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For given quantum (non-commutative) spaces P and O, we study the quantum space
of maps My ¢ from P to O. In case of finite quantum spaces, these objects turn out to
be behind a large class of maps which generalize the classical gc-correlations known
from quantum information theory to the setting of quantum input and output sets.
We prove various operator algebraic properties of the C*-algebras C(Mpg) such as
the lifting property and residual finite dimensionality. Inside C(Mp ) we construct
a universal operator system Sp  related to P and O, and show, among other things,
that the embedding Sp o C C(Mjp ) is hyperrigid and has another interesting property,
which we call the strong extension property. Furthermore, C(Mp ) is the C*-envelope of
Sp,p and a large class of non-signalling correlations on the quantum sets P and O arise

from states on C(Mp o) ®,,.. C(Mp o) as well as states on the commuting tensor product

Sp,o®,Sp - Finally, we introduce and study the notion of a synchronous correlation with
quantum input and output sets and prove several characterizations of such correlations

and their relation to traces on C(Mp g).

1 Introduction

The main objects of this paper are quantum spaces of maps and quantum correlations
related to them. In order to properly introduce the reader to the subject, we begin with

the precise definition of a quantum space as well as the associated notation.
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Definition 1.1. A quantum space is an object X of the category dual to the category of

C*-algebras.

The category of C*-algebras is the category whose objects are C*-algebras and
whose morphisms are “morphisms of C*-algebras” described in [34, Section 1], [35,
Section 0] (see also [20, chapter 2]), that is, non-degenerate x-homomorphisms into
multiplier algebras. Given any C*-algebras A and B, the symbol Mor(A, B) will denote
the set of all morphisms from A to B. Note that if A and B are unital then a morphism
from A to B is simply a unital x-homomorphism from A to B.

According to the conventions adapted for example, in the theory of quantum
groups (cf. [2, 6, 7, 26, 31]), the correspondence between quantum spaces and C*-algebras
is expressed by denoting C*-algebras by C(X) or Cy(X) where X is the corresponding
quantum space. The distinction between C(-) and C,(-) is based on whether the
C*-algebra is unital (in the former case) or not (in the latter case). This notation
emphasizes X as the primary focus and this may become cumbersome. Thus, in some
instances, this notation is dropped in favor of more traditional symbols such as A or B
denoting C*-algebras.

The standard terminology related to quantum spaces includes the following:

e a quantum space X is called compact if the corresponding C*-algebra is
unital (and hence denoted by C(X)),

e a quantum space X is called finite if C(X) is finite-dimensional.

Our aim is to generalize and study the notion of a quantum correlation on finite
sets (see below) to analogous notion for finite quantum spaces. First steps towards
such a generalization have been made in for example [3, 10, 32] and we propose a more
systematic, more general, and “coordinate free” approach thoroughly grounded in non-
commutative topology and geometry. As a result, we are not only able to reproduce
some key results known for particular types of quantum spaces with seemingly simpler
and more transparent proofs, but we can also describe and exploit the deep connection
between quantum correlations and quantum spaces of maps discussed already in [31].
Our investigations lead us to study certain universal operator systems (whose particular
examples were already explored in [3] and [32]) as well as to results about quantum
spaces of maps whose generality goes far beyond the setting of finite quantum spaces.
Our results seem to be related to the forthcoming work of M. Brannan, S. Harris, I
Todorov, and L. Turowska [4].
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Let us briefly discuss the notion of a quantum correlation which was the
starting point of our work. First let P and O be finite sets. By a quantum correlation
or a quantum strategy on P and O, we mean a collection of non-negative numbers

{p(a,bix,y)|a,b € O, x,y € P} such that for each (x, y) the maps

a+— Zp(a,bp(,y) and br— Zp(a,blx,y) (1.1)
b a

are probability distributions on P. A very convenient interpretation of these objects is
provided by the theory of non-local games where two players—Alice and Bob—are asked
questions x and y from the set P and are supposed to provide answers a and b from
the set 0. The number p(a, b|x,y) is interpreted as the conditional probability of Alice
answering a and Bob answering b given questions x and y (We are in fact dealing with a
simplified version of the theory in which the sets of possible questions and answers are
the same for Alice and Bob. The additional generality of allowing different question and
answers sets for the two players is not essential, especially since we are aiming to study
synchronous correlations, cf. Section 6). There are various ways to obtain correlations
{p(a,b|X, V) } a,be0, x,y¢e P} and correlations arising from various constructions are

" ou

classified into “local,” “quantum,” “quantum commuting,” etc. One fundamental class of
correlations is the so-called non-signalling ones. They are the ones for which the maps
(1.1) are independent of y and x respectively (they are the so-called marginals of the
correlation {p(a, blx, y)}). For the details of the theory, we refer the reader for example
to [10, 12, 17, 23].

The class of correlations we will generalize to the situation when the sets P and
O are replaced by finite quantum spaces P and O is the quantum commuting (or simply

qgc-correlations), that is, those of the form
p(a,blx,y) = (£ |E, ,F, 1), x,y€P,abe0
where W is a unit vector in a Hilbert space H and
{Exq|x€P,ac0} and {Fy,b|yeP, be 0}

are families of projections in B(H) such that

e forall (x,y,a,b) € PxPxOxOwehaveE, ;F,, =F,,E

v x,a’

o forall x € Pwe have } E, , = 1}, and for all y € P we have >  F, ;, = 1.
a b
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Note that such correlations are automatically non-signalling. Our generalization of
gc-correlations is explained in Section 5 where we use the terminology of realizable
correlations in order to emphasize that such correlations can be realized in a certain
well understood way.

In recent preprints [3, 32], the task to generalize the notion of a quantum
correlation to quantum sets of questions and answers has been carried out in certain
special cases. Our work is very much inspired by these developments and we feel
that our approach provides a more flexible framework for this theory to be developed
further. Although many of our results have their origins in [3, 32], our treatment makes it
possible to generalize many of them (sometimes quite substantially) and to differentiate
between results and necessary techniques that are brought on by the particular
examples of quantum spaces and general theorems and arguments independent of the
particular quantum sets under investigation.

To conclude the introduction, let us briefly summarize the structure and
contents of the paper. We begin with the definition of the quantum space Mp g of
all maps from a quantum space PP to a quantum space @ and a short discussion of
conditions ensuring its existence. Then we study properties of Mp o as a function of
P and O, particularly the behavior under morphisms in either variable. We also prove
that the C*-algebra C(Mp ) is residually finite-dimensional whenever PP is finite and
O is compact and such that C(Q) is residually finite dimensional. Next, in Section 3,
we define and study a certain operator system Sp  related to quantum spaces P and
O, which later plays an important role in the description of realizable correlations.
Among other things, we prove that C(Mp ) is the C*-envelope of Sp and that the
embedding Sp o, C C(Mp ) is hyperrigid. Moreover, we show that any u.c.p. map from
Sp to a C*-algebra B extends to a u.c.p. map C(Mp ) — B (a property we call the
strong extension property, see Definition 3.5(2)). Remarkably, both hyperrigidity and
the strong extension property provide a conceptual explanation of some other facts
concerning Sp 5 C C(Mp ) and they were not emphasized in the cases considered in
the literature so far: P and O classical as well as P matricial (C(?) = Mat,(C)) and O
classical. Section 4 deals with the lifting properties of C(Mp o) and Sp o, which we show
to hold whenever C(0) has the lifting property and is separable (although C(Mp ) is
almost never nuclear). In the following section, we specify both P and O to be finite and
define realizable correlations with quantum input set P and output set Q. Moreover,
we show that such correlations arise from states on C(Mp o) ®,.. C(Mp ) as well as
states on the commuting tensor product Sp g ®, Sp - Finally, in Section 6, we study the

quantum analog of synchronicity of correlations on finite quantum spaces explaining,

$20Z Jaquieoa( 9| U0 J8sn AST( UOJI0JYoUAg usuoupa|g sayosineq Aq | ¥9y99/00¥Z L/ L/S20Z/3101e/ulwl/wod dno olwapeoe)/:sdyy woJ) papeojumoq
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incidentally, that the language of finite quantum spaces proves very convenient and
effective for the generalization of this concept. We introduce an algebraic definition of
synchronicity along the lines of [3, Section 2] and prove their characterization via traces

on C(Mp ) as well as several other results analogous to those of [3, 17, 23, 32].

2 Quantum Spaces of Maps

By definition, mappings between quantum spaces are morphisms of the corresponding
C*-algebras understood as going in the opposite direction. Thus, given quantum spaces
X and Y, we identify the set Mor(C(Y), Cy(X)) with the set of maps from X to Y. However,
the theory of quantum spaces allows “quantum sets” of maps, which are more precisely

defined as quantum families of maps (28, 34]).

