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ABSTRACT OF THE DISSERTATION

Nonperturbative Dynamics of Monopoles in Quantum Field Theory
By
Michael Waterbury
Doctor of Philosophy in Physics and Astronomy
University of California, Irvine, 2021

Professor Yuri Shirman, Chair

It is common for quantum field theories to lack a consistent, perturbative treatment. In most
cases, this is because the couplings flow to a strongly-coupled regime, and the perturbative
series diverges at all orders in these regimes. In some cases, such as those we will investigate
for magnetic monopoles, the dynamics are inherently nonperturbative. In three dimensions,
monopoles play the role of instantons and induce important corrections to the theory which
are absent in a naive perturbative expansion around the trivial vacuum. In four dimensions,
they appear as charged states, and the scattering processes involving electric and magnetic

states fail to converge at any order in perturbation theory.

We begin by studying the conditions for fundamental zero modes of the Kaluza-Klein
monopole which arises in compactified four dimensional theories. The existence of fun-
damental zero modes provide a path to decouple the Kaluza-Klein monopole in the zero
radius limit such that the theory is purely three dimensional. We study the correspondence

between the three and four dimensional theories under these effects.

Next, we study the moduli space for three dimensional supersymmetric SU(N) gauge theories
with F© < N chiral superfields in the fundamental and anti-fundamental representations.
We calculate quantum constraints induced by monopoles and find a novel interpretation

of the constraints as transition functions between the moduli of different subwedges of the



moduli space. Although the subwedges are classically disjoint, these quantum modifications
smooth out their boundaries and allow for a consistent description of the system’s physics
independent of the choice of classical vacua. We emphasize how these quantum modifications
to the moduli space allow one to flow from the F' flavor theory to the F' — 1 flavor theory

which was not previously understood.

We now shift focus to an on-shell description of electric-magnetic scattering. Magnetically
charged particles are theoretically well-motivated, but it is difficult to calculate the signatures
of scattering events involving both magnetic and electrically charged particles. This cause for
this difficulty is two-fold: there remains no local, Lorentz invariant Lagrangian description
of such theories, and due to Dirac quantization, the coupling strength of the interactions are
never weakly-coupled. We develop on-shell methods to study these processes, derive new

selection rules, and calculate fermion-monopole scattering.

We end by changing gears and presenting a phenomenological study of dark matter freeze-out
where the universe experiences an early QQCD phase transition. Where dark matter freeze out
is typically driven by annihilation into quarks, here the active degrees of freedom are mesons
which alter the correspondence between the dark matter couplings to the Standard Model
and the relic abundance of dark matter. We show that this model can explain the observed

dark matter relic density while evading experimental constraints from direct detection.

x1



Chapter 1

Introduction

Magnetic monopoles can play a variety of roles in quantum field theory (QFT) depending
on the geometry of the theory. On R? (4D), they appear as massive extended objects in
grand unified theories [101] and are responsible for nonperturbative effects in strongly cou-
pled gauge theories. In fact, it has been conjectured that confinement is a symptom of a
monopole condensate [78]. As a dynamical explanation for confinement in quantum chromo-
dynamics (QCD) is a long-standing goal for theoretical particle physics, this is particularly
intriguing idea. Much of the recent progress in this direction has been in supersymmet-
ric (SUSY) theories. For instance, in Seiberg-Witten A" = 2 theories [94], one can explicitly
show how electric confinement is connected to a monopole condensate. In contrast, if mag-
netic monopoles are extended objects in an ultraviolet (UV) completion of the Standard
Model (SM), then, at long distances, they behave as magnetically charged states coupled by
electromagnetism. Such states were initially theorized by Dirac [41], and their interactions
with matter are frequently incalculable. Despite the long history of these ideas, there is
still much to understand about the dynamics of magnetic monopole of both theoretical and

phenomenological interest.



To further understand the role of magnetic monopoles, we can compactify the dimension
along their world-line, such that they behave as instantons in theories on R? (3D) or theories
on a cylinder (R® x S!). The theory on a cylinder can interpolate between the 3D and 4D
theories [3, 4, 32, 38, 88, 95]. Many nonperturbative effects in 4D SUSY theories are best
understood by considering the theory on a cylinder and taking the limit of an infinitely large
compact dimension. Similarly, the limit of infinitesimally small compact dimension allows

us to find new results for 3D theories from 4D theories.

The rest of this chapter attempts to make the above notions more precise and provides the
background for the chapters that follow. We begin by discussing 4D instantons with the goal
of epxlaining their topological origins, their zero modes, and how to calculate their dynamics.
We then discuss monopole-instantons and their zero modes in detail before discussing the
Kaluza-Klein (KK) monopole which appears in the theory on a cylinder. The KK monopole
is paramount to the connection between 3D and 4D theories. Next we review exact results
in NV =1 4D SUSY QCD and N = 2 3D SUSY QCD. We explicitly show that A" = 2 3D
SUSY QCD deformed by the KK monopole flows to N’ =1 4D SUSY QCD in the limit of a
large compact dimension. These sections provide the necessary background for Chapters 2
and 3. In Chapter 2, we study the conditions for KK monopole fundamental zero modes by
constructing the solutions. As a result, we find an elegant, dynamical explanation for the KK
monopole to decouple under the real mass deformations discussed in [4] and illustrate how
the appearance of these zero modes explain the 3D origins of the ADS superpotential of a 4D
SUSY SU(2) x SU(2) gauge theory with bifundamental matter. In Chapter 3, we calculate
chiral, squark correlation functions in monopole backgrounds. Their non-zero value implies
the existence of quantum deformations of the moduli space which can be implemented by a
constraint with a Lagrange multiplier in the superpotential. The quantum constraint ensures
that the superpotentails generated in different sub-wedges of the moduli space agree despite
being classically disjoint regions. Moreover, the quantum constraint is necessary for the

theory to properly flow to theories with less flavors under large mass deformations.



After introducing monopoles and their role as instantons in SUSY gauge theories, we discuss
electromagnetism with magnetic monopoles by beginning with the Dirac monopole. We
emphasize that although the dynamics of the theory is difficult to calculate, the theory
remains consistent with the laws of quantum mechanics and relativity. The problem of
calculating is revisted in Chapter 4 using the language of scattering amplitudes. We find that
theories with mutually non-local electric and magnetic charges require new representations of
the Lorentz group which were not previously considered. With these new representations, we
construct spinor-helicity variables and derive selection rules for the scattering processes from
their little group properties. Additionally, we perform a relativistic calculation of fermion-

monopole scattering and find results which agree with previous non-relativistc calculations.

We end this chapter by discussing thermal freeze out. This section on thermal freeze out
focuses on its prospects as a mechanism to produce the observed dark matter relic abundance.
Although the model works for a variety of masses and coupling strengths, the weak-scale
couplings are of particular interest. Dark matter with these couplings is often referred as a
weakly interacting massive particle (WIMP) and the coincidence between dark matter and
the weak scale is often called the “WIMP miracle.” Despite being compelling, WIMP-like
dark matter produced by thermal freeze out is in tension with direct detection experiments
and its prospects seem dim. In Chapter 5, we explore a dark matter model where thermal
freeze out occurs during a period of early QCD confinement. We find that, in the context of
a non-standard cosmology, the WIMPs can evade current direction detection bounds while

explaining the entire dark matter abundance, maintaining the “WIMP miracle.”

We conclude this dissertation in Chapter 6 with final remarks on the work presented in

Chapters 2 to 5.



1.1 Instantons and Monopole-Instantons

QFTs are defined on a given manifold M, and instantons, as we shall see, are deeply con-
nected with the topology of the given manifold. We will need to deal with them for each
manifold on which we wish to study QFT. In this section, we will develop the theory of
instantons on R* (4D), R? (3D), and R? x S! (cylinder) each with a Euclidean metric. While
the 4D scenario most closely resembles models for fundmental physics, the motivation for
studying 3D theories and theories on a cylinder is less direct. 3D QFT's can model electrons
in metals which may be effectively constrained to two spatial dimensions, while QFT on a
cylinder corresponds to thermal systems where the size of the compact direction S! corre-
sponds with the inverse temperature of the system. From a purely theoretical point of view,
3D QFTs are more tractable than 4D QFTs, and the cylinder serves as an interpolating the-
ory where large compact dimensions behave 4D-like and small compact dimensions behave
3D-like. Although there is no proof of such a correspondence between these theories, all

known examples follow this schematic, and presenting examples is a key point of this work.

In this section, we will begin by discussing 4D instantons, developing the philosophy be-
hind their existence and how to calculate their effects. Next, we investigate 3D instantons
which require symmetry breaking. These instantons correspond with 't Hooft-Polyakov mag-
netic monopoles in 4D, and thus we often refer to them as monopole-instantons or simply
monopoles. Finally, we establish the role of the compact dimension on the instantons of
R3 x S'. The R? factor reproduces the monopole-instantons in the pure 3D theory, while
the S! allows novel configurations called the KK monopoles. Importantly, the KK monopole
along with the fundamental monopole-instantons form a caloron which can be identified with

the 4D instanton when the compact dimension is large.



1.1.1 Instantons on M = R*? (4D Instantons)

Instantons were first discovered in [10]. In an illuminating paper [102], ‘t Hooft calculated
their quantum effects. Since then, many more calculations and reviews been published adding
detail and insight into instanton calculus. We find [25, 28, 42, 96, 109] to be particularly

insightful.

We begin by considering the path integral for the parition function of 4D Yang Mills (YM)

with gauge group G coupled to Weyl fermions ¢ and scalars ¢
Z = / DA, DDy DipeSAwow4], (1.1)

This expression can be interpreted as the “sum over all field configurations with finite action
weighted by their probability amplitude” where “their probability amplitude” is given by
exp(—S[A,, ,1,1]). The action for pure YM is

Sym[A,] = / d'z [—i Te(F"™F,,) + Tr(F*™F,,) (1.2)

i
292 1672

where " = [D,,D,]| is the field strength tensor, and FW = %%VWF’” is the dual field

strength tensor. The requirement that the action be finite is equivalent to the condition that

the field strength must vanish sufficiently quickly at infinity

lim F,,(x) =0. (1.3)

T—00

This implies that the gauge field becomes pure gauge at infinity

lim A,(z) = iU~ (2)9,U(x), (1.4)

T—00

where U(z) € G is a gauge transformation. Fundamentally U(z) is a map from spacetime to



the gauge group. Restricting ourselves to the condition at infinity, the domain of the map

becomes S® such that
U:S* =@, U:z—U(zx). (1.5)

If we consider the set of all possible maps, they fall into classes based on their homotopy
group m3(G). Thus, there are |m3(G)| distinct classes of field configurations which satisfy
our finite action condition. By nature of homotopy, one cannot continuous deform between
maps which are characterized by different elements of 73(G). It follows that the path integral

written in Equation (1.1) decomposes into a sum over these different classes

- _siaAlf ¢

z= >y z zZ= / DA D@D Dipe= 510001 (1.6)
kEﬂg(G)

Due to a correspondence with the #-vacuum, we interpret this sum as the effect of tunneling

between the different vacua of the theory. It is often said that the instanton is the effect of

tunneling between topological distinct vacua. The above decomposition of the path integral

is the justification for this statement.

Now we turn to the question of calculating the partition function in the different k-instanton
sectors of the theory with gauge group G = SU(N) where m3(SU(N)) = Z. The path
integral is computed by considering the classical, minimum action field configuration and
then summing over the perturbative modes of the classical solution. Thus we need to find
both the minimum action in the k-instanton sector and the field configuration to which this

corresponds. To determine the minimum action, we turn to the so-called Bogomolny bound



[15] which is easily derived by rewriting the action as

1 ~ 0 1 -
(k] — 4. | 2 v
SIAY] /d T { 1 Tr ((FW F Fuw) > + (167?2 T 292> Tr(F,, F )} (1.7)
i0 1 ~ 872
> [ dle (L5 — wy = (£ 4 ‘
> /d x (SW ¥ 292) Te(F,, F™) (¢ =t 10) 2 (1.8)

where the bound is saturated if the field strength is self-dual or anti-self-dual (F},, = +F )

and we used that the integral over the Pontyragin square is given by
/ d*z Tr(F,, F") = 167%k . (1.9)

One can easily verify that the minimum action is then given by k£ > 0 for self-dual con-
figurations and k < 0 for anti-self-dual configurations. Therefore the k-instanton partition

function is given by
772 H u.
zk = / DAI e g FE = SIAR (1.10)

where we expanded the gauge field around its classical value by A, = Af}' + A Af}'
is the k-instanton solution which we will discuss in a moment. We are interested in the
leading order corrections to the path integral due to instantons. Due to the exp(—ggi;) factor
from the classical action, its effects are dominated by single instanton configurations at weak
coupling. Thus we will only discuss the £ = +1 effects from here on. The general k instanton

solution can be constructed via the ADHM construction [8].

We now cite the instanton solution for k =1 and G = SU(2)
Af}'[k:” = 9, log[(x — 2)* + p*lo, (1.11)

up to local gauge transformations.’ For k = —1, simply replace o,,, with 7,,. z is a 4-vector

!By local gauge transformations, we mean those which are in the trivial class of 73(SU(2)).



which is interpreted as the location of the center of the instanton, and p is a real number
which is interpreted as the size of the instanton. Note that the value of z and p do not change
the classical action of the configuration. For general G = SU(NV), one simply embeds the
above solution into an SU(2) subgroup of SU(N). The choice of SU(2) subgroup is irrelevant

since any choice is gauge equivalent to any other choice.

We are now ready to study the measure DAI™. It describes all possible modes for the
quantum fluctuations around the classical, instanton vacuum. Some of these modes incur
no additional action called zero modes. For the SU(2) instanton, there are a total of 8
bosonic zero modes originating from the location of the instanton, the size of the instanton,
and three spatial rotations.? For general SU(N), there are a total of 4N total bosonic zero
modes. The additional zero modes originate from the components of the SU(N) gauge field
which transform as doublets under the SU(2) subgroup of the instanton. Simple counting

gives 4(N — 2) doublet components which when added to the 8 SU(2) zero modes gives 4N.

The fermions charged under the gauge group also have zero modes in the instanton back-
ground. The precise number of zero eigenvalues depends on the representations underwhich
the fermions transform and can be determined by various index theorems. Fermions which
transform under the fundamental (or anti-fundamental) representation have a single zero
mode in the instanton background, while fermions which transform under the adjoint repre-
sentation have 2N zero modes in the instanton background. To see the importance of these

zero modes, we will decompose the fermion fields in the eigenmodes of —ip
—iPy(x) = Z Aii(x)e; (1.12)

where ); is the eigenvalue of the mode, v;(x) is the eigenmode, and ¢; is a Grassman number.

“Due to the 0y, the instanton only transforms under SU(2);, subgroup of SO(4), thus there are only
three independent rotations.



In the path integral, this becomes

/Hdcidciezj/\féfcj :/Hdcidcil_‘[)\jd_]jd]jcjcj (113)
i i J

If \; # 0 for all j, then the Grassman numbers are simply absorbed by the Grassman measure
and the integral simplifies to [ ] ;A; = det(iD). However, whenever \; = 0, those Grassman
measures and not absorbed, and the integral goes to zero. Thus, whenever the instanton
carries fermionic zero modes, the instanton partition function vanishes. However, this does
not mean that the instanton cannot impart dynamics on the field theory. Recall that, in the

path integral formulation of QFT, the expectation value of an operator O is calculated as

1

(0) = / [Dp|Oe 5] (1.14)

thus those fermionic zero modes which kill the instanton contributions to vacuum expectation
values can be absorbed from the operator O. Therefore, in theories with fermions, instantons
can only contribute to correlation functions with a fermion operator for each fermionic zero
mode. This can be interpreted as generating an effective operator, known as the ‘t Hooft
operator, in an effective field theory where the instantons have been ‘integrated out.” The
coefficient of this effective operator can be determined by completing the calculation we have

been outlining.

Additionally, the fermion zero modes are exclusive to left-handed (right-handed) Weyl fermions
for instantons (anti-instantons), so the instanton only generates operators containing left-
handed fermions. These correlation functions are always guaranteed to violate a U(1) sym-
metry of the classical vacuum and therefore vanish if we only considered the £ = 0 in-
stanton sector. The charge of the operators which violate this U(1) always corresponds to
the anomaly coefficient of said U(1). From this perspective, it is clear what the instanton

calculation does for us as field theorists. It computes the effects of anomalies in the field



theory.

Let us finish this section by completing the calculation we have been outlining. The non-zero

anomalous correlation function is

<H Y(x;)) = ﬁ/ <H Dzb?) (H DA%J.) wai)e—ﬁ‘gfﬁe

x (det M)~ "?(det My)(det My, )(det My)~", (1.15)

where det My, det Mgy, , det My, det M, are the factors which arise from the integral over the
Gaussian modes.® Recall that some of the operators have zero modes, in these cases, it is
implied that the det is taken without said zero modes. This can be made concrete by defining
the determinant as

det(A + p)

det(A) = lim )

n—0 v

(1.16)

where Z(A) is the number of zero eigenvalues. At zeroth order in the gauge coupling, Z*=0 is
simply the same expression without the zero modes, instanton weight, and the determinants

evaluated with Af}' =0
2= = (det M) /2 (det M) (det M) (det M) (1.17)

where the (9 indicates A/C} = 0. The correlation function simplies to

<H () :/ (H DA?L’Z) wa(xi)e_sgﬁ“(’

-1/2 -1
det M4 / det My, det M, det M.
N\ T O ) 0 o | (L18)
det M, det M, det M, det My’

3The non-Gaussian terms are proportional to the gauge coupling and result in higher order corrections.
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The bosonic zero integral can be converted to a collective coordinate integral

= 0 4 AN—5 QAN+5 AN -2
/ EDA“’i N /d “pp N TN = 2] (1.19)

such that the correlation function becomes

24N+57T4N72

<1;[ w(l‘z» = (N — 1)‘(]\7 — 2)! /d4zdpp4N—5 ];[¢®(Ii)€_8;r;+ie

-1/2 -1
det M4 det M, det M, det My,
X © © ©) o | (120)
det M, det M, det M, det M,

g

where the determinants and zero mode function secretly depend on p.

The intent of this subsection was to motivate and introduce instanton calculations by example
using R* instantons. In the following subsection, we will investigate and discuss instantons

on R? and R3 x S!, using this subsection as a backbone.

1.1.2 Instantons on M = R? (3D Monopole-Instantons)

In this section, we will introduce the fundamental or BPS monopole-instantons of QFT's on

R3 using the previous section as a backbone.

If we follow the beginning arguments for the sum over instanton sectors of YM on R* and
repeat them for YM on R3 we will arrive at the homotopy groups my(G). It turns out
that mo(G) is trivial for all semi-simple Lie groups, thus pure YM theories in R?® do not
have instantons. However, if we consider YM theories which undergo spontaneous symmetry

breaking via a scalar vacuum expectation value (VEV)

G 9%% g (1.21)
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then the finite action field configurations are defined by the asymptotic behavior

lim ¢(z) = U(¢) (1.22)
lim A, (z) =iU0U . (1.23)

Here U is a gauge transformation which changes the asymptotic behavior of ¢ if U € G/H.

Therefore the asymptotic behavior of ¢ is given by the map
U:S* - G/H, U:zwU(x) (1.24)

which falls into classes mo(G/H) ~ 71 (H) which is nontrivial for generic H.

Let us consider the situation where G = SU(2) and ¢ transforms in the adjoint representation

of SU(2) such that (¢) # 0 triggers the breaking pattern

) (9)#0

SU(2 U(1). (1.25)

In this scenario, mo(SU(2)/U(1)) ~ m(U(1)) ~ Z and the partition function will be a sum
over k sectors similar to the story for 4D instantons. The minimum action can be found

again from the Bogomolny bound [15]

S— / i _—2—;2 Tr(Fl F™) + g—12 Tr(Dmpw)} (1.26)
_ / i _—% Te(B,B") + g%Tr(DuqﬁD“qﬁ)] (1.27)
- / de | Tr (B, 5 Do) % Tr(B#D“qS)} (1.28)

, 2
> i/52 dzyu? Tr(B"®) (1.29)

where we defined B,, = %Ew,pFVp and the bound is saturated for B, = £D,¢. For k =1, we
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can choose the asymptotic behavior of ¢ to be

0.(1

lim ¢(z) = vn“; (1.30)

T—00

where the idea is that the group vector ¢ points in the direction of the unit vector. This
particular expression is for the hedgehog gauge and cannot be continuously deformed to the

trivial vacuum due to the hairy ball theorem. It follows that the action is bounded by

S > j:/ dzyu%B“’“(x)n“ (1.31)
52 g

where we expanded B* = B*%?. The bounding 2-sphere S? originates from Gauss’s law

and bounds R3. It follows that this integral is performed at r — oo, thus it only survives if

Hony @
lim BP(z) = . (1.32)
T—00 r
Therefore the minimum action is
4
Sa. = —=. (1.33)
g

Note that this action corresponds to a field configuration of a magnetic charge. For this
reason, the instanton in this model is called a monopole-instanton and we shall refer to it as
a monopole. The monopole field configuration can be solved from the asymptotic behavior
of Equations (1.30) and (1.32) alongside B, = +D,¢ from the Bogomolny bound. The field

configuration in hedgehog gauge is

For) %b , (1.34)

o(r) = UH(vr)n“% , A, (z) = ewan“

H(v'r’):&(w)—i For)=1- o

sinh(vr) — or’

(1.35)

sinhvr

where r = |z — 2| is the distance from the center of the monopole z. Similarly to the R*
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instanton, the action is independent of, z and z makes up 3 bosonic zero modes. There is
one additional zero mode associated to U(1) rotations around the Dirac string.* Altogether

there are 4 bosonic zero modes.

Monopole-instantons can also carry fermionic zero modes. An SU(2) monopole carries a
single zero mode for each fundamental or anti fundamental fermion so long as their real

mass satisfies |mg| < v/2 and 2 zero modes for each adjoint fermion.

The generalization to SU(N) is fairly straightforward. A non-degenerate (¢) induces breaking

SU(N) 27% yyv-1, (1.36)

It follows from the homotopy group mo(SU(N)/U(1)V~1) = ZN~1 that there are N — 1 kinds
of monopole-instantons. This is because there are N — 1 different U(1) subgroups of SU(V)
in which we can embed the SU(2) monopole solution discussed above. Unlike in the case of

the R* instanton, these embeddings are distinct because the vacuum is only invariant under

U(1)N~! rather than the full SU(N).

The action of the monopoles depends on the VEV of ¢. Without loss of generality, consider
(py = diag(vy,ve,...,vy) with v3 > vy > ... > vy. All other possible (¢) are gauge
equivalent. The action of each monopole is then given by

4m v; — v

li= 5, 1<:<N-1. 1.37
L, 7 5 ¢ ( )

The fermionic zero mode conditions follow from those for the embeded SU(2) monopole if

we consider it in the background of the full adjoint VEV (¢). Decomposing the adjoint VEV

4The Dirac string appears as a singularity along the z-axis in the gauge where lim, ,o, ¢(z) = vo3/2
asymptotically.
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for the n-th monopole, we have

(#) :% diag(0,...,1,~1,...,0)
%diag(O,...,l,l,...,O) (1.38)

1
+ §diag(vl, ey Un=1,0,0, V41, ..., UN)

The n,n + 1 components of a fundamental fermion form a doublet of the n-th monopole.
Those doublet components have a real mass of mg = my + (v, + v541) /4. The condition for

the fundamental fermion to have a zero mode in the n-th monopole is

Up, + Un+1 ’ < Up — Un+1

4 4 (1.39)
S0y, s Dt
2 R 2

Mg +

Due to the ordering v; > ... > vy, this is only true for one of the monopoles. In particular,
when mp = 0, only the monopole associated to the smallest positive eigenvalue carries
fundamental zero modes. Adjoint fermions decompose as a triplet and N — 2 doublets of
the monopole SU(2). The triplet always has two zero modes, while the doublets have zero

modes if

Un, + Un+1 U Un — Un41
=T tal<Ta

1 5 £ n,n+1 (1.40)

— Uy >V > Upy (1.41)

which is impossible. Therefore each monopole carries two triplet zero modes for each adjoint

fermion.
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1.1.3 Instantons on M = R3 x S! (Kaluza-Klein Monopoles)

The difference between R? and R3 x S! is the ability for fields to wrap the compact dimension.
For concreteness, let the compact dimension have coordinate x4 and size 2w R. Then the fields

on R? x S' decompose as

dlx) =D " p,(x). (1.42)

n

The components ¢,, are called the KK tower. If we integrate out the compact dimension,
the effective theory on R3 is described by the three dimensional KK tower states each with

mass
m; = —. (1.43)

For small radii, the extra states are very heavy and will not contribute to physics at long
distances. In this sense, the theory on R? x S! deforms into the R? theory in the limit of a

small compact dimension with the identifications

¢3(x) = V2rRou() . (1.44)

2 9y
— ] 1.45
93 2mR ( )

Of course, this can only be exact if the tower of states is the only difference between the
partition functions. While this is certainly true for the trivial vacuum, it may not be true

for any instanton sectors of the theory.

As per usual, we need to consider the conditions for finite action to explore the instanton
sectors of the theory. The conditions for finite action on the R? factor of spacetime do not
change with the existence of the S!. Therefore the same monopole-instantons of R?® are

present on M = R3 x S! as well. There is one additional instanton which comes about by
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wrapping the monopole-instantons of R? around the circle. This instanton is known as the

KK monopole-instanton or the KK monopole for short.

For an SU(2) theory, the KK monopole can be generated by performing the gauge transfor-

mation

U(x) = exp (—i%@,) (1.46)

which is aperiodic over the compact dimension, but the gauge fields remain single-valued.

The action of the configuration is given by

4 (1
S, = [ = = 1.47
1., KK g2 <R U) ( )

where v is the asymptotic VEV of the adjoint scalar field.®

For general SU(N), the KK monopole is associated to the negative root of the root sys-
tem or, in our convention, the diag(—1,...,1) generator of the SU(N). The action of the

configuration is

4 (1 V] — UN
Se = =———]. 1.48
BT g2 (R 2 ) (148)

Note that #5% = SV Zn—mtl such that

Art N-1
e—Scl.,KK — exp <2_) escl.,n (149)
g _

Thus the minimum action in the instanton sector with one KK monopole and each of the

5The adjoint scalar field could be the fourth component of the gauge field A, in which case the symmetry
breaking is called Wilson loop breaking.

17



N — 1 R3 monopoles is

4 872

Su. = e =
g3R g3

(1.50)

which is precisely the action of an R* instanton. The above multi-monopole-instanton con-
figuration is known as the caloron and, in the limit of large compact dimension and small
distances between the monopole-instantons, becomes the R?* instanton configuration. This
correspondence goes further than the action and asymptotics of the fields; the caloron and
the instanton have the same number of zero modes as well. Each monopole has 4 bosonic
zero modes, totaling 4N bosonic zero modes, the same as for an R* instanton. Similarly,
each monopole has 2 adjoint fermion zero modes, totaling 2N adjoint fermion zero modes,
the same as for an R* instanton; and since only a single monopoles carries the fundamental
zero modes, the number of fundamental zero modes matches between the caloron and R*

instanton as well.

In later chapters, we will revisit the correspondence between the caloron and R* instanton
in supersymmetric theories. In QCD- like theories, we find that the dynamics of an R*
instanton are reproduced from the R® monopole-instanton when includes the effects of the
KK monopole and takes the limit of large compact dimension. In many cases, one can
explicitly derive nonperturbative dynamics in R* which can only be calculated directly via

this correspondence.

