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For given quantum (non-commutative) spaces P and O, we study the quantum space

of maps M
P,O from P to O. In case of finite quantum spaces, these objects turn out to

be behind a large class of maps which generalize the classical qc-correlations known

from quantum information theory to the setting of quantum input and output sets.

We prove various operator algebraic properties of the C∗-algebras C(MP,O) such as

the lifting property and residual finite dimensionality. Inside C(M
P,O) we construct

a universal operator system S
P,O related to P and O, and show, among other things,

that the embedding SP,O ⊂ C(MP,O) is hyperrigid and has another interesting property,

which we call the strong extension property. Furthermore, C(MP,O) is the C∗-envelope of

SP,O and a large class of non-signalling correlations on the quantum sets P and O arise

from states on C(M
P,O) ⊗max C(M

P,O) as well as states on the commuting tensor product

S
P,O⊗cSP,O. Finally, we introduce and study the notion of a synchronous correlation with

quantum input and output sets and prove several characterizations of such correlations

and their relation to traces on C(MP,O).

1 Introduction

The main objects of this paper are quantum spaces of maps and quantum correlations

related to them. In order to properly introduce the reader to the subject, we begin with

the precise definition of a quantum space as well as the associated notation.

Received September 9, 2021; Revised September 9, 2021; Accepted April 25, 2022

© The Author(s) 2022. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse,
distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/14/12400/6644641 by D
eutsches Elektronen Synchrotron D

ESY user on 16 D
ecem

ber 2024

https://doi.org/10.1093/imrn/rnac139
http://creativecommons.org/licenses/by/4.0/


Quantum Correlations on Quantum Spaces 12401

Definition 1.1. A quantum space is an object X of the category dual to the category of

C∗-algebras.

The category of C∗-algebras is the category whose objects are C∗-algebras and

whose morphisms are “morphisms of C∗-algebras” described in [34, Section 1], [35,

Section 0] (see also [20, chapter 2]), that is, non-degenerate ∗-homomorphisms into

multiplier algebras. Given any C∗-algebras A and B, the symbol Mor(A,B) will denote

the set of all morphisms from A to B. Note that if A and B are unital then a morphism

from A to B is simply a unital ∗-homomorphism from A to B.

According to the conventions adapted for example, in the theory of quantum

groups (cf. [2, 6, 7, 26, 31]), the correspondence between quantum spaces and C∗-algebras

is expressed by denoting C∗-algebras by C(X) or C0(X) where X is the corresponding

quantum space. The distinction between C(·) and C0(·) is based on whether the

C∗-algebra is unital (in the former case) or not (in the latter case). This notation

emphasizes X as the primary focus and this may become cumbersome. Thus, in some

instances, this notation is dropped in favor of more traditional symbols such as A or B

denoting C∗-algebras.

The standard terminology related to quantum spaces includes the following:

• a quantum space X is called compact if the corresponding C∗-algebra is

unital (and hence denoted by C(X)),

• a quantum space X is called finite if C(X) is finite-dimensional.

Our aim is to generalize and study the notion of a quantum correlation on finite

sets (see below) to analogous notion for finite quantum spaces. First steps towards

such a generalization have been made in for example [3, 10, 32] and we propose a more

systematic, more general, and “coordinate free” approach thoroughly grounded in non-

commutative topology and geometry. As a result, we are not only able to reproduce

some key results known for particular types of quantum spaces with seemingly simpler

and more transparent proofs, but we can also describe and exploit the deep connection

between quantum correlations and quantum spaces of maps discussed already in [31].

Our investigations lead us to study certain universal operator systems (whose particular

examples were already explored in [3] and [32]) as well as to results about quantum

spaces of maps whose generality goes far beyond the setting of finite quantum spaces.

Our results seem to be related to the forthcoming work of M. Brannan, S. Harris, I.

Todorov, and L. Turowska [4].
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12402 A. Bochniak et al.

Let us briefly discuss the notion of a quantum correlation which was the

starting point of our work. First let P and O be finite sets. By a quantum correlation

or a quantum strategy on P and O, we mean a collection of non-negative numbers{
p(a, b|x, y)

∣∣ a, b ∈ O, x, y ∈ P
}

such that for each (x, y) the maps

a �−→
∑

b

p(a, b|x, y) and b �−→
∑

a

p(a, b|x, y) (1.1)

are probability distributions on P. A very convenient interpretation of these objects is

provided by the theory of non-local games where two players—Alice and Bob—are asked

questions x and y from the set P and are supposed to provide answers a and b from

the set O. The number p(a, b|x, y) is interpreted as the conditional probability of Alice

answering a and Bob answering b given questions x and y (We are in fact dealing with a

simplified version of the theory in which the sets of possible questions and answers are

the same for Alice and Bob. The additional generality of allowing different question and

answers sets for the two players is not essential, especially since we are aiming to study

synchronous correlations, cf. Section 6). There are various ways to obtain correlations{
p(a, b|x, y)

∣∣ a, b ∈ O, x, y ∈ P
}

and correlations arising from various constructions are

classified into “local,” “quantum,” “quantum commuting,” etc. One fundamental class of

correlations is the so-called non-signalling ones. They are the ones for which the maps

(1.1) are independent of y and x respectively (they are the so-called marginals of the

correlation
{
p(a, b|x, y)

}
). For the details of the theory, we refer the reader for example

to [10, 12, 17, 23].

The class of correlations we will generalize to the situation when the sets P and

O are replaced by finite quantum spaces P and O is the quantum commuting (or simply

qc-correlations), that is, those of the form

p(a, b|x, y) = 〈
ξ

∣∣ Ex,aFy,bξ
〉
, x, y ∈ P, a, b ∈ O

where � is a unit vector in a Hilbert space H and

{
Ex,a

∣∣ x ∈ P, a ∈ O
}

and
{
Fy,b

∣∣ y ∈ P, b ∈ O
}

are families of projections in B(H) such that

• for all (x, y, a, b) ∈ P × P × O × O we have Ex,aFy,b = Fy,bEx,a,

• for all x ∈ P we have
∑
a

Ex,a = 1H and for all y ∈ P we have
∑
b

Fy,b = 1H.
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Note that such correlations are automatically non-signalling. Our generalization of

qc-correlations is explained in Section 5 where we use the terminology of realizable

correlations in order to emphasize that such correlations can be realized in a certain

well understood way.

In recent preprints [3, 32], the task to generalize the notion of a quantum

correlation to quantum sets of questions and answers has been carried out in certain

special cases. Our work is very much inspired by these developments and we feel

that our approach provides a more flexible framework for this theory to be developed

further. Although many of our results have their origins in [3, 32], our treatment makes it

possible to generalize many of them (sometimes quite substantially) and to differentiate

between results and necessary techniques that are brought on by the particular

examples of quantum spaces and general theorems and arguments independent of the

particular quantum sets under investigation.

To conclude the introduction, let us briefly summarize the structure and

contents of the paper. We begin with the definition of the quantum space M
P,O of

all maps from a quantum space P to a quantum space O and a short discussion of

conditions ensuring its existence. Then we study properties of MP,O as a function of

P and O, particularly the behavior under morphisms in either variable. We also prove

that the C∗-algebra C(MP,O) is residually finite-dimensional whenever P is finite and

O is compact and such that C(O) is residually finite dimensional. Next, in Section 3,

we define and study a certain operator system S
P,O related to quantum spaces P and

O, which later plays an important role in the description of realizable correlations.

Among other things, we prove that C(MP,O) is the C∗-envelope of SP,O and that the

embedding SP,O ⊂ C(MP,O) is hyperrigid. Moreover, we show that any u.c.p. map from

S
P.O to a C∗-algebra B extends to a u.c.p. map C(M

P,O) → B (a property we call the

strong extension property, see Definition 3.5(2)). Remarkably, both hyperrigidity and

the strong extension property provide a conceptual explanation of some other facts

concerning SP,O ⊂ C(MP,O) and they were not emphasized in the cases considered in

the literature so far: P and O classical as well as P matricial (C(P) = Matn(C)) and O

classical. Section 4 deals with the lifting properties of C(M
P,O) and S

P,O, which we show

to hold whenever C(O) has the lifting property and is separable (although C(M
P,O) is

almost never nuclear). In the following section, we specify both P and O to be finite and

define realizable correlations with quantum input set P and output set O. Moreover,

we show that such correlations arise from states on C(MP,O) ⊗max C(MP,O) as well as

states on the commuting tensor product S
P,O ⊗c SP,O. Finally, in Section 6, we study the

quantum analog of synchronicity of correlations on finite quantum spaces explaining,
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12404 A. Bochniak et al.

incidentally, that the language of finite quantum spaces proves very convenient and

effective for the generalization of this concept. We introduce an algebraic definition of

synchronicity along the lines of [3, Section 2] and prove their characterization via traces

on C(MP,O) as well as several other results analogous to those of [3, 17, 23, 32].

2 Quantum Spaces of Maps

By definition, mappings between quantum spaces are morphisms of the corresponding

C∗-algebras understood as going in the opposite direction. Thus, given quantum spaces

X and Y, we identify the set Mor(C0(Y), C0(X)) with the set of maps from X to Y. However,

the theory of quantum spaces allows “quantum sets” of maps, which are more precisely

defined as quantum families of maps ([28, 34]).

Definition 2.1. Let P, O, and X be quantum spaces. A quantum family of maps from

P to O indexed by X is a morphism � ∈ Mor(C0(O), C0(P) ⊗ C0(X)) (The tensor product

C0(X) ⊗ C0(X) Definition 2.1 is the minimal tensor product of C∗-algebras. We will use

other tensor products in Sections 3, 5, and 6).

Quantum families of maps are very general objects and hence the interesting

ones are those which possess additional properties. Throughout this paper, the most

important role will be played by the quantum families of all maps.

Definition 2.2. Let P and O be quantum spaces. We call a quantum family of maps

(�
P,O,M

P,O) the quantum family of all maps from P to O if for any quantum space X

and any quantum family � ∈ Mor(C0(O), C0(P) ⊗ C0(X)) indexed by X there exists a

unique � ∈ Mor(C0(MP,O), C0(X)) such that the diagram

is commutative (this is a diagram in the category of C∗-algebras, so the arrows represent

mappings into the corresponding multiplier algebras and their compositions require

certain maneuvers, see [34, Section 1] or [20, Chapter 2]).

It is easy to see that if (MP,O, �P,O) exists for the given P and O then it is unique

up to a natural notion of isomorphism, that is, if (M, �) is another pair with the same

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/14/12400/6644641 by D
eutsches Elektronen Synchrotron D

ESY user on 16 D
ecem

ber 2024



Quantum Correlations on Quantum Spaces 12405

universal property then there is an isomorphism � : C0(M
P,O) → C0(M) such that � =

(id ⊗ �) ◦ �
P,O. The quantum space M

P,O is called the quantum space of all maps from

P to O.