Definition 2.1. Let P, O, and X be quantum spaces. A quantum family of maps from
P to O indexed by X is a morphism ® € Mor(C,(0), Cy(P) ® C((X)) (The tensor product
Cy(X) ® Cy(X) Definition 2.1 is the minimal tensor product of C*-algebras. We will use

other tensor products in Sections 3, 5, and 6).

Quantum families of maps are very general objects and hence the interesting
ones are those which possess additional properties. Throughout this paper, the most

important role will be played by the quantum families of all maps.

Definition 2.2. Let P and O be quantum spaces. We call a quantum family of maps
(®p o, Mp ) the quantum family of all maps from P to O if for any quantum space X
and any quantum family ¥ € Mor(Cy(0), Cy(P) ® Cy(X)) indexed by X there exists a
unique A € Mor(Cy(Mp ), Co(X)) such that the diagram

@p0
Co(0) —————+ Go(P) ® Co(My )
lidm
Co(0) Y Co(P) ® Co(X)

is commutative (this is a diagram in the category of C*-algebras, so the arrows represent
mappings into the corresponding multiplier algebras and their compositions require

certain maneuvers, see [34, Section 1] or [20, Chapter 2]).

It is easy to see that if (Mp g, ®p ) exists for the given P and O then it is unique

up to a natural notion of isomorphism, that is, if (M, ®) is another pair with the same
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universal property then there is an isomorphism A: Cy(Mp ) — Co(M) such that ® =
(id ® A) o ®@p . The quantum space My, g is called the quantum space of all maps from
P to O.

Theorem 2.3. Let P be a finite quantum space and O a compact quantum space. Then
the quantum space Mp  of all maps from PP to O exists and is compact. Moreover, the

C*-algebra C(Mp ) is generated by the set

{(w®id)®pg(a)|a € C0), w € CP)*}.

Theorem 2.3 is proved in [26, 28] in the case when C(Q) is unital and finitely
generated (i.e., a quotient of the full group C*-algebra of a finitely generated free group).
The latter assumption can be dropped and the proof from [26, Appendix] can be repeated
almost verbatim. The only price one has to pay is to consider the full group C*-algebra
of the free group with possibly a very large number of generators. An alternative way to
prove the existence of (Mp ¢, ®p ) in the general case is indicated in Remark 2.10.

Let us note that the universal map @y, is injective. Indeed, one can consider
X=0and

V:CO)3a+— 1®aecCP)QCO).
Then there exists A: C(Mp g) — C(0) such that
1®a=>1d® A)(Ppg@), acC),
which shows that @ (a) # 0 if a # 0.

Example 2.4. Let O be a compact quantum space and let 1 denote the one-point space

(so C(1) = C). Then one easily finds that M, o = O in the sense that the mapping
CO)sx+— 1®x€C(1)®CO)

has the universal property of @, ;.

Other examples of quantum spaces of maps were studied for example, in [27-30,
34] as well as [31], where their relation to non-local games was studied. Let us note that
the C*-algebra P, . of [3] is precisely C(Mp ) for P and O such that C(P) = Mat, (C) and
C(O) =C-.
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2.1 Disjoint sums of quantum spaces

Throughout the paper, the symbol % will denote the universal free product of unital
C*-algebras amalgamated over the units.

Consider two compact quantum spaces [P; and P,. The quantum space P; uP, is
defined by setting C(P, ulP,) = C(P;) @ C(P,) with the inclusions of P; and PP, into P, uP,
described by the projections p;: C(P; uP,) — C(P;) fori =1, 2.

Proposition 2.5. Let P;,[P, be finite quantum spaces and O be a compact quantum
space. Then the C*-algebra C(Mp p, ) is isomorphic to the universal free product

C(Mp, @) * C(Mjp, o), and with this identification the universal quantum family of maps
®p,up,0° C(O) — C(P, UP,) ® C(Mp, p, o)
is given by
P 5, 0@ = () ®1))(Pp, 0(@) + ()3 ®1)(Pp, 0(@),  aeCO),

where for i = 1, 2 the maps j;: C(P;) - C(P, ulP,) are the (non-unital) inclusions of direct
summands and ;: C(Mp, o) - C(Mp,,p, o) are the inclusions onto the copies of C(Mjp, o)

in the free product.

Proof. The reasoning is similar to the proof of [30, Theorem 2.1]: it is enough to show
that the pair (C(M), ®) with

C(M) = C(Mp, ) * C(Mp, o)
and @ defined by
®(a) = (J; ® 1)) (Pp, 0(@) + (J; ® 1) (®p, (@),  aeCO) (2.1)
has the universal property of (Mp, p, o ®p, p, ). The details are left to the reader. W

Remark 2.6. Let O,P;, and P, be as above and p,: C(P;) & C(P,) — C@P;)
the canonical projection. By composing ®p  p, o With p; ® id, we obtain a unital
*-homomorphism C(0) — C(P;) ® C(Mp,  p, o), 80 it must be of the form (id ® A) o ®p,
for a unique A: C(Mp, o) = C(Mp, p, o)- In view of the above proposition (particularly

the uniqueness of A), we easily see that A = ;.
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Using Proposition 2.5, we can give a rather concrete description of all

C*-algebras C(Mp ). To this end, we need the following lemma:

Lemma 2.7 ([25, Proposition 2.18]). Let C be a unital C*-algebra and let y : Mat,(C) — C

be a unital x-homomorphism. Let
D={ceC|cyx = yx)cfor all x € Mat, (C)}.
Then D is a unital C*-algebra and C is isomorphic to Mat,, (C) ® D.
Proof. The subset D is clearly a unital -subalgebra of C. Furthermore, the mapping
x®d+— yx)d, xeMat, (C),deD

extends to a unital x-homomorphism I': Mat,, (C) ® D — C. To see that it is injective, for

i,je{l,...,n}, let E;;j =y, where {e;;} are the matrix units in Mat,, (C). If
Zeilj®ci'j (22)
ij

belongs to the kernel of T then for any k, [, r

0=r ((ek,l ® ]1) (Z el-J ® Ci,j) (ek'r ® ]l)) = Ek,kCl,r-

ij

Hence 0 = > Ej ¢, = ¢, for all r, [, so that (2.2) is zero.
k

Surjectivity of I" follows from the fact that if ¢ € C then putting

n
Ci,j: ZEk,iCEj,k’ l,_]= 1,...,n
k=1

we obtain ¢; ; € D for all i, j and F(z e;; ® ci,j) = > E;ici=c. n
Lj ij

Proposition 2.8. Let C(P) = Mat,(C) and let O be a compact quantum space. Then
C(Mp @) is the relative commutant of C(P) in C(P) # C(0) and ®p  is the composition of
the inclusion C(0) — C(P) * C(0) with the isomorphism C(P) #* C(0) — C(P) ® C(Mp q)

described in Lemma 2.7.
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Proof. Let X be a quantum space and ¥ € Mor(C(0), C(P) ® Cy(X)) a quantum family
of maps P — Q. Furthermore, let D denote the relative commutant of C(P) in C(P) % C(O).
By the universal property of free products, there exists a unital *-homomorphism
IT: C(P) * C(O) — CIP) ® M(Cy(X)) such that IT(:;(x)) = x ® 1 for all x € C(P) and
[T(1,(y)) = ¥(y) for all y € C(0). Note that IT € Mor(C(P) * C(0), C(P) ® Cy(X)).
Now if d belongs to D then IN(d)(x ® 1) = (x ® 1)I1(d) for all d € C(IP) because

Nd)E®1) =N(dI(; ) = H(di (x) =, (xd) = (x @ DIA).

Therefore the element IT(d) belongs to the commutant of C(P) ® 1 in C(P) ® M(Cy(X)),
that is, to 1 ® M(Cy(X)). As a consequence, we can define a unital *-homomorphism
A: D — M(Cy(X)) by

) =1® A(d), deD
and defining ® as the composition I" 01,: C(Q) — C(P) ® D we immediately get

(d @ M) (@) = (1,(y)) = ¥(y), y € C(0). (2.3)

Since D is obviously generated by slices of the form (v ® id)®(y) (y € C(0), w € C(P)*),
we immediately see that A is uniquely determined by (2.3). It follows that (D, ®) has the
universal property of (C(Mp ), ®p o). [ |

Corollary 2.9. Let O be a compact quantum space and P a finite quantum space with
m
C(P) = P Mat,, (C).
i=1
Then the C*-algebra C(Mp ) is a free product D; # --- % D,,, where D; is the relative

commutant of Matni (©)in Matni (C) % C(O).

Remark 2.10. The explicit description of C(Mp ) and @5, in the case C(P) = Mat, (C)
given in Proposition 2.8 together with Proposition 2.5 provides an alternative way to

prove existence of C(Mjp ) for arbitrary compact O and finite P.
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Theorem 2.11. Let O be a compact quantum space such that C(0) is residually finite
dimensional and let P be a finite quantum space. Then C(Mp ) is residually finite

dimensional.

