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Zusammenfassung

Diffusionsmodelle sind die Basis moderner Bildgenerierungsmodelle. Wir verwen-
den sie zur Erzeugung von Feldkonfigurationen in Gitterfeldtheorien. Aufgrund der
ähnlichen Datenstrukturen von digitalen Bildern und zweidimensionalen diskreten
Feldern können generative Modelle, die ursprünglich für die Bildgenerierung en-
twickelt wurden, mit nur geringen Anpassungen für Gitterfeldtheorien verwendet
werden. In dieser Arbeit fokussieren wir uns auf score-based generative diffusion
models (score models), eine spezielle Art von Diffusionsmodellen. Hierbei wird die
Score-Funktion von einem neuronalen Netzwerk gelernt.
Nachdem wir uns kurz mit einem nulldimensionalen Beispielproblem beschäftigen,

implementieren wir score models für die skalare ϕ4 Theorie und die reine U(1)-
Eichtheorie. Die Qualität unserer trainierten Modelle, gemessen an der effektiven
Stichprobengröße, ist für das skalare Problem nahezu ideal. Für die Eichtheorie
erreichen wir nur bei schwacher Kopplung gute Resultate, je stärker die Kopplung
ist, desto schlechter wird die Qualität unserer Modelle. Ein großer Vorteil von
Diffusionsmodellen gegenüber Modellen, die auf Markovketten basieren, ist, dass sie
prinzipiell Konfigurationen mit verschwindender Autokorrelation zwischen einzelnen
Proben erzeugen können. Es zeigt sich auch, dass Konfigurationen deutlich schneller
erstellt werden können als mit unserer Hybrid-Monte-Carlo Implementierung.
Des Weiteren präsentieren wir eine Adaptierung der score models, das action

model. Es basiert darauf, dass die Score-Funktion dem negativen Gradienten der
Wirkung entspricht, womit wir dem neuronalen Netzwerk eine direkte physikalische
Bedeutung geben können. Wir vergleichen diese beiden Modelle für das nulldimen-
sionale Beispielproblem und für die skalare ϕ4 Theorie. Abschließend demonstri-
eren wir eine weitere physikalische Interpretation von Diffusionsmodellen, indem wir
den Fluss der Carosso-Renormierungsgruppe mithilfe eines score models invertieren.
Damit zeigen wir eine direkte Verbindung zwischen generativen Diffusionsmodellen
und Renormierungsgruppen.
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Abstract

Diffusion models are state-of-the-art tools for machine-learning-based image genera-
tion. We apply them to lattice field theories to generate field configurations. Due to
the similar data structures of digital images and two-dimensional discretized fields,
generative models designed for image generation can be used for lattice field theories
with only minor adaptions. In this work we focus on score-based generative diffu-
sion models (score models), a particular type of diffusion models in which a neural
network learns a quantity named ‘score’.
After briefly reviewing a zero-dimensional toy model, we implement score models

for scalar ϕ4 theory and U(1) pure gauge theory. We find that the quality of our
trained models, measured by the effective sampling size, is almost perfect in the
scalar case. For U(1), the quality is still good for weak coupling, but decreases with
increasing coupling strength. A notable advantage of diffusion models over Markov
chain-based methods is that they can, in principle, generate configurations with
vanishing autocorrelation between samples. We also find the generative speed to
be significantly faster compared to our implementation of the Hybrid Monte Carlo
(HMC) method.
Furthermore, we introduce the action model, an adaption of the score model. It

uses the fact that the score corresponds to the negative gradient of the action, giving
the trained neural network a direct physical meaning. Comparisons between both
models are given for the zero-dimensional toy problem and scalar ϕ4 theory. To take
the physical interpretation of diffusion models even further, we use a score model to
reverse the Carosso renormalization group flow, showing a direct connection between
score-based generative diffusion models and renormalization group theory.
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1 Introduction

Generative machine learning models have attracted significant scientific and societal
attention in recent years. These generative models are trained with a dataset and
can then generate new data which follows the probability distribution of the original
dataset. Among them are diffusion models, whose most prominent application lies
in text-to-image generation, being used e.g. in Stable Diffusion [1] or DALL-E [2].
While not initially developed for applications in physics, advances have been made to
use generative models [3] and specifically diffusion models [4] in the context of lattice
field theory. Due to the similar data structures of images and lattice field theory
configurations (i.e. degrees of freedom sitting at intersections of a quadratic grid,
with short and long scale correlations between these values), it seems promising to
use diffusion models, being a prominent image generation method, for the generation
of configurations in lattice field theories. Traditionally, Monte Carlo methods are
being used to generate field configurations in lattice field theory. These methods
face certain problems like critical slowing down and topological freezing [5]. Finding
ways to generate configurations which circumvent these problems by having shorter
autocorrelation times can help with more accurate calculations when going towards
the continuum limit.
The exact type of diffusion model we will use was introduced in [6]. It is based

on diffusion processes given by stochastic differential equations, which continuously
change configurations and thus deform the probability density of configurations.
The forward diffusion process turns data into noise and correspondingly a complex
probability distribution (from which we want to draw samples) into a simple prob-
ability distribution that is independent of the initial data (where it is easy to draw
samples from). By reversing this diffusion process we can generate data from noise
and thus draw samples from the complex probability distribution. The reversal is
possible with knowledge of a quantity called ‘score’, the gradient of the logarithm of
the probability density, which will be learned by a neural network. An illustration
of the diffusion processes in the context of image generation can be seen in fig. 1.1.
The biggest drawback of this method is that it always needs a number of samples
drawn from the target probability distribution through other means for training.
First, we illustrate the concept using a zero-dimensional toy problem. Then, we

work on a two-dimensional scalar field theory, similar to what has been done in
[4]. Finally, we apply the diffusion model to U(1) pure gauge theory. The last part
is also intended to be a first step towards using diffusion models for SU(3) gauge
theory in future works.
Since diffusion models have not been developed with physical applications in mind,

they have initially not been related to any physical processes. To explore the physics
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1 Introduction

(a) The diffusion process, starting at t = 0.

(b) The generative process, starting at t = 1.

Figure 1.1: Comparison of the forward diffusion process going from left to right and
the generative (reverse) diffusion process going from right to left. The
generative process uses a score model similar as in chapter 4, trained
only with a single image for illustrative purposes.

behind the diffusion processes in the generative model, we note that the score is
equivalent to the gradient of the negative action of a system [4]. By adapting the
diffusion model such that the network models the action instead of the score, we
gain direct access to the action, along the whole diffusion process. In a different
approach, the authors of [7] bring up a connection between diffusion models and a
certain renormalization group scheme, namely the Carosso renormalization group
(RG) flow [8], which we will study experimentally.
The code for this project using Python and PyTorch is available here: https:

//github.com/Thomas-Ranner/LFT_DM
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2 Score model

2.1 Concept

Score-based generative models (e.g. [9, 10]) are a class of machine learning models
with the aim of drawing samples from a configuration space with a (usually un-
known) probability distribution. Although developed mainly for image generation
(where generating an image of a cat corresponds to drawing a sample from the space
of all images with a probability distribution that favours images of cats over all other
possible images), they are restrained neither by the ‘form’ of the generated data nor
by the complexity of the probability distribution. In this work we will implement
score-based generative modelling through stochastic differential equations (SDEs),
as introduced in [6].
The basic concept of score-based modelling with SDEs is shown in fig. 2.1. To

draw a sample ϕϕϕ0 from the target distribution p0(ϕϕϕ0), we solve the so-called reverse-
time SDE with initial condition ϕϕϕT . This ϕϕϕT is drawn from another probability
distribution pT (ϕϕϕT ), which is typically very easy to sample from (e.g. a multivariate
normal distribution). As the name suggests, this reverse-time SDE is the reverse of
another SDE, which is called the forward SDE. Said forward SDE continuously adds
noise to a sample drawn from p0(ϕϕϕ0) such that after diffusion time T it follows the
aforementioned simple distribution pT (ϕϕϕT ). In short, the forward SDE turns data
into noise and the reverse SDE turns noise into data.
The forward SDE, whose only aim is to destroy all information of the initial

samples, is chosen in a simple analytical form. The presented generative approach

Figure 2.1: Illustration of score based generative modelling, taken from [6]. Note:
what is labelled as x in the graphic is ϕϕϕ in this text.
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2 Score model

is based on the fact that with knowledge of the analytical form of the forward
SDE and an additional quantity termed ‘score’ (which will be learned by a neural
network), we are able to write down the SDE of the reverse process, and therefore
solve it.

