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Abstract

To a good approximation, our Universe is flat and homogeneous, strongly suggesting a
period like inflation, a rapid accelerated expansion, in the early Universe. We believe
inflation also transformed quantum mechanical perturbations to classical, seeding the large-
scale structure today. Overwhelming empirical evidence suggests, moreover, that these
perturbations were nearly Gaussian and are well described by adiabatic initial conditions
that are predicted by the simplest inflationary models. Following inflation, we find the
Universe can be characterised by the ΛCDM model which has become the bedrock of
modern cosmology, and survived many challenges from the influx of cosmological data
in the past decade. In the upcoming years, however, the field of cosmology will see a
wealth of new and high quality data from the current Stage-3 (and the forthcoming Stage-
4) surveys of the cosmic microwave background (CMB) and large-scale structure (LSS).
Simultaneously, low-frequency gravitational wave background (GWB) observations with
pulsar-timing arrays (PTAs) and surveys of the 21cm hydrogen-line will achieve sufficient
accuracy for cosmological inference. These create unique and exciting opportunities to study
the fundamental components of the Universe. These experiments will provide the strongest
challenges to our modern cosmological picture yet, and have the potential of revolutionising
our understanding of the most fundamental properties of our Universe. In this work I discuss
various new opportunities provided by upcoming precision measurements of CMB and galaxy
surveys, as well as the upcoming measurements of 21cm hydrogen brightness temperature.
This thesis utilises some of these upcoming cosmological probes for the detection of physics
different than what is predicted by ΛCDM with the simplest inflationary models.
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Chapter 1

Introduction

In this thesis I explore the prospects of utilising some of the upcoming observables for the
purpose of understanding fundamental properties of the Universe. I take the ΛCDM model
as the basis of modern cosmological prediction and discuss various ways in which physics
different than that dictated by ΛCDM can affect observables. I develop various novel methods
to evaluate the sensitivity of the upcoming cosmology experiments to these deviations.

In Chapter 2, I begin with a pedagogical introduction to the modern cosmological picture.
I follow textbooks on modern cosmology by Weinberg [1], Dodelson [2], Mukhanov [3]
and Peebles [4], as well as various review articles and lecture notes including [5–10]. In
Sections 2.2.2, 2.3.2 and 2.7, I follow on the lines of the pedagogical review I have written
for my upcoming paper in collaboration with Janina Renk, Patrick Stöcker, Sanjay Bloor and
others [11].

In Chapter 3, I discuss my work on multi-field inflation and reheating in collaboration
with Jonathan Frazer, Andrew Jaffe, Joel Meyers, Layne Price and Ewan Tarrant [12]. The
work in the chapter is motivated by the fact that the single-field inflationary models discussed
in Chapter 2 are not always natural from a theoretical point of view, for example, string
compactifications often result in hundreds of scalar fields.

In Chapter 4, I introduce second-order perturbations in the CMB, so-called ‘CMB Sec-
ondaries’. Secondary effects on the cosmological radiation observed by our telescopes will
become observationally much more significant in the near future as CMB and LSS surveys
will achieve the necessary precision. The statistics of these secondaries and their cross-
correlations with the LSS carry information about cosmological fluctuations on large scales
and at late times. The relevant scientific program is focused on various inter-connected tasks,
including the mitigation of these effects on the primary CMB and reconstruction of large-scale
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cosmological density and velocity fields. Similar to Chapter 2, I follow seminal textbooks on
modern cosmology, as well as various review articles and lecture notes [1–10, 13, 14].

In Chapter 5, I introduce the moving lens effect and describe my works in [15], in collabo-
ration with Joel Meyers, Neal Dalal, Andrew Jaffe, Matthew Johnson, Moritz Munchmeyer,
James Mertens and Alex van Engelen, and in [16], in collaboration with Matthew Johnson
and Joel Meyers.

In Chapter 6, I discuss my published work with James Mertens, Matthew Johnson and
Marc Kamionkowski [17] on utilising the kSZ reconstructed radial velocity measurements to
constrain a specific form of isocurvature, and my upcoming work with Mathew Madhavacheril
and Neal Dalal on developing a novel method to evaluate the detection prospects of the
dark-energy clustering.

In Chapter 7, I discuss ongoing work with Daniel Green, Joel Meyers and Alex van Engelen
on mitigating the effects of lensing from the CMB spectra. I introduce an all-orders delensing
method which iteratively applies the quadratic lensing reconstruction estimator. This project
will be published in the near future with a publicly available code and an accompanying
science paper.

In Chapter 8, I discuss my upcoming work with Marc Kamionkowski, Bikash Dinda, Tom
Binnie and Julian Munoz on utilising 21cm hydrogen signal from the epoch of cosmic dawn
to constrain compensated isocurvature perturbations.

In Chapter 9, I digress and discuss prospects of detecting deviations from statistical
isotropy in the gravitational wave background from super-massive black holes. This chapter
discusses the work I have done with Marc Kamionkowski and Andrew Jaffe.



Chapter 2

Modern Cosmological Picture

Cosmology is the branch of physics that studies the origin, structure and evolution of the
Universe quantitatively. Thanks to many significant experimental efforts, he scientific study
of cosmology has drastically evolved in the past decades, emerging as a data-driven field of
precision science. The analysis and observation of the temperature anisotropies in the cosmic
microwave background (CMB) by COBE [18], WMAP [19] and Planck [20] as well as the
distance measurements to type Ia Supernovae [21, 22] and the large-scale structure from
galaxy surveys such as 2DFGRS [23], SDSS [24] and BOSS [25] have greatly improved
our understanding of the contents and the physics of our Universe. In this chapter I discuss
the standard modern cosmological picture afforded by these advances in observations and
analysis in the past decade. I begin by describing the Universe in the homogeneous limit
in Section 2.1 where I introduce the Friedman-Lemaître-Robertson-Walker (FLRW) metric
and the dynamical equations of motion of the background in Section 2.1.1. I then discuss
the standard cosmological paradigm: ΛCDM in Section 2.1.2. I introduce the cosmological
perturbations around the background in 2.2. I continue with the discussion of inflation and
reheating in Section 2.3. I discuss the thermal and isotropic Universe in Section 2.4 and
deviations from isotropy with the Boltzmann equation in Sections 2.5 and 2.6. I introduce
various cosmological observables in Section 2.7.

The pedagogical discussions in this chapter introduce the canonical cosmological un-
derstanding and use common notation. Overall, I follow seminal textbooks on modern
cosmology by Weinberg [1], Dodelson [2], Mukhanov [3] and Peebles [4], as well as various
review articles and lecture notes including [5–10].
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2.1 Homogeneous cosmology

2.1.1 Geometry and dynamics

Observations of the distribution of light and matter on large scales strongly indicates that the
Universe is homogeneous and statistically isotropic over long distances, meaning our position
is not special (i.e. observers in other places in the Universe would agree with the large-scale
characteristics of the Universe) and that observations appear the same from all directions
in the sky. This is called the cosmological principle and is the basis of modern cosmology.
Under the assumptions of homogeneity and isotropy, the geometry of the universe can be
described by the FLRW metric [26–29]

ds2 = ḡµνdxµdxν =−dt2 +a2(t)γi jdxidx j, (2.1)

where overbar denotes unperturbed quantities, γi j denotes the metric of a maximally sym-
metric 3-space and a(t) is the scale factor, or equivalently, by the metric that is conformally
invariant in Minkowski space, by introducing conformal time dη := dt/a, as

ds2 = a2(η)
(
−dη

2 + d⃗x2 ) , (2.2)

where d⃗x2 := γi jdxidx j. Note observations constrain the three-curvature to very close to zero
suggesting γi j ≃ δi j in Cartesian coordinates.1

Assuming General Relativity, the dynamics of the Universe is governed by Einstein’s field
equations [30]

Gµν = 8πGTµν , (2.3)

where G is Newton’s constant, Gµν is the Einstein tensor, which is defined by the metric
gµν and its first two derivatives, and Tµν , which captures the contents of the Universe.
The evolution of the scale factor a is determined by the Einstein equations in terms of the
stress-energy content of the Universe via the Friedman equations

3H 2 = 8πGa2
ρ̄ , (2.4)

2Ḣ +H 2 =−8πGa2P̄ , (2.5)

1I make this approximation generally in this thesis, unless stated otherwise.
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where ρ̄ and P̄ are the background density and pressure, respectively, and H := aH := ȧ/a
is the conformal Hubble parameter where H := (da/dt)/a is the Hubble parameter and I use
overdot to indicate derive with respect to conformal time. Equations (2.4) and (2.5) can be
combined to give the evolution equation for the density

˙̄ρ =−3H (ρ̄ + P̄) , (2.6)

giving ρ̄m ∝ a−3 for pressureless matter (P̄m ≃ 0), ¯rhor ∝ a−4 for radiation (P̄r = ρ̄r/3), and
ρ̄Λ = constant for vacuum energy which has negative pressure (P̄Λ = −ρ̄Λ) and does not
dilute with the expansion of space.

2.1.2 The standard cosmological paradigm: ΛCDM

All cosmological data is well-fitted by the simple ΛCDM model which forms the backbone
of the standard cosmological paradigm. At late times, ΛCDM predicts the Universe to be
dominated by a cosmological constant Λ, and the total matter distribution to be dominated at
all times by the cold dark matter (CDM). Other components that contribute to the energy con-
tent of the Universe include photons (γ) and neutrinos (ν), which constitute to radiation (r);
and matter (m), which (along with CDM) consist of baryons (b): a term used in cosmology to
refer to visible matter comprised of the Standard Model particles [such as electrons (e) and
protons (p)]. The standard ΛCDM universe is typically defined in terms of six independent
physical parameters: the density of baryons (ωb) and cold dark matter (ωc) today, the present
day Hubble expansion rate (H0), the optical depth at reionisation (τreio) and the amplitude
(As) and the spectral index (ns) of the primordial scalar perturbations. In the remainder of
this section I briefly describe these components.

Cosmological constant Λ: Observations that the expansion of the Universe is accelerating
suggest the energy content of the Universe at late times sees a dominant contribution from an
unknown so-called ‘dark energy’ component. One of the simplest explanations used in the
ΛCDM model is the presence of a cosmological constant, Λ, which can interpreted by the
vacuum energy component contributing to T µν ∈ T µν

Λ
:=−ρΛgµν where the conservation

law for this component, T µν

;µ = 0, require ρΛ = constant, independent of spacetime position.
One can also write the Einstein equations with the T µν

Λ
interpreted as a cosmological constant,

Rµν −
1
2

gµνR−Λgµν =−8πGT M
µν , (2.7)
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where

Λ = 8πGρΛ , (2.8)

and T M
µν is the energy-stress tensor excluding the vacuum energy component. For zero curva-

ture this dark energy component has the solution a(t) ∝ exp(Ht) where H =
√

8πGρΛ/3. In
most of the standard cosmological models (including the ΛCDM) the dark energy component
remains subdominant until late times, when it becomes dominant, leading to a number of
observational signatures including the recession velocities of the observed Supernovea, a
late-time ISW effect on the CMB (see Section 2.7.1) and affecting the redshift-space galaxy
clustering and lensing (see Section 2.7.3).

Cold dark matter: The combined observations of the CMB, galaxy rotation curves and
clustering statistics as well as the considerations of the cosmological nucleosynthesis leads
to the conclusion that moss of the mass in the Universe is in a different from than the
baryonic matter. In particular, we know that this matter must not interact with radiation
significantly, hence dark, both since we do not see it and also because, from measurements
of rotation curves of galaxies, it has not lost its kinetic energy to electromagnetic interactions.
Furthermore from the distributions of galaxies and galaxy clusters we anticipate this dark
matter to be cold, i.e. non-relativistic. One of the most widely accepted models for cold
dark matter is a weakly interacting massive particle (WIMP) where a stable, massive and
neutral particle falls out of equilibrium (i.e. stops annihilating) when the temperature of the
Universe falls sufficiently below its mass. The abundance of CDM in the Universe is then
determined by the CDM annihilation cross-section where larger cross-section corresponds to
more efficient annihilation and lower abundance today. I discuss the consequences of having
a CDM component in the Universe throughout this thesis.

Photons: All cosmological surveys measure light sourced either in the early Universe
or by stars or hot gas in dense regions. In particular, the temperature from the CMB
photons has been measured to very high precision by the COBE satellite mission, TCMB =

2.725±0.002K [31]. The photon energy density at zeroth order Bose-Einstein distribution
function is

ργ = 2
∫ d3 p

(2π)3
p

ep/T −1
(2.9)
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where the factor 2 is due to the two helicity states of the photon. This integral can
be solved to give ργ = (π2/15)T 4 suggesting T ∝ a−1 since ργ ∝ a−4 as found earlier.
Using this scaling relation and the critical energy density, ρcr = 3H2/(8πG), we find
ργ/ρcr ≃ 2.5×10−5/(h2a4), suggesting the radiation density is small today, but was large
in the early Universe. The parameter h is defined with the relation H0=h×100km/(sMpc).
Going beyond the mean photon energy density, I discuss the small perturbations around the
zeroth order Bose-Einstein distribution function in the upcoming sections.

Baryons: In cosmology, baryons refer to all standard model (SM) nuclei and electrons in the
Universe. Baryons can be observed mainly in the form of starts in galaxies and from the gas
in the intergalactic medium (IGM) in groups of galaxies. The absorption spectrum of distant
quasars (mainly by intervening hydrogen) also provide a measurement of the baryon content
in the Universe, as well as the baryon density also impacts the statistical characteristic of
the anisotropies in the Universe. These measurements are in general in agreement. Measure-
ments of the CMB fluctuations predict a baryon density ωb := Ωbh2 ≃ 0.0224±0.0001, for
example, where Ωb is defined with the equality ρb/ρcr = Ωba−3, with ρcr set equal to its
current-day value.

Neutrinos: Lastly, the radiation component of the Universe also receives contribution from
the cosmic neutrinos. As will be discussed in the following sections, neutrinos are well-
understood to be once in thermal equilibrium with the rest of the components of the Universe.
Neutrinos are fermions and are a part of the SM of particle physics. They contribute to
the energy density significantly at early times, influencing the evolution of cosmological
perturbations. Understanding the properties of neutrinos remain an active field of research in
cosmology.

2.2 Inhomogenous Cosmology

Although homogeneity and isotropy are good approximations when describing our Universe
on large scales, even the very early Universe was not perfectly homogeneous and isotropic.
The small primordial perturbations that are imprinted on the FLRW metric and the stress-
energy tensor grew under gravity and make up the structure we see around us today. In the
remained of this chapter, I will describe the spacetime by perturbation theory as this is a
good approximation given the departure from spatial homogeneity and isotropy is measured
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to be small on cosmological scales. 2 Perturbation theory breaks down on small scales and
high-density regions such as galaxies that form through gravitational collapse of material.
As the observations are approaching high-enough fidelities to measure these scales, higher
order effects will be important for cosmological inference in the near future. I will discuss
these effects in the following chapters.

One can write the perturbation of the FLRW metric and of the energy-momentum tensor
of a perfect fluid as

gµν(η , x⃗) = ḡµν(η)+δgµν(η , x⃗) , (2.10)

Tµν(η , x⃗) = T µν(η)+δTµν(η , x⃗) . (2.11)

Note, however, that the set of equations describe these perturbations do not define them
uniquely: they depend on the choice of coordinates (or the ‘gauge’ choice). Different choices
of coordinates can change the values and the interpretation of the perturbation variables
and can even introduce unphysical additional fluctuations. Throughout this work I make
effort to justify my gauge choices, as well as describing their limitations where suitable.
Perturbations can be decomposed into scalars, divergenceless vectors and divergenceless
traceless symmetric tensors, which, at linear order, evolve separately under Einstein equations.
This can be seen by writing the metric perturbation in the form [1]

δg00 =−E (2.12)

δgi0 = a [∂iF +Gi] (2.13)

δgi j = a2 [Aδi j +∂i∂ jB+∂ jCi +∂iC j +Di j
]

(2.14)

where perturbations {A,B,Ci,Di j,E,F,Gi} are functions of time and space and satisfy

∂iCi = ∂iGi = 0 , ∂iDi j = 0 , Dii = 0 . (2.15)

The energy-momentum tensor has four scalar degrees of freedom and is described by the
density and pressure (defined above) as well as the bulk velocity vi and the anisotropic stress
Σi j. For a perfect fluid, perturbed energy-momentum tensor (separately) satisfies equalities,

T 0
0 = ρ̄ +δρ , (2.16)

T i
0 = [ρ̄ + P̄]vi , (2.17)

T i
j =−[P̄+δP]δ i

j − (ρ̄ + P̄)Σi
j , (2.18)

2The spatial variations on the CMB, for example, are of order ∼ O(10−5).
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where δρ and δP are perturbations to the density and pressure, respectively, and I omitted
showing the time dependence of all the parameters above. The momentum density can be
defined as qi := (ρ̄ + P̄)vi. Similar to the metric perturbations, the velocity vector and the
anisotropic stress tensor can be decomposed as3

vi = ∂iδu+δuV
i (2.19)

Σi j = ∂i∂ jπ
S +∂iπ

V
j +∂ jπ

V +π
T
i j (2.20)

where πV
i , πT

i j , δπV
i satisfy the same conditions as Eq. (2.15),

∂iπ
V
i = ∂iδuV

i = 0 , ∂iπ
T
i j = 0 , π

T
ii = 0 . (2.21)

In this thesis I will be interested in the scalar perturbations (involving the eight scalars
defined: {E,F,A,B,δρ,δP,πS,δu}, and omit more detailed discussion of tensor and vector
perturbations.

2.2.1 Perturbation equations

The two most common gauge choices in the cosmology literature are the Newtonian gauge
and the synchronous gauge.

In Newtonian gauge, we choose B = F = 0, and the convention E := 2Ψ and A :=−2Ψ.
In this gauge, the perturbed metric can be written as

ds2 = a2(η){(1+2Ψ)dη
2 − (1−2Φ)δi jdxidx j} , (2.22)

where Ψ and Φ are scalar perturbations related to the gravitational potential: Ψ is the
gravitational potential and satisfies the Poisson equation, and Φ is a local perturbation of
the average scale factor, related to the intrinsic Ricci scalar curvature of the constant time
hyper-surfaces R(3) = ∇2Φ/a2.

In the synchronous gauge one sets E = 0 and F = 0. The synchronous gauge choice
does not completely fix the gauge dependence, however, and a further (well-motivated, see
discussion in [1], for example) assumption is made in the presence a component (like cold
dark matter) whose particles are much slower than the speed of light. In this case, momentum
conservation of this fluid requires the velocity perturbations to be time independent. The time
independent velocity perturbations can be removed by the (residual) gauge transformation,

3Note πS = 0 for a perfect fluid by definition.
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leaving no ambiguity on the choice of gauge. The synchronous gauge is then argued to be
a physically well-motivated choice that can be approximated to be related to the observed
matter fluctuations, possibly up to a bias. (Although note that CDM is at rest with this
choice.)

I begin by analysing scalar fluctuations in the Newtonian gauge. Approximating the
Universe as composed of separate perfect fluids, the perturbations in the density, pressure,
momentum and anisotropic stress add as

δρ = ∑
a

δρa , (2.23)

δP = ∑
a

δPa , (2.24)

qi = ∑
a

qi
a , (2.25)

Π
i j = ∑

a
Π

i j
a , (2.26)

where I defined Πi
j := (ρ̄ + P̄)Σi

j and the subscript a run over the species. Note it is often
more convenient to write the density perturbations in terms of the dimensionless overdensity
δ := 1+ δρ/ρ̄ . Other useful quantities describing the fluid include the equation-of-state
w := P̄/ρ̄ and the speed of sound c2

s := δP/δρ .

For a perfect fluid that is not interacting with other components (except through the metric),
the density δ and velocity v⃗ perturbation equations can be solved by using the conservation
of the stress-energy tensor, ∇µTµν = 0, which satisfy at linear level,

δ̇ =−(1+w)
(
θ −3Φ̇

)
−3H

(
δP
δρ

−w
)

δ (2.27)

θ̇ =−H (1−3w)θ − ẇ
1+w

θ +
δP/δρ

1+w
k2

δ − k2
σ + k2

Ψ , (2.28)

where k = |⃗k| is the Fourier space wavenumber, the pressure P and energy density ρ are
defined at rest with the fluid, θ = ik jv j is the divergence, σ is the anisotropic stress defined
with the equality Σi j = 3[∇i∇ j − (1/3)δi j∇

2]σ/2. From the above equations it is easy to see
for a constant equation of state satisfying δP/δρ −w = 0, density perturbations decouple
from the metric when w =−1, since terms including the Hubble parameter vanish.
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For a non-relativistic fluid-like matter, the pressure and the anisotropic stress vanish,
Pm = 0 and Π

i j
m = 0, and one obtains the continuity and Euler equations of motion,

δ̇m =−∇⃗ · v⃗m +3Φ̇ , (2.29)

v⃗m =−H v⃗m − ∇⃗Ψ , (2.30)

respectively. Similarly for a relativistic fluid-like radiation that satisfy Pr = ρr/3 and Π
i j
r = 0,

these equations become

δ̇r =−4
3

∇⃗ · v⃗m +4Φ̇ , (2.31)

˙⃗vr =−1
4

∇⃗δr − ∇⃗Ψ . (2.32)

The dynamics of the perturbed spacetime can also be calculated from Einstein equations
using the perturbation of the total stress energy tensor. Going through the equality in Eq. (2.3),
the 00−Einstein equation give the relativistic Poisson equation,

∇
2
Φ−3H (Φ̇+H Ψ) = 4πGa2

δρ , (2.33)

which simplify to ∇2Φ ≃ 4πGa2δρ on small (sub-horizon) scales where Fourier modes
satisfy k ≫ H and |∇2Φ| ≫ 3H |Φ̇+H Ψ|. Following on similar lines, the trace-free
spatial part of the Einstein equations give

∇
2(Φ−Ψ) =−8πGa2(ρ̄ + P̄)σ , (2.34)

which vanish for a perfect matter fluid with σ = 0, indicating that the absence of anisotropic
stress and in the Newtonian gauge Ψ = Φ. Free-streaming relativistic species such as photons
and neutrinos, on the other hand, source anisotropic stress although their effect is small.
Finally, the trace of the spatial part of the Einstein equation satisfy

Φ̈+3H Φ̇+(2Ḣ +H 2)Φ = 4πGa2
δP . (2.35)

2.2.2 Initial conditions

Primordial perturbations manifest themselves in all cosmological observables visible today.
Seminal reviews of the cosmological perturbation theory can be found in e.g. [32–36]. Due
to the stochastic nature of the quantum fluctuations in the early universe, our cosmological
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theories predict only the statistics of initial conditions (rather than individual values of
fluctuations in different specific directions).

Assuming Gaussian initial conditions, the power spectrum of these primordial perturbations
is often considered an initial condition that corresponds to a part of the ΛCDM model.
In particular, for scalar fluctuations, a simple spectrum with two free phenomenological
parameters, As and ns, has been observed to fit data very well. The primordial power-spectrum
is given by

Pζ (k) :=
k3

2π2 ⟨|ζk|2⟩ ≃ As

(
k
k⋆

)ns−1

, (2.36)

where I dropped a delta-function on the left hand side. By default, I choose a comoving pivot
scale of k⋆ = 0.05Mpc−1. The best-fit value in ΛCDM is ns = 0.965±0.004 [37]. Here, I
expressed scalar perturbations in terms of the (gauge-invariant) curvature perturbation on
uniform-density hyper-surfaces [38],

−ζ := Ψ+H δρ/ ˙̄ρ . (2.37)

On super-horizon scales, k ≪ H , ζ has a single constant non-vanishing adiabatic solu-
tion4 [39] which satisfies Eq. ((2.36)). Note that another gauge-invariant measure of scalar
perturbations (often adopted in the study of inflation, for example) is the comoving curvature
perturbation

R = Ψ−H /(ρ̄ + p̄)δq , (2.38)

where δq is a perturbation to the 3-momentum field. R is equal to ζ up to a term scaling with
[k/(H )]2 which vanishes on super-horizon scales (for a review, see e.g. Ref. [7]). Finally,
if present, multiple dynamical degrees of freedom, such as additional scalar fields that are
not in thermal and kinetic equilibrium with the inflaton or the adiabatic fluctuations, can
contribute to non-vanishing isocurvature fluctuations that can evolve on super horizon scales.
I discuss some implications of multiple dynamical degrees of freedom on Chapter 3.

The most widely-accepted cosmological scenario for generating such primordial per-
turbations is inflation: an early epoch of accelerated expansion of space where quantum
fluctuations are amplified to classical scales. During inflation, perturbations that are in causal

4I mean by ‘adiabatic fluctuations’ those for which the perturbation to any four-scalar in the system is
proportional to the rate of change of the scalar, with the same proportionality for all scalars.
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contact with each other are driven beyond the horizon before re-entering the horizon as the
Universe continues to expand after the end of inflation.

Well inside the horizon, where gauge-dependence is negligible for standard gauge choices,
scalar perturbations are commonly expressed in terms of the density contrast, δ := δρ/ρ̄ .
The difference between density contrast and curvature perturbations is parametrised by the
transfer function T , which factors out the time-dependence of perturbations. The transfer
function for δi is defined through

〈
|δi(t,k)|2

〉
:= T 2

i (t,k)Pζ (k) . (2.39)

At linear scales, the transfer function can be obtained by solving the equations of motion
resulting from the linearised field equations discussed above. Different transfer functions
describe the evolution of the different components of the Universe i as they enter the horizon.
In what follows, I briefly discuss how fluctuations in the main components of ΛCDM evolve
during different epochs.

During radiation domination, the relative normalisation between adiabatic radiation and
matter fluctuations that enter the horizon satisfy δr/δm = 4/3. Inside the horizon, any density
contrast in the radiation fluid sees rapid oscillations and decays quickly. During this time,
baryons are tightly coupled to the photons, satisfying (4/3)δb ≃ δγ . Fluctuations in the
non-interacting DM component, however, grow at a rate close to logarithmic [40].

Radiation and baryon fluctuations continue to oscillate and quickly decay inside the
horizon during matter domination. During this time, the linear DM fluctuations start to grow
at the rate δc(t) ∝ a(t). At the epoch of recombination, baryons become decoupled from
photons and start to fall into the gravitational potentials following DM perturbations. As time
passes baryons follow the DM distribution more closely. Until the dark energy domination in
the late Universe, the DM and baryonic density contrasts continue to grow at the same pace
in the linear regime. The dark energy domination in the late Universe stalls this growth.

The perturbation theory at the leading order fails to describe fluctuations at a given scale,
k, accurately, if the scale approaches the non-linear regime. Perturbations under non-linear
evolution eventually collapse under gravity and result in virialisation of DM halos. This
procedure of structure formation occurs hierarchically in the standard ΛCMB: smallest halos
form first before merging to form larger halos.

Studies comparing the theoretical predictions I cite in Section 2.7.3 to data suggest
perturbation theory remains a good approximation even at the scale of galaxy clusters today,
where the matter power spectrum is only mildly non-linear. On smaller scales, the non-linear
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matter power spectrum still carries valuable information for cosmology via its sensitivity to
the mass and number of neutrinos, for example, as well as to the effects of gravity on galactic
scales. Nevertheless, uncertainties related to non-linear structure formation and baryonic
effects make modelling of the matter power spectrum difficult on these small scales. I expand
this discussion in Section 2.7.3.

2.3 Inflation and Reheating

The inflationary paradigm [41–45] solves many of the classical problems associated with
the hot Big Bang scenario, while providing a natural mechanism for generating primordial
cosmological fluctuations [46–49, 38]. Observations are currently consistent with the sim-
plest single-field, slow-roll models of inflation, e.g., the Planck observations of the cosmic
microwave background (CMB) [50] indicate a featureless power-law shape for the primordial
power spectrum of scalar fluctuations and no detectable primordial non-Gaussianity or tensor
fluctuations.

2.3.1 Problems of the hot big bang

Flatness problem: As I mentioned earlier, current observations suggest the value of the
curvature is consistent with zero. Note curvature5 is defined as ΩK := −K/a2H2 and in-
creases as t2/3 and as t in the eras of matter- and radiation-domination, respectively. This
means since the beginning of radiation-dominated expansion, curvature must have been
monotonically increasing. Our measurement of small curvature today then suggests a much
more smaller curvature in the past, raising the question of the naturalness of such a finely
tuned parameter. Accelerated expansion solves this problem since the near-constant Hub-
ble rate allows curvature to decrease as a2 during inflation. Given a period of inflation,
the curvature today can be written as |ΩK| = exp{−2Ne}(aIHI/a0H0)

2 where Ne is the
number of e-foldings of inflation and aI and HI are the scale factor and Hubble rate at the
end of inflation. It follows that the flatness problem is then solved if the inflation exceeds
a certain amount that compares to the amount of expansion since inflation, suggesting N ≳ 70.

5The curvature parameter, K, is defined with the γi j metric in Eq. (2.1) via the relation γi j := δi j +
Kxix j/1−K |⃗x|2 where K = {+1,−1,0} corresponds to spherical, hyperspherical and Euclidean hyperspace
geometries respectively.
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Horizon problem: The CMB is observed to have almost the same temperature in all
directions in the sky. Nevertheless the standard hot big bang evolution from the onset of
radiation-domination predicts the early Universe was made of many causally disconnected
patches in the sky. The fact that these seemingly disconnected patches have nearly the same
temperature is called the horizon problem. The maximum distance that an observer at time
t could have received a signal from the past at time t = 0 is called the particle horizon. In
physical coordinates this distance is given by Dp(t) = a(t)

∫ t
0 dt/a(t). For a Universe with

decelerated expansion (as in the matter or radiation domination eras), this integral converges
to D(t) = {3t,2t} for {matter, radiation} which predicts the angle subtended by the particle
horizon at the surface of last scattering is around a degree, demanding the universe to be
consisting of many causally-disconnected patches. A period of accelerated expansion where
da2/dt2 > 0 (i.e. inflation), however, reverts this problem since now the particle horizon
diverges in the past. The expansion needed to solve the horizon problem turns out to be the
same needed to solve the flatness problem, where inequality exp{Ne}> aIHI/a0H0 needs to
be satisfied. The condition da2/dt2 > 0 can in turn be satisfied with a universe composed of
a fluid whose equation of state satisfies w := P̄/ρ̄ <−1/3.

2.3.2 Inflationary cosmology

The equation-of-state parameter must satisfty w <−1/3 to realise a period of accelerated
expansion. Typically, models that successfully sustain for a sufficiently long (but a finite-)
amount of time satisfy w ≈−1. The simplest way to achieve this is by introducing a scalar
field, inflaton φ , that is minimally coupled to gravity, and whose contribution to the scalar
field action is

Sφ =
∫

d4x
√−g

[
1
2

gµν
∂µφ∂νφ −V (φ)

]
, (2.40)

whereg := det(gµν) and the inflationary condition having the potential V (φ) dominate over
the kinetic energy. In an expanding FLRW space-time this is equivalent to demanding that
the evolution of φ remains very slow compared to the expansion of the Universe.

The background evolution of this field is described by the Klein-Gordon and Friedmann
equations,

φ̈ +3Hφ̇ +V ′(φ) = 0 (2.41)

H2 =
1

3m̄2
pl

[
1
2

φ̇
2 +V (φ)

]
, (2.42)
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where m̄pl := 1/
√

8πG is the reduced Planck mass and dots denote differentiation with respect
to time, and primes denote partial differentiation with respect to inflaton background field
value φ . The requirement satisfying inflation I discussed above is generally parameterised
with the so-called slow-roll parameters εi. These are defined as

ε1 := − Ḣ
H2 =

1
2m̄2

pl

(
dφ

dN

)2

(2.43)

εi+1 := ε̇i/(Hεi) , (2.44)

and satisfy εi ≪ 1 during inflation. This energy scale can be as large as the GUT scale,
1016 GeV, depending on the inflationary model, and can be probed directly with the tensor-
to-scalar ratio, which satisfies the relation r ∝ At ∝ V m̄−4

pl . Inflation occurring at the GUT
scale corresponds to r ≥ 0.01. Note I also defined dN := Hdt = dlna, with N the number of
e-foldings of expansion. Successful inflation requires ε1, ε2 ≪ 1. Another useful notation is
to introduce first and second slow-roll parameters in terms of the inflationary potential as6

εv :=
m̄2

pl

2

(
V ′

V

)2

and ηv := m̄2
pl

V ′′

V
. (2.45)

The scalar perturbations of the inflation field source the primordial power spectrum I
introduced in Eq. (2.36). Under slow-roll one can express the parameters describing the
primordial power spectrum directly in terms of the slow-roll parameters,

ns −1 = 2ηv −6εv (2.46)

As =
1

24π2ε⋆v

V⋆

m̄4
pl
, (2.47)

where with star (⋆) I imply that the corresponding quantity is evaluated at the time the pivot
scale satisfies k⋆ = aH. More generally, however, the slow-roll parameters are functions
of k and different in the case of ΛCDM, the parameters that describe the power spectrum
can receive higher order corrections in slow-roll parameters. The scalar spectral index, for
example, can exhibit a running in the form,

ns = n⋆s +
dns

dlnk
ln(k/k⋆)+ . . . , (2.48)

which in principle can be used to distinguish inflationary models [see e.g. 51]. Another
fundamentally significant characteristic of inflation is it naturally generates not only scalar

6Note the parameters εv and ηv are related to slow-roll parameters εi as εv ≃ ε1 and ηv ≃ ε1 + ε2.
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but also tensor perturbations. The tensor perturbation power spectrum have the form

Pt(k) =
k3

2π2 |hk|2 = At

(
k
k⋆

)nt

, (2.49)

with a tensor-to-scalar ratio given by

r := Pt(k⋆)/Pζ (k⋆) = 16ε
⋆
v . (2.50)

Going beyond the ΛCDM, the power spectra generated during inflation may exhibit a richer
structure in general which can not be always be conveniently described with a power-series
expansion of the spectral index. Models of inflation such as axion monodromy [52–54], for
example, cannot be described by simple slow-roll dynamics and predict oscillatory features
on the primordial spectrum. Going beyond the slow-roll approximation, moreover, necessities
accounting for the effect of general first-order perturbations to the FLRW metric. A useful
parametrisation to the perturbations used widely in the context of inflation is

ds2 =−(1+2Ψ)dt2 −2a2
∂iBdtdxi +a2 [(1−2Ψ)δi j −2∂i∂ jE

]
dxidx j . (2.51)

For the purposes of this section, I will only keep general scalar metric perturbations (Ψ,B,E),
thus will neglect vector perturbations and tensor perturbations (describing gravitational
waves). Note that vector perturbations have decaying solutions during standard models of
inflation and are anticipated to be small or vanishing. In spatially flat gauge (Ψ = E = 0) the
Klein-Gordon equation at first order then becomes

0 =
d2

δφ(N,k)
dN2 +(3− ε)

dδφ(N,k)
dN

+
k2

a2H2 δφ(N,k)+
[

V ′′

H2 +
2

H2
dφ(N)

dN
V ′+(3− ε)

dφ(N)

dN

]
,

(2.52)

where I defined

ε :=
1

2m̄2
pl

(
dφ(N)

dN

)2

(2.53)

in the same way as the slow-roll parameter ε1. Note that ε does not necessarily have to be
small. Solving this mode equation, the (gauge-invariant) power spectrum of the curvature
perturbations is obtained as PR(k) = |δφ(N,k)|2/2ε .
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2.3.3 Reheating after inflation

Regardless of the inflationary model, or how many scalar fields were present during inflation,
the Universe must eventually evolve to the radiation-dominated era of the standard Big Bang
model. This can be achieved by coupling the fields φi to relativistic particle species. As
the fields approach, overshoot, and begin to oscillate about the minimum of their potentials,
interactions with lighter particles lead to dissipation which drains energy from the φi zero-
mode and excites relativistic particles. I refer to these collective processes as reheating [see
e.g. 55–57, for reviews].

Exactly how reheating following inflation occurs is a significant source of uncertainty
when testing inflationary models. In particular for simple single-field inflation scenarios
fluctuations remain outside of horizon during reheating and are unaffected by the potentially
complicated reheating dynamics. Nevertheless, the uncertainty to details of reheating does
raise an important problem for observables by obscuring the relation between the length
scales in the early Universe and those observed today. Defining the end of reheating to be
the point at which the Universe has fully thermalised and standard hot big bang begins, the
problem can be characterised as connecting length scales at the end of inflation to those at
the end of reheating. This matching can be expressed in terms of the equation [58, 59]

k⋆
a0H0

=
a⋆

aend

aend

areh

areh

aeq

H⋆

Heq

aeqHeq

a0H0
, (2.54)

where the pivot scale k⋆ := a⋆H⋆ is defined as usual at horizon crossing, and the various
values of the scale factor a (and Hubble rate H) refer, respectively, to the end of inflation
and reheating, matter-radiation equality and today. In this equation, the quantities evaluated
today and at the time of matter-radiation equality are observationally well constrained, while
the parameters H⋆ and N⋆ := ln(aend/a⋆) are derived quantities that are predicted by the
particular inflationary model. The remaining ratio, aend/areh, can in principle be predicted
by the reheating model.

2.4 Thermal history

I now briefly discuss the evolution of different species in the Universe after reheating where
the SM particles (as well as possible extensions) are produced, which I take as the beginning
of the hot thermal big bang. A key concept in describing the thermal history following
reheating is the competition between the expansion rate of the Universe H and the interaction
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rate of particles Γ: when H ≪ Γ, particles maintain equilibrium, when H ≤ Γ they freeze
out. At early times, all SM particles are in local thermal equilibrium where the interactions
between them efficiently keep them in local thermal contact.

The phase space distribution of all thermal particle species can then be described by the
number of particles per unit phase space volume. Due to homogeneity and isotropy, this
distribution can depend neither on the position x⃗ of the particle nor the direction of the
momentum vector p⃗. Distributions satisfying these conditions relevant to the contents of our
Universe are the thermal Fermi-Dirac and Bose-Einstein distributions that are given by

fa(p) =
[
eEa(p)/T ±1

]−1
, (2.55)

where (+) is for fermions and (−) for bosons, respectively, p = |p⃗|, Ea is the relativistic
energy (which includes the mass ma), and I assumed vanishing chemical potential for all SM
particles. The temperature T is the same for all particles in the thermal equilibrium.

It follows from Eq. (2.55) that the average energy density and pressure can be calculated
by integrating over the phase space as

ρ̄ = ga

∫ d3 p⃗
(2π)3 Ea(p) fa(p) and Pa = ga

∫ d3 p⃗
(2π)3

p2

3Ea(p)
fa(p) , (2.56)

where ga is the degeneracy of the species (e.g., is equal to two for photons). Equation (2.56)
satisfy P̄a ≪ ρ̄a and P̄a = ρ̄a/3 in the non-relativistic and the relativistic limit respectively.
For the latter, the total radiation density can be written as

ρ̄r = ∑
a

ρ̄a =
π2

30
g∗(T )T 4 , (2.57)

where the sum is over all relativistic species and g∗(T ) is the effective number of relativistic
degrees of freedom.

At the onset of the thermal history, the energy scale at this time could be around 1016GeV
where all SM particles were massless. The temperature of the Universe eventually drops
to ≃ 100GeV and the electroweak symmetry of SM gets spontaneously broken, having SM
particles acquire mass through Higgs mechanism. This period is followed by the QCD phase
transition, or the confinement of quarks and gluons in composite hadronic states around,
150MeV. During these times the effective number of relativistic degrees of freedom drops
from around ∼100 to around ∼10.
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The thermal history follows QCD phase transition with neutrino decoupling from the
rest of the plasma around 0.8MeV, releasing the cosmic neutrino background due to the
inefficiency of weak interactions to maintain the local thermal equilibrium. Shortly after,
electrons and positrons get annihilated and the energy from the annihilation gets transferred
to photons, increasing photon temperature compared to the neutrinos. This period is followed
by neutron-proton interactions becoming inefficient, leading to relic abundance of neutrons.

By around three minutes after the big bang, neutrons and protons synthesise deutrium and
helium (as well as lithium and beryllium) via the big bang nucleosynthesis (BBN) around
100keV. This coupled system of nuclear reaction chains that drive the formation of light
elements start with the formation of deuterium through the combination of a proton and a
neutron, i.e.

n+ p → D+ γ . (2.58)

In what follows, the formation of elements 3He and 4He follow through the reactions

D+D → n+ 3He and D+ 3He → 4He+ p . (2.59)

Note that at the BBN temperatures (0.1−1MeV), the formation of light elements are very
sensitive to physics: any modification to the energy content of the Universe will change
its expansion rate and the final abundance of light elements. These include scenarios of
early dark energy, extra relativistic species and alterations in some of the initial conditions
including the baryon density Ωbh2 or the baryon-to-photon ratio ηb := nb/nγ . A particularly
important primordial elemental abundance that gets impacted by the initial conditions and in
turn affect cosmology is the primordial helium fraction YP := n 4He/np. Yp is predicted from
theory to be approximately ∼ 0.25 in the ΛCDM universe.

Following the formation of light elements, the primordial plasma collapses towards over-
dense regions through gravitational attraction. Photons and baryons in the primordial plasma
are coupled via Thomson scattering. The radiation pressure of photons and the expansion of
the Universe counteract the inwards gravitational pull, causing the photon-baryon plasma to
undergo so-called baryon acoustic oscillations (BAOs), which propagate through the plasma
at the sound speed. I discuss BAOs in more detail in the next sections. Around 380,000
years after the Big Bang, the plasma cools down sufficiently to allow electrons and protons
to combine to form neutral hydrogen. This epoch is called recombination, where photons
decouple from baryons and stream almost entirely freely through the Universe. These relic
photons are observable today from the cosmic microwave background (CMB) radiation,
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which has an almost perfect black body spectrum with a temperature of TCMB = 2.7255 K
[60] with small anisotropies of order O(10−5).

2.5 Anisotropic Boltzmann equations

So far I described the metric and primordial perturbations and gave a brief qualitative
review of the thermal history of the Universe. Metric perturbations couple to all of these
inhomogeneities in matter and radiation gravitationally, while photons are affected also
by Thomson scattering with free electrons and electrons are tightly coupled to protons
via Coulomb scattering, for example. Determining the evolution of radiation and matter
distributions hence requires a systematic way of accounting for all these couplings. The
quintessential tool for doing this is the Boltzmann equation, which describe the evolution of
the distribution function f , schematically as

d f
dt

=C[{ f}] (2.60)

where all possible collision terms are contained on the right-hand side of the Boltzmann
equation. The distribution f depends on time t, position x⃗, the (comoving) energy ε := pa,
and the momentum p⃗. In the absence of collisions, the Boltzmann equation simplifies to

d f
dt

= 0 , (2.61)

which still captures the non-trivial spatial dependence of the metric. I write the collisionless
Boltzmann equation in the form

d
dt

f (t, x⃗,ε, p̂) =
∂ f
∂ t

+
∂ f
∂ x⃗

· d⃗x
dt

+
∂ f

∂ lnε

dlnε

dt
+

∂ f
∂ p̂

· dp̂
dt

= 0 , (2.62)

where p̂ = p⃗/|p⃗|.
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2.5.1 Boltzmann equation for photons

I now turn our attention to massless photons. First I calculate the collisionless Boltzmann
equation. In the Newtonian gauge (Eq. (2.22)), the FRLW metric can be written as

g00(⃗x, t) = 1+2Ψ(⃗x, t) ,

g0i(⃗x, t) = 0 ,

gi j (⃗t, t) = a2
δi j(1−2Φ(⃗x, t)) .

(2.63)

In order to calculate the partial derivatives in Eq. (2.62) I begin by defining the 4-momentum
vector,

Pµ :=
dxµ

dλ
, (2.64)

where xµ = (t, x⃗) is the space-time 4-vector and λ parameterises the particle’s path. Note
that the masslessness of photon implies P2 := gµνPµPν = 0. Using the metric of Eq. (2.63),
We find

P2 = (1+2Ψ)(P0)2 + p2 = 0 (2.65)

where up to first order in perturbation theory, i.e. assuming Φ and Ψ are small quantities, the
time component satisfies

P0 =
p√

1+2Ψ
= p(1−Ψ) , (2.66)

and I defined p2 :=−gi jPiP j. With these definitions one can redefine

dxi

dt
=

dxi

dλ

dλ

dt
=

Pi

P0 . (2.67)

By setting the comoving momentum Pi proportional to p̂i up to a constant, one can see

Pi = pp̂i 1+Φ

a
, (2.68)

such that

dxi

dt
=

p̂i

a
(1+Ψ+Φ) . (2.69)
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From this equation and noting that an overdense (underdense) region satisfies Ψ < 0 and
Φ > 0 (Ψ > 0 and Φ < 0), its indicative that a photon looses (gains) energy when travelling
and overdense (underdense) region. It is also straightforward to show the momentum
component satisfies

d lnε

dt
=

∂Φ

∂ t
− p̂i

a
∂Ψ

∂xi . (2.70)

The first term in Eq. (2.70) accounts for the loss of momentum due to Hubble expansion.
The second expression suggests that the photon losses energy in a deepening gravitational
potential well (see sign conventions described above). Finally, the third term indicates
that a photon travelling into (away from) a gravitational potential well, p̂i∂Ψ/∂xi < 0
( p̂i∂Ψ/∂xi > 0), gains (looses) energy. The collisionless Boltzmann equation for a photon
can then be written with these terms as

d f
dt

=
∂ f
∂ t

+
p̂i

a
∂ f
∂xi − p

∂ f
∂ p

[
H − ∂Φ

∂ t
+

p̂i

a
∂Ψ

∂xi

]
. (2.71)

Next, I expand the photon distribution function f about its zero-order Bose-Einstein value
given in Eq. (2.9), for example, which can be written incorporating the anisotropy as

f (⃗x,ε, p̂, t) =
[

exp
{

ε/a
T [1+Θ(⃗x, p̂, t)]

}
−1
]−1

, (2.72)

where T is the redshift dependent mean photon temperature which scale as a−1 and Θ :=
δT/T is the perturbation to the distribution function where δT = T −T . For small perturba-
tions one can write approximate the distribution function as

f (⃗x,ε, p̂, t) = f̄ (ε)
[

1−Θ(⃗x, p̂, t)
dln f̄ (ε)

dlnε

]
. (2.73)

where

f̄ (ε) :=
[
exp
{ p

T̄

}
−1
]−1

(2.74)

At zeroth-order, the photon Boltzmann equation gives T̄ ∝ a−1. At first order, this collision-
less Boltzmann equation can be found to satisfy

d f
dt

∣∣∣
(1)

=−p
∂ f̄
∂ p

[
∂Θ

∂ t
+

p̂i

a
∂Θ

∂xi +
∂Φ

∂ t
− p̂i

a
∂Ψ

∂xi

]
. (2.75)
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The first two terms inside the brackets on the left-hand side in Eq. (2.75) account for the
‘free-streaming’ of photon anisotropies, while the last two terms account for the interaction
between gravity and photons.

Next in this section, I quantify how the photon distribution is influenced by the Thomson
scattering7 of photons off free electrons in the plasma and non-relativistic gas. This interaction
has the form

e+ γ ↔ e+ γ , (2.76)

and in the rest frame of electron (indicated with ‘er’ subscript), the collision term in the
Boltzmann equation can be written in the form

Cer [ fer(εer , p̂out,er)] = ne

∫
dp̂in,er

dσ

dΩ

[
f (εer , p̂in,er)− f (εer , p̂out,er)

]
, (2.77)

where ne is the proper number density of electrons and dσ(Ω)/dΩ=σT/4π is the differential
scattering cross-section for Thomson scattering.8 The parameter σT is the Thomson scattering
cross section σT = 6.65×10−29m2. First and second terms in Eq. (2.77) captures the in- and
out- scattering terms respectively. One can take the latter outside the integral to get

Cer [ fer(εer , p̂)er ] =−neσT f (εer , p̂er)+neσT

∫ dp̂in,er

4π
f (εer , p̂in,er) . (2.78)

Enforcing Lorentz invariance as well as the energy momentum conservation and taking
the relativistic (non-relativistic) limit for photons (electrons), the collision term in in some
general frame can be found as

C[ f (ε, p̂)] = an̄eσT
d f̄

dlnε

[
Θ(p̂)− p̂ · v⃗e −

3
16π

∫
dp̂inΘ(p̂in)

[
1+(p̂in · p̂)2]

]
. (2.79)

where v⃗e is the electron peculiar velocity relative to the CMB recombination surface. Adding
the collision term to Eq. (2.75) and using the expansion of the total derivative as

Θ(t, x⃗, p̂)
dt

=
∂Θ

∂ t
+

∂Θ

∂ x⃗
· d⃗x

dt
+

Θ

p̂
· dp̂

dt
=

∂Θ

∂ t
+ p̂ · ∇⃗Θ , (2.80)

7Thomson scattering is the low energy limit of Compton scattering where the mass-energy of electrons is
significantly larger than the photon momentum.

8Note I ignored the anisotropic component of the Thomson scattering here. The general expression is
dσ(Ω)dΩ = 3σT/(16π)[1+(p̂′in · p̂′)2] where p̂in is the direction of the in-scattering photon and p̂ is the
line-of-sight.
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we now find

dΘ

dt
=

dlnε

dt
−an̄eσT [Θ−Θ0 − p̂ · v⃗e] , (2.81)

where I defined the integral of perturbation over all directions

Θ0(⃗x, t) :=
∫ d2 p̂in

4π
Θ(p̂in, x⃗, t) , (2.82)

which is the monopole part of the perturbation. Having calculated the dlnε/dln t term above,
the photon Boltzmann equation becomes (in Fourier space),

Θ̇+ ikµΘ = Φ̇− ikµΨ−an̄eσT [Θ−Θ0 − iµve] , (2.83)

where v⃗e := ivek̂ and µ := k̂ · p̂.