1.2 Exact Results in Supersymmetry

In this section, we review various exact results in SUSY. The fact that these results are exact
is miraculous, since, even 30 years later, we are still not close to making similar statements

about the non-supersymmetric variants of these theories. The key difference between the
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supersymmetric and non-supersymmetric theories is the restriction of holomorphy which

supersymmetric theories must obey.

To be more precise, any 4D A/ = 1 SUSY Lagrangian can be written as a sum of three terms

Lsusy = /d28d2§K+/d29W+/d20_WT (151)

where K is the Kahler potential and W is the superpotential. While the Kahler potential is
a function of all the fields in the theory, the superpotential is only a function of the chiral
superfields ® and not the anti-chiral superfields ®'. In other words, W is a holomorphic
function of ®. This significantly reduces the terms which are allowed in W and implies
certain perturbative non-renormalization theorems for the couplings in W [93]. Terms in the
superpotential can only be generated upon integrating out degrees of freedom or appear as

a result of instanton corrections. Moreover, the superspace dependence of chiral superfields
() = ¢+ 0y + 6°F (1.52)

means that the superspace integral over W introduce terms in the Lagrangian with at most
two left-handed Weyl fermions.® Therefore non-zero correlation functions between operators
containing two left-handed Weyl fermions imply the existence of a superpotential. This
presents a rather easy analysis of the role of instantons in SUSY QFTs. If the ‘t Hooft
effective operator can be closed to a two-point fermion correlation function, it generates a
superpotential where perturbative corrections are controlled and the instanton calculation
remains valid at all strong coupling. Otherwise, the ‘t Hooft effective operator appears in

the Kahler potential, and we have no control over the calculation.

Let us explore some relevant examples of instanton induced dynamics of various SUSY

6The equivalent term for the conjugate, right-handed Weyl fermions comes from the integral over WT.
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theories. We begin by describing supersymmetric quantum chromodynamics (SQCD). The
symmetries of the theory are given in Equation (1.53). The theory has an SU(NN) gauge
group with F' chiral superfields () in the fundamental representation and F' chiral superfields
@ in the anti-fundamental representation. The fermionic superpartner of the gauge bosons is
called the gaugion, the fermionic components of the chiral superfields are called the quarks,
and the scalar components of the chiral superfields are called the squarks. We will refer
to this theory as SU(N) SQCD with F' flavors. At the classical level, the theory has no

superpotential.

Q| [ 0 1 1 ] 1 (1.53)

)
Ol
(@)

|
Ll

The squarks of the theory may acquire VEVs which would break the gauge group and make
some subset of the fields heavy. SUSY ensures a positive-definite vacuum energy, and SUSY
is non broken if and only if the vacuum energy is zero. The set of VEVs which are compatible
with SUSY is called the moduli space. The classical moduli space is derived from the so-
called D-flatness conditions which arise from requiring that the auxillary D fields of the
gauge multiplet vanish. In the case of SQCD, the D-flatness conditions are most easily
stated for the gauge invariant composites. If F' < N, the only gauge invariant composite is

the meson M;; = Q%‘Qm. The D-flatness condition is

(Mi;) = a7 63 - (1.54)

For FF > N, the gauge invariant composites are the mesons (as previously given) and the
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baryons and anti-baryons

BitiN — gMies nNQm,zi o QaniN , (1.55)
Bty — e, QU QU (1.56)

The moduli space is described by the VEVs

(Mi;) = iqid;; i< N (1.57)
(M) =06  i>N (1.58)
(BrN) = q1 .. qn (1.59)
(B Ny = gy - (1.60)

The maximal rank of M is N, and the composites obey the classical relation

Bilz--wiNleamiN - M-

Zl[il .

.M

iNiN]

(1.61)

where the [] on the meson indices indicate antisymmetrization over the SU(F') indices. By

symmetry, the SU(F)g indices are also antisymmetrized.

Let us consider the theory with F' = N — 1 flavors. In this case, the SU(N) instanton
carries 2N + 2F fermion zero modes from the gaugino and quarks respectively. It would
appear that the instanton has too many zero modes to contribute to the superpotential.
However, there are Yukawa-like SUSY gauge couplings between the gaugino, squark, and
quark which can be used to close the gaugino and quark zero modes in pairs in exchange
for a squark. Pairing all of the quark zero mode legs, there are two gaugino legs leftover,
and a non-zero correlation function will generate a superpotential. In principle, one could
calculate the 2(N — 1) squark, 2 gaugino correlation function described above. However,

it is simpler to calculate the correlation function at a generic point in the moduli space
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where all the squarks acquire VEVs. Then the squark legs end at VEV insertions and one
simply calculates the gaugino-gaugino correlation function. The value can be calculated and

interpetted as a dynamically generated superpotential

F=N-
W=D = (1.62)

where A’ = exp(—ggiz2 +1i6).

From here one can deform the theory by giving quarks large masses. Upon integrating out

the quarks, one finds for general FF < N

ABN—F 1/(N-F)
) . (1.63)

N,F

For F' > N, the instanton carries too many zero modes, and the U(1)g symmetry prohibits
a superpotential term. When F' > N, the theory has a dual description in terms of an
SU(F — N) gauge theory. We will not go into detail for these theories. Let us, instead, focus
on the case F' = N. In this scenario, the gaugino and the quark have precisely the same
number of zero modes. Thus when we close pairs of gaugino and quark zero modes with the

squark, we arrive at a 2/N-squark correlation function. A precise analysis reveals that
det M — BB = A*V. (1.64)

However classically, we had that det M = BB, so how is this possible? The answer is that
the quantum dynamics of the theory, i.e. the instantons in this scenario, deform the classical
relations between the moduli. The space described by (?7?) is called the quantum moduli
space. At first sight, this may seem insignificant, but in this scenario, it removes the point
det M = B = B = 0 from the moduli space. Thus there is no SUSY vacuum where both

SU(F), x SU(F)gr and U(1)g remain unbroken.
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This completes our short overview of SQCD on R*. We will now discuss the dynamics of

SQCD on R3.

1.3 Review of 3D N =2 SUSY gauge theories

This section is heavily based on work previously published in collaboration with Yuri Shirman

[99].

In this section, we review basic properties of 3D SUSY QCD with four supercharges (N = 2)
(see, for example, [3, 39] for a more detailed introduction). We restrict our attention to
SU(N) theories with F' < N massless flavors in the fundamental representation. The 3D

action can be easily obtained by a dimensional reduction of the corresponding 4D theory:

_ 3 4 3 2 2 i 2 o
S—/da: [/d 9K(Q,Q,V)+/d 6W(Q,Q)+g2/d 0 Te(W, W) + h.c.| . (1.65)

We use supersymmetric normalization with an explicit factor 1/¢* in front of the gauge
kinetic term. In this normalization, the vector multiplet has the same mass dimension as in
4D, since the gauge coupling ¢ has mass dimension one in 3D. On the other hand, the chiral
multiplet has mass dimension 1/2. Expanding in component fields, the vector multiplet is

given by
_ L _ _ 1 .-
V = —iffo — 07'0A; + 070X — 62O\ + 592921), (1.66)

where ' = {io?, o', 0%} and o is the real scalar field in the adjoint representation, and the

chiral multiplet is given by

Q=q+v0+6°F. (1.67)
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The classical moduli space of the pure N' = 2 SYM SU(N)) theory is described by the
Coulomb branch parameterized by VEVs of the adjoint, (o) = diag(vy,...,vy), subject
to the tracelessness condition, ) .v; = 0. At a generic point on the Coulomb branch,

N=1"" The theory on the Coulomb branch retains

the unbroken gauge symmetry is U(1)
the Weyl symmetry of SU(N) which interchanges the eigenvalues of . Without loss of
generality we will restrict our attention to a positive Weyl chamber” defined by v; > v4;.
Quantum effects further divide the Weyl chamber into sub-wedges defined by the number of
positive eigenvalues. We define the k" sub-wedge by requiring there to be exactly k positive
eigenvalues (v > 0 > vgy1). The sub-wedge boundaries lie at the points where one of the
eigenvalues of o vanishes. We will call the boundary between the k' and (k+1)** sub-wedges
the k' boundary. When [ = dim(ker((c))) > 1, i.e. when several eigenvaues of ¢ vanish

simultaneously, [ — 1 sub-wedges become degenerate, and the symmetry breaking pattern is

SU(N) — U(l) x U@L)N-1,

As first realized by Polyakov [85], abelian gauge theories without charged matter fields have
a dual description in terms of compact scalar fields. The compact scalar fields, v, obey the

relation,

Oy = %eiijjk, (1.68)
where v has a shift symmetry from its role as a Lagrange multiplier enforcing the Bianchi
identity. In supersymmetric theories, this duality provides abelian vector superfields with a
dual description in terms of chiral superfields, ®, with scalar components, ¢ = 47wa/g? + i7y.
The compactness of v ensures that the low energy theory depends on chiral superfields
Y = exp(®) charged under the global symmetry U(1); corresponding to the shift symmetry

of .

"The Weyl chamber is a wedge subspace of R” (r = rank(G)) given by R" /W, where W is the Weyl
group [3]. The equivalence class from modding out the Weyl symmetry can be represented by a choice of r
positive, simple roots, {«;}, such that «; - (o) > 0 or equivalently v; > v;11. Sometimes this is referred to as
the positive Weyl chamber [107].
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The duality can be easily generalized to the Coulomb branch of non-abelian gauge theories.
In the case of an SU(N) theory, the group is broken to a product of N —1 U(1)’s and each
is dualized to a chiral superfield, obtaining a description in terms of N — 1 chiral superfields

Y, defined as

Y; = exp [2Tr(¢T")] . (1.69)

The (T%)q = %(5@ — 0q,i+1)0qp are the generators of the corresponding non-orthogonal U(1)
subgroups of SU(N).® After the duality transformation, the theory has no gauge symmetry.
Instead, the moduli Y; are charged under topological global symmetries U(1),, associated

with each abelian factor in the original gauge theory. The topological symmetry is broken

by non-perturbative dynamics and is not a symmetry of the low energy physics.

On the Coulomb branch of the 3D theory, there exist monopole solutions charged under
the corresponding U(1),, factors. All of the monopole and multi-monopole solutions on
the Coulomb branch can be constructed out of N — 1 fundamental monopoles. In the
positive Weyl chamber, the fundamental monopoles are the monopoles charged under one
of the U(1),,’s corresponding to the abelian factor generated by T%. The action of the i*"

fundamental monopole is given by

4’/T(UZ' — Ui—l—l)

Si,cl -
92

(1.70)

Comparing the classical monopole action with the VEVs of the Coulomb branch moduli Y;,

we note that the monopole weights are given by? 1/Y;.

If we add F' massless flavors of chiral superfields in the fundamental representation of SU(V),

8We chose to describe the low energy U(1)V ! theory in terms of linearly independent but non-orthogonal
U(1) factors so that Y; are easily identified with fundamental monopoles of the positive Weyl chamber. One
could also give a basis independent description of the Coulomb branch moduli in terms of the positive simple
roots, {a;}, where Y; = exp(d; - ¢).

9Thus we will refer to Y;’s as monopole moduli.
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the theory possesses mixed Higgs-Coulomb branches of the moduli space (and a pure Higgs
branch when F' > N —1) in addition to the Coulomb branch. The mixed branch of the moduli
space is not accessible from a generic point on the Coulomb branch — the flat directions
parameterized by squark VEVs are lifted by the D-term potential. Squark VEVs are only

classically allowed when one or more v;’s vanish.

First consider the case when only one adjoint VEV, say vy, vanishes. The unbroken gauge
symmetry is U(1)V~1. Of the 2N F chiral superfields, 2(N — 1)F of them obtain large real
masses, and the low energy effective theory is left with 2F massless chiral superfields. These
fields are charged under one linear combination of the unbroken U(1)’s, and their VEVs must
obey the D-flatness condition }_, (\q;ﬁ]Q — \G?\Z) = 0. By flavor symmetry transformations,
the squark VEVs can be rotated into a single flavor. Alternatively, we could parameterize
the vacua by the VEV of the meson superfield, M, which is classically defined as M = QQ
and has maximal rank one in this region of the moduli space. Thus the space of physically
inequivalent vacua on this branch is NV — 1 dimensional and can be parameterized by N — 2

independent combinations of monopole moduli Y; and a single eigenvalue of M.

Now consider the case when several adjoint VEVs, say [ < F, vanish simultaneously. As
discussed above, the unbroken gauge group in this region of the Coulomb branch is U(l) x
U(1)N=I=1. The low energy physics contains 2{F massless chiral multiplets, and D-flatness
conditions allow squark VEVS which further break the gauge group to U(1)¥~!=1. The
meson matrix has rank [ and once again coordinates along the Higgs direction of this mixed
branch can be parameterized by the [ eigenvalues of M. As before, the space of physically

inequivalent vacua is N — 1 dimensional.

It may also be useful to approach U(1)V~'~1 low energy theory from a different direction on
the classical moduli space. If we start at the origin of the classical moduli space, the entire
F?-dimensional Higgs branch is accessible, and one can turn on [ < F meson eigenvalues

breaking SU(N) to SU(N —1). At this point, a N —[—1 dimensional subspace of the Coulomb
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branch is accessible, and the gauge symmetry is further broken to U(1)V~'~1. The space of
physically inequivalent vacua remains N — 1 dimensional. Of course, the superpotential of
low energy theory in the ¢ > v limit should be the same as the superpotential in the ¢ < v
limit. Considering the theory in different VEV limits can be used as a tool to both to derive

and verify our results.

The introduction of matter fields into the theory has one more important consequence: the
N — 1 fundamental monopole moduli are no longer globally defined throughout the Weyl
chamber because the quantum numbers of the moduli change as one crosses the boundary
between different sub-wedges of the Weyl chamber. To understand this change of quan-
tum numbers, we need to recall that quantum numbers of the monopole moduli depend
on fermionic zero modes that exist in the background of the corresponding fundamental
monopoles. Each fundamental monopole has two gaugino zero modes; however, only one
fundamental monopole has matter fermion zero modes in any given sub-wedge of the Weyl
chamber. For instance, in the k' sub-wedge (denoted by a superscript), Yk,(k) has one zero
mode for each massless fundamental (or anti-fundamental) fermion, while Y;(k) (1 # k) has no
matter fermion zero modes. The quantum numbers of mesons and fundamental monopoles

in the &k sub-wedge are:

UDr  UM)p U)a SUF)L SU(F)x
Q 0 1 1 L] 1
“ ! -+ ! ? (1.71)
M 0 0 2 []
y®loaF-1) 0 —2F 1 1
ve | -2 0 0 1 1

We can see that the quantum numbers of Yk(k) and Yk(_]i)l monopoles in the k" sub-wedge are

different from Yk(kﬂ) and Yk(f_irl) in the (k4 1)% sub-wedge despite the fact that both pairs
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of coordinates correspond to the same semi-classical solutions in each sub-wedge. One can

define a two-monopole modulus which is continuous across the k* sub-wedge boundary,
k k)y-(k k+1) - (k+1 k41
A RS (R RS (1.72)

The introduction of the two-monopole modulus smooths out one combination of the two
discontinous coordinates at each sub-wedge boundary. Specifically, the Yk(’];) modulus is still
discontinuous at the (k — 1) sub-wedge boundary, but a different two-monopole modulus
Yk(f)m is continuous at this boundary. It is possible to define a separate two-monopole
modulus for each sub-wedge boundary that is continuous across that specific sub-wedge

boundary.

One may hope to patch together the coordinate charts for each sub-wedge in this manner,
but there are two technical issues which prevent such a construction. The first issue is the
existence of a second modulus that is discontinuous at both sub-wedge boundaries. In other
words, so far we have been able to define only one transition function for two discontinu-
ous coordinates. A single continuous two-monopole modulus does not account for the two
discontinuous monopole moduli.!® The other issue is that the two adjacent sub-wedges of
the classical Coulomb branch do not overlap, so the transition functions can not be properly
defined. As we will see, the quantum deformations of the classical moduli space solve these
issues by smoothing out the Higgs-Coulomb interface at each of the sub-wedge boundaries.
The extension of disjoint sub-wedges onto the intermediate Higgs-Coulomb branch allows
these extended sub-wedges to overlap, while implementation of the quantum deformation as

a Lagrange multiplier term in the superpotential provides the second transition function.

90ne could define the global modulus Y = [], ¥; which is continuous across all sub-wedge boundaries as
has been done in previous studies [3, 4]. However, working only in terms of globally defined moduli does not
allow one to investigate dynamics in the interior of the moduli space.
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1.4 Magnetic monopoles

In this seciton, we briefly review properties of theories with magnetic monopoles. We be-
gin with the Dirac construction for electromagnetism [41], then explain how it can be UV
completed as the ‘t Hooft-Polyakov monopole [101, 84]. We then turn to explaining the diffi-
culty of calculating in theories with both electric and magnetic charges. This sets up for the

discussion in Chapter 4 where we develop a new formalism for studying these interactions.

Maxwell’s equations have an apparent asymmetry between the role of the electric and mag-
netic field with is rather puzzling. A simple question which encapsulates this confusion is
“Why aren’t there magnetic charges?” One could presume that there is an issue with for-
mulating a theory with both electric and magnetic charges. Here, and in Chapter 4, we will

illustrate that this is not an issue.

A magnetic monopole is characterized by a magnetic field
(1.73)

where ¢ is the magnetic charge of the monopole. The issue is that this violates V - B= 0,
and therefore B = V x A. The vector potential Aisa necessary ingredient for quantization,
so the magnetic monopole cannot be so simple. Dirac showed that there is a vector potential

which reproduces (1.73)

— ]_ 9 A
Ag =220 ¢ (1.74)
r sinf

which has a singularity along the +2 axis. The singularity induces an infinitesimal flux of
magnetic field, called the Dirac string, which cancels the flux of magnetic field from the

charge. The presence of the Dirac string is rather unsettling; however, the Dirac string’s
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location changes under gauge transformations

Ay = Ag— Loriesogerieos _ fo 4 29 g 91-cosby (1.75)
e rsin 6 r sind

Therefore the Dirac string is not physical. To discuss physics in the volume with z > 0, we
simply use fTN, and for z < 0, we use ng. This construction may appear ad hoc, but it is
natural from the point of view of mathematics. In mathematics, A is called a section of a
principle bundle, and Ay and /TS are its values on local coordinate charts of the manifold.
At the overlap of these two coordinate charts which we can take to be the equator of the
monopole, these two coordinatizations of the bundle must agree up to a gauge transformation.

The gauge transformation was already given as

U = exp(2iego) (1.76)

which when made periodic on the equator, gives the condition

2eg=nel. (1.77)

The condition (1.77) is often called the Dirac quantization conditon and can be arrived
at in a variety of different ways. From the above construction,!! it is apparent that n
somehow measures how ‘wound’ the gauge field is around the location of the monopole. Also

noteworthy is the relationship between the electric and magnetic charges

g=— (1.78)

which ensures that if the electric charges are weakly-coupling (e < 1), the magnetic charges
are strongly-coupled (¢ > 1). And any process which depends on the electromagnetic

coupling will be a function of an order one coupling eg = n/2 without a reliable perturbative

UThis construction is often called the Wu-Yang construction as it first appeared in [115, 116].
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expansion.

From the above discussion, one should be convinced that there is a sensible way to combine
electromagnetism, non-relativistic quantum mechanics, and magnetic monopoles. The ques-
tion for relativistic electromagnetism turns out to be more difficult. Attempts to construct a
fully relativistic Lagrangian make use of two vector potentials: the usual vector potential A,
for electromagnetism and a ‘magnetic’ vector potential flﬂ. The two potentials are required

to obey a constraint

eA, —gA, =0 (1.79)

such that only one remains dynamical. Dirac showed that a Lorentz invariant Lagrangian
with both electric and magnetic charges must be non-local [40]. Zwanziger constructed a
Lagrangian which is not Lorentz invariant due to the appearance of the Dirac string in the
Lagrangian.[118] Surprisingly, the observables in Zwanziger’s formalism are independent of
the location of the Dirac string, and although the Lagrangians appear problematic, there are
no inherent issues with the observables of the theories. In other words, although unsavory,
they are fully relativistic, quantum mechanical theories of electromagnetism with both elec-
tric and magnetic charges. Additionally, these theories still have a strong-coupling problem
due to the Dirac quantization condition (1.77). A natural question to ask is whether a the-
ory with electric and magnetic charges can arise as the low-energy limit of a weakly-coupled
QFT. The answer to this question is yes, as answered by ‘t Hooft and Polyakov where the

magnetic monopole arises as a soliton of an SU(2) gauge theory broken to U(1).

As discussed perviously in Section 1.1, an SU(2) gauge theory which is spontaneously broken
to U(1) admits an instanton field configuration on R* which appears to carry magnetic
charge. On R*, such a field configuration still exists, but it is attached to a line in R*.

We can interpret this line as the world-line of the monopole. The derived monopole has
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magnetic charge Q) = gi_T:/ and mass M = ;Luis. Although the UV completion which arises
from embedding electromagnetism in a non-abelian gauge group is compelling, it offers little
in the realm of calculating the dynamics of the electric and magnetic charges of the low-
energy theory. In Chapter 4, we develop a formalism inspired by the amplitudes program

which can tackle the problem of electric-magnetic scattering.

1.5 Dark Matter and Cold Thermal Freeze Out

In this seciton, we briefly review cold thermal freeze out, following [70]. We consider it as
a mechanism to explain the relic abundance of dark matter observed today and discuss the
tension between the predictions from thermal freeze out and direct detection experiments.

We provide a model which eases the tension in Chapter 5.

Dark matter is an unexplained phenomena where the gravitational force appears to behave
as if there were more matter than is observed. It is estimated that dark matter makes
up roughly 20% of the energy in the universe or roughly 4 times the matter energy of the
universe. If this phenomena is explained by a particle which interacts with the Standard
Model, then it must have been in thermal equilibrium with the rest of the known particles
at some point in the early universe. Thermal freeze out details how particle species in the
early universe decoupled from the rest of the known universe and could explain the origins

of the observed dark matter abundance.

The thermal evolution of a species’ number density n obeys the Bolztmann equation in an

expanding universe

d
d_qz +3Hn = —(ov)(n* — n®?) (1.80)

where H = (87p/3Mp))'/? is the expansion rate of the universe, n°d is the number density at
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thermal equilibrium, and (ov) is the thermally averaged annihilation cross section times the
relative velocity. The evolution of the species n is a competition of two terms, the expansion
of the universe and the interaction rate of the particles I' ~ (ov)n. The expanding universe
wants the particle species to cool according to the expansion rate, while the interaction rate
wants the particle species to remain in thermal equilibrium with the rest of the matter. When
the universe is hot and dense, the interaction rate dominates the behavior of the equation, and
the species remains in thermal equilibrium. However, as the universe cools, the interaction
rate will drop below some threshold, and H will dominate. At this temperature, the particle
species decouples from the thermal bath, leaving a relic in the universe today. Roughly
speaking, this relic appears when H ~ (ov)n, i.e. the relic density at the time of freeze out

is

noe~v (1.81)

which is a relationship between the freeze out temperature, the coupling strengths of the
species, and the mass of the species. From the freeze out temperature and mass, one can
determine how much energy there would be in the thermal relic today. Thus constructing a
relationship between the observed relic abundance of a species, the mass of the species, and
the couplings of the species. The question is therefore what predictions can we make about
the qualities of the dark matter (mass and couplings) given that the relic abundance was
produced from thermal freeze out. As will be explored later, there is a tension between the

observed dark matter density and null observations at direct detection experiments.

Instead of using the heuristic given by (1.81), we should solve (1.80) systematically to make
a concrete prediction for the relic density of the species. We begin by massaging (1.80) by

defining new parameters + = m/T and Y = n/s where m is the mass of the species and s is
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the entropy of the thermal bath. Then (1.80) becomes

¥ o),

— Y2 _yed2 1.82
dx Hx ( ) (1.82)

where Y1 = n®/s. For a cold (non-relativistic) species, the equilibrium density is

n® =g (n;_W) e~m/T (1.83)

where m is the mass of the particle species in question and ¢ is the number of degrees of
freedom of the species (i.e. number of spin states or flavors). For non-relativistic interactions,

(ov) can be expanded
(ov) = a +b{v?) + O((v*)) ~ a + 6b/z . (1.84)

The evolution in (1.80) is dominated by a # 0 or b for a = 0. If a = b = 0, one must expand
(ov) further. Using this expansion in (1.82), the equation can be integrated to find the relic

energy density

gt LOLX 10 a1 (1.85)
T Mn Vs a+3b/zp’ '

where g, is the number of relativistic degrees of freedom at the time of freeze out and
xp = m/Tr is the dimensionless freeze out temperature. The freeze out temperature is

determined from

zr = In(c(c + 2)\/%i mMp(a + 6b/wr), (1.86)

273 gi/zx;ﬂ

which can be solved iteratively and c¢ is a value determined numerically. We take ¢ = 1/2,

but the exact value of ¢ does not change the value of zp dramatically.
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From the above relations, one can deduce what the energy density of dark matter would be
from (ov) and the mass of the particle. Direct detection experiments like XENONI1T look
for interactions between matter and (ov). These experiments have yet to see any signals for
dark matter interactions. From the null observations, one can exclude certain models which
would produce the entire dark matter abundance. This was done systematically in 2008 [11].
At the time, direct detection experiments were able to rule out dark matter masses up to
~ 200 GeV for fermionic dark matter interacting via a scalar mediator with Standard Model
matter and dark matter masses up to ~ 1 TeV for fermionic dark matter interacting via a
vector mediator with Standard Model matter. Modern experiments push these limits higher
with more models rules out. In Chapter 5, we explore how much higher these limits are and
show how these limits can be evaded if the universe has a non-standard cosmological history

with an early QCD phase transition.
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Chapter 2

Kaluza-Klein Monopoles and Their

Ziero Modes

This chapter is heavily based on work previously published in collaboration with Csaba Csaks,

Yuri Shirman, and John Terning [35].

2.1 Introduction

As discussed in Sections 1.1 and 1.2, the essential property of monopoles that largely de-
termines the structure of the induced superpotential terms is the number of fermionic zero
modes in a given monopole background. The Callias index theorem [20, 81, 87] specifies
the number of fermionic zero modes in different gauge group representations for a given
monopole background. However, for the compactified theory, there is a twisted embedding
of the monopole solution called the KK monopole. This KK monopole is obtained by per-
forming an anti-periodic gauge transformation along the compactified circle. The effects of

the KK monopole are crucial for obtaining the correct interpolation between the 4D and 3D
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theories. Thus it is essential to understand how the number of fermionic zero modes of the
KK monopole can change. The goal of this chapter is to give a simple intuitive accounting for
fermion zero modes in a KK monopole background. KK monopoles were first introduced by
Lee and Yi [76], though their contribution to the superpotential was anticipated by Seiberg
and Witten [95]. Using the Nahm construction, KK monopole configurations were found
explicitly in [75, 74, 37]. Aharony et. al [3] already contains a brief comment on the number
of fermionic zero modes. The number of fermionic zero modes was also inferred in [81, 87]
using the fact that all the independent monopoles together make up a 4D instanton in the
large radius limit [75]. The analogs of the KK monopoles for finite temperature field theo-
ries were introduced in [72], while an analysis of the zero modes of the finite temperature
version was presented in [17]. Here we give a detailed explanation of why a fermion in the
fundamental representation has a zero mode in a KK monopole background only when the
real mass m satisfies |[m| > 2, where v is the asymptotic adjoint scalar vacuum expectation
value (VEV) of the monopole background. This is the exact opposite of the condition for the
existence of a zero mode in the ordinary monopole background: |m| < 5. On the other hand
the condition for the existence of an adjoint fermion (gaugino) zero mode is the same for
both the ordinary monopole and the KK monopole. The root cause for the unusual behavior
of the fundamental zero modes is the fact that the fundamental carries a single gauge index,
and hence the usual zero mode would become anti-periodic under the large gauge trans-
formation that connects the KK monopole to the ordinary monopole. The true KK zero
mode originates in a configuration that is anti-periodic around the circle before the gauge
transformation is performed. Since the adjoint carries two indices, its zero mode is periodic
in either case, so there is no difference in the conditions for gaugino zero modes. Our results
provide an intuitive explanation of KK monopole decoupling in the limit of a large real mass:
for a sufficiently large real mass the KK monopole acquires additional fundamental fermion

zero modes, and as a result the KK monopole cannot correspond to a superpotential term.

