on printed circuit boards (PCBs) with Electromagnetic Interference (EMI) shielding,
the design of which was published and open-sourced to benefit the community [106]. Additionally, automated single-
and two-qubit gate calibration protocols were developed using QubiC [56].

To take advantage of the growing capabilities of recent RF-SoC platforms, QubiC was then ported to the XilinX
ZCU216 platform [107], capable of direct generation of control pulses at higher frequencies (up to 10GHz, in the
second Nyquist zone). Additionally, a novel Distributed Processor design was created and implemented to enable
distributed decision-making and branching, such as mid-circuit measurement and feed-forward [108]. The different
iterations of QubiC implementations are shown in Figure 5. To form a prototype full-stack quantum control system
with increased potential for future experiments, QubiC and QUASAR, (described above in IIB 1) have been integrated
and applied to quantum computing experiments at AQT, LBNL [109].

Boards from the QICK project have reached over 40 labs in the USA and abroad after a little more than two years.
Using QICK helps reduce equipment costs and increases the performance of quantum information science experiments
with SC qubits [110]. All of QICK implementations have been on Zynq boards, with the firmware provided by PYNQ
(Python for Zynq), compatible with multiple generations of RF-SoC FPGAs. An image of a QICK board is shown
in Figure 6. The usage of QICK has already expanded from SC qubits to atomic, molecular, and optical physics
qubits and spin qubits (Nitrogen-Vacancy-center qubits), on the hardware side. On the application side, QICK is
used not only for quantum computing but also for quantum sensing experiments, e.g., for dark matter candidates
detection [113], as well as for RF-SoC control in particle physics detection beyond quantum technology.

8. Pulse-level simulation

Simulation is important to design an experiment before running it on hardware and then to validate and interpret
the results after data collection. Pulse-level simulation can be employed for quantum optics experiments, quan-



FIG. 5. QubiC, through the years: QubiC 1.0, implemented initially on XilinX VC707, in its chassis with auxiliary
components (left), the Analog Front End chassis for QubiC 1.0 (middle), and QubiC 2.0 implemented on XilinX ZCU216 with
a custom SMA fanout board. A customized Surface Mount Assembly (SMA) fan-out board has been designed and recently
fabricated to fully utilize all the channels of the ZCU216 board. Separately, a low-cost DAC extension was developed for
the VC707 platform, to meet the varying frequency needs of different superconducting QPU architectures. The QubiC team
has recently demonstrated heterogeneous synchronization of two sets of VC707 boards with low-cost DACs and two ZCU216
platforms [107].

FIG. 6. The Quantum Instrumentation Control Kit (QICK). The QICK consists of two pieces of hardware: a commercial
RFSoC evaluation board (left), which connects to the QICK RF&DC custom board (right) which can be used for additional
signal amplification and filtering. QICK supports the AMD-Xilinx ZCU111 [111] (shown in the picture with its companion
custom board) and the AMD-Xilinx ZCU216 [112] (not shown) with a new companion board under fabrication and testing.

tum simulation, and both for gate-level (digital) quantum computing and analog quantum computing. In quantum
computing, although gate-level instructions are the most common formalism on the user-side to write quantum algo-
rithms, there can be a compiler that transforms discrete operations into pulses. Examples of pulse-level simulators
include Pulser [79] and Blogade.jl, two toolboxes for neutral-atom QPUs respectively developed in Python and Julia.
qutip-qip is a simulation toolkit that provides the freedom to design any QPU and simulate pulse level execution,
integrating it QuTiP’s noisy time evolution [39]. We summarize information on Pulser in Ezample 4.
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\
Ezample 4. PULSE LEVEL SIMULATION. Pulser: Library for pulse-level/analog control of neutral

atom devices.

The Pulser framework is an open-source software library for designing pulse sequences for neutral-atom
QPUs [50]. In such devices, individual atoms are placed in arrays of microscopic traps [114-116] and their
quantum state is manipulated through the application of laser or microwave pulses. Using Pulser, developers
can control all the relevant physical parameters of the qubit register and the driving channels.