The general form of the mentioned stochastic differential equations is given as
(see e.g. [11])

dϕϕϕ = f(ϕϕϕ, t)dt+ g(t)dw, ϕϕϕ ∈ Rd, (2.1)

where t is the diffusion time, which runs between 0 and T , w stands for the Wiener
process, f(ϕϕϕ, t) is the vector-valued drift coefficient and g(t) the scalar diffusion
coefficient. The random Wiener process is a Gaussian process that can be defined
by

E[ηi(t)] = 0, (2.2)

E[ηi(t)ηj(s)] = δi,jδ(t− s), (2.3)

where ηi(t) = dwi/dt and E denotes the expectation value.

While eq. (2.1) describes the time evolution of a single sample ϕϕϕ, the time evolution
of the probability density function over ϕϕϕ, pt(ϕϕϕ) is given by the corresponding Fokker-
Planck equation,

∂

∂t
pt(ϕϕϕ) = −

d�
i=1

∂

∂ϕi

�
fi(ϕϕϕ, t)pt(ϕϕϕ)

�
+

d�
i=1

∂2

∂ϕi∂ϕi

�
g(t)2

2
pt(ϕϕϕ)

�
. (2.4)

2.2 Forward diffusion process

The purpose of the forward diffusion process is to transform the initial data such
that it follows a simple probability distribution that is independent of the initial
data. One possible and popular choice is to set f(ϕϕϕ, t) = 0 and g(t) = σt with σ > 0
in eq. (2.1), leading to

dϕϕϕ = σtdw. (2.5)

This choice is termed as Variance Exploding SDE in [6], as the variance of pt diverges
for t → ∞. An advantage of this particular choice is that the transition probability
p0t(ϕϕϕt|ϕϕϕ0) is given by a simple multivariate normal distribution,

p0t(ϕϕϕt|ϕϕϕ0) = N
�
ϕϕϕ0,

1

2 log(σ)
(σ2t − 1)I

�
, (2.6)

with I being the identity matrix. Knowing the transition probability, the probability
density at time t is given as

pt(ϕϕϕt) =

	
dϕϕϕ′

0p0(ϕϕϕ
′
0)p0t(ϕϕϕt|ϕϕϕ′

0). (2.7)
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2.2 Forward diffusion process

Figure 2.2: Comparison of a possible target distribution with two normal distribu-
tions of different variance. In the right case, the target distribution acts
approximately as a delta function.

To verify eq. (2.6) in 1D, we first note that p0t(ϕϕϕt|ϕϕϕ0) is equivalent to pt(ϕϕϕt) when
assuming ϕϕϕ0 as initial condition, i.e. inserting p0(ϕϕϕ

′
0) = δ(ϕϕϕ′

0−ϕϕϕ0) in eq. (2.7). Under
this assumption we can write

pt(ϕϕϕt) =
1�
2πΣ2

t

e
− 1

2
(ϕϕϕt−ϕϕϕ0)

2

Σ2
t (2.8)

with

Σ2
t =

1

2 log(σ)
(σ2t − 1). (2.9)

For eq. (2.6) to be the correct, pt(ϕϕϕt) has to be a solution of the Fokker-Planck
equation corresponding to eq. (2.5),

∂

∂t
pt(ϕϕϕt) =

σ2t

2

∂2

∂ϕϕϕ2
pt(ϕϕϕt). (2.10)

Inserting eq. (2.8) above, and using ∂tΣ
2
t = σ2t, we get

1�
2πΣ2

t

σ2t

2Σ2
t

e
− 1

2
(ϕϕϕt−ϕϕϕ0)

2

Σ2
t

�
(ϕϕϕt − ϕϕϕ0)

2

2Σ2
t

−1

�
=

σ2t

2

1�
2πΣ2

t

1

Σ2
t

e
− 1

2
(ϕϕϕt−ϕϕϕ0)

2

Σ2
t

�
(ϕϕϕt − ϕϕϕ0)

2

2Σ2
t

−1

�
,

(2.11)
proving that eq. (2.8) is a solution of the Fokker-Planck equation.
For the generative process, it is necessary to know the probability density at time

T , which we set to T = 1. If σ is sufficiently large, i.e. if the normal distribution p0t
is sufficiently broad, the initial probability distribution p0 can be approximated as
a delta function p0(ϕϕϕ0) ≈ δ(ϕϕϕ0) for t → 1, see fig. 2.2. This leads to

pT (ϕϕϕT ) ≈ N
�
0,

1

2 log(σ)
(σ2t − 1)I

�
, (2.12)
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2 Score model

which is now independent of the initial data at t = 0 and thus straightforward to
sample from.

2.3 Reverse diffusion process

For a diffusion process given by eq. (2.1), there exists a reverse diffusion process [12]
which takes the form

dϕϕϕ =
�
f(ϕϕϕ, t)− g(t)2∇ϕϕϕ log pt(ϕϕϕ)

�
dt+ g(t)dw̄, (2.13)

with t flowing backwards from T to 0 and w̄ describing a time-reversed Wiener
process. Starting point for this reverse-time SDE are samples drawn from pT (ϕT ).
The only term in the reverse SDE not explicitly given by the form of the forward
SDE is ∇ϕϕϕ log pt(ϕϕϕ), which is called ‘score’ and will subsequently be modelled by a
neural network. For our choice of the forward SDE, the reverse SDE reads

dϕϕϕ = −σ2t∇ϕϕϕ log pt(ϕϕϕ)dt+ σtdw̄. (2.14)

2.3.1 ODE formulation

In [6] it is shown that for a diffusion process given by eq. (2.1), there exists a
deterministic process whose trajectories have the same marginal probability densities
(i.e. the probability densities at each timepoint of the flow) as trajectories following
the SDE. This deterministic process is characterized by an ordinary differential
equation (ODE),

dϕϕϕ =

�
f(ϕϕϕ, t)dt− 1

2
g(t)2∇ϕϕϕ log pt(ϕϕϕ)

�
dt, (2.15)

which takes the form

dϕϕϕ = −1

2
σ2t∇ϕϕϕ log pt(ϕϕϕ)dt (2.16)

for our chosen SDE eq. (2.5). In this formulation, the forward and the reverse
process are described by the same ODE.
By solving either eq. (2.13) or eq. (2.15) backwards in time from t = T to t = 0,

we can reverse the diffusion process given by eq. (2.1). Thus, to draw a sample from
p0, we can first draw a sample from pT and then solve the reverse diffusion process.

2.4 Score matching

To solve the reverse diffusion process presented in the previous section, we need
to calculate the score ∇ϕϕϕ log pt(ϕϕϕ) for arbitrary ϕϕϕ and t. As we do not have an
analytical expression for the score, we estimate it with a trained neural network.
This neural network, sθ(ϕϕϕ, t), is termed score model.
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2.4 Score matching

Following eq. (2.16), the ODE we solve in the generative process is

dϕϕϕ = −1

2
σ2tsθ(ϕϕϕ, t)dt, (2.17)

and the reverse SDE eq. (2.14) is changed analogously.
To train the network, we use denoising score matching [13], with the loss function

given as in [6],

Et∈U(0,T )Ep0(ϕϕϕ0)Ep0t(ϕϕϕt|ϕϕϕ0)

�
λ(t)∥sθ(ϕϕϕt, t)−∇ϕϕϕt log p0t(ϕϕϕt|ϕϕϕ0)∥22

�
, (2.18)

where U(0, T ) denotes the uniform distribution over the interval [0, T ] and Ep the
expectation value over the probability distribution p.
The weighting function λ(t) is chosen as λ(t) ∝ 1/E∥∇ϕϕϕt log p0t(ϕϕϕt|ϕϕϕ0)∥22 to ensure

that the magnitude of the loss function remains constant across all t.
For our chosen SDE, p0t is explicitly given by eq. (2.6), and we can write down

the gradient of the logarithm of p0t, using eq. (2.9):

∇ϕϕϕt log p0t(ϕϕϕt|ϕϕϕ0) = ∇ϕϕϕt log

�
1

Σt

√
2π

e
− 1

2
(
ϕϕϕt−ϕϕϕ0

Σt
)2
�

= ∇ϕϕϕt

�
− log

�
Σt

√
2π

�− 1

2

�
ϕϕϕt − ϕϕϕ0

Σt

�2 �
= −ϕϕϕt − ϕϕϕ0

Σ2
t

. (2.19)

After setting λ(t) = Σ2
t , we can write the loss function as

Et∈U(0,T )Ep0(ϕϕϕ0)Ep0t(ϕϕϕt|ϕϕϕ0)

�
∥Σtsθ(ϕϕϕt, t) +

ϕϕϕt − ϕϕϕ0

Σt

∥22
�
. (2.20)

To account for Ep0(ϕϕϕ0), we need training samples drawn from p0. The complete
training algorithm with a given training data set {ϕϕϕ′

0} is given in algorithm 1.