Proof. By Corollary 2.9, the C*-algebra C(Mp ) is a free product of algebras which
are subalgebras of free products of the form Mat, (C) * C(O). Since residual finite
dimensionality passes to free products ([13, Theorem 3.2]) and to subalgebras, C(Mp )

is residually finite dimensional. |

Corollary 2.12.  For any finite quantum spaces P and O the C*-algebra C(Mjp g)

possesses a faithful trace.

Let us note that existence of traces on C(Mp ) is important in the study of
synchronous correlations (see Section 6).
2.2 Functorial properties
In this section, we will study the properties of the assignment
P,0) — MP,@, (2.4)

where P is a finite quantum space and O is a compact quantum space. For brevity, let
us denote by Q6

consisting of the finite and compact quantum spaces respectively.

and Q& _, the full subcategories of the category of quantum spaces

fin

The proof the next proposition easily follows from the universal property of
MP,@'

Proposition 2.13. The mapping (2.4) is a bi-functor Q6
Py, P, € Ob(Q6,,), 0;,0, € Ob(QG_,) and

x 96, — Q6 . Given

fin

fin
p: C(P,) — C(Py), m:C(O;) — C(0y),
the associated map M, . : C(Mp, o,) = C(Mjp, o,) is the unique A making the diagram

®p, 0,

cO,) C(Py) ® C(Myp, g,)

(p®id)o®p, 0,07
C(Oy) C(P;) ® C(Mp, g,)
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commutative. In particular, the functor M, , is contravariant with respect to the first

variable and covariant with respect to the second one.

Remark 2.14. It is an obvious consequence of the functoriality of M, , that if P and P’
are finite quantum spaces such that C(P) = C(”) then for any compact quantum space
O we have C(Mp ) = C(Mp ). Similarly, if C(O) = C(Q®') for some compact quantum
spaces O and O, then C(Mp, ) = C(Mj () for any finite quantum space P.

Theorem 2.15. LetP,P,,P, € Ob(Q& ) and O,0,;,0, € Ob(QG&_ ) and

fin cpt

p: C(Py) — C(P;), m:C(O;) — C(Oy).

Then

(1) if = is surjective then so is Mg ,: C(Mp g,) > C(Mp g,),

(2) if p is injective then M, jq: C(Mp, o) = C(Mp, o) is surjective.
Moreover,

(3) if  is injective then so is My , : C(Mp g, ) = C(Mpg,),

(4) if p is surjective then M, ;4: C(Mp, o) — C(Mp, ) is injective.

id,

Proof. Ad (1). Since r is surjective, we have

{(0®id)®p g, ¥) |y € C(Oy), w € C®)*}

= {0 ®id)®p g, (T(x)) | x € C(O)), ® € C(P)*}

=My, ({(@ @ id) @50, ()| x € CO)), © € C@®)'Y).

Furthermore, since C(Mp ,) is generated by the set on the left-hand side, we get that
Mjgq , is surjective.
Ad (2). We have

Mp’id({(a) ®id)®p, o) |x € C(0), w € C(IE”I)*})
= {((wo p) ®id)®p, (%) | x € C(Q), w € C(P))*}

={@®id)®p, o(x) |x € C(0), € C(P,y)*}
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due to the injectivity of p. As the last set generates C(Mp, o) we see that M ;4 is a
surjection.

Ad (3) Let us first prove the statement (3) in the case C(P) = Mat,(C). Let us
denote C; = Mat, (C) * C(0,) and C, = Mat; (C) * C(0,). By [24, Theorem 4.2], the injective
x-homomorphism 7 defines an injective *-homomorphism id # 7: C; — C,. Using the

identifications

C, = Mat,(C) ® C(Mpg,)

C, = Mat;(C) ® C(Mp g,)

(cf. Proposition 2.8), we easily get (id*7)(x) = Mg , (x) for all x € C(Mp g, ) and conclude
the injectivity of Mg , .

In the general case

C(P) = P Mat,, (C)

i=1

(ie, P =P, u...uP, with C(P) = Mat, (C)) and the proof is completed by using

® ..k Mid]pm,ﬂ' Since Midpi,ﬂ

idp, = 18 injective (cf.
m

Proposition 2.5 and observing that M; =M

ld]plumu]pm,ﬂ idpl I

are injective fori = 1,..., m, the *-homomorphism M
[24, Theorem 4.2]).
Ad (4). Since the C*-algebras C(IP;) and C(PP,) are finite-dimensional, the fact that

id]pl T

C(P,) surjects onto C(P;) means that P, = P’uP; for some finite quantum space IP’. More
precisely, there exists an isomorphism o: C(P') & C(P;) — C(P,) such that poo: C(P) @
C(P,) — C(P,) is the projection onto C(PP;). In view of Remark 2.6

((p o U) ® ld) [e] q)]P)/u]pll@ = (ld ® ll) [e] ¢P1,@'

where 1, is the inclusion of C(Mp, o) into C(Mp p, o) = C(Mp @) * C(Mp, ). Now the
mapping M, ;4: C(Mp, o) = C(Mp,p, o) is an isomorphism satisfying

(U X ld) (¢] ¢]P)/I_,IP1’@ = (ld %) Mo',ld) o ¢P2r@'

It follows that

(p@id)o By o = ((000) ® M, 19)") 0 Bpp, o = (id ® (M, 19,)"" 11)) 0 ®p o

and consequently M, ;4 = (M, 39)~* o1, is injective. |
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2.3 The opposite algebra

Let X be a quantum space. We will write X” for the quantum space corresponding to the
opposite C*-algebra (cf. [8, Section 1.3.3]) of Cy(X). Thus if, for example, X is compact
then by definition C(X") = C(X)".

Proposition 2.16. Let P be a finite quantum space and O a compact quantum space.
Then the pair (Mp» g, ®p» o) is naturally isomorphic to (Mp ”, ®p, ), where the map of
vector spaces ®p : C(0) - C(P) ® C(Mp ) is regarded as a *-homomorphism C(0)” —
C(P)" ® C(Mp,g)".

Proof. It is enough to show that the pair (Mp o", ®p o) with @5 understood as a map
C(O)" — C(P)" ® C(Mp )" has the universal property of (Mp» g, ®p» o). Thus, let X be
a quantum space and let ¥ € Mor(C(0)", C(P)” ® Cy(X)). Let

Ko@) C(O) — H(O) ke : CP) — cm®™”, kgt Co(X) — Co(X)”
and
KC(M]}»,@)): C(MP,@) —> C(M]PI(O))DP

be the identity maps of vector spaces considered as anti-isomorphisms between the

respective C*-algebras. Then

(KC(]P’)71 ® KCO(X)) [e) \I/ [e] KC(@) = (ld ® A) (e} q’P,@
for a unique A € Mor(C(Mp @), Cy(X)"). In other words

: -1 -1 -1
v = (1d ® (KCO(X) oAo KeMyp o) )) o ((KC(P) ® KC(MJR@)) o (I)]P’,@ ° Kg(O) )

Note that (kgp) ® ko) © Pro © ke | is precisely the map ®pq regarded as a
*-homomorphism C(0)” — C(P)” ® C(Mp )". It follows that ¥ can be expressed as

\Ij = (ld ® A/) [e] ¢P,@

(with the last map properly understood) for a unique A’ € Mor(C(Mp ), Co(X)). |
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Note that for any finite quantum space P the C*-algebra C(P) is isomorphic to
C(P)”, so by Remark 2.14

CMp o) = C(Mpn o). (2.5)

Corollary 2.17. Let O be a compact quantum space such that C(Q) is isomorphic to
C(0)". Then for any finite quantum space P the C*-algebra C(Mp ) is isomorphic to
C(Mp,g)".

Proof. By assumption and Remark 2.14 we have C(Mp ) = C(Mjp g+), S0 in view of (2.5)
and Proposition 2.16 we get C(Mp ) = C(Mp» g») = C(Mp g)”. |

Note that if O is a finite quantum space then C(Q) is isomorphic to C(Q)", so
C(Mjp ) is isomorphic to C(Mp )" for all finite quantum spaces P and O. In particular,

Corollary 2.17 is a generalization of [3, Lemma 1.16].

3 The Universal Operator System

In this and the following sections (in particular in the proof of Theorem 4.1), we will
use the notion of a (right/left) multiplicative domain of a completely positive map. Our
terminology will be the same as in [22, Chapter 3].

Also we will freely use the fact that a u.c.p. map ¥: A — B between unital
C*-algebras defines a non-degenerate completely positive mapid® v: C® A - £ ® B,
where I denotes the C*-algebra of compact operators on ¢,. This map, in turn, extends
uniquely by strict continuity to a u.c.p. map between the multiplier algebras: M(X®A) —
M(K ® B). Additionally if, for any two C*-algebras C and D and any w € C*, the slice map
o ® id extends uniquely to a mapping M(C ® D) — M(D). All this is contained in [20,
Chapters 5 and 8].