The central object in Pulser is called a sequence, which is linked to a device. The device contains information
about the hardware constraints, such as the maximal number of qubits available, the minimal pairwise distance
between qubits which can be reached or the number of lasers and the maximal amount of laser power available
for each of them. These constraints are enforced upon the register, where the neutral-atom array is defined,
and upon the pulses that are added to the sequence. Each pulse is defined by its phase, amplitude and detuning
waveforms, and pulses are sequentially added to the channels that are available on the device. The resulting
program can subsequently be sent to QPUs and executed on the hardware after a device-specific calibration-
aware compilation step. In addition to providing an interface to hardware, Pulser includes a built-in emulator
relying on QuTiP [34] that faithfully reproduces the hardware behavior. To this extent Pulser acts also as a
simulator for QPU design.

4. Optimal control, calibration and characterization

High fidelity operations require high fidelity optimized controls. The process of generating optimal pulses tra-
ditionally involves a model-based open-loop optimal control step (in simulation) such as GRAPE, Krotov, GOAT
algorithms [117-119] followed by a model-free closed-loop calibration step (in hardware). The former relies on build-
ing a sophisticated model of the system and the optimality of the generated pulses is constrained by the model’s
capability to faithfully reproduce the imperfections of open quantum systems. The latter usually involves the use of
a gradient-free optimization algorithm, e.g., Nelder-Mead or CMA-ES to optimize the parameters of an open-loop
optimal pulse on the quantum hardware benchmarked with a fidelity measure such as ORBIT [120]. Open-source
libraries such as JuliaQuantumControl, QuOCS and C3-Toolset [80, 81] aim to provide a broad range of the optimal
control functionalities previously discussed, with easy to use interfaces in Python or Julia. These tools also incorpo-
rate automatic differentiation (AD) techniques which have made it possible to obtain gradients of arbitrary order for
free, even with the most complex numerical simulations. Such gradients are essential for the optimization of pulse
parameters in open-loop control. AD capabilities are provided by the use of standard Machine Learning frameworks
such as TensorFlow or JAX [121, 122].

In order to improve the fidelity of the pulse obtained through open-loop control, both the model parameters and
the model itself need refinement. One approach for refining model parameters is the technique of data-driven system
identification also known as characterisation. This is achieved through learning model parameters from data collected
during experiments performed on the hardware, e.g., the calibration step previously outlined. Refining the model
translates to building a complex digital twin that models not only the quantum dynamics but also all of accessory
classical electronics and their non-ideal behavior. These two techniques — Model Learning and Quantum-Classical
Digital Twin — are tightly integrated as a unified solution in the C3-Toolset package [80], as discussed below (Ezample
5).
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4 Example 5. OPTIMAL CONTROL, CALIBRATION AND CHARACTERIZATION. h

C3: An integrated tool-set for Control, Calibration and Characterization.

The C3-Toolset package provides an API for directly interfacing with hardware to use the pulses generated
by optimal control and further optimize them using closed-loop calibration algorithms. Users have access
to a high-level Qiskit interface that allows them to run gate or pulse level quantum circuits on the full-
physics noisy high-fidelity differentiable simulator. In recent years, a variety of machine learning for quantum
control techniques have been closely integrated in the quantum device bring up process. Besides the previously
mentioned process of learning model parameters, reinforcement learning (RL) has been particularly useful in a
variety of applications. The open-source library rbqoc [123] details a technique for noise-robust control using
RL while C3-Toolset uses RL for both learned optimizers and Bayesian experiment design.

Calibration is generally needed for most platforms. Depending on the architecture, this involves different
control signals. A difference between academic research labs and industry is the tendency to automate and
standardize calibrations tasks. Tests are run periodically to validate the status of the system before running
an experiment and during an experiment. On a schematic level, these can be seen as continuous integration
(CI) tests, involving hardware control but similar to open-source testing for software projects. If the job does
not pass a test, automatic re-calibration is prompted.

C. Designs for quantum error correction

Many applications of quantum computing, networking, and sensing technologies will require a significant reduction
in error rates. In the long term, developing quantum hardware with built in error correction can address this need
through fault-tolerant quantum computing. In this section, we review some of the open-source software available
today for studying and simulating quantum error correcting codes. This software is becoming increasingly important
as quantum error correction moves from theory into practice.