The chapter is organized as follows. First we briefly review the construction of the KK
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monopole solution, and then remind the reader of the form of the fermionic zero modes
in ordinary monopole backgrounds. Rather than relying on index theorems [20, 81, 87] we
analyze the properties of the solutions of the Dirac equation in the monopole background a la
Jackiw and Rebbi [66], while allowing for a real mass term. Next we present our main result:
the condition for the existence of fermionic zero modes in the fundamental representation
in the KK monopole background. We apply our result to explain the decoupling of the
effects of the KK monopole in N' =1 SUSY (4 supercharges) theories on R? x S'. Finally
we show a neat example based on the SU(2) x SU(2) theory with a bifundamental where
the interplay between the fundamental fermion zero modes of the KK monopole and the

ordinary monopoles exactly reproduces the answers expected from the 4D analysis of [63].

2.2 BPS vs. KK Monopoles

The fundamental BPS monopole is nothing but the usual 't Hooft Polyakov monopole of the
Georgi-Glashow model. For simplicity we will only consider the SU(2) case, but all results
can be readily generalized to SU(N) by the embedding of SU(2) subgroups. Since we have
the application to SUSY gauge theories in mind we will use the holomorphic normalization
of the gauge fields (where the gauge coupling g appears only in the gauge kinetic terms).

The explicit expression of the monopole background is

42(7) = e L o) = waen(r) 21)

where v is the asymptotic adjoint scalar VEV, r = |Z], and (since there is no scalar potential)

sinh(vr) or

the functions h, f are f(r) = (1 - = ), h(r) = (coth(vr)L), where both f,h — 1 for
r — oo. In the compactified Euclidean theory the scalar ¢ can be thought of as the fourth

component of the gauge field A, = ¢. In the following we use o to denote the Pauli matrices.
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The construction of the KK monopole on the interval 0 < z; < 27 R requires three steps [75].
First, one replaces the asymptotic adjoint VEV v with " = 1/R — v. Then one performs a
large gauge transformation ~ e’i%gg, which is anti-periodic along the compact x4 dimension.
This transformation shifts the VEV by 1/R. Finally, one can restore the original VEV v by
a Weyl transform that takes v — —wv. The result of the combined transformations takes the

form [75]
A, =UA,(ZV)U +iU'9,U (2.2)

where A, is the gauge field (with Ay = ¢) of the BPS monopole and the gauge transformation
U is given by [75]

- T 0'3
U =Uyole 2r U}, (2.3)

where

/ - — . /
o® cosh & + ¢ - Z'sinh %-

2.4
Vcoshv'r + &3 sinhv'r (24)

In (2.3) Uy, is trivial at the origin while implementing a transformation between hedgehog and
singular gauges at infinity. It is only needed to make sure that the behavior of ¢* at infinity
is the same for both KK and BPS monopoles. The global transformation o? implements

Weyl reflection. Finally, ~ e~ 3" is the anti-periodic gauge transformation that flips the

magnetic charge of the monopole.
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2.3 Zero modes of the BPS monopole

According to the Callias index theorem a chiral fermion in the fundamental representation
has one zero mode in the background of the BPS monopole. To explicitly find this zero mode
we need to solve the Dirac equation a la Jackiw and Rebbi. We are taking the 3D theory
obtained by compactifying the theory on a circle in the timelike direction, and Wick-rotated

to Euclidean space with x4, = —ixg, Ay = —iAy. The equation is given by
(6 LGOPET 4 A gesTam _ po gedem _ maaﬂagl) Wom =0, (2.5)

where m is the real mass of the fundamental, obtained from the time component of a four-
dimensional background gauge field, which weakly gauges “baryon” number (implying that

it is SU(2) color invariant, hence the additional color Kronecker delta).

We will look for solutions of the form

Vam(T) = =02 X(x)+ (2°0°0%)amY (7). (2.6)

am

With this ansatz, the zero mode must satisfy the equations

92—
Y’+—fY+ghY:mX
T
p ] v
X'+ X 4 ShX = mY (2.7)
T

For m = 0 the two equations are decoupled and can be integrated. The requirement that

the solution is normalizable implies that Y = 0. The single zero mode in this case is then

40



given by [66]

— (" (2h(r JiG) !
X(r) = Ce~ s (3100557 d (2.8)

fr)

which is normalizable since h(r) — 1, =~ — 0 as r — oo. For the case with a real mass m

we need to solve the second order differential equation

(d+2_f+§h)(i+i+gh>X:m2X. (2.9)

dr r dr r

When X is normalizable the asymptotic behavior is X ~ e™*" with A > 0. Eq. (2.9) then

implies (4 — A)? = m?. There is a positive solution for A provided that
v v
CIP 2.10
5 <M<y (2.10)

which exactly agrees with the Callias index theorem [20, 81, 87].

2.4 Zero modes of the KK monopole

It is well-known that for a vanishing real mass, the KK-monopole does not have a normal-
izable zero mode for fermions in the fundamental representation. Next we explain why this
is so and show that for sufficiently large real masses normalizable zero modes do exist. The
essential physics insight is the fact that a fundamental fermion behaves differently under an
anti-periodic gauge transformation than an adjoint fermion due to the fact that it carries
only a single SU(2) index. A large gauge transformation on adjoints introduces a periodic
dependence on the coordinate along the compactified circle. However fields in the fundamen-
tal pick up an additional sign and thus would become anti-periodic. Thus, the expectation is

that while gaugino zero modes in the KK monopole background exist and can be obtained by
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a large gauge transformation (2.3), the fundamental fermion has no zero modes. However,
a careful examination of the properties of the anti-periodic solution suggests that a new,
twisted, zero mode of the fundamental fermion exists for sufficiently large mass. Since the
large gauge transformation introduces an additional anti-periodic phase for the fundamental
fermion, we need to look for an ant: periodic solution to the Dirac equation in the BPS
monopole background, with the VEV shifted to v' = % —v. Thus we look for an ansatz of

the form

U(w,24) = 20 () (2.11)

which is anti-periodic for both sign choices. For this ansatz, the 0, derivative shifts the
fermion mass by £1/(2R); thus the 3-dimensional part of the Dirac equation has an effective

mass

1
Mot =M F 705 - (2.12)

The condition for the existence of a normalizable zero mode solution |meg| < % is translated

to |m F 55| < 55 — %, which can be satisfied provided

m>§ or m<—§. (2.13)

While this solution is anti-periodic and not physical in the BPS monopole background, after
the application of the large gauge transformation it becomes periodic and provides the proper

zero mode in the KK monopole background. Note that the final form of the solution will be

U(x,xy) = , (2.14)

T

cin+1) % g
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where n = 0 corresponds to the choice of the + sign in (2.11) and n = —1 to the - sign. It is
easy to generalize this result to the case of a fundamental representation of SU(N). In this
case there is a monopole solution for each simple root «;, wheret =1,..., N —1. Writing an
adjoint VEV as diag (v, vs, ..., vn) with ), v; = 0 and v; > v;1q, the fundamental zero mode
lives on the monopole associated with «; if v;11/2 < m < v;/2, and on the KK monopole for
m > v1/2 or m < vy /2. We note finally that the KK monopole acquires a zero mode exactly
as the zero mode disappears from the BPS monopole. This means that the total number of
zero modes in N-monopole backgrounds is independent of the real mass and always matches

the number of fermionic zero modes of the 4D instanton.

2.5 KK monopole decoupling

The physical importance of KK monopole zero modes becomes obvious if we consider! gauge
theories with A/ = 1 SUSY (4 supercharges) on R® x S!'. This theory can be used to
interpolate between the 4D theory (taking the radius of the circle R — oo0) and the 3D
theory (by taking R very small). However, the R — 0 limit is not sufficient to obtain a truly
3D theory since, as noted in [3], rather than reproducing a truly 3D SUSY gauge theory,
one arrives at the theory deformed by a tree level superpotential nY, where Y is the KK
monopole operator parametrizing the Coulomb branch. While n vanishes in the R — 0 limit,
the presence of such an operator is problematic for 3D duality since KK monopole operators
appear on both sides of the duality and force the duality scale to zero. The appearance of
KK monopole zero modes resolves the problem and allows for the derivation of 3D dualities.
Generically, there are several monopole operators Y; corresponding to the simple roots of
the gauge group. Semiclassically these monopole operators are given by Y; ~ e*m(vit1—vi)/ 95,

where the v;’s are the adjoint VEVs (which can be promoted to chiral superfields), and g3

! Another interesting case was recently studied in [22] where KK monopoles were shown to play a role in
chiral symmetry breaking.
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is the 3D gauge coupling. Whenever there are exactly two fermionic zero modes for a BPS
monopole a superpotential term of the form 1Y is generated. On the other hand, the action
of a KK monopole is proportional to 47[1/R — (v; — vy)]/g3, thus giving a contribution
~ e ¥/RE ] Y;. The first factor n = e /9% can be thought of as the analog of the
4D instanton factor AY if one matches the 3D and 4D gauge couplings: 2rR g3 = g3. It
is conventional to define Y = [[,Y;. It is the presence of the additional 7Y term upon
compactification that enforces some of the 4D properties on the 3D theory, and therefore
it is essential that one properly decouple this term in order to arrive at a true 3D theory

without deformations.

The proposal of [4] was to add a large real mass to one of the quark flavors. Naively one could
think that decoupling a single flavor would just change the nY term of the KK monopole to
an effective 7Y of the theory with the number of quark flavors reduced by one. Aharony et
al. however argued [4] that a large real mass for a single flavor completely removes the nY
term: an effective 7Y would necessarily depend upon the real mass of the flavor that was
decoupled, but the real mass can not appear in a holomorphic quantity and hence there can
be no f)f/ in the effective superpotential. However the dynamical origin of the KK monopole
decoupling from the superpotential is not intuitively clear from this argument. Indeed, the
KK monopole itself obviously still exists even when one flavor becomes heavy. Thus it can
only decouple if the number of fermion zero modes changes. Since gaugino zero modes exist
independently of the real mass for the fundamental flavor, the decoupling would require an
appearance of new zero modes and this is precisely what we found. Once the real mass is
raised above v/2 the KK monopole no longer contributes to a chiral fermionic two-point
correlation function and thus does not generate a superpotential term. This provides a
dynamical explanation for the decoupling of the effects of the KK monopole and hence the

explanation of how the undeformed 3D theory is approached in this limit.
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2.6 SU(2) x SU(2) with a bifundamental

In this section we illustrate the importance of KK monopole zero modes by considering a
supersymmetric SU(2) x SU(2) theory with four supercharges and matter @) in the bifunda-
mental representation.? The superpotential of this theory was found to be [63]:
5/2 5/2\ 2
(A1 +AD )

W = oL , (2.15)

where Q? is a gauge invariant meson constructed out of the bifundamental. In 4D the origin of
this superpotential can be understood as follows: both SU(2) factors have the right number
of flavors to produce an instanton generated ADS superpotential term. Along the Higgs
branch parametrized by the meson VEV Q? the gauge group is broken to a diagonal SU(2)p
and there are no charged light fields remaining. Gaugino condensation in the low-energy
gauge group contributes another +2A% term to the superpotential. The superpotential

(2.15) arises as a combination of these three effects.

Let us now consider the dynamics of this model on R?® x S' and then recover 4D physics
by taking R — oo. The classical moduli space contains a Coulomb branch parametrized
by the adjoint VEVs vy, vy as well as a Higgs branch parametrized by the squark VEV Q.
The adjoint VEVs break SU(2); x SU(2), to U(1); x U(1)y, while the squark VEV breaks
SU(2); x SU(2)y to the diagonal subgroup SU(2)p. For concreteness we will assume that
v; > vy > Q. It is important to note that from the point of view of the SU(2); dynamics,
the vy VEV serves as a real mass term for the SU(2); doublets. Similarly, the v; VEV serves
as a real mass for the SU(2)y doublets. We can see that the BPS monopole of SU(2); and
the KK monopole of SU(2), have two gaugino and two quark zero modes, while the KK

monopole of SU(2); and the BPS monopole of SU(2), only have two gaugino zero modes.

2A non-supersymmetric theory with similar matter content has been analyzed in [97].
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At first sight one might conclude that there is a superpotential contribution from the first
KK monopole and the second BPS monopole, but the actual dynamics is somewhat more
intricate. Since there is a squark VEV turned on, it will break the two U(1)’s to the diagonal,
U(1); x U(1)2 — U(1)p, and monopoles which carry the broken U(1) charge are confined.
Thus only multi-monopole configurations neutral under the broken U(1) will contribute to
the superpotential. There are four such multi-monopole configurations made out of two
confined monopoles: the first BPS and the first KK monopoles, the second BPS and the
second KK monopoles, the two BPS monopoles, and the two KK monopoles. While these
multi-monopole solutions each have several zero modes, some of them can be soaked up
using the squark VEV each eventually yielding contributions to the superpotential. Which
zero modes are lifted is determined by the pattern of U(1) breaking since the corresponding

gaugino gets a mass with a quark via the squark VEV as required by SUSY.

For example, the double monopole made of the first BPS and first KK monopoles generates

the expected ADS term in the superpotential,

_m

Wl—@.

(2.16)

In fact, this two monopole configuration is equivalent [75] to a periodic instanton on R? x S*.
Similarly, the configuration made up of the second BPS and KK monopoles leads to the
instanton-generated ADS superpotential in SU(2)s even though the distribution of fermion

zero modes between BPS and KK monopoles is different here:

T2

WQZ@.

(2.17)

Finally, the configurations with the two BPS and the two KK monopoles (which act as the
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monopoles of SU(2)p) produce the superpotential

1
Wis= @

(nnglYg + ) . (2.18)

1Y,

Solving the equations of motion for the composite monopole Y;Y> we find that (2.18) will

contribute :I:Q—Végm, which together with (2.16) and (2.17) results in the correct superpotential

(2.15).

2.7 Conclusions

Fermionic zero modes of monopoles largely determine the structure of the dynamical monopole-
induced effects in supersymmetric theories. We have found the condition for the existence of
fermionic zero modes in the fundamental representation in the KK monopole background,
and showed that such zero modes will be present for a sufficiently large real mass term. This
explains the previously mysterious decoupling of the effects of KK monopoles in theories
with four supercharges in the presence of a large real mass, which allows one to explore the
dynamics of a truly 3D theory. We have applied our results to the SU(2) x SU(2) model
with a bifundamental and shown that the terms attributed to gaugino condensation in 4D

originate from multi monopole terms in the 3D theory.

47



Chapter 3

Deformations of the moduli space and
superpotential flows in 3D SUSY
QCD

This chapter is heavily based on work previously published in collaboration with Yuri Shirman

199].

3.1 Introduction

In this chapter, we calculate quantum deformations of the classical moduli spaces in 3D
SUSY QCD with FF < N flavors and investigate their role in the origin of the pre-ADS
superpotentials as well as their role in the flow of superpotentials in the theory space as
one adds holomorphic mass terms and decouples heavy flavors. It has long been known [3]
that the classical moduli space is deformed quantum mechanically in a 3D SU(N) theory

with ' = N — 1 flavors, taking the form Ydet M = ¢?¥, where Y is a globally defined
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monopole modulus and ¢* is a 3-dimensional coupling. We will derive this constraint by
following the approach of [48] and calculating the two-point holomorphic scalar correlation
function in an SU(2) theory with one flavor. In fact, the physics behind such a modification
is clearer in 3D. An SU(2) theory with 4 supercharges has a Coulomb branch along which
the gauge group is broken to U(1). On the Coulomb branch, the Higgs direction is lifted, and
the squark VEVs are not allowed. Thus, the meson VEV M = ¢g must vanish classically.
Nevertheless, the holomorphic two-point squark correlation function receives non vanishing
contributions in a single monopole background. Indeed, the fundamental monopole of the
SU(2) theory has two gaugino and two doublet zero modes. Thus it generates a four-fermion
vertex in the low energy effective theory. When this 't Hooft operator is combined with
supersymmetric gauge couplings, one can construct a two loop diagram contributing to the
two-point scalar correlation function. Such a diagram is naively UV divergent, but this
divergence is cutoff by the finite size of the monopole. We perform a full calculation of
this two-point correlation function in Section 3.2. Then we generalize the result to SU(V)
theories with F' = N —1 flavors and arbitrary N. In Section 3.3, we observe that the classical
moduli space is also deformed in theories with an arbitrary number of flavors, I < N — 1.
When F' = N — 1 the deformation is global (constraining the global moduli Y and M),
while in the case of F' < N — 1, the deformations exist in locally defined coordinate charts of
the moduli space. These local deformations lead to several important consequences. They
guarantee the equivalence of the Coulomb branch superpotential discussed in [3, 4] and the
multi monopole generated superpotential on the mixed Higgs-Coulomb branch of the theory
found in [33]. Furthermore, the constraints ensure that the superpotential is valid in all
coordinate charts on the moduli space. In Section 3.3.1, we present detailed analysis of the
quantum moduli space of an SU(3) model with F' = 1. In Section 3.3.2, we extend our results
to all SU(N) models with F' = 1. Finally, in Section 3.3.3, we generalize our discussions
to arbitrary F© < N and show how the existence of such local deformations explains the

superpotential flow between theories with different numbers of flavors as mass terms are
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added. We finish with a summary of our results in Section 3.4.

3.2 F =N -—1: Quantum Deformed Moduli Space

In this section, we derive the 3D quantum constraint by calculating two-point holomorphic
squark correlation function in SU(2) theory with one flavor and generalizing the result to
SU(N) with FF = N — 1 flavors. As discussed in the previous section, the classical moduli
space of the SU(2) theory has two one-dimensional branches: a Higgs branch parameterized
by a squark VEV ¢ = ¢ (or, in a gauge invariant language, by the meson M ~ ¢q) and a
Coulomb branch parameterized by the VEV of the adjoint scalar component of the gauge
multiplet. Along the Coulomb branch, the gauge symmetry is broken to U(1), and it is
convenient to describe the physics in terms of the monopole modulus Y. Classical Higgs
and Coulomb branches only intersect at the origin of the moduli space. Therefore, on
the Coulomb branch, the holomorphic squark-anti-squark correlation function must vanish
clasically. However, as we explicitly show below, this correlation function obtains a non-
vanishing contribution (M) = (¢q) = ¢?/Y in the monopole background on the Coulomb
branch. The corresponding semi-classical calculation is weakly coupled and under control
for sufficiently large v. Holomorphy guarantees that this result remains valid everywhere on

the Coulomb branch, implying a well known 3D quantum constraint Y M = ¢2.

Our calculation is similar to 4D calculations of quantum constraints in [48]. The instanton-
monopole of the SU(2) theory with 1 flavor has two gaugino and two fundamental zero
modes and contributes to chiral four fermion correlation function. This correlation function
can be converted to holomorphic two point squark correlation function by the insertion of
two supersymmetric gauge couplings. The resulting contribution can be visualized in Figure

3.1.
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Figure 3.1: Diagram illustrating the monopole contribution to squark correlation functions

In the language of the path integral, we must evaluate

(@ (2)ai(x)) = / [D¢lgu (7' ()ai(w)) e om0l (3.1)

where [¢g,] is short-hand for all quantum field fluctuations around the monopole background.
We present the details of the calculation in the Appendix. The resulting correlation function
is

2 _47nv

(7 (2)qi(x)) = g— 2 g1, (3.2)

where [ is a positive definite integral. At first sight, this is non-holomorphic, but as explained
in [44, 86], the non-holomorphic pre-factor v?/g* can be absorbed into redefinition of the

Kahler potential. The required field redefinition leads to a finite renormalization of the gauge

coupling
1 1 2
- 5 - (3.3)
g g v
In terms of the rescaled modulus Y the two point scalar correlation function becomes
9
M) ==—. 3.4
o =% (3.4)

The generalization to SU(N) theories with /' = N — 1 flavors is reasonably straightforward.

Consider the theory on the mixed Higgs-Coulomb branch where the rank of the meson M is
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N — 2, and the low energy physics is described by an F' = 1 SU(2) theory. The calculation
of the two-point holomorphic scalar correlation function is illustrated in Figure 3.2 where
crosses represent VEV insertions. As before, the coupling constant of the low energy theory
is renormalized due to the contributions of non-zero modes and is shifted by terms of the
form 1/v. The fundamental monopole of the low energy SU(2) can be written in terms of
the fundamental monopoles and mesons of the high energy theory Y7, = [, Y; det’ M/ g*F=n
where prime denotes the determinant over N — 2 flavors with non-vanishing VEVs. The
scalar correlation function for the remaining massless flavor of the low energy SU(2) follows
from our earlier calculation and gives the quantum constraint Y det M = ¢?/. One could
also derive the constraint by calculating the 2(/N — 1)-point scalar correlation function at a

generic point on the Coulomb branch in the background of N — 1 fundamental monopoles,

but this calculation would be difficult in practice.

The existence of quantum deformations of the classical moduli space for an arbitrary number
of flavors implies that the rank of the meson superfield is maximal (rank(M) = N —1). We
will later see that M will have maximal rank (rank(M) = F') for any number of flavors. This
means that, quantum mechanically, the gauge symmetry is always maximally broken and
some fundamental monopoles can not contribute to the superpotential despite the fact that,
at a generic point on a pure Coulomb branch, these monopoles have exactly the two fermion
zero modes necessary to generate two fermion correlation function and the corresponding

superpotential terms.
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Figure 3.2: Diagram illustrating the multimonopole contribution to a 2F' squark correlation
function

3.3 F < N —1: Quantum Constraints as Transition

Functions

As discussed in Section 1.3, the space of physically inequivalent classical vacua consists of
several distinct (N — 1)-dimensional branches. One might expect that the moduli space
becomes a smooth, locally connected manifold in the quantum theory. We could attempt
to describe such a manifold in terms of globally defined moduli Y and M. However, M
has maximal rank F', and there are an insufficient number of globally defined moduli (F +
1) to parameterize the entire N — 1 dimensional moduli space when F' < N — 1. The
fundamental monopoles can not serve as additional coordinates on the moduli space, since
they are discontinous at sub-wedge boundaries. To resolve the problem, one would need
to introduce new composite coordinates valid in two or more sub-wedges and transition
functions between the composite coordinates that are valid on overlapping sets of sub-wedges.
For example, one could use the two-monopole modulus Yk(f;) discussed earlier. However, this
is not sufficient, because there are two discontinous coordinates at each sub-wedge boundary.
One of these coordinates can be replaced by the two-monopole modulus, but the existence of

a second discontinous coordinate will prevent us from patching together disjoint sub-wedges.

53



As we will show below, quantum effects deform the classical moduli space even in theories
with F' < N — 1, but such deformations are local (i.e. they are only valid in specific sub-
wedges of the classical moduli space). Moreover, these deformations smooth out the interface
between the sub-wedges and make the mixed Higgs-Coulomb branch accessible from either
adjacent sub-wedge. These quantum deformations also provide necessary transition functions
to cover the entire quantum moduli space with overlapping coordinate charts. The quantum
deformed moduli space is further lifted by monopoles, and the exact superpotential of the

theory can be written down in terms of the appropriate coordinates in all coordinate patches.

In Section 3.3.1, we will show how this plays out in the case of an SU(3) theory with
F = 1. While the SU(3) example is illuminating, it is not sufficiently general. In this
case. there are two globally defined moduli Y = Y;Y; and M which can describe dynamics
everywhere on the moduli space. In Section 3.3.2, we extend these results to all SU(N)
theories with F' = 1. We show that once again quantum effects deform the classical moduli
space, relating monopole and meson moduli at each boundary. This deformation allows
us to cover the moduli space by a set of overlapping coordinate charts, with each patch
covering two neighboring sub-wedges. We will demonstrate that calculations of the pre-ADS
superpotential generated by single monopole contributions in any sub-wedge of the Coulomb
branch lead to the same result, and this is the same superpotential that can be found by
considering monopole and multi-monopole contributions on mixed Higgs-Coulomb branches
emanating from the boundaries between sub-wedges. In Section 3.3.3, we further generalize
the results to SU(N) models with /' < N —1 flavors. Here the quantum deformation relates

the mesons to F-monopole composite operators

k+F—-1

Yirdet M = ( I1 Yf“) det M = ¢°F' . (3.5)
i=k

This local deformation allows us to introduce the (F' + 1)-monopole modulus Y gy =

k+F+1 (k) . . . . . . (k) _ (k+1) _
[I—;  Y;" which is continuous across the intermediary boundaries Y, 'n,, = Y, %) =
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L= Yk(’?ﬂ). We can then cover the moduli space by a set of overlapping coordinate charts

with well defined transition functions and show that superpotentials calculated on all of the

quantum-mechanically accessible branches of the moduli space are equivalent.

3.3.1 SU(3) theory with F' =1

Consider a one flavor SU(3) model on the Coulomb branch in the positive Weyl chamber.
(Classically, the Weyl chamber is split into two sub-wedges depending on the sign of v, while
at v, = 0, the Higgs branch is accessible. In the vy < 0 sub-wedge, it is convenient to parame-
terize the Coulomb branch coordinate by monopole moduli Y; and Y5 which in a semiclassical
regime are approximated by Y; ~ exp [47m(v; — v9)/g?] and Y ~ exp [47(vy — v3)/g%]. In the
v > 0 sub-wedge, we need to choose different Coulomb branch moduli Y} and Y;. As ex-
plained earlier, despite similar behavior in the semi-classical regime, the quantum numbers
of Y/ and Y] differ from those of Y] and Y, respectively and do not represent the same degrees

of freedom in the quantum theory.

Consider the first sub-wedge of the Weyl chamber defined by v; > 0 > vy > wv3. Here
the first fundamental monopole Y; has four (two gaugino and two matter) fermion zero
modes, while the second fundamental monopole Y; has two gaugino zero modes. Only the
second fundamental monopole contributes to the superpotential, and we find W = Y, !.
In addition, we can calculate two-point scalar correlation function in Y; background. Since
the fields of the Y; monopole (including the fermion zero modes) can be embedded in an
SU(2) subgroup of SU(3), the calculation is nearly identical to the one we performed in the
previous section. There are two new features that must be taken into account. First, the
contributions of non-zero modes of the matter doublets are modified since, from the point of
view of ¥ monopole, the matter fermions have real mass (v; + v2)/2. Second, the gaugino

contains components that transform as doublets in the Y; monopole background. These
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components of the gaugino do not have zero modes, but their non-zero modes contribute to
the path integral just like matter doublets with a real mass 3(v; + v2)/2 would. Similar to
the non-holomorphic prefactor in the SU(2) theory, these effects can be understood as finite
renormalization of the U(1) gauge coupling of the low energy theory, and we find Y M ~ g¢2.
This result can be enforced in the first sub-wedge of the Weyl chamber through a Lagrange

multiplier term in the superpotential,

4
W=2 + M(ViM - ¢?). (3.6)
Y,

In the v1 > vy > 0 > v3 sub-wedge, we similarly find

4
W= % + (VM — ¢?). (3.7)
1

To verify that these two expressions are consistent with each other we must compare them

at a jumping point where vy = 0. Integrating out the Lagrange multiplier terms, both forms

of the superpotential lead to the same result

g° q°
W= _ 3.8
YiVoM — Y/YJM’ (3.8)

where the composite two-monopole modulus ¥ = Y Y, = Y/Y] is continous across the
boundary between the two sub-wedges as explained in Section 1.3. It is tempting to interpret
the superpotential (3.8) as a two-monopole contribution to the superpotential, and indeed it
agrees with the results of the two monopole superpotential calculation on the mixed Higgs-
Coulomb branch of the theory [33]. We conclude that Y and M are valid in both coordinate
charts of the F' = 1 SU(3) theory and are related to moduli of the two coordinate charts by

{1 =¢*/M.Y, =Y M/g*} and {Y{ =Y M/g*,Y] = g*/M}.