Theorem 2.3. Let P be a finite quantum space and O a compact quantum space. Then

the quantum space MP,O of all maps from P to O exists and is compact. Moreover, the

C∗-algebra C(MP,O) is generated by the set{
(ω ⊗ id)�P,O(a)

∣∣ a ∈ C(O), ω ∈ C(P)∗
}
.

Theorem 2.3 is proved in [26, 28] in the case when C(O) is unital and finitely

generated (i.e., a quotient of the full group C∗-algebra of a finitely generated free group).

The latter assumption can be dropped and the proof from [26, Appendix] can be repeated

almost verbatim. The only price one has to pay is to consider the full group C∗-algebra

of the free group with possibly a very large number of generators. An alternative way to

prove the existence of (MP,O, �P,O) in the general case is indicated in Remark 2.10.

Let us note that the universal map �P,O is injective. Indeed, one can consider

X = O and

� : C(O) 	 a �−→ 1 ⊗ a ∈ C(P) ⊗ C(O).

Then there exists � : C(M
P,O) → C(O) such that

1 ⊗ a = (id ⊗ �)
(
�P,O(a)

)
, a ∈ C(O),

which shows that �
P,O(a) 
= 0 if a 
= 0.

Example 2.4. Let O be a compact quantum space and let 1 denote the one-point space

(so C(1) = C). Then one easily finds that M1,O = O in the sense that the mapping

C(O) 	 x �−→ 1 ⊗ x ∈ C(1) ⊗ C(O)

has the universal property of �1,O.

Other examples of quantum spaces of maps were studied for example, in [27–30,

34] as well as [31], where their relation to non-local games was studied. Let us note that

the C∗-algebra Pn,c of [3] is precisely C(MP,O) for P and O such that C(P) = Matn(C) and

C(O) = C
c.
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12406 A. Bochniak et al.

2.1 Disjoint sums of quantum spaces

Throughout the paper, the symbol ∗ will denote the universal free product of unital

C∗-algebras amalgamated over the units.

Consider two compact quantum spaces P1 and P2. The quantum space P1 � P2 is

defined by setting C(P1 �P2) = C(P1)⊕C(P2) with the inclusions of P1 and P2 into P1 �P2

described by the projections pi : C(P1 � P2) → C(Pi) for i = 1, 2.

Proposition 2.5. Let P1,P2 be finite quantum spaces and O be a compact quantum

space. Then the C∗-algebra C(MP1�P2,O) is isomorphic to the universal free product

C(M
P1,O) ∗ C(M

P2,O), and with this identification the universal quantum family of maps

�P1�P2,O : C(O) −→ C(P1 � P2) ⊗ C(MP1�P2,O)

is given by

�P1�P2,O(a) = (j1 ⊗ ı1)
(
�P1,O(a)

) + (j2 ⊗ ı2)
(
�P2,O(a)

)
, a ∈ C(O),

where for i = 1, 2 the maps ji : C(Pi) → C(P1 �P2) are the (non-unital) inclusions of direct

summands and ıi : C(MPi,O) → C(MP1�P2,O) are the inclusions onto the copies of C(MPi,O)

in the free product.

Proof. The reasoning is similar to the proof of [30, Theorem 2.1]: it is enough to show

that the pair (C(M), �) with

C(M) = C(MP1,O) ∗ C(MP2,O)

and � defined by

�(a) = (j1 ⊗ ı1)
(
�

P1,O(a)
) + (j2 ⊗ ı2)

(
�

P2,O(a)
)
, a ∈ C(O) (2.1)

has the universal property of (MP1�P2,O, �P1�P2,O). The details are left to the reader. �

Remark 2.6. Let O,P1, and P2 be as above and p1 : C(P1) ⊕ C(P2) → C(P1)

the canonical projection. By composing �
P1�P2,O with p1 ⊗ id, we obtain a unital

∗-homomorphism C(O) → C(P1) ⊗ C(M
P1�P2,O), so it must be of the form (id ⊗ �) ◦ �

P1,O

for a unique � : C(MP1,O) → C(MP1�P2,O). In view of the above proposition (particularly

the uniqueness of �), we easily see that � = ı1.
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Using Proposition 2.5, we can give a rather concrete description of all

C∗-algebras C(M
P,O). To this end, we need the following lemma:

Lemma 2.7 ([25, Proposition 2.18]). Let C be a unital C∗-algebra and let γ : Matn(C) → C

be a unital ∗-homomorphism. Let

D = {
c ∈ C

∣∣ cγ (x) = γ (x)c for all x ∈ Matn(C)
}
.

Then D is a unital C∗-algebra and C is isomorphic to Matn(C) ⊗ D.

Proof. The subset D is clearly a unital -subalgebra of C. Furthermore, the mapping

x ⊗ d �−→ γ (x)d, x ∈ Matn(C), d ∈ D

extends to a unital ∗-homomorphism 	 : Matn(C) ⊗ D → C. To see that it is injective, for

i, j ∈ {1, . . . , n}, let Ei,j = γ (ei,j), where {ei,j} are the matrix units in Matn(C). If

∑
i,j

ei,j ⊗ ci,j (2.2)

belongs to the kernel of 	 then for any k, l, r

0 = 	

(
(ek,l ⊗ 1)

(∑
i,j

ei,j ⊗ ci,j

)
(ek,r ⊗ 1)

)
= Ek,kcl,r.

Hence 0 = ∑
k

Ek,kcl,r = cl,r for all r, l, so that (2.2) is zero.

Surjectivity of 	 follows from the fact that if c ∈ C then putting

ci,j =
n∑

k=1

Ek,icEj,k, i, j = 1, . . . , n

we obtain ci,j ∈ D for all i, j and 	

(∑
i,j

ei,j ⊗ ci,j

)
= ∑

i,j
Ei,jci,j = c. �

Proposition 2.8. Let C(P) = Matn(C) and let O be a compact quantum space. Then

C(M
P,O) is the relative commutant of C(P) in C(P) ∗ C(O) and �

P,O is the composition of

the inclusion C(O) → C(P) ∗ C(O) with the isomorphism C(P) ∗ C(O) → C(P) ⊗ C(MP,O)

described in Lemma 2.7.
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Proof. Let X be a quantum space and � ∈ Mor(C(O), C(P) ⊗ C0(X)) a quantum family

of maps P → O. Furthermore, let D denote the relative commutant of C(P) in C(P)∗ C(O).

By the universal property of free products, there exists a unital ∗-homomorphism


 : C(P) ∗ C(O) → C(P) ⊗ M(C0(X)) such that 
(ı1(x)) = x ⊗ 1 for all x ∈ C(P) and


(ı2(y)) = �(y) for all y ∈ C(O). Note that 
 ∈ Mor(C(P) ∗ C(O), C(P) ⊗ C0(X)).

Now if d belongs to D then 
(d)(x ⊗ 1) = (x ⊗ 1)
(d) for all d ∈ C(P) because


(d)(x ⊗ 1) = 
(d)

(
ı1(x)

) = 

(
dı1(x)

) = 

(
ı1(x)d

) = (x ⊗ 1)
(d).

Therefore the element 
(d) belongs to the commutant of C(P) ⊗ 1 in C(P) ⊗ M(C0(X)),

that is, to 1 ⊗ M(C0(X)). As a consequence, we can define a unital ∗-homomorphism

� : D → M(C0(X)) by


(d) = 1 ⊗ �(d), d ∈ D

and defining � as the composition 	 ◦ ı2 : C(O) → C(P) ⊗ D we immediately get

(id ⊗ �)
(
�(y)

) = 

(
ı2(y)

) = �(y), y ∈ C(O). (2.3)

Since D is obviously generated by slices of the form (ω ⊗ id)�(y) (y ∈ C(O), ω ∈ C(P)∗),

we immediately see that � is uniquely determined by (2.3). It follows that (D, �) has the

universal property of (C(M
P,O), �

P,O). �

Corollary 2.9. Let O be a compact quantum space and P a finite quantum space with

C(P) =
m⊕

i=1

Matni
(C).

Then the C∗-algebra C(MP,O) is a free product D1 ∗ · · · ∗ Dm, where Di is the relative

commutant of Matni
(C) in Matni

(C) ∗ C(O).

Remark 2.10. The explicit description of C(MP,O) and �P,O in the case C(P) = Matn(C)

given in Proposition 2.8 together with Proposition 2.5 provides an alternative way to

prove existence of C(M
P,O) for arbitrary compact O and finite P.
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Theorem 2.11. Let O be a compact quantum space such that C(O) is residually finite

dimensional and let P be a finite quantum space. Then C(M
P,O) is residually finite

dimensional.

Proof. By Corollary 2.9, the C∗-algebra C(MP,O) is a free product of algebras which

are subalgebras of free products of the form Matn(C) ∗ C(O). Since residual finite

dimensionality passes to free products ([13, Theorem 3.2]) and to subalgebras, C(MP,O)

is residually finite dimensional. �

Corollary 2.12. For any finite quantum spaces P and O the C∗-algebra C(M
P,O)

possesses a faithful trace.

Let us note that existence of traces on C(M
P,O) is important in the study of

synchronous correlations (see Section 6).

2.2 Functorial properties

In this section, we will study the properties of the assignment

(P,O) �−→ M
P,O, (2.4)

where P is a finite quantum space and O is a compact quantum space. For brevity, let

us denote by QSfin and QScpt the full subcategories of the category of quantum spaces

consisting of the finite and compact quantum spaces respectively.

The proof the next proposition easily follows from the universal property of

MP,O.

Proposition 2.13. The mapping (2.4) is a bi-functor QSfin × QScpt → QScpt. Given

P1,P2 ∈ Ob(QSfin), O1,O2 ∈ Ob(QScpt) and

ρ : C(P2) −→ C(P1), π : C(O1) −→ C(O2),

the associated map Mρ,π : C(MP1,O1
) → C(MP2,O2

) is the unique � making the diagram
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12410 A. Bochniak et al.

commutative. In particular, the functor M•,• is contravariant with respect to the first

variable and covariant with respect to the second one.

Remark 2.14. It is an obvious consequence of the functoriality of M•,• that if P and P
′

are finite quantum spaces such that C(P) ∼= C(P′) then for any compact quantum space

O we have C(MP,O) ∼= C(MP′,O). Similarly, if C(O) ∼= C(O′) for some compact quantum

spaces O and O
′, then C(MP,O) ∼= C(MP,O′) for any finite quantum space P.

Theorem 2.15. Let P,P1,P2 ∈ Ob(QSfin) and O,O1,O2 ∈ Ob(QScpt) and

ρ : C(P2) −→ C(P1), π : C(O1) −→ C(O2).

Then

(1) if π is surjective then so is Mid,π : C(MP,O1
) → C(MP,O2

),

(2) if ρ is injective then Mρ,id : C(MP1,O) → C(MP2,O) is surjective.

Moreover,

(3) if π is injective then so is Mid,π : C(M
P,O1

) → C(M
P,O2

),

(4) if ρ is surjective then Mρ,id : C(MP1,O) → C(MP2,O) is injective.

