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Gα(ρ) ≫ 0

d = 2

与各种非参数化纠缠度量相比, 参数化纠缠度量显示了其优越性. 并发纠缠被广泛用于描述量子实验中

的纠缠. 作为一种纠缠度量, 它与特定 Rényi-α熵有关. 本文提出了一种基于 Rényi-α熵的参数化两体纠缠度

量, 命名为 α-对数并发纠缠. 与现有的参数化度量不同, 首先定义了纯态的度量, 然后推广到混合态. 进一步

验证了 α-对数并发纠缠满足纠缠度量 3个条件. 展示了对纯态的度量是容易计算的, 然而对于混合态, 解析

计算只适用于特殊的双量子位态或特殊的高维混合态. 因此, 本文致力于建立一般两体态 α-对数并发纠缠的

一个下界. 令人惊讶的是, 这个下界是这个混合态的正部分转置判据和重排判据的函数. 这表明了 3种纠缠

度量之间的联系 . 有趣的是 , 下界依赖于与具体态相关的熵参数 . 这样我们可以选择适当的参数 α, 使得

 用于特定态 ρ的实验纠缠检测. 此外, 计算了 isotropic态的 α-对数并发纠缠的表达式, 并给出了

 时 isotropic态的解析表达式. 最后, 讨论了 α-对数并发纠缠的的单配性. 建立了两个量子比特系统中并

发纠缠和 α-对数并发纠缠之间的函数关系 , 然后得到了该函数的一些有用性质 , 并结合 Coffman-Kundu-

Wootters (CKW)不等式, 建立了关于 α-对数并发纠缠的单配性不等式. 最终证明了单配性不等式对于 α-对

数并发纠缠是成立的.
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1   引　言

ρAB

ρTA ⩾ 0 2⊗ 2

近年来, 围绕量子纠缠这一课题展开了大量的

研究, 对量子信息理论产生了深远的影响. 量子纠

缠在量子密集编码 [1]、量子隐形传态 [2]、量子密钥

共享 [3]、量子密码 [4] 等量子计算和量子信息中起着

不可或缺的作用. 如何验证一个量子复合系统态是

纠缠态还是可分态是量子信息理论的一个基本问

题. 对于一般的混合态, 这仍然是未解决的问题.

到目前为止, 两体纠缠有两个重要的纠缠判据. 一

种是正偏转置 (PPT)判据 [5], 这个判据描述了对

于任意可分的两体态   , 它的偏转置矩阵满足

 . 正偏转置判据只是纯态和   或者

2⊗ 3

ρAB

R(ρ) ∥R(ρ)∥1 ⩽ 1 ∥X∥1
∥X∥1 = tr(

√
XX†)

 混合态的纠缠判据的充要条件, 但一般而言,

对于更高的维度是不充分的 [5,6]. 另一种是重排

判据 [7–9], 即对任意可分的两体态  , 它的重排矩

阵   满足   , 其中   表示矩阵

X的迹范数,    . 这两个纠缠判

据在量子信息理论中得到了广泛的应用.

|ψ⟩AB
C(|ψ⟩AB) =

√
2(1− trρ2

A) ρA = trB |ψ⟩ ⟨ψ|

纠缠度量的关键是度量一个纠缠量子系统可

以利用多少资源, 这对量子信息的定量研究具有重

要意义. 对于两体系统, 常见的纠缠度量有: 并发

纠缠 [10–12]、负性纠缠 [13,14]、生成纠缠 [15,16]、Rényi-α

熵纠缠 [17,18]、Tsallis-q 熵纠缠 [19]、robustness纠缠 [20]

等 . 对于任意的纯态   , 并发纠缠可表示为

 , 其中  . 近

年来, 通过并发纠缠, 参数化纠缠测度问题被广泛
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q ⩾ 2

0 ⩽ α ⩽ 1/2

研究 [21–23]. 杨雪等 [21] 提出当  时的参数化单调

纠缠量 q-并发纠缠, 它与一般的 Tsallis-q 熵有关,

并且通过联系 PPT判据和重排判据来刻画它的解

析下界. 魏志伟等 [22] 将 q-并发纠缠的解析下界刻

画得更紧致. 此外, 魏志伟和费少明 [23] 受 Tsallis-q

熵纠缠和参数化单调纠缠量 q-并发纠缠的启发, 对

于任意的   , 提出了一种新的参数化纠

缠度量, 命名为 α-并发纠缠, 并且研究了它的性

质, 刻画了其解析下界. 本文将提出一种参数化纠

缠度量, 命名为 α-对数并发纠缠.

此外, 用解析方法计算任意给定混合态的纠缠

度是非常困难的. 目前, 只适用于特殊度量和双量

子位态或特殊的高维混合态 [12,24–28]. 因此, 寻找纠

缠度量的解析下界具有重要意义. 如在文献 [29–33]

中, 通过联系 PPT判据和重排判据, 给出了并发

纠缠的解析下界. 本文的一个目标是构造 α-对数

并发纠缠的解析下界. 第 2节给出 α-对数并发纠

缠的定义, 然后证明它是一个良好的纠缠度量; 第

3节根据 PPT判据和重排判据, 得到一般两体系

统 α-对数并发纠缠的解析下界 ; 第 4节计算了

isotropic态的 α-对数并发纠缠; 第 5节研究 α-对

数并发纠缠的单配性问题. 

