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This is not a complete historical survey of spectral and scattering theory
in Japan. Many,omissions and negligences exist. Specifically, many important
contributions from outside this country will be left out.

Although it is not easy to explain in precise terms what main problems of
spectral and scattering theory are, we try this taking as an example a simple scat-
tering system. Given two self-adjoint operators H0 (unperturbed) and H (per-
turbed), we want to compare the spectral structure of one with that of the other.
Suppose Ho is known to be absolutely continuocus. {Tor terminology we shall
mostly follow Kato[6].) What conditions on the perturbation H —~H0 make the
spectral structures of these operators similar? More technically:

{1) Does the limiting abhsorption methed apply to H ? (0r, does the
limiting value of the resolvent of H exist in a sense or other when
its argument approaches a real point in the (absclutely) continuous
spectrum?)

(2) Is the absolutely continuous part of H similar to Ho ?

(3) Wwhat is the spectral structure of the singular part of H ?

i) Is it discrete?
ii) Are any eigenvalues imbedded in the absolutely continucus spectrum?

(4) Does an eigenfunction expansion theorem hold for H provided it does

for Ho ?
{5) Do the wave operators W, = strong lim ke ltHe—ltHo exist?
(6) Are the wave operators complete? Is the scattering operator S =

= W *W_ unitary?
(7) Does the invariance principle of the wave operators hold?
And many other more particular problems might be enumerated.
Toward the above-mentioned problems there are, roughly speaking, two ap-

proaches: one is abstract, and the other concrete. The abstract approach deals
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with operators in an (or move than one) abstract Hilbert space. Concerning this
Professor Kuroda will give a more detailed account. The second approach deals most-
ly with concrete (partial) differential operators appearing in classical as well as
modern physics, such as Maxwell's equations, Schrbdinger equations, Dirac equations,

ete., . 0f course, there are some which may be located in between, like Friedrichs!

model.

1. The opening of mathematical theory of scattering in this country was,
perhaps, called in 1957 by Kato's work[2, 3] on finite~-dimensional (or degenerate)
and trace~class perturbations. Then Kuroda's work[l, 2, 3] follows. These
pleces of work are in an abstract setting, and indicafe fundamental ideas and methods
of how to solve scattering problems. gtimulated by them and Povener's 1953 paper
(Mat. Sb. 32(74) (1953), 109-156) Ikebe[1] studied in 1960 the Schr&dinger operator
H = -A + V(x) in the three-dimensicnal Fuclidean space assuming that V() =
= (%1% with o > 2. The before-mentioned problems except (7) {while Problem
(5) had been treated by Kuroda[l]) were attacked and solved. It should be noted
that the basic problem of self-adjointness of the Schrddinger operator had been an-
swered affirmatively almost 10 years before by Kato[1] and there had been an impor-
tant contribution also by Katolu] to Problem (3-ii}.

After the appeavance of Ikebe's paper[1] many an effort has been devoted,
in and outside of Japan, to decrease the exponent o which comes out in the poten-
tial V{x) = 0(Ix|™%). An important step is made by S. Agmon iIn 1970 (Actes
Congras intern., Math. t. 2 (1971), 679-683), and saitol?2, 3], Mochizuki[7] and Kuroda

[9, 107 succeeded with o > 1. Soon afterward an attempt came to be made at pene-

trating the Coulomb barrier (o = 1). Although the exact solution of the eigenval-

ue problem for the purely Coulomb potential had been long kmown, it was not known un-
til the appearance of a paper of Dollard (J. Math. Phys. 3 (1964), 729-738) on modi-
fied wave operators whether or not the usual wave operators existed for the Coulomb
potential. Problems (1), (2) and (3) concerning long-range potentials (a > 0),
under an additional assumption on the asymptotic behavier of V(x), were solved by
Ikebe-Saitd[1] and alsc by Lavine (J. Functional Anal. 12 (1973), 30-54). Very
recently, a solution to Problem (4) has been obtained by Ikebel8, 9] and Saitol[6].
But Problem (6) still remains open, while Problem (5) {and alsoc Problem (7)) has al-

ready been settled by a time-dependent method.

2. Problem (3-ii) is a hard problem, having a close bearing upon the

unigue continuation theorem for elliptic differential equations. The first impor-

tant contribution was, as mentioned above, by Kato[t] who grasped it as a problem in

a neighborhood of the point at infinity, and obtained asymptotic growth estimates for

solutions to the eigenvalue problem -fu + V(x)u = dau (X > 0). There have been

many contributions from abroad to this problem. Rather recently, Ikebe-Uchiyama



k6o

[17, Masudal[3] and Uchiyama[5] obtained some significant results. This problem
displays a greater difficulty if it is not considered in a full neighborhoed of in-

finity. Konno[2] and Tayoshill, 2] contributed in this direction.