Note that the above procedure is precisely that described at the beginning of this section.

The quantum constraints enforced by A; and Ay provided a transition functions from the
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two sets of Coulomb branch coordinates to the mixed Higgs-Coulomb branch coordinates,
while the continuity of the two-monopole modulus ensures that the two Coulomb branch
coordinate charts overlap on the Higgs branch. Together, these effects guarantee agreement

between all three expressions for the superpotential.

Let us consider some standard checks of ADS and pre-ADS superpotentials. Specifically, we
can study the theory on a Higgs branch where the low energy physics is described by a pure
SYM SU(2) as well as deform the theory by a large holomorphic mass term, m, so that the
low energy description is given in terms of a pure SYM SU(3) theory. In the former case,
the low energy superpotential is given by 1/Y7, and by comparing with (3.8), we conclude
that the matching of high and low energy theories requires a rescaling of chiral superfields
to absorb M into the definition of Y7, = Y1 Y3(M/g?). Similarly to non-holomorphic rescaling
discussed in [86], this field redefinition affects the matching relation between the coupling
constants of the high and low energy theories and should reproduce the finite renormalization
of the low energy U(1) coupling constant. When the theory is deformed by a mass term, the

low energy superpotential must be

4 4
gr, gr,

W === 4+ 2| 3.9
Yie Yo (3.9)

We can obtain this superpotential by starting either with (3.6) or (3.7) and adding a mass

term. For example in the vy < 0 sub-wedge of the Weyl chamber, the superpotential is

4
lV:%+Mﬂwﬁw%+mM. (3.10)
2

Integrating out both the Lagrange multiplier and the meson superfield, we find the low

energy superpotential,

W=7+, (3.11)
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which agrees with (3.9) if we identify! g2 = ¢?, Yir = Y1¢9?/m, and Yo = Y5. Once again,
the rescaling required to absorb the mass into the Y, monopole of the low energy theory
determines the coupling constant matching and correctly reproduces the renormalization of
the U(1); coupling constant. We stress that the local deformation of the moduli space, imple-
mented through the Lagrange multiplier term in (3.10), plays an essential role in reproducing
the superpotential of the SYM low energy theory when the matter fields are decoupled by

taking the superpotential mass term, m, to infinity.

3.3.2 SU(N) with F =1

The generalization to SU(N) theories with an arbitrary number of colors and one massless
flavor is straightforward. We will denote monopole moduli in the k* sub-wedge by Y;(k),
1=1,...,N — 1. With the exception of Yk(k), all the fundamental monopoles in this sub-
wedge have two gaugino zero modes and no matter zero modes. Thus they contribute to
the superpotential. Calculating the two point scalar correlation function, we find a local

constraint applicable to the k" sub-wedge, Yk(k)M = ¢2. Thus within this sub-wedge of the

Coulomb branch, the physics is described by the superpotential

4
9 k
W=> Zm+ MM -g). (3.12)
itk Li
Although this superpotential is calculated in the k' sub-wedge, it can be extended into
the (k+ 1) (or (k — 1)) sub-wedges by using the constraint as a transition function and
replacing Yk(_]i)l (or Yk(f)l) by the composite two-monopole modulus that is continuous in the

appropriate regions. Let us explicitly carry this out for the (k + 1) sub-wedge. Integrating

'Here we neglect finite non-holomorphic shifts in the coupling discussed earlier.
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out the Lagrange multiplier, the superpotential can be written as

6

w= Y 2 J (3.13)

(k) (k) (k)
i#k, 1 Y Y, Yk+1M

The last term can be interpreted as arising from the two monopole contribution considered
n [33]. In this form, the superpotential is valid both in the k™ and (k + 1)* sub-wedges
due to their overlap at the mixed Higgs-Coulomb boundary. However, in the (k + 1) sub-
wedge, the same superpotential can be written in two more forms. First, it can be written

(k+1)

in terms of the monopole moduli of the (k+ 1)% sub-wedge, Y, , and the local constraint,

At 1 (Yk(ﬁrl)M — g2), valid in this sub-wedge:

W= Z y T )\k+1(YkiJ1r1 M —g°). (3.14)
z;élc—l—l
Second, it can be written in terms of the composite monopole moduli Yk_ﬁl)Yk_]ﬁ';l M/ g%

Recall that this term in the superpotential can be interpreted as a two monopole contribution
generated on the mixed Higgs-Coulomb branch accessible from the boundary between the
(k+1)% or (k+2)"? sub-wedges. This procedure can be used to recursively generate the sets
of coordinate charts and transition functions required to cover the entire quantum moduli
space of the theory and to define it as a smooth, locally connected manifold. Moreover, the
calculations on all accessible branches of the moduli space lead to the same results. It is
easy to see that, just like in the case of the SU(3) theory, the deformation of the theory by
the mass term correctly leads to the low energy physics described by a pure N' = 2 SYM
SU(N) theory.
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3.3.3 SU(N) with F< N —1

We conclude our study of the pre-ADS superpotentials and quantum deformations of the
moduli space by considering a general case of an SU(NN) theory with F' massless flavors.
We will consider the first sub-wedge of the Weyl chamber, v; > 0 > vy > ... > vy. By
calculating 2F scalar correlation function in the F-monopole background, one finds there
exists a local constraint given by <Hf:1 Y;) det M = ¢?F .2 This is easiest to see by performing
a calculation on the mixed Higgs-Coulomb branch where the rank F' — 1 meson VEV is
allowed. This is the region where v; = 0 for ¢ = 2... F — 1. In the presence of VEVs, the

multi-monopole Yl(g =11, Y;(l)

will collapse into a single fundamental monopole of the low
energy SU(N — F + 1) theory Y, = Yl(? det’ M/g*F=1) where det’ M denotes determinant
taken over F' — 1 flavors with large VEV. As discussed earlier, the rescaling used in the
definition of Yjy shifts the coupling of the low energy theory. We can calculate the two

scalar correlation function for the remaining squark flavor in the low energy effective theory

and find

gL g*"
M S — 3.15
Wer) =y, v Y det' M (318)

One can then write the full nonperturbative superpotential in the form,

NZF: g—( (1FdetM g ) (3.16)

As expected, integrating out the Lagrange multiplier term, we find the multi-monopole

generated superpotential found in [33]

N-1 4 2F+4

szg+9

1 1 ’
i=F42 v Yl(,fzﬂ det M

(3.17)

ZSimilar to the SU(N) with FF = N —1 case described in Section 3.2, the constraint enforces rank(M) = F
and prohibits the superpotential of F' individual fundamental monopoles.
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where Y&EH =1 v,

=1 %

Alternatively, we can consider the second sub-wedge, v > v, > 0 > ... > vy where the rank

of M is F' — 1. Here we find the superpotential

N-1 4

1
W= gt > o (VR det M — ) (3.18)

2 2
DO A

The valid coordinate patches for (3.16) and (3.18) overlap on the mixed Higgs-Coulomb

branch where both superpotentials are

-1

g g2F+
W = E + : (3.19)
1/2 1/2
i=F+2 Y;( 2 Yl(,F/Jr)l det M

With the help of the constraints, we can construct transition functions that allow us to cover
the full moduli space with coordinate charts and verify that superpotentials calculated in

any of these charts are equivalent.

Finally, we deform the theory by adding the mass term mMpgp to the last flavor. Integrating

out the heavy flavor we find the superpotential of low energy SU(N) theory with F' — 1

flavors
N-1 4 2F
w=3Y o — (3.20)
imr11 Y Yl,F det’ M

This is precisely the superpotential of the F' — 1 flavor theory calculated in [33]. In addition,
we need to compliment this superpotential by a new local constraint Yf}l_l det’ M = g*F—1),
This superpotential can then be extended to other regions of the F' — 1 flavor theory moduli

space or reduced to the superpotential of the F' — 2 flavor theory by adding another large

mass term.
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3.4 Conclusions

In this chapter, we explicitly calculated quantum constraint Y M = g% in the 3D SU(2) theory
with one massless flavor and showed how to generalize the calculation to an F' = N — 1
theory with an arbitrary N. We also showed that a local version of such a constraint
exists in 3D SU(N) theories with an arbitrary number of flavors, F' < N — 1 flavors. The
existence of local constraints allowed us to construct a set of coordinate charts that cover
the entire moduli space and show that the superpotential calculations in different charts are
equivalent. Additionally, the existence of local constraints ensures the agreement between
the superpotentials generated by fundamental monopoles on the pure Coulomb branch of an
SU(N) theory [3] with the superpotentials arising from fundamental monopoles and multi-
monopole contributions on the mixed Higgs-Coulomb branch of the theory [33]. The validity
of the superpotential throughout the entire moduli space implies that the physics is fully
described by a single Coulomb branch of the low energy pure SYM SU(N — F') theory coupled
to dilaton-like moduli M. We also showed that constraints play an essential role in the flow of
the superpotential between theories with different numbers of flavors. When a superpotential
mass term for one flavor is added to the theory and the heavy flavor is decoupled, the local
constraint guarantees that the low energy superpotential reproduces the one expected in a
theory with F' — 1 flavors. To continue the flow in flavor space as additional mass terms are
added, one must include new local constraints that are generated whenever new mass terms
are added to the superpotential. We expect that our analysis of SU(NN) gauge theories by
considering deformations of the classical moduli space will be useful in understanding gauge

theories with more general gauge groups and matter content.
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Chapter 4

Scattering Amplitudes for Monopoles:
Pairwise Little Group and Pairwise

Helicity

This chapter is heavily based on work previously published in collaboration with Csaba Csdks,

Sungwoo Hong, Yuri Shirman, Ofri Telem, and John Terning [31].

4.1 Introduction

Unitary representations of the Poincaré group, classified by Wigner [113] in the 1930s, provide
the foundation of the quantum mechanical (QM) description of particle physics and quan-
tum field theory. The essential elements in Wigner’s construction are one-particle states
— representations of the Poincaré group associated with a single asymptotic particle, in an
irreducible representation of its little group (LG) [112]. While this satisfying picture pro-

vides the full classification of one-particle states, the general construction of multi-particle
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states has rarely been addressed: they are simply assumed to be direct products of one-
particle states. However, in a beautiful, under-appreciated paper in 1972 Zwanziger [119]
found that quantum states with both electric and magnetic charges transform in non-trivial
multi-particle representations of the Poincaré group. In the first part of this chapter, we
address the general construction of multi-particle states and introduce the concept of the
pairwise LG, which is necessary to fully classify the multi-particle representations of the
Poincaré group. In addition to the one-particle LGs introduced by Wigner, the pairwise LG
completes the characterization of the transformation properties of the multi-particle system
as a whole [30]. In particular, it may yield an additional phase under Lorentz transforma-
tions on top of the one-particle LG transformations, as in the first specific realization found
by Zwanziger [119]. The pairwise LG is always just a U(1), and in the most commonly
considered scattering processes the corresponding helicity ¢io simply vanishes, confirming
the expectation that the asymptotic multi-particle state is simply a direct product of the
one-particle states. However, for charge-monopole scattering the pairwise U(1) helicity is

the quantized “cross product” of charges

qi12 = €192 — €201 , (4-1)

where e 2 (g1.2) are the electric (magnetic) charges of the two particles. This implies modified
transformation properties for scattering amplitudes involving both electrically and magneti-
cally charged particles. We note that three-particle and higher LGs are always trivial, and so
the general classification of multi-particle states in 4D will be given in terms of the momenta,

spins/helicities and pairwise LG helicities [30]

D1, < s Pn s 01y ooy On s 12, Q13y -« -5 Qnetn) - (4.2)

In the second half of this chapter, we use our refined understanding of the pairwise LG to
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construct scattering amplitudes of electrically and magnetically charged states. Understand-
ing the interactions of magnetically charged states has been a long standing issue in particle
physics. Dirac showed that a Lorentz invariant Lagrangian with both electric and magnetic
charges must be non-local [40], and such interactions are often referred to as being “mutually
non-local.” Alternatively, Zwanziger showed [118] that one can write a local Lagrangian, but
manifest Lorentz invariance is lost. These problems seem to be an artifact of the unphysi-
cal, gauge-variant Dirac string. For some time it was not even clear that the scattering of
electrically and magnetically charged particles makes sense. Paradoxically, Weinberg found
[111] that the amplitude for one photon exchange between an electric charge and a magnetic
monopole is not Lorentz invariant (and implicitly not gauge invariant [104]). However, re-
cently it was shown by Terning and Verhaaren [104] that an all orders resummation of soft
photons can restore both Lorentz and gauge invariance if Dirac charge quantization [41] is
satisfied. Hence it is believed that the electric-magnetic S-matrix is both local and Lorentz
invariant, but Lagrangian formulations cannot make both properties manifest at the same
time, leading, unsurprisingly, to seemingly unending difficulties in calculating scattering am-

plitudes [73, 51, 18, 34, 53, 26, 61, 103].

Thus we can see that electric-magnetic scattering is an ideal proving ground for on-shell
methods. In this chapter we indeed find that electric-magnetic scattering demonstrates a
success for the on-shell program in theories where Lagrangian methods fall short. We should
note that in our formulation we never need to introduce a Dirac string. This is in contrast
to previous attempts to apply on-shell methods to electric-magnetic scattering [21, 62, 80]
which have been only partially successful in eliminating the unphysical Dirac string, thus

suffering from a Lorentz violating sign ambiguity.

The bulk of this chapter is devoted to extending on-shell amplitude methods to calculations
of electric-magnetic S-matrix elements while maintaining manifest Lorentz invariance and

locality. Thus we see that “mutually non-local” scattering is, in fact, local aside from the
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angular momentum carried in the Coulomb fields of the particles. The key is to ensure
that the full action of the Poincaré group, including the one-particle and pairwise LGs, is
properly incorporated. We find a beautiful and simple implementation of this scheme in the
spinor-helicity framework, allowing us to go far beyond Zwanziger’s special case of pairwise
helicities equal to one. To capture the effect of the pairwise LG, we define null “pairwise”
momenta pEjE which are linear combinations of the momenta of each electric-magnetic pair.

The pairwise momenta are then naturally expressed using pairwise spinor-helicity variables

i), [P (4.3)

which are constructed such that under Lorentz transformations they pick up exactly the
phase dictated by the pairwise LG. Along with the standard massless and massive spinor-
helicity variables, the pairwise spinor-helicity variables serve as the fundamental building

blocks for the construction of the S-matrix for magnetic scattering?.

We utilize our newly defined pairwise spinors to construct all 3-point electric-magnetic am-
plitudes, as a direct generalization of Arkani-Hamed, Huang, and Huang [7]; our derivation
implies a non-trivial generalization of the selection rules derived in [7]. For example in the
decay of a massive spin s to two massless particles, we get the selection rule |[Ah — ¢| < s,
which reduces to the standard |Ah| < s in the non-magnetic case with ¢ = 0. Another non-
trivial selection rule we derive is for the decay of a massive spin s; into two massive particles
with spins sp and s3. In this case we get s; + so+ 3 > |go3], indicating, as a special case, that
a scalar dyon cannot decay into two other scalar dyons with ¢o3 # 0. Armed with our general
classification of 3-point magnetic amplitudes, we move on to address the 2 — 2 scattering of
a fermion and a monopole, making use of the fully relativistic partial wave decomposition,

adapted to the magnetic case. Using minimal dynamical information about the phase shifts

'Note that we will use the term magnetic scattering or magnetic S-matrix to emphasize that there is at
least one magnetically charged object among the scattered states, but our discussion is fully general and
applicable to generic multi-dyon scattering.
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of the higher partial wave amplitudes, we are able to fully reproduce the results of the non-
relativistic quantum mechanics (NRQM) calculation of Kazama, Yang and Goldhaber [68].
In particular, our selection rules immediately tell us that in the lowest partial wave only the
helicity-flip amplitudes are non-zero while forward scattering is not allowed. Furthermore,
we are able to determine the full expression for the helicity flip amplitude. For the higher
partial waves our formalism allows us to fix the full angular dependence of the amplitudes,
while the overall magnitude of all partial waves can be fixed using unitarity and the phase

shifts.

The chapter is organized as follows. Section 4.2 contains our discussion of the general
transformation properties of multi-particle states under the Poincaré group. We introduce
the concept of pairwise LG here. We also give a basic introduction into the unusual properties
of the charge-monopole system, rooted in the asymptotic angular momentum contained
in the electromagnetic field. In section 4.3 we define our main objects of interest — the
pairwise spinor-helicity variables which transform covariantly under the pairwise LG. These
new spinor-helicity variables, together with the standard spinors for massless and massive
particles, serve as a complete set of building blocks for the magnetic (and non-magnetic) S-
matrix. We put our new building blocks to use in section 4.4, in which we demonstrate how
to construct the magnetic S-matrix and derive concrete expressions for all magnetic 3-point
amplitudes in the spirit of ref. [7]. In section 4.5 we take a further step and derive the general
partial wave expansion for magnetic 2 — 2 matrix elements. Finally, in sections 4.6-4.7, we
apply our formalism to the case of fermion-monopole scattering, effortlessly reproducing the
non-trivial results of Kazama, Yang, and Goldhaber [68], including the helicity-flip of the
lowest partial wave and the full angular dependence of the higher partial waves. Finally,
in section 4.8 we discuss partial wave unitarity in the context of the magnetic S-matrix,

knowledge of which is required to obtain the magnitude of higher partial wave processes.
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4.2 Representations of the Poincaré Group for Charge-
Monopole System: Pairwise LG

It has long been known that the simultaneous presence of a magnetic monopole and an

electric charge results in unusual rotational properties. The first explicit statement of this

came from J.J. Thomson [106] who found that the EM field of a system containing an electric

charge e and magnetic charge g carries an angular momentum even when both charges are

at rest:?
J field - — 4i /de T X (E X 5) = —egr = —qr (4.4)
T

where 7 is a unit vector pointing from the magnetic monopole to the charge. Quantum
mechanically, angular momentum is quantized in half integer units, and so we get yet another

derivation of the Dirac quantization condition [41] eg = n/2.

The angular momentum of the electromagnetic field Eq. (4.4) was generalized to the case of

dyons by Schwinger [91] and Zwanziger [117]

J field _ Zq"j 7ij (4.5)

with the sum taken over all dyon pairs and

qij = €95 — €iGi = =, (4-6)

|3

where the Dirac-Schwinger-Zwanziger quantization condition® for ¢;; is once again implied

2Due to the appearance of E and B the field angular momentum must be proportional to eg. It is also a
dimensionless vector for which the only candidate is 7, hence the result must be proportional to egr which
can be verified by explicit calculation [106].

3Sometimes this condition is given as (e;g; — e;g:)/4m = 5. Here and throughout we normalize the
magnetic charge such that Eq. (4.6) holds, and there is never a (47)~! factor in the quantization condition.
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by angular momentum quantization.

Zwanziger [119] further showed how to write the angular momentum for scattering dyons in

a Lorentz covariant fashion

v Eupaﬁ Pia Pjp
Megge = =+ Z ij - ; (4.7)

where the sum is taken over all distinct dyon pairs in the initial state (final state) with a
+(—) sign. The origin of the unusual £ sign is the appearance of a t/|t| in the asymptotic
expression for M. In the non-relativistic limit, this expression reduces to .J,14 = + 57 g.: by,
where p;; is the relative 3-momentum between the dyons in each pair. Since asymptotically

A

p -7 = F1, this exactly reproduces Eq. (4.5).

The physical implications of (4.4)-(4.5) are hard to overstate. They imply the following

unusual properties of charge-monopole (or general dyonic) systems:

e The conserved angular momentum for the interacting theory is different from the an-

gular momentum of the free theory

e As a consequence, the asymptotic quantum states representing dyon pairs do not com-

pletely factorize into single-particle states

e In general there is no crossing symmetry for the electric-magnetic S-matrix

The first and second points can be immediately understood. Since the angular momentum
of the EM field depends only on ¢;; and does not depend on the relative distance (just
orientation) this term does not vanish no matter how far the charge and the monopole are

separated, hence the direct product of two single-particle states never captures this additional
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contribution to the angular momentum. The third point will be elaborated below once we

consider the LG transformation of the magnetic S-matrix.

4.2.1 Electric-Magnetic angular momentum: the NRQM case

Before jumping into our main topic, which is the representation of the Poincaré group and
quantization of theories with magnetic charges, let us briefly remark on the NRQM case.
Rather than defining the non-relativistic S-matrix in full generality, we show here how the
conserved angular momentum operator L is modified in the presence of magnetic charges

7).

The Hamiltonian of a charged particle in the background field of a stationary monopole is

given by

—

H=—g (V—ied) + V()= 5D+ V(r) (4.8)

2m m

where D = V—ieA and A is the vector potential for the monopole, defined most conveniently

using two coordinate-patches in [115]. Specifically, with the monopole at the origin, A, =

+g
rsin 6

(1 F cosf) on each of the patches, usually chosen to be the upper (lower) hemisphere

in the monopole rest frame. One can easily check that the usual particle definition of the

angular momentum L = —i7x D does not satisfy the angular momentum algebra
[Li, LJ] = ieijkLk (49)
[L;, H] = 0. (4.10)
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This algebra, however, is satisfied once the angular momentum operator is generalized to

include a term that depends both on electric and magnetic charges

L =—ifx D — egi = mF X F — egf (4.11)

where 7 = 7/r is a unit vector pointing radially outward and we used the Heisenberg equa-
tion of motion 7 = —iﬁ/m in the second equality. Hence for a charged particle moving
in a monopole background, angular momentum must be supplemented with an additional
term proportional to ¢ corresponding to the contribution of the EM field. Importantly, the
contribution of the EM field, as well as the total angular momentum, is non-vanishing even
when 7 = 0 (i.e. in a situation where both the charged particle and the monopole are at

rest).

This expression can be generalized to a quantum field theory in the the case of a ‘t Hooft-
Polyakov monopole background. The ’t Hooft-Polyakov monopole solution in an SU(2) gauge
theory is not invariant either under spatial rotations or gauge transformations, however, it
is invariant under a combined transformation generated by L+ g (recall that the solution
for the scalar field is ®, o 7%7*). For a particle of spin S in a representation R of SU(2)

and moving in the monopole background, the conserved angular momentum is given by

l

.
I
gl
_|_
=y
_|_
Uy

(4.12)

where T, r are the SU(2) generators in the representation R. This expression is especially
instructive for a particle in a doublet representation of the SU(2) (so that the electric charges
under the unbroken U(1) are minimal). In the singular gauge where the magnetic field of

the monopole points in the 73 direction in group space and the field contribution to the
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angular momentum is +1/2, we find an exact match to the NRQM result. In the relativistic
quantum theory, this extra contribution gives rise to the additional LG phase, as we discuss

below.

4.2.2 Pairwise LG

In order to properly understand the effect of the modified angular momentum operator on
the construction of the quantum mechanical Hilbert space we first need to go back and
understand the properties of multi-particle representations of the Poincaré group. It is well-
known that for single particles one needs to define a reference momentum k, which may
be chosen as (M,0,0,0) for massive particles or (E,0,0, F) for massless particles. The
LG is then the set of Lorentz transformations that leave the reference momenta invariant.
For massive particles the LG is SO(3) ~ SU(2), while for massless particles it is ISO(2)
the two dimensional Euclidean group. The nature of the particle we are describing thus
determines the required representation of the LG. For example, given a massive particle the
representation is specified by the mass and the spin, s, and the state in the Hilbert space
is just |k, s). For the case of massless particles, while interesting non-trivial representations
of ISO(2) are in principle allowed by the kinematics of the Lorentz group [90], the models
needed to match experiment do not take advantage of the additional quantum number offered
by using the entire ISO(2) group rather than just the SO(2) ~ U(1) subgroup corresponding

to ordinary helicity.

When considering the representations of the Poincaré group one usually stops here and
assumes that multi-particle states transform as products of single particle states. However
a closer examination of the Poincaré group shows that this is not the only possibility: as
first pointed out by Zwanziger [119], there are rotations that leave the momenta of a pair

of particles invariant. To see this, we can consider a two-particle state |p;,ps) and again
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consider some reference momenta for this multi-particle state. The simplest choice is to go

into the center of momentum (COM) frame

(kl)u = (Ei 0,0, _'_pC)

(kZ)M = (E§70707 _pc) ’ (413)

where

DL p2)? — m2m2 .
Pe = \/( . )s L2 ) E1,2:\/m%,2+pga (4.14)

are Lorentz invariant, and s = (E{+ E5)?. A Lorentz boost L, brings the reference momenta
back into the arbitrary pair of original momenta p; = L, ki, p» = L, ko. The important
observation is that there exists a non-trivial two-particle or pairwise LG which leaves these
reference momenta unchanged — it is simply a rotation around the z-axis, corresponding
to a U(1) pairwise LG. We would like to emphasize that this pairwise LG is independent of
the usual one-particle LG: it describes the relative transformation of the two particle state
compared to the product of the one-particle states. Hence the general two-particle state is
characterized by the representations of the individual particles under the one-particle LG,
as well as the additional U(1) charge, g9, corresponding to the representation of the two-
particle state under the pairwise LG. We call this charge the “pairwise helicity”. Thus the
state is | p1, pa ; 01,09 ; qia). The py, ps are simply the individual momenta for each particle,
and the o; are collective indices denoting the individual s?, s? for massive particles or the
helicity h; for massless ones. The novelty here is the additional quantum number ¢, which

is associated with the particle pair rather than an individual particle. Under a Lorentz
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transformation, this quantum state transforms as
UA) |p1.p2 s 01,025 qiz) = €029 Dyt oy Doyoy | Ap1, Apa 5 01,05 5 qi2) (4.15)

where ¢ is the U(1) rotation angle corresponding to the pairwise LG, while the Ds’ are rep-
resentations of one-particle LG rotations for each of the two particles. For massive particles,
the LG is just SU(2) and the D matrices are in the spin s; representation of SU(2). For
massless particles, the LG is U(1) and the Ds are the ordinary helicity phases ei%:. We will
show that this is indeed the right transformation for the spinless case. A construction valid
for particle with arbitrary spin and state for any number of particles is presented in [30],
showing that general multi-particle states are indeed charaterized by pairwise helicities in

addition to the standard spin/helicity, and they transform according to Eq. (4.16).