2   α-对数并发纠缠

HA ⊗HB

|ψ⟩
在量子系统中, 对于 Hilbert空间   中

的任意纯态  , 并发纠缠 (concurrence)定义为 

C(|ψ⟩) =
√
2(1− trρ2

A),

ρA ρA =

trB |ψ⟩ ⟨ψ|

α = 2 C(|ψ⟩) =
√
2
(
1− 2−R2(ρA)

)
R2 (ρA) α=2 R2 (ρA)=

− log2 tr(ρ2
A)

α ⩾ 2

其中 ,    为子系统 A的约化密度算子 ,   

 . 纯态的并发纠缠与特定的 Rényi-α熵

有关 , 即当   时 ,    ,

其中  表示  时的 Rényi-α熵,  

 . 接下来, 定义另一个参数化纠缠度量

并命名为 α-对数并发纠缠, 对于  , 它与一般

的 Rényi-α熵有关.

HA ⊗HB d× d

HA ⊗HB |ψ⟩
  是任意   维的 Hilbert 空间, 任

意定义在 Hilbert空间  上的纯态  可以

表示为 Schmidt分解: 

|ψ⟩ =
m∑
i=1

√
λi |aibi⟩ , (1)

λi

∑m

i=1
λi = 1其中  表示 Schmit系数的平方, 且  ,

λi > 0 1 ⩽ m ⩽ d {|ai⟩} {|bi⟩} , m 是 Schmit数,   .   和 

是与子系统 A和 B相关联的规范正交列 [34].

|ψ⟩定义 2.1　对于任意的纯态   , α-对数并发

纠缠可以被定义为 

Gα(|ψ⟩) = − log2 tr(ρ
α
A), (2)

α ⩾ 2 ρA = trB |ψ⟩ ⟨ψ|对任意的   , 其中   是约化密度

算子.

|ψ⟩根据上面的定义 , 对于任意的纯态   通过

Schmidt分解, 可以得到 

Gα(|ψ⟩) = − log2
m∑
i=1

λαi , (3)

Gα(|ψ⟩) 0 ⩽ Gα(|ψ⟩) ⩽ − log2m1−α

|ψ⟩
1√
m

∑m

i=1
|aibi⟩

其中,   满足  . 当

且仅当  是可分态时下界可以得到, 当最大纠缠

纯态  时, 上界可以得到.

HA ⊗HB

ρAB

定义 2.2　对于 Hilbert空间   中的一

般的混合态   , 可以通过凸顶的形式对 α-对数

并发纠缠进行定义: 

Gα(ρAB) = inf
{pi,|ψi⟩}

∑
i

piGα(|ψi⟩), (4)

ρAB =
∑

i
pi |ψi⟩ ⟨ψi|∑

i
pi = 1 pi > 0

其中下界取遍   所有可能的纯

态分解, 且  ,   .

D HA ⊗HB令   是 Hilbert空间   上的一个两体

态的集合. 一个良好定义的纠缠度量 E 应该满足

以下基本条件 [35–37]:

E(ρ) ⩾ 0 ρ ∈ D1)    对于任意态   , 当且仅当

ρ为可分态时等号成立;

E(ρ) E(ρ) =

E
(
UA ⊗ UBρU

†
A ⊗ U†

B

)2)   在局部酉变换下是不变的, 即 

 ;

LOCC E(ρ)

LOCCΛ E(ρ) ⩾ E(Λ(ρ))

3) 在局部操作与经典通信 (  )下  

是不增的, 即对任意的    .

Gα(ρ)定理 2.1　α-对数并发纠缠   由定义 2.2

给出的形式, 是一个纠缠度量.

Gα(ρ)证明　需要验证   满足纠缠度量定义的

3个条件.

Gα(|ψ⟩) ⩾ 0

Gα(ρ) Gα(ρ) ⩾ 0

|ψ⟩
Gα(|ψi⟩) > 0 Gα(ρ)

Gα(ρ) > 0 Gα(ρ) = 0

1) 由定义 2.1 可以得到   , 再通过

 的凸顶形式, 根据定义可以得到  .

如果 ρ是一个纠缠态, 那么在 ρ的任意纯态分解

中, 至少存在一个纠缠纯态   , 那么至少有一个

 , 再根据   的凸顶形式, 可以得

到   . 因此 ,    当且仅当 ρ是可

分态.　
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tr(ρα) Gα(|ψ⟩)
Gα(ρ)

Gα

(
UA ⊗UBρU

†
A ⊗U †

B

)
= Gα(ρ)

2) 由   的酉不变性, 可知   是局部

酉不变的 , 再根据   的凸顶形式 , 可以得到

 .

LOCC

|ψ⟩ |ϕ⟩ λψ ≺ λϕ λψ

|ψ⟩
λψ ≺ λϕ λψ λϕ

LOCC λψ ≺ λϕ

E(ψ) ⩾ E(ϕ)

λi

3) Mintert等 [38] 证明了在  条件下, 可以

从态   开始制备态   当且仅当   .    表

示由态   的 Schmit系数的平方按降序给出的

Schmit向量.   表示  被  优化. 由于在

 下纠缠度量是不增的, 当   时, 任意

纠缠度量 E 必须满足   . 在文献 [39]

中, 这种条件被称为 Schur凹. E 作为 Schmidt系

数的平方   的函数是 Schur凹的, 当且仅当满足

下面两个条件:

1) E 在任意两个元的置换下是不变的;

λ λi λj2) 对于  的任意两个分量  和  , 满足
 

(λi − λj)

(
∂E

∂λi
− ∂E

∂λj

)
⩽ 0. (5)

Gα(ρ)

Gα(ρ) LOCC

|ψ⟩ λ

λi λj

Gα(ρ)