3. The Schrddinger operator might be considered too simple. But
methods and techniques developed for Schrddinger operators are applicable to second-
and higher-order elliptic differential operators. Moreover, it can be noticed
that no essential difficulty arises in the treatment of exterior problems (with com-
pact obstacles) for elliptic operators. For these problems one can count a rather
big bunch of researches in this country. E.g., Shizutall], Ikebel[3, 4], Oedall],
Konno[1], Mochizukil[7], Uesakall], Ikebe-Tayoshi[1l], Ushijimal3], Kuroda[l0, 11] and
Kako[2]. The work of Oeda, Konno and Kako is interesting in that an exterior pro-

blem is viewed as the limiting case of a sequence of whole-space problems.

L. While the limiting absorption method directly asks for the boundary
values of the resolvent, there is a method, called the limiting amplitude method, in
which one is involved with the asymptotic behavior of solutions to the time-dependent
equation of Schr¥dinger's type: i du/dt = Hu. To this sort of problem contributed
Mizohata-Mochizuki[1], Kiyamal[l], Iwasakil[1], Kubota-Shirotal[l] and others. In
this connection one cannot forget an important contribution of Masudall, 2] on the

relation between exponential decay and a certain spectral property of H.

5. The Dirac operator -i Zj aja/axj + B + V(x) describing a relativ-
istic system can also be treated in almost the same way as the Schr&dinger operator.
Mochizuki[1] and Yamada[l] studied the spectral property of the Dirac operator with
a short-range potential (V(x) = oCx1™*), w > 1), Very recently, Yamada has suc-
ceeded in applying the limiting absorption method to the Dirac operator with a long-

range potential.

6. The operator -iE(x) Zj Aja/axj, with E(x) and Aj matrices, ap-
pears in classical wave propagation problems. While a number of papers were pub-
lished by Wilcox and Schulenberger, the whole-space, exterior and half-space problems
were dealt with by Mochizuki[5, 6], Matsumural[l]; Wakabayashil[l, 2, 31, Suzukil1],
Yajimall, 2] and Ikebel6, 10]. In the whole-space problem the main assumption on
E(x) (which describes the medium of propagation) is that E(x) - I be short-range.

No long-range thecry seems to exist,

7. Scattering theory of Lax-Phillips' type (Scattering theory, Academic
Press, 1967) has not been studied very strenuocusly in this country. But Iwasaki
[2] made a notable contribution to this theory. By his result it has been made

possible to treat wave equations in even-dimensional spaces along the line laid by
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Lax and Phillips, while their original theory was limited to odd-dimensional spaces.

8. It is usual that operators (differential or of other types) describ-
ing physical processes are given formally. Thus it is important to set up suit-
able Hilbert spaces and show the (essential) self-adjointness of the operators under
consideration. It was in 1951 that Kato[l] published a basic result on this pro-
blem for Schréidinger operators. An important progress since then was made by
ITkebe-Kato[1] about a decade later. Today we have more sophisticated vesults by

Kato, Simon, Walter, etc.. Arail2] discussed this problem for Dirac operators,

9. Sometimes it is hard to distinguish the absclutely continuous spec-
trum from the singular spectrum. In such a case we have to content ourselves with
a rougher classification of the spectrum — into essential and discrete spectra.
Essentially following the technique of %islin, Uchiyama[1] proved that atomic systems
(atoms, ions, molecules) with magnetic external fields have a definite threshold di-
viding the essential and discrete spectra. On the other hand, Araill] obtained a
proof that the Stark effect on atomic systems through an electric field whose poten-
tial is a linear function of the coordinates entails the essential spectrum extending

over the whole real line.

10. There are several pieces of work concerning the discrete eigenvalues
below the continuous spectrum. Uchiyamall, 2, 3, 4] gave criteria for the finite~
ness of eigenvalues of the many-body problem belew the threshold. Konno-Kuroda
[1] proposed an abstract criterion for the finifeness of perturbed eigenvalues which
is applicable to the one-body Schrédinger operator. Set8[1] extended Bargman's
inequality to the n-dimensional space in the spherically symmetric potential case.
Tamurall, 2] considered the asymptotic distribution of the negative eigenvalues of
Schrédinger (and elliptic) operators in the neighborhocd of ©. Among other re-
sults related with somewhat general spectral properties we mention here Ichinose's

work[1] on the essential spectrum of the tensor product of linear operators.

11, The Friedrichs model is semi-abstract. To this one can find con-
tributions of Mochizuki[2] and Ushijimal2]. The techniques developed for self-
adjoint Schridinger operators can also be applied without any essential alterations
to some physical systems governed by non-self-adjoint operators. Mochizukil[3, u],

Tkebe[7] and Saito[4, 5] are examples.
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