2.5.2 Boltzmann equation for CDM

I now continue on our programme of calculating the standard cosmological Boltzmann
equations with the non-relativistic CDM, whose constraint equation satisfies

gµνPµPν =−m2 , (2.84)

where m is the mass of the CDM particle and the energy can be defined as E :=
√

p2 +m2

where p2 = gi jPiP j as before. Different from the case of photons, the four-momentum of a
massive particle can be written as

Pµ =

[
E(1−Ψ), pp̂i 1−Φ

a

]
, (2.85)

and the total time derivative of the CDM distribution, fc, can be written as

d fc

dt
=

∂ fc

∂ t
+

∂ fc

∂xi
dxi

dt
+

∂ fc

∂E
dE
dt

+
∂ fc

∂ p̂i
dp̂i

dt

=
∂ fc

∂ t
+

p̂i

a
p
E

∂ fc

∂xi −
∂ fc

∂E

[
da/dt

a
p2

E
+

p2

E
∂Φ

∂ t
+

p̂i p
a

∂Ψ

∂xi

]
= 0

(2.86)

where in the second line of Eq. (2.86) I used results from the earlier part of this section and
assumed no collision term for the CDM. Rather then expanding in fc distribution, it is more
common to multiply both sides of Eq. (2.86) with the phase-space volume d3 p/(2π)3 and
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integrate as well as making definitions for the dark matter density and velocity as

nc :=
∫ d3 p

(2π)3 fc , (2.87)

and

vi :=
1
nc

∫ d3 p
(2π)3 fc

pp̂i

E
. (2.88)

The zeroth moment of the Boltzmann equation then gives the continuity equation for CDM,

∂nc

∂ t
+

1
a

∂ (ncvi)

∂xi +3
[

da/dt
a

+
∂Φ

∂ t

]
nc = 0 . (2.89)

Note at zeroth order (where vi and Φ vanish) one recovers n(0)c ∝ a−3. Setting nc in terms
multiplying vi and Φ to n(0)c and expanding CDM density to first order perturbations as

nc = n(0)c [1+δ (⃗x, t)] , (2.90)

the first order equations of motion (continuity and Euler equations) become (in Fourier
space),

δ̇ + ikv+3Φ̇ = 0 and v̇+H v+ ikΨ = 0 , (2.91)

where v = (ki/k)v and we modelled the CDM as a perfect fluid with vanishing anisotropic
stress and pressure.

2.5.3 Boltzmann equation for baryons

Finally I calculate the Boltzmann equations for the electrons and protons, grouped together
as baryons in cosmology. At early times, electrons and protons are coupled by Coulomb
scattering in the form,

e+ p ↔ e+ p , (2.92)

whose rate is larger than the expansion rate, satisfying (ρe − ρ̄e)/ρ̄e = (ρp − ρ̄p)/ρ̄p := δb

and v⃗e = v⃗p := v⃗b. I now derive equations for δb and v⃗b.
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The collision terms for the electrons and protons can be written as

d fe(⃗x, q⃗, t)
dt

= ⟨Cep⟩QQ′q + ⟨Ceγ⟩pp′q′ (2.93)

and

d fp(⃗x, Q⃗, t)
dt

= ⟨Cep⟩qq′Q , (2.94)

where I assigned the 3-momentum wave-vectors q⃗ and q⃗′ to the electron and Q⃗ and Q⃗′ to the
proton. Cep and Ceγ are unintegrated Coulomb and Compton collision terms, respectively
and

⟨(. . .)⟩pp′q′ :=
∫ d3 p

(2π)3
d3 p′

(2π)3
d3q′

(2π)3 (. . .) , (2.95)

for example.

Similar to before, multiplying both sides of Eq. (2.93) with the phase space volume and
integrating give

∂ne

∂ t
+

1
a

∂ (nevi
b)

∂xi +3
[

da/dt
a

+
∂Φ

∂ t

]
ne = ⟨Cep⟩QQ′q′q + ⟨Ceγ⟩pp′q′q . (2.96)

It is important to emphasise that the full integrals on the right-hand side of Eq. (2.96) are
symmetric under Q ↔ Q′ and q ↔ q′ and hence vanish once integrated over the phase space
volume d3q/(2π)3. More intuitively, the scattering process conserve electron number and do
not contribute to dn/dt. Hence the first equation for the baryon density is equivalent to the
CDM equation of motion and take the form

δ̇b + ikvb +3Ψ̇ = 0 . (2.97)

The second equation gives

v̇b +H vb + ikΨ = τ̇
4ργ

3ρb
[3iΘ1 + vb] , (2.98)

where τ̇ = σT ane is the time derivative of the optical depth, and

Θ1 := i
∫ 1

−1

µdµ

2
Θ(µ) , (2.99)
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is the first moment of the perturbation Θ.

2.6 Cosmic sound waves

2.6.1 Photon-baryon fluid

Let’s now return to the photon Boltzmann equation Eq. (2.83). I expand the perturbations Θ

in terms of Legendre polynamials:

Θ(η ,⃗k, p̂)→ Θ(η ,⃗k,µ) :=
∞

∑
ℓ=0

(−i)ℓΘℓ(η ,⃗k)Pℓ(µ) , (2.100)

where Θ are the multipole moments of the distribution. The lowest order multipoles can be
related to the perturbed stress-energy tensor in a simple way,

Θ0 =
1
4

δγ , (2.101)

Θ1 = −vγ , (2.102)

Θ2 = −5
3

σγ , (2.103)

and the equations of motion for the temperature anisotropy moments can be found by
multiplying Eq. (2.83) by P0(µ) and P1(µ) and integrating over µ , which give:

Θ̇0 = −1
3

kΘ1 + Φ̇ (2.104)

Θ̇1 = kΘ0 − kΨ−neσT (Θ1 + vb) . (2.105)

One now needs to input the baryon velocity which I have calculated earlier. I rearrange
Eq. (2.98) to get

vb =−Θ1 −
R
Γ
[v̇b +H vb + kΨ] , (2.106)

where

Γ = an̄eσT and R = 3ρb/4γb . (2.107)

Note Γ−1 is comoving mean-free path of CMB photons Γ−1 ≃ 4.9×104(Ωbh2)−1(1 +

z)−2Mpc. On scales larger than Γ−1, Thomson scattering forces the photon distribution
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to be isotropic in the fluid’s rest frame. The diffusion scale rD, a key parameter in describing
CMB fluctuations, is defined by integrating Γ−1 from η = 0 and gives the squared diffusion
length

r2
D ∼

∫
η

0
Γ
−1dη

′ . (2.108)

By setting the vb ≃−Θ1 on the right-hand side of Eq. (2.106) I get

vb ≃−Θ1 +
R
Γ

[
Θ̇1 +HΘ1 − kΨ

]
, (2.109)

such that the equation for the first multipole moment of Θ becomes

Θ̇1 =− H R
1+R

Θ1 +
k

1+R
Θ0 − kΨ . (2.110)

These equations for Θ̇0 and Θ̇1 can be combined to give the oscillatory equation of motion
for the temperature monopole:

Θ̈0 +
H R
1+R

Θ̇0 + c2
s k2

Θ0 =−1
3

k2
Ψ+ Φ̈+

Ṙ
1+R

Φ̇ , (2.111)

where combined effects of pressure (last term on the left-hand side) and gravity (first term on
the right-hand side) is evident. The speed of sound of the baryon-photon fluid is defined as

c2
s :=

1
3(1+R)

. (2.112)

2.6.2 Oscillatory solutions

Equation (2.111) is essential for understanding the CMB fluctuations discussed in the fol-
lowing sections. Before describing the CMB observable, however, let us comment on the
solutions of this equation. Treating R as approximately constant, we can write the evolution
equation above in the form a differential equation of a harmonic oscillator with frequency
csk. I consider the solution where I ignore time variations in the metric potentials Φ and Ψ.
One can now rewrite Eq. (2.111) as

Θ̈0 + c2
s k2

Θ0 =−k2

3
Ψ , (2.113)
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which is a simple harmonic oscillator equation with a gravitational forcing term. Reminding
ourselves the adiabatic initial conditions, where Θ̇0(η = 0) = 0 [39], the solutions of this
equation satisfy

Θ0(η ,⃗k) = [Θ0(η = 0,⃗k)+(1+R)Ψ(⃗k)](⃗k)cos(krs)− (1+R)Ψ(⃗k) (2.114)

Θ1(η ,⃗k) = −3[Θ0(η = 0,⃗k)+(1+R)Ψ(⃗k)](⃗k)cs sin(krs) , (2.115)

where I defined the sound horizon, rs := cs(aH )−1 =
∫ η

0 csdη ′ ≃ csη . Photon fluctuations
remain constant beyond the horizon until they cross the sound horizon, after which they start
to oscillate.

First, I focus on Eq. (2.114). At early times when photons dominate the fluid R→ 0 and the
solution corresponds to a harmonic oscillator whose zero-point (where gravity and pressure
are balanced) is displaced by gravity. Since gravitational infall increase the number density
and the energy of the photon, displacement satisfying −Ψ > 0 results in hotter (redshifted)
photons in the potential well. After decoupling, photons loose energy as they have to climb
out of the potentials and the correspond redshift cancels the initial −Ψ blueshift. These
emerging photons satisfy

Θ0(η ,⃗k)+Ψ(⃗k) = [Θ0(η = 0,⃗k)+Ψ(⃗k)]cos(krs) , (2.116)

which correspond to the peaks of the CMB spectrum, approximately corresponding to the
set of wavenumbers kn = nπ/rs(η∗) where n∗ is the time of decoupling. In the presence of
baryons the sound speed decreases and the gravitational infall leads to a greater compression
of the baryon-photon fluid inside potential wells. This results in a larger displacement of the
zero-point, enhancing peaks from compression and suppress those from rarefaction. Finally,
during radiation dominated era where potentials Ψ and Φ are time dependent, the decay of
potential enhances temperature fluctuations, resulting in the higher peaks to bet additionally
enhanced amplitudes. These effects afforded by the first term in Equation (2.114) are called
the ‘Sachs-Wolfe’ [61] contributions to the CMB.

Equation (2.115) corresponds to the Doppler contribution to the CMB which arises from
the peculiar (bulk) velocity of the electrons. Photons scatter from moving electrons and
receive an energy boosts proportional to the electron velocity projected onto the photon
scattering direction. Because vγ ≃ vb and vanish outside the sound horizon, the Doppler
effect is suppressed on large-scales.
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2.7 Observational probes

2.7.1 Cosmic microwave background anisotropies

The CMB anisotropies are a remarkable observational probe of the primordial density
fluctuations, the acoustic oscillations, the evolution of the gravitational potentials and today’s
structure of the Universe through lensing effects. In this section I give a brief review of CMB
fluctuations which I use extensively throughout this thesis.

The CMB is described by its temperature and polarisation anisotropies. Following the
same notation as before, the fractional temperature anisotropy Θ(n̂) is defined as

Θ(n̂) :=
T (n̂)− T̄CMB

T̄CMB
=

∞

∑
ℓ=0

ℓ

∑
m=−ℓ

aℓmYℓm(n̂) , (2.117)

where T (n̂) is the CMB temperature field at a given position on the sky. In the second
equality, Θ(n̂) is decomposed in terms of the spherical harmonics Yℓm(n̂) for a given integer
multipole ℓ≥ 0, and m =−ℓ, . . . ,+ℓ. aℓm are spherical harmonic coefficients. The monopole
temperature T̄CMB corresponds to ℓ= 0, and the dipole, dominated by our motion relative to
the CMB via Doppler shift, corresponds to ℓ= 1.

Given stochastic quantum fluctuations in the early Universe, sourced temperature fluctua-
tions are random and have zero mean. For the case of Gaussian initial conditions, the 2-point
correlations of the multipole moments aℓm, i.e. the angular power spectrum of perturbations,
Cℓ, therefore contains the cosmological information. The rotational invariance of the angular
power spectrum means it only depends on the multipole moment ℓ, not m. The temperature
auto-correlation defines the temperature power spectrum CT T

ℓ ,

CT T
ℓ =

1
2ℓ+1 ∑

m
⟨|aℓm|2⟩ , (2.118)

where ⟨ ⟩ denotes an ensemble average over many sky realisations. For any given value
of ℓ, there are 2ℓ+1 measurements m to constrain a given Cℓ, indicating observations are
fundamentally limited to measuring 2ℓ+ 1 independent modes. This gives rise to a large
variance on large scales (small ℓ), and is known as cosmic variance.

The temperature anisotropies in the CMB are complemented by the polarisation of the
CMB photons, which provide additional information about the early Universe. The non-
instantaneous nature of recombination leads to the surface of last scattering to have some
finite thickness. Within the surface of last scattering, CMB photons scatter off on free
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electrons via Thomson scattering. Any anisotropy in the spectrum of incoming photons lead
to a linear polarisation of the CMB radiation from the scattered photons. The polarisation
anisotropy spectrum can be measured in a similar vein to the temperature spectra. The
polarisation field P(n̂) can be described by two Stokes parameters Q and U (given a choice
of coordinate description on the sky), P = Q+ iU . P can also be decomposed in terms of
(spin-weighted) spherical harmonics using E and B modes which correspond to ‘electric’
(gradient) and ‘magnetic’ (curl) components of the polarisation field,

P(n̂) = Q(n̂)+ iU(n̂) (2.119)

=
∞

∑
ℓ=2

ℓ

∑
m=−ℓ

(Eℓm + iBℓm)2Yℓm(n̂) , (2.120)

where the additional index 2 indicates that P is a spin-2 field,

CEE
ℓ =

1
2ℓ+1

ℓ

∑
m=−ℓ

|Eℓm|2 (2.121)

CBB
ℓ =

1
2ℓ+1

ℓ

∑
m=−ℓ

|Bℓm|2 . (2.122)

The primordial E modes are originated from scalar fluctuations in the density field; whereas
at linear order, B modes are sourced by tensor fluctuations, i.e. gravitational waves (such as
from inflation). This makes the polarisation spectra of the CMB, CEE

ℓ and CBB
ℓ , an important

probe for fluctuations in the early Universe. Lastly, cross-correlations of CMB temperature
and E-mode polarisation, CT E

ℓ , provide an additional independent observable, and is useful
for foregrounds and instrumental effect calibration.

In addition to the polarisation of the CMB, another important consequence of non-
instantaneous recombination is the damping of power of anisotropies on small scales. During
recombination, CMB photons brownian scatter with free electrons many times. The average
distance a photon travels is the mean free path λd ,

λd ≃ 1√
neσT H

, (2.123)

where σT is the Thomson scattering cross-section and ne is the number density of electrons.
Through ne, the damping scale depends both on the baryon density of the Universe and
on the primordial helium fraction Yp. Through the Hubble rate H, the damping scale is
sensitive to cosmological parameters related to the expansion history of the Universe prior
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to recombination, including the effective number of free-streaming relativistic degrees of
freedom, Neff, for example.

Next, CMB power spectrum also shows distinct acoustic features due to BAOs. BAOs
are sourced by the baryon-photon fluid which oscillates in time and space with a period
determined by its sound speed cs. The comoving distance travelled by a sound wave of the
baryon-photon fluid by time η is called the sound horizon. The sound horizon is defined as

rs(η) =
∫

η

0
dη

′cs(η
′) , (2.124)

which is measured to be approximately rs ≃ 150Mpc in comoving length at last scattering.
The frequency of the harmonic series of modes seen in CMB is set by the sound horizon,
and the peaks in the CMB power spectrum are modes caught at extrema of their oscillations.
Peak positions are described by the θs parameter, which depends on the angular diameter
distance at which we are observing the fluctuations, DA, and the sound horizon, as θs = rs/DA,
allowing for the BAO signature in the CMB to give an extremely precise measurement of
the geometry of the Universe at early times. Furthermore, analogous to mass oscillating
on a spring, oscillations of baryon-photon plasma in- and out- of the potentials wells are
sensitive to the ratio of baryons and the total matter. (Increasing baryon density increases
the rarefraction inside potential wells while correspondingly decreasing the compression
away from the potential wells, changing the ratio of the amplitudes of even and odd peaks,
respectively.)

In addition to the intrinsic temperature fluctuations, CMB anisotropies can be sourced by
gravitational redshift (or blueshift) due to potentials at the last scattering, i.e. the Sachs-Wolfe
effect (SW) effect [61], by time-evolving potentials along the line of sight [the integrated
SW (ISW) effect], by velocity-dependent Doppler effects at the last scattering surface, and
due to the gravitational weak lensing effect. The lensing effect also provides an important
observable accessible to the CMB measurements: the gravitational weak lensing potential.

Cosmological models make distinct predictions for the lensing potential power-spectrum
Cφφ

ℓ , similar to variances of temperature anisotropies of intensity and polarisation. Lensing
of the CMB is local in the observed direction, and takes the form

Θ̃(n̂nn) = Θ(n̂nn+ α⃗(n̂nn)) , (2.125)

(similarly for the polarisation field) where the lensing deflection angle is approximated as a
pure gradient, α⃗(n̂nn) = ∇∇∇φ , and φ is the lensing potential. Lensing of the CMB (along with
the ISW effect) provides sensitivity to the matter distribution and the growth of LSS along
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the line of sight, providing constraining power on cosmological parameters including the
sum of neutrino masses ∑mν . Neutrinos slow the growth of LSS by delaying the cooling of
the ultra-relativistic gas due to cosmic expansion.

2.7.2 21cm hydrogen-line signal from reionization and cosmic dawn

The hyperfine splitting of the ground state of neutral hydrogen possesses a triplet and singlet
ground state. These two states are spin-flip states and the forward (backward) transition
from the triplet state to singlet state is accompanied by an emission (absorption) of a 21cm
wavelength photon. Whether cosmological hydrogen emits or absorbs 21cm photons can be
understood by calculating its spin temperature. The spin temperature local to the hydrogen,
Ts, can be described by the relation

n1

n0
=

g1

g0
e−T∗/Ts , (2.126)

where n0 (n1) is the comoving number density of the hydrogen atoms in the singlet (triplet)
state, g0 = 1 (g1 = 3) are the numbers of degrees of freedom of the singlet (triplet) state, and
T∗ = 0.068 is the temperature corresponding to the 21cm hyperfine transition. Observations
are made in reference to the CMB. When the local spin temperature is larger (lower) than
the CMB temperature, hydrogen emits (absorbs) photons from the CMB. The distribution of
these photons at the corresponding wavelength can be studied to understand the astrophysics
and cosmology of our Universe in dark ages. The main observable of interest is the brightness
temperature of the 21cm hydrogen-line whose perturbations take the form [62],

δT21 = 38mK
(

1− Tγ

Ts

)(
1+ z
20

)1/2

xHI(1+δnb)
∂rvr

H(z)
,

(2.127)

where xHI is the neutral-hydrogen fraction, ∂rvr is the line-of-sight gradient of the velocity,
δnb is the fractional number density and Tγ is the local CMB temperature.

The epoch of interest to the study in the thesis is the cosmic dawn era, defined by the
formation of the first stars. This is theorised to begin around z ∼ 35 with the bulk of galactic
star formation occurring z ∼ 25 e.g. [63]. Initially, after recombination, the gas temperature
remains coupled to the CMB temperature, T̄CMB, at high redshifts z > 200 due to rapid
Compton scattering of the background photons off electrons left over in the IGM gas. Both
T̄CMB and gas temperature drop as 1+ z until the gas decouples from the CMB and start
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adiabatic cooling, after which its temperature drops as (1+ z)2 until first collapsed objects
form at low redshifts, z ≲ 30. The spin temperature, moreover, remains coupled to the gas
temperature until around redshifts z ≃ 100, where the efficiency of collisional coupling to
gas drops due to cosmic expansion. During this time, the spin temperature is excepted
to couple again to the CMB temperature due to absorption of CMB photons [64]. Spin
temperature eventually re-couples to the gas, however, as the first astrophysical objects
produce a Lyman-α background and start ionizing the IGM, boosting the gas temperature
above the T̄CMB. Remnants of these first stars are likely to produce a diffuse background of
∼ 0.1−2 keV X-rays, which causes shock heating throughout the gas before reionization
progresses largely after z ∼ 10. As the tail-end of reionization is approached (z < 10), the
effects of streaming velocities in the IGM on the 21cm signal are reduced by Lyman-Werner
feedback [63]. Please see [65] for more detail on this context.

The power spectrum of the 21cm signal can be written as

⟨δT21(⃗k,z)δT ∗
21(⃗k

′,z)⟩= (2π)3
δ (⃗k− k⃗′)P21(⃗k,z) , (2.128)

where δT21(⃗k,z) is the Fourier transform of [T21(⃗x)− T̄21]/T̄21, the zero mean fluctuations of
the 21cm hydrogen brightness temperature at redshift z. An important feature of the 21cm
power spectrum observable from the cosmic dawn is the BAOs. The modulation of the 21cm
power-spectrum due to DM-baryon relative velocity can be captured to a good approximation
from the statistics of the collapsed baryonic density. The effect of bulk relative velocity
is analogous to that of the gas pressure, suppressing the accretion of baryons. As the gas
falls into the DM halo, its bulk kinetic energy is converted into thermal energy resulting in
a change in the effective sound speed ceff,s ≃ (c2

s + v2
cb)

1/2, the critical mass scale and the
baryon collapsed fraction. The effect of the relative velocities on the amplitude of the 21cm
brightness temperature power-spectrum can then be parametrised as

∆
2
21,vel(k,z) = Avel(z)∆2

v2(k,z)|W (k,z)|2 , (2.129)

where Avel is some redshift-dependent amplitude of fluctuations, W (k,z) is some window
function that can be utilised to isolate the different contributors to the 21cm power-spectrum
such as Lyman-α coupling and X-ray heating. I defined ∆2

v2(k) as the power-spectrum of the
quantity

δv2 =

√
3
2

(
v2

cb
v2

rms
−1
)
, (2.130)
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which accurately captures the shape of the effect of relative velocities on the observables for
the scales of interest where the ‘streaming’ bulk relative velocity can be approximated with a
root-mean-squared value vrms ≃ 30kms−1 at recombination. Note that the coefficient Avel is
a model-dependent amplitude that is not directly observable, similar to the BAO amplitude.
As the Velocity Acoustic Oscillations (VAOs) are statistically independent from the density
fluctuations at first order, the amplitude of the 21cm power-spectrum can be written as

∆
2
21(k,z) = ∆

2
21,vel(k,z)+∆

2
21,nw(k,z) , (2.131)

where I defined ∆2
21 := k3P21(k,z)/2π2, following a similar notation as in [66], and ∆21,nw(k,z)

is the component excluding VAOs. I will make use of these definitions in Chapter 8.

2.7.3 Large-scale structure, BAO and SNe Ia

The utility of the primary CMB as a instrument for cosmological inference from the early
Universe is complemented by measurements of the late-time expansion and growth history
from surveys of galaxies, large samples of SNe Ia, strong gravitational lenses as well as
the weak gravitational lensing of the CMB. The different sensitivities of these probes to the
late-time evolution and structure growth provide cosmologists with strong tools in developing
our cosmological understanding.

Compared to the CMB, a main benefit of LSS surveys is the prospect of measuring many
more Fourier modes in three dimensions, with scaling Nmodes ∝ k3

max, where kmax is the
highest wavenumber accessible to measurements that can be modelled robustly. Increased
number of modes in turn can potentially reduce errors on cosmological measurements
significantly. Observables most relevant to cosmology include 3-dimensional clustering of
galaxies and the weak gravitational lensing.

While galaxy clustering is a sensitive probe of the distribution of matter in the Universe,
they also suffer from various issues. Most importantly, they are biased tracers of the underly-
ing matter field and they are measured with redshifts, rather than real-space positions. For
the former, a galaxy survey analysis must model galaxy bias and the bias parameters must be
marginalised, often reducing the quality of cosmological parameter constraints. The former
introduces a well-known effect called redshift-space distortions (RSDs) which can provide a
good way to phase the redshift dependent growth rate, while potentially playing a limiting
role in the sensitivity of the LSS surveys.
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Features of the galaxy power spectrum include a characteristic peak determining the
transition from radiation to matter domination and sensitive to the matter density ωm. The
BAOs discussed in this review also leave a distinct oscillatory feature in the galaxy power
spectrum due to their influence on the galaxy distribution today. The BAO feature in the
galaxy power spectrum provides a ‘standard ruler’ with which to measure the expansion rate
of the Universe, providing constraints on ωm, H0 and the properties of dark energy [67–69].
Lastly, the evolution of clustering of galaxies is also sensitive to the growth rate which allows
for testing of different gravitational models [70–72].

The major challenge of inferring cosmology from clustering measurements is the need
of modelling non-linear effects at short distances and high densities. These effects often
introduce large and poorly-understood theoretical and systematic uncertainties, which can
also affect the larger scales via mode coupling. These problems can either be surmounted by
careful modelling of systematics and uncertainties (which boosts the number of parameters
that need to be marginalised [73–82]), or partially avoided by utilising templates designed to
optimally select cosmological signatures robust against complicated non-linearities, such as
BAO scale measurements [83–89].

In addition to galaxy clustering, shape distortions of galaxies in photometric surveys
probe weak gravitational lensing due to LSS. Unlike the galaxy measurements, the weak
gravitational lensing observable traces the integrated matter density and is not subject to the
unknown biases suffered by the former. The weak gravitational lensing observations are
hence often accepted to be a purer probe of cosmology. Similar to galaxy measurements,
however, the non-linearity of the lensing field is also subject to theoretical uncertainties
and the shape of the non-linear matter power spectrum including its modifications due to
baryonic effects, for example, needs to be modelled. Baryon displacements are subject to
complicated feedback processes that can affect the gravitational potential within and around
the dark matter halos and change the power spectrum of the halo observables on small scales.
These effects also propagate to lensing observables [90–92].

Issues related to modelling non-linearities and baryonic effects are complemented with
other systematics which include those associated with the actual measurements (recovering
redshifts and shape of galaxies, for example), obtaining photometric redshifts for the lenses
for the purpose of tomography, as well as modelling of the intrinsic correlations of galaxy
shapes due to effects other than lensing [e.g. 93, 94]. Recent years have seen a wealth of
new techniques for overcoming these systematics [see, e.g. 95–98], and correspondingly
tighter cosmological constraints. Modern lensing surveys predominantly constrain S8 =
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σ8
√

Ωm/0.3, along with dark energy equation of state and curvature of the Universe [99, 97,
100].

Finally, type Ia supernova (SNe Ia) measurements have been proved to be an important
instrument for constraining the expansion history of the Universe at lower redshifts than LSS
surveys. These measurements are calibrated using nearby distance anchors, and provide local
measurements of H0 with the advantage of not needing to assume a cosmological model
[101–103]. At high redshifts, measurements of supernovea can constrain the properties
of dark energy [104]. The high-precision modern supernova measurements are subject to
systematics including effects of contamination and host galaxy properties on supernova
magnitudes [105–107] as well as observational systematics [108, 109]. Careful consideration
and modelling of these systematics allow robust cosmological constraints from SNe Ia
measurements [110, 111, 104].



Chapter 3

Multi-field inflation and reheating

In this chapter I discuss the effect of reheating on observational predictions following
multiple-field inflation. The chapter follows my published work in Ref. [12], where I made
leading contributions, in collaboration with Jonathan Frazer, Andrew Jaffe, Joel Meyers,
Layne Price and Ewan Tarrant. The chapter includes calculations by Ewan Tarrant and
Joel Meyers. These are calculations of the semi-analyic predictions for the change in total
curvature perturbations in the presence of multiple curvaton-like fields during reheating, and
lead to Eqs. (3.20) and (3.23), for example. They are described in detail in text and depend
on the so-called sudden decay approximation, which is also described. The results use
publicly available MULTIMODECODE inflation solver [112–115], whose leading developer,
Layne Price, is also a co-author in Ref. [12]. Contributions from Layne Price also include
the calculation leading to Eq. 3.36. The text and presentation of the results has also seen
important contributions from Joel Meyers, Jonathan Frazer and Andrew Jaffe. These three
authors also contributed to the presentation of the work as well as the conceptualisation of the
project. My essential contributions include recovering and contributing to the calculations
overall, coding the needed modifications to MULTIMODECODE in order to solve reheating
equations of motion and realise the sudden-decay process, producing all of the results,
essentially providing the analysis and the presentation including all of the plots except the
pedagogical plot in Fig. 3.1 as well as major contributions to the text throughout.

3.1 Introduction

Despite the phenomenological success of single-field models, they lack the generality of more
complex scenarios, representing only a limited class of possible models. Importantly, they
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are not always natural from a theoretical point of view, for example, string compactifications
often result in hundreds of scalar fields appearing in the low energy effective action [116–119].
Models with multiple fields naturally produce non-adiabatic fluctuations, whose presence
allows the curvature perturbation and its correlation functions to evolve outside the Hubble
radius. Therefore, in order to make predictions in multi-field models, it is necessary to
understand the evolution of the correlation functions until either the curvature fluctuations
become adiabatic or they are directly observed. Unless an ‘adiabatic limit’ [120–126] is
established before the onset of reheating, then the observable predictions of multi-field
models will be sensitive to post-inflationary dynamics that must be accurately modeled
before comparing the results to data.

Predictions of single-field inflation are largely insensitive to the details of reheating. Single-
field inflation models produce purely adiabatic curvature perturbations ζk, which guarantees
that the n-point correlation functions, ⟨ζ n⟩, do not evolve on scales exceeding the Hubble
radius k ≲ aH during and after inflation [1, 39, 127, 128]. As a consequence, post-inflationary
dynamics will not cause the perturbation spectra to evolve on super-Hubble scales, and only
the integrated expansion following single-field inflation affects the prediction of cosmological
observables [129, 59, 130, 131, 113, 132].

Non-adiabatic fluctuations can become adiabatic if the Universe passes through a phase of
effectively single-field inflation [120–126] or through a period of local thermal and chemical
equilibrium with no non-zero conserved quantum numbers [133–135]. The latter conditions
are often established during the late stages of reheating, though notable exceptions include
models in which dark matter is not a thermal relic, or where baryon number was produced
before the end of inflation [136]. We will assume throughout this work that the result of
reheating is a relativistic thermal plasma described entirely by its temperature. In this chapter
we will focus on developing a methodology for calculating the predictions of multi-field
inflation for the fully adiabatic power spectrum of curvature perturbations after reheating.

For two-field inflation, numerical studies [123, 137, 138] have demonstrated that observ-
ables such as the power spectrum P(k), and the local-shape bispectrum parameter fNL can
be very sensitive to the details of reheating. This sensitivity was quantified in Ref. [139],
where it was shown that the adiabatic observables take values within finite ranges that are
determined completely by the details of the underlying inflationary model. The effect of
reheating is to preferentially enhance or suppress the initial fluctuations of some fields com-
pared to others, depending on the details of the reheating model. This gives predictions that
effectively interpolate between those obtained by projecting the non-adiabatic perturbations
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along each of the two field direction φi in isolation. If the projection into each direction is the
same, then the sensitivity to reheating for two-field inflation models is minimal.

In this chapter we extend the results of Ref. [139] and provide a general methodology for
calculating the adiabatic power spectrum of curvature perturbations after multi-field inflation
for any number of scalar fields. The regime of many-field inflation (N ≳ 10) typically yields
a range of predictions for curvature perturbations at the end of inflation that is surprisingly
easy to categorize in comparison to the apparently large dimensionality of parameter space
(see e.g. Refs [140–148], though stochastic effects can be important in the presence of many
fields [149]). Scenarios with many fields also tend to predict an amount of isocurvature
perturbations at the end of inflation which increases with the number of fields [142, 147],
thereby elevating the importance of studying the effects of reheating for these models.

As in Ref. [139], we restrict ourselves to perturbative reheating. This ignores interesting
dynamics such as preheating, which may non-perturbatively produce radiation quanta through
parametric resonance [150] potentially leading to rich phenomena including primordial
non-Gaussianity [151–153] and perhaps the production of primordial black holes [154–
156]. However, perturbative reheating is a generically good phenomenological description
for inflationary models with many degrees of freedom, as periods of exponential particle
production become much harder to realize when many fields must conspire together to
resonate [157–159], although single-field attractor behavior is common for some multiple-
field models with non-minimal couplings to gravity [160]. Therefore, the methodology we
develop here is quite generic for inflation with many fields N ≫ 2.

3.2 Overview

We begin here with a broad description of the methods that will be described in more detail in
subsequent sections. We are interested in calculating the two-point statistics of the curvature
perturbation after reheating has completed following multiple-field inflation. We will focus
in particular on the scalar spectral index ns and the tensor-to-scalar ratio r.

The δN formalism is a useful method for calculating the superhorizon evolution of the
curvature perturbation in terms of the initial fluctuations of a set of scalar fields [161–165].
In this method one calculates the expansion from some initial time t⋆ on a spatially-flat
hypersurface gi j(t⋆,x) = a2(t⋆)δi j, to some final time tc on a uniform density hypersurface
ρ(tc,x) = ρ̄(tc). In practice we will take the initial hypersurface to be at horizon exit and the
uniform density hypersurface to be after the conclusion of reheating when the Universe is
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dominated by a thermal bath of radiation. The number of e-folds of expansion, defined as
N = lnac/a⋆, is given by

N(t⋆, tc) =
∫ tc

t⋆
H(t)dt . (3.1)

The perturbation to the number of e-foldings of expansion is equal to the difference in the
curvature perturbation on these two hypersurfaces

ζ = δN = ∑
i

N,iδφ
⋆
i +

1
2 ∑

i j
N,i jδφ

⋆
i δφ

⋆
j + . . . ; (3.2)

where N,i refers to the derivative of the number of e-folds of expansion with respect to the
initial scalar field value N,i = ∂N/∂φ⋆

i .

Using Eq. (3.2) we can then calculate the observables of interest. Focusing on the two-point
statistics, we find the curvature power spectrum,

Pζ = P⋆∑
i

N2
,i , (3.3)

the scalar spectral index,

ns −1 =−2ε⋆−
2

∑i N2
,i

[
1−∑

i j
η
⋆
i jN,iN, j

]
, (3.4)

and the tensor-to-scalar ratio

r =
8P⋆
Pζ

, (3.5)

where sums are carried out over all field indices i = 1 . . .N . We have introduced the
initial spectrum of scalar field fluctuations P⋆ = H2

⋆/2k3
⋆, and the slow-roll parameters

ε⋆ =−(Ḣ/H2)⋆ and η⋆
i j = (V,i j/V )⋆, which are calculated at horizon crossing and V is the

inflationary potential.

In order to calculate the expansion history and how it depends on the initial scalar field
configuration, one in general needs to solve the perturbed field equations from horizon exit
all the way through reheating. This is typically quite challenging due to the wide range
of time and energy scales involved in the problem. The methods we will describe allow
us to treat the post-inflationary evolution in a simplified manner, thus greatly reducing the
computational cost of making predictions in multi-field inflationary models.
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We proceed by splitting the problem into two parts. We first treat the evolution from horizon
exit through inflation to a phase where the scalar fields are coherently oscillating about the
minima of their potentials. This portion of the evolution is treated by numerically solving the
perturbed field equations and is described in detail in Sec. 3.4. Next, we treat the process of
reheating, when the scalar fields decay into radiation. As described in detail in Sec. 3.3, this
part of the evolution can be treated semi-analytically by using a fluid approximation at very
low computational cost, thus allowing us to quickly calculate how a wide range of reheating
scenarios impacts the observable predictions of a particular multi-field inflationary model.
For this part of the evolution, the unperturbed fluid equations are evaluated numerically,
and the sudden decay approximation is applied to determine the impact of reheating on the
cosmological perturbations.

As will be shown below, the impact of reheating following multiple field inflation is to
mix together perturbations present in individual scalar fields present at the end of inflation
into the final curvature perturbation with weights determined by the reheating parameters.
Additionally, reheating impacts how the length scales we observe today are related to the
scales during inflation. Even in single-field inflation, reheating affects how many e-foldings
N⋆ before the end of inflation the observed fluctuations have crossed the Hubble horizon.
Predicting this quantity requires matching the Hubble scale today to the Hubble scale
during inflation, hence the modeling of the entire expansion history of the Universe. A
simple comparison (approximating transitions between different epochs in the history of the
Universe as instantaneous and ignoring the recent phase of dark energy domination) can be
made by using the classical matching equation we defined in Eq. (2.54), where the number
of e-foldings between the end of inflation and when the pivot scale crosses the Hubble
horizon k⋆ = a⋆H⋆ is defined as N⋆ = lnaend/a⋆, and areh is the scale factor at the the end of
reheating, i.e. after all fields have decayed into radiation. The remaining quantities in the
above expression are the Hubble horizon H0 and the scale factor a0 today and at the time of
matter-radiation equality: Heq, aeq. The latter four quantities are well known from large-scale
observations of the Universe. The remaining quantities are predicted by the inflationary
model and the details of reheating, which fixes N⋆, the number of e-foldings of inflation after
the pivot scale exits the horizon.
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3.3 Reheating

During perturbative reheating, the relativistic energy densities gain energy at a rate

ρ̇
γ

i +4Hρ
γ

i = Γiρi (3.6)

whilst damping of the inflaton zero mode due to this decay process can be approximated by

φ̈i +(3H +Γi)φ̇i +m2
i φi = 0 , (3.7)

and the energy density stored in the oscillating field is ρi =
1
2(φ̇

2
i +m2

i φ 2
i ). Perturbative decay

of the oscillating fields relies on the assumption that the decay rates can be calculated by
standard methods in perturbative quantum field theory.1 If, however, the amplitude of the field
oscillations, and the couplings to gauge fields are sufficiently large, perturbation theory breaks
down and reheating proceeds in a different way, through parametric resonance [167–169].

The impact of reheating on cosmological observables is well captured by appealing to the
sudden decay approximation [170–172]. This approximation has been used frequently in the
past to calculate the statistics of the primordial curvature perturbation for various models of
inflation [171–175], the most widely known example with multiple fields being the curvaton
scenario [176, 177, 170, 178, 179]. Furthermore, numerical studies have shown that for the
curvaton scenario, and general models of two–field inflation, sudden decay reproduces the
gradual decay result obtained by solving Eqs. (3.6) and (3.7) (together with the Friedmann
constraint) remarkably well [172, 139].

We will focus on fields φi rolling in potentials with quadratic minima. During the phase of
coherent oscillations, we will treat these fields as perfect fluids with vanishing pressure. In
this approximation, the density of these matter fluids scale as a−3 and do not interact with their
decay products until they instantly decay at some time ti. These dynamics are schematically
illustrated in Fig. 3.1 for the specific example of N = 5 fields. We are interested in the
statistics of the curvature perturbation ζ (t, x⃗) at the final time t = t f , when reheating has
completed (all fields have decayed). Field φi (represented in Fig. 3.1 by its energy density ρi)
is labelled according to its decay time ti, where i = 1,2, . . . ,N and t1 < t2 < .. . < tN . With

1Schematically, for example, consider inflaton interactions in the form Sφ ,int ∈
∫

d4x
√−g(−σφψ2) where

ψ is some scalar decay product. To tree-level order, for decay products lighter than the infaton quanta, the
decay rate can be defined as Γφ→ψψ = σ2/(8πm) where we assumed the inflaton potential to be V = m2φ 2/2
for illustrative purposes. The decay rate determines the time evolution of the inflaton quanto at some fixed co-
moving volume d(a2nφ̄ )/dt =−Γa3nφ̄ where nφ̄ = ρφ̄/m and hence, a3(t)nφ̄ (t)∼ exp(−Γt). This additional
exponential decay can be taken into account by including the friction term in Eq. (3.7) and the source term in
Eq. (3.6) (see e.g. [166] and references therein).
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this notation, the final time t f = tN . Our derivation in this section is a generalization of the
methods described in Refs. [172, 180, 139].

The underlying assumption of the sudden decay approximation is that the fields decay
instantly into radiation when the Hubble rate becomes equal to the decay rate H(ti) = Γi,
which defines the decay time ti. Furthermore, the decay hypersurfaces are taken to be surfaces
of uniform energy density, upon which

ρ̄tot(t1) = ρ̄φ (t1) =
N

∑
i=1

ρi(t1, x⃗) , (3.8)

ρ̄tot(t j) = ργ(t j, x⃗)+ρφ (t j, x⃗)

=
j−1

∑
i=1

ρ
γ

i (t j, x⃗)+
N

∑
i= j

ρi(t j, x⃗) , j ≥ 2 , (3.9)

where ρi(t j, x⃗) = ρ̄i(t j)+δρi(t j, x⃗) and ρ
γ

i (t j, x⃗) = ρ̄
γ

i (t j)+δρ
γ

i (t j, x⃗). Here, ρφ denotes the
total energy density stored in the oscillating scalar fields, and ργ denotes the total energy
density stored in the decay products

ρφ = ∑
i

ρi , ργ = ∑
i

ρ
γ

i . (3.10)

Our first task is to determine how the individual curvature perturbation, ζi, associated with
field φi, passes its fluctuation over to its decay product, ζ

γ

i . Within the confines of the sudden
decay approximation this conversion is instantaneous. In the absence of interactions, fluids
with barotropic equation of state, such as dust–like oscillating scalar fields and their radiation
fluid decay products, have an individually conserved curvature perturbation [165, 172]

ζi = δN +
1
3

∫
ρi(t ,⃗x)

ρ̄i(t)

dρ̃i

ρ̃i +Pi(ρ̃i)
. (3.11)

Here, δN is the perturbed amount of expansion, which, working within the separate universe
assumption [164, 165], is equivalent to the difference in curvature perturbations measured
from an initial flat hypersurface, up to one of constant energy density: δN = ζ . In this
notation, fluctuations are purely adiabatic if ζi = ζ for all constituents of the Universe.

From this point on, all unbarred quantities will have an implicit dependence on position,
while barred quantities have no spatial dependence. With Pi = 0 (relevant for the dust–like
oscillating scalar fields before they decay), and Pγ

i = ρ
γ

i /3 (for the radiation decay products)
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Figure 3.1: A typical “sudden decay” energy diagram illustrating the decay of N = 5 fields. After the
fields leave slow roll (blue sold lines) they begin to oscillate about their quadratic minima, their energy
density scaling as a−3 (back sold lines). When H(ti) = Γi field φi decays instantly into radiation (red
dashed lines) which scales as a−4 [12].

we can easily perform the integral in Eq. (3.11) to find:

ρi(t j) = ρ̄i(t j)e3(ζ1(t1)−ζ (t1)) , i ≥ j , (3.12)

ρ
γ

i (t j) = ρ̄
γ

i (t j)e4(ζ γ

1 (t1)−ζ (t1)) , i ≤ j . (3.13)

The i ≥ j and i ≤ j conditions reflect the fact that the decay products do not exist until the
field has decayed. We have retained the explicit t j dependence for the individual ζi for clarity,
but it is to be understood that ζi is conserved between tosc

i ≤ t ≤ ti, where tosc
i is the time then

the field φi begins to oscillate.

Making use of Eqs. (3.8) and (3.12), we have on the first decay hypersurface:

1 =
N

∑
i=1

Ωi(t1)e3(ζ1(t1)−ζ (t1)) , Ωi(t1)≡
ρ̄i

ρ̄φ

∣∣∣∣∣
t1

. (3.14)

Since decay is instantaneous, ρ
γ

1 (t1, x⃗) = ρ1(t1, x⃗), which, making use of Eq. (3.13), is
equivalent to

ρ̄
γ

1 (t1)e
4(ζ γ

1 (t1)−ζ (t1)) = ρ̄1(t1)e3(ζ1(t1)−ζ (t1)) . (3.15)
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This must hold true even in the absence of fluctuations (where ρ̄
γ

1 (t1) = ρ̄1(t1)) and so

ζ
γ

1 (t1) =
3
4

ζ1(t1)+
1
4

ζ (t1) . (3.16)

This expression provides the matching condition for the curvature perturbation on surfaces of
uniform ρ1 and uniform ρ

γ

1 either side of the decay time t1, and straightforwardly generalises
to all subsequent decay times:

ζ
γ

i (ti) =
3
4

ζi(ti)+
1
4

ζ (ti) . (3.17)

Having determined these matching conditions, we seek an expression for the total curvature
perturbation at time tN . This is straightforward to obtain by repeating the above calculation
for all subsequent decay times. Using Eqs. (3.13) and (3.9), we find, for j ≥ 2:

1 =
j−1

∑
i=1

Ω
γ

i (t j)e4(ζ γ

i (t j)−ζ (t j))+
N

∑
i= j

Ωi(t j)e3(ζi(t j)−ζ (t j)) , (3.18)

where

Ωi(t j) =
ρ̄i

ρ̄γ + ρ̄φ

∣∣∣∣∣
t j

, Ω
γ

i (t j) =
ρ̄

γ

i
ρ̄γ + ρ̄φ

∣∣∣∣∣
t j

. (3.19)

Eq. (3.18) constitutes a non–linear expression for ζ (tN , x⃗) if one takes j = N . In order
to solve Eq. (3.18) for ζ (tN , x⃗), we proceed perturbatively. Expanding to first order and
rearranging slightly:

ζ (t j) =
4
3

j−1

∑
i=1

ri jζ
γ

i (t j)+
N

∑
i= j

ri jζi(t j) , j ≥ 2 , (3.20)

where we have defined the ‘sudden decay parameters’

ri j ≡ ri(t j)≡





3ρ̄i
4ρ̄γ+3ρ̄φ

∣∣∣
t j

for i ≥ j

3ρ̄
γ

i
4ρ̄γ+3ρ̄φ

∣∣∣
t j

for i < j .
(3.21)

Since the ζ
γ

i are conserved for t ≥ ti, we may write ζ
γ

i (t j) = ζ
γ

i (ti) for i ≤ j, and use
Eq. (3.17) in Eq. (3.20) to substitute for ζ

γ

i (ti). Similarly, we may write ζi(t j) = ζi(tosc
i ) for
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i ≥ j. Making these two replacements, we find:

ζ (t j) =
1
3

j−1

∑
i=1

ri jζ (ti)+
N

∑
i=1

ri jζi(tosc
i ) . (3.22)

Evaluating this expression for j = N gives us a recursive expression for curvature pertur-
bation at the end of reheating. After some straightforward manipulation, the expression for
ζ (tN ) can be put into a slightly more convenient form:

ζ (tN , x⃗) =
N

∑
i=1

Wi ζi(tosc
i , x⃗) , (3.23)

where

Wi =
N −1

∑
j=0

A j ri(N − j) , (3.24)

and we have defined

A j =
1
3

j−1

∑
k=0

Ak r(N − j)(N −k) , (3.25)

and A0 = 1. Eq. (3.23) is our final expression for the primordial curvature perturbation
at the completion of reheating. It is the statistics ⟨ζ n(tN , x⃗)⟩ of this fluctuation that are
relevant for observation. It is clear from Eq. (3.23) that the effect of reheating (captured
by the weights Wi) is to re–scale the ζi(tosc

i , x⃗). The Wi are functions of the sudden decay
parameters ri j, which can be directly related to the physical decay rates Γi within the confines
of the sudden decay approximation. As discussed in [139], this is one area where the sudden
decay approximation falls short and for this reason we compute the mapping from Γi to ri j

numerically.

Using numerical simulations, the individual curvature fluctuations ζi(tosc
i , x⃗) are determined

completely by the details of inflation (the form of the potential and the field values at horizon
crossing), and do not depend in any way upon reheating. As can be seen from Eqs. (3.23)-
(3.25) once the curvature fluctuations are known, the effect of reheating on the cosmological
perturbations can be calculated using only unperturbed energy densities evaluated at various
times during the reheating phase. In the following section we discuss the calculation of the
curvature fluctuations resulting from inflation.
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3.4 Inflationary Perturbations

Generically, ζi(t, x⃗) will evolve during multi-field inflation until an adiabatic limit is reached,
at which point they become equal and conserved [120, 121, 123]. Whether conservation is
achieved before the end of inflation depends upon the specifics of the inflationary model.
Regardless of these specifics however, it is guaranteed that the ζi(t, x⃗) will (to a very good
approximation) be conserved quantities during the period when field φi is oscillating and
before it has decayed appreciably into radiation. It is therefore sufficient to compute these
quantities at t = tosc

i .

We use the publicly available MULTIMODECODE inflation solver [112–115] to evaluate
the first-order mode equations for each scalar field, without using the slow-roll approximation.
Following the convention of Ref. [181] we expand each of the first-order field perturbations
in terms of a complex valued matrix qi j as

δφ
i(t ,⃗k) = qi j(t,k)â j (⃗k)+q∗i j(t,k)â

†, j(−⃗k) , (3.26)

where (†) and (∗) represent Hermitian and complex conjugation, respectively, and the
creation and annihilation operators satisfy [â j (⃗k)]† = â j(−⃗k) and the canonical commutation
relations. The transformed variable ψi j = qi j/a satisfies the Mukhanov-Sasaki equation of
motion with a “mixed” mass matrix Mi j

d2ψi j

dN2 +(1− ε)
dψi j

dN
+

(
k2

a2H2 −2− ε

)
ψi j +Mimψ

m
j = 0 (3.27)

where

Mi j ≡
∂i∂ jV

H2 +
1

H2

(
dφi

dN
∂ jV +

dφ j

dN
∂iV
)
+(3− ε)

dφi

dN
dφ j

dN
, (3.28)

with ∂i ≡ ∂/∂φi and N is the number of e-folds. We use the Bunch-Davies initial condi-
tion [182] for the transformed variable ψi j ∼ δi j since for modes deep inside horizon k ≫ aH,
the mode matrix φi j obeys the free wave question in conformal time d2

ψi j/dη2 + k2ψi j =

0 [115].

The components of curvature perturbation are defined in the spatially-flat gauge as

ζi(t ,⃗k)≡
H
˙̄ρi

δρi(t ,⃗k) . (3.29)
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The density perturbations δρi(t ,⃗k) are given by

δρi(t ,⃗k) = φ̇i(t) ˙δφ i(t ,⃗k)−
φ̇i(t)2

2H ∑
m

φ̇m(t)δφm(t ,⃗k)+V,iδφi(t ,⃗k) . (3.30)

Similar to the field perturbations, we expand each of the curvature perturbation components
in the same basis by defining a new complex valued matrix ξi j as

ζi(t ,⃗k)≡ ξi j(t,k)â j (⃗k)+ξ
∗
i j(t,k)â

†, j(−⃗k) , (3.31)

and similarly for δρ i(t ,⃗k), which is related to δφ i(t ,⃗k) and its derivatives. Substituting
qi j(t,k) and its derivative into Eq. (3.29) gives

ξi j(t,k) =
q′i j(t,k)

3φ ′
i (t)

− 1
6 ∑

m
φ
′
m(t)qm j(t,k)+

[
V,i(t)

3H2(t)φ ′2
i (t)

]
qi j(t,k) . (3.32)

where (′) is a derivative with respect to e-folds N. A similar expression is available for
ξ ∗

i j(t,k), which is linearly independent of ξi j. We evaluate this quantity by evolving the qi j

(or ψi j) and background quantities numerically as a function of t for a given k.2

We expand ζi(tosc
i , x⃗) in terms of field fluctuations at horizon exit,

ζi(tosc
i , x⃗) =

N

∑
j=1

Ci jδφ j(t⋆, x⃗) , (3.33)

where Ci j is a real matrix. Substituting our δφ i(t ,⃗k) from Eq. (3.26) into Eq. (3.33) gives

ξi j(t,k) = ∑
m

Cim(t)qm j(t⋆,k) . (3.34)

While Eq. (3.34) is not invertible for general qm j, we match to the slow-roll approximation
above by first discarding the off-diagonal elements of the perturbation matrix qi j at horizon
crossing and define a vector v j(t⋆,k) as

qi j(t⋆,k)≡ diag[v1(t⋆,k), . . . ,vN(t⋆,k)] . (3.35)

2For more details of the numerical methodology see Ref. [115].
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Figure 3.2: Timeline of inflation and reheating. The method we describe numerically evolves the
perturbed scalar field equations until all fields have begun oscillating, after which we switch to
evolving unperturbed fluid equations [12].

