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Abstract—The CALorimetric Electron Telescope CALET is collecting science data on
the International Space Station since October 2015 with excellent and continuous perfor-
mance. Energy is measured with a deep homogeneous calorimeter (1.2 nuclear interaction
lengths, 27 radiation lengths) preceded by an imaging pre-shower (3 radiation lengths,
1mm granularity) providing tracking and 105 electron/proton discrimination. Two in-
dependent sub-systems identify the charge Z of the incident particle from proton to iron
and above (Z<40). CALET measures the cosmic-ray electron+positron flux up to 20
TeV, gamma rays up to 10 TeV, and nuclei up to 1 PeV. In this paper, we report the
on-orbit performance of the instrument and summarize the main results obtained during
the first 5 years of operation, including the electron+positron energy spectrum and the
individual spectra of protons, heavier nuclei and iron. Solar modulation and gamma-ray
observations are also concisely reported, as well as transient phenomena and the search
for gravitational wave counterparts.

Keywords: Cosmic rays; high energy astrophysics; space-borne experiments.

1. INTRODUCTION

CALET is a cosmic-ray experiment designed for long-term observations of charged
and neutral cosmic radiation on the ISS. The instrument is managed by an inter-
national collaboration led by the Japanese Space Agency (JAXA) with the partic-
ipation of the Italian Space Agency (ASI) and NASA. It was launched on August
19, 2015 with the Japanese carrier H-IIB, delivered to the ISS by the HTV-5 Trans-
fer Vehicle, and installed on the Japanese Experiment Module Exposure Facility
(JEM-EF). The science program of CALET addresses several outstanding ques-
tions of high-energy astroparticle physics including the origin of cosmic rays (CR),
the possible presence of nearby astrophysical CR sources, the acceleration and prop-
agation of primary and secondary elements in the galaxy, and the nature of dark
matter. The design of CALET is optimised for high precision measurements of the
electron+positron spectrum with an accurate scan of the energy interval already
covered by previous experiments and its extension to the region above 1 TeV. Given
the high energy resolution of CALET for electrons, a detailed study of the spectral
shape might reveal the presence of nearby sources of acceleration as well as possible
indirect signatures of dark matter.!2

With its individual element resolution in the charge identification of cosmic
rays, CALET is also carrying out direct measurements of the spectra and relative

TSee the last page for the full authors list.
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abundances of light and heavy cosmic nuclei®* from proton to iron, in the energy
interval from ~50 GeV (10 GeV/n) for the lighter (heavier) nuclei to several hun-
dred TeV. The abundances of the rare CR trans-iron elements up to Z~40 are
studied with a dedicated program of long term observations.’

2. THE CALET INSTRUMENT

The CALET main telescope is an all-calorimetric instrument comprised of three
sub-detectors. The CHarge Detector (CHD) is positioned at the top of the ap-
paratus and consists of a two layered hodoscope of plastic scintillators paddles (14
paddles per layer). It performs the charge identification of individual nuclear species,
providing a measurement of the charge Z of the incident particle over a wide dy-
namic range (from Z = 1 up to Z = 40).% The IMaging Calorimeter (IMC) is a fine
grained sampling calorimeter, segmented longitudinally into 16 layers of scintillat-
ing fibers (with 1 mm? square cross-section), read out individually and arranged
in pairs along orthogonal directions. Each pair is interleaved with thin tungsten
absorbers (for a total thickness of 3 Xg). It reconstructs the early shower profile
and the impinging particle trajectory with good angular resolution, while providing
also a redundant charge measurement.! The third detector is the Total AbSorption
Calorimeter (TASC), an homogeneous calorimeter with 12 layers of lead-tungstate
(PWO) logs arranged in pairs along orthogonal directions. With its 27 X thickness
and shower imaging capability, it measures electrons and gamma-rays with an ex-
cellent energy resolution, providing high discrimination against hadronic cascades.
The total thickness of the main telescope is equivalent to 30 Xy and 1.3 proton
interaction lengths (A7), the geometrical factor is 0.12 m? sr. A more detailed de-
scription of the instrument can be found in Ref. 7 and in the Supplemental Material
(SM) of Ref. 9.

3. FLIGHT OPERATIONS AND CALIBRATIONS

The commissioning of CALET aboard the ISS was successfully completed at the
beginning of October 2015. Since then, the instrument has been taking science
data continuously with no significant interruptions.2 The on-orbit operations are
controlled via the JAXA Ground Support Equipment (JAXA-GSE) in Tsukuba by
the Waseda CALET Operations Center (WCOC) at Waseda University, Tokyo.

