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ABSTRACT OF THE DISSERTATION

Nonperturbative Dynamics of Monopoles in Quantum Field Theory

By

Michael Waterbury

Doctor of Philosophy in Physics and Astronomy

University of California, Irvine, 2021

Professor Yuri Shirman, Chair

It is common for quantum field theories to lack a consistent, perturbative treatment. In most

cases, this is because the couplings flow to a strongly-coupled regime, and the perturbative

series diverges at all orders in these regimes. In some cases, such as those we will investigate

for magnetic monopoles, the dynamics are inherently nonperturbative. In three dimensions,

monopoles play the role of instantons and induce important corrections to the theory which

are absent in a naive perturbative expansion around the trivial vacuum. In four dimensions,

they appear as charged states, and the scattering processes involving electric and magnetic

states fail to converge at any order in perturbation theory.

We begin by studying the conditions for fundamental zero modes of the Kaluza-Klein

monopole which arises in compactified four dimensional theories. The existence of fun-

damental zero modes provide a path to decouple the Kaluza-Klein monopole in the zero

radius limit such that the theory is purely three dimensional. We study the correspondence

between the three and four dimensional theories under these effects.

Next, we study the moduli space for three dimensional supersymmetric SU(N) gauge theories

with F < N chiral superfields in the fundamental and anti-fundamental representations.

We calculate quantum constraints induced by monopoles and find a novel interpretation

of the constraints as transition functions between the moduli of different subwedges of the

x



moduli space. Although the subwedges are classically disjoint, these quantum modifications

smooth out their boundaries and allow for a consistent description of the system’s physics

independent of the choice of classical vacua. We emphasize how these quantum modifications

to the moduli space allow one to flow from the F flavor theory to the F − 1 flavor theory

which was not previously understood.

We now shift focus to an on-shell description of electric-magnetic scattering. Magnetically

charged particles are theoretically well-motivated, but it is difficult to calculate the signatures

of scattering events involving both magnetic and electrically charged particles. This cause for

this difficulty is two-fold: there remains no local, Lorentz invariant Lagrangian description

of such theories, and due to Dirac quantization, the coupling strength of the interactions are

never weakly-coupled. We develop on-shell methods to study these processes, derive new

selection rules, and calculate fermion-monopole scattering.

We end by changing gears and presenting a phenomenological study of dark matter freeze-out

where the universe experiences an early QCD phase transition. Where dark matter freeze out

is typically driven by annihilation into quarks, here the active degrees of freedom are mesons

which alter the correspondence between the dark matter couplings to the Standard Model

and the relic abundance of dark matter. We show that this model can explain the observed

dark matter relic density while evading experimental constraints from direct detection.
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Chapter 1

Introduction

Magnetic monopoles can play a variety of roles in quantum field theory (QFT) depending

on the geometry of the theory. On R4 (4D), they appear as massive extended objects in

grand unified theories [101] and are responsible for nonperturbative effects in strongly cou-

pled gauge theories. In fact, it has been conjectured that confinement is a symptom of a

monopole condensate [78]. As a dynamical explanation for confinement in quantum chromo-

dynamics (QCD) is a long-standing goal for theoretical particle physics, this is particularly

intriguing idea. Much of the recent progress in this direction has been in supersymmet-

ric (SUSY) theories. For instance, in Seiberg-Witten N = 2 theories [94], one can explicitly

show how electric confinement is connected to a monopole condensate. In contrast, if mag-

netic monopoles are extended objects in an ultraviolet (UV) completion of the Standard

Model (SM), then, at long distances, they behave as magnetically charged states coupled by

electromagnetism. Such states were initially theorized by Dirac [41], and their interactions

with matter are frequently incalculable. Despite the long history of these ideas, there is

still much to understand about the dynamics of magnetic monopole of both theoretical and

phenomenological interest.
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To further understand the role of magnetic monopoles, we can compactify the dimension

along their world-line, such that they behave as instantons in theories on R3 (3D) or theories

on a cylinder (R3 × S1). The theory on a cylinder can interpolate between the 3D and 4D

theories [3, 4, 32, 38, 88, 95]. Many nonperturbative effects in 4D SUSY theories are best

understood by considering the theory on a cylinder and taking the limit of an infinitely large

compact dimension. Similarly, the limit of infinitesimally small compact dimension allows

us to find new results for 3D theories from 4D theories.

The rest of this chapter attempts to make the above notions more precise and provides the

background for the chapters that follow. We begin by discussing 4D instantons with the goal

of epxlaining their topological origins, their zero modes, and how to calculate their dynamics.

We then discuss monopole-instantons and their zero modes in detail before discussing the

Kaluza-Klein (KK) monopole which appears in the theory on a cylinder. The KK monopole

is paramount to the connection between 3D and 4D theories. Next we review exact results

in N = 1 4D SUSY QCD and N = 2 3D SUSY QCD. We explicitly show that N = 2 3D

SUSY QCD deformed by the KK monopole flows to N = 1 4D SUSY QCD in the limit of a

large compact dimension. These sections provide the necessary background for Chapters 2

and 3. In Chapter 2, we study the conditions for KK monopole fundamental zero modes by

constructing the solutions. As a result, we find an elegant, dynamical explanation for the KK

monopole to decouple under the real mass deformations discussed in [4] and illustrate how

the appearance of these zero modes explain the 3D origins of the ADS superpotential of a 4D

SUSY SU(2)× SU(2) gauge theory with bifundamental matter. In Chapter 3, we calculate

chiral, squark correlation functions in monopole backgrounds. Their non-zero value implies

the existence of quantum deformations of the moduli space which can be implemented by a

constraint with a Lagrange multiplier in the superpotential. The quantum constraint ensures

that the superpotentails generated in different sub-wedges of the moduli space agree despite

being classically disjoint regions. Moreover, the quantum constraint is necessary for the

theory to properly flow to theories with less flavors under large mass deformations.
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After introducing monopoles and their role as instantons in SUSY gauge theories, we discuss

electromagnetism with magnetic monopoles by beginning with the Dirac monopole. We

emphasize that although the dynamics of the theory is difficult to calculate, the theory

remains consistent with the laws of quantum mechanics and relativity. The problem of

calculating is revisted in Chapter 4 using the language of scattering amplitudes. We find that

theories with mutually non-local electric and magnetic charges require new representations of

the Lorentz group which were not previously considered. With these new representations, we

construct spinor-helicity variables and derive selection rules for the scattering processes from

their little group properties. Additionally, we perform a relativistic calculation of fermion-

monopole scattering and find results which agree with previous non-relativistc calculations.

We end this chapter by discussing thermal freeze out. This section on thermal freeze out

focuses on its prospects as a mechanism to produce the observed dark matter relic abundance.

Although the model works for a variety of masses and coupling strengths, the weak-scale

couplings are of particular interest. Dark matter with these couplings is often referred as a

weakly interacting massive particle (WIMP) and the coincidence between dark matter and

the weak scale is often called the “WIMP miracle.” Despite being compelling, WIMP-like

dark matter produced by thermal freeze out is in tension with direct detection experiments

and its prospects seem dim. In Chapter 5, we explore a dark matter model where thermal

freeze out occurs during a period of early QCD confinement. We find that, in the context of

a non-standard cosmology, the WIMPs can evade current direction detection bounds while

explaining the entire dark matter abundance, maintaining the “WIMP miracle.”

We conclude this dissertation in Chapter 6 with final remarks on the work presented in

Chapters 2 to 5.
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1.1 Instantons and Monopole-Instantons

QFTs are defined on a given manifold M, and instantons, as we shall see, are deeply con-

nected with the topology of the given manifold. We will need to deal with them for each

manifold on which we wish to study QFT. In this section, we will develop the theory of

instantons on R4 (4D), R3 (3D), and R3×S1 (cylinder) each with a Euclidean metric. While

the 4D scenario most closely resembles models for fundmental physics, the motivation for

studying 3D theories and theories on a cylinder is less direct. 3D QFTs can model electrons

in metals which may be effectively constrained to two spatial dimensions, while QFT on a

cylinder corresponds to thermal systems where the size of the compact direction S1 corre-

sponds with the inverse temperature of the system. From a purely theoretical point of view,

3D QFTs are more tractable than 4D QFTs, and the cylinder serves as an interpolating the-

ory where large compact dimensions behave 4D-like and small compact dimensions behave

3D-like. Although there is no proof of such a correspondence between these theories, all

known examples follow this schematic, and presenting examples is a key point of this work.

In this section, we will begin by discussing 4D instantons, developing the philosophy be-

hind their existence and how to calculate their effects. Next, we investigate 3D instantons

which require symmetry breaking. These instantons correspond with ’t Hooft-Polyakov mag-

netic monopoles in 4D, and thus we often refer to them as monopole-instantons or simply

monopoles. Finally, we establish the role of the compact dimension on the instantons of

R3 × S1. The R3 factor reproduces the monopole-instantons in the pure 3D theory, while

the S1 allows novel configurations called the KK monopoles. Importantly, the KK monopole

along with the fundamental monopole-instantons form a caloron which can be identified with

the 4D instanton when the compact dimension is large.
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1.1.1 Instantons on M = R4 (4D Instantons)

Instantons were first discovered in [10]. In an illuminating paper [102], ‘t Hooft calculated

their quantum effects. Since then, many more calculations and reviews been published adding

detail and insight into instanton calculus. We find [25, 28, 42, 96, 109] to be particularly

insightful.

We begin by considering the path integral for the parition function of 4D Yang Mills (YM)

with gauge group G coupled to Weyl fermions ψ and scalars φ

Z =

∫
DAµDφDψ̄Dψe

−S[Aµ,φ,ψ̄,ψ] . (1.1)

This expression can be interpreted as the “sum over all field configurations with finite action

weighted by their probability amplitude” where “their probability amplitude” is given by

exp(−S[Aµ, φ, ψ̄, ψ]). The action for pure YM is

SYM[Aµ] =

∫
d4x

[
− 1

2g2
Tr(F µνFµν) +

iθ

16π2
Tr(F µνF̃µν)

]
(1.2)

where F µν = [Dµ,Dν ] is the field strength tensor, and F̃µν = 1
2
εµνρσF

ρσ is the dual field

strength tensor. The requirement that the action be finite is equivalent to the condition that

the field strength must vanish sufficiently quickly at infinity

lim
x→∞

Fµν(x) = 0 . (1.3)

This implies that the gauge field becomes pure gauge at infinity

lim
x→∞

Aµ(x) = iU−1(x)∂µU(x) , (1.4)

where U(x) ∈ G is a gauge transformation. Fundamentally U(x) is a map from spacetime to
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the gauge group. Restricting ourselves to the condition at infinity, the domain of the map

becomes S3 such that

U : S3 → G , U : x 7→ U(x) . (1.5)

If we consider the set of all possible maps, they fall into classes based on their homotopy

group π3(G). Thus, there are |π3(G)| distinct classes of field configurations which satisfy

our finite action condition. By nature of homotopy, one cannot continuous deform between

maps which are characterized by different elements of π3(G). It follows that the path integral

written in Equation (1.1) decomposes into a sum over these different classes

Z =
∑

k∈π3(G)

Zk, Zk =

∫
DA[k]

µ DφDψ̄Dψe
−S[A

[k]
µ ,φ,ψ̄,ψ] . (1.6)

Due to a correspondence with the θ-vacuum, we interpret this sum as the effect of tunneling

between the different vacua of the theory. It is often said that the instanton is the effect of

tunneling between topological distinct vacua. The above decomposition of the path integral

is the justification for this statement.

Now we turn to the question of calculating the partition function in the different k-instanton

sectors of the theory with gauge group G = SU(N) where π3(SU(N)) = Z. The path

integral is computed by considering the classical, minimum action field configuration and

then summing over the perturbative modes of the classical solution. Thus we need to find

both the minimum action in the k-instanton sector and the field configuration to which this

corresponds. To determine the minimum action, we turn to the so-called Bogomolny bound

6



[15] which is easily derived by rewriting the action as

S[A[k]
µ ] =

∫
d4x

[
− 1

4g2
Tr
(

(Fµν ∓ F̃µν)2
)

+

(
iθ

16π2
∓ 1

2g2

)
Tr(FµνF̃

µν)

]
(1.7)

≥
∫
d4x

(
iθ

8π
∓ 1

2g2

)
Tr(FµνF̃

µν) =

(
∓8π2

g2
+ iθ

)
k (1.8)

where the bound is saturated if the field strength is self-dual or anti-self-dual (Fµν = ±F̃µν),

and we used that the integral over the Pontyragin square is given by

∫
d4xTr(FµνF̃

µν) = 16π2k . (1.9)

One can easily verify that the minimum action is then given by k > 0 for self-dual con-

figurations and k < 0 for anti-self-dual configurations. Therefore the k-instanton partition

function is given by

Zk =

∫
DAqu.

µ e
− 8π2

g2
|k|+iθk

e−S[Aqu.
µ ] (1.10)

where we expanded the gauge field around its classical value by Aµ = Acl.
µ + Aqu.

µ . Acl.
µ

is the k-instanton solution which we will discuss in a moment. We are interested in the

leading order corrections to the path integral due to instantons. Due to the exp(−8π2

g2
) factor

from the classical action, its effects are dominated by single instanton configurations at weak

coupling. Thus we will only discuss the k = ±1 effects from here on. The general k instanton

solution can be constructed via the ADHM construction [8].

We now cite the instanton solution for k = 1 and G = SU(2)

Acl.[k=1]
µ = ∂ν log[(x− z)2 + ρ2]σνµ (1.11)

up to local gauge transformations.1 For k = −1, simply replace σνµ with σ̄νµ. z is a 4-vector

1By local gauge transformations, we mean those which are in the trivial class of π3(SU(2)).
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which is interpreted as the location of the center of the instanton, and ρ is a real number

which is interpreted as the size of the instanton. Note that the value of z and ρ do not change

the classical action of the configuration. For general G = SU(N), one simply embeds the

above solution into an SU(2) subgroup of SU(N). The choice of SU(2) subgroup is irrelevant

since any choice is gauge equivalent to any other choice.

We are now ready to study the measure DAqu.
µ . It describes all possible modes for the

quantum fluctuations around the classical, instanton vacuum. Some of these modes incur

no additional action called zero modes. For the SU(2) instanton, there are a total of 8

bosonic zero modes originating from the location of the instanton, the size of the instanton,

and three spatial rotations.2 For general SU(N), there are a total of 4N total bosonic zero

modes. The additional zero modes originate from the components of the SU(N) gauge field

which transform as doublets under the SU(2) subgroup of the instanton. Simple counting

gives 4(N − 2) doublet components which when added to the 8 SU(2) zero modes gives 4N .

The fermions charged under the gauge group also have zero modes in the instanton back-

ground. The precise number of zero eigenvalues depends on the representations underwhich

the fermions transform and can be determined by various index theorems. Fermions which

transform under the fundamental (or anti-fundamental) representation have a single zero

mode in the instanton background, while fermions which transform under the adjoint repre-

sentation have 2N zero modes in the instanton background. To see the importance of these

zero modes, we will decompose the fermion fields in the eigenmodes of −i /D

−i /Dψ(x) =
∑
i

λiψi(x)ci (1.12)

where λi is the eigenvalue of the mode, ψi(x) is the eigenmode, and ci is a Grassman number.

2Due to the σµν , the instanton only transforms under SU(2)L subgroup of SO(4), thus there are only
three independent rotations.
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In the path integral, this becomes

∫ ∏
i

dcidc̄ie
∑
j λj c̄jcj =

∫ ∏
i

dcidc̄i
∏
j

λjψ̄jψj c̄jcj (1.13)

If λj 6= 0 for all j, then the Grassman numbers are simply absorbed by the Grassman measure

and the integral simplifies to
∏

j λj = det(iD). However, whenever λj = 0, those Grassman

measures and not absorbed, and the integral goes to zero. Thus, whenever the instanton

carries fermionic zero modes, the instanton partition function vanishes. However, this does

not mean that the instanton cannot impart dynamics on the field theory. Recall that, in the

path integral formulation of QFT, the expectation value of an operator O is calculated as

〈O〉 =
1

Z

∫
[Dφ]Oe−S[φ] (1.14)

thus those fermionic zero modes which kill the instanton contributions to vacuum expectation

values can be absorbed from the operator O. Therefore, in theories with fermions, instantons

can only contribute to correlation functions with a fermion operator for each fermionic zero

mode. This can be interpreted as generating an effective operator, known as the ‘t Hooft

operator, in an effective field theory where the instantons have been ‘integrated out.’ The

coefficient of this effective operator can be determined by completing the calculation we have

been outlining.

Additionally, the fermion zero modes are exclusive to left-handed (right-handed) Weyl fermions

for instantons (anti-instantons), so the instanton only generates operators containing left-

handed fermions. These correlation functions are always guaranteed to violate a U(1) sym-

metry of the classical vacuum and therefore vanish if we only considered the k = 0 in-

stanton sector. The charge of the operators which violate this U(1) always corresponds to

the anomaly coefficient of said U(1). From this perspective, it is clear what the instanton

calculation does for us as field theorists. It computes the effects of anomalies in the field
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theory.

Let us finish this section by completing the calculation we have been outlining. The non-zero

anomalous correlation function is

〈
∏
i

ψ(xi)〉 =
1

Z [k=0]

∫ (∏
i

Dψ∅i

)(
4N∏
i=1

DA∅µ,i

)∏
i

ψ(xi)e
− 8π2

g2
+iθ

× (detMA)−1/2(detMψ)(detMgh.)(detMφ)−1 , (1.15)

where detMA, detMgh., detMψ, detMφ are the factors which arise from the integral over the

Gaussian modes.3 Recall that some of the operators have zero modes, in these cases, it is

implied that the det is taken without said zero modes. This can be made concrete by defining

the determinant as

det(∆) = lim
µ→0

det(∆ + µ)

µI(∆)
(1.16)

where I(∆) is the number of zero eigenvalues. At zeroth order in the gauge coupling, Z [k=0] is

simply the same expression without the zero modes, instanton weight, and the determinants

evaluated with Acl.
µ = 0

Z [k=0] = (detM
(0)
A )−1/2(detM

(0)
ψ )(detM

(0)
gh.)(detM

(0)
φ )−1 (1.17)

where the (0) indicates Acl.
µ = 0. The correlation function simplies to

〈
∏
i

ψ(xi)〉 =

∫ ( 4N∏
i=1

DA∅µ,i

)∏
i

ψ∅(xi)e
− 8π2

g2
+iθ

×

(
detMA

detM
(0)
A

)−1/2(
detMψ

detM
(0)
ψ

)(
detMφ

detM
(0)
φ

)−1(
detMgh.

detM
(0)
gh.

)
(1.18)

3The non-Gaussian terms are proportional to the gauge coupling and result in higher order corrections.
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The bosonic zero integral can be converted to a collective coordinate integral

∫ ( 4N∏
i=1

DA∅µ,i

)
=

∫
d4zdρρ4N−5 24N+5π4N−2

(N − 1)!(N − 2)!
(1.19)

such that the correlation function becomes

〈
∏
i

ψ(xi)〉 =
24N+5π4N−2

(N − 1)!(N − 2)!

∫
d4zdρρ4N−5

∏
i

ψ∅(xi)e
− 8π2

g2
+iθ

×

(
detMA

detM
(0)
A

)−1/2(
detMψ

detM
(0)
ψ

)(
detMφ

detM
(0)
φ

)−1(
detMgh.

detM
(0)
gh.

)
(1.20)

where the determinants and zero mode function secretly depend on ρ.

The intent of this subsection was to motivate and introduce instanton calculations by example

using R4 instantons. In the following subsection, we will investigate and discuss instantons

on R3 and R3 × S1, using this subsection as a backbone.

1.1.2 Instantons on M = R3 (3D Monopole-Instantons)

In this section, we will introduce the fundamental or BPS monopole-instantons of QFTs on

R3 using the previous section as a backbone.

If we follow the beginning arguments for the sum over instanton sectors of YM on R4 and

repeat them for YM on R3, we will arrive at the homotopy groups π2(G). It turns out

that π2(G) is trivial for all semi-simple Lie groups, thus pure YM theories in R3 do not

have instantons. However, if we consider YM theories which undergo spontaneous symmetry

breaking via a scalar vacuum expectation value (VEV)

G
〈φ〉6=0−−−→ H (1.21)
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then the finite action field configurations are defined by the asymptotic behavior

lim
x→∞

φ(x) = U〈φ〉 (1.22)

lim
x→∞

Aµ(x) = iU−1∂µU . (1.23)

Here U is a gauge transformation which changes the asymptotic behavior of φ if U ∈ G/H.

Therefore the asymptotic behavior of φ is given by the map

U : S2 → G/H , U : x 7→ U(x) (1.24)

which falls into classes π2(G/H) ' π1(H) which is nontrivial for generic H.

Let us consider the situation where G = SU(2) and φ transforms in the adjoint representation

of SU(2) such that 〈φ〉 6= 0 triggers the breaking pattern

SU(2)
〈φ〉6=0−−−→ U(1) . (1.25)

In this scenario, π2(SU(2)/U(1)) ' π1(U(1)) ' Z and the partition function will be a sum

over k sectors similar to the story for 4D instantons. The minimum action can be found

again from the Bogomolny bound [15]

S =

∫
d3x

[
− 1

2g2
Tr(FµνF

µν) +
1

g2
Tr(DµφDµφ)

]
(1.26)

=

∫
d3x

[
− 1

g2
Tr(BµB

µ) +
1

g2
Tr(DµφDµφ)

]
(1.27)

=

∫
d3x

[
Tr (Bµ ∓Dµφ)2 ± 1

g2
Tr(BµDµφ)

]
(1.28)

≥ ±
∫
S2

d2yµ
2

g2
Tr(Bµφ) (1.29)

where we defined Bµ = 1
2
εµνρF

νρ and the bound is saturated for Bµ = ±Dµφ. For k = 1, we
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can choose the asymptotic behavior of φ to be

lim
x→∞

φ(x) = vna
σa

2
(1.30)

where the idea is that the group vector σa points in the direction of the unit vector. This

particular expression is for the hedgehog gauge and cannot be continuously deformed to the

trivial vacuum due to the hairy ball theorem. It follows that the action is bounded by

S ≥ ±
∫
S2

d2yµ
v

g2
Bµ,a(x)na (1.31)

where we expanded Bµ = Bµ,aσa. The bounding 2-sphere S2 originates from Gauss’s law

and bounds R3. It follows that this integral is performed at r →∞, thus it only survives if

lim
x→∞

Bµ,a(x) =
nµna

r2
. (1.32)

Therefore the minimum action is

Scl. =
4πv

g2
. (1.33)

Note that this action corresponds to a field configuration of a magnetic charge. For this

reason, the instanton in this model is called a monopole-instanton and we shall refer to it as

a monopole. The monopole field configuration can be solved from the asymptotic behavior

of Equations (1.30) and (1.32) alongside Bµ = ±Dµφ from the Bogomolny bound. The field

configuration in hedgehog gauge is

φ(x) = vH(vr)na
σa

2
, Aµ(x) = εµab

F (vr)

r
na
σb

2
, (1.34)

H(vr) =
cosh(vr)

sinh(vr)
− 1

vr
, F (vr) = 1− vr

sinh vr
. (1.35)

where r = |x − z| is the distance from the center of the monopole z. Similarly to the R4
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instanton, the action is independent of, z and z makes up 3 bosonic zero modes. There is

one additional zero mode associated to U(1) rotations around the Dirac string.4 Altogether

there are 4 bosonic zero modes.

Monopole-instantons can also carry fermionic zero modes. An SU(2) monopole carries a

single zero mode for each fundamental or anti fundamental fermion so long as their real

mass satisfies |mR| < v/2 and 2 zero modes for each adjoint fermion.

The generalization to SU(N) is fairly straightforward. A non-degenerate 〈φ〉 induces breaking

SU(N)
〈φ〉6=0−−−→ U(1)N−1 . (1.36)

It follows from the homotopy group π2(SU(N)/U(1)N−1) = ZN−1 that there are N −1 kinds

of monopole-instantons. This is because there are N − 1 different U(1) subgroups of SU(N)

in which we can embed the SU(2) monopole solution discussed above. Unlike in the case of

the R4 instanton, these embeddings are distinct because the vacuum is only invariant under

U(1)N−1 rather than the full SU(N).

The action of the monopoles depends on the VEV of φ. Without loss of generality, consider

〈φ〉 = diag(v1, v2, . . . , vN) with v1 > v2 > . . . > vN . All other possible 〈φ〉 are gauge

equivalent. The action of each monopole is then given by

Scl.,i =
4π

g2

vi − vi+1

2
, 1 ≤ i ≤ N − 1 . (1.37)

The fermionic zero mode conditions follow from those for the embeded SU(2) monopole if

we consider it in the background of the full adjoint VEV 〈φ〉. Decomposing the adjoint VEV

4The Dirac string appears as a singularity along the z-axis in the gauge where limx→∞ φ(x) = vσ3/2
asymptotically.
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for the n-th monopole, we have

〈φ〉 =
vn − vn+1

4
diag(0, . . . , 1,−1, . . . , 0)

+
vn + vn+1

4
diag(0, . . . , 1, 1, . . . , 0)

+
1

2
diag(v1, . . . , vn−1, 0, 0, vn+1, . . . , vN) .

(1.38)

The n, n + 1 components of a fundamental fermion form a doublet of the n-th monopole.

Those doublet components have a real mass of mR = mR + (vn + vn+1)/4. The condition for

the fundamental fermion to have a zero mode in the n-th monopole is

|mR +
vn + vn+1

4
| < vn − vn+1

4
,

→ vn
2
> mR >

vn+1

2
.

(1.39)

Due to the ordering v1 > . . . > vN , this is only true for one of the monopoles. In particular,

when mR = 0, only the monopole associated to the smallest positive eigenvalue carries

fundamental zero modes. Adjoint fermions decompose as a triplet and N − 2 doublets of

the monopole SU(2). The triplet always has two zero modes, while the doublets have zero

modes if

|vn + vn+1

4
+
vi
2
| < vn − vn+1

4
, i 6= n, n+ 1 (1.40)

→ vn > vi > vn+1 (1.41)

which is impossible. Therefore each monopole carries two triplet zero modes for each adjoint

fermion.
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1.1.3 Instantons on M = R3 × S1 (Kaluza-Klein Monopoles)

The difference between R3 and R3×S1 is the ability for fields to wrap the compact dimension.