Proof. Ad (1). Since π is surjective, we have

{
(ω ⊗ id)�

P,O2
(y)

∣∣ y ∈ C(O2), ω ∈ C(P)∗
}

= {
(ω ⊗ id)�P,O2

(
π(x)

) ∣∣ x ∈ C(O1), ω ∈ C(P)∗
}

= Mid,π

({
(ω ⊗ id)�

P,O1
(x)

∣∣ x ∈ C(O1), ω ∈ C(P)∗
})

.

Furthermore, since C(MP,O2
) is generated by the set on the left-hand side, we get that

Mid,π is surjective.

Ad (2). We have

Mρ,id

({
(ω ⊗ id)�P1,O(x)

∣∣ x ∈ C(O), ω ∈ C(P1)∗
})

= {(
(ω ◦ ρ) ⊗ id

)
�P2,O(x)

∣∣ x ∈ C(O), ω ∈ C(P1)∗
}

= {
(ω̃ ⊗ id)�

P2,O(x)
∣∣ x ∈ C(O), ω̃ ∈ C(P2)∗

}
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Quantum Correlations on Quantum Spaces 12411

due to the injectivity of ρ. As the last set generates C(M
P2,O) we see that Mρ,id is a

surjection.

Ad (3) Let us first prove the statement (3) in the case C(P) = Matk(C). Let us

denote C1 = Matk(C)∗C(O1) and C2 = Matk(C)∗C(O2). By [24, Theorem 4.2], the injective

∗-homomorphism π defines an injective ∗-homomorphism id ∗ π : C1 → C2. Using the

identifications

C1 = Matk(C) ⊗ C(MP,O1
)

C2 = Matk(C) ⊗ C(M
P,O2

)

(cf. Proposition 2.8), we easily get (id∗π)(x) = Mid,π (x) for all x ∈ C(M
P,O1

) and conclude

the injectivity of Mid,π .

In the general case

C(P) =
m⊕

i=1

Matki
(C)

(i.e., P = P1 � . . . � Pm with C(Pi) = Matki
(C)) and the proof is completed by using

Proposition 2.5 and observing that MidP1�···�Pm ,π = MidP1 ,π ∗ · · · ∗ MidPm ,π . Since MidPi
,π

are injective for i = 1, . . . , m, the ∗-homomorphism MidP1 ,π ∗ · · · ∗ MidPm ,π is injective (cf.

[24, Theorem 4.2]).

Ad (4). Since the C∗-algebras C(P1) and C(P2) are finite-dimensional, the fact that

C(P2) surjects onto C(P1) means that P2 = P
′ �P1 for some finite quantum space P

′. More

precisely, there exists an isomorphism σ : C(P′) ⊕ C(P1) → C(P2) such that ρ ◦ σ : C(P′) ⊕
C(P1) → C(P1) is the projection onto C(P1). In view of Remark 2.6

(
(ρ ◦ σ) ⊗ id

) ◦ �P′�P1,O = (id ⊗ ı1) ◦ �P1,O,

where ı1 is the inclusion of C(MP1,O) into C(MP′�P1,O) = C(MP′,O) ∗ C(MP1,O). Now the

mapping Mσ ,id : C(MP2,O) → C(MP′�P1,O) is an isomorphism satisfying

(σ ⊗ id) ◦ �P′�P1,O = (id ⊗ Mσ ,id) ◦ �P2,O.

It follows that

(ρ ⊗ id) ◦ �P2,O = (
(ρ ◦ σ) ⊗ (Mσ ,id)−1) ◦ �P′�P1,O =

(
id ⊗ (

(Mσ ,idO
)−1 ◦ ı1

)) ◦ �P1,O

and consequently Mρ,id = (Mσ ,id)−1 ◦ ı1 is injective. �
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12412 A. Bochniak et al.

2.3 The opposite algebra

Let X be a quantum space. We will write X
op for the quantum space corresponding to the

opposite C∗-algebra (cf. [8, Section 1.3.3]) of C0(X). Thus if, for example, X is compact

then by definition C(X
op

) = C(X)
op.

Proposition 2.16. Let P be a finite quantum space and O a compact quantum space.

Then the pair (MP
op,Oop , �P

op,Oop) is naturally isomorphic to (MP,O
op, �P,O), where the map of

vector spaces �P,O : C(O) → C(P) ⊗ C(MP,O) is regarded as a ∗-homomorphism C(O)
op →

C(P)
op ⊗ C(MP,O)

op.

Proof. It is enough to show that the pair (MP,O
op, �P,O) with �P,O understood as a map

C(O)
op → C(P)

op ⊗ C(M
P,O)

op has the universal property of (M
P

op,Oop , �
P

op,Oop). Thus, let X be

a quantum space and let � ∈ Mor(C(O)
op, C(P)

op ⊗ C0(X)). Let

κC(O) : C(O) −→ C(O)
op

, κC(P) : C(P) −→ C(P)
op

, κC0(X) : C0(X) −→ C0(X)
op

and

κC(MP,O) : C(M
P,O) −→ C(M

P,O)
op

be the identity maps of vector spaces considered as anti-isomorphisms between the

respective C∗-algebras. Then

(κC(P)
−1 ⊗ κC0(X)) ◦ � ◦ κC(O) = (id ⊗ �) ◦ �P,O

for a unique � ∈ Mor(C(M
P,O), C0(X)

op

). In other words

� = (
id ⊗ (κC0(X)

−1 ◦ � ◦ κC(MP,O)
−1)

) ◦ (
(κC(P) ⊗ κC(MP,O)) ◦ �P,O ◦ κC(O)

−1)
.

Note that (κC(P) ⊗ κC(MP,O)) ◦ �P,O ◦ κC(O)
−1 is precisely the map �P,O regarded as a

∗-homomorphism C(O)
op → C(P)

op ⊗ C(M
P,O)

op. It follows that � can be expressed as

� = (id ⊗ �′) ◦ �
P,O

(with the last map properly understood) for a unique �′ ∈ Mor(C(MP,O), C0(X)). �
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Note that for any finite quantum space P the C∗-algebra C(P) is isomorphic to

C(P)
op, so by Remark 2.14

C(M
P,O) ∼= C(M

P
op,O). (2.5)

Corollary 2.17. Let O be a compact quantum space such that C(O) is isomorphic to

C(O)
op. Then for any finite quantum space P the C∗-algebra C(MP,O) is isomorphic to

C(M
P,O)

op.

Proof. By assumption and Remark 2.14 we have C(M
P,O) ∼= C(M

P,Oop), so in view of (2.5)

and Proposition 2.16 we get C(M
P,O) ∼= C(M

P
op,Oop) ∼= C(M

P,O)
op. �

Note that if O is a finite quantum space then C(O) is isomorphic to C(O)
op, so

C(MP,O) is isomorphic to C(MP,O)
op for all finite quantum spaces P and O. In particular,

Corollary 2.17 is a generalization of [3, Lemma 1.16].

3 The Universal Operator System

In this and the following sections (in particular in the proof of Theorem 4.1), we will

use the notion of a (right/left) multiplicative domain of a completely positive map. Our

terminology will be the same as in [22, Chapter 3].

Also we will freely use the fact that a u.c.p. map ψ : A → B between unital

C∗-algebras defines a non-degenerate completely positive map id ⊗ ψ : K ⊗ A → K ⊗ B,

where K denotes the C∗-algebra of compact operators on �2. This map, in turn, extends

uniquely by strict continuity to a u.c.p. map between the multiplier algebras: M(K⊗A) →
M(K⊗B). Additionally if, for any two C∗-algebras C and D and any ω ∈ C∗, the slice map

ω ⊗ id extends uniquely to a mapping M(C ⊗ D) → M(D). All this is contained in [20,

Chapters 5 and 8].

Lemma 3.1. Let A and B be unital C∗-algebras. If ϕ : A → B is a unital completely

positive map and a ∈ M(K⊗A) belongs to the multiplicative domain of id⊗ϕ : M(K⊗A) →
M(K⊗B), then for any ω ∈ K∗ the element (ω⊗id)(a) belongs to the multiplicative domain

of ϕ.

Proof. Any ω ∈ K∗ is of the form ω = Tr(·ρ) = Tr(ρ·) for some trace-class operator ρ.

Since any such ω can be approximated in the norm of K∗ by functionals of the same

form with ρ finite-dimensional, and the multiplicative domain of a u.c.p. map is closed
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12414 A. Bochniak et al.

([22, Exercise 4.2(iii)]), it is enough to prove that (ω ⊗ id)(a) is in the multiplicative

domain of ϕ for such ω.

Let r and l be the left and right support of ρ, that is, l is the projection onto

the range of ρ (assumed to be finite-dimensional) and r is the projection onto the range

of ρ∗ (which is also finite-dimensional). Then for any y ∈ K we have

ω(yl) = Tr(ylρ) = Tr(yρ) = ω(y) and ω(ry) = Tr(ryρ) = Tr(yρ)

Since a is in the multiplicative domain of id ⊗ ϕ, for any z ∈ A we have

(id ⊗ ϕ)
(
a(l ⊗ z)

) = (
(id ⊗ ϕ)(a)

)(
(id ⊗ ϕ)(l ⊗ z)

) = (
(id ⊗ ϕ)(a)

)(
l ⊗ ϕ(z)

)
.

Applying (ω ⊗ id) to both sides, we obtain

ϕ
((

(ω ⊗ id)(a)
)
z
)

= ϕ
(
(ω ⊗ id)(a)

)
ϕ(z)

Similarly

(id ⊗ ϕ)
(
(r ⊗ z)a

) = (
(id ⊗ ϕ)(r ⊗ z)

)(
(id ⊗ ϕ)(a)

) = (
r ⊗ ϕ(z)

)(
(id ⊗ ϕ)(a)

)
.

and application of (ω ⊗ id) to both sides yields

ϕ
(
z
(
(ω ⊗ id)(a)

)) = ϕ(z)ϕ
(
(ω ⊗ id)(a)

)
.

Since this is true for all z, the element (ω ⊗ id)(a) belongs to the multiplicative domain

of ϕ. �

From this section onward, we will make frequent use of Kasparov’s dilation

theorem ([18, Theorem 9], cf. also [20, Theorem 6.5]). One of its direct consequences is

the following lemma:

Lemma 3.2. Let P be a finite quantum space and O a compact quantum space such

that C(O) is separable. Let B be a separable unital C∗-algebra and let ψ : C(O) → C(P)⊗B

be a u.c.p. map. Then there exists � ∈ Mor(C(O), C(P) ⊗ K ⊗ B) such that

ψ(x) = (id ⊗ ω1,1 ⊗ id)
(
�(x)

)
, x ∈ C(O),
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Quantum Correlations on Quantum Spaces 12415

where ω1,1 is the functional a �→ 〈
e1 ae1

〉
on K with e1 denoting the first vector of the

standard basis of �2.

In what follows, given � ∈ Mor(C(O), C(P) ⊗ K ⊗ B), we will denote mappings of

the form

x �−→ (id ⊗ ω1,1 ⊗ id)
(
�(x)

)
, x ∈ C(O)

described in Lemma 3.2 by �1,1.