Algorithm 1 Training algorithm for the score model.

for n in number of training epochs do
Shuffle training samples randomly
for i in number of training samples / batch size do

Use training samples from i · batch size to (i+ 1) · batch size
Sample a batch of timesteps t from the uniform distribution over [0, T ]
Sample ϕϕϕ′

t from p0t eq. (2.6) with the respective ϕϕϕ′
0 and t

Calculate the loss eq. (2.20)
Update the parameters of the network sθ accordingly

end for
end for
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2 Score model

2.5 Model probability

For a given ODE dϕϕϕ = f(ϕϕϕ, t)dt with an initial condition for the probability density,
it is possible to calculate the probability density after time evolution. With t going
from T to 0, the formula reads [6]

log p0(ϕϕϕ0) = log pT (ϕϕϕT ) +

	 T

0

∇ϕϕϕt · f(ϕϕϕt, t) dt. (2.21)

For our chosen ODE eq. (2.17) the log-likelihood is given as

log p0(ϕϕϕ0) = log pT (ϕϕϕT )− 1

2

	 T

0

σt∇ϕϕϕt · sθ(ϕϕϕt, t) dt. (2.22)

Since numerically calculating the divergence of a high-dimensional function can
be very costly, we instead utilize the Skilling-Hutchinson trace estimator [14, 15]:

∇ϕϕϕt · sθ(ϕϕϕt, t) = Ep(ϵ)

�
ϵT∇ϕϕϕtsθ(ϕϕϕt, t)ϵ

�
with ϵ ∼ N (0, I) (2.23)

2.6 Action model

Score models were initially developed mainly for image generation and not for usage
in physics applications. Even though the utilization of a diffusion process is inspired
by physics, there is no direct connection between score models and the quantum
field theories we aim to examine in this work.
To assign the neural network used for score based generative modelling a more

direct physical interpretation, we propose a new model, which replaces the score
model introduced in section 2.4. For this we first note that in a quantum field
theory, the probability density of field configurations is determined by the action S
of the theory,

p(ϕϕϕ) =
1

Z
e−S(ϕϕϕ), Z =

	
D[ϕϕϕ]e−S(ϕϕϕ). (2.24)

Looking at the ‘score’ of the theory, the gradient of the logarithm of the probability
distribution gives

∇ϕϕϕ log p(ϕϕϕ) = −∇ϕϕϕS(ϕϕϕ). (2.25)

This shows that the score model sθ(ϕϕϕ, t) approximates the negative gradient of
the action of the field theory at each timestep of the diffusion process (note that
effectively there is a different field theory at every timestep), as discussed in [4].
Inspired by this observation, we propose to have a neural network Sθ(ϕϕϕ, t) that
approximates the action itself instead of its gradient. This results in modifications
to the ODE eq. (2.17),

dϕϕϕ = −1

2
σ2t∇ϕϕϕSθ(ϕϕϕ, t)dt, (2.26)
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2.6 Action model

analogously to the reverse SDE eq. (2.14) and to the loss function eq. (2.20),

Et∈U(0,T )Ep0(ϕϕϕ0)Ep0t(ϕϕϕt|ϕϕϕ0)

�
∥Σt∇ϕϕϕSθ(ϕϕϕt, t) +

ϕϕϕt − ϕϕϕ0

Σt

∥22
�
. (2.27)

Using this ‘action model’ instead of the score model gives us direct access to
the action (apart from the normalization constant Z which is irrelevant for the
behaviour of the system) along the whole diffusion process. In principle, one could
also integrate over the score (which is done in [4] for a toy model), but that is
computationally very costly for higher dimensional problems. Knowing the action
along the diffusion process may help us connect generative diffusion models with
renormalization group theory, which will also be discussed in chapter 6.
In contrast to image generation, when working on physical problems the action

of the theory we want to sample from is known in analytical form, and one could
incorporate this knowledge into the design of the neural network. Furthermore, sym-
metry conditions which the action of a theory must fulfil are valid along the whole
diffusion process and can be built into the network architecture. Another advantage
is that the output of the action model is a scalar, in contrast to it being a field for
the score model, possibly reducing the complexity of the network architecture. A
drawback of our method is that it is necessary to calculate the gradient of the net-
work output during the generative process and second derivatives during training.
On the other hand, the gradient of Sθ is definitely the gradient of a log probability,
even before training, while the score model only ever approximates the gradient of
a log probability. In the following sections we will compare the performance of both
approaches.
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3 Toy model

3.1 Theory

To illustrate the concepts introduced in the previous section, we first study them on
a toy model, a zero-dimensional field theory with only a single degree of freedom,
ϕ ∈ R. The action is given as

S(ϕ) = aϕ2 + bϕ4, a, b ∈ R, (3.1)

and thus the probability distribution of ϕ as

p(ϕ) =
1

Z
e−(aϕ2+bϕ4) (3.2)

with

Z =

	 ∞

∞
dϕ e−(aϕ2+bϕ4). (3.3)

We require b ≥ 0 as otherwise the integral in eq. (3.3) would diverge. Expectation
values of observables are given by

⟨O(ϕ)⟩ = 1

Z

	 ∞

∞
dϕO(ϕ)e−(aϕ2+bϕ4). (3.4)

Due to the simplicity of this theory, it is possible to calculate these integrals
analytically, which we will use as reference values for our trained models. Specifically,
we will look at the magnetization ⟨M⟩ = ⟨ϕ⟩, the susceptibility χ = ⟨ϕ2⟩ − ⟨|ϕ|⟩2
and the Binder cummulant UL = 1− ⟨ϕ4⟩/(3⟨ϕ2⟩2).

3.2 Methods

To train our model, we first generate 100 000 samples drawn from eq. (3.2) using
stochastic quantization [16], with parameters a = −0.9 and b = 0.4. We chose a
negative a to have two separate maxima in the probability distribution eq. (3.2), as
this is qualitatively more different from the normal distribution after the diffusion
process eq. (2.12) compared to the probability distribution with positive a. We thus
expect it to be harder to learn for the network. In fig. 3.1, we show the resulting
distribution over ϕ.
We use a simple neural network architecture consisting of five linear layers. In

the special case of a single degree of freedom, the architecture for the score model
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3 Toy model

Figure 3.1: Histogram of the field values along ϕ of the training samples.

Magnetization Susceptibility Binder cummulant

Analytical values 0 0.2203 0.4191
Training samples 0.001(4) 0.221(1) 0.418(2)

Score model 0.00(1) 0.220(4) 0.413(6)
Action model 0.00(1) 0.223(3) 0.422(5)

Table 3.1: Comparison of observables.

and the action model is identical. It takes the field value and the diffusion time as
inputs and returns a single value, which models either the action or the derivative
of the action.
For training, we use the Adam optimizer [17] with a learning rate of 5 · 10−4 and

choose a batch size of 512. After 1 000 training epochs, we are able to generate
samples whose observables match the values directly calculated with eq. (3.4).

3.3 Results

We find that after training, both the score model and the action model are able
to generate samples that follow the targeted probability distribution, as shown in
fig. 3.2.
Furthermore, we calculate the expectation values of the previously introduced

observables over 10 000 samples generated by the trained models and compare them
to those of the training samples and the analytical values. The results are shown in
table 3.1.