Lemma 3.1. Let A and B be unital C*-algebras. If ¢: A — B is a unital completely
positive map and a € M(X®A) belongs to the multiplicative domain of id®¢: M(KXRQA) —
M(K®B), then for any w € K* the element (w®id)(a) belongs to the multiplicative domain
of ¢.

Proof. Any w € K* is of the form w = Tr(-p) = Tr(p-) for some trace-class operator p.
Since any such w can be approximated in the norm of K* by functionals of the same

form with p finite-dimensional, and the multiplicative domain of a u.c.p. map is closed
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([22, Exercise 4.2(iii)]), it is enough to prove that (v ® id)(a) is in the multiplicative
domain of ¢ for such w.

Let r and [ be the left and right support of p, that is, [ is the projection onto
the range of p (assumed to be finite-dimensional) and r is the projection onto the range

of p* (which is also finite-dimensional). Then for any y € K we have

w(yl) = Tr(ylp) = Tr(yp) = w(y) and w(ry) = Tr(ryp) = Tr(yp)

Since a is in the multiplicative domain of id ® ¢, for any z € A we have

(id®¢)(al®2) = ((d® ¢)(@)((d® )R 2) = (1d® ) (@) (IR ¢(2).

Applying (v ® id) to both sides, we obtain

o((@8id@)z) = ¢(© 8 @)@
Similarly
(id® @) ((reza) = ((d® 9)(r®2)((d®¢) (@) = (r® ¢2)(id ® ¢)(a)).
and application of (& ® id) to both sides yields
o(2(© ®i0@)) = p@)9 (@ ® iD(@).

Since this is true for all z, the element (v ® id)(a) belongs to the multiplicative domain
of ¢. |

From this section onward, we will make frequent use of Kasparov’'s dilation
theorem ([18, Theorem 9], cf. also [20, Theorem 6.5]). One of its direct consequences is

the following lemma:

Lemma 3.2. Let P be a finite quantum space and O a compact quantum space such
that C(Q) is separable. Let B be a separable unital C*-algebra and let ¥ : C(0) — C(P)®B
be a u.c.p. map. Then there exists ¥ € Mor(C(0), C(P) ® £ ® B) such that

Y(x) =(d®w ; ®id)(¥x), xeCO),
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where o, ; is the functional a > (e, |ae;) on K with e; denoting the first vector of the

standard basis of ¢,.

In what follows, given ¥ € Mor(C(0), C(P) ® K ® B), we will denote mappings of

the form

x+— (d®o); ®id)(¥x), x € C(O)

described in Lemma 3.2 by V¥ ;.
Consider the universal quantum family of maps ®pg: C(0) — C(P) ® C(Mp )
and let Sp  be the closed linear span of the slices of @} (, that is,

Sp,o = span{(e ® id)®p (%) | x € C(0), ® € C(P)*}. (3.1)

Then Sp, ) is an operator system. Moreover, Sp o comes equipped with a map

defined as ®p , viewed as a map C(0) — C(P) ® Sp . This map is clearly u.c.p. In the

next theorem, we shall prove that Sp ; has an interesting universal property.

Theorem 3.3. Let P be a finite quantum space and O a compact quantum space such
that C(0) is separable. Let Sp C C(Mp ) be the operator system equipped with the
u.c.p. map ¢pg: C(0) — C(P) ®Sp  described by (3.1) and (3.2). For any operator system
S and any u.c.p. map ¥: C(0) — C(P) ® S, there exists a unique u.c.p. map A: Spg — S
such that the diagram

C(O) C(P) ®Sp g
|10
v
CO) CP)®S

commutes.

Proof. Let B be the C*-algebra generated by the set

{¢®id)(v(x)|x € C(O), ¢ € CP)'}.
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Then B is separable unital and ¢ is a u.c.p. map C(0) — C(P)®B. By Lemma 3.2 y = ¥, ;
for some ¥ € Mor(C(0),C(P) ® K ® B). The universal property of (Mp g, ®p ) provides
A € Mor(C(Mp g), K ® B) such that ¥ = (id ® A) o ®p . Let A = (»; ; ® id) o A. Then X is
a u.c.p. map C(Mp o) — B and defining A = FX}SP’@ we obtain

Y =({d® 1) o gp g (3.3)

Slicing both sides of this equation with w € C(P)* we obtain A((w ® id)@P,@(X)) =(w®
id)(l//(x)) for all x € C(0). This means, first of all, that the range of X is contained in
S and secondly, that formula (3.3) determines the values of A on elements of the form

(0 ® id)®p (x). Since such elements span Sp ), this shows that A is unique. [ |

In what follows whenever S is an operator system in a C*-algebra A the symbol
C*(S) will denote the C*-subalgebra of A generated by S. The enveloping C*-algebra (or
C*-envelope) of S in the sense of Hamana ([14, Definition 2.5]) will be denoted by C* _(S).

env

Remark 3.4. LetP, O, Sp,o» and ?p0 be as above. Then by construction we have
q’]}o'@ = (id ® l) [¢] (D]P,@’ (34)

where ¢ is the inclusion Sp o <> C(Mjp g).

Definition 3.5. Let A be a C*-algebra and S C A be an operator system. We say that

(1) the embedding S C A is hyperrigid (cf. [1, Theorem 2.1]) if given a Hilbert
space H, a x-homomorphism n: A — B(H) and a u.c.p. map n: A — B(H)
satisfying 7|q = n|g we have = =y,

(2) the embedding S C Ahas a strong extension property if for every C*-algebra

B and a u.c.p. map ¥ : S — B there exists a u.c.p. extension n: A — B of .

Theorem 3.6. Let S C A be hyperrigid and C*(S) = A. Then C*_(S) = A.

Proof. The universal property of C* (S) (see [14, Corollary 4.2]) provides a surjective

x-homomorphism p: A — CZ (S) such that ,o| g is the identity on S. We will prove that
p is injective. Indeed, embed A into B(H) and denote the embedding by :: A — B(H).
Let n: C* (S) — B(H) be the u.c.p. extension of the embedding L|S: S — B(H). Then

env
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nop: A— B(H) is a u.c.p. map such that o ,o|S = L|S. By hyperrigidity of S in A, we get

n o p = ¢ and hence p is injective. |

Remark 3.7. Theorem 3.6 remains true even without the assumption that C*(S) = A:
in [16, Theorem 3.10] it was proven that if S C A is hyperrigid then C} (S) = C*(S). This
can be deduced from Dritschel-McCullough theory of boundary representations ([9]).
Nevertheless, we presented a direct proof of Theorem 3.6 under the assumptions we are

interested in.

The hyperrigidity of Sp g C C(Mp ) follows from the following more general
fact.

Theorem 3.8. Suppose that A and B are unital C*-algebras, C is a C*-algebra, and let
® € Mor(A, C ® B). Define the operator system S C B

S = span{(vw ® id)(P(x)) |w € C*, x € A}

If C*(S) = B, then S is hyperrigid in B and B = C* (S). In particular for any finite

env

quantum space [P and any compact quantum space O the embedding Sp o C C(Mp ) is
hyperrigid and G}, (S) = C(Mp ).

env

Proof. Denoting by U/(A) the set of unitary elements in A we easily observe that
S = span{(v ® id)(®(x)) |w € C*, x e UA)}.
Let n: B — B(H) be a u.c.p. map, and = : B — B(H) be a *-homomorphism satisfying
n‘sznls- (3.5)

In order to prove that n = 7, it is enough to prove that S is in the multiplicative domain
of n.

Let L be a Hilbert space such that C c B(L) and let us consider the u.c.p. map
id® n): M(K(L) ® By > M(KX(L) ® K£(H)). Equation (3.5) is equivalent to

{d®n) o® = (id® 7) o ®.
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Furthermore, if u € U/(A), then

((id ® n)(fb(u)))*((id ® n)(cb(u))) = (id ® m)(®(u") (id ® 1) (P (w)
= ({d® ) (P(u*w) =1

= (id®n)(P1D)) = (d ® n) (P (u*w))
and similarly

((id ® n)(cb(u))) ((id ® n)(cb(u)))* = (id ® 1) (® (uu)).

This shows that ®(u) is in the multiplicative domain of (id ® 1). By Lemma 3.1, we

conclude that S is in the multiplicative domain of n, which concludes the proof. |

Theorem 3.9. Let P be a finite quantum space and let O be a compact quantum space

such that C(O) is separable. The embedding Sp g C C(Mp o) has the strong extension
property.

Proof. Let:Spy — Abeau.c.p. map. Applying Lemma 3.2 to the composition

we find a *-homomorphism ¥: C(0) — C(P) ® M(K ® A) such that ¥, ; = (id ® ¥) 0 ¢p .
By the universal property of C(Mp (), there exists a *-homomorphism A: C(Mpg) —
M(K ® A) such that

U =({d®A)o ®pg.