As of April 30, 2021 a total observation time of more than 2027 days was in-
tegrated with a live time fraction ~85% of the total time, and ~2.7 billion events
collected above 1 GeV. The exposure with the high-energy (HE) trigger mode, de-
signed to maximize the collection power for electrons above 10 GeV, and other
high-energy shower events was ~ 178 m? sr day.

Energy calibrations of each channel of CHD, IMC, and TASC is performed
with penetrating proton and He particles selected in-flight by a dedicated trigger
mode. Raw signals are corrected for light output non-uniformity, gain differences
among the channels, position and temperature dependence, as well as temporal
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gain variations.”® Correlations among the four gain ranges for each TASC channel
are calibrated with flight data, and responses from consecutive ranges are linked to-
gether to provide a seamless transition. In this way, a dynamic range spanning more
than six orders of magnitude is achieved, allowing observations from one minimum
ionizing particle to 1 PeV showers.

4. COSMIC-RAY DIRECT MEASUREMENTS WITH CALET
ON THE ISS

4.1. The Electron Spectrum

The CALET collaboration reported their first measurement of the inclusive elec-
tron+positron spectrum in the energy range from 10 GeV to 3 TeV (Ref. 9) within
a fiducial subset of the acceptance. Soon after, the DArk Matter Particle Explorer
(DAMPE) collaboration published their all-electron spectrum in the energy interval
from 25 GeV to 4.6 TeV (Ref. 10).

The latter publication was followed by a number of papers speculating about the
origin of a possible peak-like structure near 1.4 TeV in DAMPE data. An updated
version of the CALET all-electron spectrum was published, covering the energy
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Fig. 1. Direct measurements of the electron + positron flux by space-borne experiments includ-
ing,10, 1112714 and from ground-based experiments.!® 16 The CALET 2018 data'! are shown as
red filled circles in the energy interval 11 GeV to 4.8 TeV. The width of each bin is shown as a
horizontal bar, statistical errors as vertical bars. The gray band indicates the quadratic sum of
statistical and systematic errors (not including the uncertainty on the energy scale).
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range from 11 GeV to 4.8 TeV (Ref. 11) with 780 days of flight data and the full
geometrical acceptance. It reported a new analysis with doubled statistics at E>
475 GeV and included one additional energy bin between 3 and 4.8 TeV (Figure 1).
The width of each bin is shown as a horizontal bar, the statistical errors as vertical
bars, while the gray band is representative of the quadratic sum of statistic and
systematic errors. A comprehensive study of the systematic uncertainties was per-
formed as described in Refs. 9, 11 and Supplemental Material therein. A constant
electron identification efficiency of 70% was achieved above 30 GeV, with a proton
contamination level of 2-5% below 1 TeV and ~10-20% above.

Taking the currently available experimental data at face-value, we notice that
the all-electron spectrum data seem to fork into two groups of measurements: AMS-
02 + CALET and Fermi/LAT + DAMPE, with good consistency within each group,
but with only marginal overlap between the two, possibly indicating the presence of
unknown systematic errors. The CALET spectrum is consistent with AMS-02 be-
low ~1TeV where both experiments have a good electron identification capability
albeit using different detection techniques. CALET observation of a flux suppres-
sion above ~1TeV is consistent with DAMPE within errors. No peak-like structure
was found at 1.4 TeV in CALET data, irrespective of the energy binning. After
re-binning with the same set of energy bins as DAMPE, an inconsistency between
the two measurements emerged'! with a 4 ¢ significance, the latter including the
systematic errors quoted by both experiments.

New results on the analysis of electrons based on the first five years of CALET
observations will be presented at the upcoming ICRC2021 conference.