接下来, 只需验证  是 Schur凹的即可得

到   在   下是不增的. 所以, 需要验证上

述两个条件. 首先, 对任意纯态  , 当  中的任意

两个 Schmidt系数的平方  和  置换时, α-对数

并发纠缠  是不变的. 所以验证了条件 1). 一

个简单的计算表明: 

(λi − λj)

(
∂Gα
∂λi

− ∂Gα
∂λj

)
= − 1

ln 2
1∑
λαi
α(λi − λj)(λ

α−1
i − λα−1

j )⩽0. (6)

λ λi λj

α ⩾ 2 (λi − λj)(λ
α−1
i − λα−1

j ) ⩾ 0

对  中的任意两个 Schmidt系数的平方  和  都

成立. 当   时,    , 所

以可以直接验证 (6)式的不等式成立. 根据上述条

件, 可以得到: 

Gα(|ψ⟩) ⩾ Gα(Λ |ψ⟩). (7)

LOCC α ⩾ 2

ρ=
∑

i
pi |ψi⟩ ⟨ψi| Gα(ρ)

∑
i
pi=1

pi > 0

对任意的   和   . 有一个纯态分解

 关于   , 其中 ,    ,

 , 可以得到: 

Gα(ρ) =
∑
i

piGα(|ψi⟩)

⩾
∑
i

piGα(Λ |ψi⟩)

⩾Gα(Λ(ρ)). (8)

Gα(ρ)式中最后一个不等式由   的凸顶形式的定义

得到. 证明完成. 

3   α-对数并发纠缠的下界

ρAB =
∑

ijkl
ρij,kl |ij⟩ ⟨kl|

ρAB

ρTA ρTA ⩾ 0

本节通过使用 PPT判据和重排判据来推导

α-对数并发纠缠的下界 . 一个两体态可以写成

 的形式, i 和 k 是子系统

A的行和列下标, j 和 l 是子系统 B的行和列下标.

PPT判据 [5,6]: 如果态   是可分的, 则对 A系统

的偏转置  是非负的, 即  , 偏转置矩阵为

ρTA =

(∑
ijkl

ρij,kl |ij⟩ ⟨kl|
)TA

=
∑
ijkl

ρij,kl |kj⟩ ⟨il| .

重排判据 [7–9]: 重排矩阵为
 

R(ρ) =
∑

ijkl
ρij,kl |ik⟩ ⟨jl| .

ρAB ∥R(ρ)∥1 ⩽ 1 ∥X∥1
X ∥X∥1 = tr(

√
XX†)

如果态   是可分的, 则   , 其中  

表示矩阵  的迹范数,   .

|ψ⟩

ρ = |ψ⟩ ⟨ψ| =
∑

i,j

√
λiλj |aibi⟩

⟨ajbj | ρTA =
∑

i,j

√
λiλj

∣∣a∗j bi⟩ ⟨a∗i bj | R(ρ) =∑
i,j

√
λiλj

∣∣aia∗j⟩ ⟨b∗i bj |

对于一个纯态   可以写成 Schmit分解的形

式, 然后可得纯态  

 ,    和  

 , 在文献 [30]中, 可以得到

下面结论:
 

1 ⩽ ∥ρTA∥1 = ∥R(ρ)∥1 =

(
m∑
i=1

√
λi

)2

⩽ m. (9)

HA ⊗HB

(m ⩽ n)

Gα(ρ)

定理 3.1　对于  上维数分别为 m 和 n

 的任意混合纠缠态 ρ, α-对数并发纠缠

 满足下面不等式:
 

Gα(ρ) ⩾

[
max

{√
∥ρTA∥α−1

1 ,
√

∥R(ρ)∥α−1
1

}
− 1

]2
mα−1 −

√
mα−1

.

(10)

ρ =
∑

i
piρi Gα(ρ)

ρi ρi = |ψi⟩ ⟨ψi|

证明　设   是   一个最优分

解, 其中  是纯态,   . 首先证明
 

Gα(ρi) ⩾

(√
∥ρTA
i ∥α−1

1 − 1

)2

mα−1 −
√
mα−1

, (11)
 

Gα(ρi) ⩾

(√
∥R(ρi)∥α−1

1 − 1

)2

mα−1 −
√
mα−1

. (12)

从文献 [21]和文献 [40]可以得到下面的不等式:
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m∑
k=1

λαk ⩾ m1−α, (13)

λ ∈ (0, 1) α⩾2 Gα(|ψ⟩)=− log2
∑m

i=1
λαi其中  ,   . 由 

可以得到:
 

Gα(ρi) = − log2
m∑
k=1

λαik

=1− log2
m∑
k=1

λαik − log2 2

=1− log2 2
m∑
k=1

λαik. (14)

x = 2
∑m

k=1
λαik x ∈ (0, 2)

√
x/2 >

log2 x

令   , 则   . 由  

 可以得到:
 

Gα(ρi) ⩾ 1−

√√√√ m∑
k=1

λαik (15)

 

=

√√√√√
 m∑
j=1

√
λij

2α−2

−

√√√√√ m∑
k=1

λαik

m∑
j=1

√
λij

2α−2

√√√√√
 m∑
j=1

√
λij

2α−2

⩾

√√√√√
 m∑
j=1

√
λij

2α−2

− 1

√√√√√
 m∑
j=1

√
λij

2α−2
(16)

 

=


√√√√√
 m∑
j=1

√
λij

2α−2

− 1


2

√√√√√
 m∑
j=1

√
λij

2α−2

√√√√√
 m∑
j=1

√
λij

2α−2

− 1



⩾

(√∥∥ρTA
i

∥∥α−1

1
− 1

)2

mα−1 −
√
mα−1

. (17)