Quantum error correcting codes are often based on stabilizer subsets of quantum computation and so can benefit
from specialized simulators. A leading open-source package for stabilizer simulation today is Stim [124] which improves
on existing stabilizer simulators available in Qiskit, Cirq, or other packages.

Other libraries sit on top of simulators like stim and allow users to explore quantum error correcting code designs.
These packages help inform longer term planning for quantum processor architecture. Examples include plaquette [125]
and stac [126]. Both of these are Python libraries that have built in examples of quantum error correcting codes and
allow you to generate logical circuits to study performance. There are also tools that act as compilers, translating
logical circuits into physical circuits that can be run directly on capable hardware, e.g. the suite of tools developed
at latticesurgery.com for compiling to the surface code.

Finally, there are open implementations of the decoding algorithms used to decide how to best correct error detected
by different quantum codes. PyMatching [127, 128] is an example open-source decoder. This software can help inform
the design of processors specifically adapted to run quantum error correction. For example, stim was used to simulate
novel superconducting qubit designs to support surface code parity measurements in [129].

There remain many important opportunities to improve quantum error correction. For example, fast classical control
of QPUs is essential for feedback loops in quantum error correction implementation. Tailored tools could reduce the
existing gap between hardware operation and software instructions. More generally, increasing the ecosystem of open-
source software available in this field will both support new breakthrough ideas as well as accelerate the transition
from theory to practice in building fault-tolerant quantum computers.

D. Open quantum hardware facilities

In these section we review the state of the art with respect to facilities that can enable a robust OQH ecosystem. We
find three qualitatively different categories: open-access to QPUs and remotely accessible research labs, collaborative
testbeds, and facilities for fabrication such as foundries.

1. Remotely accessible labs and cloud-connected labs

The idea of open remote labs, i.e., laboratories that can be remotely accessed by users to perform real experiments is
not new in the context of scientific research and education [130, 131]. For example, the educational tool HYPATTA [132]
can be used to perform particle-physics experiments with real data produced by the ATLAS experiment at CERN. In
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a similar way, quantum computers can be used as quantum remote labs, i.e., advanced laboratories in which quantum
experiments can be performed for purely scientific purposes without any computational motivation [62, 133—-139]. For
example in Ref. [140] a quantum computer was used for testing quantum fluctuation theorems, while in Ref. [141] a
quantum computer was used to prepare a many-body quantum system in a time-crystalline phase.

Superconducting-circuit quantum computers originally became available online from IBM Quantum with the IBM
Quantum Experience, Rigetti Computing with the Rigetti Quantum Cloud Services, and other providers. These have
had an impact on the way research is done in quantum computing and quantum optics as well as enabling access for
students for outreach activities, due to the fact that experiments can be done much more easily (even by theorists),
from the cloud. We are now in a second phase with more providers putting their devices online, encompassing more
technologies — ion-based (IonQ, Quantinuum), atom-based (e.g., Infleqtion, Pasqal, QuEra), photonics-based (e.g.,
Quandela, Xanadu), quantum-dot based, etc.

Turning the attention to institutional frameworks, the European OpenSuperQ project (and the follow on OpenSu-
perQPlus project) [60] is similarly aimed at developing public-owned full-stack open-access superconducting systems.
Multiple remotely accessible QPUs are online or currently being set up as part of this project at the Delft University
of Technology, the Wallenberg Centre for Quantum Technology (Chalmers), the Walther-Meissner-Institut (Munich),
and at the Forschungszentrum Juelich (from phase 1). A hybrid form of cloud access is also emerging, in which cloud
providers give access to different quantum processor providers. Further sustaining open access to QPU providers can
be important for scientific discovery.

Over the years, the level of control over device properties in compilation, optimization, qubit mapping, etc., has
increased, spilling notably into remote pulse level control, both for digital (e.g., Qiskit pulse [77]) and analog quantum
computing (e.g., Pasqal’s Pulse studio [115]). The deeper the access, the more advanced the control researchers
have over hardware and the greater the opportunity for integration of open-hardware features with cloud-access. An
example of novel interaction between cloud providers and OQH is given by the Amazon AWS application developed
for QICK, called SideQICK, which is being integrated into a more general cloud queue for quantum devices [142].