Since qi j is complex and Ci j is real, we take

Ci j ≈−sgn(Re[qi j])
|ξi j(t,k)|

|v j|
, (3.36)

where the overall sign is chosen to match the two-field results of Ref. [139].

With this, we have all the ingredients to relate the curvature fluctuations at the end of reheat-
ing to the quantum fluctuations during inflation as in Eq. (3.2) where using Eqs. (3.23) and (3.33),
the derivative of the number of e-folds of expansion can now be written as

N,i = ∑
j

WjC ji . (3.37)

3.5 Numerical implementation

While the recursive definition of the reheating parameters introduced in Sec. 3.3 require
solving numerically the homogeneous background equations until the end of reheating, it is
sufficient to evolve the field fluctuations only until a few e-folds into the phase of coherent
oscillations, after which the curvature perturbations of the fields ζi(tosc

i ,x) are individually
conserved. The prescription for solving such a system of equations will typically involve
evolving first the background equations in order to determine the number of e-foldings N⋆

at which the pivot scale (which we take to be kpiv = 0.05 Mpc−1) leaves the horizon during
inflation, and then the first order fluctuations for each field from deep inside the horizon until
the time where the curvature perturbations are conserved. Note that since we mainly want
to explore the impact of reheating on inflationary observables, we will sample from many
different Γi distributions while keeping the parameters describing the inflationary model
unchanged. Hence this approach is quite inefficient for our purposes, as it requires solving
for the inflationary dynamics as well as reheating for each assignment of decay parameters
Γi. Instead in this work we have chosen to solve the inflationary fluctuations on a grid of N⋆
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values in the range N⋆ ∈ (40−60) and perform a local linear fit to determine3 the individual
elements of the Ci j matrix in Eq. (3.36) for a given N⋆.

Following the methods outlined in MULTIMODECODE [112–115], we first solve the Klein-
Gordon equations for the homogeneous background fields with initial conditions φi,0 which
determines the field-space positions at the end of the inflation defined by ε = 1. We then
continue evolving the background fields after the end of inflation, well into the oscillatory
phase. For the simulations in this chapter, we have evolved the field equations until each
field φi has crossed its minimum 5 times, although the exact number does not effect the
results significantly after each field has oscillated a few times. Knowing the times for the
end of inflation and the onset of coherent oscillations, the Ci j matrix can be calculated by
evolving the mode equations as described in Sec. 3.4 for a given value of N⋆. We calculate
the Ci j matrix during the oscillatory period and evaluate the average of the maximum and
minimum values for each Ci j matrix entry. We use this averaged Ci j matrix in calculating
the observables. For the reasons explained above, we repeat this step multiple times while
varying the quantity N⋆.

Since the exact value of N⋆ and the normalization of the potential V⋆ will depend on the
details of reheating, we first solve the post-inflationary dynamics for some fiducial values V fid

⋆

and Nfid
⋆ . We calculate the Wi array by solving the scalar field equations for the background

solution, using the end-of-inflation values φi,end as the new initial conditions. Once a field φi

has crossed the minimum of its potential, we turn on the decay term in its equation of motion,
which sources the corresponding radiation fluid ρ

γ

i for that field. After all the fields have
passed through their potential minima and started decaying into radiation, we stop evolving
the Klein-Gordon equations and switch to a fluid description with equations of motion

ρ̇i +3Hρi = −Γiρi

ρ̇
γ

i +4Hρ
γ

i = Γiρi , (3.38)

with the Hubble rate given by the Friedmann equation

3H2 = ∑
i
(ρi +ρ

γ

i ) . (3.39)

Note that the fluid densities have a mild dependence on when this transition is implemented,
but the change to observables is negligible compared to the full range of predictions. We

3In order to smooth the small round-off error in our simulations, and to capture the underlying scaling with
N⋆, we linearly fit the Ci j matrix elements from the elements of the calculated grid within ±1 e-fold of the
desired N⋆.
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allow this fluid simulation run until all matter fluids have decayed into radiation. From the
results of this numerical evolution, we are able to read off the quantities we need to apply the
sudden decay approximation and determine the final curvature perturbation in the adiabatic
limit at the end of reheating. Each time a decay rate becomes equal to the Hubble rate Γi = H,
we evaluate the sudden decay parameters ri j described in Sec. 3.3. After all the fields have
decayed into radiation, we assume that all decay products quickly come to thermal and
chemical equilibrium. The solutions will then rapidly approach the adiabatic limit, and we
can calculate the curvature perturbation and its power spectrum as described in Eq. (3.2) and
Eq. (3.3). This calculation results in a scalar amplitude given by Pfid

ζ
which then needs to be

rescaled to match observations.

The amplitude of the scalar fluctuations is fixed by the observations of the CMB anisotropies
to be PCMB

ζ
≈ 2.142×10−9 [183]. We rescale the inflationary potential in order to set the

power spectrum calculated in Eq. (3.3) equal to this value. The relative quantities transform
under the rescaling of the potential as V → αV follows:

ρ → αρ , H → α
1
2 H , Pζ → αPζ , ζ → α

1
2 ζ , (3.40)

where the scaling for our purposes is α = PCMB
ζ

/Pfid
ζ

. Having solved the dynamics of
reheating, we also know from Eq. (2.54) the quantity

ln
areh

aend
= Nreheat . (3.41)

Rescaling the potential in order to match the CMB observations in turn fixes the remaining
quantities in Eq. (2.54) where N⋆ (for a given k⋆) now takes an exact value (see Fig. 3.2 for a
sketch of the timeline). We then fit the Ci j matrix elements corresponding to the calculated
N⋆ from the grid of Ci j matrices we already calculated. This rescaling step after solving
the dynamics of reheating is repeated for all simulations. Having determined the value N⋆,
the corresponding Ci j matrix and the Wi array, we calculate the power spectrum and the
cosmological observables as described in Sec. 3.2.
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3.6 A Case Study

We consider inflation with canonical kinetic terms, a minimal coupling to Einstein gravity
and N -quadratic potential,

S =
∫

d4x
√−g

(
R
2
−∑

i

1
2

gµν
∂µφi∂νφi −∑

i
m2

i φ
2
i

)
, (3.42)

a model which has been studied extensively elsewhere, e.g. [184–192]. We study the regime
where one (or a few) field(s) dominates the energy density during inflation while the rest
remain sub-dominant. We achieve this by setting the field masses mi and initial field positions
φi,0 to be distributed linearly in log-space with equal spacing and the same ordering. In
this regime the impact of reheating on the inflationary predictions is maximized when the
sub-dominant fields get assigned smaller decay parameters, hence scaling like matter for
a longer period, dominating the contributions to the curvature perturbation at the end of
reheating. In our simulations we kept the ratio between the maximum and minimum masses
constant and equal to mmax/mmin = 103 and fixed the initial field positions to be in the range
[10−3,20] Mpl.

We are interested in determining how reheating impacts two-point statistics for a wide
range of decay rates, and so we sample the very large parameter space as follows. First, we
take the decay rates to be determined by the mass hierarchy as

Γi := 10−4Hend

(
mi

mmax

)α

, (3.43)

where Hend is the Hubble parameter at the end of inflation, for some choice of the parameter
α . Next, we perform a permutation σi on this first set of decay rates randomly chosen from
the N ! possible permutations in order to generate another set Γi = σi(Γ). We perform this
same procedure for several choices of the parameter α which allows us to adjust the hierarchy
between the decay parameters. In all cases, the minimum decay rate is bounded from below
by Big Bang nucleosynthesis which constrains the energy scale at the end of reheating to
be larger than about 4 MeV, and perhaps higher if fields decay into hadrons [193, 194], and
the maximum decay rate is constrained by the validity of sudden decay approximation to
be less than the Hubble parameter at the end of inflation Γmax < Hend. Note that increasing
(decreasing) the value of the maximum decay constant Γmax will in turn increase (decrease)
the value of N⋆ that satisfies Eq. (2.54). The results shown in this chapter have values of N⋆

lower than the instant reheating case, in the range N⋆ ∈ (45−55).
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Figure 3.3: The effect of reheating on the scalar spectral index ns and tensor-to-scalar ratio r for the
case study in Sec. 3.6 with N = 5 fields with kpiv = 0.05 Mpc−1. Colored circles show the results
from simulations for a particular choice of decay rates Γi, chosen as described in text following
Eq. (3.43). Each line (in gray) connects the results from simulations with an identical ordering of Γi

values while the parameter α which determines their spacing is varied in the range α ∈ [0, 22
3 ] in 50

steps. We plot the results from all possible 120 permutations of Γi. The colors mark the field that has
the largest N,i at the end of reheating, for a particular simulation (except for the circles with lighter
color, which highlight the simulations with the most energetic φA field still having the largest N,i,
although a second field is within 50% of N,φA). The labeling of the fields is ordered with respect to
their energy densities at the end of inflation ρi(tosc) where φA has the largest energy density and φE

has the smallest [12].

Fig. 3.3 demonstrates the effect of reheating on the two-point observables, the spectral
index ns and the tensor-to-scalar ratio r. The results from numerical simulations described
in Sec. 3.5 are plotted with colored circles. Each line (in gray) connects the results from
simulations with the decay rates assigned with the same permutation while the parameter α
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is varied in the range α ∈ [0, 22
3 ]. The colors of the circles indicate the field with the largest

measured N,i for that simulation. As shown in Eq (3.23), this parameter depends on two
quantities, the Ci j matrix and the Wi array which operates on this matrix.

For the N -quadratic case study, Ci j matrix has a simple structure where its diagonal
elements are significantly larger than its off-diagonal elements. Since fluctuations grow larger
in the less massive field directions, the values of the diagonal elements associated with these
fields are also larger. Hence, for this study, the subset of simulations where reheating has
a significant impact on observables are ones with particular Γi assignments resulting in the
corresponding Wi arrays to preferentially dampen contributions from the heavier fields, while
enhancing those from the lighter fields. These simulations are shown with varying colors in
Fig. 3.3 where a large impact on observables is obtained when contributions from the lighter
fields φC,D,E are enhanced.

For most choices of decay rates, the predictions for ns and r lie very close to the predictions
of a model with a single scalar field in a quadratic potential. The predictions that deviate
from this result essentially interpolate between a single field regime and a curvaton-like
scenario where a given sub-dominant field dominates the effect on observables, resulting
in predictions to asymptotically converge on narrow lines of ns and r predictions, as can be
seen in Fig. 3.3. The values of the observables corresponding to these lines depend on the
masses and values of the fields at horizon crossing, or in other words, on the details of the
inflationary model. The total range of predictions in these scenarios therefore depends on the
choice of the inflationary model parameters.

Fig. 3.4 summarizes our results for the N -quadratic inflation case study with perturbative
reheating and sudden decay approximation. Obtained values for the spectral index ns and
tensor-to-scalar ratio r for simulations with N = 5, 15, 35, 65 fields are plotted with
the Planck 2015 contours [50] with the pivot choice kpiv = 0.05 Mpc−1 and the theory
predictions for the single-field quadratic inflationary potential. In populating the ns − r plane,
we show results for the Γi chosen from all 120 permutations for the models with 5 fields, and
for N ≥ 15 we show only the results where the Γi are ordered similarly to the field masses.4

The density of points in this figure does not represent a simple measure on the input mi and Γi

parameter space, but are chosen to highlight the wide range of observable parameter values
accessible in these scenarios. Most of the possible permutations, which are outside this set,
fall near the quadratic inflation predictions (solid black line).

4This is an exceedingly small subset of all possible permutations for a model with many fields, N ≫ 2.
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Figure 3.4: The predictions of the N -quadratic inflation case study described in Sec. 3.6 for the
scalar spectral index ns and tensor-to-scalar ratio r from the sudden decay approximation, plotted
with the Planck 2015 constraints using kpiv = 0.05 Mpl−1 and assuming zero running. Dashed lines
show the predictions from single-field inflation models with monomial potentials where the pivot
scale exits the horizon 50 or 60 e-folds before the end of inflation (denoted by N⋆). The thick black
line is the prediction of single-field quadratic inflation. The colored points are the results from our
simulations with N = 5, 15, 35 and 65 fields. See Sec. 3.6 for the details of how the decay rates are
chosen. Note that only a small subset of possible choices of the decay rates leads to predictions which
differ significantly from the single-field case. In particular, for simulations with a large number of
fields N ≥ 15, only scenarios in which the decay rates share nearly the same hierarchy as the masses
lead to predictions with very low r [12].

3.7 Discussion

We have developed a method to treat the impact of reheating on observables following
multiple-field inflation. We have shown how to treat the effects of reheating semi-analytically,
greatly reducing the computational cost to make definite predictions with multiple-field
models.

Our results focused on one specific form for the inflationary potential, although our
method applies much more broadly. Multiple-field models of inflation have a very rich
parameter space which remains largely unexplored. The techniques described in this work
allow for a thorough exploration of this space, including the potentially very important
impact of reheating following multiple-field inflation, as has recently been done for a set of
two-field models [195–197]. We restricted numerical results to N -quadratic inflation with
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specific choices for both the hierarchy of masses and the initial conditions. We showed that
reheating can have an effect on the predictions of multiple-field inflation. For the scenarios
we studied, reheating has a significant impact on observables only when the lightest fields
are assigned very low decay rates (this is the case that realizes curvaton-like behavior). For
choices of parameters where this relation is not present we found almost no sensitivity of the
primordial curvature perturbation to the physics of reheating (apart from the dependence on
N⋆ which is present even in single-field models). At large N we therefore found only a very
small fraction of the tested scenarios exhibited sensitivity to reheating. Different choices of
parameters would lead to a different set of perturbations predicted at the end of inflation,
and also a different range of predictions for observables following reheating. Our focus has
been on exploring a restricted set of initial conditions and model parameters but it would be
interesting to perform a statistical analysis of the model as described in [145].

Looking beyond N -quadratic inflation, our method requires only that scalar fields oscillate
about quadratic minima, but there is nothing about our technique that restricts the form of
the potential away from the minimum, and in fact a straightforward extension of the methods
presented here would allow treatment of non-quadratic minima as well. The effects of
reheating are expected to be greater than those shown here for more general choices of
potential [139, 196].

While the need to include a detailed model of reheating makes multiple-field models of
inflation inherently more complicated, the dependence of observables on the reheating phase
also presents an opportunity. Very little is known about how reheating took place, though
the sensitivity of observables to reheating following multiple-field inflation may allow more
information to be gleaned about this weakly constrained phase of the cosmic history than is
possible for single-field models [198, 132, 199, 200, 197].

We focused here on the two-point statistics of curvature perturbations, though it would be
very interesting to extend our results to include the study of primordial non-Gaussianity [201].
Unlike single-field inflation models, multiple-field inflation models are capable of producing
detectable levels of local-type non-Gaussianity [202, 203], therefore making calculation of
higher-order statistics a natural next step for the tools we have developed here. Treatment of
non-Gaussianity would require carrying out calculations to the next order of perturbation
theory, but the general techniques spelled out here should apply without much modification.

Reheating is a necessary component of any successful inflationary model. For single-field
inflation the predictions of observables are sensitive only to the integrated expansion history
during reheating. However, the details of reheating following multiple-field inflation have an
important and direct impact on the evolution of cosmological perturbations, and therefore
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must be treated carefully when predicting the observable outcomes of these models. We
presented here a method to make this treatment tractable.





Chapter 4

Review of CMB Secondary Anisotropies

Upcoming surveys of the cosmic microwave background (CMB) including those by Simons
Observatory [204] and CMB-S4 [205] and galaxy surveys such as the Dark Energy Survey
(DES) [206] and the survey by the Large Synoptic Survey Telescope (LSST, a.k.a. Vera C. Ru-
bin Observatory) [207], will provide new opportunities for novel cosmological measurements.

In particular, by using the CMB as a cosmological backlight, secondary anisotropies
induced by the interaction of CMB photons with structure along the line of sight, such as
the weak gravitational lensing by large-scale structure (see [13] for a review); the integrated
Sachs-Wolfe (ISW) [208] and Rees-Sciama effects [209], describing the process by which
time-dependent gravitational potentials alter the energy of CMB photons; and the Sunyaev-
Zel’dovich (SZ) effect [210–214], whereby CMB photons undergo Compton scattering with
free electrons in galaxy clusters and the intergalactic medium, allow for new methods to
study the history and evolution of the Universe and there is evidence that the measurement
of these small-scale secondary anisotropies will provide strong constraints on a multitude
of cosmological signatures (see e.g. [215–220, 17]). The statistics of these secondaries and
their cross-correlations with large-scale structure (LSS) surveys carry information about
cosmological fluctuations on large scales. Utilising this information will be instrumental in
future tests of the standard ΛCDM paradigm.

In this chapter I aim to give a brief pedagogical introduction to CMB secondaries I
will discuss in what follows. Similar to Chapter 2, I follow seminal textbooks on modern
cosmology [1–4], as well as various review articles and lecture notes including [5–10] as
well as [e.g. 221, 13, 14]
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4.1 Integrated Sachs-Wolfe effect

The integrated Sachs-Wolfe (ISW) effect is an additional source of anisotropy due to the first
term on the right-hand side of Equation (2.83). If the gravitational potentials vary along the
line of sight, photons traversing these potentials get redshifted or blueshifted. In a Universe
where the gravitational potentials are static, the net ISW effect on the CMB photon then just
depends on the difference of the gravitational potential between end points.

On large scales, well-described by linear theory, a significant ‘linear’ ISW contribution
to the CMB may be soured, however, during the times when gravitational potentials in the
Universe evolve as a result of cosmic-expansion on large-scales, for example. In the late
Universe, as non-linear structures form, the ISW effect also associated with the Rees-Sciama
and the moving-lens effects.

4.1.1 Linear ISW

The linear ISW effect is often separated into early- and late-time ISW effects. The former is
due to the evolution of the potentials around recombination as the gravitational potentials
evolve during radiation domination until the radiation-matter equality. The effect of the early
ISW is to enhance the first peak in the CMB. Later during the matter-dominated era the
gravitational potentials do not evolve and no ISW is sourced.

When dark-energy starts dominating in the late Universe, the gravitational potentials
once again evolve giving rise to the late-time ISW effect. The late time ISW effect can be
generated by a cosmological constant, dark energy [222], spatial curvature [223] or modified
gravity [224]. The ISW effect preserves the same black-body spectrum of the CMB photons.
The late-time ISW effect provides a unique window into measuring the matter distribution
and the growth of structure from the large-scale CMB fluctuations.

Due to limitations of cosmic-variance, the ISW is measured by cross-correlation with a
tracer of the large-scale structure such as a galaxy catalogue or weak-lensing measurements.
These measurements of the ISW signal alone constrain the dark energy density parameter
ΩΛ, to be near ≃ 0.7, for example, as well as give upper limits of a few percent for the spatial
curvature ΩK .
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4.1.2 Non-linear ISW

The non-linear ISW effect can be sourced on small scales at second order in perturbation
theory by the non-linear growth of structure. The collapse of structure leads to a changing
gravitational potential on the trajectory of the passing CMB photons. If the evolution of the
gravitational potential is non-negligible compared to the photon crossing time, a net effect of
a blue or redshift can be left on the CMB.

The prediction of the non-linear ISW effect due to non-linear clustering of structure, named
the Rees-Sciama (RS) effect, was first pointed out in [225]. The RS effect has been studied
in the literature for its potential contamination of the primary anisotropies and has been
understood to be a sub-dominant effect on all scales (see e.g. [226]).

For an isolated gravitational potential of a collapsed structure like a DM halo, a similar
non-linear ISW effect is sourced by the time-evolution of the gravitational potential due
to the peculiar velocity of the object. This was shown first by [227] and been named the
Birkinshaw-Gull or ‘moving-lens’ effect. While the effect on the CMB anisotropies is small,
measurement of this effect can nevertheless potentially give a unique probe of the bulk
transverse velocity of the cosmological structure. Prospects of reconstructing the transverse
velocity field from measurement of the moving lens effect has been studied in detail recently
in [15], whose results I present in Chapter 5.

4.2 Sunyaev-Zel’dovich effect

One of the most well-studied CMB secondaries is the Sunyaev-Zel’dovich (SZ) effect [213],
which is a modulation in the apparent brightness of the CMB photons traversing clusters of
galaxies in the hot intergalactic medium. The SZ effect is caused by the Thomson interaction
between the photons and the free electrons in the hot ionised gas. Early works on Thomson
scattering in cosmology include [228]. The most studied types of SZ effect are the thermal
SZ (tSZ) effect, where photons are scattered by random motions of the thermal electrons; the
kinetic SZ (kSZ) effect, which is sourced by the remote dipole due to the bulk motion of the
electrons; and the polarised SZ (pSZ) effect, due to the remote quadrupole moment seen by
the electron.
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4.2.1 The thermal SZ effect

In late Universe, the temperature of the traversing CMB photon reduces due cosmic to
expansion below much less than the gas temperature, which gets heated up to around a few
keV in galaxy clusters. In average, hence, CMB photons gain energy from scattering off free
electrons in hot plasma. The net fractional change in the effective temperature of the photon
satisfies [221],

Θ(n̂;ν) = y(n̂)
[(

hν

kBTCMB

)]
coth

(
hν

2kBTCMB
−4
)
, (4.1)

where y(n̂) :=(σT/mec2)
∫

pedχ , me is the electron mass, ν is the frequency, and pe = nekBTe

is the electron pressure profile on the line of sight. It is clear from Eq. (4.1) that the tSZ
effect has a characteristic frequency dependence different than the black-body CMB, which
makes the prospects of detecting (and mapping) the Compton-y signal significantly higher.
The thermal SZ effect has been measurement by a multitude of CMB experiments. The
Equation (4.1) is calculated by solving the Kompaneets equation [229] in the non-relativistic
limit for electrons, i.e. xe := kbTe/mec2 ≪ 1. Eq. (4.1) determines how the observed photon
occupation number changes due to scattering of the CMB.

The distinct frequency-dependence of the non-blackbody spectral distortion generated
by the tSZ effect can be used to extract information from multi-frequency datasets both at
the spectra level and also by reconstructing Compton-y maps, which contain a lot of new
information due to the non-Gaussianity of the tSZ [230–238, 229].

The tSZ signal is very sensitive to a multitude of cosmological parameters that affect by
the growth of galaxy clusters (see e.g. [239, 240]). These parameters include the density of
the total matter fluctuations Ωm and σ8, which can both be constrained via modelling and
the measurement of the tSZ power-spectrum amplitude or the statistics of the Compton-y
field as well as the tSZ cluster number-counts. Furthermore, external measurements of
gas temperature of the intercluster medium from X-ray surveys, for example, the redshift-
independent physical sizes of cluster can be used to measure H0. Related, by similarly
constraining the halo or cluster mass-function, measurements of tSZ can be used as tool to
constrain dark energy models (see e.g. [241]).

The use of tSZ as a probe for cosmology, however, is made difficult by the strong depen-
dency of the tSZ signal on the astrophysical modelling of the cluster medium and feedback
processes. Since the tSZ amplitude is determined by the pressure integrated along the line-
of-sight, its sensitive to the depth of the dark matter wells, the temperature of the gas in the
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well and the surrounding environment, which are sensitive to radiative cooling and galaxy
formation processes, for example. These astrophysical effects can significantly affect the
measured amplitude and the shape of the tSZ signal (see e.g. [242–246]).

Finally, the tSZ effect is also an important confusion factor for the measurement of the
primary CMB temperature anisotropy on small scales. The CMB experiments largely remove
the tSZ contamination from the maps by multi-frequency observations mentioned above.
Improving the accuracy of tSZ removal from the CMB observations remains a quintessential
part of all ongoing and upcoming CMB experiments.

4.2.2 The kinetic SZ effect

Complementary to the tSZ effect discussed above, the doppler boost on the CMB photons
due to the velocity of the scattering electron in the hot gas generates the kSZ effect. At
leading order the kSZ effect preserves the black-body spectral shape of the CMB. At the
non-relativistic limit, the scattering of CMB photons leads to a Doppler shift in intensity and
temperature. The kSZ effect provides the dominant source of temperature anisotropies on
small angular scales (ℓ > 4000). The anisotropy induced by the kSZ effect in the n̂ direction
on the sky is

Θ(n̂)kSZ =−σT

∫
dχa(χ)ne(χn̂)veff(χn̂) , (4.2)

where the remote CMB dipole projected along the line of sight is defined as

veff(χn̂) = 3
∫ d2n̂e

4π
Θ1(χn̂, n̂e)n̂ · n̂e . (4.3)

On small scales, the dominant contribution to the remote dipole field can be approximated
by the Doppler term induced by the Newtonian peculiar velocities veff ≃ v⃗pec · n̂, while on
larger-scales contributions from the Sachs-Wolfe, integrated Sachs-Wolfe and primordial
Doppler effects can be important. In order to probe the large scales accurately, it is therefore
important to include these effects. A complete description of the contributions to the remote
dipole field can be found in Refs. [247, 248]. Most of the cosmological information is
contained in veff, while ne depends primarily on astrophysics and non-linear large scale
structure; see Ref. [249] for a detailed discussion of this point.

First detected in [250] using the pairwise-velocity method, the kSZ effect has been detected
to high significance from a multitude of cosmological experiments [251–256, 246]. The
upcoming CMB experiments Simons Observatory (SO) and CMB-S4, combined with large-
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scale structure surveys, are anticipated to increase the detection significance of the kSZ
effect by up to a factor of 100 and 1000, respectively. Motivated with these upcoming
advancements, I discuss various potential directions towards doing fundamental science with
the kSZ measurements in Chapter 6.

4.2.3 The polarised SZ effect

The polarised Sunyaev-Zel’dovic effect is induced by the primordial quadrupole, which
provides the dominant contribution, as well as by the quadrupole induce by the peculiar
motion of the cluster (i.e. kinematic quadrupole). The polarised Sunyaev Zel’dovich effect
was introduced in [213] and more analysis and higher order corrections to the signal was first
done in [257–259]. The value in measuring the pSZ effect was also discussed in [260].

The Stokes parameters Q, U and V that are measured in CMB observations in a coordinate
frame centred on the observer can be projected onto a 2-sphere with unit vectors {θ̂ ,−φ̂}
in the plane perpendicular to line of sight direction n̂, using polarisation vectors e±(n̂) =
(θ̂ ∓ iφ̂)/

√
2. The resulting complex CMB polarisation along the line of sight takes the form

of an integral in conformal time η ,

(Q± iU)(n̂) =
∫

η⋆

η0

dητ̇(η)e−τ(η)p±(n̂,η) , (4.4)

where η0 is today, η∗ is the conformal time at the last scattering, τ is the mean optical
depth along the line of sight. I write the cluster optical depth at redshift z(η) along n̂ as
δτ(n̂,η) = σT aδne(n̂,η). The polarisation induced by scattering in a cluster can then be
written as

(Q± iU)(n̂) = δτ(n̂)p±(n̂) , (4.5)

where I omit the η dependence. Isolating the polarisation source function, one gets

p±(n̂) = δτ
−1(n̂)(Q± iU)(n̂) , (4.6)

which can be expanded into spin-2 spherical harmonics as

p±(n̂) = ∑
ℓm

∓ap
ℓm ∓2Yℓm(n̂) , (4.7)
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where I note that (Q± iU)(n̂) in this formalism is spin ∓2 due to the choice of coordinate
frame centred at the observer with scattered photon travelling in the −n̂ direction. The
detailed studies of the relevant signals, including both the primordial and the kinematic
quadrupoles include [e.g. 261–263]. In Refs. [e..g 264, 265] authors also use simulations
to analyse the pSZ effect. Further studies include [266, 267]. More attention was given to
detection prospects in [268, 230, 269] and the method of pSZ tomography. pSZ tomography
aims to reconstruct Eq. (4.7) from measurements of CMB was further developed in [e.g. 270,
248, 271]. pSZ reconstruction is proposed as a probe of large-scale [218] CMB anomalies,
of the power asymmetry in the cross-correlation between E or B mode polarization [270]
and the reionization history in [271], for example.

4.3 Weak gravitational lensing

4.3.1 Lensing potential

The weak gravitational lensing of the CMB is the deflection of the CMB photons by the
large scale structure in the form given in Equation (2.125) (see [13] for a review). The
deflection angle α⃗ := ∇φ , parameterised by the lensing potential φ under the approximation
that the lensing field is a pure gradient, can be found by evaluating the equations of motions
governing photon momentum 4-vector in spherical harmonic coordinates, and integrating the
deflection angles along the photon’s geodesic. It satisfies

φ =−2
∫

χ∗

0
dχ

fK(χ∗−χ)

fK(χ∗) fK(χ)
ΨW (χn̂;η0 −χ) , (4.8)

where ΨW = (Ψ+Φ)/2 is the Weyl potential. In the remainder of this section I omit the
subscript ‘W ’ and use Ψ for the Weyl potential for brevity. The parameter fK(χ) is the
angular-diameter distance which depends on the curvature of the Universe, and is given by

fK(χ) =





K−1/2 sin(K1/2χ) for K > 0 (closed) ,

χ for K = 0 (flat) ,

|K|−1/2 sinh(|K|1/2χ) for K < 0 (open) .

(4.9)

I will in general approximate the Universe as flat, setting fK(χ) = χ in what follows.



90 CHAPTER 4. REVIEW OF CMB SECONDARY ANISOTROPIES

The lensing potential power-spectrum can also be written as

Cφφ

ℓ = 16π

∫ dk
k

∫
χ∗

0
dχ

∫
χ∗

0
dχ

′

×PΨ(k;η0 −χ,η0 −χ
′) jℓ(kχ) jℓ(kχ

′)
(

χ∗−χ

χ∗χ

)(
χ∗−χ ′

χ∗χ ′

)
,

(4.10)

which directly trace the gravitational potential, which can be related to the power-spectrum of
the density perturbations using the Poisson equation defined in Eq. (2.33). Assuming either
dark matter or dark energy domination, using the Poisson equation ∇2Φ ≃ 4πGδρ with the
Newtonian gauge and assuming vanishing anisotropic stress this relation can be shown to
satisfy,

PΨ(k,η) =
9Ω2

m(η)H4(η)

8π2
P(k,η)

k
, (4.11)

where P(k,η) is the matter power spectrum. If measured, the lensing potential can provide
an invaluable tool for inferring the matter distribution in the Universe (see e.g. [13]).

4.3.2 Lensed CMB temperature

To a good approximation on large scales, the deflection due to lensing can be expanded in a
Taylor series

Θ̃(⃗x) = Θ(⃗x′) = Θ(⃗x+ ∇⃗φ)

≃ Θ(⃗x)+∇
a
φ (⃗x)∇aΘ(⃗x)+

1
2

∇
a
φ (⃗x)∇b

φ (⃗x)∇a∇bΘ(⃗x)+ . . . ;
(4.12)

and making the flat sky approximation and up to first order in φ , the lensed temperature in
2D Fourier space can be given as

Θ̃(⃗ℓ)≃ Θ(⃗ℓ)−
∫ d2ℓ⃗′

2π
ℓ⃗′ · (⃗ℓ− ℓ⃗′)φ (⃗ℓ− ℓ⃗′)Θ(⃗ℓ′)

−
∫ d2ℓ⃗′

(2π)2
d2ℓ⃗′′

(2π)2 ℓ⃗
′ · (⃗ℓ′+ ℓ⃗′′− ℓ⃗)⃗ℓ′ · ℓ⃗′′Θ(⃗ℓ′)φ (⃗ℓ′′)φ (⃗ℓ′+ ℓ⃗′′− ℓ⃗) ,

(4.13)

The power-spectrum of the lensed CMB then takes the form

C̃Θ

ℓ ≃ (1− ℓ2
σ

2
φ )C

Θ

ℓ +
∫ d2ℓ⃗′

(2π)2

[
ℓ⃗′ · (⃗ℓ− ℓ⃗′)

]2
Cφφ

|⃗ℓ−ℓ⃗′|C
ΘΘ

ℓ′ , (4.14)
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where I defined

σ
2
φ :=

1
2
⟨|∇φ |2⟩=

∫ dℓℓ3

4π
Cφφ

ℓ , (4.15)

C̃ΘΘ

ℓ (2π)2
δ

2(⃗ℓ+ ℓ⃗′) := ⟨Θ̃(⃗ℓ)Θ̃(⃗ℓ′)⟩ , (4.16)

Cφφ

ℓ (2π)2
δ

2(⃗ℓ+ ℓ⃗′) := ⟨φ (⃗ℓ)φ̃ (⃗ℓ′)⟩ . (4.17)

Equation (4.14) is informative: the integral term on the right-hand side is of a form of
convolution, serving to smooth out the features of the CMB such as the BAO peaks in the
unlensed spectrum and resulting in a few percent fractional change on the CMB at multipoles
∼ 1000, rising to ∼ 10% at ℓ∼ 2000. Note that even though the typical size of a deflection is
around few arc-minutes, because the underlying gravitational potential is correlated on large
scales up to around 100 Mpc (≃ 1◦), the acoustic peaks on large scales also get smoothed by
lensing.

On large scales, ℓ ≪ 100, the unlensed CMB spectrum plateaus, satisfying ℓ2CΘΘ

ℓ ≃
constant. At this limit the second term in Eq. (4.14) cancels the second term inside the
brackets suggesting C̃Θ

ℓ ≃ CΘ

ℓ , or in other words, lensing does not have an effect on the
CMB spectra to a good approximation. For smaller scales, ℓ≳ 100, the BAO effect leads to
scale-dependence on the CMB leading to lensing having an important effect on the observed
spectra. On small scales ℓ≫ 100, the CMB spectra vanishes due to Silk damping. Setting
CΘΘ

ℓ = 0 in Eq. (4.14) on small scales, the effect of lensing can be seen as the temperature
(power) being modulated by the power in the lensing deflection: C̃Θ

ℓ ≃ ℓ2Cφ

ℓ σ2
Θ

.

4.3.3 Lensed CMB polarisation

Similar to the temperature, the polarisation field also gets deflected by the potentials wells.
The resulting effect on the power-spectra of the E- and B-mode polarisation fields introduced
earlier give at the lowest order in Cφφ

ℓ ,

C̃EE
ℓ = (1− ℓ2

σ
2
φ )C

EE
ℓ +

∫ d2ℓ⃗′

(2π)2 [⃗ℓ
′ · (⃗ℓ− ℓ⃗′)]2Cφφ

|⃗ℓ−ℓ⃗′|C
EE
ℓ′ cos2{2(ϕ

ℓ⃗′ −ϕ
ℓ⃗
)} , (4.18)

C̃BB
ℓ =

∫ d2ℓ⃗′

(2π)2 [⃗ℓ
′ · (⃗ℓ− ℓ⃗′)]2Cφφ

|⃗ℓ−ℓ⃗′|C
EE
ℓ′ sin2{2(ϕ

ℓ⃗′ −ϕ
ℓ⃗
)} , (4.19)

C̃T E
ℓ = (1− ℓ2

σ
2
φ )C

T E
ℓ +

∫ d2ℓ⃗′

(2π)2 [⃗ℓ
′ · (⃗ℓ− ℓ⃗′)]2Cφφ

|⃗ℓ−ℓ⃗′|C
T E
ℓ′ cos{2(ϕ

ℓ⃗′ −ϕ
ℓ⃗
)} . (4.20)
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These equations show that similar to temperature, the features in the unlensed polarisation
spectra also get smoothed out by similar convolutions. Importantly, one can also see that
B-mode polarisation is generated from the E field due to lensing. This results in a significant
confusion on the primordial B-mode polarisation searches that target finding signs of inflation,
which naturally sources gravitational waves as I discussed in Section 2.3. I will return to the
discussion of CMB lensing in Chapter 7 in greater detail.



Chapter 5

Detecting the moving lens effect

Here I focus on the moving lens effect [227] as a source of secondary CMB anisotropies and
estimate the prospects for detecting the effect with upcoming observations. The temperature
fluctuations imprinted by the transverse motion of individual objects are expected to be weak
and can be easily confused with other effects, which makes detection challenging [272–274].
I consider new statistical approaches to detecting the moving lens effect, which effectively
combine the signal from many objects with a common bulk motion. Using these approaches,
we demonstrate that data expected from upcoming CMB experiments and galaxy surveys
should have the statistical power to make a first detection of the moving lens effect at high
significance.

The moving lens effect provides a measurement of the transverse velocity fields of matter,
and has been recently suggested as a tool for cosmological inference in my published
paper Ref. [15], where, with my collaborators, we introduced a quadratic estimator for the
detection of the moving lens effect and reconstruction of transverse velocity fields. An
unambiguous detection of the moving lens effect, however, will further benefit from utilising
different methods, including using a real-space matched filter, as I discussed in my recent
paper [16], or using pairwise velocities [275].

This chapter is based on my works on evaluating the detection prospects of the moving
lens effect. These resulted in a published article on reconstructing the transverse velocity
field in Ref. [15], and a recently submitted article in Ref. [16] where I developed a velocity
reconstruction method using a matched filter. In both papers I have led the development
and conceptualisation of the work. For both papers, I made the analytical and numerical
calculations, provided the forecasts and results and have written the text. My paper from
2018 [15] has seen contributions from Joel Meyers, Matthew Johnson, Kendrick Smith, An-
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drew Jaffe, Neal Dalal, Moritz Munchmueller, James Mertens and Alex van Engelen, in terms
of conceptualisation and improvements to the presentation of the results and calculations.
My more recent paper [16] seen contributions to the presentation of the results and to the
conceptualisation from Matthew Johnson and Joel Meyers.

The following sections are organised as follows: In Sections 5.1 and 5.2, I briefly introduce
the moving lens effect and the shape of the temperature modulation due to bulk velocities
of halos. I calculate the optimal real-space matched filter in Section 5.3. I model the halo
and galaxy distribution in Section 5.4 and follow up with a reconstruction technique for the
components of the transverse velocity field in Section 5.5. I discuss the detection prospects
for the moving lens effect using these matched filters and halo model in Section 5.6. I
then introduce a quadratic estimator using a spherical harmonic expansion in Section 5.7
and forecast the detection significance of the effect using this alternative formalism in
Section 5.8. We discuss various biases induced by other secondaries on the moving lens
effect measurement in Section 5.9 before concluding with discussion in Section 5.10.

5.1 Introduction

Gravitational potentials that evolve in time induce a temperature modulation on the CMB
known as the integrated Sachs-Wolfe (ISW) effect which has the form

Θ(n̂) =− 2
c2

∫ dχ

c
Φ̇(χn̂) , (5.1)

where Φ(χn̂) is the gravitational potential along the line of sight n̂, χ is the comoving
distance, Θ = ∆T (n̂)/T is the fractional CMB temperature fluctuation and I define the
integral from the emission of the photon to the observer, unless shown otherwise. One
contribution to the ISW effect in the non-linear regime is the temperature anisotropy due to
the peculiar velocity of collapsed structures. This is known as the moving lens effect. We
can understand the origin of this effect in a few physically equivalent ways.

The motion of an observer with respect to the CMB induces a kinematic dipole temperature
anisotropy due to the Doppler boosting of the CMB monopole, and also results in angular
aberration of CMB fluctuations [276, 277]. I define the CMB rest frame as the reference
frame in which the aberration of the CMB fluctuations vanishes, which is not identical to
a frame in which the temperature dipole vanishes. The observed temperature dipole in the
rest frame of the Solar System has a fractional amplitude of about 10−3 [278], while the
anticipated intrinsic component (the fractional amplitude in the CMB rest frame) is on the
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order 10−5, and so the CMB rest frame is often approximated by boosting to a frame in
which the observed dipole vanishes [279].

In the rest frame of the CMB, a massive object moving transverse to the line of sight of
a stationary observer generates a gravitational potential which evolves in time. As CMB
photons traverse this time-dependent potential, they receive a redshift or blueshift in close
analogy with the ISW effect

Θ(n̂) =−2
∫

χ⋆

0
dχ v⃗⊥ ·∇∇∇⊥Φ(χn̂) = v⃗⊥ · β⃗ (χn̂) , (5.2)

where χ⋆ is the conformal distance to the surface of last scattering and Φ is the gravitational
potential and we set c=1 for brevity. This induces a characteristic dipole pattern of CMB
temperature fluctuations oriented along the object’s transverse velocity.

Next, viewed from the rest frame of the lens, this effect can be recast as lensing of the
(kinematic) CMB dipole seen by the lens. The photons deflected toward the observer have a
temperature T (1+ v⃗⊥ · (n̂+ β⃗ )), giving at lowest order Θ(n̂) = v⃗⊥ · β⃗ after transforming to
the observer frame.

Finally, the calculation for an observer moving with the same peculiar velocity as the lens
with respect to the CMB is slightly more subtle. Photons deflected into the line of sight of
the observer by gravitational lensing originate from the surface of last scattering separated
from the observation direction n̂ by an angle α⃗ . In this moving frame, the CMB temperature
has a kinematic dipole of the form T0[1+ v⃗ · n̂]. In the standard treatment, lensing remaps the
observed temperature according to T (n̂) = T̃ (n̂+ α⃗) = T̃ (n̂)+∇∇∇T̃ (n̂) · α⃗(n̂)+ · · · where T̃
is the unlensed temperature, and in this case gives Θ = v⃗⊥ · α⃗ at lowest order. It is clear that
this differs from what was calculated above since α⃗ ̸= β⃗ . However, one must be careful to
take into account the fact that the photons which are deflected into the line of sight of the
observer were not emitted perpendicular to the surface of last scattering (an effect which
is formally of the same order as the lensing deflection). This change to the emission angle
is usually negligible for CMB temperature fluctuations [280], but it cannot be ignored in
this case since the dominant temperature source at the surface of last scattering is due to
the Doppler effect and therefore has an intrinsic dipole anisotropy. The emission angle
relative to the line of the sight to the lens is β⃗ , and so the observed temperature fluctuation
evaluated in the frame comoving with the lens is Θ(n̂) = v⃗⊥ · β⃗ (χn̂). One can also arrive
at this expression by treating the kinematic component of the dipole as a source at infinite
distance [281]. This analysis also demonstrates that the CMB dipole measured in the rest
frame of the CMB (the intrinsic dipole) is physically distinct from the dipole induced by
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Figure 5.1: Sketch of the geometry in the CMB rest frame, for a lens of potential Φ moving with
transverse velocity v⃗⊥, as seen by an observer at comoving distance χ from the lens, and distance χ⋆

from the CMB last scattering surface. [15]

boosts away from that frame (the kinematic dipole) [13], and the former can therefore be
reconstructed by measuring how it is lensed [282], or by measuring spectral distortion of the
low multipoles [283, 284].

5.2 The moving lens dipole

We approximate the gravitational potential near a halo to be spherically symmetric around
the halo center and write, ∇∇∇Φ(r) = r̂ Φ′(r), and Φ′(r) = ∂Φ(r)/∂ r, where using Figure 5.2,
I define the unit vector r̂ = (⃗χh − χ⃗)/|⃗χh − χ⃗| and r = |⃗χh − χ⃗|. The temperature modulation
can then be written as,

Θ(n̂)≃− 2
c2

∫ dχ

c
Φ

′(r)
[
r̂ · v⃗b,⊥(χn̂)

]
, (5.3)

where the comoving distance χ depends on r and the distance to the halo.

We write dχ = dr r (r2−r2
⊥)

−1/2, where r⊥ = |⃗r⊥| and r⃗⊥ is the component of r⃗ orthogonal
to the line of sight. The temperature modulation due to moving lens effect takes the form,

Θ(n̂)≃− 4
c3

(
v⃗b,⊥ · r⃗⊥

)∫ ∞

r⊥
dr

Φ′(r)√
r2 − r2

⊥

(5.4)

where χh ≫ r⊥ and we approximate the velocity field to be constant within the range of the
radial integral, defining a long-wavelength (center of mass) bulk-velocity fluctuation as v⃗b

which is the observable we are interested in. There are nevertheless other non-linear ISW
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Figure 5.2: A description of the coordinate system and definitions. I define the comoving distance
from the observer on Earth to the DM halo (black circle in the figure) as χh = |χ⃗h|. The comoving
distance to the CMB photon is χ = |⃗χ|. Vector r⃗ connects the halo center to the CMB photon and r⊥
is the transverse distance from the halo center to the trajectory of the observed CMB photon. [16]

temperature modulations such as the Rees-Sciama effect, for example, due to the component
of the velocity sourced by non-linear growth inside virialized structures (such as clusters),
that is uncorrelated with the large-scale bulk flow. While these non-linear contributions add
to the noise of the velocity measurement on small-scales, we assume they are subdominant
on large-scales. Note also that the contribution to the moving lens effect from the radial
component of the bulk 3-velocity sees v/c relativistic correction when boosted into the CMB
frame and is hence sub-dominant, leaving moving lens effect sensitive to the transverse
velocities instead.

We approximate the functional form of the gravitational potential by using the NFW profile
for a spherically symmetric halo with a single parameter, the mass of the halo M in Solar
mass units, i.e. M⊙ ≃ 1.989×1030 kg. We fix the virial radius as

rvir(M,z) :=
(

GM⊙M
100H2

)1/3

, (5.5)
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and assume halos have truncated mass at their virial radius satisfying,

M =
∫ rvir

0
dR4πR2

ρ(R|M,z) , (5.6)

where ρ(R|M,z) is the halo profile. The concentration parameter,

c = A
(

M
2×1012h−1

)α

(1+ z)β , (5.7)

relates the scale radius, rs(M,z), to the virial radius of a halo via c = rvir/rs, and we omit
showing redshift and mass dependence in what follows. Note that both scale radius and
virial radius are physical distances. For the model parameters {A,α,β}, we use appropriate
values from literature, {7.85,−0.081,−0.71}. We assume NFW profile for the density of
the halo [285],

ρ(x|M,z) =
ρs

x(1+ x)2 , (5.8)

and

Φ(r) =−4πGρsr2
s

ln(1+ x)
x

. (5.9)

where x = ar/rs and note that r is the radial comoving distance from the halo center and a is
the scale factor. We can use the equations above to get

ρs =
M⊙M
4πr3

s

[
− rvir

rs + rvir
− ln

(
rs + rvir

rs

)]
. (5.10)

The partial derivative of the gravitational potential with respect to r can then be written as

Φ
′(r) = 4πGρsr2

s

[
ln(1+ x)

x2 − 1
x(1+ x)

]
.

(5.11)

The moving lens signal from a single halo takes the form

Θml(⃗x⊥) =−vb,⊥a0 M (⃗x⊥) , (5.12)

with

a0 :=
16πGρsr2

s
c3 , (5.13)
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where vb,⊥ is the norm of the bulk comoving transverse velocity vector, which we calculate
using WEBSKY1 halo catalog [286] as the averaged velocity of halos inside a volume. The
bulk transverse velocity depends on the volume, which we parametrise with the redshift dept
and the sky coverage on the two-sphere. We describe our choices of volume throughout this
work. x⃗⊥ = a⃗r⊥/rs and the radial dependence is found by solving Eqn. (5.4) with Eqn. (5.11)
as

M (x⊥,ϕ) :=
1

2x⊥



∣∣∣2arcsec(x⊥)√

x2
⊥−1

∣∣∣+ ln
(

x2
⊥
4

)
cosϕ ,

(5.14)

where x⊥ := ar⊥/rs and ϕ is the azimuthal angle between the comoving transverse velocity
vector and r⃗, describing the rotation around the halo center orthogonal to r⃗⊥. The template
(shown in Fig. 5.3) depends on the mass and redshift of the halo, the direction of the transverse
velocity on two-sphere direction as well as the cosmology through the scale factor.

5.3 The optimal matched filter

We begin by writing the observed real-space intensity map around a dark matter (DM) halo
in 2-dimensions as composed of the moving lens signal M (⃗r) and all other effects

Θ
obs(⃗r) =−vb,⊥a0 M (⃗r)+ Θ̃(⃗r) . (5.15)

We filter our data, Θobs(⃗r), to get the unbiased and minimum variance estimate for the norm
of our bulk transverse velocity signal v̂b,⊥, which we define as

v̂b,⊥ := a−1
0

∫
d2⃗r Ψ(⃗r)Θobs(⃗r) , (5.16)

Here, we have assumed that the filter is oriented along the transverse velocity vector. We relax
this assumption below. The transverse velocity amplitude is degenerate with the density and
the scale radius of the halo, which are determined by halo mass and redshift. We comment
on these degeneracies in the following sections.

1Stein et.al. [286] Websky halo catalog covers the full sky up-to redshift z ∼ 4.5, using a mass resolution of
∼ 1.3×1012M⊙.

https://mocks.cita.utoronto.ca/data/websky
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The observed fractional intensity maps satisfy

⟨Θ̃(⃗ℓ)⟩=0 and ⟨Θ̃(⃗ℓ)Θ̃(⃗ℓ ′)⟩=(2π)2
δ (⃗ℓ+ℓ⃗ ′)C̃T T

ℓ ,

(5.17)

where C̃T T
ℓ is the CMB spectra including noise and foregrounds, excluding the moving lens

effect. We define the matched filter such that the estimator recovers the true velocity, and
define the parameter b := ⟨v̂b,⊥− vb,⊥⟩ and Nrec := ⟨(v̂b,⊥− vb,⊥)2⟩ , where

b :=
∫

d2⃗r Ψ(⃗r)M (⃗r)−1 , (5.18)

and

Nrec = a−2
0

∫ d2ℓ⃗

(2π)2 |Ψ̃(⃗ℓ)|2C̃T T
ℓ . (5.19)

We now wish to minimize the variance of our filter under the condition that the bias
vanishes. We do this by defining L := Nrec +λb where λ is now a Lagrange multiplier and

L =
∫ d2ℓ⃗

(2π)2 Ψ̃
⋆(⃗ℓ)

[
a−2

0 Ψ̃(⃗ℓ)C̃T T
ℓ +λM̃ (⃗ℓ)

]
−λ . (5.20)

The optimal filter that minimizes L can be written as

Ψ̃(⃗ℓ) =

[∫ d2ℓ⃗′

(2π)2
|M̃ (⃗ℓ′)|2

C̃T T
ℓ′

]−1
M̃ (⃗ℓ)

C̃T T
ℓ

, (5.21)

or equivalently,

Ψ̃(⃗ℓ) = Nrec M̃ (⃗ℓ)

C̃T T
ℓ

. (5.22)

Note that the optimal estimator is most sensitive to the signal on small scales, where the
inverse of the estimator variance is large and the primary CMB signal (which is much larger
and acts as a confusion) is small. Lastly, we convolve the moving lens signal with a beam
that matches the experimental specifications described below. When applying the matched
filter we assume a Gaussian beam satisfying B(⃗ℓ) = exp[−(θfwhm/2

√
ln2)2ℓ(ℓ+1)] , where

θfwhm is the full beam-width at half-maximum. In what follows we discuss results with this
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beam applied to the moving lens template, i.e. M̃ (⃗ℓ)→ B(⃗ℓ)M̃ (⃗ℓ).