3.3.1 Learned action

With the trained action model, we can now observe the action along the whole
diffusion process, simply by evaluating the neural network. The expected behaviour
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3.3 Results

(a) Score model

(b) Action model

Figure 3.2: Histogram of the field values of the samples generated with the trained
models, compared with the training samples and the shape of the prob-
ability distribution given by the action eq. (3.2).
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3 Toy model

for the action is to continuously transform from the action of the target theory
eq. (3.1) at t = 0 to the action corresponding to the normal distribution given by
eq. (2.12) at t = 1. In fig. 3.3 we see that the network indeed exhibits this behaviour,
in agreement with the expected actions at both ends of the diffusion process.
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3.3 Results

Figure 3.3: (Top) Network output depending on the diffusion time t and the field for
two different value ranges of ϕ. For each time slice, the values are shifted
by a constant such that the maximum value remains constant. This is
only for better visualization, as mentioned a constant shift of the action
has no effect on the theory it describes. (Bottom) The action learned
by the network compared with the expected action at t = 0 and t = 1,
shifted so that the minima of both curves take the same value.
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4 Scalar field theory

4.1 Theory

We consider a scalar field theory in two dimensional Euclidean space with the action
given as

SE[ϕ0] =

	
d2x

�
1

2

2�
µ=1

(∂µϕ0(x))
2 +

1

2
m2

0ϕ0(x)
2 +

λ0

4!
ϕ0(x)

4

�
. (4.1)

The field is discretized onto a two-dimensional lattice with N2 grid-points denoted
by position vectors n = (n1, n2), where n1, n2 ∈ [1, N ], and a lattice spacing of a,
such that x = an. We follow the convention presented in chapter 7 of [18], where
the differentials are replaced by finite differences and the field is rescaled, such that
the discretized action on the lattice can be written as

SL(ϕ) =
�
n

�
− 2κ

2�
µ=1

ϕ(n)ϕ(n+ aµ̂) + (1− 2λ)ϕ(n)2 + λϕ(n)4
�
, (4.2)

with µ̂ being the unit vector in direction µ. The rescaled field ϕ, the hopping
parameter κ and the dimensionless coupling constant λ in eq. (4.2) are related to
the parameters in eq. (4.1) as

ϕ0(x) =
√
2κϕ(x), (4.3)

λ0 =
6λ

a2κ2
, (4.4)

m2
0 =

1− 2λ

κa2
− 4

a2
. (4.5)

We assume periodic boundary conditions.
The probability density of the field is given by

p(ϕ) =
1

Z
e−SL(ϕ), (4.6)

with

Z =
�
n

	 ∞

−∞
dϕ(n) e−SL(ϕ) (4.7)
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and thus, observables by

⟨O⟩ = 1

Z

�
n

	 ∞

−∞
dϕ(n)O(ϕ)e−SL(ϕ). (4.8)

As in the previous chapter, we calculate some observables to assess the quality
of our trained models. Namely the expectation value of the magnetization, the
susceptibility and the Binder cumulant, which are defined as

M =
1

N2

�
n

ϕ(n), (4.9)

⟨M⟩ =
�

1

N2

�
n

ϕ(n)

�
, (4.10)

χ2 = N2
�⟨M2⟩ − ⟨|M |⟩2�, (4.11)

UL = 1− 1

3

⟨M4⟩
⟨M2⟩2 . (4.12)

We note that in the literature, the susceptibility is usually written down as χ2 =
N2

�⟨M2⟩ − ⟨M⟩2�, but the absolute value is essential for the correct behaviour as
response function. Due to the structure of the action, ⟨M⟩ is always zero, hence
the usual definition would effectively be χ2 = N2⟨M2⟩, which does not exhibit a
peak around the phase transition. Only when one is stuck within one of the two
potential sinks, e.g. in a single Monte Carlo Markov chain, ⟨M⟩2 = ⟨|M |⟩2 and both
definitions would be equivalent. Presumably, the widespread use of methods where
configurations are generated through Markov chains led to the common usage of the
alternative susceptibility definition. As samples generated by diffusion models are
by construction independent of each other, we need to use eq. (4.10).
Scalar ϕ4 theory in two dimensions exhibits two phases, with the phase transition

in the classical limit at

κc0 =
1− 2λ

4
. (4.13)

In the symmetric phase where κ < κc, the system is disordered, i.e. configurations
are almost random noise with mean zero and thus ⟨|M |⟩ ≈ 0. In contrast to that,
the field values of configurations of the broken phase (κ > κc) fluctuate around a
non-zero value or minus that value. The sign is completely random (spontaneous
symmetry breaking). Hence ⟨|M |⟩ is given by the absolute value of said number.
Figure 4.1 shows the behaviour of both ⟨|M |⟩ and the susceptibility around the
phase transition.

4.2 Methods

Training samples on a grid of 32× 32 are generated using the Hybrid Monte Carlo
(HMC) method [19]. We generate 10 000 training samples and another 1 000 test
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Figure 4.1: Illustration of the effect of the phase transition on the expectation value
of the absolute value of the magnetization and the susceptibility for
λ = 0.02 over varying κ. The phase transition lies roughly at κc ≈
0.27. These values were calculated from samples we generated using
the Hybrid Monte Carlo (HMC) method we also use for generating our
training samples. Note that the classical critical parameter given by
eq. (4.13) is κc0 = 0.24, which differs from the actual critical point.

samples which are not used in the training process, but only for comparison with
the trained models. This is done for both the broken phase and the symmetric
phase, with parameters λ = 0.02 for both and κ = 0.3 (κ = 0.22) for the broken
(symmetric) phase respectively. Example configurations are shown in fig. 4.2.
Digital images are described by three values at each pixel in the case of coloured

images or one value by pixel for black and white images. The different degrees of
freedom per pixel are commonly referred to as channels. The pixels are ordered
in a rectangular two-dimensional grid. As it happens, configurations of a two-
dimensional scalar field theory on the lattice have exactly the same shape as an
image with one channel. Hence, we can directly employ the methods developed for
image generation. (Note: pixel values for images are in the range of zero to one. To
operate in a similar value range, we normalize the training samples of the scalar field
theory by division with the largest field value in the whole set. This normalization
is reversed after the generative process.)

4.2.1 Network architecture

For our score model, we can thus base the neural network architecture on the U-Net
presented by an author of [6] for image generation1, which we slightly adapt. The
U-Net architecture was introduced in [20] and is a common choice in image gen-
erating models. The basic architecture can be seen in fig. 4.3. It consists of two
subsequent parts: In the first part the number of grid points is decreased and the
number of channels increased through a sequential application of convolutional layers

1in https://colab.research.google.com/drive/120kYYBOVa1i0TD85RjlEkFjaWDxSFUx3?

usp=sharing, accessed 13.10.2024.
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4 Scalar field theory

(a) Broken phase (b) Symmetric phase

Figure 4.2: Colourmap of the field values of our training samples.

and optionally also pooling layers. In the second part the initial shape is recovered
through the application of convolutions and transpose convolutions. Additionally,
in a U-Net the values at intermediate points within the first part are saved and later
concatenated with the values of the same shape within the second part. Traditional
U-Nets only depend on the two-dimensional grid of a configuration, but we require
the dependence on an additional scalar parameter for the time information. Fol-
lowing the previously mentioned U-Net architecture, we employ sinusoidal position
embedding [21] to incorporate the additional time parameter. Given a scalar input
(the diffusion time t), this position embedding PE creates a vector using randomly
initialized untrainable parameters:

PE2i = sin(2πtp2i), p2i ∼ aN (0, 1), (4.14)

PE2i+1 = cos(2πtp2i+1), p2i+1 ∼ aN (0, 1). (4.15)

We create a vector with 128 parameters and choose a = 30.
For the action model, we do not use a U-Net architecture, but rather a simple

convolutional network, additional linear layers to achieve a scalar output and again
sinusoidal position embedding for the time parameter. The detailed network archi-
tecture is shown in fig. 4.4. The convolutional layers in this build are chosen all with
a kernel size of 3, a stride of 1 and circular padding of 1, such that they maintain
translational invariance. Only in the last two linear layers the translation invariance
is broken.

4.2.2 Training

We again use the Adam optimizer with a variable learning rate starting at 10−3,
which is being decreased by a factor of 0.995 every epoch, and use a batch size of
200. The training progress is visualized in fig. 4.5 by calculating observables during
intermediate steps of the training process. We find that the action model converges
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Figure 4.3: The original U-Net architecture presented in [20].

slightly faster and more continuously than the score model. This may be either due
to it having less parameters to optimize or due to the fact that the score model
also has to learn that it models the gradient of a scalar quantity. As mentioned
previously, a drawback of the action model is that an additional derivative has to
be taken compared to the score model, which also manifests itself in the training
time. While a training epoch for the score model takes about 1.2 seconds, it takes
3.7 seconds for the action model, using a Nvidia GeForce RTX 3090.