For concreteness, let the compact dimension have coordinate x4 and size 2πR. Then the fields

on R3 × S1 decompose as

φ(x) =
∑
n

ein
x4
R φn(x) . (1.42)

The components φn are called the KK tower. If we integrate out the compact dimension,

the effective theory on R3 is described by the three dimensional KK tower states each with

mass

m2
n =

n2

R2
. (1.43)

For small radii, the extra states are very heavy and will not contribute to physics at long

distances. In this sense, the theory on R3 × S1 deforms into the R3 theory in the limit of a

small compact dimension with the identifications

φ3(x) =
√

2πRφ4(x) . (1.44)

g2
3 =

g2
4

2πR
. (1.45)

Of course, this can only be exact if the tower of states is the only difference between the

partition functions. While this is certainly true for the trivial vacuum, it may not be true

for any instanton sectors of the theory.

As per usual, we need to consider the conditions for finite action to explore the instanton

sectors of the theory. The conditions for finite action on the R3 factor of spacetime do not

change with the existence of the S1. Therefore the same monopole-instantons of R3 are

present on M = R3 × S1 as well. There is one additional instanton which comes about by
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wrapping the monopole-instantons of R3 around the circle. This instanton is known as the

KK monopole-instanton or the KK monopole for short.

For an SU(2) theory, the KK monopole can be generated by performing the gauge transfor-

mation

U(x) = exp
(
−i

x4

2R
σ3

)
(1.46)

which is aperiodic over the compact dimension, but the gauge fields remain single-valued.

The action of the configuration is given by

Scl.,KK =
4π

g2

(
1

R
− v
)

(1.47)

where v is the asymptotic VEV of the adjoint scalar field.5

For general SU(N), the KK monopole is associated to the negative root of the root sys-

tem or, in our convention, the diag(−1, . . . , 1) generator of the SU(N). The action of the

configuration is

Scl.,KK =
4π

g2
3

(
1

R
− v1 − vN

2

)
. (1.48)

Note that v1−vN
2

=
∑N−1

n=1
vn−vn+1

2
such that

e−Scl.,KK = exp

(
4π

g2
3R

)N−1∏
n=1

eScl.,n (1.49)

Thus the minimum action in the instanton sector with one KK monopole and each of the

5The adjoint scalar field could be the fourth component of the gauge field A4 in which case the symmetry
breaking is called Wilson loop breaking.
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N − 1 R3 monopoles is

Scl. =
4π

g2
3R

=
8π2

g2
4

(1.50)

which is precisely the action of an R4 instanton. The above multi-monopole-instanton con-

figuration is known as the caloron and, in the limit of large compact dimension and small

distances between the monopole-instantons, becomes the R4 instanton configuration. This

correspondence goes further than the action and asymptotics of the fields; the caloron and

the instanton have the same number of zero modes as well. Each monopole has 4 bosonic

zero modes, totaling 4N bosonic zero modes, the same as for an R4 instanton. Similarly,

each monopole has 2 adjoint fermion zero modes, totaling 2N adjoint fermion zero modes,

the same as for an R4 instanton; and since only a single monopoles carries the fundamental

zero modes, the number of fundamental zero modes matches between the caloron and R4

instanton as well.

In later chapters, we will revisit the correspondence between the caloron and R4 instanton

in supersymmetric theories. In QCD- like theories, we find that the dynamics of an R4

instanton are reproduced from the R3 monopole-instanton when includes the effects of the

KK monopole and takes the limit of large compact dimension. In many cases, one can

explicitly derive nonperturbative dynamics in R4 which can only be calculated directly via

this correspondence.

1.2 Exact Results in Supersymmetry

In this section, we review various exact results in SUSY. The fact that these results are exact

is miraculous, since, even 30 years later, we are still not close to making similar statements

about the non-supersymmetric variants of these theories. The key difference between the
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supersymmetric and non-supersymmetric theories is the restriction of holomorphy which

supersymmetric theories must obey.

To be more precise, any 4D N = 1 SUSY Lagrangian can be written as a sum of three terms

LSUSY =

∫
d2θd2θ̄K +

∫
d2θW +

∫
d2θ̄W † (1.51)

where K is the Kähler potential and W is the superpotential. While the Kähler potential is

a function of all the fields in the theory, the superpotential is only a function of the chiral

superfields Φ and not the anti-chiral superfields Φ†. In other words, W is a holomorphic

function of Φ. This significantly reduces the terms which are allowed in W and implies

certain perturbative non-renormalization theorems for the couplings in W [93]. Terms in the

superpotential can only be generated upon integrating out degrees of freedom or appear as

a result of instanton corrections. Moreover, the superspace dependence of chiral superfields

Φ(θ) = φ+ θψ + θ2F (1.52)

means that the superspace integral over W introduce terms in the Lagrangian with at most

two left-handed Weyl fermions.6 Therefore non-zero correlation functions between operators

containing two left-handed Weyl fermions imply the existence of a superpotential. This

presents a rather easy analysis of the role of instantons in SUSY QFTs. If the ‘t Hooft

effective operator can be closed to a two-point fermion correlation function, it generates a

superpotential where perturbative corrections are controlled and the instanton calculation

remains valid at all strong coupling. Otherwise, the ‘t Hooft effective operator appears in

the Kähler potential, and we have no control over the calculation.

Let us explore some relevant examples of instanton induced dynamics of various SUSY

6The equivalent term for the conjugate, right-handed Weyl fermions comes from the integral over W †.
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theories. We begin by describing supersymmetric quantum chromodynamics (SQCD). The

symmetries of the theory are given in Equation (1.53). The theory has an SU(N) gauge

group with F chiral superfields Q in the fundamental representation and F chiral superfields

Q̄ in the anti-fundamental representation. The fermionic superpartner of the gauge bosons is

called the gaugion, the fermionic components of the chiral superfields are called the quarks,

and the scalar components of the chiral superfields are called the squarks. We will refer

to this theory as SU(N) SQCD with F flavors. At the classical level, the theory has no

superpotential.

SU(N) U(1)R U(1)B U(1)A SU(F )L SU(F )R

Q 0 1 1 1

Q̄ 0 −1 1 1

(1.53)

The squarks of the theory may acquire VEVs which would break the gauge group and make

some subset of the fields heavy. SUSY ensures a positive-definite vacuum energy, and SUSY

is non broken if and only if the vacuum energy is zero. The set of VEVs which are compatible

with SUSY is called the moduli space. The classical moduli space is derived from the so-

called D-flatness conditions which arise from requiring that the auxillary D fields of the

gauge multiplet vanish. In the case of SQCD, the D-flatness conditions are most easily

stated for the gauge invariant composites. If F < N , the only gauge invariant composite is

the meson Mīj = Q̄n
īQnj. The D-flatness condition is

〈Mīj〉 = q2
i δīj . (1.54)

For F ≥ N , the gauge invariant composites are the mesons (as previously given) and the
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baryons and anti-baryons

Bi1,...,iN = εn1,...,nNQn1,i1 . . . QnN ,iN , (1.55)

B̄ ī1,...,̄iN = εn1,...,nN Q̄
n1

ī1
. . . Q̄nN

īN
. (1.56)

The moduli space is described by the VEVs

〈Mīj〉 = q̄iqiδīj i ≤ N (1.57)

〈Mīj〉 = 0δīj i ≥ N (1.58)

〈Bi1,...,iN 〉 = q1 . . . qN , (1.59)

〈B̄ ī1,...,̄iN 〉 = q̄1 . . . q̄N . (1.60)

The maximal rank of M is N , and the composites obey the classical relation

Bi1,...,iN B̄ ī1,...,̄iN = Mī1[i1 . . .MīN iN ] (1.61)

where the [ ] on the meson indices indicate antisymmetrization over the SU(F )L indices. By

symmetry, the SU(F )R indices are also antisymmetrized.

Let us consider the theory with F = N − 1 flavors. In this case, the SU(N) instanton

carries 2N + 2F fermion zero modes from the gaugino and quarks respectively. It would

appear that the instanton has too many zero modes to contribute to the superpotential.

However, there are Yukawa-like SUSY gauge couplings between the gaugino, squark, and

quark which can be used to close the gaugino and quark zero modes in pairs in exchange

for a squark. Pairing all of the quark zero mode legs, there are two gaugino legs leftover,

and a non-zero correlation function will generate a superpotential. In principle, one could

calculate the 2(N − 1) squark, 2 gaugino correlation function described above. However,

it is simpler to calculate the correlation function at a generic point in the moduli space
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where all the squarks acquire VEVs. Then the squark legs end at VEV insertions and one

simply calculates the gaugino-gaugino correlation function. The value can be calculated and

interpetted as a dynamically generated superpotential

W
(F=N−1)
ADS =

Λ2N+1

detM
(1.62)

where Λb = exp(−8π2

g2
+ iθ).

From here one can deform the theory by giving quarks large masses. Upon integrating out

the quarks, one finds for general F < N

W
(N,F )
ADS = (N − F )

(
Λ3N−F

detM

)1/(N−F )

. (1.63)

For F ≥ N , the instanton carries too many zero modes, and the U(1)R symmetry prohibits

a superpotential term. When F > N , the theory has a dual description in terms of an

SU(F −N) gauge theory. We will not go into detail for these theories. Let us, instead, focus

on the case F = N . In this scenario, the gaugino and the quark have precisely the same

number of zero modes. Thus when we close pairs of gaugino and quark zero modes with the

squark, we arrive at a 2N -squark correlation function. A precise analysis reveals that

detM − B̄B = Λ2N . (1.64)

However classically, we had that detM = B̄B, so how is this possible? The answer is that

the quantum dynamics of the theory, i.e. the instantons in this scenario, deform the classical

relations between the moduli. The space described by (??) is called the quantum moduli

space. At first sight, this may seem insignificant, but in this scenario, it removes the point

detM = B̄ = B = 0 from the moduli space. Thus there is no SUSY vacuum where both

SU(F )L × SU(F )R and U(1)B remain unbroken.
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This completes our short overview of SQCD on R4. We will now discuss the dynamics of

SQCD on R3.

1.3 Review of 3D N = 2 SUSY gauge theories

This section is heavily based on work previously published in collaboration with Yuri Shirman

[99].

In this section, we review basic properties of 3D SUSY QCD with four supercharges (N = 2)

(see, for example, [3, 39] for a more detailed introduction). We restrict our attention to

SU(N) theories with F < N massless flavors in the fundamental representation. The 3D

action can be easily obtained by a dimensional reduction of the corresponding 4D theory:

S =

∫
d3x

[∫
d4θK(Q, Q̄, V ) +

∫
d2θW (Q, Q̄) +

1

g2

∫
d2θTr(WαW

α) + h.c.

]
. (1.65)

We use supersymmetric normalization with an explicit factor 1/g2 in front of the gauge

kinetic term. In this normalization, the vector multiplet has the same mass dimension as in

4D, since the gauge coupling g2 has mass dimension one in 3D. On the other hand, the chiral

multiplet has mass dimension 1/2. Expanding in component fields, the vector multiplet is

given by

V = −iθθ̄σ − θγiθ̄Ai + iθ̄2θλ− iθ2θ̄λ† +
1

2
θ2θ̄2D , (1.66)

where γi = {iσ2, σ1, σ3} and σ is the real scalar field in the adjoint representation, and the

chiral multiplet is given by

Q = q + ψθ + θ2F . (1.67)
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The classical moduli space of the pure N = 2 SYM SU(N)) theory is described by the

Coulomb branch parameterized by VEVs of the adjoint, 〈σ〉 = diag(v1, . . . , vN), subject

to the tracelessness condition,
∑

i vi = 0. At a generic point on the Coulomb branch,

the unbroken gauge symmetry is U(1)N−1. The theory on the Coulomb branch retains

the Weyl symmetry of SU(N) which interchanges the eigenvalues of σ. Without loss of

generality we will restrict our attention to a positive Weyl chamber7 defined by vi ≥ vi+1.

Quantum effects further divide the Weyl chamber into sub-wedges defined by the number of

positive eigenvalues. We define the kth sub-wedge by requiring there to be exactly k positive

eigenvalues (vk > 0 > vk+1). The sub-wedge boundaries lie at the points where one of the

eigenvalues of σ vanishes. We will call the boundary between the kth and (k+1)st sub-wedges

the kth boundary. When l = dim(ker(〈σ〉)) > 1, i.e. when several eigenvaues of σ vanish

simultaneously, l− 1 sub-wedges become degenerate, and the symmetry breaking pattern is

SU(N) −→ U(l)× U(1)N−l−1.

As first realized by Polyakov [85], abelian gauge theories without charged matter fields have

a dual description in terms of compact scalar fields. The compact scalar fields, γ, obey the

relation,

∂iγ =
π

g2
εijkF

jk , (1.68)

where γ has a shift symmetry from its role as a Lagrange multiplier enforcing the Bianchi

identity. In supersymmetric theories, this duality provides abelian vector superfields with a

dual description in terms of chiral superfields, Φ, with scalar components, φ = 4πσ/g2 + iγ.

The compactness of γ ensures that the low energy theory depends on chiral superfields

Y = exp(Φ) charged under the global symmetry U(1)J corresponding to the shift symmetry

of γ.

7The Weyl chamber is a wedge subspace of Rr (r = rank(G)) given by Rr/W, where W is the Weyl
group [3]. The equivalence class from modding out the Weyl symmetry can be represented by a choice of r
positive, simple roots, {αi}, such that αi · 〈σ〉 ≥ 0 or equivalently vi ≥ vi+1. Sometimes this is referred to as
the positive Weyl chamber [107].
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The duality can be easily generalized to the Coulomb branch of non-abelian gauge theories.

In the case of an SU(N) theory, the group is broken to a product of N − 1 U(1)’s and each

is dualized to a chiral superfield, obtaining a description in terms of N − 1 chiral superfields

Yi defined as

Yi = exp
[
2 Tr(φT i)

]
. (1.69)

The (T i)ab = 1
2
(δa,i − δa,i+1)δab are the generators of the corresponding non-orthogonal U(1)

subgroups of SU(N).8 After the duality transformation, the theory has no gauge symmetry.

Instead, the moduli Yi are charged under topological global symmetries U(1)Ji associated

with each abelian factor in the original gauge theory. The topological symmetry is broken

by non-perturbative dynamics and is not a symmetry of the low energy physics.

On the Coulomb branch of the 3D theory, there exist monopole solutions charged under

the corresponding U(1)Ji factors. All of the monopole and multi-monopole solutions on

the Coulomb branch can be constructed out of N − 1 fundamental monopoles. In the

positive Weyl chamber, the fundamental monopoles are the monopoles charged under one

of the U(1)Ji ’s corresponding to the abelian factor generated by T i. The action of the ith

fundamental monopole is given by

Si,cl =
4π(vi − vi+1)

g2
. (1.70)

Comparing the classical monopole action with the VEVs of the Coulomb branch moduli Yi,

we note that the monopole weights are given by9 1/Yi.

If we add F massless flavors of chiral superfields in the fundamental representation of SU(N),

8We chose to describe the low energy U(1)N−1 theory in terms of linearly independent but non-orthogonal
U(1) factors so that Yi are easily identified with fundamental monopoles of the positive Weyl chamber. One
could also give a basis independent description of the Coulomb branch moduli in terms of the positive simple
roots, {αi}, where Yi = exp(~αi · φ).

9Thus we will refer to Yi’s as monopole moduli.

25



the theory possesses mixed Higgs-Coulomb branches of the moduli space (and a pure Higgs

branch when F ≥ N−1) in addition to the Coulomb branch. The mixed branch of the moduli

space is not accessible from a generic point on the Coulomb branch – the flat directions

parameterized by squark VEVs are lifted by the D-term potential. Squark VEVs are only

classically allowed when one or more vi’s vanish.

First consider the case when only one adjoint VEV, say vk, vanishes. The unbroken gauge

symmetry is U(1)N−1. Of the 2NF chiral superfields, 2(N − 1)F of them obtain large real

masses, and the low energy effective theory is left with 2F massless chiral superfields. These

fields are charged under one linear combination of the unbroken U(1)’s, and their VEVs must

obey the D-flatness condition
∑

f

(
|qkf |2 − |qkf |2

)
= 0. By flavor symmetry transformations,

the squark VEVs can be rotated into a single flavor. Alternatively, we could parameterize

the vacua by the VEV of the meson superfield, M , which is classically defined as M = QQ̄

and has maximal rank one in this region of the moduli space. Thus the space of physically

inequivalent vacua on this branch is N − 1 dimensional and can be parameterized by N − 2

independent combinations of monopole moduli Yi and a single eigenvalue of M .

Now consider the case when several adjoint VEVs, say l ≤ F , vanish simultaneously. As

discussed above, the unbroken gauge group in this region of the Coulomb branch is U(l) ×

U(1)N−l−1. The low energy physics contains 2lF massless chiral multiplets, and D-flatness

conditions allow squark VEVS which further break the gauge group to U(1)N−l−1. The

meson matrix has rank l and once again coordinates along the Higgs direction of this mixed

branch can be parameterized by the l eigenvalues of M . As before, the space of physically

inequivalent vacua is N − 1 dimensional.

It may also be useful to approach U(1)N−l−1 low energy theory from a different direction on

the classical moduli space. If we start at the origin of the classical moduli space, the entire

F 2-dimensional Higgs branch is accessible, and one can turn on l ≤ F meson eigenvalues

breaking SU(N) to SU(N−l). At this point, a N−l−1 dimensional subspace of the Coulomb

26



branch is accessible, and the gauge symmetry is further broken to U(1)N−l−1. The space of

physically inequivalent vacua remains N − 1 dimensional. Of course, the superpotential of

low energy theory in the q � v limit should be the same as the superpotential in the q � v

limit. Considering the theory in different VEV limits can be used as a tool to both to derive

and verify our results.

The introduction of matter fields into the theory has one more important consequence: the

N − 1 fundamental monopole moduli are no longer globally defined throughout the Weyl

chamber because the quantum numbers of the moduli change as one crosses the boundary

between different sub-wedges of the Weyl chamber. To understand this change of quan-

tum numbers, we need to recall that quantum numbers of the monopole moduli depend

on fermionic zero modes that exist in the background of the corresponding fundamental

monopoles. Each fundamental monopole has two gaugino zero modes; however, only one

fundamental monopole has matter fermion zero modes in any given sub-wedge of the Weyl

chamber. For instance, in the kth sub-wedge (denoted by a superscript), Y
(k)
k has one zero

mode for each massless fundamental (or anti-fundamental) fermion, while Y
(k)
i (i 6= k) has no

matter fermion zero modes. The quantum numbers of mesons and fundamental monopoles

in the kth sub-wedge are:

U(1)R U(1)B U(1)A SU(F )L SU(F )R

Q 0 1 1 1

Q̄ 0 −1 1 1

M 0 0 2

Y
(k)
k 2(F − 1) 0 −2F 1 1

Y
(k)
i 6=k −2 0 0 1 1

(1.71)

We can see that the quantum numbers of Y
(k)
k and Y

(k)
k+1 monopoles in the kth sub-wedge are

different from Y
(k+1)
k and Y

(k+1)
k+1 in the (k + 1)st sub-wedge despite the fact that both pairs
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of coordinates correspond to the same semi-classical solutions in each sub-wedge. One can

define a two-monopole modulus which is continuous across the kth sub-wedge boundary,

Y
(k)
k,2 = Y

(k)
k Y

(k)
k+1 = Y

(k+1)
k Y

(k+1)
k+1 = Y

(k+1)
k,2 . (1.72)

The introduction of the two-monopole modulus smooths out one combination of the two

discontinous coordinates at each sub-wedge boundary. Specifically, the Y
(k)
k,2 modulus is still

discontinuous at the (k − 1)st sub-wedge boundary, but a different two-monopole modulus

Y
(k)
k−1,2 is continuous at this boundary. It is possible to define a separate two-monopole

modulus for each sub-wedge boundary that is continuous across that specific sub-wedge

boundary.

One may hope to patch together the coordinate charts for each sub-wedge in this manner,

but there are two technical issues which prevent such a construction. The first issue is the

existence of a second modulus that is discontinuous at both sub-wedge boundaries. In other

words, so far we have been able to define only one transition function for two discontinu-

ous coordinates. A single continuous two-monopole modulus does not account for the two

discontinuous monopole moduli.10 The other issue is that the two adjacent sub-wedges of

the classical Coulomb branch do not overlap, so the transition functions can not be properly

defined. As we will see, the quantum deformations of the classical moduli space solve these

issues by smoothing out the Higgs-Coulomb interface at each of the sub-wedge boundaries.

The extension of disjoint sub-wedges onto the intermediate Higgs-Coulomb branch allows

these extended sub-wedges to overlap, while implementation of the quantum deformation as

a Lagrange multiplier term in the superpotential provides the second transition function.

10One could define the global modulus Y =
∏
i Yi which is continuous across all sub-wedge boundaries as

has been done in previous studies [3, 4]. However, working only in terms of globally defined moduli does not
allow one to investigate dynamics in the interior of the moduli space.

28



1.4 Magnetic monopoles

In this seciton, we briefly review properties of theories with magnetic monopoles. We be-

gin with the Dirac construction for electromagnetism [41], then explain how it can be UV

completed as the ‘t Hooft-Polyakov monopole [101, 84]. We then turn to explaining the diffi-

culty of calculating in theories with both electric and magnetic charges. This sets up for the

discussion in Chapter 4 where we develop a new formalism for studying these interactions.

Maxwell’s equations have an apparent asymmetry between the role of the electric and mag-

netic field with is rather puzzling. A simple question which encapsulates this confusion is

“Why aren’t there magnetic charges?” One could presume that there is an issue with for-

mulating a theory with both electric and magnetic charges. Here, and in Chapter 4, we will

illustrate that this is not an issue.

A magnetic monopole is characterized by a magnetic field

~B(r) = g
r̂

r2
(1.73)

where g is the magnetic charge of the monopole. The issue is that this violates ∇ · ~B = 0,

and therefore ~B = ∇× ~A. The vector potential ~A is a necessary ingredient for quantization,

so the magnetic monopole cannot be so simple. Dirac showed that there is a vector potential

which reproduces (1.73)

~AS = −g
r

1 + cos θ

sin θ
φ̂ (1.74)

which has a singularity along the +ẑ axis. The singularity induces an infinitesimal flux of

magnetic field, called the Dirac string, which cancels the flux of magnetic field from the

charge. The presence of the Dirac string is rather unsettling; however, the Dirac string’s
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location changes under gauge transformations

~AN = ~AS −
i

e
e−2iegφ∇e2iegφ = ~AS +

2g

r sin θ
φ̂ =

g

r

1− cos θ

sin θ
φ̂ . (1.75)

Therefore the Dirac string is not physical. To discuss physics in the volume with z > 0, we

simply use ~AN , and for z < 0, we use ~AS. This construction may appear ad hoc, but it is

natural from the point of view of mathematics. In mathematics, ~A is called a section of a

principle bundle, and ~AN and ~AS are its values on local coordinate charts of the manifold.

At the overlap of these two coordinate charts which we can take to be the equator of the

monopole, these two coordinatizations of the bundle must agree up to a gauge transformation.

The gauge transformation was already given as

U = exp(2iegφ) (1.76)

which when made periodic on the equator, gives the condition

2eg = n ∈ Z . (1.77)

The condition (1.77) is often called the Dirac quantization conditon and can be arrived

at in a variety of different ways. From the above construction,11 it is apparent that n

somehow measures how ‘wound’ the gauge field is around the location of the monopole. Also

noteworthy is the relationship between the electric and magnetic charges

g =
n

2e
(1.78)

which ensures that if the electric charges are weakly-coupling (e� 1), the magnetic charges

are strongly-coupled (g � 1). And any process which depends on the electromagnetic

coupling will be a function of an order one coupling eg = n/2 without a reliable perturbative

11This construction is often called the Wu-Yang construction as it first appeared in [115, 116].
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expansion.

From the above discussion, one should be convinced that there is a sensible way to combine

electromagnetism, non-relativistic quantum mechanics, and magnetic monopoles. The ques-

tion for relativistic electromagnetism turns out to be more difficult. Attempts to construct a

fully relativistic Lagrangian make use of two vector potentials: the usual vector potential Aµ

for electromagnetism and a ‘magnetic’ vector potential Ãµ. The two potentials are required

to obey a constraint

eÃµ − gAµ = 0 (1.79)

such that only one remains dynamical. Dirac showed that a Lorentz invariant Lagrangian

with both electric and magnetic charges must be non-local [40]. Zwanziger constructed a

Lagrangian which is not Lorentz invariant due to the appearance of the Dirac string in the

Lagrangian.[118] Surprisingly, the observables in Zwanziger’s formalism are independent of

the location of the Dirac string, and although the Lagrangians appear problematic, there are

no inherent issues with the observables of the theories. In other words, although unsavory,

they are fully relativistic, quantum mechanical theories of electromagnetism with both elec-

tric and magnetic charges. Additionally, these theories still have a strong-coupling problem

due to the Dirac quantization condition (1.77). A natural question to ask is whether a the-

ory with electric and magnetic charges can arise as the low-energy limit of a weakly-coupled

QFT. The answer to this question is yes, as answered by ‘t Hooft and Polyakov where the

magnetic monopole arises as a soliton of an SU(2) gauge theory broken to U(1).

As discussed perviously in Section 1.1, an SU(2) gauge theory which is spontaneously broken

to U(1) admits an instanton field configuration on R3 which appears to carry magnetic

charge. On R4, such a field configuration still exists, but it is attached to a line in R4.

We can interpret this line as the world-line of the monopole. The derived monopole has
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magnetic charge Q = 4π
gUV

and mass M = 4πv
gUV

. Although the UV completion which arises

from embedding electromagnetism in a non-abelian gauge group is compelling, it offers little

in the realm of calculating the dynamics of the electric and magnetic charges of the low-

energy theory. In Chapter 4, we develop a formalism inspired by the amplitudes program

which can tackle the problem of electric-magnetic scattering.

1.5 Dark Matter and Cold Thermal Freeze Out

In this seciton, we briefly review cold thermal freeze out, following [70]. We consider it as

a mechanism to explain the relic abundance of dark matter observed today and discuss the

tension between the predictions from thermal freeze out and direct detection experiments.

We provide a model which eases the tension in Chapter 5.

Dark matter is an unexplained phenomena where the gravitational force appears to behave

as if there were more matter than is observed. It is estimated that dark matter makes

up roughly 20% of the energy in the universe or roughly 4 times the matter energy of the

universe. If this phenomena is explained by a particle which interacts with the Standard

Model, then it must have been in thermal equilibrium with the rest of the known particles

at some point in the early universe. Thermal freeze out details how particle species in the

early universe decoupled from the rest of the known universe and could explain the origins

of the observed dark matter abundance.