5.4 Halos, galaxies and the v̂b,⊥ SNR

The estimated signal-to-noise ratio (SNR) for the velocity amplitude per object with mass
M at redshift z is vb,⊥/

√
Nrec(M,z); the number of such objects needed for total SNR to

equal to 1 is Nrec(M,z)/v2
b,⊥. (Note that we defined vb,⊥ = |⃗vb,⊥|.) While upcoming surveys

will not be able to reconstruct the transverse velocity for each halo, the average transverse
velocity can be measured over a sufficiently large patch of the sky.

Surveys of large-scale structure observe galaxies that occupy DM halos. The relation
between galaxies and the host DM halos depend on a multitude of effects and mechanisms,
including rates of star formation and galaxy mergers, and needs to be modelled and tested
against data. The number and spatial distribution of the DM halos can be described by the
halo model (see for review e.g. [287]). The distribution of galaxies inside DM halos can be
described with a halo occupation distribution (HOD) model (see e.g. [288]) where every DM
halo is assumed to have at most 1 central galaxy, as well as additional satellite galaxies whose
number can be large for massive halos. The average observable central (satellite) galaxy
number count of a DM halo with mass M and at redshift z is parametrised with N̄c(m∗,z)
[with N̄s(m∗,z)] where m∗ is the threshold stellar mass determined by the galaxy survey and
details of the model can be found in e.g. [288–290]. For calculating the mass and redshift
dependence of halo density we assume a Sheth-Tormen collapse fraction [291].

We use the matched filter introduced above and the halo mass function with a normalisation
appropriate for a given LSS survey and approximate the expected total SNR for the velocity
magnitude from inside a redshift bin and a given patch of size f sky

patch on the sky as a sum over
all halos in a catalog that fall within a redshift range and whose mass distribution matches
the halo-model,

SNR2 = 4π fsky

∫

z−bin

dz
∫

catalog

dMN̄c(m∗,z)
vb,⊥(z)2

Nrec(M,z)
χ

2 dχ

dz
n(M,z). (5.23)

where we approximated the discrete sum over halos with an integral over the mass func-
tion and used the SNR for the velocity amplitude per object with mass M at redshift z,
vb,⊥/

√
Nrec(M,z), we defined above. Note that we use only the count of central galaxies,

since the bulk transverse velocity is sourced by the center of mass of the halo. We find SNR2≃
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Figure 5.3: The CMB temperature modulation due to the moving lens effect shown as a function
of angular distance from halo center (in arc-minutes) for a halo of mass M = 1014M⊙ at redshift
z = 1. The left (right) plots show the templates filtered with a Gaussian beam of radius 0.1 (1.4)
arc-minutes. [16]

103 fsky for a redshift bin centred at z = 1 and of size ∆z = 1, with perfect knowledge of halo
mass, location and redshift as well as the transverse velocity direction, using the Vera. C. Ru-
bin Observatory (LSST) and CMB-S4 experimental specifications, and the analytic approx-
imation for the galaxy number density satisfying dn/dz ∝ (z/z0)

α exp[(−z/z0)
β ]arcmin−2

with {z0,α,β ,ntot[arcmin−2]} set equal to {0.3,2,1,40}, and the CMB temperature noise
NT T
ℓ = (∆T/T )2 exp [ℓ(ℓ+1)θ 2

fwhm/(8log(2))] where we set {∆T ,θfwhm} to {1.0,1.4}. We
use lensed CΘΘ

ℓ , approximate the kSZ contribution as a constant 3 µK2 in ℓ(ℓ+1)/(2π)2CΘΘ

ℓ

and assume perfect removal of foregrounds such as the cosmic infrared background and tSZ
from the CMB. Note that individual halo masses are expected to be measured imperfectly,
with around 40 percent error in lnM, from combinations of lensing and SZ measurements
and redshift measurements are subject to photo-z errors [292, 293, 220]. We discuss these in
Section 5.6, before forecasting the transverse velocity amplitude reconstruction fidelity of
the upcoming surveys in cross correlations of CMB and galaxy measurements.

5.5 Transverse velocity reconstruction

We define the filter response introduced in Eq. (5.16) for a halo ‘i’ of mass Mi and redshift zi,
as

Â(Mi,zi) :=
∫

d2⃗r Ψi(⃗r)Θobs(R⃗i + r⃗) (5.24)
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where Θobs(R⃗i+⃗r) is the observed CMB around the halo at R⃗i (in polar coordinates) from
the patch center R⃗0 = (0,0). The matched filter centered on the halo, Ψi(⃗r), depends on
the halo mass and redshift as well as the orientation of the transverse velocity field, which
we assumed known in the previous section. In this section we evaluate the prospects for
reconstructing the components of the transverse velocity vector from the CMB and halo
locations from a galaxy survey.

We are interested in finding the angle ϕ̂0 that best approximates the true average angle
of the transverse velocity vector field with respect to a reference vector in a patch of size
4π f patch

sky , where we set ϕ̂0,i = ϕ̂0, j = ϕ̂0 equal for all filters {i, j} inside the patch. This is the
ϕ̂0 that satisfies2,

∫
d2⃗r

∂

∂ϕ0
∑

i,halos
Ψi(⃗r)Θobs(R⃗i + r⃗) = 0 , (5.25)

where for each filter in the sum, the coordinates are chosen so that the halo is at the center of
the template.The CMB acts as noise on the stacked patch, and that ϕ0 which maximizes the
residual response approximates the true direction of the transverse velocity vector direction
on 2-sphere, given sufficient SNR.

Due to the simple angular dependence of the signal profile, we find the equality in
Eqn. (5.25) satisfies

tan(ϕ̂0,z)=
∫

d2⃗r sinϕ ∑i Ψi,u(r)Θobs(R⃗i + r⃗)
∫

d2⃗r cosϕ ∑i Ψi,u(r)Θobs(R⃗i + r⃗)
, (5.26)

where we define Ψi(r)=cos(ϕ−ϕ̂0)Ψi,u(r), µ̂ :=α̂/β̂ =tan ϕ̂0 (omitting showing the redshift
dependence for now); where α and β are the numerator and denominator on the right-hand-
side of Eq. (5.26), respectively. The error on the measurement can be written in the form

σµ/|µ|=
√

σ2
α/α2 +σ2

β
/β 2 , (5.27)

where the errors are independent for a given template due to implicit angular integral and the
trigonometric functions in our definition.

We assume the contribution to the signal from everything else except the moving lens
effect vanish for a large enough patch with sufficiently many halos. With this assumption,

2We assume the maxima can be distinguished from the minima from the filter response and accounted for
with a sign change, with no additional error to the estimator.
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we write3

α =
∫

template

d2⃗r sinϕ ∑
i,halos

Ψu,i(r)Θml(⃗r) , (5.28)

where we defined Θml(⃗r) :=A(M,z) Mu(r)cos(ϕ−ϕ0), Mu(r) is the radial shape of the
moving lens effect on the CMB around a halo where r is the radial distance to the halo center,
and we defined the (polar) integral over the patch as equal to the surface area of the patch on
2-sphere, as

∫
patch d2

Ω⃗ ≃ ∫patch d2R⃗ := 4π f patch
sky for small patches. A more detailed derivation

can be found in Appendix A.1. Errors are calculated using a relation similar to Eq. (5.28),
with the CMB component without the moving lens effect instead, and performing the average
over the realisations of the CMB as e.g.3,

σ
2
α =

∫

template

d2⃗r sinϕ d2⃗r ′ sinϕ
′ × ∑

i, j,halos
Ψi,u(r)Ψ∗

j,u(r
′)⟨Θ̃(R⃗i+⃗r)Θ̃∗(R⃗ j+⃗r ′)⟩ . (5.29)

For compactness of our expressions we define a signal parameter Ipatch :=α/(π sinϕ0)=

β/(π cosϕ0) which satisfy,

Ipatch = 4π f sky
patch

∫

z−bin

dz
∫

catalog

dMN̄c(m∗,z)χ
2 dχ

dz
n(M,z)A(M,z) ,

(5.30)

where we set the integral over the patch in Eq. (5.28) as
∫

patchd2R⃗ :=4π f sky
patch and like before,

we promote the sum over halos to an integral over halo masses and the halo locations over
the patch. The error on Ipatch takes the form,

σ
2
Ipatch,z̄ =

rmax∫∫

rmin

rdr r′dr′Λ(r,r′)Fz̄(r)F ∗
z̄ (r

′) , (5.31)

which can be understood as a measure of our estimator variance given a patch of surface area
4π f sky

patch and we defined

Fz̄(r) :=
∫

z−bin

dz
∫

catalog

dMN̄c(m∗,z)χ
2(z)

dχ

dz
n(M,z)Ψu(r) , (5.32)

3Similarly equality holds for β , with azimuthal angular integral over cosϕ in-place of sinϕ .
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which can be understood as the orientally-stacked image of the moving lens effect given a
catalog of halos inside some redshift bin z̄, as a function of the radial distance from the image
center. The other term in the integral is defined as

Λ(r,r′) := 16π
4
∫ L−1dL

(2π)2 CΘ̃Θ̃
L j1(Lr) j1(Lr′) [Rmax j1(Rmax)−Rmin j1(Rmin)]

2, (5.33)

where rmax satisfies the inequality rmax≪Rmax and j1(x) is the spherical bessel function
jℓ(x) for ℓ = 1. We set {rmax,rmin,Rmin} equal to {5arcmin, 1.4arcmin,rmax} and find
Λ(r,′ r′)≃ A rr′, where A ≃2.3×10−11 for Rmax=2×10−2radians and A depends on Rmax

non-trivially due to the scale dependence of the CMB. This term can be understood as the
r.m.s. contribution of the CMB on the noise estimate for a given patch. Generally the integral
limits {rmin,rmax} can be chosen as halo mass dependent to maximize the SNR. Using these
relations we get

σ
2
Ipatch

≃ A
∣∣∣
∫ dℓ

2π

∫

catalog

dMζℓ(M,z)F̃ ′
(z̄)(ℓ)

∣∣∣
2
, (5.34)

where

ζℓ(M,z) :=
rmax∫

rmin

r2dr exp(−iℓr) , (5.35)

and F̃ ′(ℓ) := dF̃ (ℓ)/dM where F̃ (ℓ) is the (1D) Fourier transform of F (r). Note it is
straight forward to show from equations above that Ipatch satisfies the equality,

σµ/|µ|=
√

2σIpatch/|Ipatch| , (5.36)

in the perfect knowledge of the moving-lens amplitude A.4

We evaluate the detection significance of the direction component µ (ignoring the un-
certainty on the amplitude) using our parameter choices, for a Rubin-like halo catalog and
a CMB-S4-like survey, and 6 (uncorrelated) boxes equally spaced in redshift in the range
z ∈ [0.1,3] with same surface area on the sky. We find SNR ≳ 1 for a patch with surface area
of ≲ 10 square degrees. Next, we follow with a more involved SNR forecast and discussion.

4Note that the error on the amplitude A can be added to give

σ
2
µ/µ

2 = 2(σ2
Ipatch

/I2
patch +σ

2
A/A2) . (5.37)
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5.6 Reconstruction and Forecasts

We evaluate the detection SNR on the moving lens effect for a given patch and a redshift
range as the sum of the SNR on the two transverse velocity components we reconstruct from
the velocity amplitude and the angle as

v⃗b,⊥ := {v1,v2}= {vb,⊥ cosϕ0,vb,⊥ sinϕ0} (5.38)

and the total SNR per patch as sum SNR of the components, SNR2 := SNR2
1+SNR2

2, where

SNR−2
1 = SNR−2

2 = σ
2
µ/µ

2 +σvb,⊥/v2
b,⊥ , (5.39)

and σ2
µ/µ2 = 2(σ2

Ipatch
/I2

patch +σ2
A/A2) due to the angular dependence of the signal template.

When estimating the total detection SNR from the full sky we assume no correlation between
patches and set SNR2

total ≃ ( fsky/ f patch
sky )SNR2 where fsky is the full sky coverage of the

cosmological survey. We calculate the SNR in volumes of redshift depth ∆z = 0.5 in the
range z ∈ [0.1,3] and surface area corresponding to the patch size.

We display the forecasts for total SNR for moving lens effect detection in Figure 5.4. Our
calculation suggest the upcoming surveys of LSS and measurements of CMB may detect the
moving lens signal to high significance, where combinations of CMB-S4 and Vera C. Rubin
Observatory will achieve SNR of over 20 and combinations of SO and Vera C. Rubin
Observatory will achieve SNR of above 8. These results are consistent with the results
obtained using the quadratic estimator of Ref. [15].

In reality the velocity measurement from the moving lens effect is a biased estimate of
the true velocity field, satisfying the relation v̂ml

b,⊥ = bmlv̂b,⊥ on large scales. This arises
due to an imperfect knowledge of the background cosmology, halo mass and halo redshift,
which the individual moving lens templates depend on. This is analogous to the optical depth
degeneracy encountered when attempting to reconstruct the radial velocity field using kinetic
Sunyaev Zel’dovich (kSZ) tomography (see Ref. [249] for a discussion).

One potential source of bias is the halo mass. Imperfect knowledge of the halo mass
affects the fidelity of the velocity measurement due both to a reduced filter response and
the intrinsic degeneracy between the halo mass and true velocity amplitude. The velocity
estimator is proportional to (M/M⊙)−0.6, as defined in Eq. (5.16). In order to evaluate the
unambiguous detection and reconstruction significance of the upcoming experiments on the
transverse velocity amplitude, we have to incorporate the error in halo masses in the velocity
SNR calculation. The error on halo mass is expected to satisfy (per halo) σM/M ≃ 0.4,
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Figure 5.4: The total transverse-velocity detection SNR from the measurement of the moving
lens effect, for 1.4- and 0.1-arcminute beams for various CMB rms noise levels. Plotted curves
show SNR values for halo counts matching with the expected central galaxies from LSST survey
(a.k.a Vera C. Rubin Observatory) and a sky fraction of fsky = 0.4 [16].

using mass-richness measurements from weak lensing and SZ surveys [293, 292]. Note that
this mass error is already significantly more optimistic than the moving lens SNR per halo;
which satisfy (per halo) σA/|A|> 1 for all of the observable redshift and halo mass ranges.
Hence we find that the error induced on the velocity SNR due to halo mass degeneracy to be
over O(10) smaller than the error on the moving lens amplitude A. In order to evaluate the
reduction in SNR due to mass errors on the template, we calculated moving-lens temperature
maps Θml(n̂), as defined above, using the WEBSKY5 halo catalog [286] with the true and
erroneous halo masses, with the latter having random halo masses sampled from a Gaussian
distribution with σM/M ≃ 0.4. We find the cross-correlation coefficient of the moving-lens
temperature maps remains near 1 for the multipole ranges relevant to this study (ℓ≲ 100)
– suggesting the errors induced by the inaccurate template are small on large scales, and
furthermore, that the cross-correlations with an external tracer of the density field may be
used to potentially boost the SNR.

Another important parameter that can penalize the SNR is the halo redshift, since the
velocity reconstruction from galaxy-surveys suffer from known effects of redshift space
distortions (RSDs) as well as photometric redshift (photo-z) errors for photometric surveys
such as the Vera C. Rubin Observatory, the latter satisfying σz = 0.03(1+ z). Similar to the
uncertainty on halo masses, we find the contribution to the error on the velocity measurement

5Stein et.al. [286] WEBSKY halo catalog covers the full sky up-to redshift z ∼ 4.5, using a mass resolution
of ∼ 1.3×1012M⊙.

https://mocks.cita.utoronto.ca/data/websky
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due to the redshift degeneracy (induced by dependence of the signal on the scale-radius)
to be small, especially since we use large (∆z ∼ 0.5) redshift bins. In order to evaluate
the significance of photo-z errors and RSDs on matched filter, we sample from the same
halo catalog, a smaller set of halos with halo number count matching the expected central
galaxies from the Vera C. Rubin Observatory. We compare the true velocity fields with and
without taking into account the photo-z errors and RSDs. We capture the effect of photo-
z’s by redistributing the halo positions in redshift space randomly with the photo-z error.
For RSDs, we add the velocity dependent RSD correction in redshift space, as discussed
above. We parametrise the combined effect of RSDs and photo-z with the cross-correlation
coefficient ρ =Cxy

ℓ /
√

Cxx
ℓ Cyy

ℓ as a function or redshift, where {x,y} := {true,obs}, which
we find remains larger than 90 percent for ℓ≲ 100 – showing (similarly to the mass errors)
that the redshift errors do note degrade the SNR from the moving lens measurement and that
the velocity field measured from the templates is well correlated with the underlying velocity
field.

Note that the transverse velocity fields vary more rapidly along their projected direction
and a similar phenomena is also true for the radial velocities, i.e. they vary more rapidly on
the radial direction. This suggests that the typical transverse velocity modes vary slower in
the radial direction, implying the relative SNR penalty from larger redshift bins (necessitated
by the large photo-z errors from photometric surveys) is lower than compared to radial
velocity reconstruction for the kSZ effect, for example, motivating the use of photometric
surveys for the purpose of moving lens effect detection and velocity reconstruction. Note
however that the cross-correlation coefficient suffers due to low number of galaxies in the
near Universe (z < 0.3) suggesting potential benefits of using different types of observations
(such as spectroscopic surveys and other tracers) for the purpose of moving-lens effect
detection. We leave a more involved analysis on these lines to future work.

5.7 Quadratic estimator

In addition to the real-space method I introduced in the previous sections, I now wish to
construct a complementary quadratic estimator for the transverse velocity field v⃗⊥(n̂,z) on
large angular scales (ℓ≲ 100), given maps of the CMB temperature and of a tracer of the
density field at some redshift on small angular scales (ℓ≳ 2000), analogous to a CMB lensing
quadratic estimator [294], for example. Similar to earlier, our focus in what follows is also
on the large-scale velocity field, where we anticipate that the velocity is linear and curl-free,
such that we can define a transverse velocity potential ϒ(n̂,z), with v⃗⊥(n̂,z) = ∇∇∇ϒ(n̂,z). We
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utilize the typical definition of the gravitational lensing potential φ such that α⃗ = ∇∇∇φ , with

φ(n̂) =−2
∫

χ⋆

0
dχ

χ⋆−χ

χ⋆χ
Φ(χn̂) , (5.40)

where we have assumed spatial flatness. We can construct a similar potential for the deflection
as seen by the lens

ψ(n̂) =−2
∫

χ⋆

0
dχ

1
χ

Φ(χn̂) , (5.41)

such that β⃗ = ∇∇∇ψ , and which differs from the ordinary lensing potential φ by a ratio of the
lens and source distances.

Given an observed map of the CMB temperature, Θobs, and a map of ψobs as derived from,
for example, a survey of large-scale structure, we can write the desired quadratic estimator as

ϒ̂(L) = N(L)
∫ d2ℓℓℓ

(2π)2 g(ℓℓℓ,L)Θobs(ℓℓℓ)ψobs(L− ℓℓℓ) . (5.42)

We have suppressed the redshift dependence of ϒ̂ and ψ , and the normalization N(L) and
filter g(ℓℓℓ,L) are to be determined. We are using the flat-sky approximation so that ℓℓℓ and L are
two-dimensional Fourier wavevectors, and have found the results agree well with a full-sky
estimator, as is also the case with lensing estimators [295]. Following, e.g., Ref. [294], we
minimize the estimator variance subject to the constraint that the estimator is unbiased, i.e.,
that ϒ(L) =

〈
ϒ̂(L)

〉
Θ,ψ . At lowest order, the variance is

〈
ϒ̂(L)ϒ̂(L′)

〉
= (2π)2

δ
(2)(L+L′)

[
Cϒϒ

L +N(L)
]
, (5.43)

where the transverse velocity potential power spectrum is defined as

Cϒϒ
ℓ =

4π

∆χ

∫
χmax

χmin

dχ

∫ dk
k

Pv(k,χ)
(kχ)2 [ jℓ(kχ)]2 , (5.44)

and Pv is the dimensionless power spectrum of the three-dimensional velocity |⃗v|. We find
that we must fix the normalization to

N(LLL) =
[∫ d2ℓℓℓ

(2π)2Cψψ

|ℓℓℓ−L|g(ℓℓℓ,L)L · (L− ℓℓℓ)

]−1

, (5.45)
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Figure 5.5: Power spectrum of the transverse velocity potential (solid) and reconstruction noise
(dashed and dot-dashed) in several redshift bins for two CMB experiments with a 1.4-arcmin beam
combined with Vera C. Rubin Observatory. Where the signal curves exceed the reconstruction noise,
true mapping of the transverse velocities will be possible. [15]

and that the filter which minimizes the variance is

g(ℓℓℓ,L) =
L · (L− ℓℓℓ)

CΘΘ,obs
ℓ

Cψψ

|ℓℓℓ−L|

Cψψ,obs
|ℓℓℓ−L|

, (5.46)

thereby giving for the noise on a reconstructed mode

N(LLL,z)=



∫ d2ℓℓℓ

(2π)2
[L · (L− ℓℓℓ)]2

CΘΘ,obs
ℓ

(
Cψψ(z)
|ℓℓℓ−L|

)2

Cψψ(z),obs
|ℓℓℓ−L|




−1

(5.47)

where we reintroduced the redshift dependence of our noise estimate.

5.8 Signal-to-noise ratio

We now estimate the signal-to-noise ratio of the reconstructed transverse velocity potential
assuming a cosmology consistent with the latest results from Planck [37]. We described
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the CMB noise and the galaxy number densities we use in our forecast in Section 5.4. We
choose the redshift binning taking into account the photometric error expected by the these
experiments, σz = 0.03(1+z), with each redshift bin width fixed to 4σz, which amounts to 13
bins in the range z ∈ [0,3.7]. Finally, we assume constant galaxy bias of unity between galaxy
and the matter over-density. The moving lens potential power spectrum Cψψ

ℓ is calculated
with a non-linear matter power spectrum and using the Limber approximation which is
valid at small scales [296–299]. All spectra were computed numerically using modified
versions of both CAMB [300] and CLASS [301] with non-linear corrections implemented
with HALOFIT [302–305], and we checked that the results from the two codes agree with
one another and also with the halo model treatment of the matter power described in [306].
We show the transverse velocity signal and the estimator noise in Fig. 5.5.

The most promising route for a first detection of the moving lens effect comes from
cross-correlating the large-scale transverse velocity reconstructed from the CMB with that
inferred directly from a galaxy survey. We assume that the latter method provides a precise
enough measurement of the large-scale density that we can infer the large-scale transverse
velocity without noise, which should be a reasonable approximation for the high number
densities of galaxies expected in the surveys we are considering. We calculate the total
signal-to-noise ratio by approximating the likelihood as Gaussian

(
S
N

)2

= ∑
ℓℓ′;XYWZ

CϒX ϒ̂Y
ℓ cov−1

(
C̃ϒX ϒ̂Y
ℓ ,C̃ϒW ϒ̂Z

ℓ′

)
CϒW ϒ̂Z
ℓ′ , (5.48)

where the indices run over redshift bins, the fields with hats refer to transverse velocities
reconstructed from the CMB, those without a hat refer to the velocities reconstructed from
the galaxy distribution, the tilde refers to spectra including noise, and the covariance is given
by

cov
(

C̃ϒX ϒ̂Y
ℓ ,C̃ϒW ϒ̂Z

ℓ′

)
=

δℓℓ′

2ℓ+1
f−1
sky ×

(
C̃ϒX ϒW
ℓ C̃ϒ̂Y ϒ̂Z

ℓ +C̃ϒX ϒ̂Z
ℓ C̃ϒY ϒ̂W

ℓ

)
. (5.49)

To assess the detectability of the moving lens effect, we take as a null hypothesis a scenario
in which there is no signal in the CMB-reconstructed transverse velocity, which we also take
to have noise diagonal in the redshift bins (C̃X̂Ŷ

ℓ = δX̂Ŷ NX̂
ℓ ), and no signal or noise in the

cross with the galaxy-derived transverse velocity (C̃XŶ
ℓ = 0) when calculating the covariance

matrix.

The results for the signal-to-noise ratio with these assumptions are shown in Fig 5.6. We
find that with the method we described, Simons Observatory combined with DES will be
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Figure 5.6: Signal-to-noise ratio of the transverse velocity estimator for a range of CMB noise
levels and beam sizes, combined with Vera Rubin Observatory (LSST) and DES. The approximate
anticipated noise levels of Simons Observatory and CMB-S4 are shown; both have roughly a 1.4-
arcminute beam. [15]

able to detect the moving lens effect at about 8σ , and CMB-S4 combined with Vera C.
Rubin Observatory at about 40σ , meaning that a first detection and subsequent precision
measurement of the moving lens effect should be possible in the next several years. The
signal-to-noise ratios in the results we have shown are limited in part by the contributions
to the temperature spectrum that come from the kSZ effect and lensing on small scales.
Reconstructing and removing the fluctuations from the kSZ effect, which may be possible
with the upcoming experiments [248, 249], together with applications of delensing such as
in [307] may improve the signal-to-noise ratio.

5.9 Biases

The analysis above ignored other secondary CMB fluctuations which may contribute to the
estimator in Eq. (5.42). We now discuss such biases and their mitigation.

Ordinary lensing introduces two biases to the transverse velocity estimator. The first bias
is proportional to the long-wavelength temperature gradient and takes the form

ϒ
φψ(L)≃ Θ(L)N(L)

∫ d2ℓℓℓ

(2π)2Cφψ

|ℓℓℓ−L|g(ℓℓℓ,L)L · (L− ℓℓℓ) , (5.50)
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where we have approximated the change to the temperature fluctuations due to lensing to
first order in the deflection as ∆Θ(n̂)

∣∣
lens ≃ ∇Θ(n̂) · α⃗(n̂). There exists a second bias from

ordinary lensing,

ϒ
Θψ(L)≃ φ(L)N(L)

∫ d2ℓℓℓ

(2π)2CΘψ

|ℓℓℓ−L|g(ℓℓℓ,L)L · (L− ℓℓℓ) , (5.51)

which can be understood as the large-scale gravitational potential fluctuations distorting
small-scale ISW or Rees-Sciama temperature fluctuations.

The kSZ effect generates CMB temperature fluctuations of the form

∆Θ(n̂)
∣∣
kSZ =−

∫
dχ vd(χn̂)dτ/dχ(χn̂) (5.52)

where dτ/dχ(χn̂) = σT ane(χn̂), σT is the Thomson cross section, a is the scale factor, ne

is the free electron number density, and vd is the remote CMB dipole projected along the
line of sight, given by vd = 3

∫
d2n̂ Θ1(n̂e, n̂)(n̂e · n̂)/(4π). We approximate the dipole seen

by distant electrons as dominated by the Doppler effect Θ1 ≃ v⃗e · n̂, where v⃗e is the electron
velocity. The contribution from the kSZ effect to our transverse velocity estimator is then

ϒ
kSZ(L)≃−vd(L)N(L)

∫ d2ℓℓℓ

(2π)2Cδτψ

|ℓℓℓ−L|g(ℓℓℓ,L) , (5.53)

where Cδτψ

ℓ is the cross-correlation between ψ and dτ/dχ .

We now assess how large these biases would be if one were to naively apply the estimator
shown in Eq. (5.47) to the data. We define the spectra of the biases as

⟨ϒB(ℓℓℓ)ϒB(ℓℓℓ′)⟩= (2π)2BB
ℓ δ

(2)(ℓℓℓ+ ℓℓℓ′) (5.54)

where B ∈ {φψ,Θψ,kSZ} and plot the results in Fig. 5.7 for the redshift bin z ∈ [1.00,1.25].
One can see that the φψ-bias introduced in Eq. (5.50) traces the structure of the primary
CMB temperature, due to the fact that our transverse velocity estimator is very similar to
an estimator designed to reconstruct the large-scale primary temperature fluctuations from
observation of small-scale temperature and lenses [308]. This bias is the largest of those
we have considered, and it is smaller than the signal on large scales ℓ≲ 50 which make the
dominant contribution to the signal-to-noise ratio. Our knowledge of the large-scale CMB
temperature allows us to cleanly remove the effects of the ψφ -bias by subtracting a best-fit
multiple of the observed large scale temperature fluctuations from the reconstructed ϒ map.
This bias could also be reduced by delensing the temperature map [309, 307, 310] before
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Figure 5.7: Comparison of the transverse velocity power spectrum with ordinary lensing and kSZ
biases for the redshift bin z ∈ [1.00,1.25] for a CMB experiment with ∆T = 1 µK-arcmin and a
1.4-arcmin beam combined with RUBIN. The dominant contribution to the signal-to-noise ratio comes
from large scales ℓ≲ 50, where the biases are smaller than the transverse velocity signal. Furthermore
these biases can be mitigated using the methods described in the main text. [15]

estimating the transverse velocity potential, or by suppressing its contribution to the estimator
by bias-hardening [311].

The Θψ-bias introduced in Eq. (5.51) is most important on large scales, though it is about
two orders of magnitude smaller than the transverse velocity signal on most scales and
redshifts. Our estimate of this bias included only the linear contributions to the ISW effect,
but the non-linear Rees-Sciama effect may increase CΘψ

ℓ on small scales, thereby boosting
the bias compared to what we have calculated here. The Θψ-bias can also be mitigated by
subtracting from the reconstructed ϒ map the best-fit multiple of the gravitational lensing
field φ which will be measured at high significance with the CMB experiments we are
considering. The kSZ bias is sub-dominant on all scales of interest, though it too may be
possible to reconstruct and remove with the experiments being discussed here [248, 249].

5.10 Discussion

It has long been known that gravitational potentials moving transverse to our line of sight
generate temperature fluctuations in the CMB [227]. Individual objects induce small fluc-
tuations in the temperature which are easily confused with other effects making detection
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challenging [272–274]. We have shown that the dipolar pattern in the CMB temperature
fluctuations around moving DM halos due to the moving lens effect can potentially be
detected in the near future by statistically combining the signal from many objects with a
common bulk motion, using either a matched filter in real space, or a quadratic estimator in
harmonic space. The methods we described in these sections greatly increases the prospects
for reconstructing transverse velocities on large scales. We demonstrated that upcoming
CMB experiments like Simons Observatory and CMB-S4 combined with galaxy surveys
such as DES and Vera C. Rubin Observatory have the statistical power to make a detection
of the moving lens effect at high significance. We also computed the leading biases and
discussed how they can be mitigated.

We calculated the form of the optimal matched filter, which is imagined to be centered on
DM halos inferred from galaxy surveys, and aligned with the cosmological bulk transverse
velocities. We discuss the distribution and the detection prospects of halos from galaxy
surveys, as well as the effect of photo-z errors and redshift-space distortions on the bulk
velocities inferred from a halo catalog. We calculate estimates for the SNR with the upcoming
experiments using analytic expressions we derive. We find that a statistically-significant
detection will be possible with the Simons Observatory, upon cross-correlation with Rubin
galaxy survey, for example. The maximum residual signal resulting from stacking a large
number of halos inside volumes of size around the correlation length of the cosmological
velocity field can potentially be used to estimate the direction and amplitude of the bulk
velocity at a given region. Using the known functional form of the moving lens effect
could potentially increase the accuracy of reconstruction by fitting the template calculated
Eqn. (5.14). Complementary to quadratic estimator technique introduced in [15], the real-
space analysis provides a useful alternative which will allow high SNR detection of the
moving lens effect in the near future.

Using the CMB to reconstruct the large-scale transverse velocity field allows for the use of
small-scale CMB measurements to probe long-wavelength cosmological fluctuations at lower
redshift, much like with CMB lensing [294], the kSZ effect [312, 248, 249], and the polarized
SZ effect [260, 267, 270, 271]. Since the observation of large-scale modes is typically
challenging, and the number of independent modes on large scales is inherently limited, it is
generally useful to expand the list of methods to access large scales observationally. As a
specific application, one could imagine using the large-scale velocity modes reconstructed
with the moving lens effect to cancel cosmic variance [313] for the purpose of constraining
local non-Gaussianity (which induces a scale-dependent bias on large scales [314]), in a
way similar to what has been explored for CMB lensing [215] and the kSZ effect [217].
Furthermore, because the moving lens effect is a result of purely gravitational effects, it
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can be used to measure quantities which cannot be accessed directly with the kSZ effect
alone, such as the absolute growth rate, which is useful for studying dark energy [315],
modified gravity [316], and the effects of neutrino mass [317]. Combined with other probes,
observations of the moving lens effect can also help reduce degeneracies due to astrophysical
uncertainties such as the optical depth degeneracy of the kSZ effect [249]. I explore one
potential application of the reconstructed transverse velocities in Appendix B where I evaluate
the prospects of constraining optical dept bias from the kSZ tomography that I discuss in the
next chapter.

Transverse velocity modes also provide a rare window into measuring the profile of DM
halos and can afford constraining power on various halo model parameters upon cross-
correlating with other tracers of large-scale structure such as weak gravitational lensing. We
leave a more detailed study on the prospects of testing halo models with the moving lens
effect to a future work.

Transverse velocity modes also provide a rare window into measuring the profile of DM
halos and can afford constraining power on various halo model parameters upon cross-
correlating with other tracers of large-scale structure such as weak gravitational lensing. We
leave a more detailed study on the prospects of testing halo models with the moving lens
effect to a future work.

Note that another velocity-dependent effect on the CMB is the so-called ‘rotational’ kSZ
effect due to the rotational motion of the large galaxy clusters [318, 319], sourced by the
angular momentum of halos. Various recent studies [e.g. 320, 321] show that ongoing
experiments will have the statistical power to detect this dipolar kSZ signature centered
around galaxy clusters. On small scales, the dominant contribution to the rotational kSZ
is the component of the angular momentum field that is sourced by the non-linear growth
and dynamics of the virialized environment, which is not correlated with bulk transverse
velocity. This component acts as noise on the moving lens measurement. Nevertheless, the
angular momentum field is not expected to be entirely uncorrelated with the long wavelength
potential: correlations are induced due to deviations of the proto-halos from perfect spherical
symmetry and their alignments, for example. The correlated rotational kSZ effect can bias the
moving lens measurement as well as potentially providing information regarding the growth
of structure and the initial conditions. We leave a detailed analysis on the implications of
large-scale angular momentum correlations on the moving lens and kSZ effect measurements
to future work.

Finally, since photons traversing near galaxies trace regions of the Universe with larger
density fluctuations, patches we use in our real-space analysis are more noisy in average than
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a random location on the sky due to ordinary lensing. The effect of ordinary lensing on the
CMB is not random, however, and the induced dipolar pattern is correlated with the large-
scale CMB gradient. Since the CMB gradient is very well measured, this correlated boost in
variance (which can be understood as a bias induced by ordinary lensing) can potentially be
removed. Since the temperature gradient is not correlated with the bulk transverse velocity,
we anticipate this procedure will not degrade the detection prospects of the moving lens
effect significantly. Note that we also checked for the additive noise effect from (nonphysical)
randomly distributed ordinary lensing contribution to the CMB spectra (which is a shot-noise
term, 1/Nsource, on the templates where Nsource is the number of sources available from the
galaxy catalogue). For the upcoming LSS surveys, together with Simons Observatory and
CMB-S4, for example, we find this shot noise remains smaller compared to the noise of the
CMB experiment.

The major leaps forward in the precision of near-future CMB and galaxy surveys will open
many new cosmological opportunities. We have described a method which will allow for
the first detection of the moving lens effect with forthcoming data, and will provide a novel
probe of large-scale transverse velocities with a host of cosmological applications.





Chapter 6

Probing fundamental physics with the
kSZ effect

This chapter is largely based on my published work in collaboration with James Mertens,
Matthew Johnson and Marc Kamionkowski, on constraining Compensated Isocurvature
Perturbations (CIPs) with the kSZ measurements [17], and my upcoming work with Mathew
Madhavacheril and Neal Dalal, on developing a novel method to isolate and evaluate the
detection prospects of the clustering properties of dark energy perturbations [322].

This chapter aims to introduce kSZ tomography for the purpose of studying fundamental
physics. The calculations include theoretical predictions for the CIP fluctuations on the
galaxy bias, bg, and the effect of DE clustering on the absolute growth rate, f (k). Both
observables gain scale dependence in the presence of the aforementioned deviations from
the ΛCDM paradigm we introduced in Chapter 2. Results in this chapter are forecasts on
the detection prospects of these deviations, using the anticipated experimental specifications
for the upcoming CMB experiments and LSS surveys. The discussion on the CIPs is also
complemented with the upcoming work described in Appendix 8, where we discuss the
prospects of utilising the upcoming 21cm hydrogen-line intensity measurements. Note,
however, that velocities reconstructed from the kSZ tomography are subject to an unknown
bias (so-called kSZ optical depth bias bv) due to our lack of knowledge of the electron
gas density cross-correlation with the galaxy observables on small scales. There has been
attempts in literature to measure this bias using fast radio-bursts [323], for example, which
will be detected to very high numbers with ongoing radio experiments such as CHIME [324].
Developing alternative methods to overcome the kSZ optical bias is not in the scope of this
chapter; however, we discuss one potential method in Appendix B, using the moving lens
effect measurement discussed in the previous chapter.
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The text, the conceptualisation, calculations and the forecasting work were dominantly
contributed by myself with exceptions including contributions to forecasting and plot-making
from James Martens for calculations of the CIP constraints using the kSZ effect; and
contributions from Mat Madhavacheril, to the development of the concept of the Fisher
matrix manipulation in order to isolate the DE perturbations from the background. All
collaborators mentioned above has contributed to the conceptualisation of the project and
fact-checking, as well as providing feedback for the text.

We start in Section 6.1 by describing the science case and the motivation for using kSZ
measurements as a probe of fundamental physics. We give a brief description of the kSZ
tomography in Section 6.2. A more robust discussion on reconstruction techniques with the
quadratic estimator (or a more in-depth discussion on the kSZ reconstruction) is outside the
scope of this thesis. We describe two deviations from the standard ΛCDM in Section 6.3. We
give a more detailed discussion on CIPs and their observable consequences in Section 6.4;
and on DE perturbations and clustering on Section 6.5. We discuss our forecasts for both
effects in Section 6.6 before concluding with a discussion on Section 6.7.

6.1 The search for fundamental physics

A major goal of the scientific program of measuring secondaries is constraining fundamental
physics. Large-scale cosmological perturbations leave unique imprints on the small-scale
intensity and polarization anisotropies of the CMB. The study of these statistical anisotropies
provide new information about the largest scales in the Universe. Large-scale observables
are in turn valuable for cosmological inference as they are often protected from local and
non-linear late time effects under the equivalence principle. Equivalence principle dictates
that local interactions produce density fluctuations that scale with the Fourier wavenumber
k like the Laplacian (or the time derivative) of the gravitational potential ∇2Φ (or Φ̇) and
have vanishing influence on large scales as k → 0 compared to curvature fluctuations. This
makes large-scale observables a powerful probe of the initial conditions that source the
large-scale fluctuations in the Universe. Understanding how large-scale fluctuations in the
Universe compare to the predictions of ΛCDM provide insight on the details of the primordial
Universe.

Measuring velocities on large scales is particularly valuable. For example, in many cases
the noise associated with the reconstructed velocity fields is constant, making it possible
to infer the matter power spectrum with a noise that scales like k2. Since the matter power
spectrum can be inferred from galaxies only up to a constant shot noise, this advantage of
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velocity reconstruction is most important on the largest scales. Of course, inferences on
cosmological parameters are still limited by the small number of modes on large scales
(cosmic variance). However, as we discuss in section 6.2.3, one can compare a reconstruction
with a galaxy survey to measure bias parameters with arbitrary accuracy; this was proposed
in Ref. [217] as a means for detecting primordial non-Gaussianity through scale-dependent
galaxy bias.

6.2 kSZ tomography

The technique of kSZ tomography [312, 325, 247–249] uses the correlation between a
redshift-binned tracer of the electron density, such as the galaxy number counts from a
galaxy survey, and the small-angular scale kSZ contribution to the CMB to reconstruct the
three dimensional remote dipole field, the CMB dipole as observed at different locations in
our Universe. The remote dipole field, which at any location is dominated by the Doppler
effect associated with radial peculiar velocities, can be reconstructed with high fidelity
on large angular scales using future surveys such as Simons Observatory [204] or CMB-
S4 [205] and Vera C. Rubin Observatory (LSST) [207] or DESI [326]. In the present
context, it is important to note that the remote dipole field is an unbiased tracer of the total
density. Cross-correlation with a galaxy survey can therefore take full advantage of sample
variance cancellation in order to extract (scale dependent) galaxy bias to high precision. The
reconstruction is in principle of such high quality that it is superior to direct measurements of
the density field from the galaxy survey itself, making kSZ tomography a powerful probe of
inhomogeneities on the largest scales. These measurements can facilitate strong constraints
on primordial non-Gaussianity [217, 327], the physics of cosmic acceleration [219], and
inflationary cosmology [218, 325].

6.2.1 Redshift-binned estimator

More specifically, we can write a quadratic estimator for the remote dipole field averaged in
a set of top-hat redshift bins, in the form of temperature correlated with galaxy density. We
begin with the kSZ contribution to the CMB temperature defined in Eq. (4.2),

ΘkSZ(n̂) =
∫

χ∗

0
dχτ̇(χn̂)veff(χn̂) , (6.1)
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where we defined τ̇ := σT ane. Decomposing into spherical harmonics

τ̇(χn̂) = ∑
ℓm

τ̇ℓm(χn̂)Yℓm(n̂) (6.2)

veff(χn̂) = ∑
ℓm

veff,ℓm(χn̂)Yℓm(n̂) , (6.3)

the kSZ effect can be written as

ΘkSZ,ℓm= ∑
ℓ1m1ℓ2m2

[
(−1)m

√
(2ℓ+1)(2ℓ1 +1)(2ℓ2 +1)

4π

(
ℓ1 ℓ2 ℓ

0 0 0

)(
ℓ1 ℓ2 ℓ

m1 m2 −m

)

×
[∫

χ∗

0
dχvℓ1m1(χ)τ̇ℓ2m2(χ)

] (6.4)

where we used spherical harmonic relations Some useful spherical harmonics relations are
∫

d2n̂ sYℓm(n̂) sY ⋆
ℓ′m′(n̂) = δℓℓ′δmm′ , (6.5)

and
∫

d2n̂ s1Yℓ1m1(n̂) s2Yℓ2m2(n̂) s3Yℓ3m3(n̂)

=

√
(2ℓ1 +1)(2ℓ2 +1)(2ℓ3 +1)

4π

(
ℓ1 ℓ2 ℓ3

m1 m2 m3

)(
ℓ1 ℓ2 ℓ3

−s1 −s2 −s3

)
.

(6.6)

The correlation with density, δℓm, averaged in some redshift bin α , δ α
ℓm :=

∫
dχW α(χ)δℓm(χ),

is

⟨(ΘkSZ)ℓmδ
α

ℓ′m′⟩

= ∑
ℓ1m1

[
(−1)m+m′

√
(2ℓ+1)(2ℓ1 +1)(2ℓ′+1)

4π

(
ℓ ℓ′ ℓ1

0 0 0

)(
ℓ ℓ′ ℓ1

m m′ −m1

)]

×
[∫

χ∗

0
dχveff,ℓ1m1(χ)C

τ̇δ
ℓ (χ)

]
.

(6.7)

We can now define a quadratic estimator for the large-scale remote dipole field, v̂α
eff,LM, from

the maps of temperature and galaxy density on small scales. This construction allows mea-
suring the large scale velocity mode from the statistical anisotropy induced by modulations
of small-scale cross-correlation power between the temperature and density fields due it
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induces, hence, amounting to a non-zero three-point function between temperature, density
and velocity at the squeezed limit. The quadratic estimator takes the form,

v̂α
eff,LM = Nvv

αL ∑
ℓmℓ′m′

(−1)M

(
ℓ ℓ′ L
m m′ −M

)
gα

ℓℓ′LΘℓmδ
α

ℓ′m′ , (6.8)

where

Nvv
αL := ⟨v̂α,∗

eff,LM v̂α
eff,LM⟩= (2L+1)

(
∑
ℓℓ′

gα

ℓℓ′ f αα

ℓLℓ′

)−1

(6.9)

and

f αγ

ℓℓ1ℓ′
:=

√
(2ℓ+1)(2ℓ1 +1)(2ℓ′+1)

4π

(
ℓ ℓ′ ℓ1

0 0 0

)∫
χ∗

0
dχ

′
∫

χ∗

0
dχCτ̇δ

ℓ (χ,χ ′)W α(χ ′) .

(6.10)

The filter gα

ℓℓ′L is chosen to minimise the estimator variance and the estimator can be found as

v̂α
eff,ℓm = bα

v Nvv
αℓ× ∑

ℓ1m1ℓ2m2

(−1)m
Γ

α
ℓ1ℓ2ℓ

(
ℓ1 ℓ2 ℓ

m1 m2 −m

)
Θℓ1m1δ α

g,ℓ2m2

CT T
ℓ1

Cgg
αℓ2

, (6.11)

where

Γ
α
ℓ1ℓ2ℓ

=

√
(2ℓ1 +1)(2ℓ2 +1)(2ℓ+1)

4π

(
ℓ1 ℓ2 ℓ

0 0 0

)
Cτ̇g

α,ℓ2
, (6.12)

and the reconstruction noise (e.g. variance of the estimator) is defined by

1
Nvv

αℓ

=
1

(2ℓ+1) ∑
ℓ1ℓ2

Γα
ℓ1ℓ2ℓ

Γα
ℓ1ℓ2ℓ

CΘΘ

ℓ1
Cgg

αℓ2

. (6.13)

The subscript g refers to the density field reconstructed from measurements of galaxy
positions. In these expressions, CΘΘ

ℓ1
is the measured CMB temperature power spectrum,

Cgg
αℓ2

is the measured spectrum of the galaxy number counts in each bin, and Cτ̇g
α,ℓ2

is the
cross-power of the optical depth and galaxy number counts in each bin. In the absence of
an external tracer of the electron distribution [323], there is in principle a significant model
uncertainty in Cτ̇g

α,ℓ2
. This uncertainty manifests itself as a multiplicative “optical depth bias"

bα
v on the reconstructed dipole field which must be marginalized over in any cosmological

analysis (see e.g. Refs. [328, 329, 249, 323] for further discussion).
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The reconstruction noise can in principle become arbitrarily small in the limit where the
CMB and number counts can be probed on arbitrarily small angular scales. In reality, the
reconstruction noise is limited by the instrumental noise of the CMB experiment and shot
noise of the galaxy survey, since this places an effective upper limit in ℓ on the sum in
Eq. 6.13. The expected bin-averaged dipole field signal is computed as in Ref. [248].

6.2.2 Co-evaluation box estimator

Note, moreover, as in [216, 249], we can also reconstruct the large-scale velocity modes with
wavenumbers kL from measurement of the kSZ effect and the galaxy-density distribution on
small scales inside a box as at comoving distance χ∗. This ’box’ formalism utilises the 3-
dimensional density field, δg(⃗kS), on small scales k⃗S ≫ 1, taken as a ’snapshot’ approximation
of the true density field at some redshift z (same for the all box). In this formalism the
quadratic estimator takes the form

v̂r (⃗kL) =
∫ d3⃗kS

(2π)3
d2ℓ⃗

(2π)2 g(⃗kS, ℓ⃗)δ
⋆
g (⃗kS)T ⋆(⃗ℓ)(2π)3

δ
3

(
k⃗L + k⃗S +

ℓ⃗

χ⋆

)
(6.14)

where the filter, similar to before, is defined to minimise the variance of the reconstruction
subject to the constraint that the reconstructed field is unbiased, that is ⟨v̂r (⃗kL)⟩ is equal to
the true velocity field vr (⃗kL). These conditions are satisfied with a filter defined as

g(⃗kS, ℓ⃗) = Nvv
rec(kL)

K⋆

χ2
⋆

Pge(kS)

Pobs
gg (kS)C

T T,obs
ℓ

, (6.15)

where Pgg(k) and Pge(k) are the three-dimensional density auto power-spectrum and density-
electron cross-power at some redshift z⋆. The velocity reconstruction noise is

Nvv
rec(kL,µ) = µ

2 2πχ2
∗

K2∗

[∫
dksks

Pge(ks)
2

Pobs
gg (ks)C

T T,obs
ℓ=ksχ∗

]
,

(6.16)

where K∗ = K(z∗) is the kSZ radial weight function at redshift z∗, defined as

K(z) =−TCMBσT ne,0xee−τ(z)(1+ z)2 (6.17)
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and TCMB is the background CMB temperature, ne,0 is the comoving electron number density
today, xe(z) is the ionised fraction and τ(z) is the optical depth. The parameter µ determines
the angle of the mode with respect to the line of sight µ := k̂ · n̂.

We use both of the formalisms in the following sections when assessing the fidelity of the
upcoming experiments upon constraining deviations from the standard ΛCDM.

6.2.3 Sample variance cancellation

As discussed earlier, a major advantage of using a technique like the kSZ tomography is the
possibility of overcoming the cosmic sample variance on large scales: the large null-condition,
such as the fiducial galaxy power-spectrum, for example, that we need to compare against
when measuring a small deviation from the standard LCDM prediction. Schematically, this
can be seen from comparing the ratio of the kSZ-reconstructed velocities,

v ∝
f aH

k
δm , (6.18)

and the galaxy over-density,

δg = bGδm , (6.19)

which become independent of the matter density δm. In this example, kSZ reconstruction,
together with a survey of the galaxy distribution, can measure the galaxy bias bG or the
growth rate f without sample variance and an arbitrary improvement of the measurement
quality can potentially be achieved with improving CMB and galaxy survey noise. In practice,
the sample variance cancellation is done by measuring all auto- and cross-correlations of the
density and velocity fields: {Pgg,Pgv,Pvv}.