This transformation rule can be derived in the usual way by applying Wigner’s method of
induced representations [113] , which we briefly summarize at the end of this subsection. But
first we would like to ask what happens for the case of more than two particles. To that end it
is sufficient to consider a three particle state. Clearly, its transformation includes a product of
three representations of the one-particle LG. Each one-particle LG transformation leaves the
momentum of the corresponding particle invariant. The three particle state also transforms
as a product of representations under three pairwise LGs, each leaving the momenta of the
corresponding pair invariant. However, there is no non-trivial subgroup of the Poincaré
group that leaves invariant an arbitrary set of three momenta. Hence the three-particle LG
is trivial and the Lorentz transformations of three particle states are fully characterized by
their transformations under three single particle LGs and three pairwise LGs. This conclusion

easily generalizes to all n-particle states: such states are characterized by n masses and spins,

as well as (Z) pairwise U(1) helicities gij, | p1, P2, D0 i 01,02, 0n 5 Q12,135 - - s n—1m )
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with Lorentz transformations given by

U(A) ’p1>~';pn 7 O1,+-+,0n ; (1127Q137---Qn—1,n> =
ei2i<j qij¢(pi’pj7A) H?:l Dg;gil Apb s 7Apn ) O-ia s 7O-;L y 412,413, - - - 7qn—1,n>

(4.16)

The exact representations of the pairwise LGs for multi-particle states, i.e. the helicities
gij, depend on the dynamics of the theory. In most cases only trivial representations of the
pairwise LGs arise and ¢;; = 0. The one known exception is a state containing both electric
and magnetic charges. As we will see below, the action of the angular momentum operator
requires in this case the identification ¢;; = e;g; —e€;g;, corresponding to the Dirac-Schwinger-
Zwanziger quantization condition; the existence of EM field angular momentum implies that

multi-particle states do not fully factorize into products of single particle states.

We conclude this subsection by reviewing the Wigner method of induced representations to
derive Eq. (4.16) for the spinless case with two particles, following [113, 112, 119]. This also
provides us with an explicit formula for the pairwise LG phase ¢(p;,pj, A). We define our

reference quantum states as

’ kl, k’g ) Q12> . (417)

Having identified the effect of the pairwise LG on the reference states with a rotation around

z-axis we have

J, |k1,k2 ; Q12> = Q12|k1,k2 ; Q12>' (4-18)
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This equality correctly reproduces the EM field contribution to the angular momentum in
Eqs. (4.5)-(4.7) provided that ¢;; = e;9; — e;¢;. Interestingly, this identification also directly
implies the Dirac-Schwinger-Zwanziger condition for ¢;o, simply from the properties of the
Lorentz group. To see this, note that due to the spinorial double coverings of the Lorentz

group, any 4m rotation (rather than 27) around Z must be the identity,

, ne’ (4.19)

|3

4 _
e =1 = g2 = €102 — €201 =

The quantum states for general momenta p;, p> can be obtained from the reference pairwise

state with a Lorentz boost

|p1p2 s qu2) =U(Ly) [k ke s qra), (4.20)

where U(L,) is a unitary operator representing the Lorentz boost L,. We now wish to learn
how a generic Lorentz transformation A acts on the states | p1,pa; q12). Proceeding as in

the standard method of induced representations, we have

UNMN|pi,p2; qi2) = U(Lpp) U (LX;AL}?) | k1, k2 5 qu2)

= U(Lap) UWiiko) [Fr ko s qu2), (4.21)

where Wy, i, (p1,p2, A) = L/_\;ALP = R, [¢p(p1,p2,N)] is a LG transformation, which is noth-

ing but a rotation around the z-axis with an angle ¢(p;,ps, A). By definition, this LG
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transformation acts on |k, ko ; qi2) as exp [iq1ad(p1, p2, A)], so that

UMN)|p1,p2 i q12) = glnzo(prpt) | Ap1, Ap2 5 qi2)- (4.22)

We can easily see that the transformation rule for general multi-particle states in Eq. (4.16)
is unitary and indeed forms a representation of the Lorentz group. First, since Eq. (4.16)
only differs from the standard Lorentz transformation by a phase e, this transformation is
clearly unitary. Second, because the phase angles ¢(p;, pj, A) are identical to the ones that
arose as LG phases for the two-scalar case, and since they furnish a representation, we know

that

&(pi, pj, NoA1) = O(Aapi, Apj, A2) + d(ps, pj, A1) - (4.23)

This proves that U(AaA1) = U(Ag) U(A1) and so our transformation rule is indeed a repre-

sentation of the Lorentz group.

4.2.3 In- and Out-states for the Electric-Magnetic S-matrix

Now that we understand the general transformation properties of dyonic multi-particle states,
we are ready to define the relativistic S-matrix for electric-magnetic scattering processes. To
do this we have to first properly define the multi-particle in- and out- states. As usual, we

separate the full Hamiltonian of the system into a free Hamiltonian, Hy, and an interaction:

H = Hy+V. (4.24)

7



In the standard definition, due to Weinberg [112], we can choose our quantum in/out states
to be eigenstates of the full interacting Hamiltonian that approach free states* as t — +oo.
However, in the case of electric-magnetic scattering, this definition has to be modified. This

is because Hy and H have different conserved angular momentum operators,

The operator Jy represents the total orbital and spin angular momentum of different particles,
while J also includes the contribution of the EM field, as is evident from Eq. (4.7). The
inequality of J and J; seems, so far, to be unique to electric-magnetic scattering. As a
consequence the Lorentz group is represented differently® on the in- and out- eigenstates of
H. This is simply a reflection of the fact that ¢;; can be non-vanishing for the in- and out
states, while the eigenstates of Hy are simply the direct product states of the free one-particle

states with all ¢;; = 0.

In accordance with our discussion in section 4.2.2, we identify the multi-particle in- and

out-states as the states transforming with definite values of g;;:

UM Ip1r-ops =) = [ DOVI) [Apr,.., Apas £) €5, (4.26)

i

where X = Z:.;j ¢ij 9(pi» pj, A). Here, and below, ‘+’ stands for ‘in’, and ‘-’ stands for ‘out’,

the D(W;) are the one-particle LG transformations, while the e*** is the additional phase

factor corresponding to the pairwise LGs. Note that we need to choose opposite signs for

4Actually this language is not completely accurate since the in/out- states are conventionally defined in
the Heisenberg picture and are time independent. For a rigorous definition of our S-matrix, see appendix D.

®The generator of boosts K is always represented on the in/out states differently from its representation
on free states. The surprise here is the difference between in- and out- states, which is a unique consequence
of J # Jo.
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the pairwise LG phases for the in- and out- sates, in accordance with the extra sign showing
up in the asymptotic expression (4.7). We see that the transformation rule Eq. (4.26) is a
departure from Weinberg’s standard definition of the S-matrix, in the sense that the Lorentz

group is represented differently on in- and out- states.

4.2.4 Lorentz transformation of the electric-magnetic S-matrix

In the previous section, we presented the Lorentz transformation, Eq. (4.26), of multi-particle
quantum states involving electric and magnetic charges. The general LG transformation for

the S-matrix readily follows,

S<p/177p;n’pl7apn) = <p/177p:n7_‘p177pn7+>
= <p’1,-..,p§n;—|U( )f ( )|p1,---,pn;+>

= e/ tE-) HD HD S(Apy, . Ap, [ Apy,...  Apy) (4.27)
where 6

Yy = ZQU é(pi,pi, ), X = Zq"j o(pi, P, A) - (4.28)

i>j i>]

and W; are the LG rotations for one-particle states in the in- and out- states. To go from the
second to the third line, we used the fact that the extra U(1) LG factor has the same sign
for (out| and |in) states. Note that since ¥y pairs particles within the in- and out- states

but doesn’t involve in-out pairs, this is a manifest violation of crossing symmetry. Inverting

6Below we use the notation ¢i; = ¢(pi, pj, A) when it’s clear whether we are talking about the in- or out-
state.
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Eq. (4.27), we have

S(Apy,...,Apl |Api,....,Ap,) =

e T D) [PV S Wh . b 1. 1) (4.29)
i=1 j=1

This transformation rule was first derived in [119]. If all ¢;; = 0 (in particular, if none of
the scattering particles have magnetic charge), the transformation rule Eq. (4.29) reduces to
the standard LG transformation with >, = 0. To construct the electric-magnetic S-matrix
elements that satisfy the transformation rule given in Eq. (4.29) using on-shell methods we
need to introduce a new kind of spinor-helicity variable that enables us to saturate the extra

“electric-magnetic” U(1) phase in Eq. (4.29).

4.3 Pairwise Spinor-Helicity Variables for the Electric-

Magnetic S-matrix

4.3.1 Standard spinor-helicity variables for the standard LG

In the spinor-helicity formalism without magnetic charges, we can directly write down the
amplitude that transforms by construction as in Eq. (4.29) with ¢ = 0. To do this, we
construct the amplitude from contractions of the spinor-helicity variables. For a massless
particle i, we use the spinor-helicity variables |p;)a [pil;, which transform under Lorentz

transformations as

Aa5’p1>ﬁ — T IAp:) 5, [Pi\g AB@ — e 50iN) [Ap;] (4.30)

o )
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where the phase ¢(p;, A) corresponds to the action of the one-particle LG for massless parti-
cles. For a derivation of this transformation rule, see for example [46, 59, 23]. In many cases
we simply drop the p; from the spinors and just use the notation |i), = [p;)q and [i|, = [pil,-
An S-matrix involving an outgoing massless particle ¢ with helicity h; has the correct LG
phase for the i*" particle if we construct it from n; copies of |i), and 7; copies of [i|,, such

Similarly, an amplitude involving a massive particle j of spin s; is constructed from 2s;
insertions of the massive spinor-helicity variables [i)!, with their spinor indices symmetrized.
The indices I on the massive spinors indicate that they transform as doublets of the LG SU(2)
for massive particles. These indices are usually suppressed, as they are only needed when
taking the massless limit (specifying a value for the [ index is like choosing a particular
helicity in the massless limit). Note that the I indices are automatically symmetrized when
one symmetrizes over the spinor indices « or &. We refer the reader to ref. [7] for a detailed

discussion of the spinor-helicity formalism for massive particles.

4.3.2 Pairwise momenta

As we argued in the previous section, in the case of the electric-magnetic S-matrix®, the
transformation rule involves an additional pairwise LG phase associated with the angular
momentum in the EM field, as can be seen in Eq. (4.29). Since this extra phase is associated
with pairs of momenta p;, p;, it is not possible to reproduce the correct transformation
rule using only the standard spinor-helicity variables |i), and [i|, (or |i)?, and [i|}). This

motivates us to the define a new kind of spinor-helicity variable associated with pairs of

"Notice that while |p) (|p]) carries a helicity weight £1/2, as is evident from Eq. (4.29), for checking LG
scaling of the S-matrix, we need to do |p) — |Ap) oc w™t|p) and |p] — |Ap] x w|p], where w is a helicity
+1/2 factor.

8In our construction for electric-magnetic scattering we refer to the “S-matrix” rather than the usual
scattering amplitude. The reason behind this is that in the magnetic case, selection rules sometimes forbid
the appearance of the § function in the standard relation S,s = 6(a — 8) — 26 (po — pg) Aags-
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momenta p;, p;, which transform with the pairwise LG phase ¢;;. Importantly, the pairwise
LG transformation of the S-matrix is always a U(1) phase, and so we need the new spinors

to be massless, and associated with null momenta.

Since the extra LG factor for the electric-magnetic S-matrix is associated with the momenta
pi, p; of each pair in the in/out- state, it is natural to define two null linear combinations

of p;, p;, which we call the pairwise momenta’ pgji

Below, we will define pairwise spinor-
helicity variables associated with these pairwise momenta, and show that they have the
correct pairwise LG weight to be used as building blocks for the electric-magnetic S-matrix.

We first define the “reference” pairwise (null) momenta in the COM frame as

(k?.i)u = p.(1,0,0,%1) , (4.31)

v

where p,. is the COM momentum of the ij pair, as in Eq. (4.14). The pairwise momenta pgji
in any other frame can be obtained by boosting k:f]jE into that frame. Clearly k:f]jE . kfji =0

and kf;r . kf]’ = 2p?, and these relations obviously hold in any other frame.

For reference, we also present the Lorentz covariant definition of pz;—L,
b4+ 1 c c
VE = g (5 40 b (5 = 0 )
@ J
1
h— c c
P = e LEf +pe)pi— (Ef —pe) pi] - (4.32)
’ Ef + ES J

In the m; — 0 limit, we have Ef — p. and so pi;“ — p; and pfj_ becomes Parity-conjugate

9The use of the label b to denote null linear combinations of timelike momenta is inspired by the notation
of [71] and of the OPP reduction [82] in the context of generalized unitarity [13, 49]. There, null combinations
of external momenta were used in order to construct a null basis to span the internal loop momenta that
have been put on shell.
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of p;. Similarly, in the m; — 0 limit, we have £ — p. and so pfj_ — pj and plz;r becomes
Parity-conjugate of p;. By inverting these equations, we can express the massive momenta

using the null momenta as

1
po= g [(Ef + pe) pl + (B¢ — pe) ply |
1
Pi = 35, [(E] +p) vy + (B —pe) vy ] - )

4.3.3 Pairwise spinor-helicity variables

We are now in a position to define spinor-helicity variables related to the pairwise momenta

plzji As we will show, these pairwise spinor-helicity variables transform with a U(1) LG
phase directly related to the pairwise LG phase of the in- and out- states in Eq. (4.26). This

makes them natural building blocks for the electric-magnetic S-matrix.

As a first step, note that linearity implies that the canonical Lorentz transformation L,

defined in Eq. (4.20) that takes k; — p; also gives

LykF = pit. (4.34)

Pty

This is instrumental in proving that the pairwise spinor-helicity variables defined below

transform with the same LG phase as the two-particle states in Eq. (4.22). The next step is
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to define the reference pairwise spinor-helicity variables,

1 0
|klb]+>a = 2pc ) |kzb]_>oz = 2pc
0 1

Wi, = VI o) . [l = VIR0 ). (4.39

These spinors are the “square roots” of the null reference momenta
b+ b+ b+
ki 0ae = K (K- (4.36)

The above relation is a standard mapping of a bi-spinor into a vector. Multiplying both

sides by 69* and taking the trace we can also write it in the form
b\ bja v |7b]¢
2 (k7)) = (k%o K] (4.37)

While the LHS of this relation transforms with L, under a Lorentz transformation, the

~\B
helicity variables on the RHS transform with ([,p)aﬁ and <£p> ~ appropriate for spinorial

«

representation. Thus up to a LG invariant factor the pairwise spinors pgji are defined by

(&),

‘pgji%l = (Ep)aﬂ |kfgi>ﬁ ) [pfji|a = [kzbji

(4.38)
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This guarantees the relation

bt

P 0ae = |D)a D (4.39)

& .

Following the same procedure as in the standard definition of spinor-helicity variables, it is

straightforward to show that they transform with a U(1) LG factor as required, since

Aaﬂ|p5jﬂ,:>6 = F300irih) !Apfﬁa : [pgji‘ﬁ Aﬁd — T29Wipsh) [Apb.i B

(4.40)

Where A and AP ., are the spinor versions of the Lorentz transformation A. Note that | p?j)a
and |pEJ_) 3 have opposite pairwise helicities +1/2. Importantly, the LG phase ¢(p;, p;, A) in
Eq. (4.40) is defined with respect to the canonical Lorentz transformation L,, which is
the same as the one we used to derive the transformation rule of the quantum states in
section 4.22. This proves that ¢(p;, p;, A) is exactly the same phase as the one in Eq. (4.22).
Consequently, we are free to use our pairwise spinor-helicity variables to construct an S-
matrix that transforms correctly under the pairwise (and also one particle) LGs. Explicit
expressions for spinor-helicity variables in the COM frame are given in appendix C. Here we

simply present the main results in the m; — 0 limit:

il = (Gpy) = [nps] = @5 m) =0
;i) = (iply) = V2 [0i0}] = V20 (0} 0) = 2, (4.41)
where [i)q, [7]

, are the standard massless spinor-helicity variables, and |7;)q, [7:|, are the
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(dimensionless) Parity-conjugate massless spinors that appear in the massless limit of the
massive spinors [i)1, [i|’ (see ref. [7] for their definition). Note that the above equations are

Lorentz and LG invariant, and so hold in any other reference frame as well.

4.4 Constructing Electric-Magnetic S-matrices

In section 4.2.4 we derived the transformations of electric-magnetic S-matrices under the

pairwise and one-particle LGs:

S(Apy, ..., Apl |Apy,...,Ap,) =

e =45 TP TIPS Wbl prs- - p) (4.42)
i=1 j=1

To make use of this transformation for constructing electric-magnetic S-matrix elements, we
defined the pairwise spinor-helicity variables in section 4.3.3. Now we can use the pairwise
and regular spinor-helicity variables to construct S-matrices that respect Eq. (4.42). This

enables us to fix electric-magnetic S-matrix elements up to a LG invariant.

We also reiterate here that we are constructing electric-magnetic S-matriz elements rather
than amplitudes. This is because by using the word “amplitude” we are implicitly assuming

the possibility of forward scattering, as encoded in the standard relation
Sas = 6(a —B) — 2im6™ (s — ps) Aus - (4.43)

However, in our very peculiar case of electric-magnetic scattering, the decomposition of

Eq. (4.43) may not actually hold. In fact, we will see below that selection rules generically
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forbid forward scattering for the lowest partial wave, which makes the relation Eq. (4.43)
inadequate for electric-magnetic scattering. Rather than trying to adapt it to our case, we
opt to never use this relation at all and just construct the S-matrix itself directly. Energy

and momentum conservation are implicitly assumed.

In constructing the S-matrix we use an all-outgoing convention common in the amplitudes
literature. However, the use of this convention in the study of magnetic S-matrix elements is
non-trivial due to lack of crossing symmetry in electric-magnetic scattering. Thus we begin

by reviewing the subtleties associated with the all-outgoing convention.

4.4.1 The all-outgoing convention

In section 4.2.4, we described how general electric-magnetic S-matrices transform under
Lorentz transformations. In that section, the discussion was in terms of in- and out-states.
In the spinor-helicity formalism it is however customary to use a notation where all particles
are outgoing which we call the out-out formalism. In the standard cases without magnetic
charges this is achieved using the crossing symmetry of the S-matrix. To define crossing
symmetry, we first assume analyticity, namely, that the S-matrix is an analytic function
of its complexified external momenta. Crossing symmetry is then the condition that the
scattering S-matrix for a process with an in-state that includes particle A, and some out-
state, has the same analytic form as the “crossed” versions of the original process, with an
outgoing anti-particle A. While in the original process, the particle appearing in the in-state
carries positive energy, in the crossed process, the anti-particle A appearing in the out-state
carries negative energy. However, crossing symmetry allows one to use the same analytic S-
matrix element to also calculate the process with an outgoing anti-particle A in its physical
kinematic regime. In the presence of crossing symmetry, a single analytic function provides

the S-matrix for several different processes in different regions of complexified momentum
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space. For massless particles, under crossing,

particle <+ antiparticle
incoming <> outgoing
helicity h < —h

o= =pf

Since the S-matrix for electric-magnetic scattering processes does not obey crossing symme-
try, one can not describe different processes using the same S-matrix element. Nevertheless,
we can still use a crossing transformation to translate the problem formulated in in-out
language into the out-out language, which is the conventional choice of the spinor-helicity
community. This is possible because, as can be seen from Eq. (4.42), the LG transformation
of an S-matrix involving incoming states with helicities h; and pairwise helicities ¢;; is the

same as that of an S-matrix with outgoing states with helicities —h; and pairwise helicities

qij-

Consequently, we are free to construct S-matrices in the out-out formalism, as long as we
keep working in the same kinematic regime of the original in-out S-matrix. Furthermore,
even in the out-out formalism, we consider pairwise helicities ¢;; only for pairs of states which

are both in the initial state or both in the final state for a given physical process.

4.4.2 Constructing the electric-magnetic S-matrix: spinor-helicity

cheat sheet

We are now ready to formulate general rules for constructing electric-magnetic S-matrix

elements. As usual in the amplitudes program, the spinor-helicity variables are the basic
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building blocks. The main novelty is the appearance of the pairwise spinor-helicity variables,
needed to capture the additional pairwise LG phase in the S-matrix, in addition to the ordi-
nary ones. As usual, we will assign helicity weights (or for massive particles SU(2) quantum
numbers) to each spinor-helicity variable, as well as a separate pairwise helicity weights to
each pairwise spinor-helicity variable. We will require that the helicity weights under each
individual particle as well as the pairwise helicity weights are matched for both the initial
and the final states. Of course only the diagonal Lorentz transformation (where each par-
ticle and each pair of particles are transformed simultaneously) is physical. However, as is
common in the amplitudes approach, as a book-keeping tool we can pretend that helicity
and pairwise helicity transformations can be performed independently on each particle/pair
of particles, which will make the construction of the properly transforming S-matrix partic-
ularly easy. Hence for the pairwise helicity variable we assign only the pairwise helicity (and
no ordinary helicities), even though these pairwise spinor-helicity variables are constructed
as a function of the ordinary helicity variables, and in some limits they even coincide with

one of the ordinary spinor-helicity variables.

These rules are summarized by the following equations.

S (w i), wli]) = w5 (|i), |i]), for Vi (4.44)
S (w™ P ), wipl | wlply ), w el 1) = w49 S (Ipih), pi 1, Ip ), iy 1) for ¥ pair {4, 5},

(4.45)

where w represents the LG weight +1/2. The resulting rules for the full set of charge

assignments of the spinor-helicity variables are presented in Table 4.1, which summarizes

10Tn the massless limit, the regular LG phase coincides with the pairwise phase, and LG weights of some
of the regular variables are used to match the regular LG weights, while the rest are used to saturate the
pairwise LG weight.
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the different LG weights of the regular and pairwise spinor-helicity variables, as well as the

overall weights of the amplitude implied from Eq. (4.44) and (4.45).

U(1); SU(2); U(1),;

Required weight h; S; -Qij
[2)a, [il4 '%’ % - o
e - 0 -

15 s [P35, - = 33

P e [P35 ], - - 3.3

Table 4.1: LG weights of the standard and pairwise spinor-helicity variables, as well as the
overall weight required by Eq. (4.44) and (4.45).

4.4.3 First examples

To illustrate the construction of electric-magnetic S-matrix elements, let us work out a few

examples.

(1) Massive fermion decaying to massive fermion + massless scalar, ¢ = —1.

In this case we need to use one massive spinor for the decaying fermion and one massive
spinor for the final fermion. This gives us two spinor indices that should be contracted with
pairwise spinors. Note that in general, the number of pairwise spinors is not completely
fixed by the LG: only the difference n,; — nj; between the number of pairwise spinors with
weight % and —% is fixed to be —2¢93. In our case we need a total of 2 spinor indices and so

Ng3 = 2, nyy = 0. The S-matrix is then

S (157172 | 25712 30 ~ (P 1) <p§§ 2) , (4.46)

q23=—1
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up to a LG invariant.!!

(2) Massive scalar decaying to massive scalar + massless vector, ¢ = —1.
In this case we need to use two regular spinor-helicity variables for the helicity of the vector,
as well as two pairwise spinors for the ¢go3 = —1 of the final state. The S-matrix elements

for helicity £1 vectors are then

S (1970 2°=°,3+1) ~ 3]t~ (5213]° (4.47)

q23=—1

up to a LG invariant. On the other hand, there is no way to write a LG covariant expression

for S (15=9]25=0 371) We will see later that this is a particular example of a more

q23=—1"

general LG selection rule.

(3) Massive vector decaying to two different massless fermions, ¢ = —2.
In this case we need to use 2 massive spinors for the vector and one regular spinor-helicity
variable for each fermion, as well as four pairwise spinors for the o3 = —2 of the out state.

The S-matrix for opposite helicity fermions is then

5 (1771 27172, 34172 ~ (o) 8] (1)’ (1.48)

q23=—2

up to a LG invariant. Note that the S-matrix for same helicity fermions'? is forbidden in

this case, due to the fact that <pé§3> = [pg'§2] = (. This is our second encounter with a LG

Tn principle, there are other “legally” acceptable expressions such as {pgl} {ng} or [pg'g 1} <p;g 2> or
<p;§1> [pgﬂ However, using the Dirac equations for the massive variable, padxdl =mAl and pagdar =

—mj\é, one can check that these are equivalent to Eq. (4.46) up to LG invariants.
12Tn the all-outgoing sense.
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selection rule.

(4) Massive vector decaying to two different massless fermions, ¢ = —1.

In this case we need to use 2 massive spinors for the vector and one regular spinor-helicity
variable for each fermion, as well as four pairwise spinors for the ¢go3 = —1 of the out state.
Note that unlike the previous examples, here the total number of pairwise spinors is not
given by —2¢e3. This is because there are four spinor indices from the standard spinors
that need to be contracted, so that nj; + ny; = 4. Pairwise LG, on the other hand, implies
Ngy — Na3 = —2qe3 = 2, and so we have nj; = 3, ny; = 1. The S-matrix for positive helicity

fermions is then

S (12 5 ~ (20l (35 3) (1) (449)

q23=—1

up to a LG invariant. Note that the S-matrix for hy = —h3 = 1/2 is forbidden in this case,

due to the fact that [p§g3] =0.

4.4.4 All electric-magnetic 3-point S-matrix elements

The examples above give us a flavor of how to construct electric-magnetic S-matrix elements
up to LG invariants. In the case of 3-point S-matrix elements, we can make the discussion
even more concrete and write down systematic expressions and selection rules for electric-
magnetic S-matrix elements. These are modifications of the general 3-point amplitudes
derived in [7], when the three scattering particles can have magnetic charge. Without loss
of generality, we choose one massive particle (that may be a dyon) in the incoming state,
and two particles (that may also be dyons) in the outgoing state. Note that our expressions

extend the ones presented in [7] to the case of electric-magnetic scattering, and reduce to
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them when ¢ = 0 for the outgoing states. Below, whenever we call a particle “dyon”, we
mean that it may, or may not, have a magnetic charge. In all our cases, the decaying particle

may be any kind of “dyon”.
e Incoming massive particle, two outgoing massive particles

In this case the S-matrix is the contraction of the massive part (in the notation of [7])
R N (e M (C RO M (4.50)

with a massless part involving the pairwise spinors |w)o = |ph3)a and [1)e = [pht)a (with
pairwise helicities :t%), which saturates the pairwise LG transformation. The most general

expression is

C
q _ ) S§—q 5+q
{orrntiany HBrronfiong Mooy} Zl @ (107 )T Ly cenny H{reontiong Horvoiiong
(4.51)

where § = s1 + s9 + s3, C' counts all the possible ways to group the spinors into «, 8 and ~
indices, and ¢ = go3 = €293 — e3gs. Since both exponents have to be non-negative integers,

we get a selection rule:
g <s. (452)
We can also check that Eq. (4.51) reduces to the standard expression from [7] for ¢ = 0. To
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see this, note that

() ) gagy ~ Otasy = (02)1as (03) 5

() Ir) ) agy  ~  €as - (4.53)

where the two index tensors Oy, were defined in [7]. This can be seen from Eq. (4.33), i.e.

A EC + EC _ . . .
(P2){ay (P3)5}W = % (p%}f){m (p;g,) ,3}7 = (B3 + E5) (|w)[r) ){a/j} :
(4.54)
When ¢ = 0, we get Eq. (4.27) of [7],
1

0 ~ i1

{al ~~~~~ a251}{ﬁ1 ~~~~~ 5252}{’71 ~~~~~ '7253} o Z(; di (O < ){011 ,,,,, 04251}{51 ----- 5232}{71 ,,,,, 7253}
(4.55)

e Incoming massive particle, outgoing massive particle + massless particle; unequal mass

case.

This is the electric-magnetic version of the two massive, one massless S-matrix from [7]. In

this case the S-matrix is the contraction of the massive part

(<1 |251 ) {0‘1"'0‘231} ((2‘282) {Bl'“ﬁ?%} , (456)
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with the massless part constructed from two “regular” spinors:

(o, [v)a) = (13)a,[213]4) (4.57)

with regular LG weights :F%, as well as the pairwise spinors

(lw)a,[r)a) = (’p;§>av|pg§>a) , (4.58)

with pairwise LG weights +1. Note that | 2 P53 ]o is nothing but a LG invariant times |p)3)q.