The thermal evolution of a species’ number density n obeys the Bolztmann equation in an

expanding universe

dn

dt
+ 3Hn = −〈σv〉(n2 − neq 2) (1.80)

where H = (8πρ/3MPl)
1/2 is the expansion rate of the universe, neq is the number density at
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thermal equilibrium, and 〈σv〉 is the thermally averaged annihilation cross section times the

relative velocity. The evolution of the species n is a competition of two terms, the expansion

of the universe and the interaction rate of the particles Γ ∼ 〈σv〉n. The expanding universe

wants the particle species to cool according to the expansion rate, while the interaction rate

wants the particle species to remain in thermal equilibrium with the rest of the matter. When

the universe is hot and dense, the interaction rate dominates the behavior of the equation, and

the species remains in thermal equilibrium. However, as the universe cools, the interaction

rate will drop below some threshold, and H will dominate. At this temperature, the particle

species decouples from the thermal bath, leaving a relic in the universe today. Roughly

speaking, this relic appears when H ∼ 〈σv〉n, i.e. the relic density at the time of freeze out

is

n ∼ H

〈σv〉
, (1.81)

which is a relationship between the freeze out temperature, the coupling strengths of the

species, and the mass of the species. From the freeze out temperature and mass, one can

determine how much energy there would be in the thermal relic today. Thus constructing a

relationship between the observed relic abundance of a species, the mass of the species, and

the couplings of the species. The question is therefore what predictions can we make about

the qualities of the dark matter (mass and couplings) given that the relic abundance was

produced from thermal freeze out. As will be explored later, there is a tension between the

observed dark matter density and null observations at direct detection experiments.

Instead of using the heuristic given by (1.81), we should solve (1.80) systematically to make

a concrete prediction for the relic density of the species. We begin by massaging (1.80) by

defining new parameters x = m/T and Y = n/s where m is the mass of the species and s is
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the entropy of the thermal bath. Then (1.80) becomes

dY

dx
= −〈σv〉

Hx
s(Y 2 − Y eq 2) (1.82)

where Y eq = neq/s. For a cold (non-relativistic) species, the equilibrium density is

neq = g

(
mT

2π

)3/2

e−m/T (1.83)

where m is the mass of the particle species in question and g is the number of degrees of

freedom of the species (i.e. number of spin states or flavors). For non-relativistic interactions,

〈σv〉 can be expanded

〈σv〉 = a+ b〈v2〉+O(〈v4〉) ≈ a+ 6b/x . (1.84)

The evolution in (1.80) is dominated by a 6= 0 or b for a = 0. If a = b = 0, one must expand

〈σv〉 further. Using this expansion in (1.82), the equation can be integrated to find the relic

energy density

Ωh2 ≈ 1.04× 109

MPl.

xF√
g∗

1

a+ 3b/xF
, (1.85)

where g∗ is the number of relativistic degrees of freedom at the time of freeze out and

xF = m/TF is the dimensionless freeze out temperature. The freeze out temperature is

determined from

xF = ln(c(c+ 2)

√
45

8

g

2π3

mMPl(a+ 6b/xF )

g
1/2
∗ x

1/2
F

) (1.86)

which can be solved iteratively and c is a value determined numerically. We take c = 1/2,

but the exact value of c does not change the value of xF dramatically.
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From the above relations, one can deduce what the energy density of dark matter would be

from 〈σv〉 and the mass of the particle. Direct detection experiments like XENON1T look

for interactions between matter and 〈σv〉. These experiments have yet to see any signals for

dark matter interactions. From the null observations, one can exclude certain models which

would produce the entire dark matter abundance. This was done systematically in 2008 [11].

At the time, direct detection experiments were able to rule out dark matter masses up to

∼ 200 GeV for fermionic dark matter interacting via a scalar mediator with Standard Model

matter and dark matter masses up to ∼ 1 TeV for fermionic dark matter interacting via a

vector mediator with Standard Model matter. Modern experiments push these limits higher

with more models rules out. In Chapter 5, we explore how much higher these limits are and

show how these limits can be evaded if the universe has a non-standard cosmological history

with an early QCD phase transition.
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Chapter 2

Kaluza-Klein Monopoles and Their

Zero Modes

This chapter is heavily based on work previously published in collaboration with Csaba Csàki,

Yuri Shirman, and John Terning [35].

2.1 Introduction

As discussed in Sections 1.1 and 1.2, the essential property of monopoles that largely de-

termines the structure of the induced superpotential terms is the number of fermionic zero

modes in a given monopole background. The Callias index theorem [20, 81, 87] specifies

the number of fermionic zero modes in different gauge group representations for a given

monopole background. However, for the compactified theory, there is a twisted embedding

of the monopole solution called the KK monopole. This KK monopole is obtained by per-

forming an anti-periodic gauge transformation along the compactified circle. The effects of

the KK monopole are crucial for obtaining the correct interpolation between the 4D and 3D
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theories. Thus it is essential to understand how the number of fermionic zero modes of the

KK monopole can change. The goal of this chapter is to give a simple intuitive accounting for

fermion zero modes in a KK monopole background. KK monopoles were first introduced by

Lee and Yi [76], though their contribution to the superpotential was anticipated by Seiberg

and Witten [95]. Using the Nahm construction, KK monopole configurations were found

explicitly in [75, 74, 37]. Aharony et. al [3] already contains a brief comment on the number

of fermionic zero modes. The number of fermionic zero modes was also inferred in [81, 87]

using the fact that all the independent monopoles together make up a 4D instanton in the

large radius limit [75]. The analogs of the KK monopoles for finite temperature field theo-

ries were introduced in [72], while an analysis of the zero modes of the finite temperature

version was presented in [17]. Here we give a detailed explanation of why a fermion in the

fundamental representation has a zero mode in a KK monopole background only when the

real mass m satisfies |m| > v
2
, where v is the asymptotic adjoint scalar vacuum expectation

value (VEV) of the monopole background. This is the exact opposite of the condition for the

existence of a zero mode in the ordinary monopole background: |m| < v
2
. On the other hand

the condition for the existence of an adjoint fermion (gaugino) zero mode is the same for

both the ordinary monopole and the KK monopole. The root cause for the unusual behavior

of the fundamental zero modes is the fact that the fundamental carries a single gauge index,

and hence the usual zero mode would become anti-periodic under the large gauge trans-

formation that connects the KK monopole to the ordinary monopole. The true KK zero

mode originates in a configuration that is anti-periodic around the circle before the gauge

transformation is performed. Since the adjoint carries two indices, its zero mode is periodic

in either case, so there is no difference in the conditions for gaugino zero modes. Our results

provide an intuitive explanation of KK monopole decoupling in the limit of a large real mass:

for a sufficiently large real mass the KK monopole acquires additional fundamental fermion

zero modes, and as a result the KK monopole cannot correspond to a superpotential term.

The chapter is organized as follows. First we briefly review the construction of the KK
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monopole solution, and then remind the reader of the form of the fermionic zero modes

in ordinary monopole backgrounds. Rather than relying on index theorems [20, 81, 87] we

analyze the properties of the solutions of the Dirac equation in the monopole background à la

Jackiw and Rebbi [66], while allowing for a real mass term. Next we present our main result:

the condition for the existence of fermionic zero modes in the fundamental representation

in the KK monopole background. We apply our result to explain the decoupling of the

effects of the KK monopole in N = 1 SUSY (4 supercharges) theories on R3 × S1. Finally

we show a neat example based on the SU(2) × SU(2) theory with a bifundamental where

the interplay between the fundamental fermion zero modes of the KK monopole and the

ordinary monopoles exactly reproduces the answers expected from the 4D analysis of [63].

2.2 BPS vs. KK Monopoles

The fundamental BPS monopole is nothing but the usual ’t Hooft Polyakov monopole of the

Georgi-Glashow model. For simplicity we will only consider the SU(2) case, but all results

can be readily generalized to SU(N) by the embedding of SU(2) subgroups. Since we have

the application to SUSY gauge theories in mind we will use the holomorphic normalization

of the gauge fields (where the gauge coupling g appears only in the gauge kinetic terms).

The explicit expression of the monopole background is

Aai (~x) = εija x̂
j f(r)

r
, φa(~x) = v x̂ah(r) (2.1)

where v is the asymptotic adjoint scalar VEV, r = |~x|, and (since there is no scalar potential)

the functions h, f are f(r) =
(

1− vr
sinh(vr)

)
, h(r) =

(
coth(vr) 1

vr

)
, where both f, h → 1 for

r → ∞. In the compactified Euclidean theory the scalar φ can be thought of as the fourth

component of the gauge field A4 = φ. In the following we use σi to denote the Pauli matrices.
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The construction of the KK monopole on the interval 0 ≤ x4 ≤ 2πR requires three steps [75].

First, one replaces the asymptotic adjoint VEV v with v′ = 1/R − v. Then one performs a

large gauge transformation ∼ e−i
x4
2R
σ3

, which is anti-periodic along the compact x4 dimension.

This transformation shifts the VEV by 1/R. Finally, one can restore the original VEV v by

a Weyl transform that takes v → −v. The result of the combined transformations takes the

form [75]

Aµ = U †Aµ(~x, v′)U + iU †∂µU , (2.2)

where Aµ is the gauge field (with A4 = φ) of the BPS monopole and the gauge transformation

U is given by [75]

U = Uhσ
2e−i

x4σ
3

2R U †h , (2.3)

where

Uh =
σ3 cosh v′r

2
+ ~σ · ~x sinh v′r

2√
cosh v′r + x̂3 sinh v′r

. (2.4)

In (2.3) Uh is trivial at the origin while implementing a transformation between hedgehog and

singular gauges at infinity. It is only needed to make sure that the behavior of φa at infinity

is the same for both KK and BPS monopoles. The global transformation σ2 implements

Weyl reflection. Finally, ∼ e−i
x4
2R
σ3

is the anti-periodic gauge transformation that flips the

magnetic charge of the monopole.
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2.3 Zero modes of the BPS monopole

According to the Callias index theorem a chiral fermion in the fundamental representation

has one zero mode in the background of the BPS monopole. To explicitly find this zero mode

we need to solve the Dirac equation à la Jackiw and Rebbi. We are taking the 3D theory

obtained by compactifying the theory on a circle in the timelike direction, and Wick-rotated

to Euclidean space with x4 = −ix0, A4 = −iA0. The equation is given by

(
~∇ · ~σ αβδmn + i ~A a · ~σ αβT amn − φa δαβT amn −mδαβδmn

)
ψβm = 0 , (2.5)

where m is the real mass of the fundamental, obtained from the time component of a four-

dimensional background gauge field, which weakly gauges “baryon” number (implying that

it is SU(2) color invariant, hence the additional color Kronecker delta).

We will look for solutions of the form

ψαm(~x) =

 u

d

 = σ2
αmX(x) + (x̂aσaσ2)αmY (x) . (2.6)

With this ansatz, the zero mode must satisfy the equations

Y ′ +
2− f
r

Y +
v

2
hY = mX

X ′ +
f

r
X +

v

2
hX = mY (2.7)

For m = 0 the two equations are decoupled and can be integrated. The requirement that

the solution is normalizable implies that Y = 0. The single zero mode in this case is then
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given by [66]

X(r) = Ce
−
∫ r
0

(
v
2
h(r′)+ f(r′)

r′

)
dr′

(2.8)

which is normalizable since h(r) → 1, f(r)
r
→ 0 as r → ∞. For the case with a real mass m

we need to solve the second order differential equation

(
d

dr
+

2− f
r

+
v

2
h

)(
d

dr
+
f

r
+
v

2
h

)
X = m2X . (2.9)

When X is normalizable the asymptotic behavior is X ∼ e−λr, with λ > 0. Eq. (2.9) then

implies (v
2
− λ)2 = m2. There is a positive solution for λ provided that

−v
2
< m <

v

2
(2.10)

which exactly agrees with the Callias index theorem [20, 81, 87].

2.4 Zero modes of the KK monopole

It is well-known that for a vanishing real mass, the KK-monopole does not have a normal-

izable zero mode for fermions in the fundamental representation. Next we explain why this

is so and show that for sufficiently large real masses normalizable zero modes do exist. The

essential physics insight is the fact that a fundamental fermion behaves differently under an

anti-periodic gauge transformation than an adjoint fermion due to the fact that it carries

only a single SU(2) index. A large gauge transformation on adjoints introduces a periodic

dependence on the coordinate along the compactified circle. However fields in the fundamen-

tal pick up an additional sign and thus would become anti-periodic. Thus, the expectation is

that while gaugino zero modes in the KK monopole background exist and can be obtained by
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a large gauge transformation (2.3), the fundamental fermion has no zero modes. However,

a careful examination of the properties of the anti-periodic solution suggests that a new,

twisted, zero mode of the fundamental fermion exists for sufficiently large mass. Since the

large gauge transformation introduces an additional anti-periodic phase for the fundamental

fermion, we need to look for an anti periodic solution to the Dirac equation in the BPS

monopole background, with the VEV shifted to v′ = 1
R
− v. Thus we look for an ansatz of

the form

ψ(x, x4) = e±
ix4
2R ψ(x) (2.11)

which is anti-periodic for both sign choices. For this ansatz, the ∂4 derivative shifts the

fermion mass by ±1/(2R); thus the 3-dimensional part of the Dirac equation has an effective

mass

meff = m∓ 1

2R
. (2.12)

The condition for the existence of a normalizable zero mode solution |meff| < v′

2
is translated

to |m∓ 1
2R
| < 1

2R
− v

2
, which can be satisfied provided

m >
v

2
or m < −v

2
. (2.13)

While this solution is anti-periodic and not physical in the BPS monopole background, after

the application of the large gauge transformation it becomes periodic and provides the proper

zero mode in the KK monopole background. Note that the final form of the solution will be

ψ(x, x4) =

 ein
x4
R u

ei(n+1)
x4
R d

 , (2.14)
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where n = 0 corresponds to the choice of the + sign in (2.11) and n = −1 to the - sign. It is

easy to generalize this result to the case of a fundamental representation of SU(N). In this

case there is a monopole solution for each simple root αi, where i = 1, . . . , N−1. Writing an

adjoint VEV as diag(v1, v2, . . . , vN) with
∑

i vi = 0 and vi > vi+1, the fundamental zero mode

lives on the monopole associated with αi if vi+1/2 < m < vi/2, and on the KK monopole for

m > v1/2 or m < vN/2. We note finally that the KK monopole acquires a zero mode exactly

as the zero mode disappears from the BPS monopole. This means that the total number of

zero modes in N -monopole backgrounds is independent of the real mass and always matches

the number of fermionic zero modes of the 4D instanton.

2.5 KK monopole decoupling

The physical importance of KK monopole zero modes becomes obvious if we consider1 gauge

theories with N = 1 SUSY (4 supercharges) on R3 × S1. This theory can be used to

interpolate between the 4D theory (taking the radius of the circle R → ∞) and the 3D

theory (by taking R very small). However, the R→ 0 limit is not sufficient to obtain a truly

3D theory since, as noted in [3], rather than reproducing a truly 3D SUSY gauge theory,

one arrives at the theory deformed by a tree level superpotential ηY , where Y is the KK

monopole operator parametrizing the Coulomb branch. While η vanishes in the R→ 0 limit,

the presence of such an operator is problematic for 3D duality since KK monopole operators

appear on both sides of the duality and force the duality scale to zero. The appearance of

KK monopole zero modes resolves the problem and allows for the derivation of 3D dualities.

Generically, there are several monopole operators Yi corresponding to the simple roots of

the gauge group. Semiclassically these monopole operators are given by Yi ∼ e4π(vi+1−vi)/g23 ,

where the vi’s are the adjoint VEVs (which can be promoted to chiral superfields), and g3

1Another interesting case was recently studied in [22] where KK monopoles were shown to play a role in
chiral symmetry breaking.
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is the 3D gauge coupling. Whenever there are exactly two fermionic zero modes for a BPS

monopole a superpotential term of the form 1Yi is generated. On the other hand, the action

of a KK monopole is proportional to 4π[1/R − (vi − vN)]/g2
3, thus giving a contribution

∼ e−4π/Rg23
∏

i Yi. The first factor η = e−4π/Rg23 can be thought of as the analog of the

4D instanton factor Λb
4 if one matches the 3D and 4D gauge couplings: 2πR g2

3 = g2
4. It

is conventional to define Y ≡
∏

i Yi. It is the presence of the additional ηY term upon

compactification that enforces some of the 4D properties on the 3D theory, and therefore

it is essential that one properly decouple this term in order to arrive at a true 3D theory

without deformations.

The proposal of [4] was to add a large real mass to one of the quark flavors. Naively one could

think that decoupling a single flavor would just change the ηY term of the KK monopole to

an effective η̃Ỹ of the theory with the number of quark flavors reduced by one. Aharony et

al. however argued [4] that a large real mass for a single flavor completely removes the ηY

term: an effective η̃Ỹ would necessarily depend upon the real mass of the flavor that was

decoupled, but the real mass can not appear in a holomorphic quantity and hence there can

be no η̃Ỹ in the effective superpotential. However the dynamical origin of the KK monopole

decoupling from the superpotential is not intuitively clear from this argument. Indeed, the

KK monopole itself obviously still exists even when one flavor becomes heavy. Thus it can

only decouple if the number of fermion zero modes changes. Since gaugino zero modes exist

independently of the real mass for the fundamental flavor, the decoupling would require an

appearance of new zero modes and this is precisely what we found. Once the real mass is

raised above v/2 the KK monopole no longer contributes to a chiral fermionic two-point

correlation function and thus does not generate a superpotential term. This provides a

dynamical explanation for the decoupling of the effects of the KK monopole and hence the

explanation of how the undeformed 3D theory is approached in this limit.
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2.6 SU(2)× SU(2) with a bifundamental

In this section we illustrate the importance of KK monopole zero modes by considering a

supersymmetric SU(2)× SU(2) theory with four supercharges and matter Q in the bifunda-

mental representation.2 The superpotential of this theory was found to be [63]:

W =

(
Λ

5/2
1 ± Λ

5/2
2

)2

Q2
, (2.15)

whereQ2 is a gauge invariant meson constructed out of the bifundamental. In 4D the origin of

this superpotential can be understood as follows: both SU(2) factors have the right number

of flavors to produce an instanton generated ADS superpotential term. Along the Higgs

branch parametrized by the meson VEV Q2 the gauge group is broken to a diagonal SU(2)D

and there are no charged light fields remaining. Gaugino condensation in the low-energy

gauge group contributes another ±2Λ3
D term to the superpotential. The superpotential

(2.15) arises as a combination of these three effects.

Let us now consider the dynamics of this model on R3 × S1 and then recover 4D physics

by taking R → ∞. The classical moduli space contains a Coulomb branch parametrized

by the adjoint VEVs v1, v2 as well as a Higgs branch parametrized by the squark VEV Q.

The adjoint VEVs break SU(2)1 × SU(2)2 to U(1)1 × U(1)2, while the squark VEV breaks

SU(2)1 × SU(2)2 to the diagonal subgroup SU(2)D. For concreteness we will assume that

v1 > v2 � Q. It is important to note that from the point of view of the SU(2)1 dynamics,

the v2 VEV serves as a real mass term for the SU(2)1 doublets. Similarly, the v1 VEV serves

as a real mass for the SU(2)2 doublets. We can see that the BPS monopole of SU(2)1 and

the KK monopole of SU(2)2 have two gaugino and two quark zero modes, while the KK

monopole of SU(2)1 and the BPS monopole of SU(2)2 only have two gaugino zero modes.

2A non-supersymmetric theory with similar matter content has been analyzed in [97].
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At first sight one might conclude that there is a superpotential contribution from the first

KK monopole and the second BPS monopole, but the actual dynamics is somewhat more

intricate. Since there is a squark VEV turned on, it will break the two U(1)’s to the diagonal,

U(1)1 × U(1)2 → U(1)D, and monopoles which carry the broken U(1) charge are confined.

Thus only multi-monopole configurations neutral under the broken U(1) will contribute to

the superpotential. There are four such multi-monopole configurations made out of two

confined monopoles: the first BPS and the first KK monopoles, the second BPS and the

second KK monopoles, the two BPS monopoles, and the two KK monopoles. While these

multi-monopole solutions each have several zero modes, some of them can be soaked up

using the squark VEV each eventually yielding contributions to the superpotential. Which

zero modes are lifted is determined by the pattern of U(1) breaking since the corresponding

gaugino gets a mass with a quark via the squark VEV as required by SUSY.

For example, the double monopole made of the first BPS and first KK monopoles generates

the expected ADS term in the superpotential,

W1 =
η1

Q2
. (2.16)

In fact, this two monopole configuration is equivalent [75] to a periodic instanton on R3×S1.

Similarly, the configuration made up of the second BPS and KK monopoles leads to the

instanton-generated ADS superpotential in SU(2)2 even though the distribution of fermion

zero modes between BPS and KK monopoles is different here:

W2 =
η2

Q2
. (2.17)

Finally, the configurations with the two BPS and the two KK monopoles (which act as the
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monopoles of SU(2)D) produce the superpotential

W1,2 =
1

Q2

(
η1η2Y1Y2 +

1

Y1Y2

)
. (2.18)

Solving the equations of motion for the composite monopole Y1Y2 we find that (2.18) will

contribute±2
√
η1η2
Q2 , which together with (2.16) and (2.17) results in the correct superpotential

(2.15).

2.7 Conclusions

Fermionic zero modes of monopoles largely determine the structure of the dynamical monopole-

induced effects in supersymmetric theories. We have found the condition for the existence of

fermionic zero modes in the fundamental representation in the KK monopole background,

and showed that such zero modes will be present for a sufficiently large real mass term. This

explains the previously mysterious decoupling of the effects of KK monopoles in theories

with four supercharges in the presence of a large real mass, which allows one to explore the

dynamics of a truly 3D theory. We have applied our results to the SU(2) × SU(2) model

with a bifundamental and shown that the terms attributed to gaugino condensation in 4D

originate from multi monopole terms in the 3D theory.
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Chapter 3

Deformations of the moduli space and

superpotential flows in 3D SUSY

QCD

This chapter is heavily based on work previously published in collaboration with Yuri Shirman

[99].

3.1 Introduction

In this chapter, we calculate quantum deformations of the classical moduli spaces in 3D

SUSY QCD with F < N flavors and investigate their role in the origin of the pre-ADS

superpotentials as well as their role in the flow of superpotentials in the theory space as

one adds holomorphic mass terms and decouples heavy flavors. It has long been known [3]

that the classical moduli space is deformed quantum mechanically in a 3D SU(N) theory

with F = N − 1 flavors, taking the form Y detM = g2F , where Y is a globally defined
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monopole modulus and g2 is a 3-dimensional coupling. We will derive this constraint by

following the approach of [48] and calculating the two-point holomorphic scalar correlation

function in an SU(2) theory with one flavor. In fact, the physics behind such a modification

is clearer in 3D. An SU(2) theory with 4 supercharges has a Coulomb branch along which

the gauge group is broken to U(1). On the Coulomb branch, the Higgs direction is lifted, and

the squark VEVs are not allowed. Thus, the meson VEV M = qq must vanish classically.

Nevertheless, the holomorphic two-point squark correlation function receives non vanishing

contributions in a single monopole background. Indeed, the fundamental monopole of the

SU(2) theory has two gaugino and two doublet zero modes. Thus it generates a four-fermion

vertex in the low energy effective theory. When this ’t Hooft operator is combined with

supersymmetric gauge couplings, one can construct a two loop diagram contributing to the

two-point scalar correlation function. Such a diagram is naively UV divergent, but this

divergence is cutoff by the finite size of the monopole. We perform a full calculation of

this two-point correlation function in Section 3.2. Then we generalize the result to SU(N)

theories with F = N−1 flavors and arbitrary N . In Section 3.3, we observe that the classical

moduli space is also deformed in theories with an arbitrary number of flavors, F ≤ N − 1.

When F = N − 1 the deformation is global (constraining the global moduli Y and M),

while in the case of F < N −1, the deformations exist in locally defined coordinate charts of

the moduli space. These local deformations lead to several important consequences. They

guarantee the equivalence of the Coulomb branch superpotential discussed in [3, 4] and the

multi monopole generated superpotential on the mixed Higgs-Coulomb branch of the theory

found in [33]. Furthermore, the constraints ensure that the superpotential is valid in all

coordinate charts on the moduli space. In Section 3.3.1, we present detailed analysis of the

quantum moduli space of an SU(3) model with F = 1. In Section 3.3.2, we extend our results

to all SU(N) models with F = 1. Finally, in Section 3.3.3, we generalize our discussions

to arbitrary F < N and show how the existence of such local deformations explains the

superpotential flow between theories with different numbers of flavors as mass terms are
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added. We finish with a summary of our results in Section 3.4.

3.2 F = N − 1: Quantum Deformed Moduli Space

In this section, we derive the 3D quantum constraint by calculating two-point holomorphic

squark correlation function in SU(2) theory with one flavor and generalizing the result to

SU(N) with F = N − 1 flavors. As discussed in the previous section, the classical moduli

space of the SU(2) theory has two one-dimensional branches: a Higgs branch parameterized

by a squark VEV q = q̄ (or, in a gauge invariant language, by the meson M ∼ qq) and a

Coulomb branch parameterized by the VEV of the adjoint scalar component of the gauge

multiplet. Along the Coulomb branch, the gauge symmetry is broken to U(1), and it is

convenient to describe the physics in terms of the monopole modulus Y . Classical Higgs

and Coulomb branches only intersect at the origin of the moduli space. Therefore, on

the Coulomb branch, the holomorphic squark-anti-squark correlation function must vanish

clasically. However, as we explicitly show below, this correlation function obtains a non-

vanishing contribution 〈M〉 = 〈qq̄〉 = g2/Y in the monopole background on the Coulomb

branch. The corresponding semi-classical calculation is weakly coupled and under control

for sufficiently large v. Holomorphy guarantees that this result remains valid everywhere on

the Coulomb branch, implying a well known 3D quantum constraint YM = g2.

Our calculation is similar to 4D calculations of quantum constraints in [48]. The instanton-

monopole of the SU(2) theory with 1 flavor has two gaugino and two fundamental zero

modes and contributes to chiral four fermion correlation function. This correlation function

can be converted to holomorphic two point squark correlation function by the insertion of

two supersymmetric gauge couplings. The resulting contribution can be visualized in Figure

3.1.
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Figure 3.1: Diagram illustrating the monopole contribution to squark correlation functions

In the language of the path integral, we must evaluate

〈q̄i(x)qi(x)〉 =

∫
[Dφ]qu

(
q̄i(x)qi(x)

)
e−Scl.−S[φqu] , (3.1)

where [φqu] is short-hand for all quantum field fluctuations around the monopole background.