6.3 Fundamental physics beyond the ΛCDM

6.3.1 Compensated isocurvature perturbations

Measurements of the CMB provide the bedrock for the standard cosmological model, ΛCDM.
As discussed in Chapter 2, a central feature of ΛCDM is that perturbations are adiabatic, with
inhomogeneities in dark matter, baryons, neutrinos, and photons all uniquely determined by
the primordial curvature perturbations. Theories of the early Universe which have one degree
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of freedom, such as single field inflation discussed in Section 2.3, naturally predict purely
adiabatic fluctuations. More generally, theories with multiple degrees of freedom, like those
discussed in Chapter 3, can source isocurvature (entropy) perturbations, where the relative
mixture of dark matter, baryons, neutrinos, and photons become independent degrees of
freedom. While most forms of isocurvature perturbations are tightly constrained by existing
measurements of the CMB [330], there is a notable exception: compensated isocurvature
perturbations (CIPs).

CIPs are fluctuations of baryons and cold dark matter that leave the total matter pertur-
bations unchanged and adiabatic. CIPs leave an imprint on the CMB only through terms
that appear at second order in the matter density contrast, making them challenging to
constrain [331–337].

Current measurements from Planck [330] allow for an amplitude of CIPs roughly 580
times larger than the amplitude of the adiabatic modes! 1 This is a surprisingly large gap in
our knowledge of the early Universe. A detection of CIPs can provide insight into both the
number of primordial fields that contribute to the observed density fluctuations, as well as
their decay channels [170, 339, 340], strongly motivating new ways of searching for CIPs.

Variations of the ratio between baryons and cold dark matter changes how structure is dis-
tributed in the Universe, altering how galaxies trace the total matter density [341–343]. This
leads to a spatially varying galaxy-bias that relates the observed galaxy over-density to the
total matter over-density. In particular, CIPs that are correlated with the primordial curvature
perturbation (as arises in e.g. curvaton scenarios [170]) will introduce a scale-dependent
galaxy-bias [343], similar to the effect of local-type primordial non-Gaussianity [314]. Be-
cause correlated CIPs induce a scale dependent galaxy bias, given an unbiased tracer of the
total matter density, it is possible to use sample variance cancellation [344, 313] to measure
the amplitude of CIPs without cosmic variance, as suggested in Ref. [343]. While it is
possible to use different populations within a galaxy survey itself to measure scale-dependent
bias, sample variance cancellation is in principle more powerful when using the technique of
kSZ tomography [217, 327]. A primary goal of this chapter is to explore the potential for
kSZ tomography to probe CIPs using future CMB and galaxy surveys.

Previous work [217, 327] has found that future experiments will be able to detect local-type
non-Gaussianity of order σ fNL ∼ O(1) by utilising sample variance cancellation between the
reconstructed remote dipole field and galaxy number counts. Depending on assumptions,

1More recently, constraints on CIPs from their effect on baryon acoustic oscillations [338] (BAO) were
analyzed. It was shown that constraints comparable to those from the CMB are possible with future galaxy
surveys.
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priors on various bias parameters, and whether internal sample variance cancellation is
employed, this can represent up to an order of magnitude improvement on what is possible
using the galaxy survey alone. Below, we find a similar level of improvement on the
amplitude of CIPs when utilising kSZ tomography. In particular, it will be possible to probe
CIPs comparable in amplitude to the adiabatic perturbations, which can be thought of as a
well-motivated target for future measurements.

In Sec. 6.4 we describe potential sources and observable consequences of CIPs. We
examine how well future surveys can measure correlated CIPs in Sec 6.6. We conclude in
Sec. 6.7.

6.3.2 Dark energy perturbations

In addition to the study of the characteristic of initial conditions discussed above, another
major science program in cosmology is the study and inference of the dark energy component
of the Universe. As discussed in Chapter 2, dark energy is parameterised as a cosmological
constant in the standard cosmological paradigm, the ΛCDM. While the ΛCDM model
provides a robust basis for our understanding of the Universe, observing deviations from
its predictions has the potential to provide invaluable insights into the microphysics of its
relatively less understood components. Hence, here, we also study the dark energy component
of the Universe which we take to be a perfect fluid and evaluate the detection prospects of
dark energy perturbations from the effect on the growth of large-scale structure.

There is overwhelming evidence that the Universe today is expanding in an accelerated
rate, strongly indicating a dominant dark energy component with a negative equation of state
w0 < 0. Numerous ongoing and completed large-scale experiments agree that the equation of
state of dark energy is close to −1. While the dark energy sector is decoupled from the metric
in the standard ΛCDM, for less constraining models with w0 different than −1, dark energy
can impact the growth of density perturbations (and hence observables accessible to current
and future experiments) in a model dependent way. We model the dark energy component
as a perfect fluid with a sound speed satisfying c2

s = δ pDE/δρDE at the rest frame of the
fluid, with dark energy density and pressure perturbations. In this model, analogous to other
components of the Universe, when w0 is different from −1, dark energy can cluster under
gravity on scales beyond the dark energy sound horizon, and is coupled to other components
of the Universe through the metric.

While detection of the dark energy clustering through constraining w0 would indicate
evidence for fundamental physics different than ΛCDM, the effect of dark energy pertur-
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bations on the late time observable Universe is subdominant compared to the influence of
the dark energy component on the background cosmology. In particular, the parameter w0

is largely insensitive to the microscopic details of the dark energy component, for example
to the degrees of freedom governing the dark energy sector or to the characteristics of the
dark energy field. A model parameter that is sensitive to some of these details, on the other
hand, is the dark energy sound speed, cs. In particular, measurement of the dark energy
speed of sound would potentially constrain the dark energy perturbations in a non-ambiguous
way, as it would amount to measuring the scale beyond which the dark energy perturbations
cluster. We discuss the observable consequences of dark energy perturbations in Section 6.5.
Unfortunately, however, the observational accuracy of the upcoming experiments suggest
measuring cs with high fidelity in the near future is unlikely, indicating the necessity for
an alternative (and robust) way of measuring dark energy perturbations. Furthermore, for
the level of deviation of w0 from the ΛCDM allowed by current galaxy surveys, observable
signature of dark energy perturbations on the galaxy auto-spectrum, for example, compares
to the experimental uncertainties and anticipated systematics, casting doubt on the use of
galaxy statistics alone when inferring such small effects.

For these reasons, in Section 6.6.2 we provide a simple novel method to isolate the
signature of dark energy perturbations from their effect on the background cosmology and
the systematic uncertainties due to the measurements of the galaxy density. We discuss dark
energy fluid equations of motion and analyse the effect of w0 and sound speed in Section 6.5.
We introduce a simple method to isolate the constraining power of the upcoming experiments
on dark energy perturbations utilising the measurements of the kSZ effect for forecasting
purposes in Section 6.6. The velocity field on large scales contains information on the
clustering properties of dark energy through the scale dependence on the growth rate, which
is introduced when the dark energy equation satisfies w ̸=−1. Furthermore, note that the
velocity is an unbiased tracer of the total matter density and its cross-correlation with the
biased density field, reconstructed from a galaxy survey, allow taking advantage of sample
variance cancellation [313] in order to extract the scale dependent variations from the ΛCDM
prediction to high precision on large-scales. We discuss the implications of our results in
Section 6.7.

6.4 CIPs and their observable consequences

In the early Universe, standard single-field inflation produces purely adiabatic curvature
perturbations (see Chapter 2 for a brief review). If the fluctuations seeded in the early Universe
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were sourced by multiple fields as discussed in Chapter 3, however, some fraction of these
may be entropic (or isocurvature) perturbations where the fractional densities of baryons or
dark matter vary with respect to radiation. Isocurvature perturbations can be parameterised
by a quantity Siγ , with γ for photons and i = {b,c,ν} for baryons, cold-dark-matter (CDM)
and neutrinos respectively, and

Siγ =
δni

ni
− δnγ

nγ

, (6.20)

where n and δn are the mean number density of a species and its fluctuations, respectively.

We will define the compensated isocurvature mode with ∆ as in the literature. The baryon
and CDM isocurvature perturbations are then defined as

Sbγ = ∆, Scγ =−ρb

ρc
∆ (6.21)

where ρi is the energy density of species i.

Compensated isocurvature perturbations may be sourced, for example, by a spectator
scalar field that is subdominant in the early Universe with respect to the inflaton field driving
the inflationary dynamics [345]. In this scenario, after inflation ends, the inflaton decays
into relativistic particles and its energy density scales like radiation, while the spectator
field (curvaton) oscillates around its potential minimum, its energy density scaling like
matter e.g. [176, 170, 340, 346, 170, 339, 347]. We already discussed some other observable
impacts of these scenarios in Chapter 3. Depending on the duration of this era, the curvaton
may contribute significantly to curvature fluctuations of the Universe upon its decay into
relativistic particles.

If the curvaton decays into baryon number and CDM and also dominates the energy density
of the Universe at its decay, the CIPs will be fully correlated with the adiabatic curvature
fluctuations ζ , satisfying

∆ = Aζ , (6.22)

while any residual isocurvature perturbations other than CIPs that are uncorrelated with the
adiabatic curvature fluctuations are well constrained by the CMB observations [330]. Similar
to earlier works in the literature, e.g. [345, 348, 338], we focus here on these “correlated
CIPs" and evaluate the detection significance of the amplitude A below. The two distinct
curvaton decay scenarios that produce observationally relevant CIP amplitudes are either
A≃ 16, if baryon (CDM) number is produced by (before) curvaton decay; or A=−3, if CDM
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(baryon) number is produced by (before) curvaton decay [345]. Furthermore, in the former
curvaton decay model where A ≃ 16, the local non-Gaussianity is found to be relatively
large, fNL ≃ 6 [172, 345], suggesting future experiments may disfavor the scenarios where
CDM preceded the decay of curvaton. Note that an unambiguous statement along these
lines will require constraining both the CIP amplitude and fNL simultaneously, as we discuss
in Sec. 6.6.

In the absence of primordial isocurvature perturbations after recombination, baryons
and CDM can be approximated to move together as a single fluid on large scales where
non-gravitational forces can be neglected. However, both before recombination and in the
presence of primordial isocurvature perturbations, there can be important differences in the
distribution of baryons and CDM. For example, before recombination baryons are tightly
coupled to photons while CDM is not. This leads to a modulation in the relative fraction of
baryons and CDM on large scales while keeping the total matter density fixed, and therefore
is a source of CIPs [341–343]. In addition, we may have the primordially sourced CIPs
discussed above. As we will see shortly, primordial correlated CIPs can be distinguished
from these more mundane sources of CIPs by their characteristic scale dependent imprint on
the distribution of galaxies.

There are a few potential imprints of CIPs on the observed galaxy distribution. First, the
sound horizon becomes spacetime dependent, altering the BAO feature in different regions
of the Universe [338]. Second, modulating the density of baryons can modulate the strength
of various feedback effects in the formation and evolution of galaxies. Finally, because only
dark matter can cluster efficiently prior to recombination, modulating the density of dark
matter will lead to a modulation in the growth of structure. It is this last effect that provides
the dominant contribution on large scales, and which we focus on.

As shown in Ref. [343], the leading effect of CIPs on galaxy density perturbations can be
folded into a linear bias bbc(z):

δg(k,τ)≃ b(z)δm(k,τ)+bbc(z) [δbc(k,τ)+ f ∆(k)] ,

(6.23)

where we have allowed for both pre-recombination CIPs δbc, as well as primordially sourced
correlated CIPs, f ≡ 1+Ωb/Ωc Therefore, we see that primordially sourced correlated CIPs
lead to a scale-dependent galaxy bias, becoming increasingly important on the largest scales.
This scale dependence can be contrasted with the imprint of δbc, which is expected to be very
small on scales larger than the BAO feature [343]. Indeed, on the scales of interest (∼ Gpc),
δbc is many orders of magnitude smaller than δm and can be safely neglected.
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The bias bbc(z) can be estimated in the separate-Universe approximation by simply com-
puting the effect of changing the baryon-CDM fraction on the number density of galaxies.
We define

bbc(z) =
∫

dm n(m,z)bbc(m,z)
⟨N(m)⟩

n̄g
, (6.24)

where n(m,z) is the halo mass function, ⟨N(m)⟩ is the average number of galaxies per halo
of mass m, n̄g is the comoving number density of galaxies at fixed redshift, and

bbc(m,z) =
1

∆bc

[
ñ(m,z)
n(m,z)

−1
]
, (6.25)

with

∆bc =

(
1+

Ωb

Ωc

)
∆b , (6.26)

and the mass function ñ is evaluated with parameters:

Ω̃b = (1+∆b)Ωb, Ω̃c =

(
1− Ωb

Ωc
∆b

)
Ωc . (6.27)

To evaluate bbc(z), we use the mass function and Halo Occupation Distribution (HOD) model
for ⟨N(m)⟩ and n̄g described in Ref. [249]. For parameters consistent with the LSST gold
sample used in the forecast below, we find that a quadratic polynomial provides a good fit
over the relevant range of redshifts:

bbc(z)≃−(0.16+0.2z+0.083z2) . (6.28)

The total observed galaxy number counts receive contributions not only from CIPs and
intrinsic density perturbations (D), but from all linear-order general relativistic and lightcone
projection effects, including redshift space distortions (RSDs), lensing (L), and additional
relativistic contributions (GR) that are important on large scales [349, 350]. The spectrum of
the total observed galaxy number counts

CN,N
ℓ = 4π

∫ dk
k

P(k)|∆N
ℓ (k)|2 (6.29)

is defined by the transfer function

∆
N
ℓ (k) = ∆

D
ℓ (k)+∆

RSD
ℓ (k)+∆

L
ℓ (k)+∆

GR
ℓ (k) . (6.30)
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Figure 6.1: Relative contributions to the angular galaxy number counts power spectrum, as labeled
in the figure, in a tophat redshift bin from redshift z = 1.6 to z = 1.7. Shot noise from a LSST-like
galaxy survey is shown in dashed grey.

The power spectrum is defined by P(k) = As(k/k0)
ns−1, and the transfer function for the

intrinsic galaxy perturbations in a redshift bin is explicitly given by

∆
D
ℓ (k) =

∫
dχW̃ (χ)

[
5 f
3

Abcb(z)Sψ(k,χ)+(bG(z)

−bA(z)/3+bNG(z))SδM ,syn(k,χ)
]

jℓ(kχ), (6.31)

with jℓ(x) the spherical Bessel function, W̃ (χ) a window function selecting the relevant red-
shift bin, SδM ,syn the time-evolution function for cold dark matter in comoving-synchronous
gauge, and Sψ the time-evolution function for the Newtonian potential. Galaxy bias (bG) and
alignment bias [351]2 (bA) are marginalised over, and non-Gaussianities are also modeled as
an effective scale-dependent bias, bNG ∝ fNL. These bias functions, as well as the remaining
contributions to the number counts transfer function, are modelled identically to [327]. We
show the relative contributions from each of these effects to the total power in Fig 6.1.

2Alignment bias is an orientation dependent selection effect on galaxy clustering in redshift space due to
alignment of galaxies by large-scale tidal fields. This effect is understood to mimick redshift space distortions
and potentially bias the measurement of velocity power spectrum [351].
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6.5 Dark energy perturbations and scale-dependent growth

The growth of dark energy density perturbations can be solved from perturbed Einstein
equations and can influence different components of the Universe via the metric. The standard
FRW metric perturbations in the conformal Newtonian gauge take the form in (2.22). For a
perfect fluid that is not interacting with other components (except through the metric), the
density δ and velocity v⃗ perturbation equations can be solved by using the conservation of
the stress-energy tensor which satisfy the equations given in Eqs. 2.27 and 2.28 at linear
level [35]. It is easy to see for a constant equation of state satisfying δP/δρ −w = 0, density
perturbations decouple from the metric when w = −1, since terms including the Hubble
parameter vanish.

For a negative equation of state satisfying w ̸= −1, perturbations grow on scales larger
than the sound horizon of the fluid, although are suppressed beyond the Hubble scale due to
Hubble drag. On scales smaller than the sound horizon of the fluid, the density fluctuations
are smooth and the growth is suppressed. The clustering of dark energy on large scales can
be seen from comparing the Fourier mode amplitudes of dark matter fluctuations predicted
from the ΛCDM with a model where w ̸= −1 and from measurements of the growth rate
of cosmological structure, commonly defined f = dlnD(k, t)/dlna where D(k, t) is the
matter transfer function (i.e. the time dependent amplitude of the matter fluctuations with the
wavenumber k). As shown in Figure 6.2, dark energy fluid enhances the growth of structure
on scales beyond the sound horizon k ∼ H /cs, where H = aH is the comoving Hubble
rate.

It is important to note, however, that when describing density fluctuations on large scales
relevant to dark energy clustering, the choice of gauge has a significant effect on the predic-
tions that are not directly observable, such as the matter or dark energy overdensities. (Note
that there is no ambiguity, of course, if we are instead calculating observables as we did for
number counts in the previous section. This raises the question about the gauge choice when
relating the observed matter power spectrum to theory, and has been discussed in the literature
in detail (see e.g. [350]). For the widely used comoving-Newtonian and synchronous gauges,
while the differences between theory predictions are small for large wavenumbers k ≫ H ;
for scales k ≪ 0.01Mpc−1, differences become large and the comoving-Newtonian prediction
of the matter power spectrum diverges. Due to both this shortcoming of the Newtonian-gauge
and the smooth behaviour of matter power spectrum around H , synchronous gauge is more
widely used on large-scales in practice. Furthermore, in the limit where the perturbations are
dominated by pressure-free matter, density perturbations in synchronous gauge correspond
to the perturbations in the comoving gauge, which are gauge-invariant by definition. Finally,
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Figure 6.2: Scale dependence of the linear growth rate of matter fluctuations δ f (k):= f (k)− f (k ≃ 1),
defined in the synchronous gauge (see text) at redshift z = 0.2, and for DE equation of state w0 =−0.9
and sound speed cs = 1.0, shown in reference to the scale dependence induced by non-zero curvature
(Ωk =−0.05) and massive neutrinos (∑mν = 60meV), for comparison. The clustering of dark energy
influences growth on scales larger than the sound horizon of the DE fluid, corresponding to around
the Hubble scale for cs = 1 as shown above.

for what follows, we assume that the comoving-Newtonian gauge velocity follows the matter
velocity (with no velocity bias) and use CAMB [300] numerical Boltzmann solver to calculate
matter and CMB spectra.

6.6 Forecasts

6.6.1 Compensated isocurvature perturbations

We now examine how well future experiments will be able to measure A, assuming an
LSST-“gold sample"-like galaxy survey, and kSZ reconstruction from a CMB-S4-like survey.
We follow the prescription used in [327] in order to compute galaxy number densities, the
kSZ remote dipole field, and the corresponding noise for each tracer.

The galaxy number densities follow from earlier work, e.g. [350, 349, 352, 353], and
the kSZ signal from e.g. [248]. We make use of information from each of these tracers
individually, as well as the cross-correlations. The Fisher matrix we compute thus has the
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Table 6.1: Various parameters, bias functions, and their fiducial values. The biases bv, bG, bA, fevo, s,
that we refer to throughout are, respectively, the optical depth bias, the galaxy bias, the alignment
bias, the evolution bias, and the magnification bias. The fiducial values of bias functions indicated
with a † vary with redshift, the modeling of which is described in [327].

Parameter A 109As ns Ωb Ωc h τ

Fiducial value 0 2.2 0.96 0.0528 0.2647 0.675 0.06

Parameter bv(z) bG(z) bA(z) fevo(z) s(z) bbc(z)

Fiducial value 1 † 0 † † Eq. 6.28

form

Fαβ =
ℓmax

∑
ℓ=ℓmin

2ℓ+1
2

Tr
[
(∂αCℓ)C−1

ℓ

(
∂β Cℓ

)
C−1
ℓ

]
+FCMB

αβ
, (6.32)

where we defined ∂a := (∂/∂a) same for a and b which are model parameters we defined.
The covariance matrix Cℓ is given by

Cℓ =

(
CN,N
ℓ CN,kSZ

ℓ

CkSZ,N
ℓ CkSZ,kSZ

ℓ

)
+Nℓ . (6.33)

The individual contributions to the covariance matrix are the spectra CX,Y
ℓ , where X ,Y ∈

{N,kSZ}, and are the angular power spectra and cross-spectra of the galaxy number counts
and kSZ remote dipole field. The noise computed for each tracer is denoted by Nℓ. For
the galaxy number counts, we assume the dominant source of noise is shot noise from an
LSST-like survey. Calibration errors may also exist on large scales that we do not explicitly
model [354], although we do explore the dependence of detection prospects on a maximum
available ℓ in Fig. 6.4. For the kSZ reconstruction, the noise is the reconstruction noise
given by Eq. 6.13, which we assume is uncorrelated with the galaxy shot noise. The CMB
contribution to the Fisher matrix, FCMB

αβ
, is computed using information from the lensed

CMB temperature and polarisation power spectra, and is not cross-correlated with the galaxy
survey nor remote dipole field. This term acts as an effective prior on standard cosmological
parameters only. Lastly, we compute derivatives of the covariance matrices analytically for
all cosmological parameters and bias functions, except for the cosmological parameters Ωb,
Ωc, and h, which we compute numerically. We test for numerical convergence by varying all
relevant numerical parameters.
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For our fiducial results, we sum over 1≤ ℓ≤ 60; the vast majority of constraining power on
A and fNL comes from ℓ≲ 30. We assume information from a galaxy survey is available in 30
(tophat) redshift bins from z = 0 to z = 3 (so σz ≲ 0.05), and a magnitude limit corresponding
to the LSST gold sample, rmax = 25.3. For reconstruction of the remote dipole field, we
assume modes up to ℓ of 9000 are available for reconstruction, subject to a 1.0 µK-arcmin
noise and 1 arcmin beam for the CMB experiment. We explore the implications of varying
this noise, and do not find our constraints change substantially: most of our signal comes from
the largest angular scales, where the remote dipole field reconstruction noise is sufficiently
low even for a much larger instrument noise.

The main quantity we report is σA =
√

F−1
AA . We marginalise over standard cosmological

parameters, as well as different bias functions. The full list of cosmological parameters
we marginalise over, as well as the bias functions, are described in Table 6.1 unless stated
otherwise3. We examine σA as a function of different ingredients in the forecast, in order
to assess how much additional constraining power is available once new probes are added
and theoretical considerations modified. The constraints we find on A for our “fiducial”
model described above, as well as for different combinations probes, are shown in Table 6.2.
Notably, the remote dipole field improves constraining power over galaxy number densities
alone by over an order of magnitude. Fixing standard cosmological parameters and bias
functions in addition does not considerably improve constraining power, however we do
find a moderate degeneracy of A with the effects of non-Gaussianity, such that additionally
marginalising over fNL worsens constraining power by a factor of order 2. There is also a
minor degeneracy with general relativistic and lightcone projection effects: although less
important, we find a parameter bias of order 1.5σ in A when these effects (excluding lensing)
are not modelled, suggesting such effects should be properly accounted for when studying
isocurvature perturbations using large-scale survey data.

In order to check how robust the uncertainties we report are to the fiducial values we
choose, as well as to draw a connection to a specific model, we re-evaluate our results for a
value of A = 16 and fNL = 6, corresponding to particular curvaton decay models. Because
the fiducial value of A is no longer zero, the bias function bbc(z) should be marginalised
over. Changes in this bias function are highly degenerate with changes in A, so we must
place a prior on the function in order to obtain meaningful results. Enforcing a condition

3The evolution bias is due to the fact that new galaxies form, hence the galaxy number density does not
simply scale like a−3, see e.g., [355–357]. The magnification bias is due to the change in the number of
relative sources detected at a given redshift at a fixed magnitude due to cosmic magnification, the systematic
magnification of background sources near foreground matter over-densities. Differently from the standard
cosmic distortion effect, cosmic magnification increases the flux received from distant sources and stretches the
solid angle, diluting the surface density you source imagines on the sky, see e.g., [356].
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Table 6.2: The fiducial uncertainty in A from the model described in the text is bold. Lines above this
exclude the cross- and auto-correlation with the kSZ remote dipole field, and additionally exclude the
high-ℓ CMB prior on standard cosmological parameters. Lines below fix all cosmological parameters
and bias functions, or additionally marginalise over fNL with a fiducial value of zero.

Forecast ingredients σA

N only 3.8

N + CMB 3.2

N + CMB + kSZ 0.25

N + CMB + kSZ + fixed cosmology 0.23

N + CMB + kSZ + variable fNL 0.49

on the sign of bbc, or adding a “100%” prior σ(bbc) = bbc on the function in each redshift
bin, results in an uncertainty in A of σA = 5.8. The constraint scales down to σA = 0.89 for a
10% prior, and σA = 0.53 for a 1% prior, nearly recovering the results reported in Table 6.2.
As primordial non-Gaussianity may be sourced through other additional mechanisms, we
have marginalised over fNL and A separately. The degeneracy between these two parameters
can be explicitly seen in Fig 6.3 as a function of the prior on bbc. Even with the weakest
prior, we see that a definitive detection of this scenario can be made with future datasets.

3.0 6.0 9.0
fNL

13.0

16.0

19.0

A

1% prior
10% prior

100% prior

Figure 6.3: Parameter covariance between A and fNL, given several choices for a prior on bbc.
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We lastly show how the uncertainty σA varies due to experimental parameters that have not
been marginalised over. In particular, we vary: the ℓ summed over in Eq. 8.6, the number and
width of the redshift bins we consider (which stand in as an effective redshift uncertainty), the
galaxy survey magnitude limit, and CMB experiment noise. These results are summarised in
Figure 6.4. The results generally do not change significantly as these are varied, with two
exceptions. First, improving the magnitude limit from the LSST gold sample (r = 25.3) to
a less conservative cut (r = 27.3) can improve things by another possible factor of order
2. Second, without a reliable survey or remote dipole field reconstruction on large angular
scales, low-ℓ multipoles may not be accessible, degrading our constraint by a similar factor.
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Figure 6.4: The impact of changing various parameters relevant for, or related to, experiments for the
“fiducial” forecast we perform.

6.6.2 Dark Energy Perturbations

Similar to above, the accuracy with which future experiments will be able to detect the dark
energy perturbations can be assessed with a Fisher matrix analysis. We again assume an
LSST-‘gold sample"-like galaxy survey and a CMB-S4-like survey for the kSZ reconstruction.
The galaxy-survey (shot) noise depends on the number density function n(z) which we define
as

n(z) =
ntot

2z0

(
z

zpiv

)α

exp

[(
z

zpiv

)β
]

(6.34)

and we take {zpiv,α,β ,ntot[arcmin−2]} to be {0.3,2,1,40} to match LSST survey forecasts.
The photo-z errors predicted for the LSST experiment is σz = 0.03(1+ z). For the CMB-S4
experiment the forecasted beam size is 1.4-arcmin and the total CMB power-spectrum Ctot

ℓ

where ℓ’s are spherical harmonic multipoles, gets contributions most significantly from weak-
gravitational lensing, kSZ effect (both from reionization and late times) and the experimental
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Figure 6.5: Forecasts for the anticipated experimental specifications of the CMB-S4 and LSST
surveys. (Upper left) Constraints on the dark energy equation of state w0 from combination of CMB
with galaxies and kSZ reconstructed velocities discussed in the text. The galaxy observables are
shown to dominate the constraints on, w0 while improvements afforded by the kSZ reconstruction is
marginal (on the percent level). (Upper right) Constraints on the dark energy perturbation parameter
wpert introduced in the text quantifying the influence of dark energy clustering on matter fluctuations
and structure growth on large scales. The benefit of kSZ reconstruction is demonstrated with the
increase in the detection significance on vary large scales. Bottom plot contains the same information
as the upper two plots, shown together for better comparison.

noise that satisfy

Nℓ = ∆
2
T exp

[
ℓ(ℓ+1)θ 2

FWHM
8ln2

]
, (6.35)

where {∆T ,θFWHM} is {1.0µK-arcmin,1.5-arcmin} for CMB-S4.

Information contained in the two-point functions of the halo and mass-density fields
(which is approximated to be Gaussian) can be utilised given the signal and noise covariance
matrices, that can be written as

SSS =

(
Pvv Pvh

Pvh Phh

)
and NNN =

(
Nrec

vv 0
0 Nhh

)
, (6.36)
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where Nrec
vv is the velocity reconstruction noise from the kSZ measurement, Nhh = 1/n̄h

is the shot-noise from the galaxy-survey, and the total covariance is defined as CCC(k,z) =
SSS(k,z)+NNN(k,z). The Fisher matrix for some redshift bin zi is

Fab =
V
2

∫

k⃗
Tr
[
∂aCCC(⃗k)CCC(⃗k)−1

∂bCCC(⃗k)CCC(⃗k)−1
]
+FCMB

ab ,

(6.37)

where V is the volume of the large-scale structure survey and sets the longest k-mode
accessible to the reconstruction, i.e. kmin = π/V 1/3 and FCMB

αβ
is the contribution of the

CMB temperature and polarisation (lensed and including the contribution of kSZ on the
temperature spectra variance) to the Fisher matrix. The integral

∫
k⃗ is over the phase space

accessible to the observation.

Table 6.3: Cosmology model parameters and biases bv, bG ,b1, which are respectively, the optical
depth bias, the galaxy bias and the non-linear galaxy bias. We take the galaxy bias bg(z) as a function
of redshift, and set it equal to † = {1.0588,1.3718,1.7882,2.2232,2.7408}, for the redshift bins
discussed in the text, respectively. We set the fiducial value of all the parameters θXY discussed in the
text to zero.

Parameter 109As ns Ωbh2 Ωch2 h τ

Fiducial value 2.2 0.9645 0.02225 0.1198 0.673 0.06

Parameter θ{XY} w0 cs bv(z) bG(z) b1(z)

Fiducial value 0 -1.0 1.0 1 † 0

As we are interested in isolating the constraining power of observations on the dark
energy perturbations, we add a number of arbitrary parameters to our model to remove the
constraining power of the CMB, the density field g, and the reconstructed remote radial
velocity field v, on w0. These observables are otherwise sensitive to the background (scale-
invariant) cosmology. We add θXY dP̃XY/dw0 to the derivatives of the observables, CCC,a for
{XY}= {gg,gv,vv} as well as θXY dCXY

ℓ /dw0 for {XY}= {T T,T E,EE} to the CMB where
P̃XY is the theory prediction for the galaxy and velocity spectra in the absence of dark energy
clustering. We define the residual dark energy equation of state parameter as wpert which
quantifies the influence of dark energy perturbations on the cosmological observables.

The model parameters and the corresponding fiducial values are described in Table 6.3.
Note we consider a different set of bias parameters compared to Table 6.1 as we are con-
sidering large scale density fluctuations as signal, not the number counts. We use survey
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specifications of Planck survey on large scales ℓ > 50, and CMB-S4 otherwise, including
lensing and the kSZ effect which add to the CMB noise on small scales. We use galaxy
number counts from LSST ‘gold-sample’-like survey and reconstructed velocities from cross-
correlating LSST with CMB-S4. After isolating constraints on dark energy perturbations
from the Fisher matrix like we described above, we find the error on the dark energy equation
of state as σ(wpert) ≃ 0.75 for the synchronous gauge predictions with fiducial values of
{w0,cs} set equal to {−1.0,1.0}, using CMB, galaxy density and kSZ reconstructed velocity
fields and taking into account the effect of photo-z errors and excluding redshift space distor-
tions (RSDs) from the analysis.4 We also find the error on wpert to be largely insensitive to
the fiducial value of w0 around −1. For fiducial cosmologies with w0 ̸=−1 we also evaluate
the detection significance of CMB-S4 and LSST surveys of the dark energy speed of sound
cs, and find cs/σcs < 1 for allowed values of w0 inside the range 0 ≤ cs ≤ 1, supporting our
statement from earlier regarding the difficulty of measuring cs directly.

Note, of course, that these measurements are impacted by the photo-z errors and the
RSDs. The photo-z errors can reduce the constraining power on galaxy bias parameters
(bG and b1) up to ∼50 percent in a redshift-dependent way, as well as leading to similarly
worse constraints on H0 and w0. When taken into account and can be modelled accurately,
RSDs can contribute to breaking degeneracies between H0 and w0, reducing the errors on
these parameters up to ∼30 percent. Note that when isolating the constraining power of the
scale-dependent growth in the Fisher matrix, we assume the added derivatives are impacted
by the photo-z errors in an identical way as the observables. We exclude RSDs from our
analysis and leave a more detailed consideration to an upcoming work.

In Figure 6.5 we demonstrate the constraining power of sample-variance cancellation on
large scales through using kSZ reconstructed velocity fields. We note that while the dark
energy equation of state parameter w0 is well constrained by the galaxy power spectrum
with marginal (percent level) improvements from kSZ reconstruction for CMB-S4 and LSST
experiments, the constraining power of these experiments on the isolated effect of dark
energy perturbations (captured with the parameter wpert) see significant improvement on
large scales from kSZ constraints on the growth of structure. We note that measurements of
galaxies alone fail to detect dark energy perturbations once the constraining power of the
galaxy power spectrum is removed from the Fisher matrix as we discussed, while the effect
of RSDs, once taken into account, can potentially be used to constrain wpert.5

4RSDs appear when relating the line-of-sight position x⃗ in real-space to the redshift space position s⃗ due to
the velocity dependence of the latter (i.e. s⃗ = x⃗+ v⃗ · n̂/H ).

5We find, however, that even in the case of perfect RSD reconstruction, galaxy surveys still provide over an
order of magnitude worse precision than that afforded from the kSZ measurements.
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We evaluate the detection significance of the dark energy perturbations for various different
experimental specifications in Figure 6.6. We find modest improvements from increasing the
CMB survey quality, i.e. its rms noise level, parametrized by ∆T , and the beam size suggesting
the near future experiments will be more dominantly shot-noise limited, while removing the
effects of weak gravitational lensing as well as the kSZ from the CMB temperature variance
and significant improvements to CMB survey quality can potentially improve the detection
significance of dark energy perturbations.
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Figure 6.6: Constraints on the dark energy perturbations parameter wpert, defined in the text, for a
variety of experimental specifications. From left to right, columns correspond to changing the galaxy
density of the galaxy survey ngal, the CMB noise amplitude ∆T and the CMB beam size. The upper
rows show the error on wpert while lower rows correspond to the change in the reconstructed noise
on the velocity fields with the appropriate change in the experimental specifications, normalised to
the reconstruction noise for an experiment with specifications matching CMB-S4 and LSST. The
improvement on detection significance depends more significantly on the galaxy density, indicating
the observations are shot noise dominated.

6.7 Discussion

6.7.1 Compensated isocurvature perturbations

In the above sections, we have shown that by measuring the scale-dependent galaxy bias with
the sample variance cancellation technique using kSZ tomography from upcoming CMB
experiments and galaxy-surveys, constraining the correlated CIP amplitude at order one at
high significance will be possible in the near future. We also considered a curvaton model of
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inflation and demonstrated that our method will be able to constrain the CIP amplitude and
the local non-Gaussianity predicted by this model at high significance.

As our understanding of the fundamental characteristics of the Universe advances, we
might find it generally useful to know whether baryon and CDM fluctuations trace the total
matter, or whether CIPs produced at early times correspond to a significant source of fluctua-
tions in the Universe. From a phenomenological perspective, better constraints on the CIPs
may rule out generic models of many field inflation, for example, or allow for less ambiguous
measurements of early Universe signatures, such as primordial non-Gaussianity which may
be degenerate with the CIPs. Constraints from the CMB measurements currently allow
for CIPs to be up to a few orders of magnitude larger than the adiabatic fluctuations [337],
while forecasts that use the upcoming CMB and galaxy surveys alone suggest it will still be
hard to rule out scenarios where CIPs dominate over adiabatic fluctuations, or to distinguish
between the different CIP scenarios discussed above, for example, with high significance.
With an order of magnitude improvement on CIP constraints, here, we have been able to show
that these issues may be resolved by measuring the galaxy-bias through sample-variance
cancellation using the reconstructed remote dipole field from kSZ tomography.

In addition to the kSZ effect considered in this Chapter, one can also consider cross-
correlating with other tracers of large-scale structure such as the remote quadrupole field
from measurements of the polarized Sunyaev Zel’dovich effect, e.g. [358, 260, 270, 248,
271], and the transverse velocity fields from the moving lens effect, e.g. [227, 15, 275].
Including these effects in our forecasts, we do not see a significant improvement upon the
constraints presented in this work, although we note that using these effects without kSZ
can still considerably improve upon past constraints as well as potentially providing a good
consistency test. We leave considering additional probes of large-scale structure, such as
galaxy-galaxy lensing, to future work.

Our study focused on isocurvature perturbations modes that are correlated with the adi-
abatic fluctuations, as predicted by the curvaton models we consider. In principle, CIPs
can be partially correlated (or uncorrelated) with the adiabatic perturbations. In relation
to the galaxy-bias studied here, uncorrelated CIPs result in a halo over-density that is not
fully correlated with matter over-density, inducing a so-called ‘stochastic’ halo-bias on
large scales [359]. The stochastic halo-bias can arise in many field models of inflation, for
example, where the small-scale matter power may get redistributed in the presence of an
additional field that do not contribute to the curvature fluctuations, and is not correlated with
the gravitational potential. In these cases, the bias inferred from the cross-correlations of
the halo over-density and matter over-density will differ from the bias inferred from halo



144 CHAPTER 6. PROBING FUNDAMENTAL PHYSICS WITH THE KSZ EFFECT

auto-correlations, where the latter will see a boost compared to the former, which will be
unaffected from uncorrelated fluctuations. The sample-variance cancellation method we use
with the kSZ tomography will fail to detect the contribution from a stochastic contribution,
as it utilises the cross-correlations of the remote dipole field (an unbiased tracer of the matter
over-density) and the galaxy over-density, in order to constrain the scale-dependent galaxy-
bias. Moreover, any uncorrelated bias contributes as noise to this measurement, further
worsening the significance of our constraints. It is thus hard to imagine taking advantage of
the sample-variance cancellation in the case of uncorrelated CIPs. Nevertheless, depending
on the scale dependence of the uncorrelated modes, it may still be possible to get competitive
constraints on the CIP amplitude from measurement of the scale-dependent galaxy-bias using
galaxy number-counts only, for example, compared to using CMB and BAO reconstruction
alone, as can be seen from Table 6.2. We leave a more detailed study of the stochastic bias to
future work.

Lastly, we note that the current competitive studies of the scale-dependent galaxy-bias
such as the one afforded by photometric quasar searches report stringent constraints on
local non-Gaussianity, e.g. −49 < fNL < 31 [360], which can be translated into similar
constraints on the CIP amplitude, A, by comparing the contribution to the transfer function
of the intrinsic galaxy perturbations from local non-Gaussianity and the CIPs. We find that
these contributions are similar at ∼ O(1), suggesting that photometric quasar studies can
already improve on current CMB constraints significantly. We leave a more careful analysis
to an upcoming work.

Advances in the precision of small-scale cosmology measurements from the near-future
CMB and galaxy surveys will provide new opportunities to study the fundamental nature
of the Universe on largest scales. We have used kSZ reconstruction and sample-variance
cancellation in order to constrain correlated compensated isocurvature fluctuations on large
scales and showed that our method will improve the detection significance by over an order
of magnitude.

6.7.2 Dark energy perturbations

We have evaluated the prospects of detecting dark energy perturbations from the growth
of large scale structure, using galaxy measurements and the method of kSZ reconstruction
which allow over an order of magnitude increase in detection significance through sample
variance cancellation. We defined a simple technique to isolate the Fisher information on the
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Figure 6.7: Plots describe details of the forecast we perform in this section for the dark energy
perturbations parameter wpert. Bottom right plot shows the error on wpert from each redshift bin. It is
evident from this plot that the SNR on the perk energy perturbations will peak at nearest redshift bins,
where dark energy dominates. Upper right plot compares the forecasted noise from the upcoming
LSST galaxy survey with the reconstruction noise on the density perturbations afforded by the kSZ
measurement. Plot shows that for all redshift bins except the nearest bin shot noise dominates over
the kSZ reconstruction noise. Shot noise is shown to be the dominant limiting factor of the constraints
on wpert. Left plot relate to the discussion in Section 6.7.2 on improving the constraints on wpert by
mass binning the galaxy catalog. We show the fractional improvement of the error on wpert parameter
for different redshift and different mass-binning, varying from 2 to 40. We discuss the anticipated
measurement precision on the halo masses with upcoming experiments in Section 6.7.2.

influence of dark energy perturbations and clustering on large scales from the the background
cosmology.

On the residual wpert parameter we defined in Section 6.6, we find the error σ(wpert) ≃
0.75 for experimental specifications matching the upcoming CMB-S4 and LSST surveys,
suggesting that a non-ambiguous detection of dark energy perturbations with small δw0 :=
1+w0 and small wpert may be difficult. Note, however, that in our analysis we assumed galaxy
shot-noise on all scales. Sample variance cancellation technique we employ, constraining the
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relation between the density and the velocity fields on large-scales, is impacted from this shot
noise. In fact for the upcoming high-fidelity CMB experiments like CMB-S4, we find the
errors on wpert are dominated by the shot noise on all redshift bins. It follows that reducing the
shot noise on largest scales could increase the detection significance of our cross-correlation
measurement. An important understanding for reducing galaxy shot-noise on large scales
was achieved in e.g. [361–363], where the authors show by weighting central halo galaxies
by halo mass, the resulting shot noise can be reduced dramatically (orders of magnitude)
for the upcoming surveys. This is understood to be due to the local mass and momentum
conservation of halo on small scales, subject to non-linear evolution, which dictates a k4

behaviour as k → 0, hence different than the largely assumed k0 shot-noise [361]. Note that
procedure we described here is equivalent to mass-binning a halo catalogue. We estimate
dividing the galaxy catalogues to around 20 mass bins, which correspond to a logarithmic
scatter in mass around σM/M ∼ 0.5, will be likely with the anticipated mass-accuracy of the
upcoming experiments [293, 292]. Taking into account the fractional reduction estimates
for 20 mass bins and anticipated LSST galaxy density, we find errors on the dark energy
perturbations will reach σ(wpert)∼ 0.4. Note a further factor 1/

√
2 reduction is anticipated

using the mass-scatter matrix defined in [362]. We demonstrate these results in Figure 6.7.

Despite the fact that dark energy is the dominant contributor to the energy density in our
Universe, we know next to nothing about its microphysics. The revolutionary advancements
in our cosmological understanding afforded mainly by the CMB experiments in the past
decade strongly sharpened our knowledge about the background dynamics of dark energy.
Current data is in excellent agreement with w0 = −1. Even small deviations from w0 =

−1, however, would allow an extremely rich phenomenology of new physics, which can
potentially be probed by measuring dark energy perturbations. Constraining dark energy
perturbations still evade our observational tools. In particular the forecasted sensitivity
of the upcoming experiments to the dark energy speed of sound cs suggest the necessity
of searching for alternative probes that may detect the microphysics of dark energy in a
non-ambitious way. The method we described in this Chapter serves to contribute to this
search and provide guidance regarding the direction forward with the upcoming ambitious
cosmology experiments. Our findings suggest detection of the perturbation characteristics
of dark energy will be difficult and potentially require combining variety of methods and
observables.

Finally, unlike the case of non-Gaussianity, for example, where multi-field inflationary
models can predict large values of bispectra amplitudes; it is harder to imagine dark energy
clustering under GR with small deviations from w =−1 could produce large perturbations
on large scales due to smallness of initial fluctuations and the 1/(1− 3w0) suppression
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factor, which will be larger compared to density fluctuations. Discussing dark energy models
that can potentially produce more significant clustering is upcoming work, and is beyond
the scope of this thesis. Note that the scale dependence of growth rate is also sensitive
to modifications to GR. Various classes of Horndesky models, for example, predict f (k)
different than the ΛCDM prediction [364]. I will explore the sensitivity of the upcoming
experiments to these scenarios in an upcoming work.





Chapter 7

Delensing for parameter inference

I introduced weak gravitational lensing of the CMB in Sections 2.7.1 and 4.3. In particular
in Section 4.3 I described the effects on the CMB temperature and polarisation spectra,
following on the lines of [13]. In this chapter I begin by re-iterating some of the pedagogical
statements from earlier, before focusing on the mitigation of the gravitational lensing from
the CMB: a procedure called delensing. Using the quadratic lensing reconstruction estimator
to evaluate the deflection field reconstruction noise; I introduce an all-orders delensed auto-
and cross-spectra estimators for T , E, B fields, after building the scientific case for delensing.
I then follow with a description of the iterative delensing procedure before concluding with a
discussion on my upcoming work on the subject.

This Chapter includes material from my ongoing work with Daniel Green, Joel Meyers and
Alex van Engelen. The goal of the related project is to extend the work in [307] to full-sky
and provide a publicly available, modular, easy-to-use, fast and stable delensing software that
calculates the delensed spectra to all-orders in lensing potential and on full-sky, as well as all
lensing-reconstruction noise covariances on full-sky with the quadratic estimator. The novel
calculations coded for the software include the delensed spectra estimates discussed below in
Section 7.3 and lensing-reconstruction estimator covariances described in Section 7.3 and
introduced in detail in Appendix A.2.

I coded the mentioned software as an extension to the CLASS Boltzmann solver and
performed the relevant full-sky calculations in this Chapter and in Appendix A.2. This
upcoming public software is imagined to be a part of the lensing and delensing forecasting
pipelines that are being built for upcoming CMB experiments including Simons Observatory
and CMB-S4. The code will be complemented with a forecasting paper following up
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on [307], which will showcase the software and contribute to the science case of delensing
CMB beyond the B-modes.

7.1 Introduction

As I discussed in the earlier chapters, weak gravitational lensing of the CMB can be mea-
sured from deflections of the observed temperature and polarisation anisotropies on small
scales. Upcoming surveys such as the Simons Observatory and CMB-S4 will achieve an
unprecedented accuracy at detecting the effect of gravitational lensing and will significantly
improve the current measurements of the distribution of matter between our telescopes and
the last-scattering surface. The distribution of matter in the Universe is a central cosmologi-
cal observable containing significant information about the characteristics of the primordial
Universe and the growth of structure.

The lensing potential, defined in Eq. (4.8), is sensitive to cosmological parameters and
is a valuable signal. The effect of lensing on the CMB, however, is often regarded as a
nuisance as it worsens the measurement accuracy of the baryon acoustic oscillations (BAOs)
peak locations, for example, by having a smearing effect (discussed in Section 4.3) on the
correlation structure. As discussed earlier, lensing also converts E-modes to B-modes adding
significant confusion on the primordial gravitational-wave searches.

Removing the effect of lensing from the CMB maps and/or the power spectra (delensing)
aims to remap the lensed CMB photons onto their undeflected positions in the sky by means
of reconstructing a deflection estimate α⃗obs(n̂) and using this to delens. Delensing has been
studied most extensively for improving the prospects of primordial gravity-wave detection
through the measurement of B-modes [e.g. 365–369], while the broader use of delensing on
the E-mode polarisation as well as the temperature maps has been demonstrated in the recent
literature [e.g. 307, 370–373, 310].

At leading order in perturbation theory, delensing can be written simply as,

T d(n̂) = T obs(n̂− α⃗(n̂))≃ T obs(n̂)− α⃗
obs(n̂) ·∇∇∇T obs(n̂) , (7.1)

where T obs and α⃗obs are the observed temperature and the deflection maps respectively and
T d is the delensed CMB temperature map. This perturbative approximation, however, is less
accurate on small scales where lensing can dominate over the primary CMB. Motivated with
improving the delensing accuracy, I introduce in Section 7.3.1 a non-perturbative delensing
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method for the CMB temperature and polarization. First I make the science case for delensing
beyond the B-modes.

7.2 Case for delensing

A main goal of delensing is the mitigation of the effect of lensing on the CMB spectra.
One of the main applications, for example, is reducing the variance of the B-modes. The
primordial B-mode polarisation is a direct probe of the inflationary gravitational wave signal,
and is an important scientific target for many upcoming cosmological surveys. Delensing is
particularly necessary for the small values of tensor-to-scalar ratio which amount to lower
gravitational wave signal, potentially dominated by lensing-generated power on large-scales.
The scientific case for delensing the B-modes has been made extensively in the literature [e.g.
365–369]. Here, I discuss potential benefits of delensing maps of E-mode polarisation and
temperature.

7.2.1 CMB acoustic peak locations

The radiation content of the Universe has a significant effect on the CMB at small scales and
has a dominant influence on the expansion rate of the Universe and on the fluctuations in
the gravitational potential at early times. This makes CMB a very powerful tool to probe the
expansion history as well as the physics of light particles beyond the Standard Model (SM).

Accurate measurements of the CMB peak locations, in particular, are essential for deter-
mining a multitude of cosmological parameters including the Hubble constant H0, as well as
the effective number of weakly-coupled light degrees of freedom, Neff. As was discussed in
Section 4.3, gravitational lensing smooths out the CMB peaks by convolving the unlensed
CMB spectra with the lensing potential, hence correlating otherwise uncorrelated modes
in temperature and E-mode polarisation. This decreases (increases) the power at the peaks
(troughs), reducing the measurement accuracy of the peak locations. Lensing can also shift
the peak locations if the maxima or minima are asymmetric around their extremum. For
the upcoming surveys, delensing can hence potentially allow significant improvements in
sensitivity to these parameters by mitigating these effects.

In particular, delensing has been shown to be very important for the accurate Neff mea-
surements expected in the near future [307]. It is well understood that the amplitude and
the phase of the acoustic oscillations are modulated by light relics [374, 375] through their
gravitational influence. The deviations from the SM prediction of Neff = 3.046 [376], often
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parametrised with ∆Neff, amount to a quintessential probe of light particle content of the
Universe. A non-zero ∆Neff can be produced in various ways (see e.g. [205], for a review).
Combined with other probes of beyond SM physics, measurements of ∆Neff can provide
strong constrains on different particle physics models, as well as providing strong constraints
on the reheating temperature and physics of BBN.

Furthermore, the CMB peak locations are most directly affected by the angular size of
the sound horizon at recombination. The angular size is defined as θs := rrec/D⋆

A, where zrec

is the redshift z at recombination, rrec := rs(zrec) for rs(z), the comoving size of the sound
horizon, and DA is the comoving angular diameter distance to the recombination. The angular
size is constrained by the locations of the peaks (not their amplitude) and it is one of the
most robustly measured parameters from the CMB surveys. Since lensing smooths the peak
locations, delensing has been shown to be most beneficial for the precise determination of
θs [e.g. 307].

The angular size θs measured from the CMB can be used with the calibrated CMB peak
morphology at recombination in order to infer the comoving angular diameter distance to
recombination, DA. The sound horizon at recombination is determined by the particle content
of the Universe which is also inferred from data. This inferred angular diameter distance is
the redshift integral of the Hubble time, i.e.