4.2.3 SDE vs. ODE

Initially, the reverse ODE eq. (2.15) seems like a more attractive choice for sample
generation, compared to the reverse SDE eq. (2.13), due to the broader availability
of pre-built solvers for ordinary differential equations. As discussed in section 2.3.1,
for a network that perfectly describes the score (or the action), both approaches are
equivalent. But a neural network can only ever be trained to be almost perfect, and
we found that using the SDE instead of the ODE results in measurable differences.
To illustrate this, we train a network with training samples of the broken phase.
In this case, the magnetization of the training samples is distributed either around
a certain positive value or around minus that value. No configuration exhibits a
magnetization around zero, as shown for the test samples in fig. 4.6. After having
trained a network, we find that generating samples with the SDE yields the same
distribution of the magnetization, but when using the ODE with the exact same
network we also generate a few samples where the magnetization lies around zero, see
fig. 4.6. The observable that is most sensitive to these outliers in the magnetization
is the susceptibility. In fig. 4.7 we show the evolution of the susceptibility during the
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Figure 4.4: Network architecture of the action model. N is the batch size.
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4.2 Methods

Figure 4.5: Comparison of the training progress in the broken phase for the action
model (left) and the score model (right). Every twenty epochs, 1 000
samples are generated and used to calculate the susceptibility and the
Binder cumulant. The orange line corresponds to the value of the train-
ing samples.
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(a) Test samples
(b) Samples generated by

solving the ODE
(c) Samples generated by

solving the SDE

Figure 4.6: Histograms showing the distribution of the magnetization, for 1 000 sam-
ples each.

Figure 4.7: Comparison of the training progress for the SDE and the ODE. After
every 20 training epochs, we generate 1 000 samples each with the SDE
and the ODE approach, using the same network. The green line repre-
sents the susceptibility of the training samples.

training process both for samples generated with the ODE and with the SDE. One
can clearly see that the SDE approach generates samples which match the training
samples more closely. Hence, we only use the SDE for sample generation going
forward.
To solve the ODE, we use the fourth-order Runge-Kutta method RK4, and for

the SDE the Euler-Maruyama method, both with a step size of 5 · 10−3.

4.3 Results

We find that with both the action and the score model it is possible to generate
samples which match the targeted distribution of field configurations. Examples for
the broken phase are shown in fig. 4.8.
Comparing the distribution of the magnetization of generated samples and those

of the test samples in fig. 4.9, we see very good alignment for both the symmetric
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(a) Test samples (b) Action model (c) Score model

Figure 4.8: Comparison of randomly chosen test samples and samples generated with
trained action and score models. The colours indicate the field values at
each grid point.

⟨M⟩ χ2 UL

Training samples 0.0000(8) 1.17(3) −0.01(2)
Test samples 0.002(3) 1.20(9) 0.05(7)
Score model 0.002(3) 1.3(2) −0.5(7)
Action model −0.001(3) 1.15(8) 0.00(6)

Table 4.1: Comparison of observables of the training samples, the test samples and
the samples generated by our trained models, for the symmetric phase.

and the broken phase.

For a quantitative comparison, we list the calculated observables of the training
samples, the test samples, and of 1 000 samples generated with the trained models in
table 4.1 (symmetric phase) and table 4.2 (broken phase). The errors were calculated
with the jackknife method. We find that observables of the generated samples agree
with those of our test and training set. We can conclude that both models are able
to generate configurations which have a probability distribution that is equivalent to
the probability distribution of the configurations obtained with the HMC method.

⟨M⟩ χ2 UL

Training samples 0.02(3) 1.54(9) 0.66625(1)
Test samples 0.1(1) 1.6(1) 0.66624(3)
Score model 0.1(1) 1.8(1) 0.66618(3)
Action model 0.0(1) 1.8(1) 0.66618(3)

Table 4.2: Comparison of observables of the training samples, the test samples and
the samples generated by our trained models, for the broken phase.
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4 Scalar field theory

(a) Symmetric phase action model (b) Broken phase action model

(c) Symmetric phase score model (d) Broken phase score model

Figure 4.9: Comparison of the magnetization histograms for 1 000 test samples and
1 000 generated samples.
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4.3.1 Sample likelihood and effective sampling size

As discussed in section 2.5, we are able to calculate the likelihood of a given sample
to be generated by the trained model. Comparing the logarithm of this likelihood
to the negative action tells us how well the model can draw samples according to
the physical theory, log(p(ϕ)) = −S(ϕ) + constant. In fig. 4.10 one can see that the
probabilities of our models and the physical theory match very well.
To put this observation on a numerical basis, we calculate the effective sampling

size (ESS), which measures how well two probability distributions p and q match
on a given set of samples. Another interpretation is that, given N samples drawn
from q, the ESS gives the percentages of samples that can be used as an unbiased
estimator for p. We use the definition given in [3],

ESS =

�
1
N

�N
i=1 p(ϕi)/q(ϕi)

�2
1
N

�N
i=1

�
p(ϕi)/q(ϕi)

�2 ∈ [0, 1]. (4.16)

An ESS of 1 means that the probability of drawing ϕi from p and q is equal for
all N samples. We use 1 000 generated samples for the calculation. In our case
p(ϕ) = exp(−S(ϕ)) (note that the ESS is independent of a possible multiplicative
constant in p or q), and q(ϕ) is the estimated likelihood of our model to draw ϕ. For
both the broken and the symmetric phase, we achieve an ESS of over 0.9999 with
both the action and the score model.

4.3.2 Learned action

To visualize the action learned by the neural network in the action model case, we
use field configurations where the field takes the same value ϕ at each lattice site.
Results shown in fig. 4.11 demonstrate that the network approximates the target
action eq. (4.2) for diffusion time t → 0 and an action corresponding to a broad
normal distribution for t → 1. These results are qualitatively similar to what we
achieved for the toy model in section 3.3.1, though the network output is now very
coarse.
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(a) Symmetric phase action model (b) Broken phase action model

(c) Symmetric phase score model (d) Broken phase score model

Figure 4.10: 2D histogram with the model log-likelihood on the abscissa and the
negative action on the ordinate. If all values lie on a line with slope
one (the red line in the plots) it means that the values match up to a
constant. This type of visualization is taken from [3].
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Figure 4.11: (Top) The output of the action model depending on ϕ and t for two
different value-ranges of ϕ. For better visualization, at each time slice
the values are shifted by a constant such that the action of ϕmax remains
constant. (Bottom) Comparison between the network output around
diffusion time t = 0 and the target action given by eq. (4.2). The curves
are shifted such that their minima all take the same value. These shifts
are possible as a constant in the action has no physical relevance.
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5.1 Theory

We now turn our attention to lattice gauge theory, where we aim to apply the
presented techniques on the simplest possible model, namely U(1) pure gauge theory.
We again use a two-dimensional lattice with N2 points, with position vectors n =
(n1, n2), where n1, n2 ∈ [1, N ]. At each lattice point, there are two so-called link
variables Uµ(n) ∈ U(1), µ ∈ 1, 2. We further define a quantity called plaquette,
given by four link variables:

Uµν(n) = Uµ(n)Uν(n+ µ̂)Uµ(n+ ν̂)†Uν(n)
† (5.1)

where µ̂ and ν̂ denote unit vectors in direction µ and ν. This plaquette is a gauge
invariant object, which in the context of U(1) means that

Uµν(n) = Ω(n)Uµν(n)Ω(n+ µ̂)†, (5.2)

with Ω(n) being an element of U(1) for each lattice site. We now use the plaquettes
to write down the Wilson action [22] as

SG(U) = −β
�
n

Re[U01(n)]. (5.3)

The link variables, as elements of U(1), can be written either in the complex
representation, as

Uµ(n) ∈ C, |Uµ(n)| = 1, (5.4)

or in the angular representation, as

θµ(n) ∈ [0, 2π), where Uµ(n) = exp(iθµ(n)). (5.5)

The plaquettes in angular representation are given as

θµν(n) = θµ(n) + θν(n+ µ̂)− θµ(n+ ν̂)− θν(n), (5.6)

and subsequently the action as

SG(U) = −β
�
n

cos(θ01(n)). (5.7)

Again, expectation values of observables are given by

⟨O⟩ = 1

Z

	
D[U ]O[U ]e−SG[U ], (5.8)
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with

Z =

	
D[U ]e−SG[U ]. (5.9)

Observables we will measure include the action, the topological charge Q and the
topological susceptibility ⟨Q2⟩, where the topological charge is defined as

Q =
1

2π

�
n

arg(U01(n)). (5.10)

5.2 Methods

As the variables on the lattice sites are now U(1) group elements and not just real
scalars, the methodology of the score model has to be adapted accordingly. We
developed methods for both the angular representation and the complex represen-
tation. While the angular representation closer resembles the case of real scalars, it
is unique for U(1), hence the complex representation is a better basis to generalize
these methods to SU(N) theories. The fact that there are now two variables at each
grid point has no consequences for the diffusion processes.