Consider the universal quantum family of maps �
P,O : C(O) → C(P) ⊗ C(M

P,O)

and let S
P,O be the closed linear span of the slices of �

P,O that is,

S
P,O = span

{
(ω ⊗ id)�

P,O(x)
∣∣ x ∈ C(O), ω ∈ C(P)∗

}
. (3.1)

Then SP,O is an operator system. Moreover, SP,O comes equipped with a map

ϕ
P,O : C(O) −→ C(P) ⊗ S

P,O (3.2)

defined as �P,O viewed as a map C(O) → C(P) ⊗ SP,O. This map is clearly u.c.p. In the

next theorem, we shall prove that SP,O has an interesting universal property.

Theorem 3.3. Let P be a finite quantum space and O a compact quantum space such

that C(O) is separable. Let SP,O ⊂ C(MP,O) be the operator system equipped with the

u.c.p. map ϕ
P,O : C(O) → C(P)⊗S

P,O described by (3.1) and (3.2). For any operator system

S and any u.c.p. map ψ : C(O) → C(P) ⊗ S, there exists a unique u.c.p. map λ : S
P,O → S

such that the diagram

commutes.

Proof. Let B be the C∗-algebra generated by the set

{
(φ ⊗ id)

(
ψ(x)

) ∣∣ x ∈ C(O), φ ∈ C(P)∗
}
.
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12416 A. Bochniak et al.

Then B is separable unital and ψ is a u.c.p. map C(O) → C(P)⊗B. By Lemma 3.2 ψ = �1,1

for some � ∈ Mor(C(O), C(P) ⊗ K ⊗ B). The universal property of (M
P,O, �

P,O) provides

� ∈ Mor(C(MP,O),K ⊗ B) such that � = (id ⊗ �) ◦ �P,O. Let λ̃ = (ω1,1 ⊗ id) ◦ �. Then λ̃ is

a u.c.p. map C(MP,O) → B and defining λ = λ̃
∣∣
SP,O

we obtain

ψ = (id ⊗ λ) ◦ ϕP,O. (3.3)

Slicing both sides of this equation with ω ∈ C(P)∗ we obtain λ
(
(ω ⊗ id)�P,O(x)

) = (ω ⊗
id)

(
ψ(x)

)
for all x ∈ C(O). This means, first of all, that the range of λ is contained in

S and secondly, that formula (3.3) determines the values of λ on elements of the form

(ω ⊗ id)�
P,O(x). Since such elements span S

P,O, this shows that λ is unique. �

In what follows whenever S is an operator system in a C∗-algebra A the symbol

C∗〈S〉 will denote the C∗-subalgebra of A generated by S. The enveloping C∗-algebra (or

C∗-envelope) of S in the sense of Hamana ([14, Definition 2.5]) will be denoted by C∗
env(S).

Remark 3.4. Let P,O,SP,O, and ϕP,O be as above. Then by construction we have

�
P,O = (id ⊗ ι) ◦ ϕ

P,O, (3.4)

where ι is the inclusion S
P,O ↪→ C(M

P,O).

Definition 3.5. Let A be a C∗-algebra and S ⊂ A be an operator system. We say that

(1) the embedding S ⊂ A is hyperrigid (cf. [1, Theorem 2.1]) if given a Hilbert

space H, a ∗-homomorphism π : A → B(H) and a u.c.p. map η : A → B(H)

satisfying π
∣∣
S = η

∣∣
S we have π = η,

(2) the embedding S ⊂ A has a strong extension property if for every C∗-algebra

B and a u.c.p. map ψ : S → B there exists a u.c.p. extension η : A → B of ψ .

Theorem 3.6. Let S ⊂ A be hyperrigid and C∗〈S〉 = A. Then C∗
env(S) = A.

Proof. The universal property of C∗
env(S) (see [14, Corollary 4.2]) provides a surjective

∗-homomorphism ρ : A → C∗
env(S) such that ρ

∣∣
S is the identity on S. We will prove that

ρ is injective. Indeed, embed A into B(H) and denote the embedding by ι : A → B(H).

Let η : C∗
env(S) → B(H) be the u.c.p. extension of the embedding ι

∣∣
S : S → B(H). Then
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Quantum Correlations on Quantum Spaces 12417

η ◦ ρ : A → B(H) is a u.c.p. map such that η ◦ ρ
∣∣
S = ι

∣∣
S. By hyperrigidity of S in A, we get

η ◦ ρ = ι and hence ρ is injective. �

Remark 3.7. Theorem 3.6 remains true even without the assumption that C∗〈S〉 = A:

in [16, Theorem 3.10] it was proven that if S ⊂ A is hyperrigid then C∗
env(S) = C∗〈S〉. This

can be deduced from Dritschel–McCullough theory of boundary representations ([9]).

Nevertheless, we presented a direct proof of Theorem 3.6 under the assumptions we are

interested in.

The hyperrigidity of SP,O ⊂ C(MP,O) follows from the following more general

fact.

Theorem 3.8. Suppose that A and B are unital C∗-algebras, C is a C∗-algebra, and let

� ∈ Mor(A,C⊗ B). Define the operator system S ⊂ B

S = span
{
(ω ⊗ id)

(
�(x)

) ∣∣ ω ∈ C∗, x ∈ A
}
.

If C∗〈S〉 = B, then S is hyperrigid in B and B = C∗
env(S). In particular for any finite

quantum space P and any compact quantum space O the embedding S
P,O ⊂ C(M

P,O) is

hyperrigid and C∗
env(S) = C(MP,O).

Proof. Denoting by U(A) the set of unitary elements in A we easily observe that

S = span
{
(ω ⊗ id)

(
�(x)

) ∣∣ω ∈ C∗, x ∈ U(A)
}
.

Let η : B → B(H) be a u.c.p. map, and π : B → B(H) be a ∗-homomorphism satisfying

η
∣∣
S = π

∣∣
S. (3.5)

In order to prove that η = π , it is enough to prove that S is in the multiplicative domain

of η.

Let L be a Hilbert space such that C ⊂ B(L) and let us consider the u.c.p. map

(id ⊗ η) : M(K(L) ⊗ B) → M(K(L) ⊗ K(H)). Equation (3.5) is equivalent to

(id ⊗ η) ◦ � = (id ⊗ π) ◦ �.
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12418 A. Bochniak et al.

Furthermore, if u ∈ U(A), then

(
(id ⊗ η)

(
�(u)

))∗(
(id ⊗ η)

(
�(u)

)) = (id ⊗ π)
(
�(u∗)

)
(id ⊗ π)

(
�(u)

)
= (id ⊗ π)

(
�(u∗u)

) = 1

= (id ⊗ η)
(
�(1)

) = (id ⊗ η)
(
�(u∗u)

)
and similarly

(
(id ⊗ η)

(
�(u)

))(
(id ⊗ η)

(
�(u)

))∗ = (id ⊗ η)
(
�(uu∗)

)
.

This shows that �(u) is in the multiplicative domain of (id ⊗ η). By Lemma 3.1, we

conclude that S is in the multiplicative domain of η, which concludes the proof. �

Theorem 3.9. Let P be a finite quantum space and let O be a compact quantum space

such that C(O) is separable. The embedding S
P,O ⊂ C(M

P,O) has the strong extension

property.

Proof. Let ψ : S
P,O → A be a u.c.p. map. Applying Lemma 3.2 to the composition

(id ⊗ ψ) ◦ ϕ
P,O : C(O) −→ C(P) ⊗ A

we find a ∗-homomorphism � : C(O) → C(P) ⊗ M(K ⊗A) such that �1,1 = (id ⊗ ψ) ◦ ϕ
P,O.

By the universal property of C(MP,O), there exists a ∗-homomorphism � : C(MP,O) →
M(K ⊗ A) such that

� = (id ⊗ �) ◦ �P,O.

The proof is completed by noting that (ω1,1 ⊗ id) ◦ � is a u.c.p. map with range in A,

which extends ψ . �

Let us recall from [19, Theorem 6.3] that the commuting tensor product of

operator systems (defined in [19, Section 6]) is functorial ([19, Section 3]), which implies

that for any operator system S there is a canonical u.c.p. map S
P,O ⊗c S → C(M

P,O) ⊗c S

extending the canonical inclusion on the algebraic tensor products. Furthermore, by

[19, Theorem 6.7], we have C(MP,O) ⊗c S = C(MP,O) ⊗max S (cf. also [19, Section 5]). Thus,
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Quantum Correlations on Quantum Spaces 12419

there is a canonical u.c.p. map

SP,O ⊗c S −→ C(MP,O) ⊗max S.

Lemma 3.10. Let P be a finite quantum space, O a compact quantum space such that

C(O) is separable, and let S be an arbitrary operator system. Then the canonical map

SP,O ⊗c S → C(MP,O) ⊗max S is a complete order embedding.

Proof. We employ a modification of the techniques used in the proofs of

[15, Proposition 4.6] and [3, Lemma 1.11]. Since C(MP,O) is a unital C∗-algebra, by

[19, Theorem 6.6] we can replace the maximal tensor product C(M
P,O) ⊗max S by the

commuting one. Since the embedding S
P,O ↪→ C(M

P,O) is u.c.p., by the functoriality of

the commuting tensor product, [19, Theorem 6.3], the map SP,O ⊗c S → C(MP,O) ⊗c S is

also u.c.p.

Let m be a natural number and take y = y∗ ∈ Matm(SP,O ⊗c S), which is positive

when viewed as an element of Matm(C(M
P,O) ⊗c S). We have to show that y is positive

when viewed as an element of Matm(S
P,O ⊗c S), that is, given u.c.p. maps ϕ1 : S

P,O → B(H)

and ϕ2 : S → B(H) with commuting ranges we have to prove the positivity of
(
id ⊗ (ϕ1 ·

ϕ2)
)
(y) (cf. [19, Section 6], the definition of ϕ1 · ϕ2 is on page 289, see also the proof of

Proposition 5.6).

Denoting by Aϕ1
the C∗-algebra generated by the range of ϕ1 and using Theorem

3.9 we find a u.c.p. extension ϕ̃1 : C(M
P,O) → Aϕ1

of ϕ1. In particular, ϕ̃1 and ϕ2 have

commuting ranges. This shows that ϕ̃1 · ϕ2 : C(MP,O) ⊗c S → B(H) is a u.c.p. map that

extends ϕ1 ·ϕ2 : SP,O⊗cS → B(H) and we conclude that
(
id⊗(ϕ1 ·ϕ2)

)
(y) = (

id⊗(ϕ̃1 ·ϕ2)
)
(y).

Clearly, the latter element is positive. �

Corollary 3.11. With P and O as above the canonical map SP,O ⊗c SP,O → C(MP,O) ⊗max

C(M
P,O) is a complete order embedding.

Proof. First, by Lemma 3.10 applied to S = S
P,O, we obtain a complete order

embedding

SP,O ⊗c SP,O −→ C(MP,O) ⊗max SP,O = C(MP,O) ⊗c SP,O

(cf. the remarks preceding Lemma 3.10). Then, using the fact that the tensor products ⊗c

and ⊗max are symmetric ([19, Theorems 5.5 and 6.3]) we apply the Lemma again to obtain

a complete order embedding C(MP,O) ⊗c SP,O → C(MP,O) ⊗max C(MP,O). �
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12420 A. Bochniak et al.