DA =
∫ z

0
dz′/H(z′) , (7.2)

which, along with the inferred matter density, can be used to determine the Hubble constant
today, H0. As it heavily depends on the angular size, θs (and hence the BAO peak locations),
delensing also provides an improved measurement of H0.

7.2.2 CMB damping Tail

Measurements of the damping tail probe a large dynamic range in the CMB and improve
constraints on the primordial helium fraction, Yp, and the effective number of relativistic
species, Neff, for example. In particular, deviations from the standard ΛCDM paradigm
with additional degrees of freedom can significantly impact the CMB damping tail. For
example, inflationary models with multiple degrees of freedom can produce isocurvature
(entropy) fluctuations [e.g. 124, 125, 364, 178, 377, 378], where the relative mixture of
different species become independent degrees of freedom, affecting the otherwise adiabatic
CMB perturbations. Similar effects can also be sourced by cosmic defects [379, 380], which
can produce observable and distinct fluctuations.
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In addition to Neff discussed above, another valuable probe of the light relic content of the
Universe is the primordial helium fraction Yp. The helium fraction is sensitive to the radiation
density and the neutrino distribution during BBN. Importantly, effects of Neff and Yp on the
damping tail are largely degenerate: increasing either leads to an increased damping of the
power spectrum at fixed θs.

The relation between Neff and the damping tail can be understood from

θD

θs
∝ H1/2

⋆ ↔ Neff , (7.3)

where θD is the damping scale, θs is the angular size of the sound horizon at recombination
and H⋆ is the Hubble parameter at the time or recombination. Because θs is very well
measured, changes in the expansion rate history, which was dominated by the density in
radiation at early times; directly affects the damping tail of the power-spectrum. This suggests
a change in H⋆ would be compensated by a change in the damping scale of the CMB. Since
H⋆ is controlled by the radiation content, measurement of the damping tail largely drive the
constraints on Neff.

Furthermore, the helium abundance has a similar effect on the damping scale. Since helium
recombines earlier than hydrogen, changing the amount of helium changes the abundance
of available electrons between the time of helium and hydrogen recombinations, in turn
changing the diffusion length via the relation,

Yp ∝
1

ne(t⋆)
∝ λc =

1
neσT a

. (7.4)

It follows that more helium (at fixed baryon density) leads to fewer free electrons during
hydrogen recombination, leading to larger diffusion length for photons and less power in the
CMB damping tail.

This suggests that the effect of Neff on the peak locations can be isolated by marginalising
over Yp, and that delensing the peak locations could allow for breaking the degeneracy
between the Neff and Yp, improving their measurement accuracies.

7.2.3 Lensing potential reconstruction

While CMB distortions due to weak gravitational lensing obscure information regarding
the early Universe as discussed above, the lensing field itself carries information about
the distribution of the matter in the Universe. The distribution of matter in turn contains
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information about the primordial fluctuations and their evolution in time, and is sensitive to the
properties of neutrinos and dark energy. Hence reconstructing the map of the lensing potential
from measurements of CMB, for example, is a major goal of modern cosmology. The
relevant scientific program also involves calculating its power-spectrum and using its cross-
correlations with the other large-scale structure observables, such as galaxy distributions, for
parameter inference.

The power spectrum of the lensing map is a powerful probe of the growth of structure on
large scales and high redshifts, and is very sensitive to parameters such as the total mass of
neutrinos, ∑mν . Delensing leads to improved reconstruction-noise on the lensing map and
facilitates a better measurement of lensing, leading to better measurements of parameters
that affect the lensing power spectrum.

Furthermore, the high-fidelity lensing maps that will be available from the upcoming CMB
surveys will be highly correlated with the galaxy clustering data, which will be observed
with the upcoming surveys of large-scale structure. Since the related cross-correlation
coefficient can be as large as ∼ 95%, it will be possible to use the cross-correlations between
the lensing field and the large-scale structure to break various degeneracies and improve
cosmological parameter constraints e.g. [215]. For these purposes, it be possible to utilise
sample variance cancellation techniques to determine cosmological parameters [313]. The
benefit of the cross-correlations has been highlighted recently in e.g. [215], where authors
found cross-correlations of CMB-S4 with the upcoming LSS surveys can provide impressive
constraints on the matter amplitude σ8(z), the halo bias parameter and the amplitude of local
non-Gaussianity, fNL. Through improving the lensing reconstruction, delensing will allow
for better cross-correlation measurements.

7.3 Formalism

7.3.1 All-orders delensing on the full sky

In this section I discuss calculations from my ongoing project with Joel Meyers, Dan
Green and Alex van Engelen where we calculate the delensed CMB maps, T d, Ed, Bd, for
temperature, E- and B-mode polarisation, respectively, following a similar procedure to that
introduced in [307]. We extend the earlier work on the flat sky to the full sky. As in [307],
we demand the following conditions to be met from our procedure:

• Delensing should be accurate in the limit where the noise vanishes, e.g. T d(n̂)≃ T (n̂).
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• As per lensing, the delensing procedure must not add or remove power from the CMB
map.

• Maps should be filtered to minimize the impact of experimental noise on the observ-
ables.

We apply filtering before delensing to avoid using noisy modes on the CMB and also the
lensing reconstruction. Our lensing reconstruction method is an efficient implementation of
lensing-reconstruction for all quadratic combinations of T , E, and B, extending what was
done in [381] for just TT and EB.

Given an observed temperature map T obs(n̂) and an observed lensing deflection map
αobs(n̂), the estimate of the delensed temperature map can be written, for example,

T d(n̂) = h̄⋆T obs(n̂)+h⋆T obs(n̂−g⋆α
obs(n̂)) , (7.5)

where (⋆) refers to a convolution and h̄, h and g are filters that will be chosen to satisfy the
conditions discussed above.

The lensed all-sky correlation functions have been calculated in [382]. The correlation
function for the CMB anisotropies is

ξ̃
T T (β ) = ⟨Θ(n̂′

1)Θ(n̂′
2)⟩

= ∑
ℓm

CT T
ℓ ℓm(n̂′

1)Y
∗
ℓm(n̂

′
2)⟩

= ∑
ℓmm′

CT T
ℓ ℓdℓ

mm′(β )⟨Yℓm(θ1,φ1)Yℓm(θ2,φ2)⟩,
(7.6)

where θi and φi are polar angles associated with the unit vector n̂i, β is the angle between two
directions, n̂1 · n̂2 = cosβ and dℓ

mm′(β ) := Dℓ
mm′(0,β ,0) are the reduced Wigner functions

representing the Eulerian rotation of the harmonic at some deflected position n̂. The average
over spherical (in brackets) is over possible realisations of the lensing defection field defined
earlier α⃗(θ ,φ) and reduces to integrals over the averaged differences between deflection
angles projected onto Fourier wave-vectors on two sphere in the form

ξ̃
T T (β )≃ ∑

ℓ

2ℓ+1
4π

CT T
ℓ ∑

mm′
im−m′

dℓ
mm′

1
(2π)2

∫
dφ⃗Ldφ⃗L′e

i(mφ⃗L−m′φ ′
L⃗′ i(⃗L·⃗α1−⃗L′ ·⃗α2)

〉
, (7.7)

where we used the spherical harmonic expansion

sYℓm(θ ,φ)m(−i)s

√
2ℓ+1

4π

e−isφ

2π

∫ 2π

0
dφ⃗Lei⃗L·⃗αei(m+s)φ⃗L , (7.8)
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with L⃗ := (L+1/2)(cos φ⃗L,sin φ⃗L). The ensemble average in Eq. 7.7 can be separated into a
‘diagonal’ contribution coming from the contraction of the diagonal elements in the deflection
angle, Cgl(β ), and a ‘trace-free’ part, Cgl,2(β ) which is subdominant. We will define these
explicitly below. The lensed correlation functions for the temperature and polarization take
the form,

ξ̃
T T ≃ ∑

ℓ

2ℓ+1
4π

CT T
ℓ

[
X2

000dℓ
00+

8
ℓ(ℓ+1)

Cgl,2X ′2
000dℓ

1−1

+C2
gl,2

(
X ′2

000dℓ
00 +X2

220dℓ
2−2

)]
,

(7.9)
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(7.10)
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(7.11)

and

ξ̃+ ≃ ∑
ℓ

2ℓ+1
4π

(CE
ℓ +CB

ℓ )
{

X2
022dℓ

22+2Cgl,2X132X121dℓ
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+C2
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[
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2dℓ

22 +X242X220dℓ
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] (7.12)

where

X000 = e−ℓ(ℓ+1)σ2/4 (7.13)

X220 =
1
4

√
(ℓ+2)(ℓ−1)ℓ(ℓ+1)e−(ℓ(ℓ+1)−2)σ2/4 , (7.14)
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and

σ
2(β ) =Cgl(0)−Cgl(β ) (7.15)

Cgl(β ) = ∑
ℓ

2ℓ+1
4π

ℓ(ℓ+1)Cφφ

ℓ dℓ
11(β ) (7.16)

Cgl,2(β ) = ∑
ℓ

2ℓ+1
4π

ℓ(ℓ+1)Cφφ

ℓ dℓ
−11(β ) . (7.17)

Note that on the expressions above we in fact make a simplifying (perturbative) assumption
bringing down the term Cgl,2 down from the exponential. As shown in Ref. [307] (and
discussed in the literature [382, e.g.]), these off-diagonal contributions in αi j are subdominant
compared to the Cgl := ⟨⃗α(n̂) · α⃗(n̂′)⟩.

Following the same procedure discussed in [307], I calculate the expressions for delensed
all-sky correlations functions to all-orders in the lensing potential. Note that one of the
ways the delensed spectra differs from the lensed spectra is the 2 additional terms due to
our rigorous filtering choice: we apply two filters to data, hℓ and h̄ℓ to satisfy the conditions
we defined in bullet-points above and as defined in [307]. These lead to terms proportional
to {|hℓ|2, |hℓh̄ℓ|, |h̄ℓ|2} which dominate the signal in the high-, middle- and low-ℓ ranges,
respectively. These are,
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where
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and
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where I defined
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Delensed power spectra can now be calculated by performing an integral over the angular
separation β and using Wigner d-matrices as
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The minimum-variance reconstruction-noise quadratic estimator depends on the experi-
mental specifications and can be calculated by combining all measured quadratic estimators
from the T , E and B maps as
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for α = {ab} and {ab}= TT, EE, BE, TB, BB spectra, where cN = 2 for the {TT, EE, BB}
spectra and cN = 1 for the {BE,TE} spectra. Also note here I use a different notation from
some parts of this thesis, where I define observed spectra as C̃aa

ℓ := Caa
ℓ +Naa

ℓ . I provide
novel calculations for the full-sky estimator covariances defined in Eq. 7.42 in Appendix A.2.

I demonstrate the performance of delensing given experimental specifications appropriate
to Simons Observatory (SO) and CMB-S4 (S4) in Figure 7.1.

7.3.2 Iterative Delensing

The delensed spectra of the CMB can be used to calculate an improved lensing reconstruction
noise. Until convergence, repeated application of delensing on the CMB spectra, with
improved noise at each iteration, would increase the signal-to-noise ratio of the lensing
measurement. Note that at this point it is useful to draw the distinction between the iterative
maximum-likelihood method introduced in [383] (and sometimes referred as ‘the iterative
method’ in the literature); and the iterative technique I discuss here, where I use the quadratic
lensing-reconstruction estimator. The former maximum-likelihood lensing reconstruction
method is known to be potentially more optimal, especially at low noise levels, then the latter
analytic estimator I discuss here. The quadratic estimators, nevertheless, have the advantage
of being simpler (and often much faster) to calculate. This makes quadratic estimators very
attractive for purposes like making extensive Fisher forecasts in the anticipation of upcoming
data. Hence in this section I discuss an iterative (all-orders) delensing technique with the
quadratic lensing-reconstruction estimator, as done in [381].

This iterative delensing procedure is shown schematically in Fig. 7.3. I use observed
CMB spectra of temperature and polarisation and a spectrum of the observed deflection
field. Since I am considering internal delensing with the CMB spectra here, our observed
deflection field is the minimum-variance reconstruction with the quadratic estimator. I
use the observed spectra and the lensing reconstruction to calculate our estimate for the
delensed observables. I use the delensed observables to repeat the minimum-variance lensing
reconstruction and obtain an improved lensing reconstruction with lower minimum-variance
lensing-reconstruction noise. I use the improved lensing reconstruction and the delensed
spectra to calculate improved delensed observables. I repeat this process until convergence.

The iterative delensing with the quadratic lensing-reconstruction estimator is not a novel
procedure, especially for delensing with external estimators, as discussed in [381]. Generally,
however, delensing forecasts (in the literature) iterate only over the CBB,d

ℓ spectra and the EB-
and the T B- variances of the minimum-variance quadratic estimator, as defined in Eq. (7.41).
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The improvement in the quality of delensing from iteration can be seen in Fig. 7.2. While
this improvement is dominated by the improvement in the EB-variance via iterating CBB,d

ℓ ;
iterating the CMB temperature as well as the E-mode polarisation and the corresponding
variances can provide a non-trivial improvement on the lensing reconstruction noise even
for the upcoming CMB experiments like CMB-S4, as can be seen in the bottom-right plot
in Fig. 7.1.

7.4 Discussion

The discussion in this Chapter draws from the science case for my upcoming work with Joel
Meyers, Daniel Green and Alex van Engelen where we perform extensive Fisher forecasts
using the full-sky all-orders delensing estimator, as introduced in Section 7.3.1. As discussed
earlier, in this upcoming work we produce detailed forecasts on aforementioned cosmological
parameters sensitive to lensing and share a publicly available delensing software intended
to be integrated into developing analysis pipelines for the upcoming CMB experiments
such as Simons Observatory and CMB-S4. Calculations and the coding are complete; and
the code is extensively tested to be stable. We are in the process of writing our science
papers. As discussed throughout this section, however, our findings suggest our more
rigorous implementation of delensing provide only marginal improvements for cosmological
parameter inference for the upcoming CMB experiment specifications, when compared to
earlier studies [e.g. 307]. Experiments with higher sensitivity, such as the proposed CMB-
HD, can potentially make the case of iterative delensing with temperature and E-mode
polarisation maps stronger. It is also evident, nevertheless, that stable calculations with
all-orders delensing estimators on the full-sky will improve the forecasting quality of the
lensing and delensing analysis pipelines of the upcoming CMB experiments.

Irrespective of the improvements afforded by extending the notation from flat-sky to
full-sky, CMB experiments will be highly sensitive to lensing. This leads to significantly
improved constraints on cosmological parameters from delensing all spectra (as opposed to
only B-modes) . As discussed in Section 7.2, delensing recovers BAO peak features, improves
the measurement of the damping tail, and improves the measurement of the lensing potential.
Lensing-induced covariances can also be largely removed by delensing [e.g. 307, 384].
Regarding parameter constraints, most significant improvements occur for the parameters
that are directly sensitive to the peak locations, such as θs and the Hubble parameter. I
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have also discussed the value of delensing for Neff forecasts. In particular, I described the
degeneracy of Neff and Yp on the damping tail. Better measurements of peak locations
improves Neff constraints because neutrinos shift the BAO peaks due to their influence on the
metric beyond the BAO scale. Improving the damping tail by delensing also improves the
constraints on Neff by better measurement of the degenerate Yp parameter as discussed above.

Going beyond forecasting, our discussion and recent studies [e.g. 307, 371–373, 310]
suggest delensing may be necessary for future likelihood analysis with data. When increasing
the realism of our statements, however, it is valuable to revisit the approximations I make
throughout this section. First, I consider idealised temperature and polarisation noise for the
CMB experiments. In reality the CMB noise anticipated from SO or CMB-S4, for example,
will be impacted by the residual foregrounds, in particular the tSZ effect. The noise forecasts
for these experiments are publicly available and will be used in our upcoming analysis.
Second, the real data might well violate some of the assumptions I make in calculating the
simple analytic predictions in Section 7.3. Third, the iterative delensing with internal data
sets is known to introduce an additional bias which may be difficult to mitigate. I now discuss
these latter two issues briefly.

Our estimates of the delensed spectra introduced in Section 7.3 rely on few approximations.
First, as can be seen from our estimate of the delensed temperature map at zero noise limit,
T d(n̂) = T̃ (n̂− α⃗(n̂)), our delensed estimate T d(n̂) fails to recover the unlensed temperature
map due to non-zero gradients, up to an error of order O((⃗α(n̂) · ∇⃗)⃗α(n̂)). It has been shown
in [307], however, that the error on the unlensed spectra estimate due to ignoring these terms
is around two orders of magnitude smaller compared to the effect of lensing at leading order
in perturbation theory introduced in Section 4.3. Hence, in order to derive the expressions
in Section 7.3, I assume (⃗α(n̂) · ∇⃗)⃗α(n̂)≪ α⃗ . Another important approximation required
to make the all-orders description calculable, of course, is the Gaussianity of the lensing
potential [382]. This approximation is widely accepted as well-motivated and supported
by the current experimental constraints. As I introduced in Section 4.3, lensing field is the
line integral of matter fluctuations on the photon trajectory. The relevant integrands peak at
redshifts around z ∼ 2 and on large scales where perturbations are linear and Gaussian, latter
statement supported in the literature [see, e.g. 385–388].

Furthermore, delensing with internal data sets, as I discuss here, is known to introduce
additional biases to the delensed fields [ e.g, 389]. In particular if the maps that are being
delensed are overlapping or the same with maps that are used to reconstruct the deflection
field, the reconstructed deflection field would no longer independent of the CMB. This would
drive the delensed spectra and the covariance away from their unbiased values. Developing
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techniques to remove the internal CMB delensing bias is an active field of research [see e.g.
390, 391, 388, 371, 392, 393]. Calculation of the internal delensing bias and its effect on our
estimators is beyond the scope of this chapter. Note, however, I expect internal delensing
bias to degrade the statistical power of our method. Moreover, that the iterative delensing
procedure discussed here may also influence the internal delensing bias, potentially escalating
the degradation at each iteration step. I leave a more detailed analysis to our upcoming work.

Finally, note that lensing also induces additional power-spectrum covariances, reducing the
measurement quality of CMB observations. Recent studies show delensing can potentially
significantly reduce the effect of lensing on the covariances and have important implications
for non-Gaussianity searches (see e.g. [384]). Calculating analytic all-orders expressions for
the delen sed spectra covariances is potentially an arduous task and is outside the scope of
our ongoing project.1

1Note, however, that the analytic approximation to the power-spectra covariances, introduced in Ref. [394],
is often used in the literature and argued to be good fit to simulations (see the discussion in e.g. [307], for
example).
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Figure 7.1: Delensed CMB temperature and polarisation auto- and cross-spectra shown alongside
the lensing reconstruction noise. Upmost plots show the lensed, unlensed and delensed spectra, the
latter calculated with CMB-S4 (S4) and SO (S3) experimental specifications. Delensing is shown to
recover the smoothed structure on most of the acoustic peaks up to large numbers of multipoles. On
smaller scales, delensing with S4 experimental specifications recovers some significant fraction of the
damping tail up to scales ℓ≳ 4000. Improvement with a less accurate experiment such as S3 is also
evident but shown to be less than compared to S4. On the middle plots, similar improvements are
shown for the polarisation spectra. The acoustic peaks and the damping tail is largely recovered using
a S4-like experiment up to multipoles around ℓ∼ 3000. Similar observations also apply for the cross-
power between temperature and the polarisation. The bottom plot shows the lensing-reconstruction
noise. The improvement when comparing an S4 to an S3 type experiment is evident. Also shown
the difference between the EB-only delensing and delesing with all spectra [approximating the
off-diagonal covariances, i.e. weights with α ̸= β in Eq. (7.42), zero].
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Figure 7.2: Fractional difference between the lensed spectra and the delensed spectra are shown.
The y-axes are ∆DXY,spec

ℓ := [CXY,unlensed
ℓ −CXY,spec

ℓ ]/CXY,spec
ℓ , where {XY}= {T T,T E,EE,BB} and

spec = {unlensed, lensed,delensed (niter)} where I define niter = {1,2,3,20} as the number of itera-
tions. The x-axes are in ℓ, multipoles. In all cases the iterated delensed spectra converge at a large
number niter ≃ 20.

NMV,φφ

ℓ

T obs(nnn), Eobs(nnn), Bobs(nnn) and α⃗obs(nnn)

Cd,T T
ℓ , Cd,T E

ℓ , Cd,EE
ℓ , Cd,BB

ℓ NMV,φφ

ℓ

iteration

iteration

Figure 7.3: Schematic plot of the iterative delensing procedure. The observed CMB maps of
temperature and polarisation is used with the observed maps of the deflection field in order to calculate
the minimum-variance lensing reconstruction noise. These maps are then used together with the
lensing reconstruction noise to calculate the delensed CMB temperature and polarisation spectra.
Delensed CMB spectra can be used to calculate an improved lensing reconstruction noise, which can
in turn be utilized to re-calculate the delensed CMB spectra. The latter step can be repeated until the
calculate spectra converges to the best possible estimate of the delensed CMB.



Chapter 8

Upcoming work: Probing CIPs with the
21cm

In this section I discuss my ongoing work on probing CIPs (see Section 6.4) with the 21cm
hydrogen line signal from the cosmic dawn era (z ≃ 15− 20). This signal is subject to a
large BAO effect due to large relative velocities between the DM and baryons following
recombination. I discussed the effect in Section 2.7.2 and expand on that discussion below.
This work is part of an ongoing science program I am building for utilising this signature for
the purpose of probing fundamental physics. This project involves collaborations with Marc
Kamionkowski, Bikash Dinda, Julian Munoz and Tom Binnie. Except for the discussion in
Section 8.6, I have written all of the text. I have also lead the conceptualisation, as well as
produced the presented results and plots. The text in Section 8.6 is compiled with inputs from
Tom Binnie, who also contributed to the project by providing survey-specific configuration
files I used to generate noise forecasts for the 21cm hydrogen-line experiments: HERA and
SKA-1low. I discuss these more in detail in what follows.

8.1 Introduction

Measurements of the 21cm hydrogen-line provides a unique window into the cosmic-dawn
era when the first stars were formed (z≃ 15−20). During these early times the typical mass of
collapsed baryonic objects fall near the critical mass below which gas pressure prevents their
collapse. The abundance of Lyman-α photons that excite the hyperfine transition in neutral
hydrogen and allow it to absorb 21cm photons from the cosmic microwave background
(CMB) will depend on the collapse-fraction of baryons and is directly impacted by effects
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that alter early structure growth such as local modulations of relative densities of dark matter
(DM) and baryons due to bulk compensated isocurvature perturbations (CIPs) I study in this
chaper.

The standard cosmological paradigm (ΛCDM) with single-field inflation predicts adiabatic
initial conditions with inhomogeneities in DM, baryons, neutrinos, and photons all uniquely
determined by the primordial curvature perturbations. More general theories with multiple
degrees of freedom, however, can source non-adiabatic (isocurvature) perturbations, where
the relative mixture of DM, baryons, neutrinos, and photons become independent degrees of
freedom. While measurements of the CMB and galaxy distributions put tight constraints on
most forms of isocurvature, a specific form of isocurvature is difficult to constrain from CMB
and galaxy-surveys alone: CIPs. CIPs are fluctuations of baryons and DM that leave the
total matter perturbations unchanged and adiabatic. Since CMB is only sensitive to the total
matter fluctuations at the leading order, CIPs avoid stringent constraints from measurements
of the CMB alone, allowing for CIPs to have an amplitude orders of magnitude larger than
the adiabatic modes [331–338, 17]. A detection of CIPs can provide insight into both the
number of primordial fields that contribute to the observed density fluctuations, as well as
their decay channels, e.g. [345, 395].

Regardless of whether adiabatic or isocurvature, primordial fluctuations seed the rich
large-scale structure of matter we observe in our Universe. As matter clusters under gravity,
however, its components can behave very differently. While the majority of matter is
collisionless, dark and cold, a fraction of it are baryons which couple to photons before the
recombination at redshift z ≃ 1100, giving rise to the Baryon Acoustic Oscillations (BAOs)
observed from the CMB and galaxy-surveys. The same physics also induces a bulk relative
velocity between DM and baryons [396–402, 398, 403–406]. More recently, it was shown
in [66, 407] that for reasonable models of epochs up to the end of reionization, detecting a
velocity-induced acoustic feature, so called Velocity Acoustic Oscillations (VAOs), may be
possible from the measurement of 21cm hydrogen-line with the upcoming experiments such
as HERA [408] or SKA-low [409, 410]. The VAO feature provides an effective probe of the
early Universe physics that affect the relative behaviour of DM and baryons.

As I discussed earlier in Chapter 2.7.2, unlike the matter power-spectrum (where the effect
of BAO is small), the VAO feature is O(1) in the 21cm power-spectrum [407]. Furthermore,
as is the case for the BAO feature in the CMB and LSS observables, some characteristics
of the VAOs are unaffected by the complicated local physics related to various feedback
mechanisms which play a role during the epoch of reionization, and can be utilised to
constrain effects that have a coherent impact on the observables on large-scales, such as
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CIPs. In this chapter I discuss the detection significance of CIPs from measurement of the
21cm hydrogen line. This chaper is organised as follows. In Section 2.7.2 I discuss the 21cm
hydrogen-line and the effect of VAOs on the brightness temperature power-spectrum. In
Section 8.3 I discuss the sensitivity of the 21cm hydrogen-line spectra on the effect of CIPs.
I evaluate the detection significance of CIPs using both the full shape of the power spectra as
well as change in the VAO scale. For the latter I introduce as a robust measure without using
the amplitude information directly. I discuss various sources of complication in Section 8.5
and conclude with discussion in Section 8.7. I describe our noise calculations in Section 8.6.

8.2 21cm simulations

I calculate the observable signal using the semi-numerical simulations provided by 21cmvFAST1,
which is built upon 21cmFAST2. Initial conditions for density and velocity fields are set at
z = 300 with a Gaussian random field in Lagrangian space, before being evolved with the
Zel’dovich approximation [411] to match the mean collapse fraction for the conditional
Sheth-Tormen halo mass function [412]. The sources embedded in each halo are assumed to
emit photons at a rate proportional to the increase of the total collapsed halo mass. In each
cell, the excursion set formalism is used to estimate the mean number of sources contributing
to the gas temperature from the surroundings. Ts is calculated from Compton scattering [413]
of the Lyman-α background and the inhomogeneous heating history of the gas (through a
combination of X-rays and collisional coupling). Please see [414] for more detail on this
calculation.

I produce realisations of the 21cm signal in 2000Mpc boxes on 12003 grids of cubes,
which are assumed to be a ’snapshot’ of the Universe at a given redshfit (we call these ‘coeval’
cubes) for each observed frequency. I simulate many coeval cubes at the respective redshift
from an initial (random) density field given by appropriate transfer functions for matter and
relative velocities in order to evaluate the mean and variance of the anticipated power spectra.

1github/JulianBMunoz/21cmvFAST
2github.com/andreimesinger/21cmFAST

https://github.com/JulianBMunoz/21cmvFAST
https://github.com/andreimesinger/21cmFAST
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Figure 8.1: The 21cm hydrogen-line signal at z = 16, shown including and excluding the effect of
VAOs, and for moderate foregrounds calculated using 21cmvFAST [66]. Error bars (same for both
lines, shown in the figure for the signal including VAOs only for brevity) are Poisson errors from our
simulations.

8.3 CIPs and their effects on observables

8.3.1 Compensated isocurvature perturbations (CIPs)

CIPs were introduced in Section 6.4. Different from the discussion in that section, however, I
now focus on uncorrelated CIPs and parametrise them with a scale-invariant power-spectrum
as studied in e.g. [335]. For uncorrelated CIPs, cross-correlations cannot be utilised to
improve the signal-to-noise, resulting in significantly more pessimistic detection prospects.
It is hence important to add to the list of independent ways of measuring uncorrelated CIPs.

More generally, since the primordial CIPs could be sourced by the gravitational potential in
the early Universe, they can constitute to a significant source of density differences between
baryons and DM on large scales. These observational signatures of primordial CIPs are
largely protected from complicated non-linear physics due to the equivalence principle, which
dictate that it is difficult for local interactions to produce coherent effects on large scales.

8.3.2 CIP reconstruction from the 21cm hydrogen-line

The dominant effect of CIPs on the 21cm power-spectrum is modulating its amplitude by
locally altering the baryon density which the brightness temperature depends directly via the
baryon-collapse fraction. This is a linear-order effect and have been studied in the literature,
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see e.g. Ref. [332]. I show the effect of CIPs on the 21cm power-spectrum amplitude in
Figure 8.2. Differently from CMB and LSS observables, the direct dependence of the 21cm
amplitude to baryon fraction provides a unique and potentially powerful probe of CIPs.

I evaluate the detection significance of CIPs in the absence of modelling uncertainties and
for a fixed cosmology, assuming a 21cm hydrogen-line survey can locally test the observed
spectra against the effect of CIPs inside different boxes of size smaller than our simulation
box and the survey (voxels). I use the separate universes approximation in each voxel. The
large scale CIP fluctuations in Fourier space can then be estimated from the Fourier transform
of the locally measured CIP amplitude ∆(X⃗). From the measurement of the effect on the
full shape (FS) of the 21cm hydrogen-line power spectra (see upper plot in Figure 8.2), the
Fisher error on the local the CIP amplitude, ∆fid can be calculated at some redshift z as,

σ
−2
∆,FS(z) =

1
∆2

fid
∑

k−bins

(
δ∆2

21,CIP(k,z)

∆
2,obs
21 (k,z)

)2

, (8.1)

where the k range and the mode count is determined by the experiment sensitivity, and the
voxel size. ∆

2,obs
21 (k,z) includes both the experiment noise and sample variance. I calculate the

anticipated experimental noise for HERA and SKA-low using the software 21cmSense3 [415–
417], which I describe in Appendix 8.6.

I assume sufficiently many voxels can be utilised for constraining CIPs; and the effect of
dividing the survey volume to smaller parts can be captured by writing the reconstructed CIP
field as a convolution of the true field, ∆(⃗k), with a tophat window function in real space,
which takes the form,

W (kr) :=
3

(kr)2 [sin(kr)− kr cos(kr)] , (8.2)

in Fourier space.The reconstruction noise of CIP fluctuations in Fourier space in the full
survey volume can be found as

Nrec
∆∆ (k,z) := Λ(z) [W (kr)]−2 , (8.3)

where Λ(z) = σ2
∆
(z)Vbox is approximately independent of the box volume. Finally, I define

the scale-invariant CIP power spectra as

P∆∆(k,z) := ACIPk−3 . (8.4)

3github.com/jpober/21cmSense

https://github.com/jpober/21cmSense
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The error on ACIP can then be calculated as

σ
−2
ACIP

=
1

A2
CIP

∑
k−modes

(
P∆∆(k,z)
Nrec

∆∆
(k,z)

)2

, (8.5)

where ∑k−modes :=Vbin∑k dkk2/(2π2) and Vbin is the survey volume inside the redshift bin.
I take 8 redshift bins centred within the redshift range z ∈ [10,24] with redshift bin size
∆z = 2. The detection signal-to-noise can be written as SNR = ACIP/σACIP . I show forecasts
on the CIP amplitude in Figure 8.3 using the CIPs’ effect on the power-spectra, inside smaller
sub-volumes (or voxels) of size varying within the range rbox ∈ [150Mpc,1500Mpc], along
with constraints from utilising the VAO reconstruction alone, which I discuss next.

I find in Figure 8.3 that even the first generation 21cm surveys such as HERA and SKA-
low can provide constraining power comparable to a cosmic variance limited (CVL) CMB
experiment, if inference from the FS power-spectra can be utilised.
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Figure 8.2: The effect of locally varying baryon-DM ratio and the speed of sound cs of the baryon-
photon plasma due to CIPs on the VAO signature, at redshift z=16, and calculated with low foreground
assumption using 21cmvFAST software. The black solid lines show the 21cm-hydrogen line brightness
temperature power spectrum with zero CIP amplitude, ∆=0. The green dash-dotted (salmon dashed)
lines show the power-spectra in a universe with ∆=0.05 (−0.05). Upper plot shows the spectra where
the effect of the local variation of baryon density can be seen from the significant modulation of the
spectra amplitude. Lower plot shows the spectra normalised at the location of the second displayed
peak, k = k2, highlighting the shift in the VAO peak locations due to varying cs induced by varying
baryon-DM ratio.
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Figure 8.3: The detection significance for the CIP fluctuations from the ongoing HERA and upcoming
SKA-low surveys, shown as a function of the voxel size in comoving Mpc at redshifts z = 16. Results
are from simulations with moderate baryonic-feedback levels 21cmSense. The Planck and cosmic
variance limited (CVL) constraints from CMB were calculated in [335]. The BAO constraints from a
galaxy survey were discussed in [338] (note these constraints are for correlated CIP fluctuations hence
more optimistic than those I consider here). I find VAO measurements from HERA and SKA-low
(labeled HERA VAOs and SKA-low VAOs) may provide robust (see text) constraints on the CIP
fluctuations, improving upon Planck. Potentially utilising the local modulations to the full-shape
(HERA FS and SKA-low FS) of the power-spectrum may go beyond the ongoing galaxy surveys and
reach the fidelity of the CVL CMB experiments.

Table 8.1: The 95% confidence level upper-limit forecasts for the CIP amplitude ACIP using the VAO
scale measurement, insensitive to the 21cm power-spectrum amplitude, as described in Section 8.3.3,
for various baryonic feedback scenarios, using experimental specifications for the ongoing HERA
experiment and the upcoming SKA-LOW for various foreground levels (see Appendices).

HERA Feedback
Foregrounds Low Moderate High
Pessimistic 8.03×10−3 9.21×10−3 9.68×10−3

Moderate 4.90×10−3 5.60×10−3 5.20×10−3

Optimistic 4.62×10−6 5.10×10−5 3.90×10−5

SKA-LOW Feedback
Foregrounds Low Moderate High
Pessimistic 9.05×10−2 1.90×10−1 1.60×10−1

Moderate 4.90×10−3 6.90×10−3 4.60×10−3

Optimistic 4.62×10−6 5.35×10−6 4.74×10−6
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Table 8.2: Similar to Table 8.1, using the full shape (FS) of the 21cm power-spectra.

HERA Feedback
Foregrounds Low Moderate High
Pessimistic 1.48×10−4 2.13×10−4 1.78×10−4

Moderate 9.81×10−5 1.38×10−4 1.15×10−4

Optimistic 6.87×10−6 8.91×10−6 8.18×10−6

SKA-LOW Feedback
Foregrounds Low Moderate High
Pessimistic 2.27×10−3 3.65×10−3 3.12×10−3

Moderate 9.25×10−5 1.33×10−4 1.16×10−4

Optimistic 3.40×10−7 4.29×10−7 4.53×10−7

8.3.3 Robust CIP reconstruction

In reality, however, local CIP measurements from the 21cm will be biased due to our poor
understanding of the underlying astrophysical feedback processes and will be degenerate with
various astrophysical parameters which contribute a large model uncertainty to the measure-
ment of the amplitude of the 21cm signal. Such degeneracies can potentially be surmounted
by external measurements of observables that depend on similar astrophysical processes or by
careful modelling, in which case the model parameters need to be marginalised, weakening
the constraining power of the 21cm observations on the effect of CIPs from the amplitude.
Hence it is valuable to evaluate the prospects of detecting CIPs without directly depending on
the amplitude of the 21cm power-spectrum, providing a measure potentially robust against
the uncertainties of foreground and feedback scenarios.

I consider the effect of CIPs on the local 21cm power-spectrum amplitude as an approx-
imately scale-invariant boost, which I parametrise by a fiducial value, δACIP

21 . In addition,
local variations of baryon density also change the VAO scale due to spatial modulations of
the sound speed of the baryon-photon fluid and induce a shift in the phase of the VAO peak
locations (since oscillations in the DM and baryons are out of phase with each other). As
discussed above, these spatial variations in baryon-DM ratio due to CIPs can be measured by
dividing the 21cm survey into voxels and measuring the local value of CIPs from the VAO
scale, for example, and using the separate-universe approximation inside each box. Here,
I estimate the isolated effect on the VAO scale and phase by marginalizing over the 21cm
power-spectrum amplitude, δACIP

21 . I discuss the effect of CIPs on the VAO scale in more
detail in Section 8.4.
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I calculate the error on the local CIP amplitude by defining a Fisher matrix with 2 parame-
ters of the form

Fαβ = ∑
k−bins

Tr
[
(∂αC)C−1 (

∂β C
)

C−1] , (8.6)

where α,β ∈ {∆(X),δACIP
21 } and C = ∆

2,obs
21 (k,z). I calculate the error on the local CIP

amplitude as

σ∆∆ =
√

F−1
∆∆

, (8.7)

which I find to be around an order of magnitude larger than that provided by the FS power-
spectra. Since I assume the constraints in this section are provided by the VAOs, I refer to
these results as the ‘VAO constraints’ on the CIPs. Lastly, as before, I use Eqns. (8.3) and (8.5)
to evaluate the prospects of detecting the CIP effect over the full survey volume.

In Figure 8.3, I compare our results in this section with the constraints from the FS
discussed earlier. I find using the full statistical power of the 21cm power-spectrum measure-
ment, upcoming experiments such as HERA and SKA-low may provide higher detection
significance to CIPs then compared to cosmic-variance-limited (CVL) BAO and CMB mea-
surements for moderate feedback and foreground scenarios. Using constraints only from the
measurement of the VAO feature, however, the prospects of detecting CIPs will be lower,
while nevertheless improving upon Planck.

8.4 CIP reconstruction from the VAO scale

8.4.1 VAO scale and the CIPs

As discussed in Section 8.3.3, CIPs locally induce spatial modulations of the sound speed
due to changing baryon and DM densities. This affects the VAO scale. In this section I
evaluate the detection prospect of CIPs from measuring the local variations on the VAO scale
by modelling the smooth part of the power-spectrum and isolating the VAO contribution.

In order to calculate the error on local CIP amplitude from measurements of the VAO
scale, I assume the total VAO detection SNR can be recast as the error on the VAO scale
ε rVAO/σrVAO with some efficiency parameter ε . The fidelity of the VAO scale measurement
will depend on the modelling uncertainties of the non-oscillatory part of the 21cm signal and
can be evaluated by various template fitting methods used extensively in the literature for
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the BAO scale measurement from galaxy surveys. I discuss these later in Section 8.4.2, and
leave a more involved analysis to future work.

CIPs locally modulate the sound speed of the baryon-photon fluid as cs→α(X⃗)cs , where
similar to e.g. [338], I Taylor expand α(X⃗) in the limit ∆(X⃗)≪1 as

α(X⃗)≃1+
∆(X⃗)

C
, (8.8)

where C ≃−5.33 [338]. The relevant observable is the local modulation of the VAO scale,
rVAO→α(X⃗)rVAO , which can be related to the separation between two peaks in Fourier
space, for example, approximately as kVAO ≃ 2π/rVAO, where rVAO ≃ 150Mpc for ΛCDM with
Planck best fit parameters. Hence the SNR on the CIP amplitude measured in a voxel (using
separate universe approximation) differs from the SNR of the VAOs by a factor of C−1.

Having assumed the SNR of the VAO measurement is equal to the inverse of the fractional
error on the VAO scale, I can write

σ
−2
rVAO

=
1

r2
VAO

∑
k−bins

[
δ∆2

21,VAOs(k,z)

∆
2,obs
21 (k,z)

]2

, (8.9)

where I defined δ∆2
21,VAOs(k,z) as the difference between the 21cm power-spectra calculated

with and without the effect of VAOs. The observed 21cm signal in the denominator includes
sample variance, experimental noise and the 21cm spectra excluding VAOs. I then relate the
local VAO SNR to the SNR on the CIP amplitude as σrVAO/rVAO ≃C−1σ∆, and calculate the
CIP reconstruction noise as defined in Eq. (8.3).

I find, setting ε = 1, the constraints from the VAO scale measurement matches very well
the method described in Section 8.3.3 where I had marginalized over the amplitude of the
21cm power-spectrum.

8.4.2 The fidelity of the VAO reconstruction

Above I assumed the SNR on the VAO measurement can be related to the SNR on the VAO
scale with some efficiency factor ε . While ε ≃ 1 may probably be a good approximation in
the high SNR regime, for the upcoming experiments where VAOs may only be detected to few
σ significance (and with the large astrophysical model uncertainties present in the calculation
of non-oscillatory part of the 21cm signal), the constraints on the VAO scale rVAO may be
poorer. A relatively robust assessment of the detection prospects of the VAO scale could
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be achieved by modelling the non-oscillatory part of the 21cm signal by some higher-order
polynomial, and perform a maximum-likelihood analysis of these model parameters along
with Alcock-Patchinsky (AP) parameters, as was done in [66], for example. I leave a more
detailed assessment of the AP parameter reconstruction from the VAO signal to a future
study.

8.5 Local modulations of BAOs from other effects

So far I assumed only CIPs modulate baryon-DM fraction in the 21cm signal spatially. In
reality there can be a multitude of effects that impact the BAO scale, either by inducing
biases locally, or contributing to noise on the global CIP signal.

Regions corresponding to under- and over-densities due to very long-wavelength modes
(with k ≪ 2π/rVAO) of matter perturbation can mimic closed or open universes, which
could vary the BAO scale and the cosmological parameters locally. Note, however, for the
uncorrelated CIPs I consider in this chaper, I expect the long-wavelength matter fluctuations
will not introduce a bias to our measurement of the power-spectra. These fluctuations may
nevertheless contribute a noise to our calculation comparable to the galaxy shot noise. More
generally, I anticipate the ΛCDM priors from cosmological measurements will dominate the
(cosmological) parameter constraints locally, allowing our assumption of fixed cosmology to
be sufficiently robust for our purposes in this chaper.

Furthermore, short wavelength fluctuations k≳2π/rVAO, can also contribute to the noise
on the BAO measurement in each voxel by locally stretching or shrinking galaxies. This
can potentially contribute to lowering the SNR by boosting the local error on the CIP
measurement.

8.6 21cmSense: Telescope sensitivity estimation

Foreground mitigation for the cosmological 21cm signal is performed either via wedge
suppression or avoidance4. 21CMSENSE [415–417] is a python module designed to estimate
the noise power spectra when a given telescope array observed the 21cm signal via foreground
avoidance.

4Please see [418, 419] for detailed description of the EoR window and foreground wedge.



178 CHAPTER 8. UPCOMING WORK: PROBING CIPS WITH THE 21CM

In every u-v bin5 the noise is calculated as,

δ
2
uv(k)≈ X2Y

k3

2π2
ΩEff

2t0
T 2

sys, (8.10)

where X2Y is a scalar conversion from an observed solid angle (or effective beam, ΩEff) to
a comoving distance [420]. The system temperature (Tsys) can be calculated as Tsys(z) =
Trx(z)+Tgal(z), where Trx(z) = 0.1Tgal(z)+ 40K is the receiver temperature and Tgal(z) =
T408(408MHz/ν(z))2.75 is the contribution from our own galaxy at a frequency ν with
T408 = 25K [410, 421]. t0 is the total observation time.

Assuming Gaussian errors on cosmic variance, I express the total uncertainty with an
inversely weighted sum across all the k modes as

δ∆
2
21(k) =

{
∑

i

1
[δ 2

uv,i(k)+∆2
21(k)]

2

}− 1
2

, (8.11)

where the index, i, represents multiple measurements of the same frequency from redundant
baselines within the array. This is therefore the total noise, including both sample variance
and thermal noise.

21cmSense can implement foreground-wedge avoidance with three levels of severity:

• Pessimistic - baselines are added incoherently. No k modes are included from within
the horizon wedge (and buffer zone);

• Moderate - all baselines are added coherently. No k modes are included from the
horizon wedge (and buffer zone);

• Optimistic - All baselines in the primary field of view (no buffer zone) are added
coherently.

To reiterate, I can write the foreground wedge simply as

k∥ = a+bk⊥ , (8.12)

5Different from traditional telescopes, a radio interferometer does not produce sky-images directly. A radio
interferometer instead measures the Fourier transform of the distribution of sky brightness in a plane that is
perpendicular to the line of sight. The coordinates on this plane (for some particular baseline) are labelled
u and v, and are taken at a distance from the origin corresponding to the length of the baseline, measured in
wavelengths.
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Figure 8.4: The detection significance for the CIP fluctuations from the ongoing HERA and upcoming
SKA-low surveys, similar to Figure 8.3 except for the optimistic foreground-wedge assumption. The
kSZ constraints are calculated in Ref. [17].
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Figure 8.5: The detection significance for the CIP fluctuations from the ongoing HERA and upcoming
SKA-low surveys, similar to Figure 8.3 except for the pessimistic foreground-wedge assumption

where k∥ and k⊥ are the Fourier modes projected on the line-of-side and the transverse plane
respectively; b depends on the instrument beam, bandwidth and underlying cosmology; a is
the user=defined buffer zone. Typically in the Pessimistic or Moderate case a = 0.1hMpc−1,
meaning modes below the line (in Equation 8.12) are rejected as they are likely contaminated
by foregrounds. I show the CIP forecasts from Section 8.3 with optimistic and pessimistic
foreground-wedges in Figures 8.4 and 8.5, respectively.



180 CHAPTER 8. UPCOMING WORK: PROBING CIPS WITH THE 21CM

I apply 21CMSENSE to two telescopes. Firstly, for SKA I use the specification of SKA1-
low. Only the core 225 stations are used as the small baselines generate 21cm sensitivity
for high redshift observations. Including longer baselines significantly slows computation
and adds negligible precision to the measurement at the redshifts used in this work. Each
station6 has diameter of 35 m giving SKA a core collecting area of 374444 m2 accross a total
bandwidth ranging [50,350] MHz. SKA is simulated for 6 hours per night for a tracked scan
(different fields for 1 hour each) and as a drift scan.

Secondly, I consider HERA [422, 423], with stations located in a filled hexagonal grid (11
along each side). Each station is 14 m in diameter giving a total collecting area of 50,953 m2

across a total bandwidth ranging [50,250] MHz. The antennae are taken to be at Trx = 100K.
HERA is operated in drift scan mode for 6 hours per night.

Both instruments observe for 1080 hours and both instruments have the bandwidth taken
as 8 MHz (centred on the frequency relating to the redshift of each coeval simulation box).

8.7 Discussion

In this chaper, I have utilised the constraining power of the 21cm temperature brightness
measurements to evaluate the detection prospects of CIPs. I evaluated the detection signifi-
cance of CIPs from measurements of both the total change in the power-spectra as well as the
varying VAO scale, in local voxels of varying size. I have shown that the ongoing HERA and
upcoming SKA-low experiments may be able to measure the uncorrelated CIP amplitude up
to a precision comparable to the CMB and LSS experiments.

Upcoming novel observational opportunities will allow significant advances in our under-
standing of the fundamental properties of the Universe. Among others, characteristics of
relative baryon and DM fluctuations prove valuable for probing deviations from adiabaticity
that may be sourced by fundamental physics during the early Universe. Constraining CIPs
may rule out models of multi-field inflation, or allow less ambiguous measurements of early
Universe signatures such as primordial non-Gaussianity.

The uncorrelated CIPs considered in this chaper are difficult to constrain on large scales
since the sample variance cancellation techniques (as done in [17], for example) cannot be
utilised in this case to increase the detection significance. Hence, adding to the number of
independent measurements is generally valuable. The current constraints on uncorrelated
CIP fluctuations afforded by Planck and galaxy surveys still allow for the CIP amplitude

6Station locations are taken from skatelescope.org/key-documents
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to be significantly larger than the adiabatic fluctuations we measure in the Universe. As
discussed in the text, constraints provided by the upcoming 21cm experiments may have the
potential to improve current constraints by orders of magnitude in the next decade.





Chapter 9

Anisotropy of the GW background with
PTAs

In this final Chapter I digress and discuss my work with Marc Kamionkowsi and Andrew
Jaffe on evaluating the prospects for detecting the statistical anisotropy of the stochastic
gravitational wave background, anticipated to be produced by super massive black hole
binaries. This astrophysical signal is anticipated to be detected by pulsar timing arrays (PTAs),
sets of pulsars which are analyzed to search for correlated signatures in their pulse arrival
times. In this chapter I discuss our work in [424] where we used a formalism more common
in the study of cosmological fluctuations in order to evaluate the minimum level of statistical
anisotropy that can be detected by the ongoing PTA experiment. I have essentially contributed
to the conceptualisation of the project, as well as the text, the analysis and the calculation
and presentation of the results. All of these items (except for the production of plots and
the numerical calculations) also saw significant contributions from Marc Kamionkowski
and Andrew Jaffe. The purpose of this chapter is not to provide a rigorous and pedagogical
discussion of the relevant gravitational wave signal or the experimental specifications of
pulsar timing arrays. The chapter aims mainly to provide a simple and straight forward
conceptual analysis of the prospects of detecting deviations from statistical anisotropy with
the gravitational wave signal in order to potentially guide the community towards profitable
directions (or away from pessimistic ones).
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9.1 Introduction

A longstanding effort [425–430] to detect a stochastic gravitational-wave background with
pulsar-timing arrays consists now of three major efforts—the Parkes Pulsar Timing Ar-
ray (PPTA) [431, 432], North American Nanohertz Observatory for Gravitational Waves
(NANOGrav) [433], and the European Pulsar Timing Array (EPTA) [434]–that collaborate
through an International Pulsar Timing Array (IPTA) [435]. The effects of gravitational
waves on the arrival times of pulses from pulsars [436, 437] produce a characteristic an-
gular correlation [438] in the pulsar-timing residuals. Signals at the frequencies ∼ 1nHz
are expected from the mergers of supermassive-black-hole binaries [439, 440]. There are
also prospects to use complementary information from stellar astrometry [441–445] as the
apparent position of distant stars will oscillate with a characteristic pattern on the sky due to
GWs.

It is still not understood, though, whether the local GW signal due to SMBH mergers will
be the type of stochastic background that arises as the sum of a large number of cosmological
sources, or whether it will be dominated by just a handful—or even just one—source [446–
450]. Roughly speaking, if there are ∼ N Poisson sources contributing to the signal, then the
amplitude of anisotropy in the GW background should be ∼ N−1/2. A first obvious step, after
the initial detection of a gravitational-wave signal, will therefore be to seek the anisotropy in
the background that may arise from a finite number of sources. Exotic sources might also
lead to anisotropy [451].