4.2. The Proton Spectrum

Cosmic-ray energies from the GeV scale to the multi-TeV region have been explored
— in separate subranges — by magnetic spectrometers (e.g., BESS-TeV, PAMELA,
and AMS-02), calorimeters (e.g., ATIC, CREAM, NUCLEON, and DAMPE) and
Cherenkov / Transition Radiation instruments (e.g., TRACER). In the interme-
diate energy region from 200 GeV to 800 GeV a deviation from a single power-
law (SPL) was observed in both proton and helium spectra by CREAM,!7 19
PAMELA?%2! and confirmed with high statistics measurements by AMS-02,22
CALET,?® and DAMPE.?**

The first proton paper published by CALET?? reported a proton flux measure-
ment where, for the first time, a single space-borne instrument was able to cover
the whole interval of proton energies from 50 GeV to 10 TeV thanks to its large
dynamic range. The proton flux was extracted from the data collected from October
13, 2015 to August 31, 2018 (1054 days) on the ISS using only 40% of the total ac-
ceptance. A detailed study of the systematic uncertainties was reported in the same
paper and in the Supplementary Material therein.?® This is of particular relevance
because CR flux measurements are well known to be affected by relatively large
systematic errors, often specific of each instrument. CALET proton data (Fig. 2)



The Sixteenth Marcel Grossmann Meeting Downloaded from www.worl dscientific.com

by GERMAN ELECTRON SYNCHROTRON @ HAMBURG on 01/30/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

3431

4
< 3x10
>
(O]
Q)
T 2x10% - A
s A
o
£
— y
é y
— — A
L; 10* :::::
~ |~ Proton Spectrum
N 8x10° F BESS-TeV
7x1 03 L 4 ATIC-2
X + CREAM-|
3L t PAMELA
X
6x10 t AMS-02
5x1 03 - 3 CREAM-III
A NUCLEON (IC)
3l Y NUCLEON (KLEM)
4x10 ¢ CALET-2018
[[C""71 uncertainty band (stat. + syst.) for CALET
| 1 IIIIIII| 1 IIIIIIII 1 IlIIIII|
3x1 03 1 Lo
10 10 10° 10* 10°

Kinetic Energy [GeV]

Fig. 2. Cosmic-ray proton spectrum measured by CALET from 50 GeV to 10 TeV published in
Ref. 23. The gray band indicates the quadratic sum of statistical and systematic errors.

are consistent with AMS-02 but extend to higher energies by nearly one order of
magnitude, showing a very smooth transition of the spectral index from —2.81+0.03
(in the region 50-500 GeV) to —2.56 + 0.04 (in 1-10 TeV), thereby confirming the
existence of a spectral hardening and providing evidence of a deviation from a single
power law by more than 3o.

An update of CALET proton analysis, based on 5 years of data on the ISS,
will be presented at the upcoming ICRC2021 conference together with preliminary
results on the helium flux.

4.3. The Spectra of Heavier Nuclei

The observation of a spectral hardening in proton and helium, as well as in carbon
and oxygen spectra,'®20:22:25,26 have opened a new and unexpected scenario in
CR phenomenology. In particular, the high statistics observations by AMS-02, up
to a maximum detectable rigidity (MDR) of a few TV, clearly show that primary
elements have a very similar rigidity dependence above ~60 GV and that secondary
elements (like Li, Be and B) also show a flux hardening, though with subtle differ-
ences that might be attributed to propagation effects (secondaries propagate first
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as primaries and then as secondaries). Therefore, it is very important to extend
the presently available measurements to the multi-TeV region and investigate the
energy dependence of the spectral index for individual nuclear species with high
accuracy. CALET is carrying out extensive measurements of the energy spectra,
relative abundances and secondary-to-primary ratios of cosmic-ray nuclei.

Preliminary CALET results on the B/C ratio and on the spectra of heavier
nuclei from neon to iron (Fig. 3) were previously reported (see for instance Refs. 4,
27, 28). In the following we will focus on the CALET published spectra of C, O
and Fe.
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Fig. 3. Preliminary results of energy spectra of heavy primary components of Ne, Mg, Si, S, Ca
and Fe as a function of energy par particle compared with previous observations. The Error bars
of CALET data?8 represent the statistical uncertainty only.