这里, 不等式 (16)来自不等式:
 

−
√∑m

k=1
λαik

(∑m

j=1

√
λij

)2α−2

⩾ −1.(∑m

k=1

√
λi

)2
⩽
∑m

k=1
λi = m

ρi = |ψi⟩ ⟨ψi|

利用不等式 (13)和 

可以证明该式. 此外, 对于纯态   , 有

∥∥ρTA
i

∥∥
1
=
(∑m

j=1

√
λij

)2
⩽ m  . 结合不等式 (17)可

以得到: 

∑
i

piGα(ρi) ⩾

∑
i

pi

(√∥∥ρTA
i

∥∥α−1

1
− 1

)2

mα−1 −
√
mα−1

. (18)

接下来需要证明  (√
∥ρTA∥α−1

1 − 1

)2

⩽
∑
i

pi

(√∥∥ρTA
i

∥∥α−1

1
− 1

)2

.

(19)

ρTA =
∑

i
piρ

TA
i事实上, 对于  , 可以得到:

  (√
∥ρTA∥α−1

1 − 1

)2

=

(√∥∥∥∑
i
piρ

TA
i

∥∥∥α−1

1
− 1

)2

⩽
(√∑

i
pi
∥∥ρTA

i

∥∥α−1

1
− 1

)2

(20)
 

=
∑
i

pi
∥∥ρTA

i

∥∥α−1

1
− 2

√∑
i

pi
∥∥ρTA

i

∥∥α−1

1
+ 1

⩽
∑
i

pi
∥∥ρTA

i

∥∥α−1

1
− 2

∑
i

pi

√∥∥ρTA
i

∥∥α−1

1
+ 1

(21)
 

=
∑
i

pi

(√∥∥ρTA
i

∥∥α−1

1
− 1

)2

, (22)

f(x) = ∥x∥α−1
1

α ⩾ 2 f(x) = −
√
x

x ⩾ 0

不等式 (20)是由于函数   的凸性 ,

 . 不等式 (21)则是基于函数  

(  )的凸性, 即 

−2

√∑
i

pi
∥∥ρTA

i

∥∥α−1

1
⩽ −2

∑
i

pi

√∥∥ρTA
i

∥∥α−1

1
.

因此, 将不等式 (22)代入不等式 (18), 可得: 

∑
i

piGα(ρi) ⩾

(√
∥ρTA∥α−1

1 − 1

)2

mα−1 −
√
mα−1

. (23)

根据 (9)式, 即 

∥ρTA
i ∥1 = ∥R(ρi)∥1 =

(
m∑
i=1

√
λi

)2

.

用类似的方法可以证明 

∑
i

piGα(ρi) ⩾

(√
∥R(ρ)∥α−1

1 − 1

)2

mα−1 −
√
mα−1

. (24)
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结合不等式 (23)和不等式 (24), 可得
 

Gα(ρ) ⩾

[
max

{√
∥ρTA∥α−1

1 ,
√

∥R(ρ)∥α−1
1

}
− 1

]2
mα−1 −

√
mα−1

.

(25)

至此完成了该定理的证明.
 

4   α-对数并发纠缠关于 isotropic态

ρFIsotropic态  可以表示为
 

ρF =
1− F

d2 − 1

(
I −

∣∣Ψ+
⟩ ⟨
Ψ+
∣∣)+ F

∣∣Ψ+
⟩ ⟨
Ψ+
∣∣ , (26)

|Ψ+⟩ = 1√
d

∑d

i=1
|ii⟩

ρF |Ψ+⟩ F =

fΨ+(ρF ) = ⟨Ψ+|ρF |Ψ+⟩ F ∈ [0, 1] F ⩽ 1/d

ρF ρF

U ⊗U∗

其中 ,    是最大纠缠纯态 ,  I

是恒等算子, F 表示   关于   的保真度,   

 ,    .  当  

时,    是可分的, 且对任意酉变换 U,    在运算

 下是不变的.

ρF Cd ⊗ Cd

(d ⩾ 2) Gα(ρ)

定 理 4.1　 给 出 isotropic态   在  

 上的 α-对数并发纠缠  :
 

Gα(ρF ) = co (η(F, α, d)) , (27)

F ∈ ( 1/d, 1 ] co (η(F, α, d))

η(F, α, d)

其中,    ,    表示给定函数

 上界的最大凸函数.
 

η(F, α, d) = − log2
(
γ2α + (d− 1)δ2α

)
, (28)

其中,
 

γ =
1√
d

[√
F +

√
(d− 1)(1− F )

]
,

δ =
1√
d

(√
F −

√
1− F√
d− 1

)
.

ρF Gα

证明　下面利用文献 [26, 41, 42]中的相关方

法给出这个定理的证明. 对称态  下的  由下式

给出:
 

Gα(ρF ) = co(η(F, α, d)),

η(F, α, d)其中函数  可定义为
 

η(F, α, d) = inf{Gα(|ψ⟩)|fΨ+(|ψ⟩) = F,

rank(ρψ) ⩽ d}. (29)

通过 Schmit分解可以得到
 

|ψ⟩=
m∑
i=1

√
λi |aibi⟩=(UA ⊗UB)

d∑
i=1

√
λi |ii⟩ .