The general massive 3-point S-matrix for an initial spin s; particle and an final spin s

particle is then

C
h,q, unequal _ Z Z - max(j+k,0) max(—j—k,0)
S{a1,...,a2sl}{51,...,ﬁ2s2} = T @ik <UT’> <Uw>

(|u>%—h—j|U>§+h+k|w>§—q+j|r>§+q—k) ’
{a17---,a231 }{517---75232 }
(4.59)

where § = s; + s9, and ¢ = o3 = €293 — e3go. Again C' is the number of distinct tensor
structures. The j and k sums are over values that give non-negative exponents. In particular,
they are in the intervals —% +qg<5< % — h and —% —h<k< % + ¢ . These intervals exist

only if |h + ¢| < 8, which gives us a selection rule. In particular,

s1 =8 =0 — h = —q. (4.60)
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e Incoming massive particle, outgoing massive particle + massless particle; equal mass case.

When the two masses are equal, we know that (uv) o< py-p3 = 0, hence, u and v are parallel.
For constructing the S-matrix, therefore, we use only one of the two, say |u). However, the

ratio z of the two is defined via'®
mazlu) = |v), (4.62)

and carries regular helicity of +1 for the particle 3, and can be used to satisfy the regular

helicity weight of the S-matrix. Similarly, (wr) = 0 and we have the relation
(ur)® zlw) ~ |ry, (4.63)

up to an overall LG invariant. Overall, the S-matrix is then constructed using z, |u)q, |W)q
and €,5. A solution consistent with the regular/pairwise helicity weight and the number of

required spinor indices is found to be

J
h,q,equl . h+q+7 max|2¢q+j—k,0] max|[—2q—j+k,0]
S{al...a251}{51...5252} = E E E " (ur) (vw) :
2 J

=1 k=—j

()" 1) ™€)t e 1o}

(4.64)

13 An alternative expression for this z-factor can be written as [7]

_ (23]
T = m(C3) (4.61)

where ((| is an arbitrary spinor which drops out of any physical calculation.
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where the 7 sum extends over 0 < 7 < §. Note that while the powers of u, w, € have to be

non-negative integers, there is no such requirement for the power of z.

e Incoming massive particle, two outgoing massless particles

In this case the S-matrix is the contraction of the massive part

(T (4.65)

with a massless part involving the regular spinors |u)q = [2)a, [V)a = |3)a and the pairwise

Spinors |w)e = |phs Yo and |r)e = [phs)a. The most general expression is

Sf{lalmms} — Z ai; (|u>s/2—i—A |v>s/2—j+A |w>s/2+j—q |r>s/2+i+Q)
]
[uv]max[z—i-(s—i—j)/Q,O] <uv>max[—2—(s+i+j)/2,0] (<uw> ['UT])%

{a1,...,a2s} )
max[i—j , 0] (['U,’UJ] <UT>)%maX[j—i,0],

(4.66)

with X = hy + h3, A = hy — h3. Again ¢ = go3 = €293 — €3g2, and the ¢ and j sums are over
values in the intervals —s/2 —¢ < ¢ <s/2—-Aand —s/2+ ¢ < j < s/2+ A, such that all
of the exponents are non-negative integers. These intervals exists only when |A — ¢| < s,

which gives us another selection rule. In the non-magnetic ¢ = 0 case, this gives us the same
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selection rule as [7]. In particular, for a spin s coupling to hy = —hg, we have

Forq=0:
s =0 — hg = h3 =0

in other words, massless particles with |h| > % cannot couple to a Lorentz covariant conserved
current, and massless particles with |h| > 1 cannot couple to a conserved stress tensor. For

q # 0, the situation is even more restrictive. For example, when |q| = % we have

For g = +1/2 :
s = 0 — forbidden
s =1 — ‘hg — hngl/Q‘ <1 — |h2’ = ’hg‘ =0 or hgz—h-g,::l:l/Q

s = 2 — |h2 — hg:Fl/2| < 2 = |h2| = |h3| < 1/2 or hgz—hgzil

(4.68)

We see that for |g| = 1/2 the selection rule is more restrictive than in the ¢ = 0 case, since

it discards the ho = —hg = —qs option.
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4.5 Partial Wave Decomposition for 2 — 2 Electric-
Magnetic S-matrix

Following [7] and [67], we can now perform a relativistic partial wave decomposition for

2 — 2 electric-magnetic S-matrix elements'*. In a Poincaré invariant setting, the partial

wave decomposition is nothing but the expansion in a complete eigenbasis of the Casimir

operator W2, where W* is the Pauli-Lubanski operator defined by

WH

N | —

€po PV M . (4.69)

In the above expression P” is the momentum operator and M?? is the Lorentz generator.
The eigenvalues of W? are given by —P? J (J + 1) where J is the total angular momentum,
so clearly this is the relativistic version of a partial wave decomposition. The operators
PrM® and W, act on the amplitude or parts of it. In particular, we will make use of
their representation as differential operators acting in spinor-helicity space [114]. In the

non-magnetic case and for massless particles, these are given by [114, 27]

(O-M)ad P“

Poa = Z |9 Ma
, : 0
Maﬁ = 1 Z ’Z>{a 8<Z|B}

~ 0
_ o o -
(Cu)sp M Mgz i EZ [l (s 5 MB} : (4.70)

(UNV)aﬁ M

1For a complementary approach to mapping all possible spinor structures for 4-point non-magnetic am-
plitudes, see [45]
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where the sum ¢ is over a collection of particles. In the 2 — 2 case we are interested in the
total angular momentum of particles 1 and 2, and so the sum will be over ¢ = 1,2. The
generalization of Eq. (4.70) for massive particles is straightforward [27, 56]: we bold the
spinors and contract their SU(2) LG indices. The Casimir operator W? is then expressible

as [27, 67]
wW? = %2 T (a2) + T (072) | - ;lTr (v PaLPT). (4.71)

Eq. (4.70) can be straightforwardly generalized to our electric-magnetic case by treating the

regular and pairwise spinors on the same footing:

(U’“/)O‘B M"Y = Mg =1 Z’ {a ’6} + Z’ ’,8}
1>7,+
_ y ~ : . 0
(Gu)ey M™ = My, = i Z [@|{a Pl ——y | (472)
' >j,+ d|po* o}
L = P

where the sum is now over all pairs as well as individual particles in the state. It is easy to

see that

W2 (12) = W2 (pi52) = W2 (pi51) = W? (pi5p}]) = 0, (4.73)

with W? the Casimir associated with particles 1 and 2 and defined via Eq. (4.72). Similarly,

W) alpin) sy = —s10+ 1)1 )alpiz) s - (4.74)
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In other words, the eigenfunctions of W? are combinations of regular and pairwise spinors
with symmetrized spinor indices. The eigenvalues are —s j (j+ 1) where j is just the number
of uncontracted spinor indices, divided by 2. This is the same conclusion as in ref. [67], only
with the inclusion of of pairwise spinors in the definition of W?2. It is now natural to expand

the S-matrix in a complete eigenbasis of W? with eigenfunctions

wW2B = —sJ(J+1)B. (4.75)
Following [67], we call the B’ basis amplitudes. The most general expansion then reads

Sionz = N ;@H 1) M’ (p.) B, (4.76)
where N = v/87s is a normalization factor and M (p,) are coefficients'® satisfying

W122 MJ(pc) = W324 MJ(Pc) = 0. (4.77)
The eigenfunctions B are then nothing but symmetrized products of spinors,

BJ _ CJ;in CJ;out; {al,..l,agj}7 (478)

{a1,..,az;}

15We also added the factor (2.J + 1) as part of normalization so that the partial wave unitarity equation
is expressed in a simple form in terms of M7 (p.) Eq. (4.111).

101



where

2 J;in o J;in
W12 C ai,.,anyy —sJ (J + 1) C{al,---7a2j}
W324 CJ;out; {a1,...,a05} _ — s J(J + 1) CJ;out; {a1,...,005} ) (479)

In the above expression W3, and W2, are the Casimir operators associated with particles 1,2
and 3,4, respectively. The coefficient functions M7(p.) are angular momentum singlets, and
so they can only depend on the energy scale of the scattering, given by the COM momentum
p. . Inspired by the Wigner-Eckart theorem, we call them “reduced matrix elements”. They
contain the dynamical information of the scattering process, as opposed to the angular
dependence that is fixed for every partial wave. The coefficients C/3*/°"* on the other hand,
are generalized Clebsch-Gordan coefficients [67].1 These coefficients are completely fixed by
group theory, and we can easily find them using an elegant trick from [7, 67]. Simply put, the
Clebsch-Gordan coefficient connecting the particles 2 and j to the total angular momentum
J is directly extracted from the 3-point S-matrix element with the particles ¢ and 7 and a
massive, spin J particle. For example, if 1 and 2 are two massive scalar dyons with ¢;5 = —1,

the corresponding 3-point S-matrix element is

IR

S (19,29 37) = a (3p5) 7 3p3) (4.80)

q12=-—1

Since there is only one relevant tensor structure for this S-matrix (see Eq. (4.51)), we have
only one coefficient a. This will change when we include non-scalar particles — for example

with a massive fermion f and a scalar there are two possible tensor structures, depending

16To be more precise, our C7i/°Uut are not really coefficients, they are SL(2,C) tensors.

The generalized Clebsch-Gordan coefficients defined in [67] is given in terms of our C7iin/out hy
C.];iIl/Out;{(Xlu.,ag‘]}AIl . >\I2J .
[e5] Q2J
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on which spinor is contracted with |f]. The corresponding generalized Clebsch-Gordan part
can be directly read off from this 3-point S-matrix element by stripping off the spinors (3|*

corresponding to the massive spin J,

J;in _ b—\J+1 |, b+\J—1
<OO,0,—1> (orons) (Ir2) " Ips) ){oq,---,azj} ) (4.81)
where the subscript (0,0, —1) indicates (s1, 2, ¢12) and we have normalized away the a coef-

ficient.

4.6 Fermion-Monopole Scattering: Lowest Partial Wave

and Helicity Flip

As an illustrative application of our generalized amplitude formalism we now consider scat-
tering of an electrically charged fermion with charge e off a massive magnetic monopole
with magnetic charge g (with ¢ = eg), reproducing the well known results of ref. [68]. In
this section we eamine the lowest partial wave process, (J = |¢| — 1), and derive the cele-
brated helicity flip amplitude. In section 4.7 we apply our formalism to higher partial wave

processes.
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4.6.1 Massive Fermion

It is convenient to start with a massive Dirac fermion denoted by

= : (4.82)

where f, f are both LH Weyl fermions with opposite charges e and —e.

The J = |g| — 3 Clebsch-Gordan coefficient for the in state can be obtained by taking
s1=sp=1/2,s9 =sy =0and s3 =s; =.J = |¢g| —1/2 in Eq. (4.51). That means that

§ =|q|, and for ¢ > 0 the only valid 3-point S-matrix element is

SEren —a (£p0,) (I (4.83)

As explained in the previous section there is only one a coefficient, which we absorb in the

reduced matrix element M7=1971/2_ Stripping away the (J|* part, we find

C(|Iq>|61/2;in = (Ep%,) (I (4.84)

Y
{a17~'-7a2\q|—1}

and a similar one for the out state. Contracting the generalized Clebsch-Gordan factors for
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the in- and out-states, we find the basis amplitude'”

gla-12  _ (E27n) (P <<pr f’M/>>2q1. (4.85)

a=0 4p? 2.

We can repeat the exercises for ¢ < 0, obtaining

a<0 4p? 2.

S\ et b 2lq] -1
gld-1/2  _ (EPfar) E'Ppar) <<prpf’M’>> q : (4.86)

4.6.2 The massless limit

In the massless fermion limit the particles are labeled by their helicity. Overall there are four
possible choices, namely helicity i% for the initial fermion (particle 1) and helicity j:% for the
final fermion (particle 3). In our all-outgoing convention, the helicity flip process involves the
same helicity for the initial state and the final state fermions, while in the non-flip process

they have opposite helicity.

The allowed processes for external fermions of charge e are

Helicity non-flip : f+M—> f+M , fl+M— fT4+M

Helicity flip : f+M—= fif4+M , fl+M—> f +M. (4.87)

We first consider the last process in Eq. (4.87), the right-handed incoming fermion (helicity

17Since we aim to determine the S-matrix up to reduced matrix element M (p.) we rescale our expression
by powers of p. to make the basis amplitude dimensionless.
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+1/2) and the left-handed outgoing fermion (helicity —1/2). In the out-out formalism this
corresponds to both fermions having helicity —1/2. We can take the massless limit of Eqs

(4.85) and (4.86) by simply unbolding (f|, (f’| spinors [7].

(4.88)

bt /b bt bt 2lql—1
Bld-3 — <fpr>4]<?§ Py <<p”§;f’M'>> for sgn(q) = 1

We further note that the helicity flip amplitude Eq. (4.88) is only non-trivial for ¢ < 0.
Indeed, in the m; — 0 limit the spinor ]pij) is parallel to |i) and, according to Eq. (4.41),
<f p%ﬁ = <f’ p?ffM,> = 0. The vanishing of the S-matrix element for ¢ > 0 has a simple
intuitive physical explanation. When ¢ > 0 the EM field component of the magnetically
modified angular momentum operator (4.11) points towards the monopole and has eigenval-
ues ¢,q+1,q+2, ... Since we are considering the right-handed incoming fermion the minimal
value of the z-component of the total angular momentum will be ¢ + 1/2 which is not part
of the lowest partial wave state corresponding to J = |¢| — 1/2. One can similarly see that

the outgoing left-handed particle can not be a part of the lowest partial wave when ¢ > 0.

Similarly, let us consider the helicity-flip amplitude where the incoming fermion is left-handed
while the outgoing fermion is right-handed. In the out-out formalism this corresponds to both
massless fermions having helicity +3. In this case we can’t simply unbold the (|, (f’| spinors,

but instead have to replace them with the Parity-conjugates'® of (f| and (f’|, denoted by

<ﬁf|7 <ﬁf"7

~obE o\ /s bt b+ bt 2lq|-1
B|q|_% _ <7]fpf]\/[>4<r;]f pf/M/> <<pf]\/;pf/M/>) for sgn(q) = 41 (489)
Pe Pe

18We use the properly normalized (7;| instead of (n;| = m;(#;| and absorb the normalization in our reduced
matrix element.
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This time, Eq. (4.41) tells us that <ﬁf p'}j\4> = <f}f/ p;TM,> = 0, and so the S-matrix vanishes
for ¢ < 0. Once again, there is a simple physical explanation of this fact: neither a left-handed
incoming particle nor a right-handed outgoing particle can be a be part of the J = |q| — %
partial wave when ¢ < 0. Therefore, we find that the only non-vanishing amplitude basis for

the helicity-flip process is given by

B'q'_é _ <fp ><f' f’M’> <<pr f'M’>>2q1 (4.90)

q<0 4pc 2pe.
B - 2)q|—1
gt Pl [ Ppar] <<prp'}7M'>> q (4.91)
q>0 4pz 2pc ‘

where once again we used Eq. (4.41).

One can similarly show that, regardless of the sign of ¢, the S-matrix element vanishes for
the two remaining helicity choices: (:i:l, IFl). Mathematically, this is the consequence of the
fact that now the amplitude basis is proportional to a factor of the form < f p > <77f/ Py M,>
and this vanishes for either choice of sgn(q). Physically, this happens because for the helicity-
non-flip process either incoming or outgoing fermion can not be a part of the lowest partial

wave. In other words, at the lowest partial wave helicity-non-flip process can not occur.

Using the explicit expressions for the helicity variables in the COM frame obtained in ap-
pendix C we can finally write the S-matrix in terms of the scattering angle . The only

non-vanishing S-matrix element is

lal—3 a5 . (0 Aal=t
Sift = N 2|q| M™ %; {sm(a)} for ¢ > 0
ol a-3 [ (O]
S};T_ff = N 2|q /\/l 1 ; {sm (5)} for ¢ <0, (4.92)
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where we have explicitly included the normalization coefficient N' = v/87s and the reduced

1

. ql=3
matrix element ./\/l‘ L2,
$§7i§

(2J+1) (for J = |g| —1/2) introduced in the definition of the S-matrix Eq. (4.78). Note that

which is angle independent. The factor 2|q| is from the prefactor

for future convenience we have used the in-out notation for the physical helicities of incoming

and outgoing fermions denoted as the subscripts M _p._ ..., where hiy,, hoye are helicities in

out-out formalism. In general, one needs a dynamical input to determine M in Eq. (4.92).
However, as we will show in section 4.7 the higher partial waves do not contribute to the

helicity-flip matrix element. When combined with the unitarity conditions (see section 4.8

for a detailed discussion) this implies that

= 1. (4.93)

Since the two helicity-flip processes never occur at the same time (they do or do not happen
depending on the sign of ¢), we can set them to F1. As shown in detail in appendix F, the
lowest partial wave S-matrix Eq. (4.92) with the reduced matrix elements Eq. (4.93) exactly

reproduces the QM calculation of [68].

The result is rather interesting: in the limit of massless fermions, the S-matrix element
is only non-vanishing for processes where the products of fermion helicities, hy and hy,
with ¢ are positive, hy - ¢ = hp - ¢ > 0 (in the out-out sense). It’s even more striking
once we remember that this discussion is in the all-outgoing convention, and so the physical
interpretation in terms of in-out states is of a positive helicity fermion scattering into a
negative helicity fermion for ¢ < 0, or of a negative helicity fermion scattering into a positive
helicity fermion for ¢ > 0. In other words, our electric-magnetic S-matrix has a selection rule
that tells us that the lowest partial wave always involves a helicity flip! In particular, forward
or elastic scattering is forbidden by our selection rule since it does not flip the helicity of

the fermion. This is the well-known Kazama-Yang result [68], and also the precursor of the
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Rubakov-Callan effect [89, 19] in the scattering of two fermions and a monopole.

4.7 Fermion-Monopole Scattering: Higher Partial Waves

4.7.1 Massive fermions

We now consider the S-matrix elements for the higher partial waves in the fermion-monopole
scattering process. Once again, it is convenient to start with a massive fermion. Following

our derivation of the generalized Clebsch-Gordan coefficients, we have!”

f bo ><f/ bo’ > R
J , E2%) ' PFe)
B’ ~ ; Z a,al, L B (=5, —o) (4.94)
where sum is taken over 0 = (+,—), 0/ = (4, —), while ¢4 = ¢—1, ¢ = ¢+ 3. We also

included the coefficients a, (a}) for the two possible tensor structures in the in (out) 3-point

S-matrix elements. The B” are given by

> 1 _ _ {cx yeeey X } _ ’ A/
BIAN) = o (Wl 2 W) (1) ¥ ) ) -
(2pc) {alv'“’O‘ZJ}
(4.95)
Using Eq. (C.19) from appendix C.1, in the COM frame these become
B/(AA) = (-1 DI A (). (4.96)

YNotice that this result is valid for all J, including the lowest partial wave case J = |q| — 1/2.
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where Q. = {0, ¢.} is the direction of the outgoing COM momenta (we chose the COM
frame such that ¢. = 0). Here DX _A,(€2) is the Wigner matrix [113, 110]

DYy a(0) = DIy n(6.0,-6) = a0 (6). (4.97)

The standard definition of the Wigner d-matrix is d/, ..(0) = (J,m|exp(—i0.J,)|.J,m’). The
emergence of these specific D-matrices is particularly satisfying, because they also go by
another name: the spin-weighted spherical harmonics ,Y;,, [115, 92], or monopole harmon-

ics [115, 68]. Specifically®’

Dym () = Yim (=), (4.98)

q’m

where —Q) = (7 — 6, —¢). Monopole harmonics emerge in the solution of the Klein-Gordon
or Dirac equations in the presence of a background magnetic field of a monopole [115, 68, 16].
It is reassuring to see them arise here in a completely relativistic setting, and based solely

on LG and angular momentum arguments.

The J-partial wave matrix element for the COM scattering of a massive scalar monopole

and a massive fermion is then

MJ
4p?

{ala’l <fp5¢]/[> <f’pk}7M,> D;ﬁ_;,_q 1 (2:) + asd} <fp > <flpf7M/> ng;,_q_% ()
ala? <fpr> <flpf’M’> D 1-q+3 (QC) T a2a/2 <fpl}+ ><f/pf’M/> DJ* —q+3 (Qc)} ’

(4.99)

ST = N (2] +1)

200ur Y}, are defined according to the b-hemisphere definition of [115]
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where the (—1)7=2" prefactors have been absorbed into the coefficients a}, and N = /87s.

4.7.2 Massless fermion

We now consider the massless limit for the fermions in the J > |g| — 1 partial waves.
The S-matrix Eq. (4.99) contains all of the possible helicity assignments, and so we can
immediately extract the individual helicity amplitudes. For instance, the S-matrix for a
helicity non-flip process f — f is obtained by unbolding the finial state massive fermion
variable, and replacing the initial massive variable with P-conjugate f-variable. Under this

replacements, only the second term survives and Eq. (4.99) simplifies significantly to

Sty =N@2J+1) M Q) , (4.100)

[N

1 1 1
T q9—35,—4—35

[ 5ar] (FPr)

12 factor, which equals to 1 in the COM frame. Other cases

where we dropped the

can be worked out easily, and the general results are summarized in a compact expression as

S h = NI+ 1) ML, D () (4.101)

q—

As shown in appendix F, Eq. (4.101) exactly reproduces the angular dependence of the higher
partial wave amplitudes in [68], obtained by a brute force solution of the Dirac equation in

a monopole background.?!

21'We remind the reader that hi,, hou; are defined in the all-outgoing convention, and so an incoming
f (ff) has helicity hy, = % (—%), while an outgoing f (]ﬂ) has helicity hous = —% (%) Note also that
the indices on M” are —h;, and hgys, such that the labeling of M respects particle kind (f or fT) rather
than helicity in the out-out convention: —% — f and +% — ff. This will be useful to keep in mind when

considering M”T.
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As in textbook QM scattering in a central potential, our partial wave expansion only de-
termines the angular dependence of each partial wave, while the relative magnitude of the
different partial waves is determined dynamically in the form of phase shifts. For the lowest
partial wave, our selection rule forbids forward scattering, and so the full partial amplitude
was completely fixed by unitarity. In contrast, for the higher partial waves, unitarity alone
does not uniquely determine the amplitude, and some knowledge of the underlying dynamics
is needed to specify the reduced matrix elements. To this end we extract the reduced matrix

elements for the helicity non-flip amplitude from [68]:
MLy o= (4.102)

where p = (J + %)2 — ¢2. One can see that these are indeed merely phase shifts, and they
are the only dynamical information needed to completely fix the S-matrix. The unitarity

condition discussed in the next section then leads to

2 2

‘MJ =0, (4.103)

11
+5,F3

_ o J
-1 |M L,

so the helicity-flip processes for J > |q| — % vanish simply because a 100% of the probability

goes to the helicity non-flip process Eq. (4.101).

To emphasize what we have achieved, note that all of the new information gained from the
full solution of the QM scattering problem can be summarized in the phase shift Eq. (4.102).
In this chapter we reproduced everything else based on LG and partial wave decomposition
alone, in a manifestly relativistic setting. In particular, we reproduced the full angular
dependence of all partial waves and the selection rule that requires a helicity-flip in the

lowest partial wave.
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4.8 Partial Wave Unitarity

To complete our analysis of charged fermion scattering off a massive scalar monopole, we
need to discuss partial wave unitarity. Here we follow the standard derivation of partial wave
unitarity given in [83], generalizing it to the electric-magnetic scattering case. Unitarity of

the S-matrix implies

pC * 1671-2\/5
m/de §<S<fM>ﬁab5(ﬁM)ﬁam> = T(S(QC)’ (4.104)

where the momenta of f; (M;) are directed along +£2 and the momenta of f; (My) are
directed along +(). with the angles (0., ¢.). The intermediate states a,b can be either
(fms M) or (f1 M,,) with their momenta along £, with the angles (6., ¢,).22 We now
wish to perform a partial wave expansion of the unitarity relation (4.104), in order to obtain
a partial wave unitarity condition for our S-matrix. We begin by expanding the relevant

S-matrix elements in partial waves, using Eq. (4.101), which we repeat here for completeness:

Shshowe = N DY @T+ 1) M7 DI e () (4.105)
J

where NV = +/87s is our usual normalization factor. Note that here, in contrast with the
original Eq. (4.101), the argument of the D-matrix is €2, rather than Q.. This is because

we are considering the S-matrix for an in-state with COM momenta along the Z axis and an

22Currently, we assume that the complete set of possible intermediate state consists of fermion and
monopole pair {f, M} (with all possible choices of fermion helicity). Of course, it is certainly possible
to have a microscopic theory containing other possible states, e.g. dyon pair, or multi-particle states. How-
ever, note that what the S-matrix method does is to provide S-matrices consistent with the assumption of
spectrum. Indeed, under this assumption, we find results in complete agreement with the full QM calculation
with the same assumption made here.
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out-state along the 4+, direction. Similarly, we expand the inverse process as

St = N> _ (2T +1) M7, Z e () D2 Q) (4.106)

J p=—J

This time we need two D-matrices because we start from an in-state in the direction :I:Qc and
go to an out-state along 4+, The explicit derivation of this particular angular dependence
is presented in appendix C.1. Substituting the above expansions in Eq. (4.104), the unitarity

relation becomes

# / A Y (27 +1) (20 +1) -

J,J!

J/
{ M7y M"/; Dy o1 () > DI () D) ()

-5 5 -1 Ta—§.—at+3 Pa+3 P—a+3
p==J
(4.107)
We can perform the €, integration using the orthogonality condition for D;fw (),
/ dQ, D75 () DYy () = _ar Sua’ Oty 077 - (4.108)
“ “ 2J+1
Using this relation, our expression simplifies to
LS @iy (MM, D, (@) = 6() (4.100)
i 3ot Dalparg () = 0. -
J
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Eq. (4.109) is the unitarity relation applied to f + M — f + M scattering. Repeating the
same steps for f, f1 in the in and out state, we get the general relation Repeating this

derivation for all other in/out- states, we get

—hin,hout g—hin,g—hout

1
e > (27 +1) (MM D () = 0_p how 0(Q) . (4.110)
J

Multiplying by D;_, Q.) and using Eq. (4.108), we have

imq_hout<
MM =T, (4.111)

where M is the 2 x 2 matrix representing f or f in the in / out state, and I is the 2 x 2
identity matrix. In other words, the unitarity of the S-matrix leads to the unitarity of each
individual reduced matriz element M?. This is also the standard result for non-magnetic
amplitudes [83], which leads to the partial-wave unitarity bound [55]. Here we see that it
holds for the electric-magnetic case as well, even though the eigenfunctions of the partial
wave decomposition are modified by the extra angular momentum in the EM field. The
unitarity condition Eq. (4.111) is key in reproducing the full helicity-flip amplitude for the
J =lq|— % partial wave in section 4.6, as well as the vanishing of the helicity-flip amplitudes
for J > |g| — 3 in section 4.7.2 (assuming that the helicity non-flip process is given by

Eq. (4.102)).
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4.9 Conclusions

In this chapter we have initiated the systematic study of electric-magnetic scattering ampli-
tudes, using on-shell methods. We have identified the multi-particle representations of the
Poincaré group that are necessary to incorporate asymptotic states with both electric and
magnetic charges. At the heart of our study is the appearance of a new pairwise LG and
its corresponding pairwise helicity, which describe the transformation of electric-magnetic
multi-particle states relative to the direct product of the one-particle states. This pairwise
helicity is non-zero for a charge-monopole pair and corresponds to the angular momentum
stored in the asymptotic electromagnetic field, which is appropriately quantized if Dirac-
Schwinger-Zwanziger charge quantization is satisfied. This novel pairwise helicity gains a
simple and intuitive implementation in the scattering amplitude formalism, through the
definition of pairwise spinor-helicity variables. We then used the pairwise spinor-helicity
variables to formulate the general rules for building the electric-magnetic S-matrix. In par-
ticular, we were able to classify all 3-particle magnetic S-matrix elements, corresponding to
decays of magnetically charged particles. Many of these electric-magnetic S-matrix elements
are subject to simple selection rules among the spins/helicities and pairwise helicities of the
various particles. In addition, we performed a pairwise LG covariant partial wave expansion
for the generic 2 — 2 fermion-monopole scattering amplitude. For the lowest partial wave,
our LG based selection rules allowed us to derive the famous helicity flip for the lowest partial
wave. Furthermore, the well-known monopole spherical-harmonics appear naturally in our
formalism, and the general results of [68] are fully reproduced up to dynamics-dependent
phase shifts. We never have to introduce a Dirac string, and the resulting S-matrix elements
are always manifestly Lorentz invariant. For monopoles that do not satisfy Dirac-Schwinger-
Zwanziger charge quantization due to kinetic mixing with a hidden sector photon [103] a

separate treatment is needed [105].