We also witness examples of a hybrid model of industry-public interaction enabling open access. Quantum computers
are being shipped to research centers and further integrated with HPC centers, which also act as simulator infrastruc-
ture (such as the EU HPCQS). This provides new avenues for industry-academic collaborations and purpose-specific
hardware customization, use cases and access. It will be important to foster academic research labs putting their
quantum devices online, building upon the open-source tools described in the previous sections. This could further
change the research landscape, enabling more researchers to test research ideas on more devices, novel architectures
and platforms, and in turn facilitate technology transfer.

2. Deeply collaboratively testbeds

While cloud-based platforms allow scientists and the public alike to submit their circuits and receive the results,
deeper, customized access to the full stack to enable more involved experiments and R&D efforts is generally not
possible on these platforms. To provide such access to users in Academia, Industry, and National Labs, the US
Department of Energy has funded two testbed programs: QSCOUT (Quantum Scientific Computing Open User
Testbed), based on trapped ions and located at Sandia National Laboratories, and AQT (Advanced Quantum Testbed),
based on superconducting qubits and located at Lawrence Berkeley National Laboratory. A similar network called Qu-
Test [143] managed by TNO at Delft, Netherlands has recently been kicked off with the goal of providing a federated
network of testbeds by bringing together 13 service providers and 11 industrial users from the European quantum
community. These platforms allow low-level access to the full stack of quantum hardware (including programming
languages [144, 145], gate-pulse shaping [103], noise injection, unique qubit/qudit states, specialized calibrations,
comparison of compilation techniques, etc.) allowing users to probe how the machines actually work and how to make
them work better. The testbeds foster deep collaborations between the host laboratory and the users.

Collaborations on these testbeds have so far resulted in demonstrations of scientific applications of near-term
quantum computers, and the development of many tools to benchmark quantum computers as well as to characterize
and mitigate errors on them QPUs. This could further change the research landscape, enabling more researchers
to test research ideas on more devices. Moreover, the existence of testbeds would be crucial to enable reproducible
benchmarks, for quantum hardware and for application-driven tasks. Testbeds are key to facilitate startup creation
in the quantum space, as they lower the barrier for testing prototypes with expensive equipment (such as dilution
fridges).
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8. Fabrication and foundries

As described in Section IT A, open-source tools exist to facilitate the design and creation of quantum processors in
silico. However, translating those designs into actual hardware can be difficult and expensive. Current arrangements
for producing hardware on the basis of designs fall into four categories: partnerships, the construction of research-grade
fab facilities, the use of academic foundries, and “quantum-fab-as-a-service".

Several companies in recent years have begun partnerships with major manufacturers to procure supply lines for
their hardware designs. For example, photonic startups PsiQuantum and Xanadu have both signed agreements with
semiconductor manufacturers GlobalFoundries [146, 147]. Trapped-ion startup IonQ has sourced some of its traps
from Sandia National Laboratories [62]. These sorts of partnerships are typically only available to startups or other
corporations, and allow for the use of use of existing manufacturing techniques and scalable processes. However,
whether rapid prototype of hardware can be achieved is unclear.

An alternative approach is to stand up one’s own fabrication facility. Startup Rigetti Computing is notable in this
space for their “Fab-1" facility [148], which allows the company to prototyping new hardware. However, such a facility
can be expensive to construct, and requires access to large amounts of capital. In the United States, in recognition
of the need for fabrication facilities, various foundries are being stood up around the country, including the UCSB
quantum foundry [149], MonArk quantum foundry [150], and the LPS Qubit Collaboratory [151]. The European
Commission has established a somewhat similar program called Qu-Pilot [143] under the umbrella of the Quantum
Flagship consisting of 21 partners from 9 different countries, with the goal of developing and providing access to
federated European production facilities linking existing infrastructure. The overall coordination of the project is
managed by VT'T, Finland.

Finally, some startups have leveraged this need toward the development of new businesses. For example, startup
Quantware in the Netherlands [152] helps designing, developing, and fabricating hardware for customers. In Canada,
the NSERC CREATE programs have partnered with CMC Microsystems for novel superconducting circuits workshops
at the Stewart Blusson Quantum Matter Institute. In the future, more industry players, industry consortia, startup
incubators, and academic partnerships could enable even more facilities for processor fabrication, inspired by existing
electronics industry frameworks, such as the Efabless [153] and the Google Silicon project [154].