通过直接计算可以得到
 

fΨ+(|ψ⟩) = 1

d

∣∣∣∣ d∑
i=1

√
λivii

∣∣∣∣2,
V = UT

AUB vij = ⟨i|V |j⟩ F ∈
( 0, 1/d ] η(F, α, d) UA

UB λ1 = 1 η(F, α, d) = 0

F ∈ ( 1/d, 1 ]

Gα(|ψ⟩)

其中 ,    ,    . 容易得到  

 时   的值. 通过选择合适的   和

 , 总可以令   , 从而得到   . 对

于   , 通过使用拉格朗日乘子法 [25], 可

以最小化  , 约束条件为  ∑
i

λi = 1, (30)
  ∑

i

√
λi =

√
Fd, (31)

Fd ⩾ 1其中  . 极值的条件由下式给出: 

(
√
λi)

2α−1 + Λ1(
√
λi) + Λ2 = 0, (32)

Λ1 Λ2 α ⩾ 2

f(
√
λi) = (

√
λi)

2α−1 √
λi

γ, δ

其中   ,    表示拉格朗日乘子. 对任意的   ,

 是关于  的凸函数. 我们知

道一个凸函数和一个线性函数至多在两点上相交,

因此方程 (32)至多有两个非零解. 令   表示这

两个正解, 则 

λj =


γ2, j = i · · ·n,

δ2, j = n+ 1 · · ·n+m,

0, j = n+m · · · d,

(33)

n+m ⩽ d, n ⩾ 1

minGα (|ψ⟩)
其中  . 最小化问题已转化为如下

问题:   约束条件为 

nγ2 +mδ2 = 1, (34)
 

nγ +mδ =
√
Fd, (35)

Gα (|ψ⟩) = − log2(nγ2α +mδ2α).其中    通过求解上

述方程, 可以得到: 

γ±nm(F ) =
n
√
Fd±

√
nm(n+m− Fd)

n(n+m)
, (36)

 

δ±nm(F ) =
m
√
Fd∓

√
nm(n+m− Fd)

m(n+m)
. (37)

γ−mn = δ+nm

γ+nm = γ−mn γnm = γ+nm

Fd ⩽ n+m

δnm Fd ⩾ n

δnm(F ) ⩽
√
Fd/(n+m) ⩽ γnm(F ) n = 0

n ⩾ 1

观察 (36)式和 (37)式可以发现   ,

 . 因此, 下面只考虑  的解. 因

为平方根不能为负, 所以可以得到  . 此

外  应该是非负的, 这意味着  . 容易得到

   . 由于 n =

0没有定义, 可以得到  .

1 ⩽ n ⩽ Fd Fd ⩽ n+m ⩽ d

Gα(|ψ⟩)
γnm

因此, 只需要在  和 

定义的平行四边形区域上最小化  即可. 首

先, 通过对约束条件做如下微分来计算   和关
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于 n 和 m 的导数: 

∂γ

∂n
=

1

2n

2γδ − γ2

γ − δ
,

∂δ

∂n
= − 1

2m

γ2

γ − δ
,

∂γ

∂m
=

1

2n

δ2

γ − δ
,

∂δ

∂m
= − 1

2m

2γδ − γ2

γ − δ
. (38)

Gα(|ψ⟩)接下来, 计算  关于 n 和 m 的偏导数: 

∂Gα
∂n

=

[
(α− 1)γ2α − αγ2δ(γ2α−2 − δ2α−2)

γ − δ

]
× 1

ln 2

(
1

nγ2α +mδ2α

)
, (39)

 

∂Gα
∂m

=

[
(α− 1)δ2α − αδ2γ(γ2α−2 − δ2α−2)

γ − δ

]
× 1

ln 2

(
1

nγ2α +mδ2α

)
. (40)

容易发现: 

1

ln2

(
1

nγ2α +mδ2α

)
⩾ 0. (41)

因此, 主要通过分析下面的方程来判断偏导数是正

还是负:  [
(α− 1)δ2α −

αδ2γ
(
γ2α−2 − δ2α−2

)
γ − δ

]
. (42)

通过分析得到:  [
(α− 1)δ2α − αδ2γ(γ2α−2 − δ2α−2)

γ − δ

]
⩽ (α− 1)δ2α − αδ2γ(γ + δ) (43)

 

⩽ (α− 1)δ2α − 2αδ4 (44)
 

⩽ (α− 1− 2α)δ4 (45)
 

⩽ 0, (46)

f(α) =
γ2α−2 − δ2α−2

γ − δ

α ⩾ 2 γ ⩾ δ

不等式 (43)可由函数   (关于

α的增函数)得到. 对于任意的  和  , 有 

∂f

∂α
=

(2α− 2)(γ2α−3 − δ2α−3)

γ − δ
⩾ 0,

−γ
2α−2 − δ2α−2

γ − δ
⩽ −(γ + δ)

γ ⩾ δ α ⩾ 2

f(α) = δ2α(δ < 1)
∂Gα
∂m

⩽ 0 u = m− n v =

然后就有  . 不等式 (44)

可以由   得到验证. 不等式 (45)是由当  

时,    是减函数得到的. 最后得到

 . 现在引入两个参数   和  

m+ n Gα (|ψ⟩) . 则  对 u 的导数为 

∂Gα
∂u

=
∂Gα
∂n

∂n

∂u
+
∂Gα
∂m

∂m

∂u

=

[
1

2
(α− 1)(δ2α − γ2α)

−α(γ
2α−2 − δ2α−2)(δ2γ − γ2δ)

2(γ − δ)

]
× 1

ln2

(
1

nγ2α +mδ2α

)
. (47)

和之前一样主要分析前面的方程: 

1

2
(α−1)(δ2α−γ2α)− α(γ2α−2 − δ2α−2)(δ2γ − γ2δ)

2(γ − δ)
.