Prior work [452–454] has developed tools to characterize and seek with PTAs anisotropy
in the GW background that were then implemented in a null search [455]. This anisotropy
was characterized (as it is here also) in terms of an uncorrelated and unpolarized background
of gravitational waves with a direction-dependent intensity parametrized in terms of spherical-
harmonic expansion of the intensity. Here we re-derive anisotropy-detection tools using
mathematical objects (bipolar spherical harmonics; BiPoSHs [456–458]) developed for
analogous problems in the study of the cosmic microwave background. The analysis here
provides some simplifications and insights and also intuitive estimates for the smallest
detectable signals. We provide numerical results for the smallest detectable dipole-anisotropy
amplitude as a function of the signal-to-noise with which the isotropic signal is detected and
as a function of the number of pulsars in the array. We restrict our attention to PTAs but
describe how the detectability will be augmented with the inclusion of astrometry.

This chapter is organized as follows: In Section 9.2 we describe the idealized observables
that we model. In Section 9.3 we review the standard Hellings-Downs correlation function
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(and its harmonic-space equivalent, the timing-residual power spectrum) used to detect the
GW background. Section 9.4 introduces the bipolar-spherical-harmonic formalism and
describes how to infer the BiPoSH amplitudes from the observables. Section 9.5 describes
the model of an uncorrelated anisotropic background we consider here (and considered
in Refs. [453, 454]) and calculates the BiPoSH coefficients for the model in terms of the
model’s anisotropy parameters gLM. Section 9.6 derives minimum-variance estimators for
the spherical-harmonic coefficients gLM that parametrize the anisotropy and the variances
(∆gLM)2 with which they can be measured. Section 9.7 evaluates the smallest detectable
anisotropy beginning with a dipole and then generalizing to anisotropies of higher-order
multipole moment and then the anisotropy due to a beam of uncorrelated unpolarized
gravitational waves from a specific direction. Section 9.8 describes how the previous results,
obtained for a single timing-residual map, are generalized to incorporate the multiple maps
that may be obtained from time-domain information. We discuss the extension to astrometry
and make closing remarks in Section 9.9.

9.2 Harmonic and real-space angular observables

PTA measurements are characterized by the temporal evolution of the timing residuals and
the dependence of the observables as a function of position on the sky. Here we focus
primarily on the angular structure. To simplify, we speak here of the “timing residuals” z(n̂)
measured in a PTA as a function of position n̂ on the sky. These “timing residuals,” in a more
complete analysis, will be obtained from some convolution of the timing residuals (TRs)
with a time-sequence window function (and there may well be a number of such timing
residuals that are obtained from convolutions of the full timing-residual data with different
time-sequence window functions—more on this in Section 9.8). Strictly speaking, therefore,
each appearance of a GW power spectrum Ph(k) in the expressions below should be replaced
by Ph(k) [W (k)]2 where W (k) is an appropriate time-domain window function.

Any such timing residual z(n̂) can be expanded

z(n̂) =
∞

∑
ℓ=2

ℓ

∑
m=−ℓ

zℓmYℓm(n̂), (9.1)

in terms of spherical harmonics Yℓm(n̂), which constitute a complete orthonormal basis for
scalar functions on the two-sphere. The expansion coefficients are obtained from the inverse
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transform,
zℓm =

∫
d2n̂ z(n̂)Y ∗

ℓm(n̂). (9.2)

The sum in Eq. (9.1) is only over ℓ≥ 2, as the transverse-traceless gravitational waves that
propagate in general relativity give rise only to timing-residual patterns with ℓ ≥ 2. We
assume that the timing residuals (convolved with a time-sequence window function) are real,
and so z∗ℓm = (−1)mzℓ,−m. 1 Note that specification of z(n̂) is equivalent to specification of
zℓm and vice versa—they are two different ways to describe the same observables.

9.3 Power spectrum and correlation function

A gravitational wave with polarization tensor hab induces a fluctuation in the observed
pulsar’s pulse frequency, δν/ν in the form

δν

ν
=−Hab[hab(te,xe)−hab(tp −D/c,xp)] , (9.3)

where Hab is some geometrical projection that depends on the direction of the gravitational
wave with respect to earth and the pulsar, D is the distance of the gravitational wave source
to earth, te and xe are the time and position evaluated at Earth. tp and xp are the time and
position at the pulsar. The shift in frequency can be interpreted as a net shift in frequency
(i.e. a redshift) and are called ‘timing residuals’. The timing residuals z(n̂, k̂) arising from a
gravitational wave moving in direction k̂ are given by [459–462]

z(n̂; k̂) =
nanbhab

2(1+ k̂ · n̂)
. (9.4)

Strictly speaking, the timing residuals are observed as a function of time, but the angular
pattern here is that after those time-domain data have been convolved with a time-domain
window function so that the resulting map z(n̂) is then real.

As discussed in Refs. [463, 445] (and below), the rotationally-invariant observed power
spectrum Cℓ ∝ ∑m |zℓm|2/(2ℓ+1) for this plane wave is

Cℓ ∝
(ℓ−2)!
(ℓ+2)!

. (9.5)

1In time-frequency Fourier space, z( f ) would be complex, but satisfy a similar reality condition.
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Since Eq. (9.4) is a scalar and linear in hab, the timing residuals from any collection of plane
waves—i.e., any gravitational-wave signal—will have the power spectrum of Eq. (9.5).2 If
the timing residuals z(n̂) arise from a realization of a statistically isotropic gravitational-wave
background, then the spherical-harmonic coefficients zℓm of the observed z(n̂) map will
satisfy

⟨zℓmz∗ℓ′m′⟩=Cℓ δℓℓ′δmm′, (9.6)

where the angle brackets denote the average over all realizations of the gravitational-wave
background, and δℓℓ′ and δmm′ are Kronecker deltas. Eq. (9.6) states that if the GW back-
ground is statistically isotropic then all of the zℓm are uncorrelated and that each zℓm is some
number selected from a distribution of variance Cℓ. The resulting map, z(n̂), is then real after
convolution with the appropriate time-domain window function.

The timing-residual power spectrum is related to the rotationally-invariant two-point
autocorrelation function [454],

C(Θ) = ⟨z(n̂)z(m̂)⟩n̂·m̂=cosΘ
= ∑

ℓ

2ℓ+1
4π

CℓPℓ(cosΘ); (9.7)

i.e., the product of the timing residuals in two different directions separated by an angle Θ,
averaged over all such pairs of directions. The two-point autocorrelation function from a
stochastic GW background is the classic Hellings-Downs curve,

C(Θ) ∝ (1/2)(1− x) log
[

1
2
(1− x)

]
− 1

6

[
1
2
(1− x)

]
+

1
3
, (9.8)

where x = cosΘ. Again, the two-point autocorrelation function has this form regardless of
whether the GW background is statistically isotropic or otherwise.

Since the power spectrum Cℓ and two-point autocorrelation function C(Θ) do not depend
on whether the background is isotropic or otherwise, the natural first step in any effort to
detect a GW background is to establish from the data that these are nonzero. Formulas to
derive Cℓ from (idealized) data are provided below.

2It is mathematically possible—e.g., from a standing wave composed of two identical gravitational waves
moving in opposite directions— to get a different ℓ dependence, but hard to imagine how any astrophysical
scenario could produce a power spectrum, that differs.
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9.4 Bipolar spherical harmonics

There is, however, far more information in a map z(n̂) (or equivalently, its set of zℓm) than
that provided by the timing-residual power spectrum and Hellings-Downs correlation. The
most general correlation between any two zℓms can be written (see, e.g., Ref. [464, 465]),

⟨zℓmz∗ℓ′m′⟩ = Cℓδℓℓ′δmm′

+
∞

∑
L=1

L

∑
M=−L

(−1)m′⟨ℓmℓ′,−m′|LM⟩ALM
ll′ ,

(9.9)

where Cℓ is the (isotropic) power spectrum introduced above, ⟨ℓmℓ′m′|LM⟩ are Clebsch-
Gordan coefficients, and the ALM

ll′ are BiPoSH coefficients. Note that the power spectrum Cℓ

can be identified as (−1)ℓA00
ℓℓ /

√
2ℓ+1.

As Eq. (9.7) indicates, the Hellings-Downs curve C(Θ) considers information obtained only
from the angular separation Θ between two directions n̂ and m̂, but disregards any information
about the specific directions n̂ and m̂. This additional information is parametrized with
BiPoSHs in terms of BiPoSH coefficients ALM

ℓℓ′ that characterize departures from statistical
isotropy. If there is a dipolar power anisotropy (higher flux of GWs from one direction than
from the opposite direction), it is characterized by the L = 1 (dipolar) BiPoSHs, and the
different M = 0,±1 components provide the spherical-tensor representation of the dipole. A
quadrupolar power asymmetry (e.g., as might arise if there were GWs coming from the ±ẑ
direction) are characterized by the L = 2 BiPoSH coefficients, and so forth.

9.4.1 Measurement of BiPoSH coefficients

We suppose that the “data” come in the form of a collection of measured values zdata
ℓm =

zℓm + znoise
ℓm each of which has a contribution zℓm from the signal and another znoise

ℓm from
measurement noise. We assume that the noise in each znoise

ℓm are uncorrelated and that each
zℓm has a variance Nzz (which we further assume to be ℓ-independent – the white-noise power
spectrum – a good approximation if the timing-residual noises in all pulsars are comparable).

Estimators for the BiPoSH coefficients are then obtained from

ALM
ll′

∧

= ∑
mm′

zdata
lm z∗data

l′m′ (−1)m′⟨l ml′,−m′|LM⟩. (9.10)
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This estimator has a variance, under the null hypothesis (for even L+ ℓ+ ℓ′) [464],

〈∣∣∣ALM
ll′

∧∣∣∣
2
〉
= (1+δℓℓ′)C

data
ℓ Cdata

ℓ′ , (9.11)

where Cdata
ℓ =Cℓ+Nzz is the power spectrum of the map, which includes the signal and the

noise. The δll′ arises since the root-variance to a variance of a Gaussian distribution is
√

2
times the variance. We will see below that we need consider only combinations with even
ℓ+ ℓ′+L. If the map z(n̂) is real, then ALM

ℓℓ′ = ALM
ℓ′ℓ (for even ℓ+ ℓ′+L), and the estimators

ALM
ℓℓ′

∧

and ALM
ℓ′ℓ

∧

are the same. The covariance between any two other different ALM
ℓℓ′

∧

vanishes.

By setting L = 0 and identifying Cℓ = (−1)ℓA00
ℓℓ /

√
2ℓ+1, we recover the power-spectrum

estimator,

Cℓ

∧

=
ℓ

∑
m=−ℓ

|zdata
ℓm |2

2ℓ+1
−Nzz, (9.12)

which has a variance 〈
(∆Cℓ)

2
〉
=

2
2ℓ+1

(
Cdata
ℓ

)2
. (9.13)

Under the null hypothesis of no gravitational-wave background (to be distinguished from the
null hypothesis of a gravitational-wave background that is isotropic), Cdata

ℓ = Nzz. This result
will be used in Eq. (9.25) below.

9.5 Model and BiPoSH Coefficients

We now focus on understanding the ℓ,ℓ′ dependence of the BiPoSH coefficients ALM
ℓℓ′ . To

do so, we must understand the dependence of the observable z(n̂) on the gravitational-wave
background.

9.5.1 Model of anisotropic background

In order to link measurements of the timing residuals to an underlying gravitational wave
background, we need a model for the statistics of that background. Although there are an
infinitude of ways the background can depart from statistical isotropy, we consider (as did
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Refs. [453, 454]) here those that can be parametrized as

〈
hs(⃗k)h∗s′ (⃗k

′)
〉

=
1
4

δss′(2π)3
δD(⃗k− k⃗′)Ph(k)

×
[

1+ ∑
L>0

L

∑
M=−L

gLMYLM(k̂)

]
,

(9.14)

where hs(⃗k) is the amplitude of the gravitational-wave mode with wavevector k⃗ and polariza-
tion s =+,×. With the Dirac delta function in this parametrization, we are still preserving
the assumption that different Fourier modes are uncorrelated. We are also assuming that
the frequency dependence of the GW background is the same in all directions3 and that the
+ and × modes are still equally populated (i.e., that the background is unpolarized). The
sum over spherical harmonics allows, however, for the most general angular dependence of
the gravitational-wave flux, parametrized by spherical-harmonic coefficients gLM. Here, the
gravitational-wave power spectrum is Ph(k), and an isotropic background is recovered for
gLM → 0 for all L > 0. In this model, the gLM are the spherical harmonic coefficients of the
map of total gravitational-wave power.

Since the term in the brackets in Eq. (9.14) must be positive, the spherical-harmonic
coefficients are restricted to be gL0 ≤

√
4π/(2L+1), and a roughly similar bound applies to√

2RegLM and
√

2ImgLM for M ̸= 0.

9.5.2 Resulting timing-residual BiPoSH coefficients (and angular power
spectrum)

We now calculate the BiPoSH amplitude that arises from a GW background of the form in
Eq. (9.14), based on its imprint, Eq. (9.4). If the GW direction is taken to be k̂ = ẑ, then this
becomes

z(n̂; k̂ = ẑ) = h+(1− cosθ)cos2φ +h×(1− cosθ)sin2φ , (9.15)

where h+ and h× (both most generally complex) are the amplitudes of the + and × polariza-
tions.

3This restriction is irrelevant, given that the angular pattern induced by a gravitational wave is independent
of the GW frequency.
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This plane wave is described by spherical-harmonic coefficients,

zℓm(ẑ) = zℓ [h+(δm2 +δm,−2)+ ih×(δm2 −δm,−2)]

= zℓ [(h++ ih×)δm2 +(h+− ih×)δm,−2] ,

(9.16)

where we defined

zℓ ≡ (−1)ℓ
√

4π(2ℓ+1)(ℓ−2)!
(ℓ+2)!

. (9.17)

From this result, we can construct the spherical-harmonic coefficients for a plane wave in
any other direction. To do so, we write

z(n̂; k̂) = ∑
ℓmm′

Yℓm(n̂)D
(l)
mm′(φk,θk,0)zℓm′(ẑ) , (9.18)

where D(ℓ)
mm′(φk,θk,0) are the Wigner rotation functions.4 We thus infer, given Eq. (9.16),

which restricts the m′ sum to ±2, that a gravitational wave moving in the k̂ direction imprints
a pulsar-timing-residual pattern described by spherical-harmonic coefficients,

zℓm(k̂) = ∑
m′

D(ℓ)
mm′(φk,θk,0)zℓm′(ẑ)

= zℓ
[
(h++ ih×)D

(ℓ)
m2 +(h+− ih×)D

(ℓ)
m,−2

]
,

(9.19)

where h+ and h× are the GW amplitudes for this wave, and the arguments of the rotation
matrices are (φk,θk,0).

Given this result, we can now calculate the BiPoSH coefficients for a direction-dependent
power spectrum of the form given in Eq. (9.14). We start by noting that a given gravitational-
wave pattern is described by a set of amplitudes h+(⃗k) and h×(⃗k) for each possible wavevector
k⃗. The spherical-harmonic coefficients induced by this gravitational-wave pattern are

zℓm =
√

2zℓ
∫ d3k

(2π)3

[
hR(⃗k)D

(ℓ)
m2 +hL(⃗k)D

(ℓ)
m,−2

]
, (9.20)

4Strictly speaking, this rotation most generally involves three Euler rotations. We will always choose,
however, the + and × polarizations to align with the θ̂ -φ̂ directions. The rotation thus involves first a rotation
about the ẑ direction by the azimuthal angle φk of k̂ = (θk,φk) and then another rotation by the polar angle θk.
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where hR(⃗k)= 2−1/2(h++ ih×)(⃗k) and hL(⃗k)= 2−1/2(h+− ih×)(⃗k). The correlation between
any two spherical-harmonic coefficients is therefore

⟨zℓmz∗ℓ′m′⟩ = zℓzℓ′
∫ d3k

(2π)3 Ph(k)

[
1+∑

LM
gLMYLM(k̂)

]

×
[
D(ℓ)

m2(k̂)
(

D(ℓ′)
m′2(k̂)

)∗

+D(ℓ)
m,−2(k̂)

(
D(ℓ′)

m′,−2(k̂)
)∗]

. (9.21)

After performing the integral over directions k̂ we find an expression for
〈
zℓmz∗ℓ′m′

〉
of the

form Eq. (9.9) with

Cℓ =
z2
ℓ

2ℓ+1
I, (9.22)

and
ALM
ℓℓ′ = (−1)ℓ−ℓ′(4π)−1/2gLMzℓzℓ′H

L
ℓℓ′I, (9.23)

where

HL
ℓℓ′ ≡

(
ℓ ℓ′ L
2 −2 0

)
, (9.24)

in terms of Wigner-3j symbols, and we defined I ≡ [4π/(2π)3]
∫

k2 dk Ph(k). The two terms
in Eq. (9.21) cancel if ℓ+ ℓ′+ L is odd, and so ALM

ℓℓ′ is nonzero only for even ℓ+ ℓ′+ L.
There are two interesting features of Eq. (9.23). First, the ℓ dependence appears only in the
factors zℓzℓ′HL

ℓℓ′; as we will see below, this will allow us to write an optimal estimator for
the anisotropy coefficients gLM. Second, the power spectrum and BiPoSH coefficients both
depend in the same way on the power spectrum Ph(k).

9.6 Minimum-variance estimators of anisotropy

9.6.1 Isotropic signal-to-noise

Before evaluating the smallest detectable anisotropy, we write the power spectrum in terms
of the signal-to-noise ratio (SNR) with which the isotropic signal is detected; this will be
useful below. To do so, we recall that the variance with which any given Cℓ can be measured
is [2/(2ℓ+ 1)](Nzz)2. The signal-to-noise ratio SNR from a measurement that accesses
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multipole moments up to ℓmax is then given by (see Ref. [463] for a derivation)

(SNR)2 =
ℓmax

∑
ℓ=2

(2ℓ+1)
2

(
Cℓ

Nzz

)2

(9.25)

and by using Eq. (9.22), we find I2 ≃ [1.17(SNR)Nzz]2 in the limit ℓmax →∞, which turns out
to be remarkably accurate for any finite ℓmax ≥ 3 given the very rapid decay of the summand
with ℓ. We can thus fix the gravitational-wave amplitude I in terms of the signal-to-noise
ratio with which the isotropic signal has been established, and the noise term, which will
cancel in the estimator variance calculation below.5

9.6.2 BiPoSH estimators and variance

The observables that we seek to obtain from the data are the anisotropy amplitudes gLM.
Each estimator ALM

ℓℓ′

∧

provides an estimator,

(gLM
∧

)ℓℓ′ = (−1)ℓ−ℓ′
√

4π
ALM
ℓℓ′

∧

zℓzℓ′HL
ℓℓ′I

, (9.26)

for gLM. The variance of each of these estimators is (for L+ ℓ+ ℓ′ even),

(∆gLM)2
ℓℓ′ =

4π(1+δℓℓ′)Cdata
ℓ Cdata

ℓ′

z2
ℓz2

ℓ′(H
L
ℓℓ′)

2I2

=
8π3

27
(1+δℓℓ′)Cdata

ℓ Cdata
ℓ′(

zℓzℓ′HL
ℓℓ′
)2
(SNR)2(Nzz)2

. (9.27)

We then combine all the estimators (gLM
∧

)ℓℓ′ with inverse-variance weighting to obtain the
minimum-variance estimator6,

gLM
∧

=
∑ℓℓ′(gLM
∧

)ℓℓ′(∆gLM)−2
ℓℓ′

∑ℓℓ′(∆gLM)−2
ℓℓ′

. (9.28)

Note that the sums here are only over ℓℓ′ pairs that have even ℓ+ ℓ′+L, |ℓ− ℓ′| ≤ L ≤ ℓ+ ℓ′,
and ℓ,ℓ′ ≤ ℓmax. Given the reality of z(n̂), we sum only over ℓ′ ≥ ℓ to avoid double counting
the contributions from ALM

ℓℓ′ and ALM
ℓ′ℓ . The variance (∆gLM)2 with which gLM can be measured

5Eq. (9.25) also indicates that ≳ 93% of the total signal to noise in the detection of the GW signal comes
from the quadrupole.

6The statistical independence of the different ℓℓ′ estimators is discussed further in the third-to-last paragraph.
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is the inverse of the denominator; i.e.,

(∆gLM)−2 =
27

16π3 ∑
ℓℓ′

[
HL
ℓℓ′zℓzℓ′(SNR)Nzz]2

(Cℓ+Nzz)(Cℓ′ +Nzz)
. (9.29)

In this equation, the sum is now over all ℓ-ℓ′ pairs with |ℓ− ℓ′| ≤ L ≤ ℓ+ ℓ′, ℓ+ ℓ′+L even,
and ℓ,ℓ′ ≤ ℓmax, which we obtain by using 1+ δℓℓ′ = 2 for ℓ = ℓ′ and then including both
ℓ > ℓ′ and ℓ < ℓ′ and dividing by 2 [465]. We can then use

Cℓ =
3
π

√
3
2

z2
ℓ

2ℓ+1
Nzz(SNR), (9.30)

to obtain for the SNR → ∞ limit,

(∆gLM)−2 =
1

8π
∑
ℓℓ′
(2ℓ+1)(2ℓ′+1)(HL

ℓℓ′)
2, as SNR → ∞. (9.31)

The smallest gLM that can be distinguished at the ∼ 3σ level from the null hypothesis gLM = 0
is then gLM,min ≃ 3(∆gLM).

9.7 Smallest detectable anisotropies

9.7.1 Results for dipole anisotropy

We now illustrate with the dipole L = 1. To do so, we note that the only nonvanishing ℓ-ℓ′

pairs are those with ℓ′ = ℓ±1. We then choose to take ℓ′ = ℓ+1 and multiply by two and
use (HL=1

ℓ,ℓ+1)
2 = (ℓ+3)(ℓ−1)/[(ℓ+1)(2ℓ+1)(2ℓ+3)] to obtain

g1M,min = 3

[
ℓmax−1

∑
ℓ=2

54
π

(SNR)2

ℓ2(ℓ+1)3(ℓ+2)2

× 1
(1+Cℓ/Nzz)(1+Cℓ+1/Nzz)

]−1/2

. (9.32)

We take the sum on ℓ up to ℓmax−1 so that the maximum ℓ′ = ℓ+1 corresponds to the largest
multipole ℓmax that is measured.

We then set ℓmax ≃ N1/2
p , where Np is the number of pulsars, if these pulsars are distributed

roughly uniformly on the sky; the sensitivity to higher-ℓ modes will be exponentially reduced.
We then plot in Fig. 9.1 the smallest detectable (at the ≳ 3σ confidence level) dipole-
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Figure 9.1: The smallest detectable (at the 3σ level) dipole-anisotropy coefficient g1M (multiplied by√
3/4π). Results are shown as a function of the signal-to-noise ratio for the isotropic GW signal and

for several values of the maximum timing-residual multipole moment ℓmax (which is ℓmax ≃
√

Np in
terms of the number Np of pulsars).

anisotropy amplitude g1M as a function of the signal-to-noise ratio SNR with which the
isotropic signal is detected and for different numbers of pulsars. The results can be understood
by noting that Eq. (9.32) becomes, in the SNR → ∞ limit and in the limit ℓmax ≫ 1,

g1M,min ∼
6
√

2π

ℓmax
, as SNR → ∞. (9.33)

However, this asymptotic limit is reached only for very large SNR, given the very rapid
decrease of Cℓ/Nzz with ℓ. In more physical terms, the anisotropy is inferred through
correlations between spherical-harmonic modes of different ℓ, and so individual modes of
higher ℓ must be measured with high signal-to-noise. The steep dropoff of Cℓ with ℓ (each of
the seven ℓ= 3 moments has a signal-to-noise that is smaller by a factor of 5 than that for
each quadrupole moment) requires that the isotropic signal (which is very heavily dominated
by the quadrupole) be detected with very high significance. In the low-SNR limit, Eq. (9.32)
is approximated,

g1M,min ∼
28

SNR
, as SNR → 0; (9.34)

given the rapid decrease of the summand with ℓ in this low-SNR limit, this result is obtained
for any ℓmax ≥ 3. In practice, this SNR → 0 limit is somewhat academic (and optimistic),
as the factor Cℓ=2/Nzz in the denominator of the summand in Eq. (9.32) is already 1.8 for
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SNR = 3. Thus, the numerical result is a bit larger, even for SNR = 3, than indicated by
Eq. (9.34). The numerical results in Fig. 9.1 then indicate that the scaling with higher SNR is
more like (SNR)−1/2 rather than (SNR)−1 at higher SNR, and that the SNR → ∞ limit (the
“pulsar-number–limited regime”) is achieved for SNR ≳ 1000. This can be understood by
noting that, for example, the Cℓ/Nzz in the denominator of the summand in Eq. (9.32) does
not reach unity until the signal-to-noise ratio grows, for ℓ= 4, to SNR ≳ 60, and for ℓ= 8,
to SNR ≳ 1500. This then shows that the benefit of ≳ 16 (≳ 64) pulsars for this particular
measurement is limited until the GW signal is detected at SNR ≳ 60 (≳ 1500).

If we wanted first to simply establish the existence of a dipole, without specifying its
direction, then our observable would be the overall dipole amplitude,

d =

√
3

4π

[
∑
M
|g1M|2

]1/2

, (9.35)

where we have included the factor of
√

4π so that d ≤ 1. The SNR with which this can be
established is then

√
3 times that with which any individual g1M can be measured, and so the

smallest detectable (at 3σ ) dipole has an amplitude

dmin ≃ 8
SNR

, as SNR → 0,

dmin ≃ 4
ℓmax

, as SNR → ∞, (9.36)

again noting that the SNR→ 0 limit is likely overly optimistic for SNR≳ 3 and the SNR→∞

limit is valid for ℓmax ≫ 1.

9.7.2 Higher L modes

The results for higher L of the smallest detectable gLM are easily obtained by numerical
evaluation of Eq. (9.31) and shown for different ℓmax and (SNR) in Fig. 9.2. The qualitative
dependence of the results are similar to those for g1M,min, although the sensitivity to higher-L
anisotropies is reduced a bit (e.g., by about 50% for L = 5) relative to the dipole sensitivity.

9.7.3 A gravitational-wave beam

Suppose that a gravitational-wave signal has been detected and that we wish to determine
the fraction of the local gravitational-wave energy density coming from a specific direction.



9.8 MULTIPLE MAPS 197

1 10 100 103 104 105 106 107

SNR

1

10

√
(2
L

+
1)
/4
π
g L

M
,m

in

L = 1, `max = 8

L = 2, `max = 8

L = 8, `max = 8

L = 20, `max = 20

Figure 9.2: The smallest detectable anisotropy coefficient gLM, for L = {1,2,8,20}, as a function
of the total SNR with which the isotropic GW signal is detected. Results are provided for ℓmax =
{8,8,8,20} respectively for the different L.

To be more precise suppose that we model the gravitational-wave signal as an isotropic
uncorrelated background plus a flux of gravitational waves all coming from some specific
direction (e.g., the direction of some specific SMBH binary candidate), which we take to be
in the ẑ direction, that makes up a fraction f of the local GW energy density. This situation
is described by anisotropy coefficients gLM =

√
4π f

√
2L+1δM0. The minimum-variance

estimator for the amplitude f is then obtained by summing the minimum-variance estimators
for gL0 (scaled by

√
4π), with inverse-variance weighting. In Fig. 9.3, we plot the smallest

f using the results above for gLM,min for L ≤ 8, detectable with measurements of gLM up
to L = 8, as a function of SNR from a single map and find it approaches fmin ≃ 0.1 in the
SNR ≳ 1000 regime. It may be possible, however, to improve the sensitivity to a specific
gravitational-wave point source if the signal is characterized by more than the incoherent
flux assumed here.

9.8 Multiple maps

So far, we have assumed that there is a single timing-residual map z(n̂) obtained by convolving
the time-domain data with a single window function. Suppose, however, that the time-domain
data are convolved with nw different time-domain window functions that have negligible
overlap in frequency space (or in phase). For example, if we were to have measurements
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Figure 9.3: For ℓmax = 8, the smallest detectable dipole-anisotropy amplitude d (which is 3−1/2 times
the g1M,min plotted in Fig. 9.1), and the smallest detectable quadrupole-anisotropy amplitude, shown
together with the smallest detectable (again, at 3σ ) beam amplitude f obtained with measurements of
gL0 up to L=8 is fmin ≃ 0.1 in the high SNR limit.

performed, every two weeks for ∼ 10 years, yielding ∼ 250 measurements for each pulsar,
the time-domain window functions could be taken to be the ∼ 250 different time-domain
Fourier modes. In this case, we will have nw ∼ 250 statistically independent timing-residual
maps zi(n̂), with i = 1,2, . . . ,nw. If the Hellings-Downs power spectrum is detected with
signal-to-noise ratio (SNR)i in each individual map i, then the signal-to-noise ratio (squared)
for the entire experiment, after co-adding all the information, will be (SNR)2 = ∑i(SNR)2

i .

The optimal estimator for any given gLM is then obtained by adding (with inverse-variance
weighting) the estimators gi

LM

∧

from each map i; i.e., we augment Eq. (9.29) with an additional
sum over i and replace the SNR, the power spectrum Cℓ, and noise power spectrum Nzz by
those—(SNR)i, Ci

ℓ, and Nzz
i —associated with the ith map:

(∆gLM)−2 =
27

16π3 ∑
i

∑
ℓℓ′

(HL
ℓℓ′zℓzℓ′(SNR)iNzz

i )2

(Ci
ℓ+Nzz

i )(Ci
ℓ′ +Nzz

i )
. (9.37)

The SNR, power spectrum, and noise power spectrum for each map are related by

Ci
ℓ =

3
π

√
3
2

z2
ℓ

2ℓ+1
Nzz

i (SNR)i, (9.38)
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Figure 9.4: The smallest detectable dipole coefficient g1M,min as a function of the total signal-to-
noise for ℓmax = 8. The different curves show results obtained for different numbers of statistically
independent maps nω , assuming that the total SNR is distributed equally among all these maps.

In the SNR → 0 limit, these replacements result (given ∑i(SNR)2
i = (SNR)2) in the same

anisotropy sensitivity as inferred for a single map in this limit in Eq. (9.34). If, however, the
signal-to-noise ratio SNRi in some number nhigh of maps is high enough (e.g., (SNR)i ≳ 60
for Np = 16 or (SNR)i ≳ 1500 for Np = 64) that pulsar-number–limited regime is reached
in each individual map, then the sensitivity to anisotropy can be improved by a factor √nhigh

relative to that, Eq. (9.33), as shown in Fig. 9.4. It must be kept in mind that the improvement
shown in Fig. 9.4 possible with additional maps is achieved only if the total SNR is split
evenly among all of these many maps.

The remaining question, then, is how the total signal-to-noise is distributed among the
maps. In the best-case scenario, it will be distributed equally among the nw maps. If so,
then sensitivity to anisotropy could be improved, in principle, by the factor

√
nw over that

in Eq. (9.33), as shown in Fig. 9.4. This improvement would require, however, that the
total signal-to-noise be ∼√

nw larger than that (SNR ≳ 60 for Np = 16 and SNR ≳ 1500 for
Np ≳ 64) for a single map.

Given the likely (given the most promising astrophysical scenarios) decrease of the signal
with GW frequency, however, the signal-to-noise will probably be dominated by a small
subset of the maps (those at the lowest frequencies). If so, then nhigh may be far smaller than
nw, and the sensitivity, from multiple maps, to anisotropy will be only marginally improved
over the single-map estimate in Eq. (9.33).
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9.9 Discussion

We have discussed the search for anisotropy in a PTA-detected gravitational-wave signal in
terms of bipolar spherical harmonics for idealized measurements parametrized in terms of the
number of pulsars (assumed to be uniformly distributed on the sky) and the signal-to-noise
ratio (SNR) with which the isotropic signal is established. We focussed our attention first on
the case of a single timing-residual map z(n̂) (obtained from the convolution of the data with
a single time-domain window function) and then discussed the generalization to multiple
maps (which take into account more of the time-domain information).

We considered a search for anisotropy in an uncorrelated and unpolarized GW background
in which the anisotropy is independent of GW frequency. In this case, the anisotropy is
parametrized entirely in terms of spherical-harmonic coefficients gLM. We derived the optimal
estimators for these gLM for idealized measurements in which Np pulsars are distributed
roughly uniformly on the sky and the same timing-residual noise in each pulsar. We then
obtain the variance with which each gLM can be determined; this variance is expressed in
terms of the signal-to-noise with which the isotropic signal is detected and in terms of the
number of pulsars.

The main qualitative upshot of the analysis is that the isotropic signal will have to be
established very well before there is any possibility to detect anisotropy. The reason stems
from the the fact that the anisotropy is obtained (for odd L) through cross-correlation of
spherical-harmonic modes zℓm of the timing-residual map of different ℓ and from the fact
(inferred from Eq. (9.25)) that 94% of the (SNR)2 for the isotropic signal comes from ℓ= 2,
with only 6% coming from higher modes. Our numerical results in Fig. 9.1 show that with
a single map it will require the isotropic signal to be established with SNR ≳ 1000 before
even the maximal dipole anisotropy can be distinguished, at the 3σ level, from a statistically
isotropic background. This would, moreover, require ≳ 60 pulsars spread uniformly over
the sky. The sensitivity to a dipole signal can be improved with more pulsars and/or (as
Fig. 9.4 shows) with multiple maps, constructed with different statistically-independent
time-domain window functions. This latter improvement can be achieved, however, only
if the signal-to-noise is spread evenly among these different maps. Fig. 9.2 indicate the
additional challenge facing a search for higher-order anisotropy.

When discussing the prospects to detect anisotropy, we must be careful to state clearly the
question we are trying to answer. Here we have focused on the sensitivity to departures from
statistical isotropy parametrized in terms of spherical-harmonic coefficients gLM, under the
null hypothesis of a statistically-isotropic background. This sensitivity is limited not only
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by measurement noise, but also by cosmic variance. In our null hypothesis of a statistically
isotropic signal, the spherical-harmonic coefficients zℓm for the map are selected, in the limit
of no-noise measurements, from a distribution with variance Cℓ. Departures from statistical
isotropy show up, roughly speaking, in terms of disparities between the amplitudes of the
different m modes for a given ℓ. The conclusion of our analysis is that this is difficult to
establish given the variance Cℓ under the null hypothesis.

A measurement that is consistent with statistical isotropy may still well exhibit some
evidence that the local GW background is a realization that exhibits anisotropy. Suppose, for
example, that we had precise measurement of the five timing-residual quadrupole moments
z2m and found that the z22 and z2,−2 components were significantly larger than the other
three quadrupole moments. Our calculation [obtained by evaluating Eq. (9.31) with only the
ℓ= ℓ′ = 2 term] indicates that it would be impossible to infer from this measurement any
departure from statistical isotropy. Still, if such a result were observed, it would indicate
that the local GW signal is coming primarily from the ±ẑ direction. If there was indeed a
strong candidate GW source (e.g., a SMBH-binary candidate) in the ẑ direction, then this
observation would provide some evidence that the GW signal was coming predominantly
from that source.

Our initial calculations explored the detectability of anisotropy from a single timing-
residual map obtained by convolving the data with a single time-domain window function. If,
however, multiple maps that explore different GW frequency ranges can be obtained, then
there are prospects to co-add the anisotropy estimators from those maps to improve upon
the pulsar-number limit that arises from a single map. Significant improvement in this way
requires, however, that the zℓm are measured with high SNR in multiple maps.

We also considered the prospects to measure the fraction f of the local GW intensity that
comes from a given direction. We conclude also that measurement of f will be similarly
challenging: For example, we found a value fmin ≃ 0.1 for the smallest detectable fraction
for a survey with 64 pulsars with SNR ≳ 1000 for the isotropic signal. This calculation
leaves out ingredients (e.g., timing, polarization, and source evolution) that, if included in
the analysis, might improve the ability to localize a point source. Still, the rough conclusions
and scalings of the sensitivities with SNR and pulsar number should translate to those for a
more complete point-source search.

We also note, for possible comparison with previous work in configuration space [452–
454], that a sky described by BiPoSHs ALM

ll′ has a two-point correlation function,

C(n̂, m̂) =C(Θ)+ ∑
ℓℓ′LM

ALM
ll′ {Yℓ(n̂)⊗Yℓ′(m̂)}LM, (9.39)
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where
{Yℓ(n̂)⊗Yℓ′(m̂)}LM = ∑

mm′
⟨ℓmℓ′m′|LM⟩Yℓm(n̂)Yℓ′m′(m̂), (9.40)

are the BiPoSHs. These BiPoSHs constitute a complete orthonormal basis for functions of
n̂ and m̂ in terms of total-angular-momentum states labeled by quantum numbers L and M
composed of angular momentum states with l and l′; they are an alternative to the outer
product of the {l,m} and {l′,m′} bases. It should be possible to identify these bipolar
spherical harmonics to the anisotropic correlation functions worked out in Refs. [453–455],
but we leave this exercise to future work.

The analysis presented here should be straightforwardly generalized to astrometric GW
searches, e.g. [442]. As shown in Ref. [445], the E-mode map from an astrometic survey
provides the same information as a timing-residual map. Therefore, everything said here
about a timing-residual map can be applied equally to the E-mode map. The higher density of
stellar astrometric sources on the sky may ultimately allow higher ℓmax but the advantage of
this higher ℓmax for anisotropy searches can be capitalized upon only with a sufficiently high
SNR. The B modes in the astrometry map can provide additional statistically independent
information and, when combined with the E modes and/or timing residuals, can conceivably
improve the sensitivity to anisotropy by a factor of

√
2.

The numerical results we find for the sensitivity to anisotropy may be optimistic, given the
idealizations assumed here. Uneven distribution of pulsars on the sky and/or pulsar-to-pulsar
variations in the timing-residual noises will degrade the sensitivity. There is another, more
subtle, caveat: The estimator in Eq. (9.28), and the expression, Eq. (9.29), for its variance, are
derived under the assumption that the different ALM

ℓℓ′

∧

are statistically independent. Although

the covariance between any two different ALM
ℓℓ′

∧

vanishes (except for those with ℓ↔ ℓ′), they
are not statistically independent. The variance will thus most generally be a bit larger, and
the sensitivity to anisotropy a bit degraded. We anticipate, though, that for the low-L values
considered here that this will be a relatively small (perhaps ∼ 10%) effect, although this
should be evaluated further with Monte Carlo simulations of isotropic GW signals.

We hope that the approach developed here provides a conceptually straightforward way
to understand the search for anisotropy in the GW background and aids in the development
of observational/analysis strategies for the PTA search for gravitational waves. It will
be interesting in future work to compare the results here to those obtained from detailed
simulations of the PTA analysis pipeline, as well as with those inferred from a fully Bayesian
approach (see similar applications for the cosmic microwave background [466, 467], for
example). It will also be interesing to extend the analysis here to seek anisotropies in the
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polarization of the GW background, as parametrized, for example, by GW Stokes parameters
[468], or anisotropies in the frequency dependence of the GW background. In the former
work, authors compare the statistics of the GW Stokes parameters (spin 4) and concentrate on
the isotropic spectra and cross-spectra, similar to this work, which builds a bridge between
the two formalisms in terms of the statistical anisotropy of the amplitude fields that, as
mentioned above, is a generalization of the power anisotropy.

In this work we have considered ideal measurements in which GW-induced redshifts are
measured as a function of position on the sky (with uniform sensitivity over the entire sky)
and as a function of time (with uniform sampling/sensitivity). In this case, the harmonic-
space basis is a cross product of spherical harmonics (for the sky) and Fourier modes for the
time domain. In this idealized case, each (spherical-harmonic)–(time-domain Fourier mode)
is statistically independent, for the GW background we are considering (i.e., that specified in
Eq. (9.14)). In practice, incomplete/irregular sky coverage, nonuniform timing-residual noise,
and irregularities in the observation times destroy this elegant diagonalization. Techniques
have been developed to deal with the cross-correlations induced by these imperfections
on the idealized eigenmodes. For example, one can deal with real-space correlations, as
done in prior work (e.g., Refs. [453–455]). Another option is to work with experiment-
specific signal-to-noise eigenmodes (e.g., as were developed in Ref. [469]). Most generally,
these imperfections will reduce the sensitivity to isotropic signals and/or anisotropy in the
signal relative to those obtained here, assuming ideal measurements, although more detailed
specification of the experiment is required to evaluate precisely the reduction in sensitivity.





Appendix A

Technical calculations

A.1 Moving lens effect angular reconstruction

In this section I show some of the intermediate steps that I omitted from calculations discussed
in Section 5.5. The numerator of the signal tanϕ [introduced in Section 5.5] can be written
as

α =
∫

template

d2⃗r sinϕ ∑
i,halos

Ψu,i(r)Θml(⃗r)

=
∫

template

d2⃗r sinϕ cos(ϕ−ϕ0)
∫

patch

d2R⃗
∫

z−bin

dz
∫

catalog

dM

×
[

N̄c(m∗,z)χ
2 dz

dχ
n(M,z)A(M,z)Ψu(r)Mu(r)

]
.

(A.1)

The denominator differs by a cosine

β =
∫

template

d2⃗r cosϕ ∑
i,halos

Ψu,i(r)Θml(⃗r)

=
∫

template

d2⃗r cosϕ cos(ϕ−ϕ0)
∫

patch

d2R⃗
∫

z−bin

dz
∫

catalog

dM

×
[

N̄c(m∗,z)χ
2 dz

dχ
n(M,z)A(M,z)Ψu(r)Mu(r)

]
.

(A.2)

Errors can be calculated using a relation similar to Eq. (5.28), with the CMB component
without the moving lens effect instead, and performing the average over the realisations of
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the CMB as,

σ
2
α =

∫

template

d2⃗r sinϕ d2⃗r ′ sinϕ
′

× ∑
i, j,halos

Ψi,u(r)Ψ∗
j,u(r

′)⟨Θ̃(R⃗i+⃗r)Θ̃∗(R⃗ j+⃗r ′)⟩

=
∫

template

d2⃗r sinϕ d2⃗r ′ sinϕ
′
∑

i, j,halos
Ψi,u(r)Ψ∗

j,u(r
′)

×
[∫∫ d2⃗L

(2π)2
d2L⃗′

(2π)2CΘ̃Θ̃
L δ

2(⃗L+ L⃗′)e−i⃗L·(R⃗i+⃗r)−i⃗L′·(R⃗ j+⃗r′)

]

=
∫

template

d2⃗r sinϕ d2⃗r ′ sinϕ
′
∑

i, j,halos
Ψi,u(r)Ψ∗

j,u(r
′)

×
[∫ d2⃗L

(2π)2CΘ̃Θ̃
L e−i⃗L·(R⃗i+⃗r−R⃗ j−⃗r′)

]

=
∫

template

rdr rdr ′ ∑
i, j,halos

Ψi,u(r)Ψ∗
j,u(r

′)
∫ d2⃗L
(2π)2CΘ̃Θ̃

L e−i⃗L·(R⃗i−R⃗ j)

×
[∫∫

dϕdϕ
′e−irLcos(ϕ−ϕ0)+ir′L′ cos(ϕ ′−ϕ0)

]

=
∫

template

rdr rdr ′ ∑
i, j,halos

Ψi,u(r)Ψ∗
j,u(r

′)
∫ d2⃗L
(2π)2CΘ̃Θ̃

L e−i⃗L·(R⃗i−R⃗ j)

×
[
(2π sinϕ0)

2 J1(Lr)J1(Lr′)
]
,

(A.3)

and the error on β differs by a cosine and take the form,

σ
2
α =

∫

template

d2⃗r cosϕ d2⃗r ′ cosϕ
′

× ∑
i, j,halos

Ψi,u(r)Ψ∗
j,u(r

′)⟨Θ̃(R⃗i+⃗r)Θ̃∗(R⃗ j+⃗r ′)⟩

=
∫

template

rdr rdr ′ ∑
i, j,halos

Ψi,u(r)Ψ∗
j,u(r

′)
∫ d2⃗L
(2π)2CΘ̃Θ̃

L e−i⃗L·(R⃗i−R⃗ j)

×
[
(2π cosϕ0)

2 J1(Lr)J1(Lr′)
]
,

(A.4)
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where we defined L = |⃗L| where L⃗ is conjugate to the radial displacement on the patch. We
write the sum over the halos as,

∑
i, j,halos

Ψi,u(r)Ψ∗
j,u(r

′) =
∫∫

z−bin

χ
2
χ
′2dχ dχ

′
∫∫

catalog

dMdM′n(M,χ)n(M,χ ′)

×


Ψu(r,M,χ)Ψ∗

u(r
′,M′,χ ′)

∫∫

patch

d2R⃗id2R⃗ j


 ,

(A.5)

and use the equality,
∫∫

patch

d2R⃗id2R⃗ je−i⃗L·(R⃗i−R⃗ j) = 4π
2
∫∫

patch

RiR jdRidR jJ0(LRi)J0(LR j)

=
4π2

L2 [RmaxJ1(RmaxL)−RminJ1(RminL)] ,

(A.6)

in Eqs.(A.3) and (A.4) to get our results in Section 5.5.

A.2 Full-sky lensing estimator covariances

Below I show full-sky expressions for lensing-noise reconstruction with the quadratic esti-
mator using Wigner 3d-matrices. These are results of my calculations and are coded for an
upcoming delensing software I discuss in Section 7 which aims to provide accurate delensed
CMB spectra and lensing reconstruction noise estimates with the quadratic estimator. These
equations complement those shown in 7.3.1.

Table A.1: The optimal full-sky CMB weak-lensing estimator normalisations from [470].

α f α
ℓ1ℓℓ2

parity

TT CTT
ℓ1

F0
ℓ2ℓℓ1

+CTT
ℓ2

F0
ℓ1ℓℓ2

-

TE CTE
ℓ1

F2
ℓ2ℓℓ1

+CTE
ℓ2

F0
ℓ1ℓℓ2

even

EE CEE
ℓ1

F2
ℓ2ℓℓ1

+CEE
ℓ2

F2
ℓ1ℓℓ2

even

TB iCTE
ℓ1

F2
ℓ2ℓℓ1

odd

EB i
(

CEE
ℓ1

F2
ℓ2ℓℓ1

−CBB
ℓ2

F2
ℓ1ℓℓ2

)
odd

BB CBB
ℓ1

F2
ℓ2ℓℓ1

+CBB
ℓ2

F0
ℓ1ℓℓ2

even
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We will define Fs
ℓ1ℓ2ℓ3

as [381],

Fs
ℓ1ℓ2ℓ3

=−
√

(2ℓ1 +1)(2ℓ2 +1)(2ℓ3 +1)ℓ3(ℓ3 +1)
16π

×
[
√

(ℓ2 − s)(ℓ2 + s+1)

(
ℓ1 ℓ2 ℓ3

−s s+1 −1

)
+
√
(ℓ2 + s)(ℓ2 − s+1)

(
ℓ1 ℓ2 ℓ3

−s s−1 +1

)]
,

(A.7)

and use the following identities,

∫ 1

−1
d(cosθ) dℓ1

s1s′1
(θ)dℓ2

s2s′2
(θ)dℓ3

s3s′3
(θ) = 2

(
ℓ1 ℓ2 ℓ3

s1 s2 s3

)(
ℓ1 ℓ2 ℓ3

s′1 s′2 s′3

)
, (A.8)

(
ℓ2 ℓ3 ℓ1

s2 s3 s1

)
=

(
ℓ1 ℓ2 ℓ3

s1 s2 s3

)
, (A.9)

(
ℓ2 ℓ1 ℓ3

s2 s1 s3

)
=(−1)ℓ1+ℓ2+ℓ3

(
ℓ1 ℓ2 ℓ3

s1 s2 s3

)
, (A.10)

(
ℓ1 ℓ2 ℓ3

−s1 −s2 −s3

)
=(−1)ℓ1+ℓ2+ℓ3

(
ℓ1 ℓ2 ℓ3

s1 s2 s3

)
. (A.11)

Also note
Fs
ℓ2ℓℓ1

= Fs
ℓ1ℓ2ℓ

and dℓ
m,m′ = dℓ

−m′,−m = (−1)m′−mdℓ
m′,m . (A.12)

The reconstruction-noise of the quadratic estimator has the form

Nab
ℓ = (2ℓ+1)

[
∑
ℓ1ℓ2

| f α
ℓ1ℓℓ2

|2

cNC̃aa
ℓ1

C̃bb
ℓ2

]−1

(A.13)

for α = {ab} and {ab}= TT, EE, BE, TB, BB spectra, where cN = 2 for the {TT, EE, BB}
spectra and cN = 1 for the {BE,TE} spectra. Also note here we use a different notation,
where we define observed spectra as C̃aa

ℓ :=Caa
ℓ +Naa

ℓ . For the TE spectrum lensing noise
reconstruction takes the from

NTE
ℓ = (2ℓ+1)


∑
ℓ1ℓ2

C̃TT
ℓ2

C̃EE
ℓ1

| f TE
ℓ1ℓℓ2

|2 − (−1)ℓ+ℓ1+ℓ2CTE
ℓ1

CTE
ℓ2

f TE⋆
ℓ2ℓℓ1

f TE
ℓ1ℓℓ2

C̃TT
ℓ1

C̃TT
ℓ2

C̃EE
ℓ1

C̃EE
ℓ2

−
(

CTE
ℓ1

CTE
ℓ2

)2




−1

. (A.14)

Using these equalities we calculate the useful terms for variance.
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For NT T ;T T
ℓ , we find

CTT
ℓ1

F0
ℓ2ℓℓ1

+CTT
ℓ2

F0
ℓ1ℓℓ2

=CTT
ℓ1

F0
ℓ1ℓ2ℓ

+CTT
ℓ2

F0
ℓ2ℓ1ℓ

, (A.15)
[
CTT
ℓ1

F0
ℓ2ℓ1ℓ

+CTT
ℓ2

F0
ℓ1ℓ2ℓ

]2
= (CTT

ℓ1
F0
ℓ2ℓ1ℓ

)2 +2CTT
ℓ1

CTT
ℓ2

F0
ℓ2ℓ1ℓ

F0
ℓ1ℓ2ℓ

+(CTT
ℓ2

F0
ℓ1ℓ2ℓ

)2 (A.16)
[
CTT
ℓ1

F0
ℓ2ℓ1ℓ

+CTT
ℓ2

F0
ℓ1ℓ2ℓ

]2
=

(2ℓ1 +1)(2ℓ2 +1)ℓ(ℓ+1)(2ℓ+1)
32π

×
(

2ℓ1(ℓ1 +1)(CTT
ℓ1

)2
[∫

dcosθ

(
dℓ2

00dℓ1
11dℓ3

11 +dℓ1
00dℓ2

1−1dℓ3
1−1

)]

+ 2
√

ℓ1(ℓ1 +1)
√

ℓ2(ℓ2 +1)CTT
ℓ1

CTT
ℓ2

[∫
dcosθ

(
dℓ1

01dℓ2
01dℓ3

11 −dℓ1
01dℓ2

01dℓ3
1−1

)])
.