4.4. Carbon and Oxygen Spectra

The energy spectra of carbon and oxygen and their flux ratio were measured by
CALET in the energy range from 10 GeV/n to 2.2 TeV /n and published in Ref. 29.
CALET observations (Fig. 4) allow to exclude a single power law spectrum for C
and O at the level of more than 30. A spectral index increase (spectrum flattening)
A~y = 0.166 £ 0.042 (carbon) and Ay = 0.158 &+ 0.053 (oxygen) were measured
above 200 GeV /n, respectively. The fluxes of C and O were found to share the same
energy dependence with a constant C/O flux ratio 0.911 & 0.006 above 25 GeV/n.
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While the above results are consistent with the ones reported by AMS-02 for the
same elements, the absolute normalization of CALET data is significantly lower
than AMS-02, but in agreement with previous experiments (including PAMELA for
carbon). For more details please refer to Ref. 29 and the Supplementary Material
therein.
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Fig. 4. Fit of the CALET (a) C and (b) O energy spectra?® with a Double Power Law (DPL)
function (blue line) in the energy range [25, 2000] GeV /n. The flux is multiplied by E2'7 where F is
the kinetic energy per nucleon. Error bars are the sum in quadrature of statistical and systematic
uncertainties. The dashed blue lines represent the extrapolation of an Single Power Law function
fitted to the data in the energy range [25, 200] GeV/n. A~ is the spectral index change above the
transition energy Fo (vertical green dashed line). The green band shows the uncertainty error on
Ey from the DPL fit.

4.5. The Iron Spectrum

In a recent paper,® the CALET collaboration reported their first measurement of
the energy spectrum of cosmic-ray iron from 10 GeV/n to 2.0 TeV/n.
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Fig. 5. CALET iron flux3? as a function of kinetic energy per nucleon in GeV (with multiplica-
tive factor E2:6). The error bars of the CALET data (red filled circles) represent the statistical
uncertainty only. The yellow band indicates the quadrature sum of systematic errors, while the
green band indicates the quadrature sum of statistical and systematic errors. Also plotted are the
data points from other direct measurements.31739

The analysis is based on 4.4 years of observations and the measurement achieves
a significantly better precision than most of the existing measurements of the same
element. The CALET iron differential spectrum in kinetic energy per nucleon is
shown in Fig. 5, where uncertainties including statistical and systematic errors are
bounded within a green band. The spectrum is compared with the results from
space-based (HEAO3-C2,21 CRN,*?2 AMS 02,3 NUCLEON??) and balloon-borne
experiments (ATIC-02,3® TRACER,3¢ CREAM-I1,3" Sanriku®®), as well as ground-
based observations (H.E.S.S.39). The CALET spectrum is consistent with ATIC 02
and TRACER at low energy and with CRN and HESS at high energy. CALET
and NUCLEON iron spectra have similar shapes, while they differ in the absolute
normalization of the flux. The latter turns out to be higher for CALET than for
CRN by ~10% on average, while it is lower by 14% with respect to Sanriku. CALET
and AMS-02 iron spectra have a very similar shape (Fig. S12 of the Supplemental
Material of Ref. 30), but differ in the absolute normalization of the flux by ~ 20%.

Taking into account the average size of the large systematic errors reported in
the literature, CALET data turn out to be consistent with previous measurements
within the uncertainty error band, both in spectral shape and normalization. Below
50 GeV /n the spectral shape is found to be similar to the one observed for primaries
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lighter than iron. Above the same energy, CALET observations are consistent with
the hypothesis of an SPL spectrum up to 2 TeV /n, i.e., the flattening observed above
a few hundred GeV/nucleon in the p-C-O spectra does not appear to be present
in the iron spectrum in the sub-TeV region. Beyond this limit, the uncertainties
given by the available statistics and large systematics do not allow yet to draw a
significant conclusion on a possible deviation from a single power law. An SPL fit
in this region yields a spectral index value v = —2.60 = 0.03.

4.6. The Observation of Gamma-Rays

CALET can identify gamma-rays and measure their energies from ~1 GeV to the
TeV region. Both CHD and the first IMC layers are used in the offline analysis as
anti-coincidence against incoming charged particles, taking advantage of the high
granularity of the IMC.

Gamma-ray candidates are also required to deposit more energy in the bottom
IMC layers than in the upper ones where pair conversion takes place. In addition
to the HE trigger, CALET implements a LE-v trigger extending the sensitivity
to gamma rays with primary energies down to ~1 GeV. This dedicated trigger is
activated only at low geomagnetic latitudes (to avoid an increase of the dead-time)
and it is also enabled whenever a gamma-ray burst is triggered by the Calet Gamma-
Ray Burst Monitor (CGBM).%® The first two years of data allowed a complete
characterization of the performance of CALET as a gamma-ray instrument, the
optimization of the event selection criteria, the determination of the effective area,
Point Spread Function (PSF) and absolute pointing accuracy. Measured signals
from gamma-ray bright point sources and diffuse galactic emission were found to
be in agreement with simulated results and expectations from Fermi-LAT data.*!
The spectra from sources like Crab, Geminga, and Vela pulsars were measured by
CALET and tested for consistency with parameterised LAT spectra. These results
confirmed the sensitivity of the calorimeter in observing bright, persistent sources.*?
The gamma-ray sky observed by CALET using the LE-y trigger is shown in Fig. 6.