(48)

通过化简得到: 

γ2α

2

[
1− α+α

δ

γ
−
( δ
γ

)2α(
1− α+α

δ

γ

)]
. (49)

t = δ/γ t ∈ [0, 1]设  ,   . 记 (49)式中括号里面的

式子为 

f (t) = 1− α+ αt− t2α(1− α+ αt−1). (50)

f(1) = 0 f(t)则  . 对  求导得到下式: 

∂f

∂t
=α

{
1− [2t2α−1(1− α+αt−1)− t2α−2]

}
. (51)

然后, 令 

g(t) = 2t2α−1
(
1− α+ αt−1

)
− t2α−2. (52)

g(1) = 1 g(t)则  . 对  求导得到下式: 

∂g

∂t
= t2α−32(2α−1)(t−αt)− (1−α)(4α−2). (53)

再令 

h(t) = 2(2α− 1)(t− αt)− (1− α)(4α− 2), (54)

h(1) = 0 α ⩾ 2有  , 当  时, 

∂h

∂t
= 2(2α− 1)(1− α) ⩽ 0. (55)

t ∈ [0, 1] h(t)

h(t) ⩾ 0
∂g

∂t
= t2α−3h(t)

t ∈ [0, 1] g(t) g(t)

max g(t) = g(1) = 1

min
∂f

∂t
= 0

∂f

∂t
⩾ 0 t ∈ [0, 1]

f(t) ⩽ f(1) = 0

综上所述, 对于   ,    是单调递减函

数, 因此  . 可以知道  . 因此,

对于  ,   是单调递增函数, 可以得到 

的最大值 , 即   . 所以 , 就有

 , 得到   . 对于任意的   ,

有  . 因此, 

1

2
(α− 1)(δ2α − γ2α)

− α(γ2α−2 − δ2α−2)(δ2γ − γ2δ)

2(γ − δ)
⩽ 0. (56)
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1

ln 2

( 1

nγ2α +mδ2α

)
⩾ 0

∂Gα
∂u

⩽ 0

∂Gα
∂m

⩽ 0
∂Gα
∂u

⩽ 0

∂Gα
∂m

⩽ 0 Gα (|ψ⟩)

1 ⩽ n ⩽ Fd Fd ⩽ n+m ⩽ d

m+ n = d
∂Gα
∂u

⩽ 0

m− n = d− 2 n = 1, m = d− 1

Gα(|ψ⟩) n = 1

m = d− 1 Gα(|ψ⟩)

因为   , 所以   .

根据上述,    和   . 因为 n, m 是整

数, 根据  , 可以知道  是沿着 m 方

向递减的. 然后根据  和 

定义的平行四边形, 有最小值在直线  上.

用同样的方法, 根据  , 得到最小值在直线

 上. 所以可以得到点  .

这些结果意味着  的最小值出现在  和

 的顶点上. 从而得到  的最小值为 

Gα(|ψ⟩) = − log2[γ
2α
1,d−1 + (d− 1)δ2α1,d−1]. (57)

η(F, α, d)通过这种方法, 得到函数   的解析表

达式为 

η(F, α, d) = − log2[γ
2α + (d− 1)δ2α], (58)

其中, g 和 δ可以写成 

γ =
1√
d

[√
F +

√
(d− 1)(1− F )

]
,

δ =
1√
d

(√
F −

√
1− F√
d− 1

)
. (59)

至此完成了对定理的证明.

d = 2例 4.1　为了方便起见, 以  为例, 即 

η(F, α, 2) = − log2(γ
2α + δ2α), (60)

 

γ =
1√
2

(√
F +

√
1− F

)
,

δ =
1√
2

(√
F −

√
1− F

)
, (61)

F ∈ [1/2, 1]其中  , 可以得到: 

η(F, α, 2) = − log2
[(

1 + 2
√
F (1− F )

)α
+
(
1− 2

√
F (1− F )

)α]
+ α, (62)

co(·) η(F, α, 2)

co(η(F, α, 2))

根据   的定义, 需要计算   的二阶导数

来判断其性质, 从而给出   的解析式.

对于二阶导数, 有 

∂2η

∂F 2
=B

(Aα−1
1 −Aα−1

2 )(Aα1 +Aα2 )

2
√
F (1− F )

+B[(2F − 1)2(Aα−1
1 −Aα−1

2 )

− 4(α− 1)(2F − 1)2α−2], (63)

A1 = 1+2
√
F (1− F ) A2 = 1− 2

√
F (1− F )

B =
α

4[F (1− F )](Aα1 +Aα2 )
2

Aα−1
1 Aα−1

2

其中  ,   ,

 . 由   和   的

泰勒公式可以得到: 

Aα−1
1 =

(
1 + 2

√
F (1− F )

)α−1

=1 + (α− 1)2
√
F (1− F )

+
(α− 1)(α− 2)

2!

[
2
√
F (1− F )

]2
+P1, (64)

 

Aα−1
2 =

(
1− 2

√
F (1− F )

)α−1

=1− (α− 1)2
√
F (1− F )

+
(α− 1)(α− 2)

2!

[
2
√
F (1− F )

]2
+P2. (65)

余项可记作: 

P1 =

∞∑
k=3

(α− 1) · · · (α− k)

k!

[
2
√
F (1− F )

]k
, (66)

 

P2 =

∞∑
k=3

(α− 1) · · · (α− k)

k!

[
−2
√
F (1− F )

]k
.