The proof is completed by noting that (w; ; ® id) o ¥ is a u.c.p. map with range in A,
which extends . |

Let us recall from [19, Theorem 6.3] that the commuting tensor product of
operator systems (defined in [19, Section 6]) is functorial ([19, Section 3]), which implies
that for any operator system S there is a canonical u.c.p. map Spg ®, S — C(Mp ) ®, S
extending the canonical inclusion on the algebraic tensor products. Furthermore, by
[19, Theorem 6.7], we have C(Mp ) ®, S = C(Mp o) ®,,, S (cf. also [19, Section 5]). Thus,
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there is a canonical u.c.p. map
SP,@ ®c S - C(MP,@) ®max S'

Lemma 3.10. Let P be a finite quantum space, O a compact quantum space such that
C(O) is separable, and let S be an arbitrary operator system. Then the canonical map

Spo ®, S = C(Mp ) ®,,, Sis a complete order embedding.

max

Proof. @ We employ a modification of the techniques used in the proofs of
[15, Proposition 4.6] and [3, Lemma 1.11]. Since C(Mp ) is a unital C*-algebra, by
[19, Theorem 6.6] we can replace the maximal tensor product C(Mp ) ®,,, S by the
commuting one. Since the embedding Sp o < C(Mp ) is u.c.p., by the functoriality of
the commuting tensor product, [19, Theorem 6.3], the map Spy ®, S — C(Mpg) ®, S is
also u.c.p.

Let m be a natural number and take y = y* € Mat,, (Sp o, ®, S), which is positive
when viewed as an element of Mat,, (C(Mp ) ®, S). We have to show that y is positive
when viewed as an element of Mat,, (Sp o ®_ S), that is, given u.c.p. maps ¢, : Sp 5 — B(H)
and ¢,: S — B(H) with commuting ranges we have to prove the positivity of (id ® (¢; -
<p2))(y) (cf. [19, Section 6], the definition of ¢, - ¢, is on page 289, see also the proof of
Proposition 5.6).

Denoting by A, the C*-algebra generated by the range of ¢; and using Theorem
3.9 we find a u.c.p. extension ¢;: C(Mp ) — A, of ¢;. In particular, ¢; and ¢, have
commuting ranges. This shows that ¢, - ¢,: C(Mp ) ® S — B(H) is a u.c.p. map that
extends ¢, -@,: Sp ;®,S — B(H) and we conclude that (id® (¢ -¢,))(¥) = (1d® (@] 9,))(¥).
Clearly, the latter element is positive. |

Corollary 3.11. With P and O as above the canonical map Sp o ®, Sp g — C(Mp ) ®

max

C(Mp ) is a complete order embedding.

Proof. First, by Lemma 3.10 applied to S = Spg, we obtain a complete order
embedding

Sp,o ®, Spo —> CMp g) ®,.., Spo = CMpg) ®, Spg

max

(cf. the remarks preceding Lemma 3.10). Then, using the fact that the tensor products ®,
and ®__ are symmetric ([19, Theorems 5.5 and 6.3]) we apply the Lemma again to obtain
a complete order embedding C(Mp ) ®, Sp g — C(Mp g) ®,,., C(Mp ). |
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4 Lifting Property of C(Mp ) and Sp g,

Let A be a C*-algebra. Following [5, Definition 13.1.1] we say that A has the lifting
property if given any C*-algebra B with an ideal J C B, any contractive completely
positive ¢: A — B/J admits a contractive completely positive lift ¢: A — B. For unital
algebras, the lifting property is equivalent to the analogous property with “contractive

completely positive” replaced by “unital completely positive” ([5, Lemma 13.1.2]).

Theorem 4.1. Let IP be a finite quantum space and let O be a compact quantum space
such that C(0) is separable and has the lifting property. Then the C*-algebra C(Mp )
has the lifting property.

The famous Choi-Effros lifting theorem ([5, Theorem C.3]) states that any
separable nuclear C*-algebra has the lifting property. We will see in Remark 4.2 that
C(Mp ) is almost never nuclear. We need the assumption of separability of C(O) to be

able to use Kasparov's dilation theorem.

Proof. of Theorem 4.1 Let B be a unital C*-algebra with an ideal J € B and let

p: C(Mp ) — B/J be a unital x-homomorphism. Consider the homomorphism
¥ = (id® p) o Ppg: C(O) — C(P) ® (B/J) = (C(P) ® B)/(C(P) ® J).

By assumption ¥ admits a u.c.p. lift U: C(0) —» C(P) ® B. Now we use Lemma 3.2 to
write ¥ in the form ¥ = ©, ; for a © € Mor(C(0), C(P) ® K ® B).

By the universal property of (Mpg, ®pg), there exists a unique A €
Mor(C(Mp ), £ ® B) such that ® = (id ® A) o ®p . Now if g denotes the quotient
map B — B/J then

(id®,0)o<l>]p’@=\ll=(id®q)o\f!
=({(d®qo((d®w;; ®id) 0 ®

=([1d®qo(ld®w;; ®id) o (1d® A) o ®p ),
so for any x € C(0) and ¢ € C(P)*

p((¢ ®id)@p (%)) = (q o ((w;, ®id) o A)) (¢ ®id)®p g (x)).
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In other words for any y € Sp  we have

() = (g0 (@, ®id) o A)) ¥,

and since p: C(Mp o) — B/J is a *-homomorphism, the hyperrigidity of Sp o C C(Mp ),
(cf. Theorem 3.8), implies that g o ((“’1,1 ®id) o A) = p on the whole C*-algebra C(Mjp ).
In particular (w; ; ® id) o A is a completely positive lift of p.

Having established that x-homomorphisms C(Mp, ) — B/J admit u.c.p. lifts, we
use Kasparov's theorem again to obtain lifts of u.c.p. maps: let ¢: C(Mp ) — B/J be
a u.c.p. map. Then ¢ = @, ;, where ® € Mor(C(Mp ), K ® (B/J)). Since M(K ® (B/J)) is
the image of M(K ® B) under the canonical extension of id® g: K ® B - K ® (B/J) (by
[20, Proposition 6.8], owing to the fact that the C*-algebra K ® B is o-unital), it has a
completely positive unital lift o C(Mp ) — M(K ® B), so

9=(0,®id) 0o ® = (v, ®id) o ((d®g) 0o ® =qgo ((w; ; ®id) 0 D),

that is, (w; ; ®1id) o @ is a u.c.p. lift of ¢. |

Remark 4.2. All separable nuclear C*-algebras have the lifting property (by the Choi—
Effros theorem). However, the C*-algebras C(Mp ) are usually not nuclear. For example
denoting by 2 and 3 the two- and three-point space, respectively, by [31, Corollary I1.2]
we have C(My3) = C? # C% x C? = C*(Z, # Zy # Zy) and C(My ) = C3 & C3 = C*(Z3 = Zy),
which are both non-nuclear ([21, Theorem 1.1]).

In view of statements (1) and (2) of Theorem 2.15, we immediately find that

e if C(0) has at least two characters and dim C(P) € {3,5,6....} then there is a
surjective 7 : C(0) — C(2) and an injective p: C(3) — C(P) and hence C(Mp )
surjects onto C(M; ,),

e if C(0) has at least three characters and dimC(P) > 1 then there is a
surjective 7 : C(0) — C(3) and an injective p: C(2) — C(P) and hence C(Mjp )
surjects onto C(M,, 3).

Consequently, C(Mp ) is not nuclear in either case ([33, Corollary 2.5]).

Similarly if C(O) has Mat,(C) with n > 2 as a quotient and dimC(P) > 1
then C(Mp ) surjects onto C(M,y) = Mat,(C) * Mat, (C), which is non-nuclear by
[11, Proposition 6]. In particular, if O is finite, dim C(Q) > 2, and dim C(P) > 1, then

C(Mp @) is not nuclear.
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Now we can show that the universal operator system Sy has the analogous

version of lifting property:

Theorem 4.3. Let P be a finite quantum space and O a compact quantum space such
that C(O) is separable and has the lifting property. Then the operator system Sp  has
the lifting property: given a unital C*-algebra B with an ideal J ¢ B and a u.c.p. map
@: Spp — B/J, there exists a u.c.p. lift ¢: Sp o — B of ¢.

Proof. Using the strong extension property of Sp g C C(Mp ) (Theorem 3.9), we can
find a u.c.p. extension n: C(Mp o) — B/J. Since C(M () has the lifting property, there is

a u.c.p. lift 7: C(Mp ) — B of 5. We define ¢ |

= ﬁ|§]p,@ .
5 Realizable Non-Signalling Correlations

In this section, we will study a class of correlations on finite quantum spaces, which
we will call realizable—this terminology will be explained below. When the quantum
sets are taken to be classical, this notion reduces to the so-called gc-correlations. Thus
in this and following section P and O are finite quantum spaces playing the role of the
question and answer (input and output) sets for Alice and Bob.

We begin with an analog of a positive operator values measure (POVM) on a

quantum space.