4 Lifting Property of C(M
P,O) and S

P,O

Let A be a C∗-algebra. Following [5, Definition 13.1.1] we say that A has the lifting

property if given any C∗-algebra B with an ideal J ⊂ B, any contractive completely

positive ϕ : A → B/J admits a contractive completely positive lift ϕ̃ : A → B. For unital

algebras, the lifting property is equivalent to the analogous property with “contractive

completely positive” replaced by “unital completely positive” ([5, Lemma 13.1.2]).

Theorem 4.1. Let P be a finite quantum space and let O be a compact quantum space

such that C(O) is separable and has the lifting property. Then the C∗-algebra C(MP,O)

has the lifting property.

The famous Choi–Effros lifting theorem ([5, Theorem C.3]) states that any

separable nuclear C∗-algebra has the lifting property. We will see in Remark 4.2 that

C(MP,O) is almost never nuclear. We need the assumption of separability of C(O) to be

able to use Kasparov’s dilation theorem.

Proof. of Theorem 4.1 Let B be a unital C∗-algebra with an ideal J ⊂ B and let

ρ : C(MP,O) → B/J be a unital ∗-homomorphism. Consider the homomorphism

� = (id ⊗ ρ) ◦ �
P,O : C(O) −→ C(P) ⊗ (B/J) = (

C(P) ⊗ B
)
/
(
C(P) ⊗ J

)
.

By assumption � admits a u.c.p. lift �̃ : C(O) → C(P) ⊗ B. Now we use Lemma 3.2 to

write �̃ in the form �̃ = �1,1 for a � ∈ Mor(C(O), C(P) ⊗ K ⊗ B).

By the universal property of (MP,O, �P,O), there exists a unique � ∈
Mor(C(M

P,O),K ⊗ B) such that � = (id ⊗ �) ◦ �
P,O. Now if q denotes the quotient

map B → B/J then

(id ⊗ ρ) ◦ �P,O = � = (id ⊗ q) ◦ �̃

= (id ⊗ q) ◦ (id ⊗ ω1,1 ⊗ id) ◦ �

= (id ⊗ q) ◦ (id ⊗ ω1,1 ⊗ id) ◦ (id ⊗ �) ◦ �P,O,

so for any x ∈ C(O) and φ ∈ C(P)∗

ρ
(
(φ ⊗ id)�

P,O(x)
) =

(
q ◦ (

(ω1,1 ⊗ id) ◦ �
))(

(φ ⊗ id)�
P,O(x)

)
.
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In other words for any y ∈ S
P,O we have

ρ(y) =
(
q ◦ (

(ω1,1 ⊗ id) ◦ �
))

(y),

and since ρ : C(MP,O) → B/J is a ∗-homomorphism, the hyperrigidity of SP,O ⊂ C(MP,O),

(cf. Theorem 3.8), implies that q ◦ (
(ω1,1 ⊗ id) ◦ �

) = ρ on the whole C∗-algebra C(M
P,O).

In particular (ω1,1 ⊗ id) ◦ � is a completely positive lift of ρ.

Having established that ∗-homomorphisms C(MP,O) → B/J admit u.c.p. lifts, we

use Kasparov’s theorem again to obtain lifts of u.c.p. maps: let ϕ : C(MP,O) → B/J be

a u.c.p. map. Then ϕ = �1,1, where � ∈ Mor(C(MP,O),K ⊗ (B/J)). Since M(K ⊗ (B/J)) is

the image of M(K ⊗ B) under the canonical extension of id ⊗ q : K ⊗ B → K ⊗ (B/J) (by

[20, Proposition 6.8], owing to the fact that the C∗-algebra K ⊗ B is σ -unital), it has a

completely positive unital lift �̃ : C(MP,O) → M(K ⊗ B), so

ϕ = (ω1,1 ⊗ id) ◦ � = (ω1,1 ⊗ id) ◦ (id ⊗ q) ◦ �̃ = q ◦ (
(ω1,1 ⊗ id) ◦ �̃

)
,

that is, (ω1,1 ⊗ id) ◦ �̃ is a u.c.p. lift of ϕ. �

Remark 4.2. All separable nuclear C∗-algebras have the lifting property (by the Choi–

Effros theorem). However, the C∗-algebras C(MP,O) are usually not nuclear. For example

denoting by 2 and 3 the two- and three-point space, respectively, by [31, Corollary II.2]

we have C(M2,3) ∼= C
2 ∗ C

2 ∗ C
2 ∼= C∗(Z2 ∗ Z2 ∗ Z2) and C(M3,2) ∼= C

3 ∗ C
3 ∼= C∗(Z3 ∗ Z3),

which are both non-nuclear ([21, Theorem 1.1]).

In view of statements (1) and (2) of Theorem 2.15, we immediately find that

• if C(O) has at least two characters and dim C(P) ∈ {3, 5, 6. . . . } then there is a

surjective π : C(O) → C(2) and an injective ρ : C(3) → C(P) and hence C(MP,O)

surjects onto C(M3,2),

• if C(O) has at least three characters and dim C(P) > 1 then there is a

surjective π : C(O) → C(3) and an injective ρ : C(2) → C(P) and hence C(MP,O)

surjects onto C(M2,3).

Consequently, C(MP,O) is not nuclear in either case ([33, Corollary 2.5]).

Similarly if C(O) has Matn(C) with n ≥ 2 as a quotient and dim C(P) > 1

then C(M
P,O) surjects onto C(M2,O) ∼= Matn(C) ∗ Matn(C), which is non-nuclear by

[11, Proposition 6]. In particular, if O is finite, dim C(O) > 2, and dim C(P) > 1, then

C(MP,O) is not nuclear.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/14/12400/6644641 by D
eutsches Elektronen Synchrotron D

ESY user on 16 D
ecem

ber 2024



12422 A. Bochniak et al.

Now we can show that the universal operator system S
P,O has the analogous

version of lifting property:

Theorem 4.3. Let P be a finite quantum space and O a compact quantum space such

that C(O) is separable and has the lifting property. Then the operator system SP,O has

the lifting property: given a unital C∗-algebra B with an ideal J ⊂ B and a u.c.p. map

ϕ : SP,O → B/J, there exists a u.c.p. lift ϕ̃ : SP,O → B of ϕ.

Proof. Using the strong extension property of SP,O ⊂ C(MP,O) (Theorem 3.9), we can

find a u.c.p. extension η : C(M
P,O) → B/J. Since C(M

P,O) has the lifting property, there is

a u.c.p. lift η̃ : C(M
P,O) → B of η. We define ϕ̃ = η̃

∣∣
SP,O

. �

5 Realizable Non-Signalling Correlations

In this section, we will study a class of correlations on finite quantum spaces, which

we will call realizable—this terminology will be explained below. When the quantum

sets are taken to be classical, this notion reduces to the so-called qc-correlations. Thus

in this and following section P and O are finite quantum spaces playing the role of the

question and answer (input and output) sets for Alice and Bob.

We begin with an analog of a positive operator values measure (POVM) on a

quantum space.

Definition 5.1. Let O be a finite quantum space and H a Hilbert space. A u.c.p. map

C(O) → B(H) will be called a quantum positive operator-valued measure (quantum

POVM) on O. If P is another finite quantum space, then a u.c.p. map C(O) → C(P) ⊗ B(H)

will be referred to as a quantum family of POVMs on O indexed by P.

Remark 5.2. One can obviously replace B(H) in Definition 5.1 by a fixed unital

C∗-algebra A. Clearly, a quantum family of POVMs on O (as in Definition 5.1) is at the

same time a C(P) ⊗ B(H)-valued quantum POVM on O.

In what follows, we will use the leg numbering notation well known in the

theory of quantum groups. Let A,B, and C be C∗-algebras. We define

ι12 ∈ Mor(A⊗ B,A⊗ B⊗ C),

ι23 ∈ Mor(A⊗ B,C⊗ A⊗ B),

ι13 ∈ Mor(A⊗ B,A⊗ C⊗ B)
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by

ι12(a ⊗ b) = a ⊗ b ⊗ 1,

ι23(a ⊗ b) = a ⊗ 1 ⊗ b,

ι13(a ⊗ b) = 1 ⊗ a ⊗ b,

a ∈ A, b ∈ B.

For 1 ≤ i < j ≤ 3, the image of an element x ∈ A⊗ B under ιij will be denoted by xij. Note

that if D is another C∗-algebra and � ∈ Mor(D,A⊗ B) then the mapping

d �−→ �(d)ij

from D to the multiplier algebra of the appropriate tensor product is a morphism

of C∗-algebras. We will also use analogous notation for operator systems and unital

completely positive maps (note that an operator system contains a unit element, so that

all maps involved are well defined).

Definition 5.3. Let O and P be finite quantum spaces. A u.c.p. map

T : C(O) ⊗ C(O) → C(P) ⊗ C(P)

will be called a quantum correlation with quantum set of questions P and quantum

set of answers O. We will abbreviate this to the shorter phrase “(P,O)-correlation.”

Definition 5.4. Let P and O be finite quantum spaces. A (P,O)-correlation T will be

called non-signaling if

T
(
C(O) ⊗ 1C(O)

) ⊂ C(P) ⊗ 1C(P), T
(
1C(O) ⊗ C(O)

) ⊂ 1C(P) ⊗ C(P). (5.1)

Remark 5.5. The definition of a non-signalling correlation was introduced in

[10, Section B] in the case C(P) and C(O) are full matrix algebras (however, two different

sets of questions and two sets of answers are allowed). Our definition is dual to that of

[10] requiring unitality instead of preservation of the trace. It is clear that specifying P

and O to be classical finite sets reduces condition (5.1) to the existence of marginals.

Proposition 5.6. Let P and O be finite quantum spaces, H a Hilbert space, and ω a state

on B(H). Let ϕ1, ϕ2 : C(O) → C(P) ⊗ B(H) be quantum families of POVMs on O indexed by

P such that

ϕ1(x)13ϕ2(y)23 = ϕ2(y)23ϕ1(x)13, x, y ∈ C(O). (5.2)
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12424 A. Bochniak et al.

Then there exists a unique linear map T : C(O) ⊗ C(O) → C(P) ⊗ C(P) such that

T(x ⊗ y) = (id ⊗ id ⊗ ω)
(
ϕ1(x)13ϕ2(y)23

)
, x, y ∈ C(O)

and T is a non-signalling (P,O)-correlation.

Proof. Since C(O) is finite-dimensional, the tensor product C(O) ⊗ C(O) is equal to the

algebraic tensor product C(O) ⊗alg C(O) on which we define the linear map

ϕ1 · ϕ2 : C(O) ⊗ algC(O) 	 x ⊗ y �−→ ϕ1(x)13ϕ2(y)23 ∈ C(P) ⊗ C(P) ⊗ B(H).