CALET can also detect gamma-ray transients by means of the CGBM operating
in the energy range of 7 keV-20 MeV. As of April 2021, 246 GRBs have been
detected, 12% of which were classified as short, with an average rate of ~44.6 /year.

A search for electromagnetic counterparts of gravitational waves (GW) triggered
by LIGO/Virgo was performed with a combined analysis of the CGBM and the
calorimeter. Candidate signals compatible with gamma-ray emission were searched
for in time intervals of tens of seconds centered on the reported trigger times of
GW151226, GW170104, GW170608, GW170814, and GW170817 events. No signal
was detected for all GW events; upper limits on gamma-ray emission were set for
GW151226 (CAL + CGBM) and GW170104 (CAL), while GW170608, GW170814,
GW170817 turned out to be outside the CALET field-of-view.43 44
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Fig. 6. Top: CALET gamma-ray sky map (observation period: 2015.11.01-2020.07.31) with the
LE-v trigger (E >1 GeV), shown in a Mollweide projection of galactic coordinates. White contours
show the relative level of exposure compared to the maximum on the sky; bottom: point sources
observed during the same period (with >1 GeV), including the Crab, Geminga, and Vela pulsars.

5. SUMMARY AND PERSPECTIVES

CALET was successfully launched on Aug. 19, 2015. The instrument performance
has been very stable during all the scientific observation period from Oct. 13, 2015.
CALET measurements of the electron spectrum were published in two papers,” !
the latter with improved statistics and extended energy range from 11 GeV to
4.8 TeV. The extension to five years of CALET on-orbit operations provided an
increase of the available statistics in the electron observations by a factor ~3 thereby
contributing to a better understanding of the detector and of the systematic errors.
A search for possible spectral footprints of nearby electron sources in the region
above ~1 TeV is in progress.



The Sixteenth Marcel Grossmann Meeting Downloaded from www.worl dscientific.com

by GERMAN ELECTRON SYNCHROTRON @ HAMBURG on 01/30/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

3437

The wide dynamic range and excellent charge identification capability allow
CALET to measure nuclei in cosmic rays from proton to iron and above, with an
energy reach approaching the PeV scale. The proton spectrum was published up to
10 TeV (Ref. 23); C and O spectra to 2.2 TeV/n (Ref. 29), and Fe to 2.0 TeV/n
(Ref. 30). The spectral index dependence on energy confirmed a spectral hardening
for p, C, O with a smooth onset at a few hundred GeV. Measurements of the energy
spectra and composition of all primary and secondary nuclei (and of their ratios)
are ongoing. The relative abundance of the ultra heavy nuclei up to Z = 40 has also
been preliminarily analyzed.®

The performance of the gamma-ray measurements has confirmed CALET’s ca-
pability to observe the diffuse component and bright point-sources in the gamma-ray
sky from ~1 GeV to 100 GeV and above (Fig. 6). The continuous GeV gamma-ray
sky observation with CALET complements the coverage by other missions and may
help to identify unexplored high-energy emissions from future transient events. The
latter phenomena are studied with the CGBM.

Follow-up observations were carried out in the X-ray and gamma-ray band of
GW events during LIGO/Virgo observation campaigns.3:44

Solar modulation is constantly monitored and studied. Since the start of obser-
vations in 2015/10, a steady increase in the 1-10 GeV all-electron flux has been
observed to present. In the past two years, the flux has reached the maximum flux
observed with PAMELA during the previous solar minimum period.*> Solar ener-
getic particles (SEP) are also studied at high geomagnetic latitudes.

High statistics detection of MeV electrons originating from the radiation belt
allows the study of relativistic electron precipitation.*® This is one of the topics of
Space Weather studies*” which were added as additional observational targets for
CALET after the start of on-orbit operations.

Important updates of CALET electron and proton analyses, as well as prelimi-
nary results on He, B, B/C analyses, will be presented at the upcoming ICRC2021
conference (highlights in Ref. 48).

The so far excellent performance of the instrument and the outstanding quality
of the data suggest that a long-term strategy of CALET observations will contribute
to a deeper understanding of cosmic-ray phenomena. CALET operations on the ISS
have been recently approved for an extension to the end of 2024 (at least).
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