Recently the authors of ref. [58] discussed the need for a more careful definition of the S-
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matrix; they define a “hard” S-matrix by evolving the asymptotic states with an asymptotic
Hamiltonian which is not the free Hamiltonian, but allows for the emission and absorption
of massless photons. This evolution builds up a cloud of photons representing the Coulomb
fields of the charged in and out particles. In the presence of both electric and magnetic
charges the Coulomb fields carry additional angular momentum which we have included
explicitly using the pairwise LG. It would be interesting to see how this angular momentum
could be handled in the “hard” S-matrix formalism. It will also be interesting to consider
the double copy relation between dyons and Taub-NUT spaces [21, 80, 69] in light of our

results.
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Chapter 5

Dark Matter Freeze Out during an

Early Cosmological Period of QCD

Confinement

This chapter is heavily based on work previously published in collaboration with Dillon Berger,

Seyda Ipek, and Tim Tait [12].

5.1 Introduction

The identity of the dark matter, necessary to explain a host of cosmological observations, is
among the most pressing questions confronting particle physics today. The Standard Model
(SM) contains no suitable fields to play the role of dark matter, and understanding how it
must be amended to describe dark matter will inevitably provide important insights into the
theory of fundamental particles and interactions. There are a plethora of theoretical ideas

as to how to incorporate dark matter, and exploring how to test them is a major area of
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activity in particle experiment.

Among the various candidates, the class of weakly interacting massive particles (WIMPs)
remains extremely attractive, largely driven by the appealing opportunity to explain their
relic density based on the strength of their interactions with the SM. Provided their interac-
tions are roughly similar to the electroweak couplings, WIMPs are expected to initially be
in chemical equilibrium with the SM plasma at early times, but to fall out of equilibrium
when the temperature of the Universe falls below 7" ~ m, /20, where m, is the mass of
the WIMP. Provided the mass and cross section for annihilation into the SM are correlated

appropriately [47], the observed cosmological abundance is relatively easily realized.

Vanilla theories of WIMPs are challenged by the null results from direct searches for dark
matter scattering with heavy nuclei [6]. For many generic models of WIMP interactions with
the SM, these searches exclude the required annihilation cross section for masses 1 GeV <
m, < 10* GeV. While it is possible to engineer interactions that allow for large annihilation
while suppressing scattering (see [108, 24, 54, 50, 14, 64, 2] for a few examples), such limits,
together with those derived from the null observations of WIMP annihilation products [5]
and/or production at colliders [11, 1, 100], suggest that either Nature has been unkind in
choosing which model of WIMPs to realize, or there is tension between realizing the observed

relic density and the limits from experimental searches for WIMPs.

A key assumption under-pinning the mapping of the relic density to WIMP searches today
is that the cosmological history of the Universe can be reliably extrapolated back to the time
of freeze out. The standard picture extrapolates based on a theory containing the SM plus
dark matter (and dark energy), with no other significant ingredients. The success of Big
Bang Nucleosynthesis (BBN) in explaining the primordial abundances of the light elements
could be taken as an argument that it is unlikely that cosmology has been very significantly
altered at temperatures lower than ~ 10 MeV, but this is far below the typical freeze-out

temperature of a weak scale mass WIMP, which is more typically in the 5-100 GeV range.
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Indeed, it has been shown that an early period of matter domination [57] or late entropy
production [52] can alter the relic abundance for fixed WIMP model parameters, leading
to substantially different mapping between the observed abundance and the expectations of

direct searches.

In this article, we explore a different kind of nonstandard cosmology, in which the strong
interaction described by Quantum Chromodynamics (QCD) undergoes an early phase of
confinement, based on promoting the strong coupling «, to a field, whose potential receives
thermal corrections which cause it to take larger values at early times, relaxing to the canon-
ical size some time before BBN [65, 29]. If the dark matter freeze out occurs during a period
in which ay is larger such that QCD is confined, the degrees of freedom of the Universe
are radically different from the naive extrapolation, being composed largely of mesons and
baryons rather than quarks and gluons. Similarly, the interactions of the dark matter with
the hadrons are scaled up by the larger QCD scale, Aqcp, leading to a very different anni-
hilation cross section at the time of freeze-out than during the epoch in which experimental
bounds are operative. We find that depending on the underlying form of the dark matter

interactions with quarks, radical departures from the expected relic density are possible.

This article is organized as follows. In Section 5.2, we review the construction of a Universe
in which oy varies with temperature. In Section 5.3 we discuss the chiral perturbation theory
which describes the mesons and their interactions with the dark matter during the period of
early confinement, and in Section 5.4, we examine the relic density under different assump-
tions concerning «, at the time of freeze-out, and contrast with experimental constraints

derived today. We reserve Section 5.5 for our conclusions and outlook.
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5.2 Early QCD Confinement

Following reference [65], we modify the gluon kinetic term in the SM Lagrangian to:

—%GZUGZ‘” = - i <gi§0 + %) GGy, (5.1)
where G}, is the gluon field strength, S is a gauge singlet real scalar field, and g5 represents
(after rescaling the kinetic term to canonical normalization) the SU(3) gauge coupling in the
absence of a vacuum expectation value (VEV) for S. M, is a parameter with dimensions
of energy which parameterizes a non-renormalizable interaction between S and the gluons.
It could represent the fluctuations of a radion or dilaton field, or by integrating out heavy
vector-like SU(3)-charged particles which also couple to the scalar field S. In the latter case,
the scale of the interaction is related to the mass of the new SU(3)-charged particles via
M, ~ 4nMg/ngygos, where ng is the number of SU(3)-charged fermions with mass Mg

and Yukawa coupling yq.

Engineering an early period of confinement, followed by subsequent deconfinement and return
to a SM-like value of ay before BBN imposes constraints on the potential for S, and its
interactions with other fields (which determine the thermal corrections to its potential)
[65]. Generally, mixed potential terms containing the SM Higgs doublet are present, and
these may play an important role in the thermal history [29]. In this work, we remain
agnostic concerning the specific dynamics which implement the shift in vg leading to early
confinement, and we assume that the terms mixing the S with the SM Higgs are small

enough so as to be safely neglected.

A VEV for S generates a non-decoupling correction to the effective strong coupling constant

through the dimension-5 interaction in Equation (5.1), which for negative v, strengthens the
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Figure 5.1: Left panel: Evolution of the strong coupling constant with temperature in the
early Universe for three different values of v,/M,. Confinement takes place at temperatures
for which oy > 1. Right panel: The scale of QCD confinement, Aqcp, as a function of the
parameter £ = exp(247%/(2N; — 33)vg/M.,).

effective coupling strength. At one loop and at scale pu, the effective strong coupling is

1 33 — 2Ny 2 Vs
= In{-—= 4 — 5.2
s, vg) 12 (A%) * "M, (5:2)

where Ny is the number of active quark flavors at the scale y ~ T'. Figure 5.1 shows the
effective coupling as a function of temperature. QCD confinement occurs at a temperature

Tc ~ AQCD7 where

2471'2 Vg

Aqep(vs) = A(Sgl\éD R (5.3)

Here, ASQ%D ~ 400 MeV is the SM value of the QCD confinement scale; we adjust g, such

that it is realized for v, = 0.

At scales below confinement, the relevant degrees of freedom are mesons, whose dynamics are
described by chiral perturbation theory, the effective field theory of which is parameterized

by coefficients which depend on Agcp. We find it convenient to parameterize the physics in
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terms of the ratio of Aqep to ASlp,

AQCD 2471'2 Vs
= ~ _ : 5.4
¢ A, TP (QNf —33 MM, (5.4)

The parameter £ is typically sufficient to completely describe the physics of dark matter

interactions during the period of early confinement.

5.3 Dark Matter Interactions and Chiral Perturbation

Theory

The dynamics of the scenario we study are encoded in the Lagrangian:

1/1 S o v - _
£5—7 (9_30 + ﬁ) Gl Ga” + g {igq — yy harLar + Hee.} + Ly, (5:5)
where £, describes the dark matter and its interactions. We introduce a SM-singlet Dirac

fermion field y to represent the dark matter, and couple it to quarks,

. _ Bij _ _ Nij .
Ly =Xy 0uX — myXX + Y {Véxx G + 372 XV"X Gy [ (5.6)
S 14

i,j

where the couplings (3;;/M2 and \;;/M represent operators left behind by integrating out
states with masses > m,. Generically, one would also expect there to be interactions
with the leptons or the Higgs doublet. We assume for simplicity that such interactions are

subdominant if present.

In the case of the scalar interactions, S itself could act as the mediator, provided it has direct

coupling to the dark matter. In that case, UV-completing will require additional states to
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provide a renormalizable portal to hgq, and the dimension six interaction written here will
descend from a dimension seven operator after the SM Higgs gets its VEV. The vector
interactions could represent a Z’ from an additional U(1) gauge symmetry that couples
to both quarks and dark matter. We will consider cases in which either scalar or vector
interactions dominate over the other one. We follow the guidance of minimal flavor violation

[36] in choosing the couplings such that

Bij = :l:(sz'j& ; (5.7)

u

which is normalized to the coupling to up quarks, and with an over-all factor absorbed into
M?2. The possibility of choosing either sign for 8 will play an important role, described in
5.21 below.

The vector couplings );; are diagonal and have equal values for the up-type quarks, and

equal (but different from the up-type) values for the down-type quarks,

5@'j7 .] = u, Cut
/\ij

(5.8)
(1‘{’0-/)5723'7 j:d,s,b,

where o determines the difference between up- and down-type couplings. When o = 0, the
vector coupling assigns charges equivalent to baryon number, and the mesons decouple from

the dark matter.

During early confinement, the Universe looks very different from the standard cosmological
picture based on the SM extrapolation. (Massless) quark and gluon degrees of freedom are
replaced by mesons and baryons, and chiral symmetry breaking induces a tadpole for the

Higgs which is relevant for the evolution of its VEV. In order to determine how dark matter
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Figure 5.2: Spectrum of pion masses for two choices of £, with v, corresponding to the Higgs
VEV at T'= 100 GeV.

interactions are affected by this early cosmological period of QCD confinement, we first give

a description of this era in terms of chiral perturbation theory.

5.3.1 Chiral Perturbation Theory

In the limit Aqep > my, the QCD sector of the Lagrangian for quarks,

£ {ighq -y, hdrar + Hee.} (5.9)

q

(where h is the SM Higgs radial mode) possesses an approximate global SU(6),x SU(6)g
chiral symmetry, which is softly broken by the Yukawa interactions. We work in the basis in
which the y,’s are diagonal, for which all flavor-changing processes reside in the electroweak
interactions. Non-perturbative QCD is expected to break SU(6),x SU(6)r — SU(6)y to

the diagonal subgroup, resulting in 62 — 1 = 35 pions as pseudo-Nambu-Goldstone bosons.

At scales below Agcp, the pions are described by a nonlinear sigma model built out of
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U(x) = exp (127°7*(x)/ f=), where T are the SU(6) generators. The leading terms in the

chiral Lagrangian (neglecting electroweak interactions) are

2
Lo — ij te(|DLU) + 5 (UM + MU | (5.10)

where f, is the pion decay constant and « is a constant with mass dimension 3, both of which
represent the strong dynamics. The generators are normalized such that tr[T%T"] = §2°/2,
leaving the 7% canonically normalized. The mass matrix M, is a spurion representing the
explicit SU(6)x SU(6)g breaking from the Yukawa interactions,
M, = —h Diag(yus Ya, Ys, Ye, Yo, Y1) - (5.11)
V2

Expanding the field U in Equation (5.10) to second order in 7/ f, results in pion mass terms

and a tadpole for the Higgs:

K
L D V2Ey h — 7 tr[{T°, T} M] 77" | (5.12)

both of which are controlled by . (In the tadpole term we keep only the top Yukawa as
the contributions from light quarks are typically negligible.) We match f; and x to the SM
pion mass, m,y = 135 MeV, and decay constant, fro = 94 MeV at ¢ = 1 and v, = 09,
where v) = 246 GeV is the zero temperature SM Higgs VEV. Naive dimensional analysis
provides the scaling for other values of ¢ (for which the tadpole implies there will typically

be a different vy,):
ke (220 MeV)? €3 ) fr~94 MeVE,  m2 ~m2, /vy, (5.13)

The resulting pion mass matrix is diagonalized numerically to determine the spectrum of

mesons in the mass basis. Example spectra at T" = 100 GeV for two different choices of &
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are shown in Figure 5.2.

5.3.2 Finite Temperature Higgs Potential

As shown above, a cosmological era of early QCD confinement induces a tadpole for the Higgs
radial mode h. If Aqcp is comparable in size to the weak scale, this tadpole can deform the
Higgs potential by a relevant amount during the epoch of confinement. In addition, the
plasma contains mesons (rather than quarks), which modifies the thermal corrections to the

Higgs potential from the SM fermions.

We determine the Higgs VEV as a function of temperature by finding the global minimum
of the finite-temperature Higgs potential. We assume that interaction terms between the
Higgs and S are small enough to be neglected. We focus on a cosmological history where
Aqep > Trw ~ 150 GeV, which requires £ 2 300. We further assume that the S potential
is such that there is a lower temperature 7, (which we treat as a free parameter) at which
Aqcp returns to A%\éD, implying that QCD deconfines and the subsequent evolution of the

Universe is SM-like.

Under these assumptions, the finite temperature potential for the Higgs, V' (h,T) consists of

the tree level SM potential,

1 A
Vo(h) = —§u2h2 + Zh4 : (5.14)

whose parameters are adjusted to match the zero temperature VEV v) = 246 GeV and

Higgs mass mj;, ~ 126 GeV. In three different temperature regimes, the form of the finite
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temperature corrections is given as

( T4
%(h) + ﬁ | Z (—1)Fn2-JB/F [m?/Tﬂ (T > AQCD)
i=h,W,Z,t
T4 2 2
V(h,T) = %(h) - ﬂﬁyth + ﬁ Z"%JB /T (Td <T< AQCD) ,
i=h,W,Z @
T4 F 2 2
\ 1=h,W,4,

(5.15)

where F' = 0/1 for bosons/fermions and n; counts degrees of freedom: n, =n, = 1, ny = 6,

nz = 3, and n, = 12. The functions Jp,r are the bosonic/fermionic thermal functions,
Tp)r [m2/T7] :/ 2 log (1 - (—1)Fe—vl"2+m?/T2) (5.16)
0
and m?(h) are the field dependent masses,

m2 = —p®+3AR:, ml, = gZVhQ my= Wy =2 (517

We make use of the high temperature expansions of the thermal functions, which are given

as

I () /1) =~ 4 T (m“’”)% © [m o (m_)] ’

45 12 T2 6 T2 T4 T2
7t w2 m?(h) m! m?

The meson masses in the confined phase are calculated as described in the previous section.
We find that for the values of £ under consideration, the mesons containing top quarks are

typically much heavier than the temperature during the period of early confinement such
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Figure 5.3: Higgs VEV as a function of temperature 7" for £ = 500, 1000 and 7y = 10 GeV.
The sudden changes occur at T ~ Aqcp and 1.

that they are Boltzmann suppressed. Hence the dominant thermal corrections are from the

mesons containing bottom quarks. We keep all 35 mesons in our numerical calculations.

At high temperatures, the potential is dominated by the T?h? term, driving v, — 0, and the
electroweak symmetry is restored. At 7' = Aqcp, chiral symmetry is broken via the quark
condensate, and the tadpole triggers a non-zero Higgs VEV that is larger than v) for the
¢ values we consider. At T,;, QCD deconfines and the Higgs VEV relaxes to its SM value.

This behavior is shown in Figure 5.3 for T; = 10 GeV and two values of &.

5.3.3 Dark Matter Interactions with pions

At leading order in chiral perturbation theory, the interactions with the dark matter map

onto,

R (U4 VS + 1ty i (00 UL - (U] @) (5.19)
S |4
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with x and f, determined as discussed in Section 5.3.1. Note that because the scalar inter-
action with dark matter is chosen to take the same form as the spurion containing the quark
masses, a single hadronic coefficient £ determines both the pion masses and the dark matter

couplings [9]. Expanding U to second order for Hermitian choices of 5 and A produces:

2k tr[B] _

n K 21
M3 f2 M3

tr[TT° 3] xxmn® + M—‘Z/fabC tr[T°N] xv*x 7 (0,7 . (5.20)
It is worth noting that the strength of the scalar interaction scales as k/f2 o< £, whereas the

vector-interaction strength is independent of it.

The first term in Equation (5.20) represents a contribution to the dark matter mass induced
by the chiral condensate. At the time of freeze out, the effective mass is given by the sum
of m§=07 which to good approximation is m, in the Lagrangian (5.6), and this additional
correction that is operative during confinement,

(5.21)

X

10° ?
ml " =m!I="+ Am, , where Am, ~ (2eV)¢’ (O_GeV) .

Mg
For large values of &, the effective shift may be a few GeV, and may play a role in determining
the relic abundance for dark masses of O(10 GeV). In Section 5.4 we present our results in
terms of the 7" = 0 (unshifted) mass relevant for WIMP searches today. For dark matter
masses of O(GeV), the sign of the effective mass term may flip between the time of freeze out
and today due to a sign difference between m, and . For sufficiently complicated WIMP
interactions, this could lead to non-trivial interference effects, but for the simple cases we

consider here it is unimportant.
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5.4 Dark Matter Parameter Space

In this section, we consider dark matter freezing out through either the scalar or vector
interactions introduced above during an early cosmological period of QCD confinement.
We contrast with the expectations from a standard cosmology and constraints from direct

searches.

5.4.1 Relic Density

The Boltzmann equation describing the evolution of the density of dark matter in an ex-

panding Universe can be written as [70]:

dn
d_tx +3Hn, = —(ov)(n} —nZ), (5.22)

where n, is the co-moving number density of the dark matter, and n., is its equilibrium
density at a given temperature. When the interaction rate drops below the expansion rate
of the Universe, H, the dark matter number density stabilizes, leaving a relic of the species
in the Universe today. The relic density can be solved for a non-relativistic species with a
thermally averaged cross section approximated as (ov) ~ a + 6b/x where © = m, /T. The

resulting relic density is:

Q2 o 104 10° zp 1 (5.23)
x - Mpl \/gﬁa%—Bb/:vp’ ’

where ¢, counts the number of relativistic degrees of freedom at freeze-out and h parame-
terizes the Hubble scale. For the standard case of £ = 1, we have g, = 92. In an era of
QCD confinement at T' ~ 10 — 100 GeV, the degrees of freedom changes from the standard
scenario since quarks and gluons confine into (heavy) mesons. For the cases we study, this

corresponds to g, ~ 26 at the time of dark matter freeze-out. The freeze out temperature
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xp = m,/Tr can be solved for iteratively via

B 45 g, myMp(a+6b/zF)
rp=In (c(c +2)4/ S 93 — : (5.24)

where g, = 2 for fermionic dark matter and ¢ = 1/2 approximates the numerical solution

well [70]. The parameters a,b in the annihilation cross section are model dependent. We

compute them in Sections 5.4.3 and 5.4.4 for scalar and vector interactions, respectively.

The preceding discussion assumes that the freeze out takes place during a time of radiation
domination, as is the case for a WIMP in the backdrop of a standard cosmology. It is
generally expected that QCD confinement results in a shift in the vacuum energy of cOAéCD,
where ¢ is a dimensionless constant which naive dimensional analysis would suggest is order
1. The relic density in Equation (5.23) assumes that the subsequent deconfinement of QCD

occurs before the onset of vacuum domination,

1/4
Aqep 2 Tr 2 Aqep <C—O> : (5.25)

*

For ¢y ~ 1, this is a relatively narrow range which would involve some fine-tuning between
the freeze out temperature and Aqep for Equation (5.23) to hold. However, the tiny value
of the vacuum energy inferred from cosmic acceleration in the current era could argue that
there is some mechanism at work which dynamically cancels the influence of vacuum energy

in different epochs, which would allow for a much wider period of radiation domination.

5.4.2 Limits from Direct Searches

Direct detection experiments such as XENON provide important bounds on parameter space

based on the null results for dark matter scattering with nuclei. The rate for x to scatter
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with a nucleus N in the non-relativistic limit is,

1 QO?\, )
OxN = ;(mxi—mN)Q[pr +(A-2)f,], (5.26)

where Z and A are the atomic number and mass number respectively and f,, are the

effective couplings to protons/neutrons, given by

1 2
Scalar Interaction : f,/, = 2 { Z f;(pz/n) + §f;(p];/n)} ,
5

q=u,d,s
1 1
Vector Interaction : f, = — (3 +«a), [,=-—5(3+2a), (5.27)
My, My,
at leading order [98], with hadronic matrix elements fr,, and fr, defined as in references

(60, 79].

5.4.3 Scalar-Mediator Results

It can be seen from Equation (5.20) that the strength of scalar interaction between dark

matter and pions depend on the QCD confinement scale, Aqcp = 5/\%\6]}. Consequently, for

dark matter with purely scalar interactions, the relic density is a function of the mediator

scale Mg, QCD confinement scale Aqcp, and the mass of the dark matter at zero temperature,
T=0

my—". We consider & = 1,500,1000, where { = 1 represents the standard cosmological

history and the other two choices correspond to Aqep = 200,400 GeV, respectively.

The relic abundance is controlled by the thermally-averaged annihilation cross section at the

time of freeze out (7' = TFr) in the non-relativistic limit,

(ogv) = (fQLMg) - Z’—W 1 ”;—%@2”0(@4» . (5.28)

Here w, are the eigenvalues of the 35 x 35 matrix tr(7°7°3), and the sum is over all the
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Figure 5.4: (Top Left) The thermally-averaged cross-sections at the time of freeze-out as a
function of m=" plotted for Mg = 10° GeV (blue), 10" GeV (green) and £ =1 (solid), 500
(dashed), 1000 (dotted). (Top Right) Dark matter relic abundance today as a function
of mI=" plotted for Mg = 10° GeV (blue), 10" GeV (green) and ¢ = 1,500,1000. The
horizontal solid line is the observed dark matter abundance. (Bottom Left) The freeze-out
temperature T as a function of m] =" with Mg = 10° GeV, 10" GeV plotted for £ =1 (solid),
500 (dashed), 1000 (dotted). (Bottom Right) We show the Mg values that produce the
observed dark matter relic abundance as a function of m =" for £ =1 (solid), 500 (dashed),
1000 (dotted). For § < 0, the line is plotted in red. Shaded blue region is excluded by

XENONIT. See text for details.

pions of mass' less than mz;:TF . Note that scalar interactions lead to p-wave suppressed
annihilation, for which @ = 0. The relic abundance today is given by p, = m]=%n,, whereas
the energy density immediately after freeze out is mz;:TF ny. The shift in m, between the

time of freeze out and the present epoch introduces an additional correction to the relic

1Our choice of couplings 3;; aligned with the Yukawa interactions leads to diagonal interactions between
the dark matter and the pion mass eigenstates.
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density today:

Qr=opz = ™ gremep (5.29)
X m§:0 + Amx X : :

In Figure 5.4, we show the annihilation cross section, relic density today, and freeze out
temperature, for & = 1,500,1000 and two representative values of Mg, as a function of
the dark matter mass today. In the final panel, we show the value of Mg for each dark
matter mass (today) required to reproduce the observed relic density, for the same values
of ¢ considered. Also plotted on that panel are the current XENONIT constraints [6].
Comparing & = 1, the standard cosmological scenario, to & = 500, 1000 cases makes it clear
that freeze-out during an early cosmological period of QCD confinement, which can realize
the observed relic density for weaker couplings, can make the difference between a freeze-out

relic WIMP being allowed versus strongly excluded by direct searches.

There are a number of features in Figure 5.4 that warrant further discussion:

e The £ > 1 lines end when miZTF ~ Aqep = 5/\8\&3, at which point the dark matter
mass is heavier than the QCD scale, and the resulting annihilation would be into quarks

and not into pions.

e For standard cosmology, with & = 1, the kink in the annihilation cross section at
m, ~ 173 GeV corresponds to the annihilation channel into top quarks opening up.
Similarly, the kinks in the & = 500, 1000 lines correspond to new channels into heavier

pions.

e As mentioned earlier, the annihilation cross section is enhanced by the QCD scale.
Therefore this scenario accommodates larger values of the mediator scale, Mg ~
108 GeV, compared to a standard WIMP scenario.

e The effect of the quark-condensate contribution to the dark matter mass can be seen

135



in the bottom-right panel. Depending on the sign of 3 in 5.21, there are two values of

T=Tp

My

which correspond to a single m§:0 for modest dark matter masses.

e The bottom left panel implies that a scenario in which the QCD deconfinement brings
the dark matter back into equilibrium with quarks after it has frozen out from inter-

acting with mesons is never realized, for deconfinement happening below a few GeV.

5.4.4 Vector-Mediator Results

For vector interactions, our choice of minimally flavor-violating interactions \;; with the
quarks results in leading interactions with a pair of pions, as in Equation (5.20). In the

non-relativistic limit, the thermally-averaged annihilation cross section is,

35
Qap 4 3/2 9 Yab — 20w\ (V%) 4
= 1—7, o 1 1+ - .
ol = 32 et e [+ (14 g2 ) 50 o] s

summed over pairs of mesons for which m,, +m,, < 2m,. Note that vector interactions do
not induce a shift in the mass of the dark matter from the chiral condensate. The coupling

matrix 2, is given by

35
1 a?
Q=) e febe tr[TeN] £ tr[TON] o AT (5.31)
c,d=1

where we focus on o = 1 for simplicity. The kinematic factors are defined as v = (m2, +

m2,)/(2m2) and p, = (m?

Ta

—m3,)%/(16m5).

b

In Figure 5.5 we show the resulting annihilation cross section, relic density, and freeze-out
temperature, as a function of the dark matter mass at zero temperature m§:07 for two choices
of My, = 100 GeV, 1 TeV and ¢ = 1,500, 1000, where £ = 1 corresponds to the standard
picture of freeze-out through annihilation into quarks. In the final panel, we show the value

of My for each dark matter mass required to reproduce the observed relic density for a given
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Figure 5.5: (Top Left) The thermally-averaged cross-sections at the time of freeze-out as
a function of m =" plotted for My = 100 GeV (blue), 1 TeV (green) and & =1 (solid), 500
(dashed), 1000 (dotted). (Top Right) The generated relic abundance today as a function
of m!=" plotted for My = 100 GeV (blue), 1 TeV (green) and & =1 (solid), 500 (dashed),
1000 (dotted). The horizontal solid line is the observed dark matter abundance. (Bottom
Left) The freeze-out temperature as a function of m!=" with My = 100 GeV plotted for
¢ =1 (solid), 500 (dashed), 1000 (dotted). (Bottom Right) Coupling as a function of m!="
to produce the observed relic density plotted for & =1 (solid), 500 (dashed), 1000 (dotted).
Shaded blue region is excluded by XENONIT. See text for details.

choice of &.