(67)

P1 − P2

P1 + P2

通过 (66)式和 (67)式可以知道   和

 是非负的. 然后可以得到下面的结果: 

Aα−1
1 −Aα−1

2 =2(α− 1)
[
2
√
F (1− F )

]
+ P1 − P2

⩾ 2(α− 1)
[
2
√
F (1− F )

]
,

Aα−1
1 +Aα−1

2 =2 + P1 + P2 ⩾ 2. (68)

现在记 

∆1 =
(Aα−1

1 −Aα−1
2 )(Aα1 +Aα2 )

2
√
F (1− F )

,

∆2 = (2F − 1)2(Aα−1
1 −Aα−1

2 )2.

根据不等式 (68), 有 

∆1 ⩾ 4(α−1), ∆2 ⩾ 4(α−1)2(2F −1)24[F (1−F )].

接下来可以得到: 

∂2η

∂F 2
=B[∆1 +∆2 − 4(α− 1)(2F − 1)2α−2]

⩾B[4(α− 1)− 4(α− 1)(2F − 1)2α−2

+ 4(α− 1)2(2F − 1)24F (1− F )]

⩾ 0, (69)

α ⩾ 2 F = 1

F ∈ [1/2, 1] η(F, α, 2)

α ⩾ 2 η(F, α, 2)

F ∈ [1/2, 1] co(η(F, α, d))

co(η(F, α, 2))

ρF Gα

对任意的   都成立, 其中当且仅当   时等

号成立. 因此, 对   ,    的二阶导

数是非负的. 也就是说, 当   时,    是

 上的凸函数. 根据  的定义,

可以得到   的解析式 . 双量子比特

isotropic态  的  由下式给出: 
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Gα(ρF ) =


0, 0 ⩽ F ⩽ 1

2
.

− log2

[(√
F +

√
1− F

)2α
+
(√

F −
√
1− F

)2α]
+ α,

1

2
⩽ F ⩽ 1.

(70)

 

5   α-对数并发纠缠的单配性

Gα

|ψ⟩AB =
√
λ0 |00⟩AB +

√
λ1 |11⟩AB

本节建立了一个关于 α-对数并发纠缠的单配

性的数学表达式. 首先, 在双量子比特中建立并发

纠缠与 α-对数并发纠缠  之间的函数关系. 对双

量子比特纯态  , 得:
 

Gα(|ψ⟩AB) = − log2(λ
α
0 + λα1 ).

|ψ⟩AB C(|ψ⟩AB)对任意两体纯态   , 并发纠缠   可

以写成: 

C(|ψ⟩AB) =
√
2 (1− trρ2

A).

|ψ⟩AB λ0, λ1

ρA C(|ψ⟩AB)

λ0,1 =
1±

√
1− C2(|ψ⟩AB)

2

Gα

不难发现,    的 Schmit系数   , 即约

化密度矩阵  的特征值与  存在一一对应

的关系 . 这个关系为   .

通过上述方法, 可以定义双量子比特系统中并发纠

缠与  之间关系的函数.

α ⩾ 2 gα(x) x ∈ [0, 1]定义 5.1　对任意的   ,    是  

上的可微函数, 使得 

gα(x) = − log2

[(
1−

√
1− x2

2

)α

+

(
1−

√
1 + x2

2

)α]
. (71)

gα(x)根据  , 可以写出下式: 

Gα(|ψ⟩AB) = gα(C(|ψ⟩AB)). (72)

gα ρAB根据  的性质, 可以给出混合态  的形式.

α ⩾ 2 gα x ∈ [0, 1]引理 5.1　对任意的   ,    在   上

是一个单调递增的凸函数.

ρAB

这个引理证明由文献 [18]给出. 基于这个引理,

给出了关于混合态  的如下定理.

α ⩾ 2 gα定理 5.1　对任意的   , 当   是单调递增

的凸函数时, 有 

Gα(ρAB) = gα(C(ρAB)), (73)

ρAB对任意的双量子态  .

ρAB =
∑

i
pi |ψi⟩ ⟨ψi|

Gα(ρAB) Gα(ρAB) =
∑

i
piGα(|ψi⟩AB)

证明　首先 , 假设   对于

 使得   , 因此

可以得到 

Gα(ρAB) =
∑
i

piGα(|ψi⟩AB) =
∑
i

pigα(C |ψi⟩AB)

⩾ gα

(∑
i

piC(|ψi⟩AB)

)
⩾ gα(C(ρAB)),

(74)

Gα(|ψ⟩AB) = gα(C(|ψ⟩AB))
gα gα

C(ρAB)

ρAB =
∑

i
pi |ψi⟩ ⟨ψi|

式中第二个等式来自   .

第一个不等式来自  的凸性. 根据  是单调递增

函数以及  的定义, 可以得到第二个不等式.

设存在一个最优分解  使得
 

C(ρAB) =
∑
i

piC(|ψi⟩AB)， (75)
 

C(|ψi⟩AB) = C(ρAB). (76)

i对所有的  , 有 

gα(C(ρAB)) = gα

(∑
i

piC(|ψi⟩AB)

)
=
∑
i

pigα (C(|ψi⟩AB))

=
∑
i

piGα(|ψi⟩AB)

⩾Gα(ρAB), (77)

C(|ψi⟩AB) = C(ρAB)

Gα(ρAB)

式中第二个等式来自  , 不等式

来自  的定义. 根据上述两个不等式, 可以

得到: 

Gα(ρAB) = gα(C(ρAB)). (78)

至此, 完成了证明.

CKW不等式是单配性不等式, 具体如下: 

C2(|ψ⟩A(BC)) ⩾ C2(ρAB) + C2(ρAC), (79)

C |ψ⟩A(BC)
C(ρAB) C(ρAC)

ρAB ρAC

其中   是并发纠缠,    表示将 ABC切分成

两部分 A和 BC,    和   是约化密度矩

阵  和  在子系统 AB和 AC上的并发纠缠.