Definition 5.1. Let O be a finite quantum space and H a Hilbert space. A u.c.p. map
C(O) — B(H) will be called a quantum positive operator-valued measure (quantum
POVM) on Q. If P is another finite quantum space, then a u.c.p. map C(Q) - C(P) ® B(H)
will be referred to as a quantum family of POVMs on O indexed by P.

Remark 5.2. One can obviously replace B(H) in Definition 5.1 by a fixed unital
C*-algebra A. Clearly, a quantum family of POVMs on O (as in Definition 5.1) is at the
same time a C(P) ® B(H)-valued quantum POVM on Q.

In what follows, we will use the leg numbering notation well known in the

theory of quantum groups. Let A, B, and C be C*-algebras. We define
10 € Mor(A® B, A®B® C),
lp3 € Mor(A®B,C®A®B),

t13 € Mor(A® B,A® C®B)
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t12@®b)=a®b®1,
1)3a®b)=a®1®b, achA, beB.
L13(a®b):]1®a®br

For1l <i <j <3, theimage of an element x € A® B under Lj will be denoted by x;;. Note
that if D is another C*-algebra and ¢ € Mor(D, A ® B) then the mapping

from D to the multiplier algebra of the appropriate tensor product is a morphism
of C*-algebras. We will also use analogous notation for operator systems and unital
completely positive maps (note that an operator system contains a unit element, so that

all maps involved are well defined).
Definition 5.3. Let @ and P be finite quantum spaces. A u.c.p. map
T: C(0)®CO) — C(P) ® C(P)

will be called a quantum correlation with quantum set of questions P and quantum

set of answers Q. We will abbreviate this to the shorter phrase “(PP, 0)-correlation.”

Definition 5.4. Let P and O be finite quantum spaces. A (P, Q)-correlation T will be

called non-signaling if
T(CO) ® 1gq) C C®) @ Lgp, T(lgg ® CO)) C Lgp ® CP). (5.1)

Remark 5.5. The definition of a non-signalling correlation was introduced in
[10, Section B] in the case C(P) and C(Q) are full matrix algebras (however, two different
sets of questions and two sets of answers are allowed). Our definition is dual to that of
[10] requiring unitality instead of preservation of the trace. It is clear that specifying P

and O to be classical finite sets reduces condition (5.1) to the existence of marginals.
Proposition 5.6. Let P and O be finite quantum spaces, H a Hilbert space, and w a state

on B(H). Let ¢, ¢,: C(0) — C(P) ® B(H) be quantum families of POVMs on O indexed by
P such that

1 (X)1392(V)23 = 92(¥) 2391 (X)13, x,y € C(O). (5.2)
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Then there exists a unique linear map T: C(0) ® C(Q) — C(P) ® C(P) such that

Tx®y) = (d®id ® w) (¢ (0)13¢2(1)23), X,y € CO)
and T is a non-signalling (P, O)-correlation.

Proof. Since C(0) is finite-dimensional, the tensor product C(Q) ® C(0) is equal to the

algebraic tensor product C(0) ®,,, C(0) on which we define the linear map
@1 92: CO) ®aC(O) 53X QY > ¢1(X)13¢02(¥)23 € C(P) @ C(P) ® B(H).

Since both maps ¢, and ¢, are unital, ¢, - ¢, is also unital. Furthermore, for any x,y €
C(0), we have

(¢q - ‘Pz)((X QY x® Y)) = (¢y - (Pz)(X*X@ v'y) = ?1 (X*X)13§02(Y*Y)23,

and the complete positivity of maps ¢, and ¢, implies that ¢; - ¢, is positive.

Moreover, ¢, - ¢, is completely positive, since for a € Mat,,(C(0)) we have

(@01 92)m (@) = ©1,,(@)1302,,(A) 23

is a product of two commuting positive elements of C(P) ® C(P) ® B(H) (by complete
positivity of ¢; and ¢,). Finally, T = (id ® id ® w) o (¢, - ¢,) is completely positive as the
composition of completely positive maps (cf. [33, Section 1.5.4]).

Since both ¢, and ¢, are unital, we immediately see that T(C(Q)®1¢q,) C C(P)®
Lo and T(1g gy ® C(0)) C 1) ® C(P), hence T is non-signaling. |

We refer to the condition (5.2) by saying that ¢; and ¢, commute on the second
leg. Note that using the version of Stinespring theorem for pairs of c.p. maps with
commuting ranges (such as [33, Theorem 1.6]) we can loosen the assumption that C(QO)

is finite-dimensional.

Definition 5.7. Let PP and O be finite quantum spaces. A (P, Q)-correlation T obtained
from two quantum families of POVMs ¢, ¢,: C(0) — C(P) ® B(H) commuting on the
second leg via the construction described in Proposition 5.6 will be called realizable

and the triple (¢,, ¢,, w) will be referred to as the realization of T.
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The next theorem provides equivalent descriptions of a class of realizable

correlations.

Theorem 5.8. Let T: C(0) ® C(O) — C(P) ® C(P) be a (P, 0)-correlation. Then the

following conditions are equivalent:

(1) there exists a Hilbert space H, a pair of u.c.p. maps ¢, ¢,: C(0) - C(P)®B(H)
satisfying

91(X)1302(V)23 = ©2(¥) 2391 (X) 13, x € C(O)
and a norm-one vector & € H such that
T(x®y) = (i[d ®id ® w,) (¢, () 13¢2(7)23),  X,¥ € CO),

(2) there exists a Hilbert space H, a pair of unital *-homomorphisms
d,,P,: C(O) - C(P) ® B(H) satisfying

D, (x)13P2(V)23 = Po(¥)o3®P1(X)13, x € C(O)
and a norm-one vector & € H such that
Tx®y) = (1d®id ® ) (P;(X)13P5(V)23). x,y € C(0),
(3) there exists a state o on C(Mp o) ®,., C(Mp ) such that
Tx®y) = (1d®id® 0)(®po(x),3Ppo(V)24), x,y € C(0),
(4) there exists a state o on Sp g ®, Sp o such that

T(x®y) = (d®1d®0)(epoX)13¢p,0()2) X ¥ € C).

Proof. Ad (2) = (3): For i = 1,2 let A;: C(Mpg) — B(H) be the unique unital

x-homomorphisms satisfying

@ =({id®A)o®py and @, =(1d® A, o Bp .
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Since for any w;, », € C(P)* the elements (v; ® id) (P, (x)) and (v, ® id)(P,(y)) commute,
we have

A(@)Ay(b) = Ay(b)A,(a) (5.3)

for all a,b € {(w ® id)®p (%) |x € C(0), © € C(P)*}. This set generates the C*-algebra
C(Mp ), so (5.3) is satisfied for all a,b € C(Mp ). It follows that there is a unique
M: C(Myp,g) ®,., C(Mp o) — B(H) such that

M@®b) = Aj(@Ay,B), abeCMpg).

Let o be the state on C(Mp ) ®
functional w;. Clearly for any x,y € C(O)

C(Mjp ) defined as the composition of IT and the vector

max

(did® 0)((I>Pl@(X)13<I’P,@(y)24) =({d®id® wé)(id ®id® H)(<I>Pl@(x)13<bp’@(y)24)
= (id ®id ® w;) (((id ® ADPpo(x))5((d® Az)‘I’P,@(Y))zs)
= (1d ®id ® w.) () (%),3P5(¥)93) = TE @ ).

Ad (3) = (2): Let T be given by the formula in (3) for some ¢ and let (H,, 7, 2,)
be the GNS triple for o. Define Ay, Ay: C(Mp ) — B(H,) by

A(a) =7,(a®1),

a e C(Mpg)
Ay(@) =m,(1®a), =0

and let ®; = id ® A;) o ®p g (i = 1,2). Since A;(a)A,(b) = 7, (a ® D) for all a, b, we have

(d ® id ® wg, ) (P ()13P2(¥)z3) = (A ® id ® wg ) (id ® id @ 75) (P, (%) 13Pp,0 (V) 24)

= ({d ®id ® 0)(Pp,(*¥)13Pp(V)2s) = TX®Y)

for all x,y € C(O).
Ad (3) = (4): By Lemma 3.11 we can treat Sp o ®, Sp  as a real ordered subspace
of CMp ) ®,,.., C(Mp o). Thus (4) follows from (3) by taking restrictions (and Remark 3.4).
Ad (4) = (3): As above, we consider Sp g ®, Sp as embedded in C(Mp ) ®,.,
C(Mp o). Then any state on Sp , ®, Sp  extends to a state on C(Mp ) ®,., C(Mp ) and the

implication follows from Remark 3.4.
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Ad (1) = (4): By the universal property of (Sp g, ¢p o) we have
¢ =(1d®A)ogpy and ¢, =({1d®2Ay)o@p

for certain u.c.p. maps A, A,: Sp g — B(H). Moreover, the fact that the ranges of ¢; and
¢, commute translates to the fact that the ranges of A; and %, commute just like in
the proof of the implication (2) = (3) above. Let 0 = w; o (41 - 4;). Then o is a state on
Sp,o ®, Sp o and for any x,y € C(O)

(ideid® 0)(‘P]p,@(X)13<PP,©(Y)24) =(d®id® a)g)(id ®Iid® (A, - )vz)) (‘PP'@(X)13€0]}D,@(Y)24)

=(>1d® id@wg)(§01(X)13§02(Y)23) =TxQYy).