Unlike the scalar interactions, vector interactions do not get the { —enhancement from QCD
confinement. On the contrary the annihilation cross-section is smaller than the standard
WIMP scenario because the annihilation products, namely the new pions, are heavier than

SM quarks at the same temperature in standard cosmology. Hence, the vector scenario does
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worse than the standard WIMP case within this cosmological history.

5.5 Conclusions

The standard picture of freeze out is a compelling picture for the mechanism by which
dark matter is produced in the early Universe, and the primary motivation for WIMP dark
matter. Common wisdom states that the WIMP paradigm is in trouble, but this is the
result of comparing freeze out in a standard cosmology to searches for WIMPs. In this
article, we have explored the possibility that the cosmology looks radically different at the
time of freeze out, in particular exploring the idea that QCD could have undergone an early
period of confinement before relaxing to the behavior observed at low temperatures today.
We find that for a scalar mediator, the dark matter mass is shifted by the chiral condensate,
and its coupling to pions is enhanced during early confinement, allowing for parameter
space which allows for freeze out production while remaining safe from constraints from
XENONIT today, rescuing some of the WIMP parameter space. On the other hand, for a
vector mediator we find that the differences between freeze out during early confinement and
the standard cosmology are more modest, and the entire parameter space remains ruled out
by XENONIT. Our work highlights the fact that a modified cosmology may largely distort
the apparent messages from astrophysical observations of dark matter to inform particle

physics model building.
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Chapter 6

Conclusions

Throughout this thesis, we considered QFTs with two different goals: to study the dynamics
of gauge theories and/or to study possible extensions of the SM which explain phenomena

beyond the SM.

In the pursuit of the dynamics of gauge theories, we examined SUSY QFTs on R*, R3, and
R3 x S! where the theory on the cylinder interpolates between the 3D and 4D theories. In
Chapter 2, we derived the fundamental zero modes of the KK monopole. The existence of
these zero modes explains how the 4D dynamics imparted by the KK monopole decouples
from the 3D dynamics of the theory to arrive at a truly 3Dtheory, and in some examples,
these zero modes become active in the 4D limit and are necessary to arrive at the correct
instanton-induced superpotential. In Chapter 3, we calculated quantum corrections to the
classical moduli space in 3D SUSY QCD with F' < N flavors. These quantum corrections
“smooth out” the boundaries of the classical moduli space, allowing one to connect the
coordinate charts in all regions of the moduli space. When implemented as a Lagrange
multiplier in the superpotential, these corrections explain how the Coulomb branches of the

theory reproduce the appropriate 4D result in the large radius limit on a cyliner and how
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theories with F' flavors flow to theories with F' — 1 flavors under large mass deformations.

The study of electric-magnetic scattering in Chapter 4 makes progress towards both goals.
The on-shell methods developed in said chapter allow us to calcualte the dynamics in gauge
theories with magnetic charges where little was calculable. In particular, we derive new se-
lection rules for these scattering processes and fully relativistic answers for fermion-monopole
scattering which agree with previous non-relativistic results. Furthermore, this formalism
could help explain phenomena which is a result of magnetic charges in beyond the SM model

building.

Finally, in Chapter 5, we discuss a model beyond the SM which could explain the observed
dark matter abundance. This model consider thermal freeze out in a universe where QCD
experiences an early phase transition. The phase transition ensures that the hadrons are the
active degrees of freedom during thermal freeze out which alters the relationship between
the dark matter couplings, mass, and relic density. While most models of dark matter with
masses and couplings of order the electroweak scale are in tension with bounds from direct
detection experiments, this altered relationship between the dark matter’s observables allows
the model to explain the observed dark matter relic abundance without contradicting direct

detection observations.
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Appendix A

Squark Correlation Function

Calculation

This appendix first appeared in work previously published in collaboration with Yuri Shirman

[99].

In this appendix, we discuss the evaluation of the path integral for an SU(2) theory with
one flavor which leads to (3.4). We begin by deriving the instanton-monopole integration
measure, collective coordinates, one loop determinants and all. Then we derive the fermionic
zero mode functions and evaluate the integral. As a preparation for this discussion, let us
recall properties of the single monopole configuration corresponding to the first non-trivial

solution of the classical equations of motion [84, 101]

nt
Al(r) = e‘mn—F(m‘) , o%r)=wvn*H(vr),
" (A1)
p coshp 1

Flp)=1— H(p) = _
() sinh p’ () sinhp p

Such solutions satisfy the lower bound of the Bogomolnyi bound and are exact since the

adjoint scalar has no classical potential. There remain quantum fluctuations of the fields in
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this classical background. Some of these fluctuations do not have a corresponding change in
the action. These are the zero modes of the instanton-monopole. Index theorems guarantee

a certain number of zero modes.

Specifically, the single monopole has four bosonic zero modes: three for the position of the
monopole and one for a left over U(1) transformation. If we add a fermion ¢ to the theory,

it also acquires zero modes satisfying
(iD, ") = (i0;,0" + AL’ T* + 0" T*)p = 0, (A.2)

where the number of zero mode solutions and 7* depend on the representation of . We
normalize our generators such that Tr(T°T?) = §%°/2 in the fundamental representation.
Fermions in the adjoint representation have two zero modes, and fermions in the fundamental

representation have a single zero mode.

A.1 Monopole-Instanton Measure

As discussed in section 3.2, the monopole contribution to the squark correlation function
is (3.1). In this formula, all fields have been expanded around their classical solution
¢ = @ + Pgu.. The quantum fluctuations come in two types: non-zero modes and zero
modes. To leading order, the non-zero mode fluctuations are gaussian and their evaluation
reduces to determinants of A_ = @cl@cl and A, = @dﬁcl. A_ has zero modes in self-dual
configurations which are excluded from the determinants (denoted with a det’). In 3D, the
contributions of non-zero modes do not cancel even in supersymmetric theories [43, 44]. As
a result, the path integral of the A" = 2 theory with F' fundamental flavors is proportional
R

)—F/Q

to a factor of (R Rtuna , where the ratio of determinants Rz for an arbitrary
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representation R is given by

B det A+ T Iz (0) & dM2 2
R=TOA }}L% {,u exp | — y I(M=) )| . (A.3)

Ir(M?) is the generalized zero mode index for representation R. The ratio of non-zero
mode determinants is R,q; = (2v)* for the adjoint and Rp,,q = v* for the fundamental

representation [44].

After converting the zero mode integrals to collective coordinates and using zero mode solu-

tions normalized to one, the path integral measure becomes [43]

/ [Dgo] = / %(561)3/2 / (2:)91/2 (%)1/2 / ¢ / dx / dx | (A4)

where z and 6 make up the bosonic collective coordinates, and the &, x and Y are Grass-

mannian collective coordinates for the gauginos and quarks respectively. If we expand the
effective squark action in supersymmetric gauge couplings, the correlation function simplifies

to

' \3/4 —1/2 2
(cf(x)qz(x» _ (Radj) (Rfund) (S;l) €_SCl/d3Z/d2§/dXd)_<

2T
% (2)q(x) / Py (g \0) / dys (M) . (A5)

Now we turn to deriving the fermionic zero modes.

A.2 Gaugino Zero Modes

Reverting to o being the fourth component of the four-vector gauge field A, the gaugino

has zero mode solutions resulting from supersymmetry transformations on the monopole
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field configuration

a —1 v a a
N0 = Z5(0") F, = VAN B, (A.6)
where Bf(r) is the k™ component of the a color magnetic field, Bf = —1¢;xF*Y, in

monopole background and [ labels the two zero modes. Explicit evaluation finds

vH (vr)

F(vr)

Bi(r) = (6¢ — nFn?) (1—F(vr)) + nknar—(2 — F(vr)). (A7)

After normalizing the gaugino zero modes and introducing a dimensionless function B,‘j (vr) =

U%Bg we find

g21)3

A1) = 44
7

(Jk)aﬁé,‘j(w) ) (A.8)

A.3 Quark Zero Modes

Zero mode solutions for fundamental fermions were found in [66] and are given by

r

Yia(r) = (02);aC exp {— /0 dr (%H(w) AL (W))} , (A.9)

where C' is the normalization constant. In supersymmetric gauge theories, there is a closed

form solution,

3 tanh & 3
C (0% =X (0r) (A.10)

2
ia\T") =0 )ia\| o= —F/—7—7———— =
Yialr) = (") 8™ v/vr sinh vr 8T

where X (r) is implicitly defined. Similar solutions for the anti-fundamental modes can be
found by raising indices with the anti-symmetric tensor, €. Reintroducing the Grassman-

nian coordinate, y, to the fermion field, the zero mode is (¢g)ia = ViaX-
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A.4 Evalulating the integral

Inserting (A.8) and (A.10) into (A.5) then performing the Grassmann integration and re-
placing the products of squark operators with their Green’s functions,' one finds

2

@ @) = Sl [ o= ]

4
9 i=1,2

e~ 5lz—vil
/dSQiWQ(U’Z —uil), (A.11)

where Q(p) = 05X (p)B¢(p). Shifting the center of integration such that y; — ; + 2 and
z — z + x, the x dependence drops out. The angular y; integrals can be evaluated and the

integral simplifies to

(@ (@)ai(x)) = g—gl (A.12)

where I = 4 [dp, [[._,, [ dpipi(e”1P==ril/2 — e=le=+2il/2))(p,). Note that the p; are the di-
mensionless magnitudes of the 3D vectors p; = v|y;|. It takes some work, but one can show

that the integrand of I is positive definite and converges quickly. Thus our answer is

(@ @)a() ~ ¢ (—) e (A.13)

which is non-holomorphic due to the factor of v?/g*. As explained in [44, 86], this non-
holomorphic factor reflects finite renormalization of g2 and can be absorbed into the definition
of the kinetic terms in the low energy theory. After taking this into account, the correlation

function becomes a holomorphic relation between chiral operators Y M = ¢.

!The integral should be dominated by regions where the squarks are essentially free, massive fields. In
these regions, the Green’s function is ¢} (z)¢’ (y) = G (|z — y|) ~ §le V1*=¥I/2 (4 |z — y|)~'.
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Appendix B

Notation and Conventions for

Chapter 4

This appendiz first appeared in work previously published in collaboration with Csaba Csdksi,

Sungwoo Hong, Yuri Shirman, Ofri Telem, and John Terning [31].

B.1 Notation

We work in mostly-minus signature (+, —, —, —). Our Pauli matrices are defined as

(Uu)aa = (176) ) (6M)da = (]7_0_3)7 (Bl)
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where

Undotted indices are raised and lowered by the two index epsilon symbol

following a northwest-southeast convention:

A = s Ag = Mega.

Similarly, dotted indices are raised and lowered with

following a northwest-southeast convention:

PE 0 da = eqp N
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We define symmetrized products as:

( |a1>n1 Ca.t |a’k>nk ){al,...agj} =
N Z |a1>auk(1) Tl |a1>aak(n1) Tl |ak>aak(2J—nk+1) AR |ak>a0k(2J) ’
ok

(B.7)

where > n; = 2J, and the sum is over permutations on k elements. We choose the normal-

ization factor to be

[N

k

1

N = [(QJ)! (nm] . (B.8)

1

This choice of normalization gives us Wigner D-matrices when contracting symmetric prod-

ucts of spinors in the COM frame.

B.1.1 Conventions

The fermions in our paper are all left-handed Weyl, while their hermitian conjugates are

right-handed:

f = LHWeyl , fI = RH Weyl. (B.9)

We work in the all-outgoing convention for the S-matrix, for consistency with the rest of

the scattering S-matrix literature. In practice it means that h = %(— ) for the initial

1
2
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(i.e. originally incoming but crossed to outgoing) LH (RH) Weyl fermions, and h = —3 (3)
for the final (outgoing) LH (RH) Weyl fermions.

Reduced matrix elements are labeled as

M7, (B.10)

inahout

in our all-outgoing convention, hy, = % (—3) for incoming f (f7), and how = —3 (3) for

outgoing f (fT). This means that the labels on M respect particle identity: M, , is for

272

f — f1while M{ | isfor ft — f, etc.

_1
T2
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Appendix C

Spinor-helicity variables in the COM
frame and in the heavy monopole

limit

This appendiz first appeared in work previously published in collaboration with Csaba Csdksi,

Sungwoo Hong, Yuri Shirman, Ofri Telem, and John Terning [31].

In the COM frame of a dyon pair i, 7 we have

sz = (Eac» + ]50)
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where p, is in the direction given by {0, ¢.} and

- i)2 — m2m?
P, = \/(p p;) (At R o g m%j_’_p(g:. (C.2)

In this case, the Lorentz transformation L, taking the reference momenta Eq. (4.13) to p;, p;

is just a rotation

Acting with the spinor version of this transformation on the reference pairwise spinors

|k’ff>a, [kfji 4 etc. we get

|p2;t>a = VvV 2pc|iﬁc>a ) [pg;t’d = V2pc[iﬁc|da

where we use “-” instead of — inside the brackets for ease of reading. In the equation above

we use the notation

A Cn A~ *
7)o = Pl = (e sp)
Sn
. —Sp .
|-1)e = , [-nl, = (=80, ) - (C.5)
Cn

where s, = €' sin (%”) , Cp = COS (%”) In particular, under a parity transformation n <
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—n, we have

.. (C.6)

The expressions for (+7n|* and | +7]* are obtained by raising the spinor indices with e

and €& , following the northwest-southeast convention for a and the southwest-northeast

convention for &. Explicitly,

~la ~A1¢ Sn
(A" = (sn, —ca) A" =
Ao * AT Cn
(-A|* = (cn, sp) : |-A]" = (C.7)
Sn

Also, since in the center of mass frame p; = —p; = p., we automatically get the following

relations in the m; — 0 limit

|p?;—>oz = |i)a ) [pg;_{a = [Z|a

|p5j_>ot =V 2pec |ﬁi>o¢ ) [pE]_Ll =V 2pe [ﬁild )

where |i),, [i|, are the standard massless spinor-helicity variables, and [1;)q, [7:], are the
(dimensionless) Parity-conjugate massless spinors that appear in the massless limit of the

massive spinors |i)f, [1|i (see [7] for their definition). Consequently, the following contrac-
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tions vanish:

i) = Gpy) = o] = ym) =0

il = vy = [y = O 0) = 2pe, (C.9)

since [-n|n] = (n|-n) = 1. Note that the above equations are Lorentz and LG invariant,

and so hold in any other reference frame as well.

C.1 2 — 2 scattering in the COM frame and Wigner

D-matrices

We now explicitly present the relevant formulas for 2 — 2 scattering in the COM frame. We

take the colliding momenta to be

#o= (Bke) = (B k) (C.10)

where 7 is in the (6, ¢,,) direction and k is in the (Ok, ¢r) direction. Later we will specialize
to the case 6,, = 0 in which the initial momenta point along the 2 direction. From Eq. (C.5)

we have

<—ﬁ|—l%>* = <ﬁ|fc> = 5,CL — Cp Sk

—<ﬁ\—/%>* = <—ﬁ\f€> = ¢c,cp + S Sk - (C.11)
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where s; = €™ sin (0;/2), ¢; = cos (0;/2) for i = n,k. We put a | to separate contractions
involving a “” for ease of reading. The expression for square brackets are obtained by

lab] = (ba)".

When writing down 2 — 2 electric-magnetic S-matrix elements, we encounter the ubiquitous

spinor contraction

BJ(A,A,) _ (<—fZ|J+A<ﬁ|J_A){a1 77777 azs} <|_IA€>J+A’| ]%>J—A’> ' (C.l?)

where the sum is over max(0,A + A’) < ¢ < J 4+ min(A,A’). The coefficients w; are

combinatoric factors denoting the number of equivalent contractions [67],

i VT AT = AT+ AN (- A
Al = A=A (JHA =) (A =)

(C.14)

Note that to get w’ we have used our particular normalization for symmetrized products,
Eq. (B.8). Substituting the values Eq. (C.11) in Eq. (C.12), one can check explicitly that

the following relation holds:

J
BIAA) = (=17 Y D) a (b0 —d0) Dyias (b1, 0 =) - (C.15)

p=—J
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D;]n’m, (o, 8,7) is the Wigner D-matrix, defined as

D;’n,m, (a, B,7) = (J,m|R(a, B,7)|J,m') = gt matm’y) di}m, B, (C.16)

where R(a, 3,7) = e~ /== #Jve=1/: i5 a 3-dimensional rotation operator, and therefore

&)y (B) = (Jm| e P | T m'). (C.17)
Since our D-matrices always involve v = —a = —¢, = 0, we use the shorthand notation

Dy () = Dy (6,0,—0) . (C.18)
where = {0,¢}. In the particular case where the initial momenta are along the 42

direction, we have #,, = 0, and Eq. (C.15) reduces to

B/(AA) = (1)) DI A () (C.19)

We make use of this expression in section 4.6, where we consider 2 — 2 electric-magnetic

S-matrix elements in the COM frame.
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C.2 The heavy particle limit

In the m; — oo limit, Eq. (4.32) leads to very simple expressions for the spatial parts of the

pairwise momenta,

By = £ (C.20)

Note that in this limit p; ~ p. up to O (m]_l) corrections. That implies

P = V2eltbi)a o [P, = V2 [E0il, (C.21)

and we are free to use all the expressions derived throughout appendix C for the COM
frame also in any other frame with the substitution p. — p;. This is correct up to O (m]_l)

corrections.
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Appendix D

Definition of the electric-magnetic

S-matrix

In this section we define the S-matrix rigorously following Weinberg [112], making changes
when necessary to adapt to the electric-magnetic case. We work in the Heisenberg picture,
where all of the time dependence is concentrated in the operators rather than in the quantum
states. As in the standard definition of the S-matrix, we separate the full Hamiltonian of
the system into a free and interacting part, as in Eq. (4.24). Note that in the case of electric-
magnetic scattering, the free part Hy and the full Hamiltonian H have different conserved

angular momentum operators,
[H,f] - [Ho,fo} —0, J# Jp. (D.1)

This means that the Lorentz group is represented differently on the eigenstates of H and

Hy. We'll return to this point below.
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As a first step towards the definition of the S-matrix, we define the eigenstates |a; free) of

the non-interacting part Hy such that,

Hy|a; free) = E, |a; free) . (D.2)

The label o denotes the different eigenstates of Hy. Since Hj is free, its eigenfunctions are

just direct products (or sums of direct products) of one-particle states,

|a; free) = H |pi; s M) (D.3)

1€a
where p; and s; are the momentum and spin/helicity of each particle, and n; denotes its
charges and gauge representations.

As in [112], we define our in (out) states as eigenstates of H. Since the interaction V' vanishes

asymptotically, the eigenstates of H and H, coincide, and we can write

Hlo; £) = Eola; £), (D.4)

where ‘+’ denotes in states and ‘—’ denotes out states. In Weinberg’s definition, the labels in
(out) define two different eigenbases of H, which differ by their asymptotic forms at ¢t — +oo.
From this limiting relation and using J = Jy (valid in his case but not in ours), he deduces
how the Lorentz group is represented on in/out- states, and more importantly, that the in-

and out- representations are identical.

In the case of an electric-magnetic S-matrix, J # Jy by the non-vanishing asymptotic value of
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the angular momentum in the EM field. Inspired by Zwanziger [119], we follow an opposite
route to Weinberg, namely, we define our in out states by their different representations
under the Lorentz group, and derive the implications for the S-matrix. The transformation
rule that we impose on our in- and out- states is given in Eq. (4.26), and we repeat it here

for completeness,

U [pr, . opn; £) = [PV [Apr,... Apps &) e*'>

Unee(A) [P} .7 s free) = T[DOV)IAPY .. Apf; free) (D.5)

where ¥ = ij ¢ 9(pi, pj, A). We explicitly present the momenta p; of the particles in-
volved but suppress their spin/helicity labels, which are implicit in the LG transformations
D(W;). The magnetic part of the transformation for in/out-states is evident in the g;; de-
pendence of X, where ¢;; = e;9; — e;g; is the pairwise helicity of each particle pair. In
section 4.2.3 we prove that these transformation rules constitute a unitary representation
of the Lorentz group, by explicitly constructing them through the method of induced rep-
resentations. The transformation rule Eq. (D.5) is a departure from Weinberg’s standard
definition of the S-matrix, in the sense that the Lorentz group is represented differently on

in- and out- sates.

Having defined our in/out states in terms of their representations under Lorentz transfor-
mation, we can now take their ¢ — 400 limits to get relations similar to Weinberg’s Eq.
3.1.12. In these limits, we would like to make the statement that our in- and out- states
approach free states, since the interaction term V' vanishes for t — +00. However, our naive

expectation is hindered by the extra phases in the transformation of our in- and out-states.
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To compensate for that, we define our compensated free states:

Py s (freex)) = Ci(py...p))|py...pi; free), (D.6)

where C is a “compensator” function of the momenta which satisfies

Co(py...pf) = e Cu(Ap] ... Ap))

Cef. ) = 1. (D7)

The compensator functions are unique up to a constant phase, and we can construct them
explicitly from our pairwise spinor-helicity variables, as we demonstrate for the 2 — 2 case

in section 4.8.

Because of the compensator functions, the compensated free states have the same transfor-
mation rule as their in/out- counterparts, so they can serve as the right limits at ¢ — Fo0.
We now make this statement in a more formal manner. Since we are working in the Heisen-

berg picture, we define time dependent superpositions of in, out, and free states as

l9,t; £) = exp(—iH1) /dag ) |a; £)
lg,t; (freet)) = exp(—iHpt) /

Taking the ¢ — oo limit of our in/out- superpositions, and noting that H — Hj in this
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limit, we get the limiting forms
g lgts£) = lim |g,¢; (free L)) (D.9)
A different way of stating the same relation is the formal expression

la; £) = Q(Fo0) |a; (freet) ), (D.10)

where Q(t) = exp(iHt)exp(—iHgt). This relation should be understood in terms of super-

positions as in Eq. (D.8). The S-matrix is defined as usual as:

Spa = (B; —la; +), (D.11)

or equivalently as

Sga = (B; (free—) |S|; (free+)) , (D.12)

where S = Qf(c0) Q(—00).

169



Appendix E

Zwanziger’s Vectors

The first derivation of the LG transformation for electric-magnetic S-matrix elements was
given by Zwanziger for ¢;; = 1 in a seminal paper [119]. Beyond deriving the LG transfor-
mation similarly! to our section 4.2.3, Zwanziger also defined LG covariant vectors, which he
used to construct manifestly LG covariant S-matrix elements. Unfortunately, Zwanziger’s
vectors were explicitly Lorentz non-invariant, as they have an explicit dependence on an ar-
bitrary direction n. This was not a major detractor from his formalism, though, since all of
the n dependence canceled out when taking the absolute value squared of the S-matrix. Our
use of pairwise spinors rather than vectors eliminates this n dependence, up to our choice of
the canonical Lorentz transformation L, which takes k; ; — p; ;. However, this is no different
from the usual choice of a canonical Lorentz transformation in the standard Wigner method.
The other main detractor from using Zwanziger’s pairwise vectors was the fact that they
have pairwise helicity +1 rather than :I:%, which excludes writing down S-matrix elements
with half integer ¢. Our formalism closes this gap, and allows us to write down pairwise LG

covariant S-matrix elements in their most general form.

!'The main difference between our derivation and Zwanziger’s original derivation is our choice of the
reference momenta k; ; to be the COM momenta rather than the momenta in the monopole rest frame. This
makes our formalism more symmetric and suitable for the introduction of pairwise spinors.
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In this appendix we define Zwanziger’s vectors in terms of our pairwise spinor-helicity vari-
ables, and reproduce his results from section V of [119]. To define LG covariant vectors, we

first pick a reference vector n* and define:

(pifInlpyy] (v
<pij Inlpz-j ]

at = a. (E.1)

b— b
bij |0”’piﬂ

We've constructed these vectors so that (a4 + a-) - n = 0. Additionally, we have ay - p; =

ay - p; = 0. To see this, note that

ap-pi ~ (o lilp] (E.2)

and since p; is a linear combination of p'z’;r and p;’; the whole expression is zero by the Dirac

equation. By similar arguments a - p; = ay - p; = 0.

Finally, we reproduce Zwanziger’s Eq. (5.9):

diar = (piy o] (pif 1o vy ]
aa” = (piflo"pk ] (vl 1e”Ipy] - (E.3)
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Using the identity

1
(wle*|u] (ule”|v] = — U 4w — (v-w) ¢" e v,
(E.4)
valid for any null vector u, v, we have
[T 1 b+ vib— + wib— v+ ( b+ b—) N - _pvpo b+ b—
ay ay (p|?+ -pb--_) Pi;  Dij bij Dy Dij "Pi ) 9 F 1€ P;iiPpiij| >
iJ i
(E.5)
or explicitly
w o, i) (RS A+ RY) - mE iy — miphy
ay Gy = g+ 2 2.2
(pi - pj)* —m; my;
Il’GMVpU p,u;ipzz;j (E 6)
\/(Pz‘ -pj)? —mim;
This is exactly Zwanziger’s Eq. (5.9). Contracting this with g"”, we see that
1 *

Uk

and so ¢ = L(a/ 4+ a/") and {m = L(ak — a¥*) are two orthonormal vectors, orthogonal to

[

pi;- By definition €-n = 0.

172



To show the LG covariance of a/y, we follow Zwanziger’s argument. We note that

ai(Apl7Apj7n> = Auyal;jt(piapj7A_ln)' (ES)

As we Lorentz transform, n, € remains in the plane orthogonal to p;; and so is rotated by

the angle ¢;; such that

cosgi; = é(A7'n)-é(n). (E.9)

Since é - € = 0 and is also in the é same plane orthogonal to p; ;, it is rotated by the same
angle. But since aff = ié* £ ¢#, this rotation amounts to a phase factor exp(tig;;) for ali.

Summing up, we have

ay (Api, Apj,n) = A*, all(pi, p;j,n) exp(Ligy;) . (E.10)

The last thing to show is that the angle ¢;; is the same LG angle as in Eq. (4.22). But
Zwanziger shows that we can always fix the U(1) ambiguity in the definition of L(p;,p;)

such that:

L(pi,pj)y = &, (E.11)

and consequently the LG rotation angle is exactly the rotation angle of é.
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Appendix F

Comparison of amplitude formalism

to QM calculations

Here we show that Eq. (4.101) exactly reproduces the angular dependence of the higher

partial amplitudes in [68]. Starting from their partial amplitude

J ol
Siup = Siup =
—imp K ,4_7r Y. Q) — 4 v 0 -
Ne COS(QC/Q) [ 2] 4 J—%,—q( C) 2]+2 q ]-‘r%,—q( c) 5 ( . )
where —Q. = (71 — 0., —¢.) and p = /(J + %)2 _ ¢ and using the relation Eq. (4.98)

between the Y}, and Wigner D-matrices, we can cast it in the form

J ool _ —ir ® J—gx Tt
Sjor = Sfap = Ne™ s {Dq,_; Q)+ D727 ()] . (F.2)
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Finally we can use D-matrix identities in sec 4.8.2 of [110] to transform this expression to

J o J
Sjap = Siup =

N @I+1)e™™ D 1(Q) = N (27 +1)e™ Dyfy 1(Q). (F.3)

5—4— 75 q+35,—

Comparing this to the result obtained in our amplitude formalism,Eq. (4.101), implies that

J — i
Mi%,i% (& . <F4)
where 1 = (J + %)2 — ¢?. Combining this expression with the unitarity condition leads to
J 2 J 2
M| = 1My =0, (F5)

for helicity-flip J > |g| — % processes in an agreement with the explicit calculation in [68].
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