5.2.1 Angular representation

In this case, the diffusion process itself remains unchanged, with the general SDE
given as

dθ = f(θ, t)dt+ g(t)dw, (5.11)

but one has to note that θµ is 2π periodic. This requires that the action, and
therefore the neural network, is invariant under transformations of the form θµ →
θµ+n ·2π, n ∈ N. We ensure this by using the sine and cosine of the plaquettes as a
input for the network. We use plaquettes calculated from the link variables as input
for the network, as the action eq. (5.7) only depends on the plaquettes. For diffusion
time t → 1, in the scalar case the field value at each grid point would follow a broad
normal distribution. Taking the 2π periodicity of θµ into account, this results in a
constant distribution over [0, 2π). Thus, at t = 1 we sample not from eq. (2.12) but
from this constant distribution. No other modifications compared to the scalar field
are necessary.

5.2.2 Complex representation

In this case, more modifications are needed, which we choose such that the diffusion
processes are equivalent to those in the angular representation.
To obtain the diffusion equations, we use eq. (5.11) as a starting point and switch

to the complex representation,

eidθ = eif(θ,t)dt · eig(t)dw, (5.12)
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leading to the SDE we use in the complex case:

dU = eif(U,t)dt · eig(t)dw. (5.13)

One has to note that infinitesimal changes are induced as U · dU instead of U +dU ,
which we have to take into account when solving ODEs and SDEs.
The forward SDE can still be solved in one step. Knowing that in the angular

representation
θt = θ0 + Σtη with η ∼ N (0, 1) (5.14)

and

Σt =
1

2 log(σ)
(σ2t − 1), (5.15)

we can solve the forward SDE in the complex representation as

Ut = U0e
iΣtη with η ∼ N (0, 1). (5.16)

To solve the reverse ODE, we use a Runge-Kutta solver adapted for the complex
representation, as presented in [23].
For the reverse SDE, we adapt the Euler-Maruyama method used previously.

While for an SDE of the form eq. (5.11) the updating scheme is given as

θi+1 = θn + f(θi, ti)∆t+ g(ti)
√
∆tη with η ∼ N (0, 1), (5.17)

for eq. (5.13) we use

Ui+1 = Ui · ei∆tf(Ui,ti)eg(ti)
√
∆tη with η ∼ N (0, 1). (5.18)

Just as in the scalar case (see section 4.2.3) we found that using the reverse SDE
to generate configurations yields better results compared to the reverse ODE, hence
we again use the reverse SDE for sample generation.
The prior distribution is given as a constant distribution along the complex unit

circle, following what we mentioned for the angular representation.

For calculating the model probability, and in the action model case also for train-
ing and sample generation, we have to take the gradient of the neural network with
respect to the complex link variables. For a given function f : C → R the autograd
tool of PyTorch, which we use to obtain the derivatives, calculates the conjugate
Wirtinger derivative,1 given by

∂̄f =
1

2

�
∂

∂x
+ i

∂

∂y

�
f, (5.19)

where x = Re(z), y = Im(z) and z ∈ C. Since in our case z is a U(1) group
element, we actually need the group derivative Df along the group manifold. It can
be related to the conjugate Wirtinger derivative as

Df = −2Im


z∂̄f

�
. (5.20)

1see https://pytorch.org/docs/stable/notes/autograd.html, accessed 13.10.2024
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5 U(1) gauge field theory

To see this, consider the group derivative along U(1) which is defined as

Df(z) = lim
ϵ→0

f(eiϵz)− f(z)

ϵ
. (5.21)

The Taylor expansion of the first term for small ϵ is given by

f(eiϵz) = f(z) + ∂f(z)(iϵz) + ∂̄f(z)(−iϵz̄) +O(ϵ2)

= f(z) + ϵ[−2Im(z∂f)] +O(ϵ2), (5.22)

which yields

Df(z) = −2Im(z∂f). (5.23)

Since f(z) ∈ R we have ∂̄f = ∂f .

5.2.3 Network architecture

Some adaptions regarding the network architecture are made compared to what was
presented for the scalar field in section 4.2.1. Given a configuration of link variables
as input, the first step is to calculate the plaquettes, as the Wilson action depends
only on the plaquettes and not the link variables directly. As mentioned before, in
the angular representation we then take the sine and cosine, which we treat as two
channels. Similarly, in the complex representation we use the real and the imaginary
parts as channels. We continue with a convolutional network similar to the scalar
case. While the time embedding is exactly as in the scalar case, we now restrict
ourselves to convolutional layers with a kernel size of 3, a stride of 1 and circular
padding of size 1, abandoning the U-Net approach. Convolutions of this special
structure retain translational invariance leading to a translation-invariant network.
Due to the use of plaquettes, it is also gauge invariant. Both are properties of the
Wilson action which me manage to incorporate into the design of the network. The
detailed structure of the score model is shown in fig. 5.1. The action model only
differs in the last layer, where instead of a convolution we take the sum over all grid
points and then reduce the number of channels with a linear layer.
Results presented in this chapter are achieved with the score model in complex

representation, although we get similar results with the action model and in the
angular representation.

5.2.4 Training

To train the network, we generate 10 000 samples each for β = 1, β = 2 and β = 5
using HMC. By comparison of the topological susceptibility of our training samples
to the values presented in [24], we confirm that we implemented the HMC method
correctly. We choose a 2D grid of 82 points. We optimize the network using the
Adam optimizer starting at a learning rate of 10−3, which decreases by a factor
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Figure 5.1: Network architecture of the score model. N is the batch size. 43



5 U(1) gauge field theory

Figure 5.2: Evolution of the ESS during training. We always use 2 000 generated
samples to calculate the ESS.

of 0.9997 every epoch. Using a batch size of 1 000, we do 10 000 training epochs
for β = 1 and β = 2. At this point we find that the ESS eq. (4.16) does not
significantly increase any further. This relates to a training time of roughly 45
minutes on a Nvidia GeForce RTX 3090. When training the model for β = 5 we
train ten times as long and use a factor of 0.9999 to decrease the learning rate. Still,
the ESS fluctuates significantly more than in the cases of lower β. These results are
shown in fig. 5.2. We clearly see that training gets increasingly difficult for larger β.
This is to be expected, as for β → 0 link variables behave as independent random
noise equivalent to the prior distribution. Hence the diffusion process is easier to
learn for the network compared to configurations with high correlations between
link variables.

5.3 Results

For smaller beta, we find that our trained models can generate field configurations
such that expectation values of observables match with those of the training set. For
larger beta, discrepancies remain after training, as is also reflected in the lower ESS
shown in fig. 5.2. In table 5.1, we compare observables for β = 2 and in table 5.2 for
β = 5. In fig. 5.3 we compare the action distribution and in fig. 5.4 the topological
charge distribution of training samples and generated samples.
In the application for U(1) lattices, we start to see the performance advantage

of using score models as sample generator. While our implementation of Hybrid
Monte Carlo (using CUDA acceleration) needs about 17 minutes to generate 10 000
configurations, the trained score model only takes 45 seconds. Though one has to
keep the initial training time of the score model in mind, which is in this case, as
mentioned above, around 45 minutes.

5.3.1 Model probability

Again, we calculate the likelihood of our model to generate given samples and com-
pare it with the action, see fig. 5.5. As already shown in fig. 5.2, we achieve an ESS
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⟨S⟩ χ

Training samples −89.32(9) 1.29(3)
Score model −88.98(9) 1.30(3)

Table 5.1: Observables for β = 2, calculated over 10 000 configurations each.