We present the details of the calculation in the Appendix. The resulting correlation function

is

〈q̄i(x)qi(x)〉 =
v2

g4
e
− 4πv

g2 g2I , (3.2)

where I is a positive definite integral. At first sight, this is non-holomorphic, but as explained

in [44, 86], the non-holomorphic pre-factor v2/g4 can be absorbed into redefinition of the

Kähler potential. The required field redefinition leads to a finite renormalization of the gauge

coupling

1

g2
−→ 1

g2
− 2

v
. (3.3)

In terms of the rescaled modulus Y the two point scalar correlation function becomes

〈M〉 =
g2

Y
. (3.4)

The generalization to SU(N) theories with F = N − 1 flavors is reasonably straightforward.

Consider the theory on the mixed Higgs-Coulomb branch where the rank of the meson M is
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N − 2, and the low energy physics is described by an F = 1 SU(2) theory. The calculation

of the two-point holomorphic scalar correlation function is illustrated in Figure 3.2 where

crosses represent VEV insertions. As before, the coupling constant of the low energy theory

is renormalized due to the contributions of non-zero modes and is shifted by terms of the

form 1/v. The fundamental monopole of the low energy SU(2) can be written in terms of

the fundamental monopoles and mesons of the high energy theory YL =
∏

i Yi det′M/g2(F−1)

where prime denotes the determinant over N − 2 flavors with non-vanishing VEVs. The

scalar correlation function for the remaining massless flavor of the low energy SU(2) follows

from our earlier calculation and gives the quantum constraint Y detM = g2F . One could

also derive the constraint by calculating the 2(N − 1)-point scalar correlation function at a

generic point on the Coulomb branch in the background of N − 1 fundamental monopoles,

but this calculation would be difficult in practice.

The existence of quantum deformations of the classical moduli space for an arbitrary number

of flavors implies that the rank of the meson superfield is maximal (rank(M) = N − 1). We

will later see that M will have maximal rank (rank(M) = F ) for any number of flavors. This

means that, quantum mechanically, the gauge symmetry is always maximally broken and

some fundamental monopoles can not contribute to the superpotential despite the fact that,

at a generic point on a pure Coulomb branch, these monopoles have exactly the two fermion

zero modes necessary to generate two fermion correlation function and the corresponding

superpotential terms.
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Figure 3.2: Diagram illustrating the multimonopole contribution to a 2F squark correlation
function

3.3 F < N − 1: Quantum Constraints as Transition

Functions

As discussed in Section 1.3, the space of physically inequivalent classical vacua consists of

several distinct (N − 1)-dimensional branches. One might expect that the moduli space

becomes a smooth, locally connected manifold in the quantum theory. We could attempt

to describe such a manifold in terms of globally defined moduli Y and M . However, M

has maximal rank F , and there are an insufficient number of globally defined moduli (F +

1) to parameterize the entire N − 1 dimensional moduli space when F < N − 1. The

fundamental monopoles can not serve as additional coordinates on the moduli space, since

they are discontinous at sub-wedge boundaries. To resolve the problem, one would need

to introduce new composite coordinates valid in two or more sub-wedges and transition

functions between the composite coordinates that are valid on overlapping sets of sub-wedges.

For example, one could use the two-monopole modulus Y
(k)
k,2 discussed earlier. However, this

is not sufficient, because there are two discontinous coordinates at each sub-wedge boundary.

One of these coordinates can be replaced by the two-monopole modulus, but the existence of

a second discontinous coordinate will prevent us from patching together disjoint sub-wedges.

53



As we will show below, quantum effects deform the classical moduli space even in theories

with F < N − 1, but such deformations are local (i.e. they are only valid in specific sub-

wedges of the classical moduli space). Moreover, these deformations smooth out the interface

between the sub-wedges and make the mixed Higgs-Coulomb branch accessible from either

adjacent sub-wedge. These quantum deformations also provide necessary transition functions

to cover the entire quantum moduli space with overlapping coordinate charts. The quantum

deformed moduli space is further lifted by monopoles, and the exact superpotential of the

theory can be written down in terms of the appropriate coordinates in all coordinate patches.

In Section 3.3.1, we will show how this plays out in the case of an SU(3) theory with

F = 1. While the SU(3) example is illuminating, it is not sufficiently general. In this

case. there are two globally defined moduli Y = Y1Y2 and M which can describe dynamics

everywhere on the moduli space. In Section 3.3.2, we extend these results to all SU(N)

theories with F = 1. We show that once again quantum effects deform the classical moduli

space, relating monopole and meson moduli at each boundary. This deformation allows

us to cover the moduli space by a set of overlapping coordinate charts, with each patch

covering two neighboring sub-wedges. We will demonstrate that calculations of the pre-ADS

superpotential generated by single monopole contributions in any sub-wedge of the Coulomb

branch lead to the same result, and this is the same superpotential that can be found by

considering monopole and multi-monopole contributions on mixed Higgs-Coulomb branches

emanating from the boundaries between sub-wedges. In Section 3.3.3, we further generalize

the results to SU(N) models with F < N − 1 flavors. Here the quantum deformation relates

the mesons to F -monopole composite operators

Yk,F detM =

(
k+F−1∏
i=k

Y
(k)
i

)
detM = g2F . (3.5)

This local deformation allows us to introduce the (F + 1)-monopole modulus Yk,F+1 =∏k+F+1
i=k Y

(k)
i which is continuous across the intermediary boundaries Y

(k)
k,F+1 = Y

(k+1)
k,F+1 =

54



. . . = Y
(k+F )
k,F+1 . We can then cover the moduli space by a set of overlapping coordinate charts

with well defined transition functions and show that superpotentials calculated on all of the

quantum-mechanically accessible branches of the moduli space are equivalent.

3.3.1 SU(3) theory with F = 1

Consider a one flavor SU(3) model on the Coulomb branch in the positive Weyl chamber.

Classically, the Weyl chamber is split into two sub-wedges depending on the sign of v2, while

at v2 = 0, the Higgs branch is accessible. In the v2 < 0 sub-wedge, it is convenient to parame-

terize the Coulomb branch coordinate by monopole moduli Y1 and Y2 which in a semiclassical

regime are approximated by Y1 ∼ exp [4π(v1 − v2)/g2] and Y2 ∼ exp [4π(v2 − v3)/g2]. In the

v2 > 0 sub-wedge, we need to choose different Coulomb branch moduli Y ′1 and Y ′2 . As ex-

plained earlier, despite similar behavior in the semi-classical regime, the quantum numbers

of Y ′1 and Y ′2 differ from those of Y1 and Y2 respectively and do not represent the same degrees

of freedom in the quantum theory.

Consider the first sub-wedge of the Weyl chamber defined by v1 > 0 > v2 > v3. Here

the first fundamental monopole Y1 has four (two gaugino and two matter) fermion zero

modes, while the second fundamental monopole Y2 has two gaugino zero modes. Only the

second fundamental monopole contributes to the superpotential, and we find W = Y −1
2 .

In addition, we can calculate two-point scalar correlation function in Y1 background. Since

the fields of the Y1 monopole (including the fermion zero modes) can be embedded in an

SU(2) subgroup of SU(3), the calculation is nearly identical to the one we performed in the

previous section. There are two new features that must be taken into account. First, the

contributions of non-zero modes of the matter doublets are modified since, from the point of

view of Y1 monopole, the matter fermions have real mass (v1 + v2)/2. Second, the gaugino

contains components that transform as doublets in the Y1 monopole background. These
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components of the gaugino do not have zero modes, but their non-zero modes contribute to

the path integral just like matter doublets with a real mass 3(v1 + v2)/2 would. Similar to

the non-holomorphic prefactor in the SU(2) theory, these effects can be understood as finite

renormalization of the U(1) gauge coupling of the low energy theory, and we find Y1M ∼ g2.

This result can be enforced in the first sub-wedge of the Weyl chamber through a Lagrange

multiplier term in the superpotential,

W =
g4

Y2

+ λ1(Y1M − g2) . (3.6)

In the v1 > v2 > 0 > v3 sub-wedge, we similarly find

W =
g4

Y ′1
+ λ2(Y ′2M − g2) . (3.7)

To verify that these two expressions are consistent with each other we must compare them

at a jumping point where v2 = 0. Integrating out the Lagrange multiplier terms, both forms

of the superpotential lead to the same result

W =
g6

Y1Y2M
=

g6

Y ′1Y
′

2M
, (3.8)

where the composite two-monopole modulus Y = Y1Y2 = Y ′1Y
′

2 is continous across the

boundary between the two sub-wedges as explained in Section 1.3. It is tempting to interpret

the superpotential (3.8) as a two-monopole contribution to the superpotential, and indeed it

agrees with the results of the two monopole superpotential calculation on the mixed Higgs-

Coulomb branch of the theory [33]. We conclude that Y and M are valid in both coordinate

charts of the F = 1 SU(3) theory and are related to moduli of the two coordinate charts by

{Y1 = g2/M, Y2 = YM/g2} and {Y ′1 = YM/g2, Y ′2 = g2/M}.

Note that the above procedure is precisely that described at the beginning of this section.

The quantum constraints enforced by λ1 and λ2 provided a transition functions from the
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two sets of Coulomb branch coordinates to the mixed Higgs-Coulomb branch coordinates,

while the continuity of the two-monopole modulus ensures that the two Coulomb branch

coordinate charts overlap on the Higgs branch. Together, these effects guarantee agreement

between all three expressions for the superpotential.

Let us consider some standard checks of ADS and pre-ADS superpotentials. Specifically, we

can study the theory on a Higgs branch where the low energy physics is described by a pure

SYM SU(2) as well as deform the theory by a large holomorphic mass term, m, so that the

low energy description is given in terms of a pure SYM SU(3) theory. In the former case,

the low energy superpotential is given by 1/YL, and by comparing with (3.8), we conclude

that the matching of high and low energy theories requires a rescaling of chiral superfields

to absorb M into the definition of YL = Y1Y2(M/g2). Similarly to non-holomorphic rescaling

discussed in [86], this field redefinition affects the matching relation between the coupling

constants of the high and low energy theories and should reproduce the finite renormalization

of the low energy U(1) coupling constant. When the theory is deformed by a mass term, the

low energy superpotential must be

W =
g4
L

Y1L

+
g4
L

Y2L

. (3.9)

We can obtain this superpotential by starting either with (3.6) or (3.7) and adding a mass

term. For example in the v2 < 0 sub-wedge of the Weyl chamber, the superpotential is

W =
g4

Y2

+ λ1(Y1M − g2) +mM . (3.10)

Integrating out both the Lagrange multiplier and the meson superfield, we find the low

energy superpotential,

W =
g2m

Y1

+
g4

Y2

, (3.11)
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which agrees with (3.9) if we identify1 g2
L = g2, Y1L = Y1g

2/m, and Y2L = Y2. Once again,

the rescaling required to absorb the mass into the YL monopole of the low energy theory

determines the coupling constant matching and correctly reproduces the renormalization of

the U(1)1 coupling constant. We stress that the local deformation of the moduli space, imple-

mented through the Lagrange multiplier term in (3.10), plays an essential role in reproducing

the superpotential of the SYM low energy theory when the matter fields are decoupled by

taking the superpotential mass term, m, to infinity.

3.3.2 SU(N) with F = 1

The generalization to SU(N) theories with an arbitrary number of colors and one massless

flavor is straightforward. We will denote monopole moduli in the kth sub-wedge by Y
(k)
i ,

i = 1, . . . , N − 1. With the exception of Y
(k)
k , all the fundamental monopoles in this sub-

wedge have two gaugino zero modes and no matter zero modes. Thus they contribute to

the superpotential. Calculating the two point scalar correlation function, we find a local

constraint applicable to the kth sub-wedge, Y
(k)
k M = g2. Thus within this sub-wedge of the

Coulomb branch, the physics is described by the superpotential

W =
∑
i 6=k

g4

Y
(k)
i

+ λk(Y
(k)
k M − g2) . (3.12)

Although this superpotential is calculated in the kth sub-wedge, it can be extended into

the (k + 1)st (or (k − 1)st) sub-wedges by using the constraint as a transition function and

replacing Y
(k)
k+1 (or Y

(k)
k−1) by the composite two-monopole modulus that is continuous in the

appropriate regions. Let us explicitly carry this out for the (k+ 1)st sub-wedge. Integrating

1Here we neglect finite non-holomorphic shifts in the coupling discussed earlier.
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out the Lagrange multiplier, the superpotential can be written as

W =
∑

i 6=k,k+1

g4

Y
(k)
i

+
g6

Y
(k)
k Y

(k)
k+1M

. (3.13)

The last term can be interpreted as arising from the two monopole contribution considered

in [33]. In this form, the superpotential is valid both in the kth and (k + 1)st sub-wedges

due to their overlap at the mixed Higgs-Coulomb boundary. However, in the (k + 1)st sub-

wedge, the same superpotential can be written in two more forms. First, it can be written

in terms of the monopole moduli of the (k+ 1)st sub-wedge, Y
(k+1)
i , and the local constraint,

λk+1

(
Y

(k+1)
k+1 M − g2

)
, valid in this sub-wedge:

W =
∑
i 6=k+1

g4

Y
(k+1)
i

+ λk+1(Y
(k+1)
k+1 M − g2) . (3.14)

Second, it can be written in terms of the composite monopole moduli Y
(k+1)
k+1 Y

(k+1)
k+2 M/g2.

Recall that this term in the superpotential can be interpreted as a two monopole contribution

generated on the mixed Higgs-Coulomb branch accessible from the boundary between the

(k+1)st or (k+2)nd sub-wedges. This procedure can be used to recursively generate the sets

of coordinate charts and transition functions required to cover the entire quantum moduli

space of the theory and to define it as a smooth, locally connected manifold. Moreover, the

calculations on all accessible branches of the moduli space lead to the same results. It is

easy to see that, just like in the case of the SU(3) theory, the deformation of the theory by

the mass term correctly leads to the low energy physics described by a pure N = 2 SYM

SU(N) theory.
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3.3.3 SU(N) with F < N − 1

We conclude our study of the pre-ADS superpotentials and quantum deformations of the

moduli space by considering a general case of an SU(N) theory with F massless flavors.

We will consider the first sub-wedge of the Weyl chamber, v1 > 0 ≥ v2 ≥ . . . ≥ vN . By

calculating 2F scalar correlation function in the F -monopole background, one finds there

exists a local constraint given by
(∏F

i=1 Yi

)
detM = g2F .2 This is easiest to see by performing

a calculation on the mixed Higgs-Coulomb branch where the rank F − 1 meson VEV is

allowed. This is the region where vi = 0 for i = 2 . . . F − 1. In the presence of VEVs, the

multi-monopole Y
(1)

1,F =
∏F

i=1 Y
(1)
i will collapse into a single fundamental monopole of the low

energy SU(N − F + 1) theory Y1L = Y
(1)

1,F det′M/g2(F−1) where det′M denotes determinant

taken over F − 1 flavors with large VEV. As discussed earlier, the rescaling used in the

definition of Y1L shifts the coupling of the low energy theory. We can calculate the two

scalar correlation function for the remaining squark flavor in the low energy effective theory

and find

〈MFF 〉 =
g2
L

Y1L

=
g2F

Y
(1)

1,F det′M
. (3.15)

One can then write the full nonperturbative superpotential in the form,

W =
N−1∑
i=F+1

g4

Y
(1)
i

+ λ1

(
Y

(1)
1,F detM − g2F

)
. (3.16)

As expected, integrating out the Lagrange multiplier term, we find the multi-monopole

generated superpotential found in [33]

W =
N−1∑
i=F+2

g4

Y
(1)
i

+
g2F+4

Y
(1)

1,F+1 detM
, (3.17)

2Similar to the SU(N) with F = N−1 case described in Section 3.2, the constraint enforces rank(M) = F
and prohibits the superpotential of F individual fundamental monopoles.
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where Y
(1)

1,F+1 =
∏F+1

i=1 Y
(1)
i .

Alternatively, we can consider the second sub-wedge, v1 > v2 > 0 ≥ . . . ≥ vN where the rank

of M is F − 1. Here we find the superpotential

W =
1

Y
(2)

1

+
N−1∑
i=F+2

g4

Y
(2)
i

+ λ2

(
Y

(2)
2,F detM − g2F

)
. (3.18)

The valid coordinate patches for (3.16) and (3.18) overlap on the mixed Higgs-Coulomb

branch where both superpotentials are

W =
N−1∑
i=F+2

g4

Y
(1/2)
i

+
g2F+4

Y
(1/2)

1,F+1 detM
. (3.19)

With the help of the constraints, we can construct transition functions that allow us to cover

the full moduli space with coordinate charts and verify that superpotentials calculated in

any of these charts are equivalent.

Finally, we deform the theory by adding the mass term mMFF to the last flavor. Integrating

out the heavy flavor we find the superpotential of low energy SU(N) theory with F − 1

flavors

W =
N−1∑
i=F+1

g4

Y
(1)
i

+
mg2F

Y
(1)

1,F det′M
. (3.20)

This is precisely the superpotential of the F − 1 flavor theory calculated in [33]. In addition,

we need to compliment this superpotential by a new local constraint Y
(1)

1,F−1 det′M = g2(F−1).

This superpotential can then be extended to other regions of the F − 1 flavor theory moduli

space or reduced to the superpotential of the F − 2 flavor theory by adding another large

mass term.
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3.4 Conclusions

In this chapter, we explicitly calculated quantum constraint YM = g2 in the 3D SU(2) theory

with one massless flavor and showed how to generalize the calculation to an F = N − 1

theory with an arbitrary N . We also showed that a local version of such a constraint

exists in 3D SU(N) theories with an arbitrary number of flavors, F < N − 1 flavors. The

existence of local constraints allowed us to construct a set of coordinate charts that cover

the entire moduli space and show that the superpotential calculations in different charts are

equivalent. Additionally, the existence of local constraints ensures the agreement between

the superpotentials generated by fundamental monopoles on the pure Coulomb branch of an

SU(N) theory [3] with the superpotentials arising from fundamental monopoles and multi-

monopole contributions on the mixed Higgs-Coulomb branch of the theory [33]. The validity

of the superpotential throughout the entire moduli space implies that the physics is fully

described by a single Coulomb branch of the low energy pure SYM SU(N−F ) theory coupled

to dilaton-like moduli M . We also showed that constraints play an essential role in the flow of

the superpotential between theories with different numbers of flavors. When a superpotential

mass term for one flavor is added to the theory and the heavy flavor is decoupled, the local

constraint guarantees that the low energy superpotential reproduces the one expected in a

theory with F − 1 flavors. To continue the flow in flavor space as additional mass terms are

added, one must include new local constraints that are generated whenever new mass terms

are added to the superpotential. We expect that our analysis of SU(N) gauge theories by

considering deformations of the classical moduli space will be useful in understanding gauge

theories with more general gauge groups and matter content.
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Chapter 4

Scattering Amplitudes for Monopoles:

Pairwise Little Group and Pairwise

Helicity

This chapter is heavily based on work previously published in collaboration with Csaba Csáki,

Sungwoo Hong, Yuri Shirman, Ofri Telem, and John Terning [31].

4.1 Introduction

Unitary representations of the Poincaré group, classified by Wigner [113] in the 1930s, provide

the foundation of the quantum mechanical (QM) description of particle physics and quan-

tum field theory. The essential elements in Wigner’s construction are one-particle states

— representations of the Poincaré group associated with a single asymptotic particle, in an

irreducible representation of its little group (LG) [112]. While this satisfying picture pro-

vides the full classification of one-particle states, the general construction of multi-particle
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states has rarely been addressed: they are simply assumed to be direct products of one-

particle states. However, in a beautiful, under-appreciated paper in 1972 Zwanziger [119]

found that quantum states with both electric and magnetic charges transform in non-trivial

multi-particle representations of the Poincaré group. In the first part of this chapter, we

address the general construction of multi-particle states and introduce the concept of the

pairwise LG, which is necessary to fully classify the multi-particle representations of the

Poincaré group. In addition to the one-particle LGs introduced by Wigner, the pairwise LG

completes the characterization of the transformation properties of the multi-particle system

as a whole [30]. In particular, it may yield an additional phase under Lorentz transforma-

tions on top of the one-particle LG transformations, as in the first specific realization found

by Zwanziger [119]. The pairwise LG is always just a U(1), and in the most commonly

considered scattering processes the corresponding helicity q12 simply vanishes, confirming

the expectation that the asymptotic multi-particle state is simply a direct product of the

one-particle states. However, for charge-monopole scattering the pairwise U(1) helicity is

the quantized “cross product” of charges

q12 = e1g2 − e2g1 , (4.1)

where e1,2 (g1,2) are the electric (magnetic) charges of the two particles. This implies modified

transformation properties for scattering amplitudes involving both electrically and magneti-

cally charged particles. We note that three-particle and higher LGs are always trivial, and so

the general classification of multi-particle states in 4D will be given in terms of the momenta,

spins/helicities and pairwise LG helicities [30]

|p1, . . . , pn ; σ1, . . . , σn ; q12, q13, . . . , qn−1,n〉 . (4.2)

In the second half of this chapter, we use our refined understanding of the pairwise LG to
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construct scattering amplitudes of electrically and magnetically charged states. Understand-

ing the interactions of magnetically charged states has been a long standing issue in particle

physics. Dirac showed that a Lorentz invariant Lagrangian with both electric and magnetic

charges must be non-local [40], and such interactions are often referred to as being “mutually

non-local.” Alternatively, Zwanziger showed [118] that one can write a local Lagrangian, but

manifest Lorentz invariance is lost. These problems seem to be an artifact of the unphysi-

cal, gauge-variant Dirac string. For some time it was not even clear that the scattering of

electrically and magnetically charged particles makes sense. Paradoxically, Weinberg found

[111] that the amplitude for one photon exchange between an electric charge and a magnetic

monopole is not Lorentz invariant (and implicitly not gauge invariant [104]). However, re-

cently it was shown by Terning and Verhaaren [104] that an all orders resummation of soft

photons can restore both Lorentz and gauge invariance if Dirac charge quantization [41] is

satisfied. Hence it is believed that the electric-magnetic S-matrix is both local and Lorentz

invariant, but Lagrangian formulations cannot make both properties manifest at the same

time, leading, unsurprisingly, to seemingly unending difficulties in calculating scattering am-

plitudes [73, 51, 18, 34, 53, 26, 61, 103].

Thus we can see that electric-magnetic scattering is an ideal proving ground for on-shell

methods. In this chapter we indeed find that electric-magnetic scattering demonstrates a

success for the on-shell program in theories where Lagrangian methods fall short. We should

note that in our formulation we never need to introduce a Dirac string. This is in contrast

to previous attempts to apply on-shell methods to electric-magnetic scattering [21, 62, 80]

which have been only partially successful in eliminating the unphysical Dirac string, thus

suffering from a Lorentz violating sign ambiguity.

The bulk of this chapter is devoted to extending on-shell amplitude methods to calculations

of electric-magnetic S-matrix elements while maintaining manifest Lorentz invariance and

locality. Thus we see that “mutually non-local” scattering is, in fact, local aside from the
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angular momentum carried in the Coulomb fields of the particles. The key is to ensure

that the full action of the Poincaré group, including the one-particle and pairwise LGs, is

properly incorporated. We find a beautiful and simple implementation of this scheme in the

spinor-helicity framework, allowing us to go far beyond Zwanziger’s special case of pairwise

helicities equal to one. To capture the effect of the pairwise LG, we define null “pairwise”

momenta p[±ij which are linear combinations of the momenta of each electric-magnetic pair.

The pairwise momenta are then naturally expressed using pairwise spinor-helicity variables

|p[±ij 〉,
[
p[±ij
∣∣ , (4.3)

which are constructed such that under Lorentz transformations they pick up exactly the

phase dictated by the pairwise LG. Along with the standard massless and massive spinor-

helicity variables, the pairwise spinor-helicity variables serve as the fundamental building

blocks for the construction of the S-matrix for magnetic scattering1.

We utilize our newly defined pairwise spinors to construct all 3-point electric-magnetic am-

plitudes, as a direct generalization of Arkani-Hamed, Huang, and Huang [7]; our derivation

implies a non-trivial generalization of the selection rules derived in [7]. For example in the

decay of a massive spin s to two massless particles, we get the selection rule |∆h − q| ≤ s,

which reduces to the standard |∆h| ≤ s in the non-magnetic case with q = 0. Another non-

trivial selection rule we derive is for the decay of a massive spin s1 into two massive particles

with spins s2 and s3. In this case we get s1 +s2 +s3 ≥ |q23|, indicating, as a special case, that

a scalar dyon cannot decay into two other scalar dyons with q23 6= 0. Armed with our general

classification of 3-point magnetic amplitudes, we move on to address the 2→ 2 scattering of

a fermion and a monopole, making use of the fully relativistic partial wave decomposition,

adapted to the magnetic case. Using minimal dynamical information about the phase shifts

1Note that we will use the term magnetic scattering or magnetic S-matrix to emphasize that there is at
least one magnetically charged object among the scattered states, but our discussion is fully general and
applicable to generic multi-dyon scattering.
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of the higher partial wave amplitudes, we are able to fully reproduce the results of the non-

relativistic quantum mechanics (NRQM) calculation of Kazama, Yang and Goldhaber [68].

In particular, our selection rules immediately tell us that in the lowest partial wave only the

helicity-flip amplitudes are non-zero while forward scattering is not allowed. Furthermore,

we are able to determine the full expression for the helicity flip amplitude. For the higher

partial waves our formalism allows us to fix the full angular dependence of the amplitudes,

while the overall magnitude of all partial waves can be fixed using unitarity and the phase

shifts.

The chapter is organized as follows. Section 4.2 contains our discussion of the general

transformation properties of multi-particle states under the Poincaré group. We introduce

the concept of pairwise LG here. We also give a basic introduction into the unusual properties

of the charge-monopole system, rooted in the asymptotic angular momentum contained

in the electromagnetic field. In section 4.3 we define our main objects of interest — the

pairwise spinor-helicity variables which transform covariantly under the pairwise LG. These

new spinor-helicity variables, together with the standard spinors for massless and massive

particles, serve as a complete set of building blocks for the magnetic (and non-magnetic) S-

matrix. We put our new building blocks to use in section 4.4, in which we demonstrate how

to construct the magnetic S-matrix and derive concrete expressions for all magnetic 3-point

amplitudes in the spirit of ref. [7]. In section 4.5 we take a further step and derive the general

partial wave expansion for magnetic 2→ 2 matrix elements. Finally, in sections 4.6-4.7, we

apply our formalism to the case of fermion-monopole scattering, effortlessly reproducing the

non-trivial results of Kazama, Yang, and Goldhaber [68], including the helicity-flip of the

lowest partial wave and the full angular dependence of the higher partial waves. Finally,

in section 4.8 we discuss partial wave unitarity in the context of the magnetic S-matrix,

knowledge of which is required to obtain the magnitude of higher partial wave processes.
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4.2 Representations of the Poincaré Group for Charge-

Monopole System: Pairwise LG

It has long been known that the simultaneous presence of a magnetic monopole and an

electric charge results in unusual rotational properties. The first explicit statement of this

came from J.J. Thomson [106] who found that the EM field of a system containing an electric

charge e and magnetic charge g carries an angular momentum even when both charges are

at rest:2

~J field =
1

4π

∫
d3x ~x×

(
~E × ~B

)
= −eg r̂ ≡ −qr̂ (4.4)

where r̂ is a unit vector pointing from the magnetic monopole to the charge. Quantum

mechanically, angular momentum is quantized in half integer units, and so we get yet another

derivation of the Dirac quantization condition [41] eg = n/2.