IIT. DISCUSSION: CURRENT GAPS & FUTURE RECOMMENDATIONS

In Sec. II we reviewed OQH today, with an overview of the various OQH categories and deep dives into selected
projects. From this overview it is possible to draw an overarching picture and outline some major topics across the
OQH ecosystem. In the sections below we list these topics, identifying gaps and making recommendations to close
them.

OQH growth and maintenance across technologies and architectures. Currently, most of the OQH projects
focus on tools for quantum computers. There are considerable opportunities for expanding OQH projects and tools
to accelerate scientific discovery and tech transfer in quantum communication, quantum metrology, and quantum
sensing. Moreover, given the early stage of the field, for specific functionalities, tooling supporting only a given set of
architectures may be currently available. For example, the open hardware tools for chip design are mostly revolving
around SC qubits (and partially ion traps). There is room for tools for other QPU architectures, such as atom-based,
spin-based, and photonics-based QPUs. With respect to control, open hardware projects including firmware and
hardware, such as FPGAs, have been developed mostly for ion traps and SC qubits and can more broadly applied to
other architectures. Moreover, while it is possible to find multiple open-source FPGA (and general open-hardware
electronics projects with many being applicable to physics), one would be hard-pressed to find anything that comes
closest to an optical frequency comb in photonics tooling.

APIs and standards for instruction sets. We note that interoperability is a major challenge in the OQH ecosys-
tem. From APIs in the software stack to software-hardware integration via ISA, there is work to be done. Currently,
there is considerable duplication on higher software stack and one needs to do conversions of quantum programs in
order to run them on different QPUs. Frameworks such as the Quantum Intermediate Representation (QIR) project
and OpenQASM (Open Quantum Assembly Language) [155, 156] can help at the higher level. Broader support for
common frameworks getting further down at the hardware control level would be desired, such as QUASAR and QUA.

Benchmarks. Open-source benchmarking suites can have strong impact on the scientific community, providing
information on the state of the art of current hardware architectures. So far we note that quantum technologies have
been confronted with a lack of standardized benchmarks. Benchmarks are useful for evaluating the performance of
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quantum devices and algorithms, as well as assessing the relative performance compared to purely-classical solutions in
relevant applications or non-conventional computers [157]. Thankfully, efforts in the standardization of benchmarks,
such as those provided by the QED-C, a U.S.-based industry consortium [42-44] have been occurring. Pipelines for
crowd-sourced benchmark results is also needed: https://metriq.info/ is one attempt, inspired by projects such
as Papers With Code and MLCommons in machine learning. Pipelines including OSS and OQH can simplify the
accomplishment of standardized benchmarks.

Open access to hardware. Currently, there exist several cloud-accessible QPUs and cloud service frameworks.
Providers have made QPUs accessible in a variety of ways, including direct and free access, as well as through
partnerships within institutional frameworks (e.g.,ORNL’s Quantum Computing User Program (QCUP) for national
labs and federally-funded consortia). However, the research community would benefit from further access enabled
by grants and other awards. FEnsuring such frameworks and access points increase as soon as possible is neces-
sary for creating a more equitable research landscape. Moreover, while several research labs have infrastructure to
enable remote access and data acquisition of experiments, this is generally for internal use. Sometimes, access is
extended to partnering organizations or collaborating researchers. However, there is a general lack of research labs
who have put their device online for cloud access to a wider community of users and researchers. This is due to
the overhead in infrastructure involved in making such devices operational and maintained. OQH can help with this
regard, by providing researchers with existing tools that can be plugged in to bring up experiments from research labs.

Reproducibility. In order to facilitate reproducibility of results, journals and academic guidelines can further
encourage (and mandate where appropriate) the sharing of open software along with research publications. Funding
agencies, universities and other research stakeholders can facilitate these efforts by recognizing software artifacts as
important, citable outcomes for measuring research impact.