Since both maps ϕ1 and ϕ2 are unital, ϕ1 · ϕ2 is also unital. Furthermore, for any x, y ∈
C(O), we have

(ϕ1 · ϕ2)
(
(x ⊗ y)∗(x ⊗ y)

) = (ϕ1 · ϕ2)(x∗x ⊗ y∗y) = ϕ1(x∗x)13ϕ2(y∗y)23,

and the complete positivity of maps ϕ1 and ϕ2 implies that ϕ1 · ϕ2 is positive.

Moreover, ϕ1 · ϕ2 is completely positive, since for a ∈ Matm(C(O)) we have

(ϕ1 · ϕ2)m(a) = ϕ1m(a)13ϕ2m(a)23

is a product of two commuting positive elements of C(P) ⊗ C(P) ⊗ B(H) (by complete

positivity of ϕ1 and ϕ2). Finally, T = (id ⊗ id ⊗ ω) ◦ (ϕ1 · ϕ2) is completely positive as the

composition of completely positive maps (cf. [33, Section 1.5.4]).

Since both φ1 and φ2 are unital, we immediately see that T(C(O)⊗1C(O)) ⊂ C(P)⊗
1C(P) and T(1C(O) ⊗ C(O)) ⊂ 1C(P) ⊗ C(P), hence T is non-signaling. �

We refer to the condition (5.2) by saying that ϕ1 and ϕ2 commute on the second

leg. Note that using the version of Stinespring theorem for pairs of c.p. maps with

commuting ranges (such as [33, Theorem 1.6]) we can loosen the assumption that C(O)

is finite-dimensional.

Definition 5.7. Let P and O be finite quantum spaces. A (P,O)-correlation T obtained

from two quantum families of POVMs ϕ1, ϕ2 : C(O) → C(P) ⊗ B(H) commuting on the

second leg via the construction described in Proposition 5.6 will be called realizable

and the triple (ϕ1, ϕ2, ω) will be referred to as the realization of T.
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Quantum Correlations on Quantum Spaces 12425

The next theorem provides equivalent descriptions of a class of realizable

correlations.

Theorem 5.8. Let T : C(O) ⊗ C(O) → C(P) ⊗ C(P) be a (P,O)-correlation. Then the

following conditions are equivalent:

(1) there exists a Hilbert spaceH, a pair of u.c.p. maps ϕ1, ϕ2 : C(O) → C(P)⊗B(H)

satisfying

ϕ1(x)13ϕ2(y)23 = ϕ2(y)23ϕ1(x)13, x ∈ C(O)

and a norm-one vector ξ ∈ H such that

T(x ⊗ y) = (id ⊗ id ⊗ ωξ )
(
ϕ1(x)13ϕ2(y)23

)
, x, y ∈ C(O),

(2) there exists a Hilbert space H, a pair of unital ∗-homomorphisms

�1, �2 : C(O) → C(P) ⊗ B(H) satisfying

�1(x)13�2(y)23 = �2(y)23�1(x)13, x ∈ C(O)

and a norm-one vector ξ ∈ H such that

T(x ⊗ y) = (id ⊗ id ⊗ ωξ )
(
�1(x)13�2(y)23

)
, x, y ∈ C(O),

(3) there exists a state σ on C(MP,O) ⊗max C(MP,O) such that

T(x ⊗ y) = (id ⊗ id ⊗ σ)
(
�

P,O(x)13�
P,O(y)24

)
, x, y ∈ C(O),

(4) there exists a state σ on SP,O ⊗c SP,O such that

T(x ⊗ y) = (id ⊗ id ⊗ σ)
(
ϕ
P,O(x)13ϕ

P,O(y)24

)
, x, y ∈ C(O).

Proof. Ad (2) ⇒ (3): For i = 1, 2 let �i : C(M
P,O) → B(H) be the unique unital

∗-homomorphisms satisfying

�1 = (id ⊗ �1) ◦ �
P,O and �2 = (id ⊗ �2) ◦ �

P,O.
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12426 A. Bochniak et al.

Since for any ω1, ω2 ∈ C(P)∗ the elements (ω1 ⊗ id)
(
�1(x)

)
and (ω2 ⊗ id)

(
�2(y)

)
commute,

we have

�1(a)�2(b) = �2(b)�1(a) (5.3)

for all a, b ∈ {
(ω ⊗ id)�P,O(x)

∣∣ x ∈ C(O), ω ∈ C(P)∗
}
. This set generates the C∗-algebra

C(MP,O), so (5.3) is satisfied for all a, b ∈ C(MP,O). It follows that there is a unique


 : C(MP,O) ⊗max C(MP,O) → B(H) such that


(a ⊗ b) = �1(a)�2(b), a, b ∈ C(M
P,O).

Let σ be the state on C(MP,O)⊗max C(MP,O) defined as the composition of 
 and the vector

functional ωξ . Clearly for any x, y ∈ C(O)

(id ⊗ id ⊗ σ)
(
�

P,O(x)13�
P,O(y)24

) = (id ⊗ id ⊗ ωξ )(id ⊗ id ⊗ 
)
(
�

P,O(x)13�
P,O(y)24

)
= (id ⊗ id ⊗ ωξ )

((
(id ⊗ �1)�P,O(x)

)
13

(
(id ⊗ �2)�P,O(y)

)
23

)
= (id ⊗ id ⊗ ωξ )

(
�1(x)13�2(y)23

) = T(x ⊗ y).

Ad (3) ⇒ (2): Let T be given by the formula in (3) for some σ and let (Hσ , πσ , �σ )

be the GNS triple for σ . Define �1, �2 : C(M
P,O) → B(Hσ ) by

�1(a) = πσ (a ⊗ 1),

�2(a) = πσ (1 ⊗ a),
a ∈ C(MP,O)

and let �i = (id ⊗ �i) ◦ �P,O (i = 1, 2). Since �1(a)�2(b) = πσ (a ⊗ b) for all a, b, we have

(id ⊗ id ⊗ ω�σ
)
(
�1(x)13�2(y)23

) = (id ⊗ id ⊗ ω�σ
)(id ⊗ id ⊗ πσ )

(
�P,O(x)13�P,O(y)24

)
= (id ⊗ id ⊗ σ)

(
�

P,O(x)13�
P,O(y)24

) = T(x ⊗ y)

for all x, y ∈ C(O).

Ad (3) ⇒ (4): By Lemma 3.11 we can treat SP,O ⊗c SP,O as a real ordered subspace

of C(M
P,O)⊗max C(M

P,O). Thus (4) follows from (3) by taking restrictions (and Remark 3.4).

Ad (4) ⇒ (3): As above, we consider S
P,O ⊗c SP,O as embedded in C(M

P,O) ⊗max

C(MP,O). Then any state on SP,O ⊗c SP,O extends to a state on C(MP,O)⊗max C(MP,O) and the

implication follows from Remark 3.4.
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Ad (1) ⇒ (4): By the universal property of (S
P,O, ϕ

P,O) we have

ϕ1 = (id ⊗ λ1) ◦ ϕ
P,O and ϕ2 = (id ⊗ λ2) ◦ ϕ

P,O

for certain u.c.p. maps λ1, λ2 : SP,O → B(H). Moreover, the fact that the ranges of ϕ1 and

ϕ2 commute translates to the fact that the ranges of λ1 and λ2 commute just like in

the proof of the implication (2) ⇒ (3) above. Let σ = ωξ ◦ (λ1 · λ2). Then σ is a state on

SP,O ⊗c SP,O and for any x, y ∈ C(O)

(id ⊗ id ⊗ σ)
(
ϕP,O(x)13ϕP,O(y)24

) = (id ⊗ id ⊗ ωξ )
(
id ⊗ id ⊗ (λ1 · λ2)

)(
ϕP,O(x)13ϕP,O(y)24

)
= (id ⊗ id ⊗ ωξ )

(
ϕ1(x)13ϕ2(y)23

) = T(x ⊗ y).

The implication Ad (2) ⇒ (1) is clear. �

6 Synchronous Correlations

Let P and O be finite quantum spaces and let us specify the decompositions

C(P) =
NP⊕
l=1

Matml
(C) and C(O) =

NO⊕
k=1

Matnk
(C). (6.1)

Let
{lfst

∣∣ l = 1 . . . , NP, s, t = 1, . . . , ml

}
and

{
keij

∣∣ k = 1 . . . , NO, i, j = 1, . . . , nk

}
be the

corresponding systems of matrix units in C(P) and C(O).

Furthermore, for each l and k, let
{lfs

}
s=1,...,ml

and
{

kei

}
i=1,...,nk

be the standard

bases of Cml and C
nk , respectively. Clearly, we have

lfst = ∣∣lfs

〉〈lft

∣∣ and keij = ∣∣kei

〉〈kej

∣∣
for all k, l, i, j, s, t.

Given a (P,O)-correlation T : C(O) ⊗ C(O) → C(P) ⊗ C(P) and natural numbers

k, k′ ∈ {1, . . . , N
O
}

l, l′ ∈ {1, . . . , NP}
i, j ∈ {1, . . . , nk}

i′, j′ ∈ {1, . . . , nk′ }
s, t ∈ {1, . . . , ml}

s′, t′ ∈ {1, . . . , ml′ }
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12428 A. Bochniak et al.

we define

kk′
ll′X

(st),(s′t′)
(ij),(i′j′) ∈ C (6.2)

by

T(keij ⊗ k′
ei′j′) =

∑
s,t,s′,t′,l,l′

kk′
ll′X

(st),(s′t′)
(ij),(i′j′)

(lf st ⊗ l′f s′t′
)
. (6.3)

Definition 6.1. Let P and O be finite quantum spaces with decompositions of C(P) and

C(O) as in (6.1). A (P,O)-correlation T : C(O) ⊗ C(O) → C(P) ⊗ C(P) is called synchronous

if

∑
s,t,i,j,k,l

1
nkml

kk
llX

(st),(st)
(ij),(ij) = N

P
,

where the coefficients kk′
ll′X

(st),(s′t′)
(ij),(i′j′) are defined by (6.3).

Remark 6.2. The definition of synchronicity proposed above may seem rather techni-

cal, but it is in fact strongly related to the classical notion of synchronicity (as in for

example, [12, Section II], [17, Section 2]). In case the sets P and O are classical, we have

nk = ml = 1 for all k, l and there are no “internal indices” inside matrix blocks, so the

collection of numbers (6.2) related to T reduces to
{kk′

ll′X
∣∣ k, k′ = 1, . . . , NO, l, l′ = 1, . . . , NP

}
and it corresponds to the classical correlation matrix via

kk′
ll′X = p(k, k′|l, l′), k, k′ = 1, . . . , N

O
, l, l′ = 1, . . . , N

P
.

Note that in terms of a game with strategy p(·, ·|·, ·) for a fixed l the sum of p(k, k′|l, l)

over all k, k′ is the probability of giving any pair of answers to the pair of questions (l, l),

so
∑
k,k′

p(k, k′|l, l) = 1. Thus the condition

∑
k,l

p(k, k|l, l) = N
P

means that for each l we must have p(k, k′|l, l) = 0 whenever k 
= k′.