The angular momentum of the electromagnetic field Eq. (4.4) was generalized to the case of

dyons by Schwinger [91] and Zwanziger [117]

~J field =
∑

qij r̂ij (4.5)

with the sum taken over all dyon pairs and

qij = ei gj − ej gi =
n

2
, (4.6)

where the Dirac-Schwinger-Zwanziger quantization condition3 for qij is once again implied

2Due to the appearance of E and B the field angular momentum must be proportional to eg. It is also a
dimensionless vector for which the only candidate is r̂, hence the result must be proportional to egr̂ which
can be verified by explicit calculation [106].

3Sometimes this condition is given as (ei gj − ej gi)/4π = n
2 . Here and throughout we normalize the

magnetic charge such that Eq. (4.6) holds, and there is never a (4π)−1 factor in the quantization condition.
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by angular momentum quantization.

Zwanziger [119] further showed how to write the angular momentum for scattering dyons in

a Lorentz covariant fashion

Mνρ
field;± = ±

∑
i>j

qij
ενραβ piα pjβ√

(pi · pj)2 −m2
i m

2
j

, (4.7)

where the sum is taken over all distinct dyon pairs in the initial state (final state) with a

+(−) sign. The origin of the unusual ± sign is the appearance of a t/|t| in the asymptotic

expression for M . In the non-relativistic limit, this expression reduces to ~J field
± = ±

∑
qij p̂ij,

where p̂ij is the relative 3-momentum between the dyons in each pair. Since asymptotically

p̂ · r̂ = ∓1, this exactly reproduces Eq. (4.5).

The physical implications of (4.4)-(4.5) are hard to overstate. They imply the following

unusual properties of charge-monopole (or general dyonic) systems:

• The conserved angular momentum for the interacting theory is different from the an-

gular momentum of the free theory

• As a consequence, the asymptotic quantum states representing dyon pairs do not com-

pletely factorize into single-particle states

• In general there is no crossing symmetry for the electric-magnetic S-matrix

The first and second points can be immediately understood. Since the angular momentum

of the EM field depends only on qij and does not depend on the relative distance (just

orientation) this term does not vanish no matter how far the charge and the monopole are

separated, hence the direct product of two single-particle states never captures this additional
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contribution to the angular momentum. The third point will be elaborated below once we

consider the LG transformation of the magnetic S-matrix.

4.2.1 Electric-Magnetic angular momentum: the NRQM case

Before jumping into our main topic, which is the representation of the Poincaré group and

quantization of theories with magnetic charges, let us briefly remark on the NRQM case.

Rather than defining the non-relativistic S-matrix in full generality, we show here how the

conserved angular momentum operator ~L is modified in the presence of magnetic charges

[77].

The Hamiltonian of a charged particle in the background field of a stationary monopole is

given by

H = − 1

2m

(
~∇− ie ~A

)2

+ V (r) = − 1

2m
~D2 + V (r) (4.8)

where ~D = ~∇−ie ~A and ~A is the vector potential for the monopole, defined most conveniently

using two coordinate-patches in [115]. Specifically, with the monopole at the origin, Aφ =

±g
r sin θ

(1∓ cos θ) on each of the patches, usually chosen to be the upper (lower) hemisphere

in the monopole rest frame. One can easily check that the usual particle definition of the

angular momentum ~L = −i~r × ~D does not satisfy the angular momentum algebra

[Li, Lj] = iεijkLk (4.9)

[Li, H] = 0 . (4.10)
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This algebra, however, is satisfied once the angular momentum operator is generalized to

include a term that depends both on electric and magnetic charges

~L = −i~r × ~D − egr̂ = m~r × ~̇r − egr̂ (4.11)

where r̂ = ~r/r is a unit vector pointing radially outward and we used the Heisenberg equa-

tion of motion ~̇r = −i ~D/m in the second equality. Hence for a charged particle moving

in a monopole background, angular momentum must be supplemented with an additional

term proportional to q corresponding to the contribution of the EM field. Importantly, the

contribution of the EM field, as well as the total angular momentum, is non-vanishing even

when ~̇r = 0 (i.e. in a situation where both the charged particle and the monopole are at

rest).

This expression can be generalized to a quantum field theory in the the case of a ‘t Hooft-

Polyakov monopole background. The ’t Hooft-Polyakov monopole solution in an SU(2) gauge

theory is not invariant either under spatial rotations or gauge transformations, however, it

is invariant under a combined transformation generated by ~L + ~τ
2

(recall that the solution

for the scalar field is Φcl ∝ τar̂a). For a particle of spin S in a representation R of SU(2)

and moving in the monopole background, the conserved angular momentum is given by

~J = ~L+ ~TR + ~S , (4.12)

where ~TR are the SU(2) generators in the representation R. This expression is especially

instructive for a particle in a doublet representation of the SU(2) (so that the electric charges

under the unbroken U(1) are minimal). In the singular gauge where the magnetic field of

the monopole points in the τ3 direction in group space and the field contribution to the
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angular momentum is ±1/2, we find an exact match to the NRQM result. In the relativistic

quantum theory, this extra contribution gives rise to the additional LG phase, as we discuss

below.

4.2.2 Pairwise LG

In order to properly understand the effect of the modified angular momentum operator on

the construction of the quantum mechanical Hilbert space we first need to go back and

understand the properties of multi-particle representations of the Poincaré group. It is well-

known that for single particles one needs to define a reference momentum k, which may

be chosen as (M, 0, 0, 0) for massive particles or (E, 0, 0, E) for massless particles. The

LG is then the set of Lorentz transformations that leave the reference momenta invariant.

For massive particles the LG is SO(3) ∼ SU(2), while for massless particles it is ISO(2)

the two dimensional Euclidean group. The nature of the particle we are describing thus

determines the required representation of the LG. For example, given a massive particle the

representation is specified by the mass and the spin, s, and the state in the Hilbert space

is just |k, s〉. For the case of massless particles, while interesting non-trivial representations

of ISO(2) are in principle allowed by the kinematics of the Lorentz group [90], the models

needed to match experiment do not take advantage of the additional quantum number offered

by using the entire ISO(2) group rather than just the SO(2) ∼ U(1) subgroup corresponding

to ordinary helicity.

When considering the representations of the Poincaré group one usually stops here and

assumes that multi-particle states transform as products of single particle states. However

a closer examination of the Poincaré group shows that this is not the only possibility: as

first pointed out by Zwanziger [119], there are rotations that leave the momenta of a pair

of particles invariant. To see this, we can consider a two-particle state |p1, p2〉 and again
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consider some reference momenta for this multi-particle state. The simplest choice is to go

into the center of momentum (COM) frame

(k1)µ = (Ec
1, 0, 0,+ pc)

(k2)µ = (Ec
2, 0, 0,− pc) , (4.13)

where

pc =

√
(p1 · p2)2 −m2

1m
2
2

s
, Ec

1,2 =
√
m2

1,2 + p2
c , (4.14)

are Lorentz invariant, and s = (Ec
1 +Ec

2)2. A Lorentz boost Lp brings the reference momenta

back into the arbitrary pair of original momenta p1 = Lp k1, p2 = Lp k2. The important

observation is that there exists a non-trivial two-particle or pairwise LG which leaves these

reference momenta unchanged — it is simply a rotation around the z-axis, corresponding

to a U(1) pairwise LG. We would like to emphasize that this pairwise LG is independent of

the usual one-particle LG: it describes the relative transformation of the two particle state

compared to the product of the one-particle states. Hence the general two-particle state is

characterized by the representations of the individual particles under the one-particle LG,

as well as the additional U(1) charge, q12, corresponding to the representation of the two-

particle state under the pairwise LG. We call this charge the “pairwise helicity”. Thus the

state is | p1, p2 ; σ1, σ2 ; q12 〉. The p1, p2 are simply the individual momenta for each particle,

and the σi are collective indices denoting the individual s2
i , s

z
i for massive particles or the

helicity hi for massless ones. The novelty here is the additional quantum number q12, which

is associated with the particle pair rather than an individual particle. Under a Lorentz
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transformation, this quantum state transforms as

U(Λ) | p1, p2 ; σ1, σ2 ; q12 〉 = ei q12 φ Dσ′1 σ1 Dσ′2 σ2 |Λp1,Λp2 ; σ′1, σ
′
2 ; q12 〉 (4.15)

where φ is the U(1) rotation angle corresponding to the pairwise LG, while the Ds’ are rep-

resentations of one-particle LG rotations for each of the two particles. For massive particles,

the LG is just SU(2) and the D matrices are in the spin si representation of SU(2). For

massless particles, the LG is U(1) and the Ds are the ordinary helicity phases eihiφi . We will

show that this is indeed the right transformation for the spinless case. A construction valid

for particle with arbitrary spin and state for any number of particles is presented in [30],

showing that general multi-particle states are indeed charaterized by pairwise helicities in

addition to the standard spin/helicity, and they transform according to Eq. (4.16).

This transformation rule can be derived in the usual way by applying Wigner’s method of

induced representations [113] , which we briefly summarize at the end of this subsection. But

first we would like to ask what happens for the case of more than two particles. To that end it

is sufficient to consider a three particle state. Clearly, its transformation includes a product of

three representations of the one-particle LG. Each one-particle LG transformation leaves the

momentum of the corresponding particle invariant. The three particle state also transforms

as a product of representations under three pairwise LGs, each leaving the momenta of the

corresponding pair invariant. However, there is no non-trivial subgroup of the Poincaré

group that leaves invariant an arbitrary set of three momenta. Hence the three-particle LG

is trivial and the Lorentz transformations of three particle states are fully characterized by

their transformations under three single particle LGs and three pairwise LGs. This conclusion

easily generalizes to all n-particle states: such states are characterized by n masses and spins,

as well as
(
n
2

)
pairwise U(1) helicities qij, | p1, p2, . . . , pn ; σ1, σ2, . . . , σn ; q12, q13, . . . , qn−1,n 〉
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with Lorentz transformations given by

U(Λ) | p1, . . . , pn ; σ1, . . . , σn ; q12, q13, . . . qn−1,n 〉 =

ei
∑
i<j qijφ(pi,pj ,Λ)

∏n
i=1 Diσ′iσi |Λp1, . . . ,Λpn ; σ′1, . . . , σ

′
n ; q12, q13, . . . , qn−1,n 〉 .

(4.16)

The exact representations of the pairwise LGs for multi-particle states, i.e. the helicities

qij, depend on the dynamics of the theory. In most cases only trivial representations of the

pairwise LGs arise and qij = 0. The one known exception is a state containing both electric

and magnetic charges. As we will see below, the action of the angular momentum operator

requires in this case the identification qij = eigj−ejgi, corresponding to the Dirac-Schwinger-

Zwanziger quantization condition; the existence of EM field angular momentum implies that

multi-particle states do not fully factorize into products of single particle states.

We conclude this subsection by reviewing the Wigner method of induced representations to

derive Eq. (4.16) for the spinless case with two particles, following [113, 112, 119]. This also

provides us with an explicit formula for the pairwise LG phase φ(pi, pj,Λ). We define our

reference quantum states as

| k1, k2 ; q12 〉 . (4.17)

Having identified the effect of the pairwise LG on the reference states with a rotation around

z-axis we have

Jz | k1, k2 ; q12 〉 = q12 | k1, k2 ; q12 〉 . (4.18)
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This equality correctly reproduces the EM field contribution to the angular momentum in

Eqs. (4.5)-(4.7) provided that qij = eigj − ejgi. Interestingly, this identification also directly

implies the Dirac-Schwinger-Zwanziger condition for q12, simply from the properties of the

Lorentz group. To see this, note that due to the spinorial double coverings of the Lorentz

group, any 4π rotation (rather than 2π) around ẑ must be the identity,

ei4πq12 = 1 ⇒ q12 ≡ e1 g2 − e2 g1 =
n

2
, n ∈ Z. (4.19)

The quantum states for general momenta p1, p2 can be obtained from the reference pairwise

state with a Lorentz boost

| p1, p2 ; q12 〉 ≡ U (Lp) | k1, k2 ; q12 〉 , (4.20)

where U(Lp) is a unitary operator representing the Lorentz boost Lp. We now wish to learn

how a generic Lorentz transformation Λ acts on the states | p1, p2 ; q12 〉. Proceeding as in

the standard method of induced representations, we have

U(Λ)| p1, p2 ; q12 〉 = U (LΛp) U
(
L−1

ΛpΛLp
)
| k1, k2 ; q12 〉

= U (LΛp) U (Wk1,k2) | k1, k2 ; q12 〉, (4.21)

where Wk1,k2(p1, p2,Λ) ≡ L−1
ΛpΛLp = Rz [φ(p1, p2,Λ)] is a LG transformation, which is noth-

ing but a rotation around the z-axis with an angle φ(p1, p2,Λ). By definition, this LG

76



transformation acts on |k1, k2 ; q12〉 as exp [iq12φ(p1, p2,Λ)], so that

U(Λ)| p1, p2 ; q12 〉 = eiq12φ(p1,p2,Λ) |Λp1,Λp2 ; q12 〉. (4.22)

We can easily see that the transformation rule for general multi-particle states in Eq. (4.16)

is unitary and indeed forms a representation of the Lorentz group. First, since Eq. (4.16)

only differs from the standard Lorentz transformation by a phase eiΣ, this transformation is

clearly unitary. Second, because the phase angles φ(pi, pj,Λ) are identical to the ones that

arose as LG phases for the two-scalar case, and since they furnish a representation, we know

that

φ(pi, pj,Λ2Λ1) = φ(Λ1pi,Λ1pj,Λ2) + φ(pi, pj,Λ1) . (4.23)

This proves that U(Λ2Λ1) = U(Λ2)U(Λ1) and so our transformation rule is indeed a repre-

sentation of the Lorentz group.

4.2.3 In- and Out-states for the Electric-Magnetic S-matrix

Now that we understand the general transformation properties of dyonic multi-particle states,

we are ready to define the relativistic S-matrix for electric-magnetic scattering processes. To

do this we have to first properly define the multi-particle in- and out- states. As usual, we

separate the full Hamiltonian of the system into a free Hamiltonian, H0, and an interaction:

H = H0 + V . (4.24)
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In the standard definition, due to Weinberg [112], we can choose our quantum in/out states

to be eigenstates of the full interacting Hamiltonian that approach free states4 as t→ ±∞.

However, in the case of electric-magnetic scattering, this definition has to be modified. This

is because H0 and H have different conserved angular momentum operators,

[
H, ~J

]
=
[
H0, ~J0

]
= 0, ~J 6= ~J0 . (4.25)

The operator J0 represents the total orbital and spin angular momentum of different particles,

while J also includes the contribution of the EM field, as is evident from Eq. (4.7). The

inequality of J and J0 seems, so far, to be unique to electric-magnetic scattering. As a

consequence the Lorentz group is represented differently5 on the in- and out- eigenstates of

H. This is simply a reflection of the fact that qij can be non-vanishing for the in- and out

states, while the eigenstates of H0 are simply the direct product states of the free one-particle

states with all qij = 0.

In accordance with our discussion in section 4.2.2, we identify the multi-particle in- and

out-states as the states transforming with definite values of qij:

U(Λ) |p1, . . . , pn ; ±〉 =
∏
i

D(Wi) |Λp1, . . . ,Λpn ; ±〉 e±iΣ , (4.26)

where Σ ≡
∑n

i>j qij φ(pi, pj,Λ). Here, and below, ‘+’ stands for ‘in’, and ‘−’ stands for ‘out’,

the D(Wi) are the one-particle LG transformations, while the e±iΣ is the additional phase

factor corresponding to the pairwise LGs. Note that we need to choose opposite signs for

4Actually this language is not completely accurate since the in/out- states are conventionally defined in
the Heisenberg picture and are time independent. For a rigorous definition of our S-matrix, see appendix D.

5The generator of boosts K is always represented on the in/out states differently from its representation
on free states. The surprise here is the difference between in- and out- states, which is a unique consequence
of J 6= J0.
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the pairwise LG phases for the in- and out- sates, in accordance with the extra sign showing

up in the asymptotic expression (4.7). We see that the transformation rule Eq. (4.26) is a

departure from Weinberg’s standard definition of the S-matrix, in the sense that the Lorentz

group is represented differently on in- and out- states.

4.2.4 Lorentz transformation of the electric-magnetic S-matrix

In the previous section, we presented the Lorentz transformation, Eq. (4.26), of multi-particle

quantum states involving electric and magnetic charges. The general LG transformation for

the S-matrix readily follows,

S (p′1, . . . , p
′
m | p1, . . . , pn) ≡ 〈p′1, . . . , p′m; − | p1, . . . , pn; + 〉

=
〈
p′1, . . . , p

′
m; − |U(Λ)† U(Λ)| p1, . . . , pn; +

〉
= ei(Σ++Σ−)

m∏
i=1

D(Wi)
†

n∏
j=1

D(Wj), S (Λ p′1, . . . ,Λ p
′
m |Λ p1, . . . ,Λ pn) (4.27)

where 6

Σ+ ≡
n∑
i>j

qij φ(pi, pj,Λ) , Σ− ≡
m∑
i>j

qij φ(p′i, p
′
j,Λ) . (4.28)

and Wi are the LG rotations for one-particle states in the in- and out- states. To go from the

second to the third line, we used the fact that the extra U(1) LG factor has the same sign

for 〈out| and |in〉 states. Note that since Σ± pairs particles within the in- and out- states

but doesn’t involve in-out pairs, this is a manifest violation of crossing symmetry. Inverting

6Below we use the notation φij = φ(pi, pj ,Λ) when it’s clear whether we are talking about the in- or out-
state.
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Eq. (4.27), we have

S (Λ p′1, . . . ,Λ p
′
m |Λ p1, . . . ,Λ pn) =

e−i (Σ++Σ−)

m∏
i=1

D(Wi)
n∏
j=1

D(Wj)
† S (p′1, . . . , p

′
m | p1, . . . , pn) (4.29)

This transformation rule was first derived in [119]. If all qij = 0 (in particular, if none of

the scattering particles have magnetic charge), the transformation rule Eq. (4.29) reduces to

the standard LG transformation with Σ± = 0. To construct the electric-magnetic S-matrix

elements that satisfy the transformation rule given in Eq. (4.29) using on-shell methods we

need to introduce a new kind of spinor-helicity variable that enables us to saturate the extra

“electric-magnetic” U(1) phase in Eq. (4.29).

4.3 Pairwise Spinor-Helicity Variables for the Electric-

Magnetic S-matrix

4.3.1 Standard spinor-helicity variables for the standard LG

In the spinor-helicity formalism without magnetic charges, we can directly write down the

amplitude that transforms by construction as in Eq. (4.29) with q = 0. To do this, we

construct the amplitude from contractions of the spinor-helicity variables. For a massless

particle i, we use the spinor-helicity variables |pi〉α [pi|α̇, which transform under Lorentz

transformations as

Λ β
α |pi〉β = e+ i

2
φ(pi,Λ) |Λpi〉β, [pi|β̇ Λ̃β̇

α̇ = e−
i
2
φ(pi,Λ) [Λpi|α̇ , (4.30)
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where the phase φ(pi,Λ) corresponds to the action of the one-particle LG for massless parti-

cles. For a derivation of this transformation rule, see for example [46, 59, 23]. In many cases

we simply drop the pi from the spinors and just use the notation |i〉α ≡ |pi〉α and [i|α̇ ≡ [pi|α̇.

An S-matrix involving an outgoing massless particle i with helicity hi has the correct LG

phase for the ith particle if we construct it from ni copies of |i〉α and ñi copies of [i|α̇, such

that ñi − ni = 2hi.
7

Similarly, an amplitude involving a massive particle j of spin sj is constructed from 2sj

insertions of the massive spinor-helicity variables |i〉Iα, with their spinor indices symmetrized.

The indices I on the massive spinors indicate that they transform as doublets of the LG SU(2)

for massive particles. These indices are usually suppressed, as they are only needed when

taking the massless limit (specifying a value for the I index is like choosing a particular

helicity in the massless limit). Note that the I indices are automatically symmetrized when

one symmetrizes over the spinor indices α or α̇. We refer the reader to ref. [7] for a detailed

discussion of the spinor-helicity formalism for massive particles.

4.3.2 Pairwise momenta

As we argued in the previous section, in the case of the electric-magnetic S-matrix8, the

transformation rule involves an additional pairwise LG phase associated with the angular

momentum in the EM field, as can be seen in Eq. (4.29). Since this extra phase is associated

with pairs of momenta pi, pj, it is not possible to reproduce the correct transformation

rule using only the standard spinor-helicity variables |i〉α and [i|α̇ (or |i〉Iα and [i|Iα̇). This

motivates us to the define a new kind of spinor-helicity variable associated with pairs of

7Notice that while |p〉 (|p]) carries a helicity weight ±1/2, as is evident from Eq. (4.29), for checking LG
scaling of the S-matrix, we need to do |p〉 → |Λp〉 ∝ ω−1|p〉 and |p] → |Λp] ∝ ω|p], where ω is a helicity
+1/2 factor.

8In our construction for electric-magnetic scattering we refer to the “S-matrix” rather than the usual
scattering amplitude. The reason behind this is that in the magnetic case, selection rules sometimes forbid
the appearance of the δ function in the standard relation Sαβ = δ(α− β) − 2iπδ(4)(pα − pβ)Aαβ .
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momenta pi, pj, which transform with the pairwise LG phase φij. Importantly, the pairwise

LG transformation of the S-matrix is always a U(1) phase, and so we need the new spinors

to be massless, and associated with null momenta.

Since the extra LG factor for the electric-magnetic S-matrix is associated with the momenta

pi, pj of each pair in the in/out- state, it is natural to define two null linear combinations

of pi, pj, which we call the pairwise momenta9 p[±ij . Below, we will define pairwise spinor-

helicity variables associated with these pairwise momenta, and show that they have the

correct pairwise LG weight to be used as building blocks for the electric-magnetic S-matrix.

We first define the “reference” pairwise (null) momenta in the COM frame as

(
k[±ij
)
µ

= pc (1, 0, 0,±1) , (4.31)

where pc is the COM momentum of the ij pair, as in Eq. (4.14). The pairwise momenta p[±ij

in any other frame can be obtained by boosting k[±ij into that frame. Clearly k[±ij · k[±ij = 0

and k[+ij · k[−ij = 2p2
c , and these relations obviously hold in any other frame.

For reference, we also present the Lorentz covariant definition of p[±ij ,

p[+ij =
1

Ec
i + Ec

j

[(
Ec
j + pc

)
pi − (Ec

i − pc) pj
]

p[−ij =
1

Ec
i + Ec

j

[
(Ec

i + pc) pj −
(
Ec
j − pc

)
pi
]
. (4.32)

In the mi → 0 limit, we have Ec
i → pc and so p[+ij → pi and p[−ij becomes Parity-conjugate

9The use of the label [ to denote null linear combinations of timelike momenta is inspired by the notation
of [71] and of the OPP reduction [82] in the context of generalized unitarity [13, 49]. There, null combinations
of external momenta were used in order to construct a null basis to span the internal loop momenta that
have been put on shell.
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of pi. Similarly, in the mj → 0 limit, we have Ec
j → pc and so p[−ij → pj and p[+ij becomes

Parity-conjugate of pj. By inverting these equations, we can express the massive momenta

using the null momenta as

pi =
1

2pc

[
(Ec

i + pc) p
[+
ij + (Ec

i − pc) p[−ij
]

pj =
1

2pc

[(
Ec
j + pc

)
p[−ij +

(
Ec
j − pc

)
p[+ij
]
. (4.33)

4.3.3 Pairwise spinor-helicity variables

We are now in a position to define spinor-helicity variables related to the pairwise momenta

p[±ij . As we will show, these pairwise spinor-helicity variables transform with a U(1) LG

phase directly related to the pairwise LG phase of the in- and out- states in Eq. (4.26). This

makes them natural building blocks for the electric-magnetic S-matrix.

As a first step, note that linearity implies that the canonical Lorentz transformation Lp

defined in Eq. (4.20) that takes ki → pi also gives

Lp k
[±
ij = p[±ij . (4.34)

This is instrumental in proving that the pairwise spinor-helicity variables defined below

transform with the same LG phase as the two-particle states in Eq. (4.22). The next step is
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to define the reference pairwise spinor-helicity variables,

|k[+ij 〉α =
√

2 pc

 1

0

 , |k[−ij 〉α =
√

2 pc

 0

1


[
k[+ij
∣∣
α̇

=
√

2 pc (1 0) ,
[
k[−ij
∣∣
α̇

=
√

2 pc (0 1) . (4.35)

These spinors are the “square roots” of the null reference momenta

k[±ij · σαα̇ = |k[±ij 〉α
[
k[±ij
∣∣
α̇
. (4.36)

The above relation is a standard mapping of a bi-spinor into a vector. Multiplying both

sides by σ̄α̇αν and taking the trace we can also write it in the form

2
(
k[±ij
)ν

= 〈k[±ij |ασναα̇
∣∣k[±ij ]α̇ . (4.37)

While the LHS of this relation transforms with Lp under a Lorentz transformation, the

helicity variables on the RHS transform with (Lp) β
α and

(
L̃p
)β̇
α̇

appropriate for spinorial

representation. Thus up to a LG invariant factor the pairwise spinors p[±ij are defined by

|p[±ij 〉α = (Lp) β
α |k

[±
ij 〉β ,

[
p[±ij
∣∣
α̇

=
[
k[±ij
∣∣
β̇

(
L̃p
)β̇
α̇

. (4.38)
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This guarantees the relation

p[±ij · σαα̇ = |p[±ij 〉α
[
p[±ij
∣∣
α̇
. (4.39)

Following the same procedure as in the standard definition of spinor-helicity variables, it is

straightforward to show that they transform with a U(1) LG factor as required, since

Λ β
α |p[±ij 〉β = e±

i
2
φ(pi,pj ,Λ) |Λp[±ij 〉α ,

[
p[±ij
∣∣
β̇

Λ̃β̇
α̇ = e∓

i
2
φ(pi,pj ,Λ)

[
Λp[±ij

∣∣
α̇
.