α ⩾ 2引理 5.2　对于任意的  , 

gα

(√
x2 + y2

)
⩾ gα(x) + gα(y), (80)

0 ⩽ x, y ⩽ 1 0 ⩽ x2 + y2 ⩽ 1其中  ,   .

这个引理证明由文献 [18]给出.

α ⩾ 2

ρA(BC) Gα

定理 5.2　对于   和任意的三体量子态

 , 有关于  单配性不等式: 
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Gα(ρA(BC)) ⩾ Gα(ρAB) +Gα(ρAC). (81)

α ⩾ 2

|ψ⟩A(BC) 2⊗ 4 gα(x)

证明　对于   , 注意到, 对于 A和 BC的

二分,    是   纯态. 由于   单调递增

的性质以及 CKW不等式, 可以得到: 

gα(C(|ψ⟩A(BC)))⩾gα
(√

C2(ρAB) + C2(ρAC)
)
,

(82)

ρAB = trC(|ψ⟩ABC ⟨ψ|) ρAC = trB(|ψ⟩ABC ⟨ψ|)其中   ,    ,

然后利用引理 2 中的不等式, 得到 

gα

(√
C2(ρAB) + C2(ρAC)

)
⩾ gα(C(ρAB)) + gα(C(ρAC)). (83)

将两个不等式结合起来得到: 

gα(C(|ψ⟩A(BC))) ⩾ gα(C(ρAB)) + gα(C(ρAC)). (84)

Gα根据  和并发纠缠的函数关系, (84)式可以

改写为 

Gα(|ψ⟩A(BC)) ⩾ Gα(ρAB) +Gα(ρAC). (85)

ρA(BC)

ρA(BC) =
∑

i
pi |ψi⟩A(BC) ⟨ψi| Gα(ρA(BC))

Gα(ρA(BC)) =
∑

i
piGα(|ψi⟩A(BC))

对于三量子比特混合态  , 存在一个分解

 关于   使得

 . 因此, 有:
 

Gα(ρA(BC)) =
∑
i

piGα(|ψi⟩A(BC))

⩾
∑
i

pi
[
Gα
(
ρiAB

)
+Gα

(
ρiAC

)]
(86)

 

=
∑
i

piGα
(
ρiAB

)
+
∑
i

piGα
(
ρiAC

)
⩾Gα (ρAB) +Gα (ρAC) , (87)

Gα(ρ)式中最后一个不等式来自于   的定义. 至此,

完成了证明. 

6   结　论

α ⩾ 2

α ∈ (0, 1)

本文研究了基于 Rényi-α熵的参数化纠缠度

量问题. 首先, 引入了 α-对数并发纠缠的概念, 其

中  ; 然后, 证明了 α-对数并发纠缠是一个定

义良好的纠缠度量, 得到了 α-对数并发纠缠的下

界, 计算了 isotropic态的 α-对数并发纠缠的表达

式; 最后, 对该纠缠度量单配性问题进行了讨论.

参数化纠缠度量 α-对数并发纠缠给出了一族纠缠

度量, 丰富了量子纠缠理论, 后续工作可以对参数

α的范围进行讨论, 研究  时的情况.
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Abstract

Gα(ρ) ≫ 0

d = 2

Parameterized  entanglement  measures  have  demonstrated  their  superiority  compared  with  kinds  of

unparameterized  entanglement  measures.  Entanglement  concurrence  has  been  widely  used  to  describe

entanglement in quantum experiments. As an entanglement measure it is related to specific quantum Rényi-α

entropy. In the work, we propose a parameterized bipartite entanglement measure based on the general Rényi-α

entropy,  which  is  named  α-logarithmic  concurrence.  This  measure,  different  from  existing  parameterized

measures,  is  defined  first  for  pure  states,  then  extended  to  the  mixed  states.  Furthermore,  we  verify  three

necessary  conditions  for α-logarithmic  concurrence  to  satisfy  the  entanglement  measures.  We  show  that  this

measure is easy to calculate for pure states. However, for mixed states, analytical calculations are only suitable

for  special  two-qubit  states  or  special  higher-dimensional  mixed  states.  Therefore,  we  devote  our  efforts  to

developing the analytical lower bound of the-logarithmic concurrence for general bipartite states. Surprisingly,

this lower bound is a function on positive partial transposition criterion and realignment criterion of this mixed

state.  This shows the connection among the three entanglement measures.  The interesting feature is  that the

lower  bound  depends  on  the  entropy  parameter  associated  with  the  detailed  state.  This  allows  us  to  choose

appropriate  parameter  α  such  that      for  experimental  entanglement  detection  of  specific  state  ρ.

Moreover, we calculate expressions of the α-logarithmic concurrence for isotropic states, and give a the analytic

expressions  for  isotropic  states  with    .  Finally,  the  monogamy  of  the α-logarithmic  concurrence  is  also

discussed.  We  set  up  a  mathematical  formulation  for  the  monogamous  property  in  terms  of  α-logarithmic

concurrence. Here we set up the functional relation between concurrence and α-logarithmic concurrence in two

qubit  systems.  Then  we  obtain  some  useful  properties  of  this  function,  and  by  combining  the

Coffman–Kundu–Wootters  (CKW)  inequality,  we  establish  the  monogamy  inequality  about  α-logarithmic

concurrence. We finally prove that the monogamy inequality holds true for α-logarithmic concurrence.

Keywords: parameterized measure, Rényi-α entropy, entanglement measure, concurrence
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