The implication Ad (2) = (1) is clear. ]

6 Synchronous Correlations

Let P and O be finite quantum spaces and let us specify the decompositions

Np No
C(P) = PMat,, (C) and GC(O) =EPMat, (). (6.1)
=1 k=1

Let {f,,[l=1...,Np, s,t = 1,...,m;} and {¥e;|k = 1...,Ng, i,j = 1,...,m;} be the
corresponding systems of matrix units in C(P) and C(Q).

Furthermore, for each [ and k, let {lfs} . and {kei} . be the standard

s=1,..., i=1,...,n

bases of C™ and C", respectively. Clearly, we have
fo = If)(f;] and Fey = [¥e;)(e)|

forall k,1,1,j,s, t.
Given a (P, 0)-correlation T: C(0) ® C(0) — C(P) ® C(P) and natural numbers

k. k' e{1,...,Ng}
LU ef1,...,Np}
i,jefl,...,ng}
i, 7 efl,...,ny}
s,tefl,..., my

st efl,...,my}

$20Z Jaquieoa( 9| U0 J8sn AST( UOJI0JYoUAg usuoupa|g sayosineq Aq | ¥9y99/00¥Z L/ L/S20Z/3101e/ulwl/wod dno olwapeoe)/:sdyy woJ) papeojumoq



12428 A. Bochniak et al.

we define

kk' 5-(s1),(s't')
Xy € C (6.2)

by
k 4 kk' 5/ (st),(s't') (1 4
T(ey @ ey = > X (Fs® for). (6.3
s,t,s' LU

Definition 6.1. Let P and O be finite quantum spaces with decompositions of C(P) and
C(0) as in (6.1). A (P, 0)-correlation T: C(0) ® C(Q) — C(P) ® C(P) is called synchronous
if

1 kky(st),(st) _
D e X = Ve

s,tijkl

where the coefficients kZ:X Ef;;l'((;}f;) are defined by (6.3).

Remark 6.2. The definition of synchronicity proposed above may seem rather techni-
cal, but it is in fact strongly related to the classical notion of synchronicity (as in for
example, [12, Section II], [17, Section 2]). In case the sets P and O are classical, we have
n; = m; = 1 for all k,I and there are no “internal indices” inside matrix blocks, so the
collection of numbers (6.2) related to T reduces to {kZ:X |k,k'=1,...,Ng, LI =1,...,Np}
and it corresponds to the classical correlation matrix via

x =pk KILl), kk=1,.. ,NgLl=1,..Ng.

Note that in terms of a game with strategy p(.,-|-,-) for a fixed [ the sum of p(k, k'|l,])
over all k, k' is the probability of giving any pair of answers to the pair of questions (I, 1),

so > p(k,k'|l,l) = 1. Thus the condition
k.k

> bk, kLD = Np
k.l

means that for each [ we must have p(k, k’|[,]) = 0 whenever k # k'.
The next proposition shows that synchronicity of a correlation can be checked by

evaluating it on one particular element and then taking its expectation on the maximally

entangled state.
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Proposition 6.3. Let P and O be finite quantum spaces with decompositions of C(P)
and C(Q) as in (6.1) and let T: C(0Q) ® C(0) — C(P) ® C(P) be a (P, Q)-correlation. Then T

is synchronous if and only if

<¢ T(Z nLk keij ® kelj)¢> = 1/

ijk

Np Np
where ¢ = \/L ; :nz Zs:(lfs ® lfg) € (g (le) ® (1@1 (le).
Proof. We have

1k k _ 1 kkx(st), $'t) 1
T(Zn_k eij® eij) - z nk ll/ @@),3)) (fst® fs’t’)'

ijk ij.kllUs,s tt

Furthermore for any [, s, t,s’, t'

(0| (fse @ for)d) = 5= Z MW S f, @ | (For ® for) 2f s, ® 2F,)

51,52

Z i ’_mz > 8,801, 8,801, 55, 8575, B1s, B,

S1,52

D T N F51115l/1151125l/125 550t

li.lp

== N]P’ my Sll/5ss/5tt/

Substituting this into the first equality, we obtain

1k k _ 1 1 kky(st),(st)
<¢ T( e € ® eij)¢>—wp D e X

ij.k s,tiklj

We now pass to the construction of certain synchronous correlations via the

prescription provided by Theorem 5.8. It says that realizable (P, Q)-correlation is given

by a state on C(Mp, ) ® naxC(Mp ). Let o be such a state. The corresponding T, is defined

by

T,xQy)=(1d®id®0)(®p ()3P0 ()2), X ¥ € C).

$20Z Jaquieoa( 9| U0 J8sn AST( UOJI0JYoUAg usuoupa|g sayosineq Aq | ¥9y99/00¥Z L/ L/S20Z/3101e/ulwl/wod dno olwapeoe)/:sdyy woJ) papeojumoq



12430 A. Bochniak et al.

We define leff € C(Mp o) by

k=1,...,N
k l kst 1o Ny
@y oFey) =D @5V,
S,t,l l/_] - ll rnk
With this notation we have
k 1% kst o K st (1 v
T,(e; @ ey) = D o(Vie Vi) (fu®' fur)
s,t.s',t Ll

for all k, k', i,j,i,j .

Lemma 6.4. Let 7 be a trace on C(Mjp ). Then there exists a state o, on C(Mp ) ®
C(Mp @) such that

o (szt ® K VS/t/) _ .L,(szt K Vt/S/)
(Vi ®Vip) =tV Vi

Proof. Let (H,, m,, ;) be the GNS triple for r. Since t is a trace, the mapping
7.(a)R2, — 7. (a")Q,, a € C(Mp )

(defined on a dense subspace of H,) extends to an anti-unitary operator J,: H, — H..
Therefore, 7, : C(Mp ) — B(H,) defined by

m.(a) = J,w (a")J,, a e C(Mpg)

is an anti-representation of C(Mp ), or in other words, a representation of C(Mp ).

Thus, there exists a representation IT of C(Mp o) ®,,,, C(Mp )" on H such that

M(a ®b) = (a)r,(b), a,b e C(Mpq)

and we can define a state o/ on C(Mp @) ®,,.x C(Mp )" by

ol (x) = (2, |NxKQ,), x e C(Mpg) ®,, C(Mpg)".

Now recall from Section 2.3 that C(Mp )" is isomorphic to C(Mp ). One such

isomorphism arises from each pair of isomorphisms C(Q)” = C(Q) and C(P)” = C(P) (cf.
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the proof of Corollary 2.17). Taking the transposition on both these algebras yields an
isomorphism Y: C(Mp o) — C(Mp g)" such that

k=1,...,Ng,
-l
J=1,...,1n,
s;t=1,...,my.
We define o, by o] o (id ® ). [ ]

By a mild abuse of notation, let us denote the (P, 0)-correlation arising from o,

(as defined in Lemma 6.4) by T,. Clearly,

T, ey ey = > (v Vi) (@ o)

s,t,s' v LU
for all k,k',i,j,i',j, so that
k,k/: 1,...,N®,
kk/X(st) (') _ ( VSth ) Ll = 1,...,Np, (6.4)
(i) i L =1,
s,t,s,t=1,...,m,.

Theorem 6.5. Let PP and O be finite quantum spaces and t a trace on C(Mp ). Then

the (P, ©)-correlation T, is synchronous.
Proof. First we compute &5 (*e;; ¥'e;;) in two ways:

@ 0 (Fey) 0p0(Fepy) = po(Fey M eji) = Sady Ppo(Fei)-
The left-hand side is

(Zineofu)(Z thwe'vit)

l l/ k /
> Yulfewe Vf]t l/VSt

s,tl s/t s,tls t'l
_ l st K
- Z fov ® lVlJ le’
s,tlt
_ ! st K vt
= > e vy
sttt

Zlfgt(@Zl 5 kl Jt/ll;

s,tl
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while the right-hand side is §/5; ; Z I @ kst = Z Ufir ® 818

Vi —
s,t,l s,tl

JJ
E V“’ Kutt s s VS
l l ] l/ —_— kk/ ],] l i’y

which for t = s reads

st K ts ss
Z Vi Vi = ey lV

kyst so that

1

(6.5)

Using this information and denoting by Tr; the standard trace on the I-th matrix block

of C(P), we compute

kk' 5-(st),(st) __ st k'
X = 2, (Vi Vi)
s,t s,t

—ZSkk/5 (V)

= Sgr'd; (Trz®f)(z fae ® z/VSt)

st

= 8kk/8]]/ (TTZ ®T) (‘I)]p,@ keu/))

= Skk’gjj/ (T‘rl ®T) (‘I)]P’,@ kelp) q)]p @( epi/))

(

= 8087 (Tr, ®T) (‘PP,@ (e “epy ))
(
(

k
= Skk/8]:]'/ (T‘rl ®T) (‘I)]P’,@ epl’) q)P @(

= 818303 (Try ©0) (@5,0 (Fey))

forevery p € {1,2,...,n;}.