(4.40)

Where Λ β
α and Λ̃β̇

α̇ are the spinor versions of the Lorentz transformation Λ. Note that |p[+ij 〉α

and |p[−ij 〉β have opposite pairwise helicities ±1/2. Importantly, the LG phase φ(pi, pj,Λ) in

Eq. (4.40) is defined with respect to the canonical Lorentz transformation Lp, which is

the same as the one we used to derive the transformation rule of the quantum states in

section 4.22. This proves that φ(pi, pj,Λ) is exactly the same phase as the one in Eq. (4.22).

Consequently, we are free to use our pairwise spinor-helicity variables to construct an S-

matrix that transforms correctly under the pairwise (and also one particle) LGs. Explicit

expressions for spinor-helicity variables in the COM frame are given in appendix C. Here we

simply present the main results in the mi → 0 limit:

[
p[+ij i

]
=
〈
i p[+ij

〉
=
[
η̂i p

[−
ij

]
=
〈
p[−ij η̂i

〉
= 0[

p[−ij i
]

=
〈
i p[−ij

〉
=
√

2pc
[
η̂i p

[+
ij

]
=
√

2pc
〈
p[+ij η̂i

〉
= 2pc , (4.41)

where |i〉α, [i|α̇ are the standard massless spinor-helicity variables, and |η̂i〉α, [η̂i|α̇ are the
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(dimensionless) Parity-conjugate massless spinors that appear in the massless limit of the

massive spinors |i〉Iα, [i|Iα̇ (see ref. [7] for their definition). Note that the above equations are

Lorentz and LG invariant, and so hold in any other reference frame as well.

4.4 Constructing Electric-Magnetic S-matrices

In section 4.2.4 we derived the transformations of electric-magnetic S-matrices under the

pairwise and one-particle LGs:

S (Λ p′1, . . . ,Λ p
′
m |Λ p1, . . . ,Λ pn) =

e−i (Σ−+Σ+)

m∏
i=1

D(Wi)
n∏
j=1

D(Wj)
† S (p′1, . . . , p

′
m | p1, . . . , pn) (4.42)

To make use of this transformation for constructing electric-magnetic S-matrix elements, we

defined the pairwise spinor-helicity variables in section 4.3.3. Now we can use the pairwise

and regular spinor-helicity variables to construct S-matrices that respect Eq. (4.42). This

enables us to fix electric-magnetic S-matrix elements up to a LG invariant.

We also reiterate here that we are constructing electric-magnetic S-matrix elements rather

than amplitudes. This is because by using the word “amplitude” we are implicitly assuming

the possibility of forward scattering, as encoded in the standard relation

Sαβ = δ(α− β) − 2iπδ(4)(pα − pβ)Aαβ . (4.43)

However, in our very peculiar case of electric-magnetic scattering, the decomposition of

Eq. (4.43) may not actually hold. In fact, we will see below that selection rules generically
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forbid forward scattering for the lowest partial wave, which makes the relation Eq. (4.43)

inadequate for electric-magnetic scattering. Rather than trying to adapt it to our case, we

opt to never use this relation at all and just construct the S-matrix itself directly. Energy

and momentum conservation are implicitly assumed.

In constructing the S-matrix we use an all-outgoing convention common in the amplitudes

literature. However, the use of this convention in the study of magnetic S-matrix elements is

non-trivial due to lack of crossing symmetry in electric-magnetic scattering. Thus we begin

by reviewing the subtleties associated with the all-outgoing convention.

4.4.1 The all-outgoing convention

In section 4.2.4, we described how general electric-magnetic S-matrices transform under

Lorentz transformations. In that section, the discussion was in terms of in- and out-states.

In the spinor-helicity formalism it is however customary to use a notation where all particles

are outgoing which we call the out-out formalism. In the standard cases without magnetic

charges this is achieved using the crossing symmetry of the S-matrix. To define crossing

symmetry, we first assume analyticity, namely, that the S-matrix is an analytic function

of its complexified external momenta. Crossing symmetry is then the condition that the

scattering S-matrix for a process with an in-state that includes particle A, and some out-

state, has the same analytic form as the “crossed” versions of the original process, with an

outgoing anti-particle Ā. While in the original process, the particle appearing in the in-state

carries positive energy, in the crossed process, the anti-particle Ā appearing in the out-state

carries negative energy. However, crossing symmetry allows one to use the same analytic S-

matrix element to also calculate the process with an outgoing anti-particle Ā in its physical

kinematic regime. In the presence of crossing symmetry, a single analytic function provides

the S-matrix for several different processes in different regions of complexified momentum
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space. For massless particles, under crossing,

particle ↔ antiparticle

incoming ↔ outgoing

helicity h ↔ −h

pµ ↔ −pµ

Since the S-matrix for electric-magnetic scattering processes does not obey crossing symme-

try, one can not describe different processes using the same S-matrix element. Nevertheless,

we can still use a crossing transformation to translate the problem formulated in in-out

language into the out-out language, which is the conventional choice of the spinor-helicity

community. This is possible because, as can be seen from Eq. (4.42), the LG transformation

of an S-matrix involving incoming states with helicities hi and pairwise helicities qij is the

same as that of an S-matrix with outgoing states with helicities −hi and pairwise helicities

qij.

Consequently, we are free to construct S-matrices in the out-out formalism, as long as we

keep working in the same kinematic regime of the original in-out S-matrix. Furthermore,

even in the out-out formalism, we consider pairwise helicities qij only for pairs of states which

are both in the initial state or both in the final state for a given physical process.

4.4.2 Constructing the electric-magnetic S-matrix: spinor-helicity

cheat sheet

We are now ready to formulate general rules for constructing electric-magnetic S-matrix

elements. As usual in the amplitudes program, the spinor-helicity variables are the basic
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building blocks. The main novelty is the appearance of the pairwise spinor-helicity variables,

needed to capture the additional pairwise LG phase in the S-matrix, in addition to the ordi-

nary ones. As usual, we will assign helicity weights (or for massive particles SU(2) quantum

numbers) to each spinor-helicity variable, as well as a separate pairwise helicity weights to

each pairwise spinor-helicity variable. We will require that the helicity weights under each

individual particle as well as the pairwise helicity weights are matched for both the initial

and the final states. Of course only the diagonal Lorentz transformation (where each par-

ticle and each pair of particles are transformed simultaneously) is physical. However, as is

common in the amplitudes approach, as a book-keeping tool we can pretend that helicity

and pairwise helicity transformations can be performed independently on each particle/pair

of particles, which will make the construction of the properly transforming S-matrix partic-

ularly easy. Hence for the pairwise helicity variable we assign only the pairwise helicity (and

no ordinary helicities), even though these pairwise spinor-helicity variables are constructed

as a function of the ordinary helicity variables, and in some limits they even coincide with

one of the ordinary spinor-helicity variables.10

These rules are summarized by the following equations.

S
(
ω−1|i〉, ω|i]

)
= ω2hiS (|i〉, |i]) , for ∀i (4.44)

S
(
ω−1|p[+ij 〉, ω|p[+ij ], ω|p[−ij 〉, ω−1|p[−ij ]

)
= ω−2qijS

(
|p[+ij 〉, |p[+ij ], |p[−ij 〉, |p[−ij ]

)
for ∀ pair {i, j},

(4.45)

where ω represents the LG weight +1/2. The resulting rules for the full set of charge

assignments of the spinor-helicity variables are presented in Table 4.1, which summarizes

10In the massless limit, the regular LG phase coincides with the pairwise phase, and LG weights of some
of the regular variables are used to match the regular LG weights, while the rest are used to saturate the
pairwise LG weight.

89



the different LG weights of the regular and pairwise spinor-helicity variables, as well as the

overall weights of the amplitude implied from Eq. (4.44) and (4.45).

U(1)i SU(2)i U(1)ij

Required weight hi Si -qij

|i〉α, [i|α̇ -1
2
, 1

2
− −

〈i|I;α − −

|p[+ij 〉α,
[
p[+ij
∣∣
α̇

− − -1
2
, 1

2

|p[−ij 〉α,
[
p[−ij
∣∣
α̇

− − 1
2
, -1

2

Table 4.1: LG weights of the standard and pairwise spinor-helicity variables, as well as the
overall weight required by Eq. (4.44) and (4.45).

4.4.3 First examples

To illustrate the construction of electric-magnetic S-matrix elements, let us work out a few

examples.

(1) Massive fermion decaying to massive fermion + massless scalar, q = −1.

In this case we need to use one massive spinor for the decaying fermion and one massive

spinor for the final fermion. This gives us two spinor indices that should be contracted with

pairwise spinors. Note that in general, the number of pairwise spinors is not completely

fixed by the LG: only the difference n−23 − n+
23 between the number of pairwise spinors with

weight 1
2

and −1
2

is fixed to be −2q23. In our case we need a total of 2 spinor indices and so

n+
23 = 2, n−23 = 0. The S-matrix is then

S
(
1s=1/2 |2s=1/2, 30

)
q23=−1

∼
〈
p[−23 1

〉 〈
p[−23 2

〉
, (4.46)
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up to a LG invariant.11

(2) Massive scalar decaying to massive scalar + massless vector, q = −1.

In this case we need to use two regular spinor-helicity variables for the helicity of the vector,

as well as two pairwise spinors for the q23 = −1 of the final state. The S-matrix elements

for helicity ±1 vectors are then

S
(
1s=0 |2s=0, 3+1

)
q23=−1

∼
[
p[+23 3

]2 ∼ 〈p[−23 |2|3
]2
, (4.47)

up to a LG invariant. On the other hand, there is no way to write a LG covariant expression

for S (1s=0 |2s=0, 3−1)q23=−1. We will see later that this is a particular example of a more

general LG selection rule.

(3) Massive vector decaying to two different massless fermions, q = −2.

In this case we need to use 2 massive spinors for the vector and one regular spinor-helicity

variable for each fermion, as well as four pairwise spinors for the q23 = −2 of the out state.

The S-matrix for opposite helicity fermions is then

S
(
1s=1 | 2−1/2, 3+1/2

)
q23=−2

∼
〈
2p[−23

〉 [
p[+23 3

] 〈
1 p[−23

〉2
. (4.48)

up to a LG invariant. Note that the S-matrix for same helicity fermions12 is forbidden in

this case, due to the fact that
〈
p[−23 3

〉
=
[
p[+23 2

]
= 0. This is our second encounter with a LG

11In principle, there are other “legally” acceptable expressions such as
[
p[+23 1

] [
p[+23 2

]
or
[
p[+23 1

] 〈
p[−23 2

〉
or〈

p[−23 1
〉 [
p[+23 2

]
. However, using the Dirac equations for the massive variable, pαα̇λ̃

α̇I = mλIα and pαα̇λαI =

−mλ̃Iα̇, one can check that these are equivalent to Eq. (4.46) up to LG invariants.
12In the all-outgoing sense.
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selection rule.

(4) Massive vector decaying to two different massless fermions, q = −1.

In this case we need to use 2 massive spinors for the vector and one regular spinor-helicity

variable for each fermion, as well as four pairwise spinors for the q23 = −1 of the out state.

Note that unlike the previous examples, here the total number of pairwise spinors is not

given by −2q23. This is because there are four spinor indices from the standard spinors

that need to be contracted, so that n+
23 + n−23 = 4. Pairwise LG, on the other hand, implies

n+
23 − n−23 = −2q23 = 2, and so we have n+

23 = 3, n−23 = 1. The S-matrix for positive helicity

fermions is then

S
(
1s=1 | 2−1/2, 3−1/2

)
q23=−1

∼
〈
2p[−23

〉 〈
p[+23 3

〉 〈
1 p[−23

〉2
. (4.49)

up to a LG invariant. Note that the S-matrix for h2 = −h3 = 1/2 is forbidden in this case,

due to the fact that
[
p[−23 3

]
= 0.

4.4.4 All electric-magnetic 3-point S-matrix elements

The examples above give us a flavor of how to construct electric-magnetic S-matrix elements

up to LG invariants. In the case of 3-point S-matrix elements, we can make the discussion

even more concrete and write down systematic expressions and selection rules for electric-

magnetic S-matrix elements. These are modifications of the general 3-point amplitudes

derived in [7], when the three scattering particles can have magnetic charge. Without loss

of generality, we choose one massive particle (that may be a dyon) in the incoming state,

and two particles (that may also be dyons) in the outgoing state. Note that our expressions

extend the ones presented in [7] to the case of electric-magnetic scattering, and reduce to
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them when q = 0 for the outgoing states. Below, whenever we call a particle “dyon”, we

mean that it may, or may not, have a magnetic charge. In all our cases, the decaying particle

may be any kind of “dyon”.

• Incoming massive particle, two outgoing massive particles

In this case the S-matrix is the contraction of the massive part (in the notation of [7])

(
〈1|2s1

){α1...α2s1} (〈2|2s2){β1...β2s2} (〈3|2s3){γ1...γ2s3} (4.50)

with a massless part involving the pairwise spinors |w〉α ≡ |p[−23 〉α and |r〉α ≡ |p[+23 〉α (with

pairwise helicities ±1
2
), which saturates the pairwise LG transformation. The most general

expression is

Sq{α1,...,α2s1}{β1,...,β2s2}{γ1,...,γ2s3}
=

C∑
i=1

ai
(
|w〉ŝ−q |r〉ŝ+q

)
{α1,...,α2s1}{β1,...,β2s2}{γ1,...,γ2s3} ,

(4.51)

where ŝ = s1 + s2 + s3, C counts all the possible ways to group the spinors into α, β and γ

indices, and q = q23 = e2g3 − e3g2. Since both exponents have to be non-negative integers,

we get a selection rule:

|q| ≤ ŝ . (4.52)

We can also check that Eq. (4.51) reduces to the standard expression from [7] for q = 0. To
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see this, note that

( |w〉 |r〉 ){αβ} ∼ O{αβ} ≡ (p2){αγ̇ (p3) γ̇
β}

( |w〉 |r〉 )[αβ] ∼ εαβ . (4.53)

where the two index tensors O{αβ} were defined in [7]. This can be seen from Eq. (4.33), i.e.

(p2){αγ̇ (p3) γ̇
β} =

Ec
2 + Ec

3

2pc

(
p[+23

)
{αγ̇

(
p[−23

) γ̇

β} = (Ec
2 + Ec

3) ( |w〉 |r〉 ){αβ} .

(4.54)

When q = 0, we get Eq. (4.27) of [7],

S0

{α1,...,α2s1}{β1,...,β2s2}{γ1,...,γ2s3} =
1∑
i=0

ãi
(
Oŝ−iεi

)
{α1,...,α2s1}{β1,...,β2s2}{γ1,...,γ2s3} .

(4.55)

• Incoming massive particle, outgoing massive particle + massless particle; unequal mass

case.

This is the electric-magnetic version of the two massive, one massless S-matrix from [7]. In

this case the S-matrix is the contraction of the massive part

(
〈1|2s1

){α1...α2s1}(〈2|2s2){β1...β2s2} , (4.56)

94



with the massless part constructed from two “regular” spinors:

(|u〉α, |v〉α) = (|3〉α, | 2 |3]α) , (4.57)

with regular LG weights ∓1
2
, as well as the pairwise spinors

(|w〉α, |r〉α) =
(
|p[−23 〉α, |p[+23 〉α

)
, (4.58)

with pairwise LG weights ±1
2
. Note that | 2 |p[−23 ]α is nothing but a LG invariant times |p[+23 〉α.

The general massive 3-point S-matrix for an initial spin s1 particle and an final spin s2

particle is then

Sh,q, unequal

{α1,...,α2s1}{β1,...,β2s2}
=

C∑
i=1

∑
j,k

aijk 〈ur〉max(j+k,0) 〈vw〉max(−j−k,0)

(
|u〉

ŝ
2
−h−j|v〉

ŝ
2

+h+k|w〉
ŝ
2
−q+j|r〉

ŝ
2

+q−k
)
{α1,...,α2s1}{β1,...,β2s2}

,

(4.59)

where ŝ = s1 + s2, and q = q23 = e2g3 − e3g2. Again C is the number of distinct tensor

structures. The j and k sums are over values that give non-negative exponents. In particular,

they are in the intervals − ŝ
2

+ q ≤ j ≤ ŝ
2
− h and − ŝ

2
− h ≤ k ≤ ŝ

2
+ q . These intervals exist

only if |h+ q| ≤ ŝ, which gives us a selection rule. In particular,

s1 = s2 = 0 → h = − q . (4.60)
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• Incoming massive particle, outgoing massive particle + massless particle; equal mass case.

When the two masses are equal, we know that 〈uv〉 ∝ p2 ·p3 = 0, hence, u and v are parallel.

For constructing the S-matrix, therefore, we use only one of the two, say |u〉. However, the

ratio x of the two is defined via13

mx|u〉 = |v〉 , (4.62)

and carries regular helicity of +1 for the particle 3, and can be used to satisfy the regular

helicity weight of the S-matrix. Similarly, 〈wr〉 = 0 and we have the relation

〈ur〉2 x|w〉 ∼ |r〉 , (4.63)

up to an overall LG invariant. Overall, the S-matrix is then constructed using x, |u〉α, |w〉α

and εαβ. A solution consistent with the regular/pairwise helicity weight and the number of

required spinor indices is found to be

Sh,q,equl
{α1...α2s1}{β1...β2s2}

=
C∑
i=1

∑
j

j∑
k=−j

xh+q+j 〈ur〉max[2q+j−k,0] 〈vw〉max[−2q−j+k,0] ·(
|u〉j+k|w〉j−kεŝ−j

)
{α1...α2s1}{β1...β2s2} ,

(4.64)

13An alternative expression for this x-factor can be written as [7]

x =
〈ζ|2|3]

m 〈ζ3〉
, (4.61)

where 〈ζ| is an arbitrary spinor which drops out of any physical calculation.
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where the j sum extends over 0 ≤ j ≤ ŝ. Note that while the powers of u,w, ε have to be

non-negative integers, there is no such requirement for the power of x.

• Incoming massive particle, two outgoing massless particles

In this case the S-matrix is the contraction of the massive part

(
〈1|2s

){α1...α2s} (4.65)

with a massless part involving the regular spinors |u〉α = |2〉α, |v〉α = |3〉α and the pairwise

spinors |w〉α = |p[−23 〉α and |r〉α = |p[+23 〉α. The most general expression is

Sq{α1,...,α2s} =
∑
ij

aij
(
|u〉s/2−i−∆ |v〉s/2−j+∆ |w〉s/2+j−q |r〉s/2+i+q

)
{α1,...,α2s}

·

[uv]max[Σ+(s−i−j)/2 , 0] 〈uv〉max[−Σ−(s+i+j)/2 , 0] (〈uw〉 [vr])
1
2

max[i−j , 0] ([uw] 〈vr〉)
1
2

max[j−i , 0] ,

(4.66)

with Σ = h2 + h3, ∆ = h2 − h3. Again q = q23 = e2g3 − e3g2, and the i and j sums are over

values in the intervals −s/2− q ≤ i ≤ s/2−∆ and −s/2 + q ≤ j ≤ s/2 + ∆, such that all

of the exponents are non-negative integers. These intervals exists only when |∆ − q| ≤ s,

which gives us another selection rule. In the non-magnetic q = 0 case, this gives us the same
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selection rule as [7]. In particular, for a spin s coupling to h2 = −h3, we have

For q = 0 :

s = 0 → h2 = h3 = 0

s = 1 → |h2 − h3| ≤ 1 → |h2| = |h3| ≤ 1/2

s = 2 → |h2 − h3| ≤ 2 → |h2| = |h3| ≤ 1 ,(4.67)

in other words, massless particles with |h| > 1
2

cannot couple to a Lorentz covariant conserved

current, and massless particles with |h| > 1 cannot couple to a conserved stress tensor. For

q 6= 0, the situation is even more restrictive. For example, when |q| = 1
2

we have

For q = ±1/2 :

s = 0 → forbidden

s = 1 → |h2 − h3 ∓ 1/2| ≤ 1 → |h2| = |h3| = 0 or h2 = −h3 = ±1/2

s = 2 → |h2 − h3 ∓ 1/2| ≤ 2 → |h2| = |h3| ≤ 1/2 or h2 = −h3 = ±1 .

(4.68)

We see that for |q| = 1/2 the selection rule is more restrictive than in the q = 0 case, since

it discards the h2 = −h3 = −qs option.
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4.5 Partial Wave Decomposition for 2 → 2 Electric-

Magnetic S-matrix

Following [7] and [67], we can now perform a relativistic partial wave decomposition for

2 → 2 electric-magnetic S-matrix elements14. In a Poincaré invariant setting, the partial

wave decomposition is nothing but the expansion in a complete eigenbasis of the Casimir

operator W 2, where W µ is the Pauli-Lubanski operator defined by

W µ ≡ 1

2
εµνρσ P

νMρσ . (4.69)

In the above expression P ν is the momentum operator and Mρσ is the Lorentz generator.

The eigenvalues of W 2 are given by −P 2 J (J + 1) where J is the total angular momentum,

so clearly this is the relativistic version of a partial wave decomposition. The operators

P µ, Mµν and Wµ act on the amplitude or parts of it. In particular, we will make use of

their representation as differential operators acting in spinor-helicity space [114]. In the

non-magnetic case and for massless particles, these are given by [114, 27]

(σµ)αα̇ P
µ ≡ Pαα̇ =

∑
i

|i〉α [i|α̇

(σµν)αβ M
µν ≡ Mαβ = i

∑
i

|i〉{α
∂

∂〈i|β}

(σ̄µν)α̇β̇ M
µν ≡ M̃α̇β̇ = i

∑
i

[i|{α̇
∂

∂ |i] β̇}
, (4.70)

14For a complementary approach to mapping all possible spinor structures for 4-point non-magnetic am-
plitudes, see [45]
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where the sum i is over a collection of particles. In the 2 → 2 case we are interested in the

total angular momentum of particles 1 and 2, and so the sum will be over i = 1, 2. The

generalization of Eq. (4.70) for massive particles is straightforward [27, 56]: we bold the

spinors and contract their SU(2) LG indices. The Casimir operator W 2 is then expressible

as [27, 67]

W 2 =
P 2

8

[
Tr
(
M2
)

+ Tr
(
M̃2
)]
− 1

4
Tr
(
M P M̃ PT

)
. (4.71)

Eq. (4.70) can be straightforwardly generalized to our electric-magnetic case by treating the

regular and pairwise spinors on the same footing:

(σµν)αβ M
µν ≡ Mαβ = i

[∑
i

|i〉{α
∂

∂〈i|β}
+
∑
i>j,±

|p[±ij 〉{α
∂

∂〈p[±ij |β}

]

(σ̄µν)α̇β̇ M
µν ≡ M̃α̇β̇ = i

∑
i

[i|{α̇
∂

∂ |i] β̇}
+
∑
i>j,±

[
p[±ij
∣∣
{α̇

∂

∂
∣∣p[±ij ] β̇}

 , (4.72)

where the sum is now over all pairs as well as individual particles in the state. It is easy to

see that

W 2 〈12〉 = W 2
〈
p[±12 2

〉
= W 2

〈
p[±12 1

〉
= W 2

〈
p[±12 p

[∓
12

〉
= 0 , (4.73)

with W 2 the Casimir associated with particles 1 and 2 and defined via Eq. (4.72). Similarly,

W 2 | 1[〉{α |p[−12 〉β} = − s 1(1 + 1) | 1[〉{α |p[−12 〉β} . (4.74)
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In other words, the eigenfunctions of W 2 are combinations of regular and pairwise spinors

with symmetrized spinor indices. The eigenvalues are −s j (j+1) where j is just the number

of uncontracted spinor indices, divided by 2. This is the same conclusion as in ref. [67], only

with the inclusion of of pairwise spinors in the definition of W 2. It is now natural to expand

the S-matrix in a complete eigenbasis of W 2 with eigenfunctions

W 2 BJ = − s J (J + 1) BJ . (4.75)

Following [67], we call the BJ basis amplitudes. The most general expansion then reads

S12→34 = N
∑
J

(2J + 1)MJ(pc)BJ , (4.76)

where N ≡
√

8πs is a normalization factor and MJ(pc) are coefficients15 satisfying

W 2
12 MJ(pc) = W 2

34 MJ(pc) = 0 . (4.77)

The eigenfunctions BJ are then nothing but symmetrized products of spinors,

BJ = CJ ; in
{α1,...,α2j}C

J ; out; {α1,...,α2j} , (4.78)

15We also added the factor (2J + 1) as part of normalization so that the partial wave unitarity equation
is expressed in a simple form in terms of MJ(pc) Eq. (4.111).
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where

W 2
12 C

J ; in
{α1,...,α2J} = − s J (J + 1)CJ ; in

{α1,...,α2J}

W 2
34 C

J ; out; {α1,...,α2J} = − s J (J + 1)CJ ; out; {α1,...,α2J} . (4.79)

In the above expression W 2
12 and W 2

34 are the Casimir operators associated with particles 1,2

and 3,4, respectively. The coefficient functionsMJ(pc) are angular momentum singlets, and

so they can only depend on the energy scale of the scattering, given by the COM momentum

pc . Inspired by the Wigner-Eckart theorem, we call them “reduced matrix elements”. They

contain the dynamical information of the scattering process, as opposed to the angular

dependence that is fixed for every partial wave. The coefficients CJ ; in/out, on the other hand,

are generalized Clebsch-Gordan coefficients [67].16 These coefficients are completely fixed by

group theory, and we can easily find them using an elegant trick from [7, 67]. Simply put, the

Clebsch-Gordan coefficient connecting the particles i and j to the total angular momentum

J is directly extracted from the 3-point S-matrix element with the particles i and j and a

massive, spin J particle. For example, if 1 and 2 are two massive scalar dyons with q12 = −1,

the corresponding 3-point S-matrix element is

S
(
10, 20 |3J

)
q12=−1

= a
〈
3 p[−12

〉J+1 〈
3 p[+12

〉J−1
. (4.80)

Since there is only one relevant tensor structure for this S-matrix (see Eq. (4.51)), we have

only one coefficient a. This will change when we include non-scalar particles — for example

with a massive fermion f and a scalar there are two possible tensor structures, depending

16To be more precise, our CJ; in/out are not really coefficients, they are SL(2,C) tensors.
The generalized Clebsch-Gordan coefficients defined in [67] is given in terms of our CJ; in/out by
CJ; in/out;{α1...,α2J}λI1α1

· · ·λI2Jα2J
.
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on which spinor is contracted with |f ]. The corresponding generalized Clebsch-Gordan part

can be directly read off from this 3-point S-matrix element by stripping off the spinors 〈3|α

corresponding to the massive spin J ,

(
CJ ; in

0,0,−1

)
{α1,...,α2J}

=
(
|p[−12 〉J+1 |p[+12 〉J−1

)
{α1,...,α2J}

, (4.81)

where the subscript (0, 0,−1) indicates (s1, s2, q12) and we have normalized away the a coef-

ficient.