The next proposition shows that synchronicity of a correlation can be checked by

evaluating it on one particular element and then taking its expectation on the maximally

entangled state.
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Proposition 6.3. Let P and O be finite quantum spaces with decompositions of C(P)

and C(O) as in (6.1) and let T : C(O) ⊗ C(O) → C(P) ⊗ C(P) be a (P,O)-correlation. Then T

is synchronous if and only if

〈
φ T

(∑
i,j,k

1
nk

keij ⊗ keij

)
φ

〉
= 1,

where φ = 1√
NP

∑
l

1√
ml

∑
s

(lf s ⊗ lf s

) ∈
(NP⊕

l=1
C

ml

)
⊗

(NP⊕
l=1

C
ml

)
.

Proof. We have

T
(∑

i,j,k

1
nk

keij ⊗ keij

)
=

∑
i,j,k,l,l′s,s′,t,t′

1
nk

kk
ll′X

(st),(s′t′)
(ij),(ij)

(lf st ⊗ l′f s′t′
)
.

Furthermore for any l, l′, s, t, s′, t′

〈
φ

∣∣ (lf st ⊗ l′f s′t′
)
φ
〉 = 1

NP

∑
l1,l2

1√
ml1

1√
ml2

∑
s1,s2

〈l1f s1
⊗ l1f s1

∣∣ (lf st ⊗ l′f s′t′
) l2f s2

⊗ l2f s2

〉
= 1

NP

∑
l1,l2

1√
ml1

1√
ml2

∑
s1,s2

δll1δl′l1δll2δl′l2δss1
δs′s1

δts2
δt′s2

= 1
NP

∑
l1,l2

1√
ml1

1√
ml2

δll1δl′l1δll2δl′l2δss′δtt′

= 1
NP

1
ml

δll′δss′δtt′ .

Substituting this into the first equality, we obtain

〈
φ T

(∑
i,j,k

1
nk

keij ⊗ keij

)
φ

〉
= 1

NP

∑
s,t,i,k,l,j

1
nkml

kk
llX

(st),(st)
(ij),(ij) .

�

We now pass to the construction of certain synchronous correlations via the

prescription provided by Theorem 5.8. It says that realizable (P,O)-correlation is given

by a state on C(MP,O)⊗maxC(MP,O). Let σ be such a state. The corresponding Tσ is defined

by

Tσ (x ⊗ y) = (id ⊗ id ⊗ σ)
(
�

P,O(x)13�
P,O(y)24

)
, x, y ∈ C(O).
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12430 A. Bochniak et al.

We define k
lV

st
ij ∈ C(MP,O) by

�
P,O(keij) =

∑
s,t,l

lf st ⊗ k
lV

st
ij ,

k = 1, . . . , NO,

i, j = 1, . . . , nk.

With this notation we have

Tσ

(keij ⊗ k′
ei′j′

) =
∑

s,t,s′,t′,l,l′
σ
(k

l
Vst

ij ⊗ k′

l′V
s′t′
i′j′

)(lfst ⊗ l′fs′t′
)

for all k, k′, i, j, i′, j′.

Lemma 6.4. Let τ be a trace on C(MP,O). Then there exists a state στ on C(MP,O) ⊗max

C(M
P,O) such that

στ

(k

l
Vst

ij ⊗ k′

l′V
s′t′
i′j′

) = τ
(k

l
Vst

ij
k′

l′V
t′s′
j′i′

)
Proof. Let (Hτ , πτ , �τ ) be the GNS triple for τ . Since τ is a trace, the mapping

πτ (a)�τ �−→ πτ (a
∗)�τ , a ∈ C(MP,O)

(defined on a dense subspace of Hτ ) extends to an anti-unitary operator Jτ : Hτ → Hτ .

Therefore, π ′
τ : C(MP,O) → B(Hτ ) defined by

π ′
τ (a) = Jτ πτ (a

∗)Jτ , a ∈ C(MP,O)

is an anti-representation of C(M
P,O), or in other words, a representation of C(M

P,O)
op.

Thus, there exists a representation 
 of C(MP,O) ⊗max C(MP,O)
op on H such that


(a ⊗ b) = πτ (a)π ′
τ (b), a, b ∈ C(M

P,O)

and we can define a state σ ′
τ on C(M

P,O) ⊗max C(M
P,O)

op by

σ ′
τ (x) = 〈

�τ 
(x)�τ

〉
, x ∈ C(MP,O) ⊗max C(MP,O)

op

.

Now recall from Section 2.3 that C(MP,O)
op is isomorphic to C(MP,O). One such

isomorphism arises from each pair of isomorphisms C(O)
op ∼= C(O) and C(P)

op ∼= C(P) (cf.
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the proof of Corollary 2.17). Taking the transposition on both these algebras yields an

isomorphism ϒ : C(M
P,O) → C(M

P,O)
op such that

ϒ
(k

l
Vst

ij

) = k

l
Vts

ji ,

k = 1, . . . , NO,

l = 1, . . . , NP,

i, j = 1, . . . , nk,

s, t = 1, . . . , ml.

We define στ by σ ′
τ ◦ (id ⊗ ϒ). �

By a mild abuse of notation, let us denote the (P,O)-correlation arising from στ

(as defined in Lemma 6.4) by Tτ . Clearly,

Tτ

(keij ⊗ k′
ei′j′

) =
∑

s,t,s′,t′,l,l′
τ
(k

l
Vst

ij
k′

l′V
t′s′
j′i′

)(lfst ⊗ l′fs′t′
)

for all k, k′, i, j, i′, j′, so that

kk′
ll′X

(st),(s′t′)
(ij),(i′j′) = τ

(
k

l
Vst

ij
k′

l′V
t′s′
j′i′

)
,

k, k′ = 1, . . . , N
O

,

l, l′ = 1, . . . , N
P
,

i, j, i′, j′ = 1, . . . , nk,

s, t, s′, t′ = 1, . . . , ml.

(6.4)

Theorem 6.5. Let P and O be finite quantum spaces and τ a trace on C(M
P,O). Then

the (P,O)-correlation Tτ is synchronous.

Proof. First we compute �
P,O

(
keij

k′
ej′i′

)
in two ways:

�P,O

(keij

)
�P,O

(k′
ej′i′

) = �P,O

(keij
k′

ej′i′
) = δkk′δjj′�P,O

(keii′
)
.

The left-hand side is(∑
s,t,l

lfst ⊗ k

l
Vst

ij

)( ∑
s′,t′,l′

l′fs′t′ ⊗ k′

l′V
s′t′
j′i′

)
=

∑
s,t,l,s′,t′,l′

lfst
l′fs′t′ ⊗ k

l
Vst

ij
k′

l′V
s′t′
j′i′

=
∑

s,t,l,t′

lfst′ ⊗ k

l
Vst

ij
k′

l
Vtt′

j′i′

=
∑

s,t,l,t′

lfst ⊗ k

l
Vst′

ij
k′

l
Vt′t

j′i′

=
∑
s,t,l

lfst ⊗
∑

t′

k

l
Vst′

ij
k′

l
Vt′t

j′i′
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while the right-hand side is δkk′δj,j′
∑
s,t,l

lfst ⊗ k
lV

st
ii′ = ∑

s,t,l

lfst ⊗ δkk′δj,j′
k
lV

st
ii′ , so that

∑
t′

k

l
Vst′

ij
k′

l
Vt′t

j′i′ = δkk′δjj′
k
lV

st
ii′ ,

which for t = s reads ∑
t

k

l
Vst

ij
k′

l
Vts

j′i′ = δkk′δjj′
k
lV

ss
ii′ . (6.5)

Using this information and denoting by Trl the standard trace on the l-th matrix block

of C(P), we compute

∑
s,t

kk′
llX

(st),(st)
(ij),(i′j′) =

∑
s,t

τ
(k

lV
st
ij

k′
lV

ts
j′i′

)
=

∑
s

δkk′δjj′τ
(k

lV
ss
ii′

)
= δkk′δjj′(Trl ⊗τ)

(∑
s,t,l′

l′fst ⊗ k
l′V

st
ii′

)

= δkk′δjj′(Trl ⊗τ)
(
�P,O

(keii′
))

= δkk′δjj′(Trl ⊗τ)
(
�

P,O

(keip
kepi′

))
= δkk′δjj′(Trl ⊗τ)

(
�P,O

(keip

)
�P,O

(kepi′
))

= δkk′δjj′(Trl ⊗τ)
(
�

P,O

(kepi′
)
�

P,O

(keip

))
= δkk′δjj′δii′(Trl ⊗τ)

(
�P,O

(kepp

))
for every p ∈ {1, 2, . . . , nk}.

Putting k = k′, i = i′, j = j′, and summing over i, j ∈ {1, . . . , nk}, we get

∑
s,t,i,j

1
n2

k

kk
llX

(st),(st)
(ij),(ij) = (Trl ⊗τ)

(
�P,O

(kepp

))
.

Next, summing over p ∈ {1, . . . , nk} we obtain

∑
s,t,i,j

1
nk

kk
llX

(st),(st)
(ij),(ij) = (Trl ⊗τ)

(∑
p

�
P,O

(kepp

))
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and summing over k we get

∑
s,t,i,j,k

1
nk

kk
llX

(st),(st)
(ij),(ij) = (Trl ⊗τ)

(∑
p,k

�
P,O

(kepp

)) = (Trl ⊗τ)(1 ⊗ 1) = ml,

that is,

∑
s,t,i,j,k

1
nkml

kk
llX

(st),(st)
(ij),(ij) = 1 (6.6)

for every l. Summing both sides of (6.6) over l we finally arrive at

∑
s,t,i,j,k,l

1
nkml

kk
llX

(st),(st)
(ij),(ij) = NP. (6.7)

�

In a completely similar manner as in [3, Theorem 2.5] and [23, Theorem 5.5] (cf.

also [17, Theorem 3.2]), we show below that synchronous realizable (P,O)-correlations

arise from tracial states on C∗-algebras generated by operators associated to the

maps �1 and �2 in the realization (�1, �2, ωξ ) of the correlation. Moreover, operators

associated to �1 and ones associated to �2 are related to each other, in the same way as

Alice’s and Bob’s operators were in [3, Theorem 2.5]. The proof of the next Theorem is

an adapted version of the ones of [3, Theorem 2.5] and [23, Theorem 5.5].

Theorem 6.6. Let P and O be finite quantum spaces and let T : C(O) ⊗ C(O) → C(P) ⊗
C(P) be a realizable correlation with realization (�1, �2, ωξ ), where

�1, �2 : C(O) −→ C(P) ⊗ B(H)

are unital ∗-homomorphisms with commuting ranges and ξ ∈ H is a unit vector. Let{k
lU

st
ij

}
and

{k
lW

st
ij

}
be elements of B(H) defined by

�1(keij) =
∑
l,s,t

lf st ⊗ k
lU

st
ij ,

�2(keij) =
∑
l,s,t

lf st ⊗ k
lW

st
ij ,

k = 1, . . . , NO, i, j = 1, . . . , nk.