⟨S⟩ χ

Training samples −285.81(9) 0.365(8)
Score model −284.70(9) 0.419(8)

Table 5.2: Observables for β = 5, calculated over 10 000 configurations each.

(a) β = 2 (b) β = 5

Figure 5.3: Comparison of the action distribution for 10 000 training samples and
10 000 samples generated with the trained score model.

(a) β = 2 (b) β = 5

Figure 5.4: Comparison of the topological charge distribution for 10 000 training
samples and 10 000 samples generated with the trained score model.
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5 U(1) gauge field theory

(a) β = 2 (b) β = 5

Figure 5.5: 2D histogram with the model log-likelihood on the abscissa and the
negative action on the ordinate, as in fig. 4.10.

of around 0.8 for β = 2 and 0.3 for β = 5.
To better compare the results to [3], we also calculate the rate of samples accepted

by the Metropolis-Hastings algorithm. In this algorithm, after starting from one
generated configuration U0, we calculate the probability of accepting the following
configuration U ′ by

paccept(U
′|U i−1) = min

�
1,

q(U i−1)

p(U i−1)

p(U ′)
q(U ′)

�
, (5.24)

where p is the target distribution and q the model distribution. We then draw a
random number from a uniform distribution over [0, 1). If the random number is
smaller than paccept we accept the new configuration and set U i = U ′, otherwise
U i = U i−1. For β = 2 we reach an acceptance rate of around 75%, compared to 40%
to 50% for the same problem in [3].

5.3.2 Increasing the grid size

A significant advantage of the convolutional network architecture we described in
section 5.2.3 is that it is completely independent of the size of the grid it is applied
to. Thus, we can use a network trained with training samples of size 82 and use it
to generate samples on an arbitrarily sized lattice. We use the network trained with
training samples of shape 8 × 8 for β = 2, as presented in the previous results, to
generate samples with shape 16× 16. Comparing these to samples of shape 16× 16
generated using HMC, we find that the network is able to generate samples on larger
lattices successfully, though there is a drop in quality. A comparison of the action
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5.3 Results

Figure 5.6: Comparison of the action of samples generated with HMC and with the
trained score model on a 16× 16 lattice.

⟨S⟩ χ

HMC samples −357.1(2) 5.1(1)
Score model −355.6(2) 5.2(1)

Table 5.3: Observables for β = 2 on a 16× 16 lattice, calculated over 10 000 config-
urations each.

distribution can be seen in fig. 5.6 and of the observables in table 5.3. The ESS
exhibits the most notable drop, going from 0.80 for the 8 × 8 grid to 0.46 for the
16 × 16 grid. We also repeated the procedure on a 25 × 25 lattice, here the ESS
drops to 0.16.

47





6 Carosso flow

6.1 Introduction

The generative diffusion process corresponds to a continuous deformation of the
action, which becomes apparent by looking at our trained action models (fig. 3.3
and fig. 4.11). At diffusion time t = 0 the action is given by the studied theory, and
at t = T the action corresponds to a normal distribution (i.e. an action with only a
mass term). This procedure coincides with what is known as renormalization group
(RG) flow in physics, see e.g. [25], where a time-dependent action is introduced,
which continuously deforms a given action into an action that behaves like a mass
term. In [7], the authors show a direct connection between generative models and a
certain RG flow scheme, termed Carosso RG scheme [8], which is a renormalization
group flow governed by a stochastic process.

6.2 Theory

Following the notation in [7], the Carosso RG flow is described by a stochastic
differential equation, given as

∂tϕt(n) =
�
∆−M2

�
ϕt(n) + ηt(n) (6.1)

with initial condition ϕ0(n) at t = 0. We operate on a lattice as described in
chapter 4, but now in d dimensions, with Nd lattice points. The noise term η
satisfies

E[ηt(n)] = 0, (6.2)

E[ηt(n)ηs(m)] =

�
N

L

�d

δ(t− s)δn,m. (6.3)

Here, L is the physical length of the system, such that L/N is the lattice spacing.
In momentum space, the drift term of the SDE takes a simpler form, namely

without a derivative. Using the discrete Fourier transformation

ϕ̃(p) :=
1

Nd

�
n∈Zd

N

e−i 2π
N

p·nϕ(n) (6.4)

we can write the SDE in momentum space as

∂tϕ̃t(p) = − �|p̂|2 +M2
�
ϕ̃t(p) + η̃t(p) (6.5)
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6 Carosso flow

with initial condition ϕ̃0(p) at t = 0. The noise term η̃ satisfies

E[η̃t(p)] = 0, (6.6)

E[η̃t(p)η̃s(k)] =
�
1

L

�d

δ(t− s)δp,−k (6.7)

and p̂ is given as

p̂i :=
2N

L
sin


 π

N
pi

�
, i = 1, ..., d. (6.8)

In momentum space, it is possible to write down the transition probability from
ϕ̃0 to ϕ̃t,

pt,0(ϕ̃t|ϕ̃0) ∝
�
p∈ZN

exp

�
− Ld(|p̂|2 +M2)

1− e−2(|p̂|2+M2)t

����ϕ̃t(p)− ϕ̃0(p)e
−(|p̂|2+M2)t

����2�. (6.9)

Taking t to infinity, we get

p∞,0(ϕ̃∞|ϕ̃0) ∝
�
p∈ZN

exp
�− Ld(|p̂|2 +M2)|ϕ̃∞(p)|2�, (6.10)

where the transition probability is independent of the initial configuration. Thus
the transition probability is also the probability distribution of ϕ̃∞, from which we
can now easily sample according to

Re(ϕ̃∞(p)), Im(ϕ̃∞(p)) ∼ N
�
0,

1

4Ld(|p̂|2 +M2)

�
, p ̸= 0 or (N/2, ..., N/2),

(6.11)

ϕ̃∞(0), ϕ̃∞((N/2, ..., N/2)) ∼ N
�
0,

1

2Ld(|p̂|2 +M2)

�
. (6.12)

Due to ϕ(n) being real-valued, it’s Fourier transformation ϕ̃(p) has to fulfill ϕ̃(−p) =
ϕ̃(p)∗, which we also have to take into account when sampling.

6.2.1 Observables

Following [7], we will use the two-point correlator in momentum space,

G̃Carosso
2 (p1,p2) := ⟨ϕ̃(p1)ϕ̃(p2)⟩ (6.13)

to observe changes of the field configurations along the diffusion process. For small
p, the two-point correlator can be approximated as

G̃Carosso
2 (p,−p) ≈ Z

|p̂|2 + r2tm
2
R

(6.14)
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with the renormalized mass mR and the wave function renormalization Z, which we
will also measure. Following this approximation, one can also write down explicit
formulas for Z and r2tm

2
R as

1

r2tm
2
R

≈ 1

4

�
p∈(1,0),(0,1),(−1,0),(0,−1)

1

4N2

L2 sin2(π/N)

�
G̃Carosso

2 (0,0)

G̃Carosso
2 (p,−p)

− 1

�
, (6.15)

Z ≈ r2tm
2
RG̃

Carosso
2 (0,0). (6.16)

6.2.2 Analytical solution for the flow of the two-point correlator

Due to the simplicity of the SDE in momentum space, we are able to find an an-
alytical solution for the two-point correlator along the Carosso flow. For this, we
write down the solution of eq. (6.5) as if it was an ODE and the noise term an
inhomogeneity:

ϕ̃t(p) = e−(|p̂|2+M2)tϕ̃0(p) + e−(|p̂|2+M2)t

	 t

0

e(|p̂|
2+M2)t′ η̃t′(p)dt

′. (6.17)

Given that, we also know the solution for the two-point correlator along the flow

⟨ϕ̃t(p)ϕ̃t(−p)⟩ = e−2(|p̂|2+M2)tϕ̃0(p)ϕ̃0(−p) +
1

2Ld(|p̂|2 +M2)

�
1− e−2(|p̂|2+M2)t

�
,

(6.18)
where we chose ⟨ϕ̃t(p)ϕ̃t(−p)⟩ due to its approximation eq. (6.14). We note, that
here the expectation value only covers the noise term of the SDE η̃, though for the
correlator it should also sum over all possible initial configurations ϕ̃0.