Putting k =k’,i=1,j=j, and summing overi,j € {1,...

1 (st),(st)
an X = (nl‘g’f)(‘l’m( ))'
S,t,l,]

Next, summing over p € {1,...,n;} we obtain

1 kk (st) (st)
> & = aneo( T eroten)

Sit,i,j

v))

Ny}, we get
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and summing over k we get
1 kkyr(st),(st) _ k _ —
> o X ) = (T ®z)(2 ®p o epp)) = (Tr, @)1 ®1) =m,
sitijk pk

that is,

1 Kkt (s
D o X =1 (6.6)

s,tijk

for every I. Summing both sides of (6.6) over [ we finally arrive at

| Kkt (st
D e Xy = Ve 6.7)

s,tijkl

In a completely similar manner as in [3, Theorem 2.5] and [23, Theorem 5.5] (cf.
also [17, Theorem 3.2]), we show below that synchronous realizable (P, Q)-correlations
arise from tracial states on C*-algebras generated by operators associated to the
maps ¢, and @, in the realization (;, ®,, w) of the correlation. Moreover, operators
associated to @, and ones associated to &, are related to each other, in the same way as
Alice’s and Bob's operators were in [3, Theorem 2.5]. The proof of the next Theorem is

an adapted version of the ones of [3, Theorem 2.5] and [23, Theorem 5.5].

Theorem 6.6. Let P and O be finite quantum spaces and let T: C(0) ® C(QO) - C(P) ®

C(IP) be a realizable correlation with realization (&, ®,, wg), where
®,, ®,: C(Q) —> C(P) ® B(H)

are unital x-homomorphisms with commuting ranges and § € H is a unit vector. Let
{’;Ufjt} and {’;Wff} be elements of B(H) defined by

@, () = Zlfst ® klUf;'

Lst -
o k=1,...,Ng, i,j=1,...,n,.
k 1 k t ’ 1 VO b ’ r Tk
o, ey) =D @ W,
st

Assume that T is synchronous. Then

(1) fwite = (KUs)"¢ for all k,1,4,j,5,t,
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(2) the restriction of the vector state w; to the C*-algebra generated by

kyp7st
[ Wi

is a trace,

(3) the restriction of the vector state w; to the C*-algebra generated by

krrst
[ U5

is a trace.

(6.8)

(6.9)

Moreover, the state © on C(Mp ) defined as © = wg 0 Ay, where A;: C(Mp ) — B(H) is

the unique unital x-homomorphism such that
@) =({d®A))odpg
is a trace and we have T = T,.

Proof. Using the Schwarz inequality in H and then in R2"%*2™ we compute

_ 1 kk~y (st),(st) __ kyyst kyprst
No= D il WG = 2 mmlE |10 iWE)

s,iti.kl s,tigkil
= 2 (e W)
s,itig.kl
= X wmliGog)e wge)
s,tig.kl
< 3 altug)el el
s,tij.kl
2
< (009 rel) (3 pmgel?)’
S,ti,J S,t,1,]
1 ;
=3 (X kltogtop a) (X ] Gwyiwge)
k1l S, t,1,J s, t,i,J

1 1

_anml(Z (& |[Kustkutse )) (Z< £k Jtls;iwstg))z.

S,t,0,j s,tij

(6.10)
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Next we note that

1 tkyyt k
Z ng l fj lUs Z U _ml]lHr (6118)
s,tijk i,5,k
L kpyt kp7st k
> hwEw = Ewh = myly. (6.11b)
s,tijk Jjtk

Indeed, the first equality in (6.11a) follows from the fact that

kK =1,...,Ng,
l=1,...,Np,
BT =1,...,n,
s=1,...,my,

st K 11ts ss
ZlU UE = Suedy Kuss,

which is obtained by applying A; (described in the statement of the theorem) to both
sides of (6.5) and noting that

kzl,...,N(O),
l=1,...,Np,
A (st = Sos, o F (6.12)
Lj=1,...,n,
s,;t=1,...,my.

The second equality in (6.11a) is a consequence of the fact that for every s the expression
Z’jUf.iS is the (s, s)-component in Matml(B(H)) = Matml((C) ® B(H) ¢ C(P) ® B(H) of the

i,k

image of the unit 1 € C(O) under the homomorphism ®,: C(O) - C(P) ® B(H). Since &,

is unital, we see that

kyrss _
> Rug =1y
ik

and summing over s we get (6.11a). Similarly, we derive (6.11b).

In particular,

1 1

Zn,fm,(Z( I"Uff’iv“s)) (Z(sl"W}f Wf}f))2=2<s|s>=

k.l S0, S,tij k

and the inequalities in (6.10) are actually equalities. From the fact that the first

inequality in (6.10) is an equality, we conclude that ka Ef]t)) ((l‘;'? 0 for all indices. The
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equality version on the fifth (in)equality of (6.10) shows that
fwste =Kot (SUsh e (6.13)
for all s, t,i,j, k,l where % la ¢ ¢ T. Using this equation, we get

(s1),(st) st kyyst
X = €Ut

=Kast(e | KUst (KUsh) e)

(s),(s8)

i = > 0 we conclude that k St € {0,1} and in both cases we get

and since kle
fwite = (fushe (6.14)

for all s,t,i,j,k, L.

Following the method of the proof of [3, Theorem 2.5], we conclude that the
vector state w; on B(H) is a trace when restricted to the C*-subalgebra of B(H) generated
by (6.9) and similarly for on the C*-subalgebra generated by (6.8). To that end for each
(k,1,1,7,s,t), we let the symbol (%Uf]'?)_l denote the adjoint of ’iUfjt and we consider a

word
_ (kigpsityan kg 1 rSqtq\aq
zZ=(RUyi)" - (quiqjq) '
in the generators (6.9) and their adjoints, where o, € {1, —1} fora = 1,..., q. Since each

kWSt commutes with each ¥, Uf ]t,, using (6.14) the vector Z¢ can be rewritten in terms of

the generators (6.8) and their adjoints as

2¢ = (Pwie) o (i) T,

lglq

Thus, just as in [3, proof of Theorem 2.5] and [23, Proof of Theorem 5.5] (cf.
[17, Theorem 3.2]),

kyrst kryst stk 7't 7 tk’ 't

for all k,k',1,l,s,s',t,t',i,7',j,j. To complete the proof of the corresponding traciality, it

suffices now to use the induction on the number of U’s under W
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In order to prove the final statement of the theorem let us note that by (6.12) the
range of A, is the C*-algebra generated by the liUfJ? (with all possible indices) on which
the vector functional w; is a trace. It follows that 7 is a trace.

Moreover, the Hilbert space HE defined as the closure of A, (C(Mp))é can be
identified with the GNS space for t. Using this identification, we have

tRUstR Vi) = (& | KUtk utse)

( |kUst(k/Ust’) E)

= (e [fuy iwiye),

where in the third equality we used (6.14). In view of (6.4), this proves the claim. |

Remark 6.7. Let us give a separate proof that a (P, 0)-correlation T, defined by
a trace T on C(Mp ) as explained before Theorem 6.5 is synchronous. We will use
Proposition 6.3.

We compute

<¢> T(ankkeif®keij)¢>=<¢ ( > v ) (fu ! fstf)) >

ij.k ij.kLlU,sts t
= Z ( Vf]t ;Vts )| (lfst ® l'fs,t,)qb).
i,j,k,l,l’,s,t,s’,t’

From the identity

(0] (fse @ For)d) = mhduw 2 (Foy [FNF sy | FNF N F N | fer)

N]pml Sll’ass’ 6tt’
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we get

1k k 1 tkyst
<q§ T( e eij® eij)¢> = Z Npmyng © ( Vf] l’V S)(Sll/ass’(stt/

ijkllszts t

= Z Npmlnk Vi]t %Vts)

ij,kls,t

_ :E: k sﬂ

- anunk 124
i,j.kls

— k 55)

- Npml i
i,kls

1
=2 wmt ™
Ls

= N]Pm1 =

Let us note in the reasoning above we never used the fact that r was a trace
(although it is needed to define T, = T,., cf. Lemma 6.4). In particular, Theorem 6.6

shows that if  is a state on C(Mp ) and there exists a (P, 0)-correlation T satisfying

T(keij ® keij) = Z ( ijt ;?Vt/ /) (lfst ® l/fs/t/)

LUs,s' tt

forall k € {1,...,Ng} and i,j € {1,...,n;} then, if T is realizable, there exists a trace t
on C(Mp ) such that

(v V) = (Vi iv)

for all indices.
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