OQH policy and intellectual property. Implementing policy that is open-hardware aware can favor the growth
of a OQH ecosystem. For example, learning from existing open hardware projects beyond quantum technology can
help avoid known pitfalls. A practical example is the adoption of an integrated toolchain fostering collaboration
between academic labs, software developers, and industry. An example at the facility level is the investment into the
establishment of shared facilities, such as quantum foundries, which can provide a flywheel effect for startups. Policy
makers and quantum experts have the opportunity to work together, in order to ensure that informed decisions are
made about the application of export control and intellectual property protection laws to quantum hardware. On
the one hand, this could ensure that policy makers provide clear guidance about how efforts to open up quantum
hardware will be treated from the perspective of these laws. On the other hand, researchers can develop expertise
on the correct use of licenses for open-source software and open hardware. This guidance can include implementing
processes through which one can more easily assess what hardware-based technology should be open-sourced, and
what should not, making strategic calls at a narrow level (researcher, company) and wider level (common good for
society). Researchers need to balance against intellectual property (IP) & strategic competitive considerations for
certain components and technologies that could provide commercial exploitation. At the same time, they can consider
when OSS can be used in business models, helping grow a community of users and creators around products.

Support of OQH in education and academia. We believe it is important to foster OSS and OQH adoption in
education and research. One actionable item is to encourage schools and universities to include in course material and
labs the usage of open-source software [158] and open hardware [159-161]. Programs that prepare the future quantum
workforce are fundamental to broaden the acquisition of talents [5, 6, 24]. This includes developing communities
across domain knowledge.

A bottom-up approach to strengthening OQH is by encouraging academic labs to pull together their systems with
existing open-source tools, so they can create do-it-yourself small-scale testbeds. If open-source tools are not available,
researchers can consider developing and open-sourcing new tools or using less-closed tools (e.g., proprietary but with
a layer of open APIs). Fostering the creation of new open-hardware projects includes engaging in activities, programs
and material that facilitates the open-sourcing of existing projects, such as Ref. [162], which provides information
about starting a scientific OSS project. Starting an OQH project includes general challenges found by other OSS
projects (testing, documentation, distribution, maintenance, community relations) and some specific ones, such as
how to distribute physical devices to users, or work with experimental labs on ensuring device control.

An example of a top-down approach to supporting open-source projects (and open hardware) is provided by funding
agencies programs acknowledging the impact of OSS projects in science. One notable example is the NSF POSE
program. Further tailored funding in programs focused in OQH could strengthen the ecosystem addressing some of
its characteristics.
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Community building: projects support and governance. Similarly to other OSS projects, also OQH projects
need to interact with their community of users, engage feedback, create guidelines to foster code contributions and
meetings. They can benefit from non-profit organization support for their governance, as typically scientific OSS
projects start in a research lab or group and then grow in scope and need for representation of more parties and
partners. There is a need to simplify the bureaucracy in compliance at institutional at government level to contribute
to open-source projects and open hardware, e.g., by equipping national labs with default policies that would allow
researchers to contribute to open-source projects with permissive licenses approved by the Open Source Initiative
(OSI). Often the originating organization such a national lab has restrictions that prevent an open-source project
from growing independently. This highlights the need for alternatively supporting organizations to incubate and
house open-source projects. Examples of non-profit organizations that do this in the classical space are NumFOCUS,
the Linux Foundation, and the Open Source Hardware Association (OSHA). Unitary Fund is a 501(c)(3) non-profit
organization that offers this support specifically to quantum technology projects.

IV. CONCLUSIONS

Quantum computers — and quantum devices in general — provide a fascinating prospect to bridge a platform for
fundamental science, technology transfer in engineering, and novelties in cloud computing and actuators. An open
hardware approach in quantum technology will preserve, and possibly expand, the pre-competitive space necessary
to make ideas flourish and enable accessible benchmarks and evaluations that have already characterized quantum
software.

As we have illustrated, quantum technology provides unique challenges and features with regards to the usability
and feasibility of open-hardware stack: from process design toolkit to foundries, from simulation software to control
and data acquisition, from cloud infrastructure to testbeds. All these layers can benefit from collaborative innovation.
Learning from lessons learned in the early days of quantum software, and from other open hardware verticals in
conventional computing and tooling, as well as from a snapshot of current gaps in the quantum ecosystem, we hope
that the quantum industry can efficiently implement innovation, build lively communities, and expand its workforce.
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