(A.17)

For NEE;EE
ℓ , we find

| f EE
ℓ1ℓℓ2

|2 =
[
CEE
ℓ1

F2
ℓ2ℓ1ℓ

+CEE
ℓ2

F2
ℓ1ℓ2ℓ

]2
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=

[
CEE
ℓ1

(
F2
ℓ2ℓ1ℓ

+F−2
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2

)
+CEE

ℓ2

(
F2
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+F−2
ℓ1ℓ2ℓ

2

)]2

=
1
4
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(CEE

ℓ1
F2
ℓ2ℓ1ℓ

)2 +(CEE
ℓ1

F−2
ℓ2ℓ1ℓ

)2 +2(CEE
ℓ1

CEE
ℓ1

F2
ℓ2ℓ1ℓ

F−2
ℓ2ℓ1ℓ

)

+(CEE
ℓ2

F2
ℓ1ℓ2ℓ

)2 +(CEE
ℓ2

F−2
ℓ1ℓ2ℓ

)2 +2(CEE
ℓ2

CEE
ℓ2

F2
ℓ1ℓ2ℓ

F−2
ℓ1ℓ2ℓ

)

+2(CEE
ℓ1

CEE
ℓ2

F2
ℓ2ℓ1ℓ

F2
ℓ1ℓ2ℓ

)+2(CEE
ℓ1

CEE
ℓ2

F2
ℓ2ℓ1ℓ

F−2
ℓ1ℓ2ℓ

)

+ 2(CEE
ℓ1

CEE
ℓ2

F−2
ℓ2ℓ1ℓ

F2
ℓ1ℓ2ℓ

)+2(CEE
ℓ1

CEE
ℓ2

F−2
ℓ2ℓ1ℓ

F−2
ℓ1ℓ2ℓ

)
]
,

(A.18)

Putting Eq. (A.18) in place, the lensing noise reconstruction for the EE spectra takes the form

NEE
ℓ =

(
πℓ(ℓ+1)

16

∫ +1

−1
dcosθ

[
4
(
ζ

EE
22 ζ

EE
33 +ζ

EE
22 ζ

EE
11 +2ζ

EE
2−2ζ

EE
3−1
)

dℓ
11

+4
(
ζ

EE
2−2ζ

EE
3−3 +ζ

EE
2−2ζ

EE
1−1 +2ζ

EE
22 ζ

EE
31
)

dℓ
1−1

−4
(
ζ

EE
3−2ζ

EE
3−2 +ζ

EE
2−1ζ

EE
2−1 +2ζ

EE
32 ζ

EE
21
)

dℓ
11

+4
(
ζ

EE
32 ζ

EE
32 +ζ

EE
21 ζ

EE
21 −2ζ

EE
3−2ζ

EE
2−1
)

dℓ
1−1

])−1
,

(A.19)
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where

ζ
αβ

3±1 := ∑
ℓ

2ℓ+1
4π

(
C̃αβ

ℓ

)2

Cαβ

ℓ +Nαβ

ℓ

√
(ℓ+2)(ℓ−1)(ℓ−2)(ℓ+3)dℓ

3±1 (A.20)

ζ
αβ

3±3 := ∑
ℓ

2ℓ+1
4π

(
C̃αβ

ℓ

)2

Cαβ

ℓ +Nαβ

ℓ

(ℓ−2)(ℓ+3)dℓ
3±3 (A.21)

ζ
αβ

1±1 := ∑
ℓ

2ℓ+1
4π

(
C̃αβ

ℓ

)2

Cαβ

ℓ +Nαβ

ℓ

(ℓ+2)(ℓ−1)dℓ
1±1 (A.22)

ζ
αβ

2±2 := ∑
ℓ

2ℓ+1
4π

1
Cαβ

ℓ +Nαβ

ℓ

dℓ
2±2 (A.23)

ζ
αβ

3±2 := ∑
ℓ

2ℓ+1
4π

C̃αβ

ℓ

Cαβ

ℓ +Nαβ

ℓ

√
(ℓ2 −2)(ℓ2 +3)dℓ

3±2 (A.24)

ζ
αβ

2±1 := ∑
ℓ

2ℓ+1
4π

C̃αβ

ℓ

Cαβ

ℓ +Nαβ

ℓ

√
(ℓ2 +2)(ℓ2 −1)dℓ

2±1 . (A.25)

Note that in order to calculate NBB;BB
ℓ , we simply change EE→BB.

For NEB;EB
ℓ , we find

| f EB
ℓ1ℓℓ2

|2 =
[
CEE
ℓ1

F2
ℓ2ℓ1ℓ

−CBB
ℓ2

F2
ℓ1ℓ2ℓ

]2
, odd

=

[
CEE
ℓ1

(
F2
ℓ2ℓ1ℓ

−F−2
ℓ2ℓ1ℓ

2

)
−CBB

ℓ2

(
F2
ℓ1ℓ2ℓ

−F−2
ℓ1ℓ2ℓ

2

)]2

=
1
4

[
(CEE

ℓ1
F2
ℓ2ℓ1ℓ

)2 +(CEE
ℓ1

F−2
ℓ2ℓ1ℓ

)2 −2(CEE
ℓ1

CEE
ℓ1

F2
ℓ2ℓ1ℓ

F−2
ℓ2ℓ1ℓ

)

+(CBB
ℓ2

F2
ℓ1ℓ2ℓ

)2 +(CBB
ℓ2

F−2
ℓ1ℓ2ℓ

)2 −2(CBB
ℓ2

CBB
ℓ2

F2
ℓ1ℓ2ℓ

F−2
ℓ1ℓ2ℓ

)

−CEE
ℓ1

CBB
ℓ2

(F2
ℓ2ℓ1ℓ

F2
ℓ1ℓ2ℓ

+F2
ℓ1ℓ2ℓ

F2
ℓ2ℓ1ℓ

)+CEE
ℓ1

CBB
ℓ2

(F2
ℓ2ℓ1ℓ

F−2
ℓ1ℓ2ℓ

+F−2
ℓ1ℓ2ℓ

F2
ℓ2ℓ1ℓ

)

+ CEE
ℓ1

CBB
ℓ2

(F−2
ℓ2ℓ1ℓ

F2
ℓ1ℓ2ℓ

+F2
ℓ1ℓ2ℓ

F−2
ℓ2ℓ1ℓ

)−CEE
ℓ1

CBB
ℓ2

(F−2
ℓ2ℓ1ℓ

F−2
ℓ1ℓ2ℓ

+F−2
ℓ1ℓ2ℓ

F−2
ℓ2ℓ1ℓ

)
]
.

(A.26)
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Note that in the case CBB
ℓ = 0 only the first line above is non-zero which gives the expression

found in [381]. Using the equalities in Eq. (A.28) we get

NEB
ℓ =

(
πℓ(ℓ+1)

4

∫ +1

−1
dcosθ

[ (
ζ

BB
22 ζ

EE
33 +ζ

BB
22 ζ

EE
11 −2ζ

BB
2−2ζ

EE
3−1

+ ζ
EE
22 ζ

BB
33 +ζ

EE
22 ζ

BB
11 −2ζ

EE
2−2ζ

BB
3−1
)

dℓ
11

−
(
ζ

EE
2−2ζ

BB
3−3 +ζ

EE
2−2ζ

BB
1−1 −2ζ

EE
22 ζ

BB
31

+ ζ
BB
2−2ζ

EE
3−3 +ζ

BB
2−2ζ

EE
1−1 −2ζ

BB
22 ζ

EE
31
)

dℓ
1−1

+
(

ζ
EE/BB
3−2 ζ

BB/EE
3−2 +ζ

EE/BB
2−1 ζ

BB/EE
2−1 −ζ

EE/BB
32 ζ

BB/EE
21 −ζ

BB/EE
32 ζ

EE/BB
21

)
dℓ

11

+
(

ζ
EE/BB
32 ζ

BB/EE
32 +ζ

EE/BB
21 ζ

BB/EE
21 +ζ

EE/BB
3−2 ζ

BB/EE
2−1 +ζ

BB
3−2ζ

EE/BB
2−1

)
dℓ

1−1 ,

(A.27)

where

ζ
αα/ββ

3±2 := ∑
ℓ

2ℓ+1
4π

C̃αα
ℓ

Cββ

ℓ +Nββ

ℓ

√
(ℓ2 −2)(ℓ2 +3)dℓ

3±2 (A.28)

ζ
αα/ββ

2±1 := ∑
ℓ

2ℓ+1
4π

C̃αα
ℓ

Cββ

ℓ +Nββ

ℓ

√
(ℓ2 +2)(ℓ2 −1)dℓ

2±1 . (A.29)

For NT E;T E
ℓ , we find

| f TE
ℓ1ℓℓ2

|2 =
[
CTE
ℓ1

F2
ℓ2ℓℓ1

+CTE
ℓ2

F0
ℓ1ℓℓ2

]2
even

=

[
CTE
ℓ1

(
F2
ℓ1ℓ2ℓ

+F−2
ℓ1ℓ2ℓ

2

)
+CTE

ℓ2
F0
ℓ2ℓ1ℓ

]2

=
1
4

[
(CTE

ℓ1
F2
ℓ2ℓ1ℓ

)2 +(CTE
ℓ1

F−2
ℓ2ℓ1ℓ

)2 +2(CTE
ℓ1

CTE
ℓ1

F2
ℓ2ℓ1ℓ

F−2
ℓ2ℓ1ℓ

)

+2CTE
ℓ1

CTE
ℓ2

(F2
ℓ2ℓ1ℓ

F0
ℓ1ℓ2ℓ

+F0
ℓ1ℓ2ℓ

F2
ℓ2ℓ1ℓ

)

+2CTE
ℓ1

CTE
ℓ2

(F−2
ℓ2ℓ1ℓ

F0
ℓ1ℓ2ℓ

+F0
ℓ1ℓ2ℓ

F−2
ℓ2ℓ1ℓ

)+4(CTE
ℓ2

F0
ℓ1ℓ2ℓ

)2
]

(A.30)

We will use the following approximation [470],

gTE
ℓ1ℓ2

=
f TE
ℓ1ℓℓ2

CTT
ℓ1

CEE
ℓ2

, (A.31)

hence

NTE
ℓ = ℓ(ℓ+1)(2ℓ+1)

[
∑
ℓ1ℓ2

gTE
ℓ1ℓ2

(ℓ) f TE
ℓ1ℓℓ2

]−1

. (A.32)
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The expression for NTE
ℓ becomes

NTE
ℓ =

(
πℓ(ℓ+1)

8

∫ +1

−1
dcosθ

[
+2
(

ζ
TE
22 ζ

TE/TT
11 +ζ

TE
22 ζ

TE
33 +2ζ

TE
2−2ζ

TE
3−1

)
dℓ

11

+2
(

ζ
TE
2−2ζ

TE/TT
1−1 +ζ

TE
2−2ζ

TE
3−3 +2ζ

TE
22 ζ

TE
31

)
dℓ

1−1

+8
(
ζ

TE
21 ζ

TE
01 −ζ

TE
2−1ζ

TE
30
)

dℓ
11

+8
(
ζ

TE
2−1ζ

TE
01 −ζ

TE
21 ζ

TE
30
)

dℓ
1−1

+8
(

ζ
TE
00 ζ

TE/TT
11 dℓ

11 +ζ
TE
00 ζ

TE/TT
1−1 dℓ

1−1

)])−1
,

(A.33)

where for convenience we defined

ζ
TE,ℓ
3±1 := ∑

ℓ

2ℓ+1
4π

√
(ℓ−1)(ℓ+2)(ℓ−2)(ℓ+3)

(C̃TE
ℓ )2

CTT
ℓ +NTT

ℓ

dℓ
3±1 (A.34)

ζ
TE/α,ℓ
1±1 := ∑

ℓ

2ℓ+1
4π

(ℓ+2)(ℓ−1)
(C̃TE

ℓ )2

Cα
ℓ +Nα

ℓ

dℓ
1±1 (A.35)

ζ
TE,ℓ
2±2 := ∑

ℓ

2ℓ+1
4π

1
CEE
ℓ +NEE

ℓ

dℓ
2±2 (A.36)

ζ
TE,ℓ
00 := ∑

ℓ

2ℓ+1
4π

1
CTT
ℓ +NTT

ℓ

dℓ
00 (A.37)

ζ
TE,ℓ
3±3 := ∑

ℓ

2ℓ+1
4π

(ℓ−2)(ℓ+3)
(C̃TE

ℓ )2

CTT
ℓ +NTT

ℓ

dℓ
3±3 (A.38)

ζ
TE,ℓ
±10 := ∑

ℓ

2ℓ+1
4π

√
(ℓ+2)(ℓ−1)

C̃TE
ℓ

CTT
ℓ +NTT

ℓ

dℓ
±10 (A.39)

ζ
TE,ℓ
2±1 := ∑

ℓ

2ℓ+1
4π

√
ℓ(ℓ+1)

C̃TE
ℓ

CEE
ℓ +NEE

ℓ

dℓ
2±1 (A.40)

ζ
TE,ℓ
30 := ∑

ℓ

2ℓ+1
4π

CTE
ℓ

√
(ℓ−2)(ℓ+3)

C̃TE
ℓ

CTT
ℓ +NTT

ℓ

dℓ
30 (A.41)

For NT B;T B
ℓ , we find

gTB
ℓ1ℓ2

f TB
ℓ1ℓℓ2

=
1
4

(C̃TE
ℓ1

)2

CTT
ℓ1

CBB
ℓ2

[(
F2
ℓ2ℓ1ℓ

−F−2
ℓ2ℓ1ℓ

)(
F2
ℓ2ℓ1ℓ

−F−2
ℓ2ℓ1ℓ

)]
. (A.42)
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Defining for convenience

ζ
TB,ℓ
2±2 := ∑

ℓ

2ℓ+1
4π

1
CBB
ℓ

dℓ
2±2 (A.43)

ζ
TB,ℓ
3±1 := ∑

ℓ

2ℓ+1
4π

√
(ℓ+2)(ℓ−2)(ℓ−1)(ℓ+3)

(C̃TE
ℓ )2

CTT
ℓ

dℓ
3±1 (A.44)

ζ
TB,ℓ
3±3 := ∑

ℓ

2ℓ+1
4π

(ℓ−2)(ℓ+3)
(C̃TE

ℓ )2

CTT
ℓ

dℓ
3±3 (A.45)

ζ
TB,ℓ
1±1 := ∑

ℓ

2ℓ+1
4π

(ℓ−1)(ℓ+2)
(C̃TE

ℓ )2

CTT
ℓ

dℓ
1±1 . (A.46)

The expression for NTB
ℓ becomes

NTB
ℓ =

(
πℓ(ℓ+1)

8

∫ +1

−1
dcosθ [ +2

(
ζ

TB
22 ζ

TB
11 +ζ

TB
22 ζ

TB
33 −2ζ

TB
2−2ζ

TB
3−1
)

dℓ
11

−2
(
ζ

TB
2−2ζ

TB
1−1 +ζ

TB
2−2ζ

TB
3−3 −2ζ

TB
22 ζ

TB
31
)

dℓ
1−1 ]

)−1
.

(A.47)
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For NT E;EE
ℓ , we find

∑
ℓ1ℓ2

{gTE∗
ℓ1ℓ2

[CTE
ℓ1

CEE
ℓ2

(
gEE
ℓ1ℓ2

+gEE
ℓ2ℓ1

)
}

=
CTE
ℓ1

CEE
ℓ2

8
×
(

C̃EE
ℓ1

[
2C̃TE

ℓ1

(
F2
ℓ2ℓ1ℓ

+F−2
ℓ2ℓ1ℓ

)2
+4C̃TE

ℓ2

(
F0
ℓ1ℓ2ℓ

F2
ℓ2ℓ1ℓ

+F0
ℓ1ℓ2ℓ

F−2
ℓ2ℓ1ℓ

)])

×
(

C̃EE
ℓ2

[
2C̃TE

ℓ1

(
F2
ℓ2ℓ1ℓ

F2
ℓ1ℓ2ℓ

+F2
ℓ2ℓ1ℓ

F−2
ℓ1ℓ2ℓ

+F−2
ℓ2ℓ1ℓ

F2
ℓ1ℓ2ℓ

+F−2
ℓ2ℓ1ℓ

F−2
ℓ1ℓ2ℓ

)

+4C̃TE
ℓ2

(
F0
ℓ1ℓ2ℓ

F2
ℓ1ℓ2ℓ

+F0
ℓ1ℓ2ℓ

F−2
ℓ1ℓ2ℓ

)])

=
1
4

∫ +1

−1
dcosθ

[(
ζ

TE;EE
22 ζ

TE;EE
33 +ζ

TE;EE
22 ζ

TE;EE
11,(1) +2ζ

TE;EE
2−2 ζ

TE;EE
3−1,(1)

)
dℓ

11

+
(

ζ
TE;EE
2−2 ζ

TE;EE
3−3 +ζ

TE;EE
2−2 ζ

TE;EE
1−1,(1)+2ζ

TE;EE
22 ζ

TE;EE
31,(1)

)
dℓ

1−1

+2
(

ζ
TE;EE
01 ζ

TE;EE
21 −ζ

TE;EE
30 ζ

TE;EE
2−1

)
d11

+2
(

ζ
TE;EE
01 ζ

TE;EE
2−1 −ζ

TE;EE
30 ζ

TE;EE
21

)
d1−1

−
(

ζ
TE;EE
3−2,(α)

ζ
TE;EE
3−2,(β )+ζ

TE;EE
2−1,(α)

ζ
TE;EE
2−1,(β )+ζ

TE;EE
32,(α)

ζ
TE;EE
21,(α)

+ζ
TE;EE
21,(β ) ζ

TE;EE
32,(β )

)
d11

+
(

ζ
TE;EE
32,(α)

ζ
TE;EE
32,(β ) +ζ

TE;EE
21,(α)

ζ
TE;EE
21,(β ) −ζ

TE;EE
3−2,(α)

ζ
TE;EE
2−1,(α)

−ζ
TE;EE
2−1,(β )ζ

TE;EE
3−2,(β )

)
d1−1

+2
(

ζ
TE;EE
20 ζ

TE;EE
1−1,(2)+ζ

TE;EE
20 ζ

TE;EE
31,(2)

)
d11

+2
(

ζ
TE;EE
20 ζ

TE;EE
11,(2) +ζ

TE;EE
20 ζ

TE;EE
3−1,(2)

)
d1−1 ,

(A.48)
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where

ζ
TE;EE
2±2 = ∑

ℓ

2ℓ+1
4π

1
CEE
ℓ

d2±2 (A.49)

ζ
TE;EE
3±3 = ∑

ℓ

(2ℓ+1)(ℓ−2)(ℓ+3)
4π

CTE
ℓ C̃EE

ℓ C̃TE
ℓ

CTT
ℓ CEE

ℓ

d3±3 (A.50)

ζ
TE;EE
3±1,(1) = ∑

ℓ

(2ℓ+1)
√
(ℓ+2)(ℓ−1)(ℓ−2)(ℓ+3)

4π

CTE
ℓ C̃EE

ℓ C̃TE
ℓ

CTT
ℓ CEE

ℓ

d3±1 (A.51)

ζ
TE;EE
1±1,(1) = ∑

ℓ

(2ℓ+1)(ℓ+2)(ℓ−1)
4π

CTE
ℓ C̃EE

ℓ C̃TE
ℓ

CTT
ℓ CEE

ℓ

d1±1 (A.52)

ζ
TE;EE
01 = ∑

ℓ

(2ℓ+1)
√

(ℓ+2)ℓ
4π

CTE
ℓ C̃EE

ℓ

CEE
ℓ CTT

ℓ

d01 (A.53)

ζ
TE;EE
30 = ∑

ℓ

(2ℓ+1)
√
(ℓ−2)(ℓ+3)
4π

CTE
ℓ C̃EE

ℓ

CEE
ℓ CTT

ℓ

d30 (A.54)

ζ
TE;EE
2±1 = ∑

ℓ

(2ℓ+1)ℓ(ℓ+1)
4π

C̃TE
ℓ

CEE
ℓ

d2±1 (A.55)

ζ
TE;EE
2±1,(α)

= ∑
ℓ

(2ℓ+1)
√
ℓ+2(ℓ−1)

4π

C̃EE
ℓ

CEE
ℓ

d2±1 (A.56)

ζ
TE;EE
3±2,(α)

= ∑
ℓ

(2ℓ+1)
√
(ℓ−2)(ℓ+3)
4π

CTE
ℓ C̃TE

ℓ

CEE
ℓ CTT

ℓ

d3±2 (A.57)

ζ
TE;EE
2±1,(β ) = ∑

ℓ

(2ℓ+1)(ℓ+2)(ℓ−1)
4π

CTE
ℓ C̃TE

ℓ

CEE
ℓ CTT

ℓ

d2±1 (A.58)

ζ
TE;EE
3±2,(β ) = ∑

ℓ

(2ℓ+1)
√
(ℓ−2)(ℓ+3)
4π

C̃EE
ℓ

CEE
ℓ

d3±2 (A.59)

ζ
TE;EE
20 = ∑

ℓ

2ℓ+1
4π

CTE
ℓ C̃EE

ℓ

CTT
ℓ CEE

ℓ

d20 (A.60)

ζ
TE;EE
1±1,(2) = ∑

ℓ

(2ℓ+1)
√

ℓ(ℓ+1)(ℓ+2)(ℓ−1)
4π

C̃TE
ℓ

CEE
ℓ

d1±1 (A.61)

ζ
TE;EE
3±1,(2) = ∑

ℓ

(2ℓ+1)
√
ℓ(ℓ+1)(ℓ−2)(ℓ+3)

4π

C̃TE
ℓ

CEE
ℓ

d3±1 (A.62)
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For NT T ;T E
ℓ , we find

∑
ℓ1ℓ2

{gTT∗
ℓ1ℓ2

(CTT
ℓ1

CTE
ℓ2

gEE
ℓ1ℓ2

+CTE
ℓ1

CTT
ℓ2

gEE
ℓ2ℓ1

)]}

=
1
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ℓ1
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ℓ2

[
CTE
ℓ2

CEE
ℓ2

(
C̃T T
ℓ1

[
C̃TE
ℓ1

2

(
F0
ℓ2ℓ1ℓ

F2
ℓ2ℓ1ℓ

+F0
ℓ2ℓ1ℓ

F−2
ℓ2ℓ1ℓ

)
+C̃TE

ℓ2

(
F0
ℓ2ℓ1ℓ

F0
ℓ1ℓ2ℓ

)
]

C̃T T
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[
C̃TE
ℓ1

2

(
F0
ℓ1ℓ2ℓ

F2
ℓ2ℓ1ℓ

+F0
ℓ1ℓ2ℓ

F−2
ℓ2ℓ1ℓ

)
+C̃TE

ℓ2

(
F0
ℓ1ℓ2ℓ

F0
ℓ1ℓ2ℓ

)
])

+
CTE
ℓ1

CEE
ℓ1

(
C̃T T
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[
C̃TE
ℓ2

2

(
F0
ℓ2ℓ1ℓ

F2
ℓ1ℓ2ℓ

+F0
ℓ2ℓ1ℓ

F−2
ℓ1ℓ2ℓ

)
+C̃TE

ℓ1

(
F0
ℓ2ℓ1ℓ

F0
ℓ2ℓ1ℓ

)
]

C̃T T
ℓ2

[
C̃TE
ℓ2

2

(
F0
ℓ1ℓ2ℓ

F2
ℓ1ℓ2ℓ

+F0
ℓ1ℓ2ℓ

F−2
ℓ1ℓ2ℓ

)
+C̃TE

ℓ1

(
F0
ℓ1ℓ2ℓ

F0
ℓ2ℓ1ℓ

)
])]

=
1
2

∫ +1

−1
dcosθ

[(
ζ

TT;TE
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TT;TE
1−1,(1)+ζ

TT;TE
20 ζ

TT;TE
31 −2ζ

TT;TE
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TT;TE
01,(2)

)
dℓ

11

+
(

ζ
TT;TE
20 ζ

TT;TE
11,(1) +ζ

TT;TE
20 ζ

TT;TE
3−1 +2ζ

TT;TE
01,(1) ζ

TT;TE
01,(2)

)
dℓ

1−1

+
(

ζ
TT;TE
01,(3) ζ

TT;TE
21 −ζ

TT;TE
30 ζ

TT;TE
2−1 +2ζ

TT;TE
00,(1) ζ

TT;TE
11,(2)

)
dℓ

11

+
(

ζ
TT;TE
01,(3) ζ

TT;TE
2−1 −ζ

TT;TE
30 ζ

TT;TE
21 +2ζ

TT;TE
00,(1) ζ

TT;TE
1−1,(2)

)
dℓ

1−1

(A.63)
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where

ζ
TT;TE
20 = ∑

ℓ

2ℓ+1
4π

CTE
ℓ

CEE
ℓ CTT

ℓ

d20 (A.64)

ζ
TT;TE
1±1,(1) = ∑

ℓ

(2ℓ+1)
√
ℓ(ℓ+1)(ℓ+2)(ℓ−1)

4π

C̃TT
ℓ C̃TE

ℓ

CTT
ℓ

d1±1 (A.65)

ζ
TT;TE
3±1 = ∑

ℓ

(2ℓ+1)
√
ℓ(ℓ+1)(ℓ−2)(ℓ+3) C̃TT

ℓ C̃TE
ℓ

CTT
ℓ

d3±1 (A.66)

ζ
TT;TE
01,(3) = ∑

ℓ

(2ℓ+1)
√
ℓ(ℓ+2)

4π

C̃TE
ℓ

CTT
ℓ

d01 (A.67)

ζ
TT;TE
2±1 = ∑

ℓ

(2ℓ+1)(ℓ+2)(ℓ−1)
4π

CTE
ℓ C̃TT

ℓ

CTT
ℓ CEE

ℓ

d2±1 (A.68)

ζ
TT;TE
30 = ∑

ℓ

(2ℓ+1)
√

(ℓ−2)(ℓ+3)
4π

C̃TE
ℓ

CTT
ℓ

d30 (A.69)

ζ
TT;TE
01,(1) = ∑

ℓ

(2ℓ+1)
√
ℓ(ℓ+1)

4π

CTE
ℓ C̃TE

ℓ

CTT
ℓ CEE

ℓ

d01 (A.70)

ζ
TT;TE
01,(2) = ∑

ℓ

(2ℓ+1)
√
ℓ(ℓ+1)

4π

C̃TT
ℓ

CTT
ℓ

d01 (A.71)

ζ
TT;TE
00,(1) = ∑

ℓ

2ℓ+1
4π

1
CTT
ℓ

d01 (A.72)

ζ
TT;TE
1±1,(2) = ∑

ℓ

(2ℓ+1)ℓ(ℓ+1)
4π

CTE
ℓ C̃TT

ℓ C̃TE
ℓ

CTT
ℓ CEE

ℓ

d01 (A.73)
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For NT T ;EE
ℓ , we find

∑
ℓ1ℓ2

{gTT∗
ℓ1ℓ2

CTE
ℓ1

CTE
ℓ2

(
gEE
ℓ1ℓ2

+gEE
ℓ2ℓ1

)
}

=
CTE
ℓ1

CTE
ℓ2

2CTT
ℓ1

CTT
ℓ2

CEE
ℓ1

CEE
ℓ2

[
C̃TT
ℓ1

C̃EE
ℓ1

(
F0
ℓ2ℓ1ℓ

F2
ℓ2ℓ1ℓ

+F0
ℓ2ℓ1ℓ

F−2
ℓ2ℓ1ℓ

)

C̃TT
ℓ1

C̃EE
ℓ2

(
F0
ℓ2ℓ1ℓ

F2
ℓ1ℓ2ℓ

+F0
ℓ2ℓ1ℓ

F−2
ℓ1ℓ2ℓ

)]

=
1
2

∫ +1

−1
dcosθ

[(
ζ

TT;TE
20 ζ

TT;TE
1−1 +ζ

TT;TE
20 ζ

TT;TE
31

)
dℓ

11

+
(

ζ
TT;TE
20 ζ

TT;TE
11 +ζ

TT;TE
20 ζ

TT;TE
3−1

)
dℓ

1−1

+
(

ζ
TT;TE
01 ζ

TT;TE
21 −ζ

TT;TE
30 ζ

TT;TE
2−1

)
dℓ

11

+
(

ζ
TT;TE
01 ζ

TT;TE
2−1 −ζ

TT;TE
30 ζ

TT;TE
21

)
dℓ

1−1

(A.74)

where

ζ
TT;EE
20 = ∑

ℓ

2ℓ+1
4π

CTE
ℓ

CEE
ℓ CTT

ℓ

d20 (A.75)

ζ
TT;EE
1±1 = ∑

ℓ

(2ℓ+1)
√

ℓ(ℓ+1)(ℓ+2)(ℓ−1)
4π

CTE
ℓ C̃TT

ℓ C̃EE
ℓ

CTT
ℓ CEE

ℓ

d1±1 (A.76)

ζ
TT;EE
3±1 = ∑

ℓ

(2ℓ+1)
√

ℓ(ℓ+1)(ℓ−2)(ℓ+3)
4π

CTE
ℓ C̃TT

ℓ C̃EE
ℓ

CTT
ℓ CEE

ℓ

d3±1 (A.77)

ζ
TT;EE
01 = ∑

ℓ

(2ℓ+1)sqrtℓ(ℓ+2)
4π

CTE
ℓ C̃EE

ℓ

CTT
ℓ CEE

ℓ

d01 (A.78)

ζ
TT;EE
2±1 = ∑

ℓ

(2ℓ+1)(ℓ+2)(ℓ−1)
4π

CTE
ℓ C̃TT

ℓ

CTT
ℓ CEE

ℓ

d2±1 (A.79)

ζ
TT;EE
30 = ∑

ℓ

(2ℓ+1)
√

(ℓ−2)(ℓ+3)
4π

CTE
ℓ C̃TT

ℓ

CTT
ℓ CEE

ℓ

d30 (A.80)
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For NT B;EB
ℓ we find

∑
ℓ1ℓ2

gTB∗
ℓ1ℓ2

(
CTE
ℓ1

CBB
ℓ2

gEB
ℓ1ℓ2

)

= ∑
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CTE
ℓ1

C̃TE
ℓ1

CTT
ℓ1

CEE
ℓ1

CBB
ℓ2

[
C̃EE
ℓ1

4

(
F2
ℓ2ℓ1ℓ

−F−2
ℓ2ℓ1ℓ

)2
−

C̃BB
ℓ2

4

(
F2
ℓ2ℓ1ℓ

F2
ℓ1ℓ2ℓ

−F2
ℓ2ℓ1ℓ

F−2
ℓ1ℓ2ℓ

−F−2
ℓ2ℓ1ℓ

F2
ℓ1ℓ2ℓ

+F−2
ℓ2ℓ1ℓ

F2
ℓ1ℓ2ℓ

)]

=
1
4

∫ +1

−1
dcosθ

[(
ζ

TB;EB
22 ζ

TB;EB
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TB;EB
22 ζ

TB;EB
11,(1) −2ζ

TB;EB
2−2 ζ
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3−1,(1)

)
dℓ

11

−
(

ζ
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2−2 ζ

TB;EB
3−3 +ζ

TB;EB
2−2 ζ

TB;EB
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TB;EB
22 ζ

TB;EB
31,(1)

)
dℓ

1−1

+(−1)(ℓ1+ℓ2+ℓ:odd)
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ζ
TB;EB
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ζ
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ζ
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−ζ
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d11
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+ζ
TB;EB
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)
d1−1

(A.81)

where

ζ
TB;EB
2±2 = ∑

ℓ

2ℓ+1
4π

1
CBB
ℓ

d2±2 (A.82)

ζ
TB;EB
3±3 = ∑

ℓ

(2ℓ+1)× (ℓ−2)× (ℓ+3)
4π

CTE
ℓ C̃TE

ℓ C̃EE
ℓ

CTT
ℓ CEE

ℓ

d3±3 (A.83)

ζ
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3±1,(1) = ∑

ℓ

(2ℓ+1)×
√

(ℓ+2)× (ℓ−1)× (ℓ−2)× (ℓ+3)
4π

CTE
ℓ C̃TE

ℓ C̃EE
ℓ

CTT
ℓ CEE

ℓ

d3±1 (A.84)

ζ
TB;EB
1±1,(1) = ∑

ℓ

(2ℓ+1)× (ℓ+2)× (ℓ−1)
4π

CTE
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ℓ

CTT
ℓ CEE

ℓ
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ℓ
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ζ
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CTE
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√
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4π
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ℓ
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Appendix B

kSZ bias with the transverse velocities

In Chapter 6 I introduced the kSZ effect as a probe of fundamental physics. The cosmology
that can be extracted from the kSZ measurements, however, is limited by the uncertainty
on the distribution of the ionised electron gas and its cross-correlation with the underlying
density fluctuations accessible to galaxy surveys, for example. This effect is called the
‘optical dept degeneracy’ in kSZ reconstruction.

In this Appendix I explore a possible method to constrain the optical depth bias by an
unbiased external measurement of transverse velocity field (potentially will be made possible
by the moving-lens effect measurements). I expand on one point made in Chapter 5 regarding
the potential astrophysics applications of the moving-lens effect measurement.

The idea explored here is as follows: the underlying 3-velocity field is pure-gradient
on very large-scales (as expected in standard considerations of initial conditions). This
means that while we can potentially have three observational degrees of freedom afforded by
combined measurements of the kSZ and the moving lens effects, for example, the number of
independent equations are reduced by one constraint equation, setting the curl component
to zero. This indices that while the true unbiased velocity fields should give zero curl, a
biased measurement of a velocity component (e.g. the radial velocities measured by the
kSZ effect) would lead the reconstructed 3-velocity away from zero curl. The measured
unbiased transverse velocity components can then be used to constrain this deviation in the
reconstructed 3-velocity field.

I have made the conceptualisation and the calculations of this study. The idea had first
came to light in discussions with Kendrick Smith.
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B.1 Spurious 3-velocity curl from velocity bias

Estimates for the large-scale radial velocities v̂kSZ
r from kinematic Sunyaev Zel’dovich (kSZ)

effect are biased due to uncertainties in the galaxy-electron cross-correlations in the from

⟨v̂kSZ
r (k)⟩= bvvr(k) (B.1)

where bv is called the velocity bias and vr(k) is the radial part of the true three-dimensional
velocity in Fourier space. We define the velocity field with local unit coordinates as

v(r) = vr(r) r̂(θ ,φ)+ vθ (r) θ̂θθ(θ ,φ)+ vφ (r) φ̂φφ(θ ,φ) ,

or equivalently,

vr(r) = v(r) · r̂(θ ,φ) ,
vθ (r) = v(r) · θ̂θθ(θ ,φ) ,
vφ (r) = v(r) · φ̂φφ(θ ,φ) ,

(B.2)

where

r̂ = sinθ cosφ x̂+ sinθ sinφ ŷ+ cosθ ẑ

θ̂θθ = cosθ cosφ x̂+ cosθ sinφ ŷ− sinθ ẑ

φ̂φφ =−sinφ x̂+ cosφ ŷ ,

(B.3)

are (unit) vector fields. I will omit showing the angular dependence of the unit vectors in
what follows. Similarly, we locally define the components of the velocity vector in Fourier
space ṽ(k) as

vr(r) =
∫ d3k

(2π)3 (ṽ(k) · r̂) eik·r

vθ (r) =
∫ d3k

(2π)3

(
ṽ(k) · θ̂θθ

)
eik·r

vφ (r) =
∫ d3k

(2π)3

(
ṽ(k) · φ̂φφ

)
eik·r

(B.4)

where
ṽr(k) = ṽ(k) · r̂, ṽθ (k) = ṽ(k) · θ̂θθ ṽφ (k) = ṽ(k) · φ̂φφ ,
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are the Fourier transforms of the components vr(r), vθ (r), vφ (r), and I will omit the tilde on
the Fourier transforms in the remainder of these notes.

The true three-dimensional velocity is pure gradient on large scales hence it satisfies
v(k) = ik̂v(k), or equivalently v(k) = ∇v(k)/k where k = |k|, since we consider scalar
perturbations only. The Helmholtz decomposition of a vector field to curl-free and divergence-
free components, which we use throughout these notes, is defined as

v(r) =−∇rv(r)+∇r ×A(r) (B.5)

where ∇r is the three dimensional gradient, and

Aa(r) =−i
∫ d3k

(2π)3
[k×v(k)]a

k2 eik·r , (B.6)

v(r) =−i
∫ d3k

(2π)3
k ·v(k)

k2 eik·r , (B.7)

and

va(k) =
∫ d3k

(2π)3 va(r)eik·r , (B.8)

such that the in Fourier space, the velocity can be written as

v(k) = ik
[

i
k ·v(k)

k2

]
− ik×

[
i
k×v(k)

k2

]
. (B.9)

Now let us consider the scenario where we have unbiased measurements of the transverse
velocities

v̂⊥(k) = v̂θ (k)θ̂θθ + v̂φ (k)φ̂φφ ,

hence ⟨v̂θ ⟩= vθ and ⟨v̂φ ⟩= vφ , and a biased measurement of the radial component as shown
in Eq. (B.1). The non-unity bias parameter will modify the three-dimensional velocity by
∆v(k) = (bv −1)vr(k)r̂, which introduces a curl contribution that can be calculated in the
form

vC(k) =−ik×
[

i
k×∆v(k)

k2

]
. (B.10)
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The resulting curl component of the velocity at some local point in space can be found
straightforwardly using

k×v(k) =
(
kθ vφ (k)− kφ vθ (k)

)
r̂

+
(
kφ vr(k)− krvφ (k)

)
θ̂θθ

+(krvθ (k)− kθ vr(k)) φ̂φφ ,

(B.11)

where note for the true velocity field [k×v(k)]a = 0, and

k×∆v(k) = kφ (bv −1)vr(k)θ̂θθ + kθ (bv −1)vr(k)φ̂φφ ,

which gives,

vC(k) =
[

kr

k2 (bv −1)vr(k)
][

kφ θ̂θθ + kθ φ̂φφ

]
, (B.12)

where kr,kθ ,kφ are the locally defined radial, θ̂θθ and φ̂φφ components of the wavenumber
respectively, i.e. k = kr r̂+ kθ θ̂θθ + kφ φ̂φφ , and we used the fact that the true velocity field v is
pure gradient satisfying the equality

vr(k)/kr = vθ (k)/kθ = vφ (k)/kφ . (B.13)

We will be interested in the transverse-projected gradient and curl and components, the
latter given in Eq. (B.12). Note the curl component induced by the non-unity bv is identical
to the transverse velocity component of the three-dimensional pure-gradient velocity field
up-to a scale-dependent coefficient. The contribution to the gradient part of the transverse
velocity is

∆vG
⊥(n̂) =−(∇r)⊥

∫ d3k
(2π)3

k ·∆v(k)
k2 eikk̂·n̂χ

=−∇

∫ d3k
(2π)3 v(k)

(k̂ · n̂)2

χk
eikk̂·n̂χ ,

(B.14)

where (∇r)⊥ is the three dimensional gradient projected onto the two-sphere, ∇= (∂/∂θ)θ̂θθ +

(sinθ)−1(∂/∂φ)φ̂φφ is the gradient on the 2-sphere and used the familiar notation n̂ := r̂. In
what follows I omit showing the factor of ∆bv = (bv − 1) multiplying the right-hand side.
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Note that we can expand the exponential as

eikrk̂·n̂ = ∑
ℓm

4πiℓ jℓ(kr)Y ⋆
ℓm(k̂)Yℓm(n̂) .

and can use the fact that 2/3[P2(n̂ · k̂)−1/2] = (n̂ · k̂)2 with the relation

Pℓ(n̂ · k̂) = 4π

2ℓ+1

ℓ

∑
m=−ℓ

Y ⋆
ℓm(n̂)Yℓm(k̂) ,

which allows us to write

∆vG
⊥(n̂) =−∇∑

LM
4πiℓ

∫ d3k
(2π)3

v(k)
kχ

jℓ(kχ)

×
[

2
3

(
4π

5 ∑
m′

Y ⋆
2m′(n̂)Y2m′(k̂)− 1

2

)
Y ⋆

LM(k̂)YLM(n̂)

]

(B.15)

B.2 The effect on ϒ

We can expand the transverse velocity field in a form that will prove useful in what follows,
as

va
⊥(n̂) = ∇

a
ϒ(n̂)+ ε

a
b ∇

b
ϖ(n̂) , (B.16)

where ∇aϒ(n̂) =
[
v⊥+∆vG

⊥
]a
(n) and εab is the 2-dimensional levi-civita tensor. We defined

some useful spherical harmonic relations in Eqns. (6.5) and (6.6). We get for the correction
to the pure gradient velocity,

(δϒ)ℓm =∑
LM

4πiℓ
∫ d3k

(2π)3
v(k)
kχ

jℓ(kχ)

×
[

FLMℓm(k̂)−
1
3

δℓLδmM

]
Y ⋆

LM(k̂)

(B.17)
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where

FLMℓm(k̂) =
8π

15

√
5(2L+1)(2ℓ+1)

4π

×∑
m′

(
2 L ℓ

−m′ M −m

)(
2 L ℓ

0 0 0

)
Y2m′(k̂)

(B.18)

Contracting the k̂ dependent spherical harmonics and doing the ∑mm′ sum, we find,

(δϒ)ℓm =−4πiℓ
∫ d3k

(2π)3
v(k)
kχ

Y ⋆
ℓm(k̂)

×
(

2
3

d2jℓ(kχ)

k2dχ2 +

[
2ℓ2 −2ℓ+1/2
(2ℓ+3)(2ℓ−1)

+
1
3

]
jℓ(kχ)

)
.

(B.19)

We are interested in the signal ⟨δϒℓmδϒ⋆
ℓm⟩ = Cδϒδϒ

ℓ δℓℓ′δmm′ . We show this spectra in
Fig. B.1.

B.3 The effect on ϖ

Calculating ϖ(n̂) is more involved. We begin by noting ε1
b ∇bϖ(n̂)=−(sinθ)−1(∂/∂φ)ϖ(n̂)

and ε2
b ∇bϖ(n̂) = (∂/∂θ)ϖ(n̂) and using the derived curl contribution to the transverse ve-

locity in Eq. (B.12), we write

∫ d3k
(2π)3 (v

C(k) · θ̂θθ)eikrk̂·n̂ =−∑
ℓm

ϖℓm
1

sinθ

∂Yℓm(n̂)
∂φ

,

(B.20)

∫ d3k
(2π)3 (v

C(k) · φ̂φφ)eikrk̂·n̂ =−∑
ℓm

ϖℓm
∂Yℓm(n̂)

∂θ
,

(B.21)

where vC(k) · θ̂θθ = (k̂ · φ̂φφ)(k̂ · n̂)2v(k) and vC(k) · φ̂φφ = (k̂ · θ̂θθ)(k̂ · n̂)2v(k).
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We now define vector spherical harmonics defined as ΦΦΦℓm(n̂) = r×∇rYℓm(n̂) which
projected on two sphere give (1/r)(⋆∇)Yℓm(n̂), and we use the equality

(⋆∇)ϖ(n̂) = ∑
ℓm

ϖℓm(⋆∇)Yℓm(n̂) (B.22)

where (⋆∇) =−∇φ θ̂θθ +∇θ φ̂φφ is the curl on two sphere, and we will use

∫
d2n̂ ΦΦΦℓm(n̂) ·ΦΦΦ⋆

ℓ′m′(n̂) = ℓ(ℓ+1)δℓℓ′δm′m .

We can isolate the coefficients ϖℓm in Eq. (B.22) by multiplying by the vector spherical
harmonic ΦΦΦ

⋆
ℓ′m′ integrating over the angle d2n̂. Corresponding expression is equivalent

to the Fourier transform of the curl component of the transverse velocity in Eq. (B.12)
multiplied by ΦΦΦ

⋆
ℓm and integrated over d2n̂. Note also that the unit basis fields can be written

as (sinθ)−1(∂/∂φ)n̂ = φ̂φφ and (∂/∂θ)n̂ = θ̂θθ and that k̂ do not depend on angles θ and φ

associated to n̂. We can now write

ℓ(ℓ+1)ϖℓm =

−∑
LM

4πiL
∫

d2n̂
∫ d3k
(2π)3

jL(kχ)

χ
Y ⋆

LM(k̂)YLM(n̂)

× v(k)
3

[
∂

∂φ

[
(n̂ · k̂)3]

(
∂Yℓm(n̂)
sin2

θ∂φ

)⋆

+
∂

∂θ

[
(n̂ · k̂)3]

(
∂Yℓm(n̂)

∂θ

)⋆ ]
.

(B.23)

which has the form of the angular integral,

∫
d2n̂ YLM(n̂)

[
(⋆∇)Y ⋆

λm′(n̂) · (⋆∇)Y ⋆
ℓm(n̂)

]
∣∣∣∣∣
λ={1,3}

, (B.24)

and note that (n̂ · k̂)3 = [2P3(n̂ · k̂)+3P1(n̂ · k̂)]/5 and (∂/∂φ)Yℓm(n̂) = imYℓm(n̂). We begin
by introducing

P3(n̂ · k̂) = ∑
m′

Y ⋆
3m′(n̂)Y3m′(k̂)

P1(n̂ · k̂) = ∑
m′

Y ⋆
1m′(n̂)Y1m′(k̂) ,

(B.25)
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where I note that the summed indices m′, upon expanding, will be the same for both of the
P3 terms in the second and third lines of Eq. (B.23) as well as the indices for P1 terms. This
is because these are coming from the same transverse velocity vector and the expansion is
actually performed on the vector, not separately.

We can perform an integration by parts on the terms in the second and third lines and can
transform the integrals in Eq. (B.23) into a summation of three terms whose angular integral
looks like

∫
d2n̂YLM(n̂)Y ⋆

λm′(n̂)

×
[

1
sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
− 1

sin2
θ

∂ 2

∂φ 2

]
Y ⋆
ℓm(n̂)

= ℓ(ℓ+1)
∫

d2n̂ YLM(n̂)Y ⋆
λm′(n̂)Y ⋆

ℓm(n̂)

(B.26)

where λ = {1,3} and the L2 operator acts separately on all spherical harmonics. We can now
write

ℓ(ℓ+1)ϖℓm =−∑
LM

4πiL

3

∫ d3k
(2π)3

jL(kχ)

χ
Y ⋆

LM(k̂)v(k)

×
(

∑
m′

4π

35
[(3)(4)+ ℓ(ℓ+1)+L(L+1)]

√
7(2ℓ+1)(2L+1)

4π

(
3 ℓ L

−m′ −m M

)(
3 ℓ L
0 0 0

)
Y ⋆

3m′(k̂)

+∑
m′

6π

15
[(1)(2)+ ℓ(ℓ+1)+L(L+1)]

√
3(2ℓ+1)(2L+1)

4π

(
1 ℓ L

−m′ −m M

)(
1 ℓ L
0 0 0

)
Y ⋆

1m′(k̂)

)
.

(B.27)

We now use the equalities

Y ⋆
LM(k̂)Y3m′(k̂)

= ∑
L′M′

(−1)L+3+L′
√

7(2L+1)(2L′+1)
4π

(
L 3 L′

−M m′ M′

)(
L 3 L′

0 0 0

)
Y ⋆

L′M′(k̂)

,

(B.28)
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Y ⋆
LM(k̂)Y1m′(k̂)

= ∑
L′M′

(−1)L+1+L′
√

3(2L+1)(2L′+1)
4π

(
L 1 L′

−M m′ M′

)(
L 1 L′

0 0 0

)
Y ⋆

L′M′(k̂)

(B.29)

and do the the ∑
Mm′

summations after inserting the above expressions into Eq. (B.34). We use

∑
Mm′

(
3 L ℓ

m′ −M m

)(
3 L L′

m′ −M M′

)
(B.30)

= (2ℓ+1)−1δL′ℓδM′m ,

(B.31)

and

∑
Mm′

(
1 L ℓ

m′ −M m

)(
1 L L′

m′ −M M′

)
(B.32)

= (2ℓ+1)−1δL′ℓδM′m ,

(B.33)

to get

ℓ(ℓ+1)ϖℓm =−∑
L

4πiL

15

∫ d3k
(2π)3

jL(kχ)

χ
v(k)(2L+1)Y ⋆

ℓm(k̂)

×
{[

(3)(4)+ ℓ(ℓ+1)+L(L+1)
](3 ℓ L

0 0 0

)2

+
3
2

[
(1)(2)+ ℓ(ℓ+1)+L(L+1)

](1 ℓ L
0 0 0

)2}

(B.34)

such that,

ℓ(ℓ+1)ϖℓm =−16πiℓ+1
∫ d3k
(2π)3

βℓ(kχ)

χ
v(k)Y ⋆

ℓm(k̂) ,

(B.35)
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Figure B.1: Plot shows the spectra of the field contributions that are purely curl, Cϖϖ
ℓ and that are

purely gradient, Cδϒδϒ

ℓ , in the presence of non-unity bias, shown here for bv = 0. Also plotted, the
pure-gradient transverse velocity potential Cϒϒ

ℓ , all for the redshift bin z = [1.0,1.25].

where

βℓ(kχ)aℓ(kχ) jℓ(kχ)+bℓ(kχ)
d jℓ(kχ)

kdχ
.

(B.36)

The terms aℓ(kχ) and bℓ(kχ) are complicated functions of ℓ and factors of kχ that at the
moment do not give further insight on the results. We will be interested with the power
spectra of the curl term, ⟨ϖℓmϖℓ′m′⟩=Cϖϖ

ℓ δℓℓ′δmm′ where it is easy to see that the isotropy
is satisfied from Eq. (B.35).

B.4 Optical dept bias constraints with transverse velocities

We find the error on the velocity bias σ(bv)/bv from the ϒ̂ reconstruction will satisfy

σ(bv)/bv ∼ O(10 SNR−1
ϒ̂
) , (B.37)

where SNR is the signal-to-noise ratio on the gradient part of the transverse velocities ϒ̂

estimated from measurements. From the moving lens effect cross-correlations with a density
survey, we have found the SNR ≃ 50, giving an error of ∼ 0.2, not really competitive with
the FRB results, see Figure 3 of [323]. Note also the signal from the curl component, one
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gets,

σ(bv)/bv ≲ O(SNR−1
ϖ̂
) . (B.38)

However, if we can reconstruct the large-scale velocity field from a more precise experiment,
such as a large-scale structure surveys with much higher SNR, perhaps one should achieve
some compatible results.
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