Assume that T is synchronous. Then

(1) k
lW

st
ij ξ = (k

lU
st
ij

)∗
ξ for all k, l, i, j, s, t,
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(2) the restriction of the vector state ωξ to the C∗-algebra generated by

{
k
lW

st
ij

∣∣∣∣ k = 1, . . . , NO, i, j = 1, . . . , nk,

l = 1, . . . , N
P
, s, t = 1, . . . , ml

}
(6.8)

is a trace,

(3) the restriction of the vector state ωξ to the C∗-algebra generated by

{
k
lU

st
ij

∣∣∣∣ k = 1, . . . , NO, i, j = 1, . . . , nk,

l = 1, . . . , N
P
, s, t = 1, . . . , ml

}
(6.9)

is a trace.

Moreover, the state τ on C(M
P,O) defined as τ = ωξ ◦ �1, where �1 : C(M

P,O) → B(H) is

the unique unital ∗-homomorphism such that

�1 = (id ⊗ �1) ◦ �P,O

is a trace and we have T = Tτ .

Proof. Using the Schwarz inequality in H and then in R
2nk+2ml , we compute

NP =
∑

s,t,i,j,k,l

1
nkml

kk
llX

(st),(st)
(ij),(ij) =

∑
s,t,i,j,k,l

1
nkml

〈
ξ

∣∣ k
lU

st
ij

k
lW

st
ij ξ

〉
≤

∑
s,t,i,j,k,l

1
nkml

∣∣∣〈ξ ∣∣ k
lU

st
ij

k
lW

st
ij ξ

〉∣∣∣
=

∑
s,t,i,j,k,l

1
nkml

∣∣∣〈(k
lU

st
ij

)∗
ξ

∣∣ k
lW

st
ij ξ

〉∣∣∣
≤

∑
s,t,i,j,k,l

1
nkml

∥∥(k
lU

st
ij

)∗
ξ
∥∥∥∥k

lW
st
ij ξ

∥∥
≤

∑
k,l

1
nkml

( ∑
s,t,i,j

∥∥(k
lU

st
ij

)∗
ξ
∥∥2

) 1
2
( ∑

s,t,i,j

∥∥k
lW

st
ij ξ

∥∥2
) 1

2

=
∑
k,l

1
nkml

( ∑
s,t,i,j

〈
ξ

∣∣ k
lU

st
ij

(k
lU

st
ij

)∗
ξ
〉) 1

2
( ∑

s,t,i,j

〈
ξ

∣∣ (k
lW

st
ij

)∗ k
lW

st
ij ξ

〉) 1
2

=
∑
k,l

1
nkml

( ∑
s,t,i,j

〈
ξ

∣∣ k
lU

st
ij

k
lU

ts
ji ξ

〉) 1
2
( ∑

s,t,i,j

〈
ξ

∣∣ k
lW

ts
ji

k
lW

st
ij ξ

〉) 1
2

.

(6.10)
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Next we note that

∑
s,t,i,j,k

1
nk

k
lU

st
ij

k
lU

ts
ji =

∑
i,s,k

k
lU

ss
ii = ml1H , (6.11a)

∑
s,t,i,j,k

1
nk

k
lW

ts
ji

k
lW

st
ij =

∑
j,t,k

k
lW

tt
jj = ml1H . (6.11b)

Indeed, the first equality in (6.11a) follows from the fact that

∑
t

k

l
Ust

ij
k′

l
Uts

j′i′ = δkk′δjj′
k
lU

ss
ii′ ,

k, k′ = 1, . . . , N
O

,

l = 1, . . . , N
P
,

j, j′, i, i′ = 1, . . . , nk,

s = 1, . . . , ml,

which is obtained by applying �1 (described in the statement of the theorem) to both

sides of (6.5) and noting that

�1

(k

l
Vst

ij

) = k

l
Ust

ij ,

k = 1, . . . , N
O

,

l = 1, . . . , N
P
,

i, j = 1, . . . , nk,

s, t = 1, . . . , ml.

(6.12)

The second equality in (6.11a) is a consequence of the fact that for every s the expression∑
i,k

k
lU

ss
ii is the (s, s)-component in Matml

(B(H)) = Matml
(C) ⊗ B(H) ⊂ C(P) ⊗ B(H) of the

image of the unit 1 ∈ C(O) under the homomorphism �1 : C(O) → C(P) ⊗ B(H). Since �1

is unital, we see that ∑
i,k

k
lU

ss
ii = 1H

and summing over s we get (6.11a). Similarly, we derive (6.11b).

In particular,

∑
k,l

1
nkml

( ∑
s,t,i,j

〈
ξ

∣∣ k
lU

st
ij

k
lU

ts
ji ξ

〉) 1
2
( ∑

s,t,i,j

〈
ξ

∣∣ k
lW

ts
ji

k
lW

st
ij ξ

〉) 1
2 =

∑
k

〈ξ ξ 〉 = NP

and the inequalities in (6.10) are actually equalities. From the fact that the first

inequality in (6.10) is an equality, we conclude that kk
llX

(st),(st)
(ij),(ij) ≥ 0 for all indices. The
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equality version on the fifth (in)equality of (6.10) shows that

k
lW

st
ij ξ = k

lα
st
ij

(k
lU

st
ij

)∗
ξ (6.13)

for all s, t, i, j, k, l where k
lα

st
ij ∈ T. Using this equation, we get

kk
llX

(st),(st)
(ij),(ij) = 〈

ξ
∣∣ k

lU
st
ij

k
lW

st
ij ξ

〉
= k

lα
st
ij

〈
ξ

∣∣ k
lU

st
ij

(k
lU

st
ij

)∗
ξ
〉

and since kk
llX

(st),(st)
(ij),(ij) ≥ 0 we conclude that k

lα
st
ij ∈ {0, 1} and in both cases we get

k
lW

st
ij ξ = (k

lU
st
ij

)∗
ξ (6.14)

for all s, t, i, j, k, l.

Following the method of the proof of [3, Theorem 2.5], we conclude that the

vector state ωξ on B(H) is a trace when restricted to the C∗-subalgebra of B(H) generated

by (6.9) and similarly for on the C∗-subalgebra generated by (6.8). To that end for each

(k, l, i, j, s, t), we let the symbol
(k

lU
st
ij

)−1 denote the adjoint of k
lU

st
ij and we consider a

word

Z = (k1
l1

Us1t1
i1j1

)α1 · · · (kq

lq
U

sqtq

iqjq

)αq ,

in the generators (6.9) and their adjoints, where αa ∈ {1, −1} for a = 1, . . . , q. Since each
k
lW

st
ij commutes with each k′

l′U
s′t′
i′j′ , using (6.14) the vector Zξ can be rewritten in terms of

the generators (6.8) and their adjoints as

Zξ = (kq

lq
W

sqtq

iqjq

)−αq · · · (k1
l1

Ws1t1
i1j1

)−α1ξ .

Thus, just as in [3, proof of Theorem 2.5] and [23, Proof of Theorem 5.5] (cf.

[17, Theorem 3.2]),

ωξ

(k
lU

st
ij Z

) = ωξ (Z
k
lU

st
ij ), ωξ

(k
lU

st
ij

k′
l′U

s′t′
i′j′ Z

) = ωξ (Z
k
lU

st
ij

k′
l′U

s′t′
i′j′ )

for all k, k′, l, l′, s, s′, t, t′, i, i′, j, j′. To complete the proof of the corresponding traciality, it

suffices now to use the induction on the number of U’s under ωξ .
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In order to prove the final statement of the theorem let us note that by (6.12) the

range of �1 is the C∗-algebra generated by the k
lU

st
ij (with all possible indices) on which

the vector functional ωξ is a trace. It follows that τ is a trace.

Moreover, the Hilbert space Hξ defined as the closure of �1(C(MP,O))ξ can be

identified with the GNS space for τ . Using this identification, we have

τ
(k

lV
st
ij

k′
l′V

t′s′
j′i′

) = 〈
ξ

∣∣ k
lU

st
ij

k′
l′U

t′s′
j′i′ ξ

〉
= 〈

ξ
∣∣ k

lU
st
ij

(k′
l′U

s′t′
i′j′

)∗
ξ
〉

= 〈
ξ

∣∣ k
lU

st
ij

k′
l′W

s′t′
i′j′ ξ

〉
,

where in the third equality we used (6.14). In view of (6.4), this proves the claim. �

Remark 6.7. Let us give a separate proof that a (P,O)-correlation Tτ defined by

a trace τ on C(MP,O) as explained before Theorem 6.5 is synchronous. We will use

Proposition 6.3.

We compute

〈
φ T

(∑
i,j,k

1
nk

keij ⊗ keij

)
φ

〉
=

〈
φ

( ∑
i,j,k,l,l′,s,t,s′,t′

τ
(k

lV
st
ij

k
l′V

t′s′
ji

) 1
nk

(lf st ⊗ l′f s′t′
))

φ

〉

=
∑

i,j,k,l,l′,s,t,s′,t′

1
nk

τ
(k

lV
st
ij

k
l′V

t′s′
ji

)〈
φ

∣∣ (lf st ⊗ l′f s′t′
)
φ
〉
.

From the identity

〈
φ

∣∣ (lf st ⊗ l′f s′t′
)
φ
〉 = 1

NPml
δll′

∑
s1,t1

〈lf s1

∣∣ lf s

〉〈lf s1

∣∣ lf s′
〉〈lf t

∣∣ lf t1

〉〈lf t′
∣∣ lf t1

〉
= 1

NPml
δll′δss′δtt′
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we get

〈
φ T

(∑
i,j,k

1
nk

keij ⊗ keij

)
φ

〉
=

∑
i,j,k,l,l′,s,t,s′,t′

1
NPmlnk

τ
(k

lV
st
ij

k
l′V

t′s′
ji

)
δll′δss′δtt′

=
∑

i,j,k,l,s,t

1
NPmlnk

τ
(k

lV
st
ij

k
lV

ts
ji

)
=

∑
i,j,k,l,s

1
NPmlnk

τ
(k

lV
ss
ii

)
=

∑
i,k,l,s

1
NPml

τ
(k

lV
ss
ii

)
=

∑
l,s

1
NPml

τ(1)

=
∑
l,s

1
NPml

= 1.

Let us note in the reasoning above we never used the fact that τ was a trace

(although it is needed to define Tτ = Tστ
, cf. Lemma 6.4). In particular, Theorem 6.6

shows that if ω is a state on C(MP,O) and there exists a (P,O)-correlation T satisfying

T
(keij ⊗ keij

) =
∑

l,l′s,s′,t,t′
ω

(k
lV

st
ij

k
l′V

t′s′
ji

)(lf st ⊗ l′f s′t′
)

for all k ∈ {1, . . . , N
O
} and i, j ∈ {1, . . . , nk} then, if T is realizable, there exists a trace τ

on C(MP,O) such that

τ
(k

lV
st
ij

k
l′V

t′s′
ji

) = ω
(k

lV
st
ij

k
l′V

t′s′
ji

)
for all indices.
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