4.6 Fermion-Monopole Scattering: Lowest Partial Wave

and Helicity Flip

As an illustrative application of our generalized amplitude formalism we now consider scat-

tering of an electrically charged fermion with charge e off a massive magnetic monopole

with magnetic charge g (with q = eg), reproducing the well known results of ref. [68]. In

this section we eamine the lowest partial wave process, (J = |q| − 1
2
), and derive the cele-

brated helicity flip amplitude. In section 4.7 we apply our formalism to higher partial wave

processes.
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4.6.1 Massive Fermion

It is convenient to start with a massive Dirac fermion denoted by

ψ =

 f

f̄ †

 , (4.82)

where f, f̄ are both LH Weyl fermions with opposite charges e and −e.

The J = |q| − 1
2

Clebsch-Gordan coefficient for the in state can be obtained by taking

s1 ≡ sf = 1/2, s2 ≡ sM = 0 and s3 ≡ sJ = J = |q| − 1/2 in Eq. (4.51). That means that

ŝ = |q|, and for q > 0 the only valid 3-point S-matrix element is

S3-pt,in
q>0 = a

〈
f p[+fM

〉 〈
J p[+fM

〉2|q|−1
. (4.83)

As explained in the previous section there is only one a coefficient, which we absorb in the

reduced matrix element MJ=|q|−1/2. Stripping away the 〈J|α part, we find

C
|q|−1/2; in
q>0 =

〈
f p[+fM

〉 (
|p[+fM〉

2|q|−1
)
{α1,...,α2|q|−1} , (4.84)

and a similar one for the out state. Contracting the generalized Clebsch-Gordan factors for
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the in- and out-states, we find the basis amplitude17

B|q|−1/2
q>0 =

〈
f p[+fM

〉 〈
f ′ p[+f ′M ′

〉
4p2

c

(〈
p[+fMp

[+
f ′M ′

〉
2pc

)2|q|−1

. (4.85)

We can repeat the exercises for q < 0, obtaining

B|q|−1/2
q<0 =

〈
f p[−fM

〉 〈
f ′ p[−f ′M ′

〉
4p2

c

(〈
p[−fMp

[−
f ′M ′

〉
2pc

)2|q|−1

. (4.86)

4.6.2 The massless limit

In the massless fermion limit the particles are labeled by their helicity. Overall there are four

possible choices, namely helicity ±1
2

for the initial fermion (particle 1) and helicity ±1
2

for the

final fermion (particle 3). In our all-outgoing convention, the helicity flip process involves the

same helicity for the initial state and the final state fermions, while in the non-flip process

they have opposite helicity.

The allowed processes for external fermions of charge e are

Helicity non-flip : f + M → f + M , f̄ † + M → f̄ † + M

Helicity flip : f + M → f̄ † + M , f̄ † + M → f + M . (4.87)

We first consider the last process in Eq. (4.87), the right-handed incoming fermion (helicity

17Since we aim to determine the S-matrix up to reduced matrix elementMJ(pc) we rescale our expression
by powers of pc to make the basis amplitude dimensionless.
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+1/2) and the left-handed outgoing fermion (helicity −1/2). In the out-out formalism this

corresponds to both fermions having helicity −1/2. We can take the massless limit of Eqs

(4.85) and (4.86) by simply unbolding 〈f |, 〈f ′| spinors [7].

B|q|−
1
2 =

〈
f p[±fM

〉 〈
f ′ p[±f ′M ′

〉
4p2

c

(〈
p[±fMp

[±
f ′M ′

〉
2pc

)2|q|−1

for sgn(q) = ±1 (4.88)

We further note that the helicity flip amplitude Eq. (4.88) is only non-trivial for q < 0.

Indeed, in the mi → 0 limit the spinor |p[+ij 〉 is parallel to |i〉 and, according to Eq. (4.41),〈
f p[+fM

〉
=
〈
f ′ p[+f ′M ′

〉
= 0. The vanishing of the S-matrix element for q > 0 has a simple

intuitive physical explanation. When q > 0 the EM field component of the magnetically

modified angular momentum operator (4.11) points towards the monopole and has eigenval-

ues q, q+1, q+2, . . . Since we are considering the right-handed incoming fermion the minimal

value of the z-component of the total angular momentum will be q + 1/2 which is not part

of the lowest partial wave state corresponding to J = |q| − 1/2. One can similarly see that

the outgoing left-handed particle can not be a part of the lowest partial wave when q > 0.

Similarly, let us consider the helicity-flip amplitude where the incoming fermion is left-handed

while the outgoing fermion is right-handed. In the out-out formalism this corresponds to both

massless fermions having helicity +1
2
. In this case we can’t simply unbold the 〈f |, 〈f ′| spinors,

but instead have to replace them with the Parity-conjugates18 of 〈f | and 〈f ′|, denoted by

〈η̂f |, 〈η̂f ′|,

B|q|−
1
2 =

〈
η̂f p

[±
fM

〉 〈
η̂f ′ p

[±
f ′M ′

〉
4p2

c

(〈
p[±fMp

[±
f ′M ′

〉
2pc

)2|q|−1

for sgn(q) = ±1 (4.89)

18We use the properly normalized 〈η̂i| instead of 〈ηi| = mi〈η̂i| and absorb the normalization in our reduced
matrix element.
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This time, Eq. (4.41) tells us that
〈
η̂f p

[−
fM

〉
=
〈
η̂f ′ p

[−
f ′M ′

〉
= 0, and so the S-matrix vanishes

for q < 0. Once again, there is a simple physical explanation of this fact: neither a left-handed

incoming particle nor a right-handed outgoing particle can be a be part of the J = |q| − 1
2

partial wave when q < 0. Therefore, we find that the only non-vanishing amplitude basis for

the helicity-flip process is given by

B|q|−
1
2

q<0 =

〈
f p[−fM

〉 〈
f ′ p[−f ′M ′

〉
4p2

c

(〈
p[−fMp

[−
f ′M ′

〉
2pc

)2|q|−1

(4.90)

B|q|−
1
2

q>0 ∼
[
f p[−fM

] [
f ′ p[−f ′M ′

]
4p2

c

(〈
p[+fMp

[+
f ′M ′

〉
2pc

)2|q|−1

(4.91)

where once again we used Eq. (4.41).

One can similarly show that, regardless of the sign of q, the S-matrix element vanishes for

the two remaining helicity choices:
(
±1

2
,∓1

2

)
. Mathematically, this is the consequence of the

fact that now the amplitude basis is proportional to a factor of the form
〈
f p[±fM

〉 〈
η̂f ′ p

[±
f ′M ′

〉
,

and this vanishes for either choice of sgn(q). Physically, this happens because for the helicity-

non-flip process either incoming or outgoing fermion can not be a part of the lowest partial

wave. In other words, at the lowest partial wave helicity-non-flip process can not occur.

Using the explicit expressions for the helicity variables in the COM frame obtained in ap-

pendix C we can finally write the S-matrix in terms of the scattering angle θ. The only

non-vanishing S-matrix element is

S
|q|− 1

2

f→f̄ † = N 2 |q|M|q|− 1
2

− 1
2
, 1
2

[
sin

(
θ

2

)]2|q|−1

for q > 0

S
|q|− 1

2

f̄ †→f = N 2 |q|M|q|− 1
2

1
2
,− 1

2

[
sin

(
θ

2

)]2|q|−1

for q < 0 , (4.92)
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where we have explicitly included the normalization coefficient N ≡
√

8πs and the reduced

matrix element M|q|− 1
2

∓ 1
2
,± 1

2

, which is angle independent. The factor 2|q| is from the prefactor

(2J+1) (for J = |q|−1/2) introduced in the definition of the S-matrix Eq. (4.78). Note that

for future convenience we have used the in-out notation for the physical helicities of incoming

and outgoing fermions denoted as the subscripts M−hin,hout , where hin, hout are helicities in

out-out formalism. In general, one needs a dynamical input to determine M in Eq. (4.92).

However, as we will show in section 4.7 the higher partial waves do not contribute to the

helicity-flip matrix element. When combined with the unitarity conditions (see section 4.8

for a detailed discussion) this implies that

∣∣∣M|q|− 1
2

− 1
2
, 1
2

∣∣∣ =
∣∣∣M|q|− 1

2
1
2
,− 1

2

∣∣∣ = 1 . (4.93)

Since the two helicity-flip processes never occur at the same time (they do or do not happen

depending on the sign of q), we can set them to ∓1. As shown in detail in appendix F, the

lowest partial wave S-matrix Eq. (4.92) with the reduced matrix elements Eq. (4.93) exactly

reproduces the QM calculation of [68].

The result is rather interesting: in the limit of massless fermions, the S-matrix element

is only non-vanishing for processes where the products of fermion helicities, hf and hf ′ ,

with q are positive, hf · q = hf ′ · q > 0 (in the out-out sense). It’s even more striking

once we remember that this discussion is in the all-outgoing convention, and so the physical

interpretation in terms of in-out states is of a positive helicity fermion scattering into a

negative helicity fermion for q < 0, or of a negative helicity fermion scattering into a positive

helicity fermion for q > 0. In other words, our electric-magnetic S-matrix has a selection rule

that tells us that the lowest partial wave always involves a helicity flip! In particular, forward

or elastic scattering is forbidden by our selection rule since it does not flip the helicity of

the fermion. This is the well-known Kazama-Yang result [68], and also the precursor of the
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Rubakov-Callan effect [89, 19] in the scattering of two fermions and a monopole.

4.7 Fermion-Monopole Scattering: Higher Partial Waves

4.7.1 Massive fermions

We now consider the S-matrix elements for the higher partial waves in the fermion-monopole

scattering process. Once again, it is convenient to start with a massive fermion. Following

our derivation of the generalized Clebsch-Gordan coefficients, we have19

BJ ∼
∑
σ

∑
σ′

aσa
′
σ′

〈
f p[σfM

〉 〈
f ′ p[σ

′

f ′M ′

〉
4p2

c

B̃J(−qσ,−qσ′) , (4.94)

where sum is taken over σ = (+,−), σ′ = (+,−), while q+ = q − 1
2
, q− = q + 1

2
. We also

included the coefficients aσ (a′σ) for the two possible tensor structures in the in (out) 3-point

S-matrix elements. The B̃J are given by

B̃J(∆,∆′) =
1

(2pc)2J

(
〈p[−fM |

J+∆〈p[+fM |
J−∆

){α1,...,α2J}
(
|p[−f ′M ′〉

J+∆′|p[+f ′M ′〉
J−∆′

)
{α1,...,α2J}

.

(4.95)

Using Eq. (C.19) from appendix C.1, in the COM frame these become

B̃J(∆,∆′) = (−1)J−∆′ DJ∗−∆,∆′ (Ωc) . (4.96)

19Notice that this result is valid for all J , including the lowest partial wave case J = |q| − 1/2.
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where Ωc = {θc, φc} is the direction of the outgoing COM momenta (we chose the COM

frame such that φc = 0). Here DJ∆,−∆′(Ω) is the Wigner matrix [113, 110]

DJ−∆,∆′(Ω) ≡ DJ−∆,∆′(φ, θ,−φ) = eiφ(∆+∆′) dJ−∆,∆′(θ) . (4.97)

The standard definition of the Wigner d-matrix is dJm,m′(θ) = 〈J,m| exp(−iθJy)|J,m′〉. The

emergence of these specific D-matrices is particularly satisfying, because they also go by

another name: the spin-weighted spherical harmonics qYl,m [115, 92], or monopole harmon-

ics [115, 68]. Specifically20:

Dl∗q,m (Ω) =

√
4π

2l + 1
qYl,m (−Ω) , (4.98)

where −Ω = (π − θ,−φ). Monopole harmonics emerge in the solution of the Klein-Gordon

or Dirac equations in the presence of a background magnetic field of a monopole [115, 68, 16].

It is reassuring to see them arise here in a completely relativistic setting, and based solely

on LG and angular momentum arguments.

The J-partial wave matrix element for the COM scattering of a massive scalar monopole

and a massive fermion is then

SJ = N (2J + 1)
MJ

4 p2
c{

a1a
′
1

〈
f p[−fM

〉 〈
f ′ p[−f ′M ′

〉
DJ∗
q+ 1

2
,−q− 1

2
(Ωc) + a2a

′
1

〈
f p[+fM

〉 〈
f ′ p[−f ′M ′

〉
DJ∗
q− 1

2
,−q− 1

2
(Ωc)

a1a
′
2

〈
f p[−fM

〉 〈
f ′ p[+f ′M ′

〉
DJ∗
q+ 1

2
,−q+ 1

2
(Ωc) + a2a

′
2

〈
f p[+fM

〉 〈
f ′ p[+f ′M ′

〉
DJ∗
q− 1

2
,−q+ 1

2
(Ωc)

}
,

(4.99)

20Our qYlm are defined according to the b-hemisphere definition of [115]
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where the (−1)J−∆′ prefactors have been absorbed into the coefficients a′i, and N ≡
√

8πs .

4.7.2 Massless fermion

We now consider the massless limit for the fermions in the J > |q| − 1
2

partial waves.

The S-matrix Eq. (4.99) contains all of the possible helicity assignments, and so we can

immediately extract the individual helicity amplitudes. For instance, the S-matrix for a

helicity non-flip process f → f is obtained by unbolding the finial state massive fermion

variable, and replacing the initial massive variable with P -conjugate η̂-variable. Under this

replacements, only the second term survives and Eq. (4.99) simplifies significantly to

SJf→f = N (2J + 1) MJ
1
2
,− 1

2
DJ∗
q− 1

2
,−q− 1

2
(Ωc) , (4.100)

where we dropped the
[f p[−fM ]〈f p[−fM〉

4p2c
factor, which equals to 1 in the COM frame. Other cases

can be worked out easily, and the general results are summarized in a compact expression as

SJhin→hout = N (2J + 1) MJ
−hin,hout D

J∗
q−hin,−q+hout (Ωc) . (4.101)

As shown in appendix F, Eq. (4.101) exactly reproduces the angular dependence of the higher

partial wave amplitudes in [68], obtained by a brute force solution of the Dirac equation in

a monopole background.21

21We remind the reader that hin, hout are defined in the all-outgoing convention, and so an incoming
f
(
f̄ †
)

has helicity hin = 1
2

(
− 1

2

)
, while an outgoing f

(
f̄ †
)

has helicity hout = − 1
2

(
1
2

)
. Note also that

the indices on MJ are −hin and hout, such that the labeling of MJ respects particle kind (f or f̄ †) rather
than helicity in the out-out convention: − 1

2 → f and + 1
2 → f̄†. This will be useful to keep in mind when

considering MJ†.
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As in textbook QM scattering in a central potential, our partial wave expansion only de-

termines the angular dependence of each partial wave, while the relative magnitude of the

different partial waves is determined dynamically in the form of phase shifts. For the lowest

partial wave, our selection rule forbids forward scattering, and so the full partial amplitude

was completely fixed by unitarity. In contrast, for the higher partial waves, unitarity alone

does not uniquely determine the amplitude, and some knowledge of the underlying dynamics

is needed to specify the reduced matrix elements. To this end we extract the reduced matrix

elements for the helicity non-flip amplitude from [68]:

MJ
± 1

2
,± 1

2
= e−iπµ, (4.102)

where µ =
√(

J + 1
2

)2 − q2. One can see that these are indeed merely phase shifts, and they

are the only dynamical information needed to completely fix the S-matrix. The unitarity

condition discussed in the next section then leads to

∣∣∣MJ
± 1

2
,∓ 1

2

∣∣∣2 = 1−
∣∣∣MJ

± 1
2
,± 1

2

∣∣∣2 = 0 , (4.103)

so the helicity-flip processes for J > |q| − 1
2

vanish simply because a 100% of the probability

goes to the helicity non-flip process Eq. (4.101).

To emphasize what we have achieved, note that all of the new information gained from the

full solution of the QM scattering problem can be summarized in the phase shift Eq. (4.102).

In this chapter we reproduced everything else based on LG and partial wave decomposition

alone, in a manifestly relativistic setting. In particular, we reproduced the full angular

dependence of all partial waves and the selection rule that requires a helicity-flip in the

lowest partial wave.
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4.8 Partial Wave Unitarity

To complete our analysis of charged fermion scattering off a massive scalar monopole, we

need to discuss partial wave unitarity. Here we follow the standard derivation of partial wave

unitarity given in [83], generalizing it to the electric-magnetic scattering case. Unitarity of

the S-matrix implies

pc
16π2
√
s

∫
dΩm

∑
ab

(
S(fM)i→ab S

∗
(f†M)f→a†b†

)
=

16π2
√
s

pc
δ(Ωc) , (4.104)

where the momenta of fi (Mi) are directed along ±ẑ and the momenta of ff (Mf ) are

directed along ±Ω̂c with the angles (θc, φc). The intermediate states a, b can be either

(fm,Mm) or (f̄ †m,Mm) with their momenta along ±Ω̂m with the angles (θm, φm).22 We now

wish to perform a partial wave expansion of the unitarity relation (4.104), in order to obtain

a partial wave unitarity condition for our S-matrix. We begin by expanding the relevant

S-matrix elements in partial waves, using Eq. (4.101), which we repeat here for completeness:

Shin→hout = N
∑
J

(2J + 1) MJ
−hin,hout D

J∗
q−hin,−q+hout (Ωm) , (4.105)

where N ≡
√

8πs is our usual normalization factor. Note that here, in contrast with the

original Eq. (4.101), the argument of the D-matrix is Ωm rather than Ωc. This is because

we are considering the S-matrix for an in-state with COM momenta along the ẑ axis and an

22Currently, we assume that the complete set of possible intermediate state consists of fermion and
monopole pair {f,M} (with all possible choices of fermion helicity). Of course, it is certainly possible
to have a microscopic theory containing other possible states, e.g. dyon pair, or multi-particle states. How-
ever, note that what the S-matrix method does is to provide S-matrices consistent with the assumption of
spectrum. Indeed, under this assumption, we find results in complete agreement with the full QM calculation
with the same assumption made here.
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out-state along the ±Ω̂m direction. Similarly, we expand the inverse process as

Shin→hout = N
∑
J

(2J + 1) MJ
−hin,hout

J∑
p=−J

DJp,q−hin (Ωc) DJ∗p,−q+hout (Ωm) .(4.106)

This time we need two D-matrices because we start from an in-state in the direction ±Ω̂c and

go to an out-state along ±Ω̂m. The explicit derivation of this particular angular dependence

is presented in appendix C.1. Substituting the above expansions in Eq. (4.104), the unitarity

relation becomes

1

16π2

∫
dΩm

∑
J,J ′

(2J + 1) (2J ′ + 1) ·

{
MJ
− 1

2
,− 1

2
MJ ′†
− 1

2
,− 1

2

DJ∗
q− 1

2
,−q− 1

2
(Ωm)

J ′∑
p=−J ′

DJ ′∗
p,q+ 1

2
(Ωc) DJ

′

p,−q− 1
2

(Ωm)

+MJ
− 1

2
, 1

2
MJ ′†

1
2
,− 1

2

DJ∗
q− 1

2
,−q+ 1

2
(Ωm)

J ′∑
p=−J ′

DJ ′∗
p,q+ 1

2
(Ωc) DJ

′

p,−q+ 1
2

(Ωm)

}
= δ(Ωc) .

(4.107)

We can perform the Ωm integration using the orthogonality condition for DJm,b (Ωm),

∫
dΩm DJ∗a,b (Ωm) DJ ′a′,b′ (Ωm) =

4π

2J + 1
δaa′ δbb′ δJJ ′ . (4.108)

Using this relation, our expression simplifies to

1

4π

∑
J

(2J + 1)
(
MJMJ†)

− 1
2
,− 1

2

DJ∗
q− 1

2
,q+ 1

2
(Ωc) = δ(Ωc) . (4.109)
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Eq. (4.109) is the unitarity relation applied to f + M → f + M scattering. Repeating the

same steps for f, f̄ † in the in and out state, we get the general relation Repeating this

derivation for all other in/out- states, we get

1

4π

∑
J

(2J + 1)
(
MJMJ†)

−hin,hout
DJ∗q−hin,q−hout (Ωc) = δ−hin,hout δ(Ωc) . (4.110)

Multiplying by DJq−hin,q−hout (Ωc) and using Eq. (4.108), we have

MJMJ† = I , (4.111)

where MJ is the 2× 2 matrix representing f or f̄ † in the in / out state, and I is the 2× 2

identity matrix. In other words, the unitarity of the S-matrix leads to the unitarity of each

individual reduced matrix element MJ . This is also the standard result for non-magnetic

amplitudes [83], which leads to the partial-wave unitarity bound [55]. Here we see that it

holds for the electric-magnetic case as well, even though the eigenfunctions of the partial

wave decomposition are modified by the extra angular momentum in the EM field. The

unitarity condition Eq. (4.111) is key in reproducing the full helicity-flip amplitude for the

J = |q|− 1
2

partial wave in section 4.6, as well as the vanishing of the helicity-flip amplitudes

for J > |q| − 1
2

in section 4.7.2 (assuming that the helicity non-flip process is given by

Eq. (4.102)).
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4.9 Conclusions

In this chapter we have initiated the systematic study of electric-magnetic scattering ampli-

tudes, using on-shell methods. We have identified the multi-particle representations of the

Poincaré group that are necessary to incorporate asymptotic states with both electric and

magnetic charges. At the heart of our study is the appearance of a new pairwise LG and

its corresponding pairwise helicity, which describe the transformation of electric-magnetic

multi-particle states relative to the direct product of the one-particle states. This pairwise

helicity is non-zero for a charge-monopole pair and corresponds to the angular momentum

stored in the asymptotic electromagnetic field, which is appropriately quantized if Dirac-

Schwinger-Zwanziger charge quantization is satisfied. This novel pairwise helicity gains a

simple and intuitive implementation in the scattering amplitude formalism, through the

definition of pairwise spinor-helicity variables. We then used the pairwise spinor-helicity

variables to formulate the general rules for building the electric-magnetic S-matrix. In par-

ticular, we were able to classify all 3-particle magnetic S-matrix elements, corresponding to

decays of magnetically charged particles. Many of these electric-magnetic S-matrix elements

are subject to simple selection rules among the spins/helicities and pairwise helicities of the

various particles. In addition, we performed a pairwise LG covariant partial wave expansion

for the generic 2 → 2 fermion-monopole scattering amplitude. For the lowest partial wave,

our LG based selection rules allowed us to derive the famous helicity flip for the lowest partial

wave. Furthermore, the well-known monopole spherical-harmonics appear naturally in our

formalism, and the general results of [68] are fully reproduced up to dynamics-dependent

phase shifts. We never have to introduce a Dirac string, and the resulting S-matrix elements

are always manifestly Lorentz invariant. For monopoles that do not satisfy Dirac-Schwinger-

Zwanziger charge quantization due to kinetic mixing with a hidden sector photon [103] a

separate treatment is needed [105].

Recently the authors of ref. [58] discussed the need for a more careful definition of the S-
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matrix; they define a “hard” S-matrix by evolving the asymptotic states with an asymptotic

Hamiltonian which is not the free Hamiltonian, but allows for the emission and absorption

of massless photons. This evolution builds up a cloud of photons representing the Coulomb

fields of the charged in and out particles. In the presence of both electric and magnetic

charges the Coulomb fields carry additional angular momentum which we have included

explicitly using the pairwise LG. It would be interesting to see how this angular momentum

could be handled in the “hard” S-matrix formalism. It will also be interesting to consider

the double copy relation between dyons and Taub-NUT spaces [21, 80, 69] in light of our

results.
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Chapter 5

Dark Matter Freeze Out during an

Early Cosmological Period of QCD

Confinement

This chapter is heavily based on work previously published in collaboration with Dillon Berger,

Seyda Ipek, and Tim Tait [12].

5.1 Introduction

The identity of the dark matter, necessary to explain a host of cosmological observations, is

among the most pressing questions confronting particle physics today. The Standard Model

(SM) contains no suitable fields to play the role of dark matter, and understanding how it

must be amended to describe dark matter will inevitably provide important insights into the

theory of fundamental particles and interactions. There are a plethora of theoretical ideas

as to how to incorporate dark matter, and exploring how to test them is a major area of
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activity in particle experiment.

Among the various candidates, the class of weakly interacting massive particles (WIMPs)

remains extremely attractive, largely driven by the appealing opportunity to explain their

relic density based on the strength of their interactions with the SM. Provided their interac-

tions are roughly similar to the electroweak couplings, WIMPs are expected to initially be

in chemical equilibrium with the SM plasma at early times, but to fall out of equilibrium

when the temperature of the Universe falls below T ∼ mχ/20, where mχ is the mass of

the WIMP. Provided the mass and cross section for annihilation into the SM are correlated

appropriately [47], the observed cosmological abundance is relatively easily realized.

Vanilla theories of WIMPs are challenged by the null results from direct searches for dark

matter scattering with heavy nuclei [6]. For many generic models of WIMP interactions with

the SM, these searches exclude the required annihilation cross section for masses 1 GeV .

mχ . 104 GeV. While it is possible to engineer interactions that allow for large annihilation

while suppressing scattering (see [108, 24, 54, 50, 14, 64, 2] for a few examples), such limits,

together with those derived from the null observations of WIMP annihilation products [5]

and/or production at colliders [11, 1, 100], suggest that either Nature has been unkind in

choosing which model of WIMPs to realize, or there is tension between realizing the observed

relic density and the limits from experimental searches for WIMPs.

A key assumption under-pinning the mapping of the relic density to WIMP searches today

is that the cosmological history of the Universe can be reliably extrapolated back to the time

of freeze out. The standard picture extrapolates based on a theory containing the SM plus

dark matter (and dark energy), with no other significant ingredients. The success of Big

Bang Nucleosynthesis (BBN) in explaining the primordial abundances of the light elements

could be taken as an argument that it is unlikely that cosmology has been very significantly

altered at temperatures lower than ∼ 10 MeV, but this is far below the typical freeze-out

temperature of a weak scale mass WIMP, which is more typically in the 5-100 GeV range.
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Indeed, it has been shown that an early period of matter domination [57] or late entropy

production [52] can alter the relic abundance for fixed WIMP model parameters, leading

to substantially different mapping between the observed abundance and the expectations of

direct searches.