When looking at the solution for t going to infinity, we find

⟨ϕ̃∞(p)ϕ̃∞(−p)⟩ = 1

2Ld(|p̂|2 +M2)
, (6.19)

which is independent of the initial configuration (and thus also covers the previously
mentioned expectation value over all initial configurations).

By comparison to eq. (6.14), we find the behaviour of Z and r2tm
2
R for t → ∞ to

be

Z =
1

2Ld
, (6.20)

r2tm
2
R = M2. (6.21)

In our numerical simulations of the Carosso flow, shown in fig. 6.1, we can confirm
that these values are approached for large flow times.
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6 Carosso flow

6.3 Adapting the score model

Even though the Carosso SDE eq. (6.1) is written in a different way, it is a realization
of the general SDE used for score models, eq. (2.1), where ηt dt = g(t)dw and thus
f(ϕ, t) = (∆−M2)ϕt(n) and g(t) = (N/L)d. Thus, we can write down the SDE and
the ODE of the diffusion process describing the reversed Carosso flow as

dϕ =

�
(∆−M2)ϕt(n)−

�
N

L

�2d

∇ϕ log pt(ϕ)

�
dt+

�
N

L

�d

dw̄, (6.22)

dϕ =

�
(∆−M2)ϕt(n)− 1

2

�
N

L

�2d

∇ϕ log pt(ϕ)

�
dt. (6.23)

When using the exploding variance SDE, we have set the time of the diffusion
process to T = 1, as that was sufficiently long for all information of the initial data
to be destroyed. This is in general not the case for the Carosso SDE, in fact it
depends on the choice of N/L and M . For our choice of parameters, M = 1 and
N/L = 1, we found that T = 4 is a sufficiently long diffusion time.
We can use the same network architecture for the score model as in chapter 4.

For training, recall the form of the loss function

Et∈U(0,T )Ep0(ϕ0)Ep0t(ϕt|ϕ0)

�
λ(t)∥sθ(ϕt, t)−∇ϕt log p0t(ϕt|ϕ0)∥22

�
, (6.24)

which includes ∇ϕt log p0t(ϕt|ϕ0). From eq. (6.9), we can write

∂

∂ϕt(ni)
log p0t(ϕt|ϕ0)

=
∂

∂ϕt(ni)

�
p∈ZN

− Ld(|p̂|2 +M2)

1− e−2(|p̂|2+M2)t

����ϕ̃t(p)− ϕ̃0(p)e
−(|p̂|2+M2)t

����2
=

∂

∂ϕt(ni)

�
p∈ZN

− Ld(|p̂|2 +M2)

1− e−2(|p̂|2+M2)t



ϕ̃t(p)− ϕ̃0(p)e

−(|p̂|2+M2)t
�

·


ϕ̃t(p)− ϕ̃0(p)e

−(|p̂|2+M2)t
�∗

. (6.25)

Using
∂

∂ϕ(ni)
ϕ̃(p) =

1

Nd
e−i 2π

N
p·ni , (6.26)

we get

∂

∂ϕt(ni)
log p0t(ϕt|ϕ0)

=
�
p∈ZN

− Ld

Nd

|p̂|2 +M2

1− e−2(|p̂|2+M2)t

�
e−i 2π

N
p·ni



ϕ̃∗
t (p)− ϕ̃∗

0(p)e
−(|p̂|2+M2)t

�
+ ei

2π
N

p·ni



ϕ̃t(p)− ϕ̃0(p)e

−(|p̂|2+M2)t
��

, (6.27)
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and the gradient is given as

∇ϕt =

�
∂

∂ϕt(n1)

...
∂

∂ϕt(nNd )

� . (6.28)

For the prefactor we choose

λ(t) =
Ld

Nd

|p̂|2 +M2

1− e−2(|p̂|2+M2)t
(6.29)

By taking the Fourier transformations of ϕt and ϕ0 and plugging them into eq. (6.27),
we can compute the loss function and train the network just as we did in the previous
chapters.

6.4 Results

We use the score model with Carosso SDE to generate configurations of a two-
dimensional scalar field theory just as in chapter 4. We can employ the same network
architecture and training samples generated analogously. The chosen parameters of
the action are λ = 0.02 and κ = 0.22, and the size of the lattice is set to 202.
After training, we manage to generate configurations whose observables match

with those of the training samples, see table 6.1 for details. While the results are
similar to the exploding variance model, training takes much longer. A training
epoch for the Carosso score model currently takes twenty times as long as one for
the exploding variance model, but we have not yet fully optimized the code for the
Carosso case. Currently, two discrete Fourier transformations are necessary for each
training step, as we let the diffusion process run in position space and then need to
transform to momentum space in the calculation of the loss function. In contrast
to the exploding variance case, we also have not implemented direct sampling from
p0t, but solve the forward SDE for each training step. Changing these points should
lead to a significant decrease of training time.

⟨M⟩ χ2 UL

Training samples 0.001(1) 3.24(6) 0.01(2)
Carosso score model 0.003(1) 3.19(7) −0.04(3)

Table 6.1: Comparison of observables of the training samples and samples generated
with the trained Carosso score model.

Besides generating correct configurations, we also want the flow of the reverse
SDE given by the score model to be the exact reverse process of the Carosso flow.
We verify this by calculating the two-point correlators eq. (6.13), Z and r2tm

2
R along

both flows. That is, for the Carosso flow we take configurations generated by the
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HMC and solve the Carosso SDE eq. (6.1) from diffusion time t = 0 to t = 4. For the
reversed flow we sample configurations from eq. (6.11) and eq. (6.12) and then solve
the reverse ODE eq. (6.23) from t = 4 to t = 0, using the trained score model. The
comparison between both flows in fig. 6.1 shows very good correspondence between
the two-point correlators. While the remaining small discrepancies lead to more
significant differences for Z and r2tm

2
R, we can still see that the generative process

is a reversal of the Carosso flow.
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Figure 6.1: Comparison between the Carosso flow and the generative flow of the
trained score model for M = 1 and N = L = 20.
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7 Conclusion

In this work, we have shown that score-based generative models are capable of gen-
erating configurations of scalar ϕ4 lattice field theory with a quality comparable to
the hybrid Monte Carlo method, achieving an impressive effective sampling size of
over 0.9999. We further demonstrated that it is possible to use score models to
generate configurations of U(1) pure gauge theory. Although the results are only
comparable to the HMC results for weak coupling, we manage to outperform the
normalizing flow method as presented in [3] on the same problem, where we achieved
a Metropolis acceptance rate of about 75% compared to a reported Metropolis ac-
ceptance rate of 40% to 50%. We suspect that results similar to the scalar case
should be possible even in the strong coupling regime, by adapting the network
architecture and increasing the training time. The biggest drawback of the pre-
sented method is the need for training samples generated through other methods,
though by demonstrating the possibility to generate samples on bigger lattices com-
pared to the training samples one may be able to explore lattice sizes which are too
computationally expensive for other methods.
An obvious topic for future research is to apply score models to SU(2) and SU(3)

gauge theories. Another possibility to explore is to use a parameter (e.g. κ in
eq. (4.2) or β in eq. (5.3)) of the target action as an additional input parameter of the
network. Seeing how the network then generalizes to parameter values not included
in the training set, especially around a phase transition, might be interesting.
For now, calculating the model probability is computationally very costly. Find-

ing improvements, possibly inspired by physical processes, would make using the
Independence Metropolis algorithm on large sets of configurations generated by the
diffusion models tractable.
Besides using the well-established score model, we also developed an adapted

method, where the neural network learns the action instead of the score. We show
that this action model performs just as good as the score model in the case of a
scalar field. Additionally, with the trained action model we now have direct access
to the action along the whole diffusion process. In future research this direct physical
interpretability of the network may be used to improve network architectures, or the
diffusion process itself. For example, one could base the network architecture on the
general form of the action in the corresponding theory with trainable parameters as
time-dependent prefactors.
Finally, we demonstrated the connection between the diffusion process in score-

based generative models and renormalization group flows. We were able to design
a generative diffusion process based on a known RG flow, namely the Carosso flow,
and experimentally confirm that the flow learned by our network indeed matches
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the Carosso flow. This direct connection may give rise to new diffusion model setups
inspired by other RG flows and vice versa.
All in all, diffusion models seem to be a promising new method in lattice field

theory and yield a number of interesting research topics in different directions.
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