In this article, we explore a different kind of nonstandard cosmology, in which the strong

interaction described by Quantum Chromodynamics (QCD) undergoes an early phase of

confinement, based on promoting the strong coupling αs to a field, whose potential receives

thermal corrections which cause it to take larger values at early times, relaxing to the canon-

ical size some time before BBN [65, 29]. If the dark matter freeze out occurs during a period

in which αs is larger such that QCD is confined, the degrees of freedom of the Universe

are radically different from the naive extrapolation, being composed largely of mesons and

baryons rather than quarks and gluons. Similarly, the interactions of the dark matter with

the hadrons are scaled up by the larger QCD scale, ΛQCD, leading to a very different anni-

hilation cross section at the time of freeze-out than during the epoch in which experimental

bounds are operative. We find that depending on the underlying form of the dark matter

interactions with quarks, radical departures from the expected relic density are possible.

This article is organized as follows. In Section 5.2, we review the construction of a Universe

in which αs varies with temperature. In Section 5.3 we discuss the chiral perturbation theory

which describes the mesons and their interactions with the dark matter during the period of

early confinement, and in Section 5.4, we examine the relic density under different assump-

tions concerning αs at the time of freeze-out, and contrast with experimental constraints

derived today. We reserve Section 5.5 for our conclusions and outlook.
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5.2 Early QCD Confinement

Following reference [65], we modify the gluon kinetic term in the SM Lagrangian to:

− 1

4g2
s0

Ga
µνG

µν
a ⇒ − 1

4

(
1

g2
s0

+
S

M∗

)
Ga
µνG

µν
a , (5.1)

where Ga
µν is the gluon field strength, S is a gauge singlet real scalar field, and gs0 represents

(after rescaling the kinetic term to canonical normalization) the SU(3) gauge coupling in the

absence of a vacuum expectation value (VEV) for S. M∗ is a parameter with dimensions

of energy which parameterizes a non-renormalizable interaction between S and the gluons.

It could represent the fluctuations of a radion or dilaton field, or by integrating out heavy

vector-like SU(3)-charged particles which also couple to the scalar field S. In the latter case,

the scale of the interaction is related to the mass of the new SU(3)-charged particles via

M∗ ∼ 4πMQ/nQyQαs, where nQ is the number of SU(3)-charged fermions with mass MQ

and Yukawa coupling yQ.

Engineering an early period of confinement, followed by subsequent deconfinement and return

to a SM-like value of αs before BBN imposes constraints on the potential for S, and its

interactions with other fields (which determine the thermal corrections to its potential)

[65]. Generally, mixed potential terms containing the SM Higgs doublet are present, and

these may play an important role in the thermal history [29]. In this work, we remain

agnostic concerning the specific dynamics which implement the shift in vS leading to early

confinement, and we assume that the terms mixing the S with the SM Higgs are small

enough so as to be safely neglected.

A VEV for S generates a non-decoupling correction to the effective strong coupling constant

through the dimension-5 interaction in Equation (5.1), which for negative vs strengthens the
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Figure 5.1: Left panel: Evolution of the strong coupling constant with temperature in the
early Universe for three different values of vs/M∗. Confinement takes place at temperatures
for which αs � 1. Right panel: The scale of QCD confinement, ΛQCD, as a function of the
parameter ξ = exp(24π2/(2Nf − 33)vS/M∗).

effective coupling strength. At one loop and at scale µ, the effective strong coupling is

1

αs(µ, vs)
=

33− 2Nf

12π
ln

(
µ2

Λ2
0

)
+ 4π

vs
M∗

, (5.2)

where Nf is the number of active quark flavors at the scale µ ∼ T . Figure 5.1 shows the

effective coupling as a function of temperature. QCD confinement occurs at a temperature

Tc ' ΛQCD, where

ΛQCD(vs) = ΛSM
QCD e

24π2

2Nf−33
vs
M∗ . (5.3)

Here, ΛSM
QCD ' 400 MeV is the SM value of the QCD confinement scale; we adjust gs0 such

that it is realized for vs = 0.

At scales below confinement, the relevant degrees of freedom are mesons, whose dynamics are

described by chiral perturbation theory, the effective field theory of which is parameterized

by coefficients which depend on ΛQCD. We find it convenient to parameterize the physics in
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terms of the ratio of ΛQCD to ΛSM
QCD,

ξ ≡ ΛQCD

ΛSM
QCD

' exp

(
24π2

2Nf − 33

vs
M∗

)
. (5.4)

The parameter ξ is typically sufficient to completely describe the physics of dark matter

interactions during the period of early confinement.

5.3 Dark Matter Interactions and Chiral Perturbation

Theory

The dynamics of the scenario we study are encoded in the Lagrangian:

L ⊃ −1

4

(
1

g2
s0

+
S

M∗

)
Ga
µνG

µν
a +

∑
q

{
iq̄ /Dq − yq hq̄LqR + H.c.

}
+ Lχ , (5.5)

where Lχ describes the dark matter and its interactions. We introduce a SM-singlet Dirac

fermion field χ to represent the dark matter, and couple it to quarks,

Lχ = iχ̄γµ∂µχ−mχχ̄χ+
∑
ī,j

{
βij
M2

S

χ̄χ q̄iqj +
λij
M2

V

χ̄γµχ q̄iγµqj

}
, (5.6)

where the couplings βij/M
2
S and λij/M

2
V represent operators left behind by integrating out

states with masses � mχ. Generically, one would also expect there to be interactions

with the leptons or the Higgs doublet. We assume for simplicity that such interactions are

subdominant if present.

In the case of the scalar interactions, S itself could act as the mediator, provided it has direct

coupling to the dark matter. In that case, UV-completing will require additional states to
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provide a renormalizable portal to hq̄q, and the dimension six interaction written here will

descend from a dimension seven operator after the SM Higgs gets its VEV. The vector

interactions could represent a Z ′ from an additional U(1) gauge symmetry that couples

to both quarks and dark matter. We will consider cases in which either scalar or vector

interactions dominate over the other one. We follow the guidance of minimal flavor violation

[36] in choosing the couplings such that

βij ≡ ±δij
yi
yu

, (5.7)

which is normalized to the coupling to up quarks, and with an over-all factor absorbed into

M2
S. The possibility of choosing either sign for β will play an important role, described in

5.21 below.

The vector couplings λij are diagonal and have equal values for the up-type quarks, and

equal (but different from the up-type) values for the down-type quarks,

λij ≡


δij, j = u, c, t

(1 + α)δij, j = d, s, b ,

(5.8)

where α determines the difference between up- and down-type couplings. When α = 0, the

vector coupling assigns charges equivalent to baryon number, and the mesons decouple from

the dark matter.

During early confinement, the Universe looks very different from the standard cosmological

picture based on the SM extrapolation. (Massless) quark and gluon degrees of freedom are

replaced by mesons and baryons, and chiral symmetry breaking induces a tadpole for the

Higgs which is relevant for the evolution of its VEV. In order to determine how dark matter
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Figure 5.2: Spectrum of pion masses for two choices of ξ, with vh corresponding to the Higgs
VEV at T = 100 GeV.

interactions are affected by this early cosmological period of QCD confinement, we first give

a description of this era in terms of chiral perturbation theory.

5.3.1 Chiral Perturbation Theory

In the limit ΛQCD � mt, the QCD sector of the Lagrangian for quarks,

L ⊃
∑
q

{
iq̄ /Dq − yq hq̄LqR + H.c.

}
(5.9)

(where h is the SM Higgs radial mode) possesses an approximate global SU(6)L× SU(6)R

chiral symmetry, which is softly broken by the Yukawa interactions. We work in the basis in

which the yq’s are diagonal, for which all flavor-changing processes reside in the electroweak

interactions. Non-perturbative QCD is expected to break SU(6)L× SU(6)R → SU(6)V to

the diagonal subgroup, resulting in 62 − 1 = 35 pions as pseudo-Nambu-Goldstone bosons.

At scales below ΛQCD, the pions are described by a nonlinear sigma model built out of
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U(x) ≡ exp (i2T aπa(x)/fπ), where T a are the SU(6) generators. The leading terms in the

chiral Lagrangian (neglecting electroweak interactions) are

Lch =
f 2
π

4
tr(|DµU |2) + κ tr(UM †

q +MqU
†) , (5.10)

where fπ is the pion decay constant and κ is a constant with mass dimension 3, both of which

represent the strong dynamics. The generators are normalized such that tr[T aT b] = δab/2,

leaving the πa canonically normalized. The mass matrix Mq is a spurion representing the

explicit SU(6)L× SU(6)R breaking from the Yukawa interactions,

Mq =
1√
2
h Diag(yu, yd, ys, yc, yb, yt) . (5.11)

Expanding the field U in Equation (5.10) to second order in π/fπ results in pion mass terms

and a tadpole for the Higgs:

Lch ⊃
√

2κ yt h−
κ

f 2
π

tr[{T a, T b}M ] πaπb , (5.12)

both of which are controlled by κ. (In the tadpole term we keep only the top Yukawa as

the contributions from light quarks are typically negligible.) We match fπ and κ to the SM

pion mass, mπ0 = 135 MeV, and decay constant, fπ0 = 94 MeV at ξ = 1 and vh = v0
h,

where v0
h = 246 GeV is the zero temperature SM Higgs VEV. Naive dimensional analysis

provides the scaling for other values of ξ (for which the tadpole implies there will typically

be a different vh):

κ ' (220 MeV)3 ξ3 , fπ ' 94 MeV ξ, m2
π ' m2

π0 ξ vh/v
0
h, (5.13)

The resulting pion mass matrix is diagonalized numerically to determine the spectrum of

mesons in the mass basis. Example spectra at T = 100 GeV for two different choices of ξ
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are shown in Figure 5.2.

5.3.2 Finite Temperature Higgs Potential

As shown above, a cosmological era of early QCD confinement induces a tadpole for the Higgs

radial mode h. If ΛQCD is comparable in size to the weak scale, this tadpole can deform the

Higgs potential by a relevant amount during the epoch of confinement. In addition, the

plasma contains mesons (rather than quarks), which modifies the thermal corrections to the

Higgs potential from the SM fermions.

We determine the Higgs VEV as a function of temperature by finding the global minimum

of the finite-temperature Higgs potential. We assume that interaction terms between the

Higgs and S are small enough to be neglected. We focus on a cosmological history where

ΛQCD > TEW ∼ 150 GeV, which requires ξ & 300. We further assume that the S potential

is such that there is a lower temperature Td (which we treat as a free parameter) at which

ΛQCD returns to ΛSM
QCD, implying that QCD deconfines and the subsequent evolution of the

Universe is SM-like.

Under these assumptions, the finite temperature potential for the Higgs, V (h, T ) consists of

the tree level SM potential,

V0(h) = −1

2
µ2h2 +

λ

4
h4 , (5.14)

whose parameters are adjusted to match the zero temperature VEV v0
h = 246 GeV and

Higgs mass mh ' 126 GeV. In three different temperature regimes, the form of the finite
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temperature corrections is given as

V (h, T ) =



V0(h) +
T 4

2π2

∑
i=h,W,Z,t

(−1)FniJB/F
[
m2
i /T

2
]

(T > ΛQCD)

V0(h)−
√

2κyth+
T 4

2π2

∑
i=h,W,Z,πa

niJB
[
m2
i /T

2
]

(Td < T < ΛQCD) ,

V0(h) +
T 4

2π2

∑
i=h,W,Z,t

(−1)FniJB/F
[
m2
i /T

2
]

(T < Td) ,

(5.15)

where F = 0/1 for bosons/fermions and ni counts degrees of freedom: nh = nπ = 1, nW = 6,

nZ = 3, and nt = 12. The functions JB/F are the bosonic/fermionic thermal functions,

JB/F
[
m2
i /T

2
]

=

∫ ∞
0

x2 log
(

1− (−1)F e−
√
x2+m2

i /T
2
)

(5.16)

and m2
i (h) are the field dependent masses,

m2
h = −µ2 + 3λh2, m2

W =
g2
W

4
h2, m2

Z =
g2
W

4 cos2(θw)
h2, m2

t =
y2
t

2
h2. (5.17)

We make use of the high temperature expansions of the thermal functions, which are given

as

JB
(
m2(h)/T 2

)
= −π

4

45
+
π2

12

m2(h)

T 2
− π

6

(
m2(h)

T 2

)3/2

+ O
[
m4

T 4
log

(
m2

T 2

)]
,

JF
(
m2(h)/T 2

)
=

7π4

360
− π2

24

m2(h)

T 2
+O

[
m4

T 4
log

(
m2

T 2

)]
. (5.18)

The meson masses in the confined phase are calculated as described in the previous section.

We find that for the values of ξ under consideration, the mesons containing top quarks are

typically much heavier than the temperature during the period of early confinement such
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Figure 5.3: Higgs VEV as a function of temperature T for ξ = 500, 1000 and Td = 10 GeV.
The sudden changes occur at T ' ΛQCD and Td.

that they are Boltzmann suppressed. Hence the dominant thermal corrections are from the

mesons containing bottom quarks. We keep all 35 mesons in our numerical calculations.

At high temperatures, the potential is dominated by the T 2h2 term, driving vh → 0, and the

electroweak symmetry is restored. At T = ΛQCD, chiral symmetry is broken via the quark

condensate, and the tadpole triggers a non-zero Higgs VEV that is larger than v0
h for the

ξ values we consider. At Td, QCD deconfines and the Higgs VEV relaxes to its SM value.

This behavior is shown in Figure 5.3 for Td = 10 GeV and two values of ξ.

5.3.3 Dark Matter Interactions with pions

At leading order in chiral perturbation theory, the interactions with the dark matter map

onto,

κ

M2
S

χ̄χ tr
(
U †β + Uβ†

)
+

i

M2
V

χ̄γµχ tr
(
(∂µU

†) [λ, U ]− [U †, λ†] (∂µU)
)
, (5.19)
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with κ and fπ determined as discussed in Section 5.3.1. Note that because the scalar inter-

action with dark matter is chosen to take the same form as the spurion containing the quark

masses, a single hadronic coefficient κ determines both the pion masses and the dark matter

couplings [9]. Expanding U to second order for Hermitian choices of β and λ produces:

2κ tr [β]

M2
S

χ̄χ+
2κ

f 2
π

1

M2
S

tr[T aT bβ] χ̄χπaπb +
2i

M2
V

fabc tr[T bλ] χ̄γµχ πa(∂µπ
c) . (5.20)

It is worth noting that the strength of the scalar interaction scales as κ/f 2
π ∝ ξ, whereas the

vector-interaction strength is independent of it.

The first term in Equation (5.20) represents a contribution to the dark matter mass induced

by the chiral condensate. At the time of freeze out, the effective mass is given by the sum

of mT=0
χ , which to good approximation is mχ in the Lagrangian (5.6), and this additional

correction that is operative during confinement,

mT=TF
χ = mT=0

χ + ∆mχ , where ∆mχ ' (2 eV) ξ3

(
106 GeV

MS

)2

. (5.21)

For large values of ξ, the effective shift may be a few GeV, and may play a role in determining

the relic abundance for dark masses of O(10 GeV). In Section 5.4 we present our results in

terms of the T = 0 (unshifted) mass relevant for WIMP searches today. For dark matter

masses of O(GeV), the sign of the effective mass term may flip between the time of freeze out

and today due to a sign difference between mχ and β. For sufficiently complicated WIMP

interactions, this could lead to non-trivial interference effects, but for the simple cases we

consider here it is unimportant.
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5.4 Dark Matter Parameter Space

In this section, we consider dark matter freezing out through either the scalar or vector

interactions introduced above during an early cosmological period of QCD confinement.

We contrast with the expectations from a standard cosmology and constraints from direct

searches.

5.4.1 Relic Density

The Boltzmann equation describing the evolution of the density of dark matter in an ex-

panding Universe can be written as [70]:

dnχ
dt

+ 3Hnχ = −〈σv〉(n2
χ − n2

eq) , (5.22)

where nχ is the co-moving number density of the dark matter, and neq is its equilibrium

density at a given temperature. When the interaction rate drops below the expansion rate

of the Universe, H, the dark matter number density stabilizes, leaving a relic of the species

in the Universe today. The relic density can be solved for a non-relativistic species with a

thermally averaged cross section approximated as 〈σv〉 ∼ a + 6b/x where x ≡ mχ/T . The

resulting relic density is:

Ωχh
2 ≈ 1.04× 109

MPl

xF√
g∗

1

a+ 3b/xF
, (5.23)

where g∗ counts the number of relativistic degrees of freedom at freeze-out and h parame-

terizes the Hubble scale. For the standard case of ξ = 1, we have g∗ = 92. In an era of

QCD confinement at T ∼ 10− 100 GeV, the degrees of freedom changes from the standard

scenario since quarks and gluons confine into (heavy) mesons. For the cases we study, this

corresponds to g∗ ' 26 at the time of dark matter freeze-out. The freeze out temperature
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xF = mχ/TF can be solved for iteratively via

xF = ln

(
c(c+ 2)

√
45

8

gχ
2π3

mχMPl(a+ 6b/xF )
√
g∗xF

)
, (5.24)

where gχ = 2 for fermionic dark matter and c = 1/2 approximates the numerical solution

well [70]. The parameters a, b in the annihilation cross section are model dependent. We

compute them in Sections 5.4.3 and 5.4.4 for scalar and vector interactions, respectively.

The preceding discussion assumes that the freeze out takes place during a time of radiation

domination, as is the case for a WIMP in the backdrop of a standard cosmology. It is

generally expected that QCD confinement results in a shift in the vacuum energy of c0Λ4
QCD,

where c0 is a dimensionless constant which naive dimensional analysis would suggest is order

1. The relic density in Equation (5.23) assumes that the subsequent deconfinement of QCD

occurs before the onset of vacuum domination,

ΛQCD & TF & ΛQCD

(
c0

g∗

)1/4

. (5.25)

For c0 ∼ 1, this is a relatively narrow range which would involve some fine-tuning between

the freeze out temperature and ΛQCD for Equation (5.23) to hold. However, the tiny value

of the vacuum energy inferred from cosmic acceleration in the current era could argue that

there is some mechanism at work which dynamically cancels the influence of vacuum energy

in different epochs, which would allow for a much wider period of radiation domination.

5.4.2 Limits from Direct Searches

Direct detection experiments such as XENON provide important bounds on parameter space

based on the null results for dark matter scattering with nuclei. The rate for χ to scatter
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with a nucleus N in the non-relativistic limit is,

σχN =
1

π

m2
χm

2
N

(mχ +mN)2
[Zfp + (A− Z)fn]2 , (5.26)

where Z and A are the atomic number and mass number respectively and fp/n are the

effective couplings to protons/neutrons, given by

Scalar Interaction : fp/n =
1

M2
S

{ ∑
q=u,d,s

f
(p/n)
Tq +

2

9
f

(p/n)
Tg

}
,

Vector Interaction : fp =
1

M2
V

(3 + α) , fn =
1

M2
V

(3 + 2α) , (5.27)

at leading order [98], with hadronic matrix elements fTq, and fTg defined as in references

[60, 79].

5.4.3 Scalar-Mediator Results

It can be seen from Equation (5.20) that the strength of scalar interaction between dark

matter and pions depend on the QCD confinement scale, ΛQCD = ξΛSM
QCD. Consequently, for

dark matter with purely scalar interactions, the relic density is a function of the mediator

scaleMS, QCD confinement scale ΛQCD, and the mass of the dark matter at zero temperature,

mT=0
χ . We consider ξ = 1, 500, 1000, where ξ = 1 represents the standard cosmological

history and the other two choices correspond to ΛQCD = 200, 400 GeV, respectively.

The relic abundance is controlled by the thermally-averaged annihilation cross section at the

time of freeze out (T = TF ) in the non-relativistic limit,

〈σSv〉 =

(
κ

f 2
πM

2
S

)2∑
πa

ω2
a

4π

√
1−

m2
πa

m2
χ

〈v2〉+O(〈v4〉) . (5.28)

Here ωa are the eigenvalues of the 35 × 35 matrix tr(T aT bβ), and the sum is over all the
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Figure 5.4: (Top Left) The thermally-averaged cross-sections at the time of freeze-out as a
function of mT=0

χ plotted for MS = 106 GeV (blue), 107 GeV (green) and ξ =1 (solid), 500
(dashed), 1000 (dotted). (Top Right) Dark matter relic abundance today as a function
of mT=0

χ plotted for MS = 106 GeV (blue), 107 GeV (green) and ξ = 1, 500, 1000. The
horizontal solid line is the observed dark matter abundance. (Bottom Left) The freeze-out
temperature TF as a function of mT=0

χ with MS = 106 GeV, 107 GeV plotted for ξ =1 (solid),
500 (dashed), 1000 (dotted). (Bottom Right) We show the MS values that produce the
observed dark matter relic abundance as a function of mT=0

χ for ξ =1 (solid), 500 (dashed),
1000 (dotted). For β < 0, the line is plotted in red. Shaded blue region is excluded by
XENON1T. See text for details.

pions of mass1 less than mT=TF
χ . Note that scalar interactions lead to p-wave suppressed

annihilation, for which a = 0. The relic abundance today is given by ρχ = mT=0
χ nχ, whereas

the energy density immediately after freeze out is mT=TF
χ nχ. The shift in mχ between the

time of freeze out and the present epoch introduces an additional correction to the relic

1Our choice of couplings βij aligned with the Yukawa interactions leads to diagonal interactions between
the dark matter and the pion mass eigenstates.
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density today:

ΩT=0
χ h2 =

mT=0
χ

mT=0
χ + ∆mχ

ΩT=TF
χ h2. (5.29)

In Figure 5.4, we show the annihilation cross section, relic density today, and freeze out

temperature, for ξ = 1, 500, 1000 and two representative values of MS, as a function of

the dark matter mass today. In the final panel, we show the value of MS for each dark

matter mass (today) required to reproduce the observed relic density, for the same values

of ξ considered. Also plotted on that panel are the current XENON1T constraints [6].

Comparing ξ = 1, the standard cosmological scenario, to ξ = 500, 1000 cases makes it clear

that freeze-out during an early cosmological period of QCD confinement, which can realize

the observed relic density for weaker couplings, can make the difference between a freeze-out

relic WIMP being allowed versus strongly excluded by direct searches.

There are a number of features in Figure 5.4 that warrant further discussion:

• The ξ � 1 lines end when mT=TF
χ ∼ ΛQCD ≡ ξΛSM

QCD, at which point the dark matter

mass is heavier than the QCD scale, and the resulting annihilation would be into quarks

and not into pions.

• For standard cosmology, with ξ = 1, the kink in the annihilation cross section at

mχ ∼ 173 GeV corresponds to the annihilation channel into top quarks opening up.

Similarly, the kinks in the ξ = 500, 1000 lines correspond to new channels into heavier

pions.

• As mentioned earlier, the annihilation cross section is enhanced by the QCD scale.

Therefore this scenario accommodates larger values of the mediator scale, MS ∼

106 GeV, compared to a standard WIMP scenario.

• The effect of the quark-condensate contribution to the dark matter mass can be seen
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in the bottom-right panel. Depending on the sign of β in 5.21, there are two values of

mT=TF
χ which correspond to a single mT=0

χ for modest dark matter masses.

• The bottom left panel implies that a scenario in which the QCD deconfinement brings

the dark matter back into equilibrium with quarks after it has frozen out from inter-

acting with mesons is never realized, for deconfinement happening below a few GeV.

5.4.4 Vector-Mediator Results

For vector interactions, our choice of minimally flavor-violating interactions λij with the

quarks results in leading interactions with a pair of pions, as in Equation (5.20). In the

non-relativistic limit, the thermally-averaged annihilation cross section is,

〈σV v〉 =
35∑

a,b=1

Ωab

24π
m2
χ(1−γab+ρab)

3/2

[
1 +

(
1 +

9

4

γab − 2ρab
1− γab + ρab

)
〈v2〉

2
+O(〈v4〉)

]
(5.30)

summed over pairs of mesons for which mπa +mπb ≤ 2mχ. Note that vector interactions do

not induce a shift in the mass of the dark matter from the chiral condensate. The coupling

matrix Ωab is given by

Ωab ≡
35∑

c,d=1

1

M4
V

fabc tr[T cλ] fabd tr[T dλ] ∝ α2

M4
V

, (5.31)

where we focus on α = 1 for simplicity. The kinematic factors are defined as γab ≡ (m2
πa +

m2
πb

)/(2m2
χ) and ρab ≡ (m2

πa −m
2
πb

)2/(16m4
χ).

In Figure 5.5 we show the resulting annihilation cross section, relic density, and freeze-out

temperature, as a function of the dark matter mass at zero temperature mT=0
χ , for two choices

of MV = 100 GeV, 1 TeV and ξ = 1, 500, 1000, where ξ = 1 corresponds to the standard

picture of freeze-out through annihilation into quarks. In the final panel, we show the value

of MV for each dark matter mass required to reproduce the observed relic density for a given
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Figure 5.5: (Top Left) The thermally-averaged cross-sections at the time of freeze-out as
a function of mT=0

χ plotted for MV = 100 GeV (blue), 1 TeV (green) and ξ =1 (solid), 500
(dashed), 1000 (dotted). (Top Right) The generated relic abundance today as a function
of mT=0

χ plotted for MV = 100 GeV (blue), 1 TeV (green) and ξ =1 (solid), 500 (dashed),
1000 (dotted). The horizontal solid line is the observed dark matter abundance. (Bottom
Left) The freeze-out temperature as a function of mT=0

χ with MV = 100 GeV plotted for
ξ =1 (solid), 500 (dashed), 1000 (dotted). (Bottom Right) Coupling as a function of mT=0

χ

to produce the observed relic density plotted for ξ =1 (solid), 500 (dashed), 1000 (dotted).
Shaded blue region is excluded by XENON1T. See text for details.

choice of ξ.

Unlike the scalar interactions, vector interactions do not get the ξ−enhancement from QCD

confinement. On the contrary the annihilation cross-section is smaller than the standard

WIMP scenario because the annihilation products, namely the new pions, are heavier than

SM quarks at the same temperature in standard cosmology. Hence, the vector scenario does
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worse than the standard WIMP case within this cosmological history.

5.5 Conclusions

The standard picture of freeze out is a compelling picture for the mechanism by which

dark matter is produced in the early Universe, and the primary motivation for WIMP dark

matter. Common wisdom states that the WIMP paradigm is in trouble, but this is the

result of comparing freeze out in a standard cosmology to searches for WIMPs. In this

article, we have explored the possibility that the cosmology looks radically different at the

time of freeze out, in particular exploring the idea that QCD could have undergone an early

period of confinement before relaxing to the behavior observed at low temperatures today.

We find that for a scalar mediator, the dark matter mass is shifted by the chiral condensate,

and its coupling to pions is enhanced during early confinement, allowing for parameter

space which allows for freeze out production while remaining safe from constraints from

XENON1T today, rescuing some of the WIMP parameter space. On the other hand, for a

vector mediator we find that the differences between freeze out during early confinement and

the standard cosmology are more modest, and the entire parameter space remains ruled out

by XENON1T. Our work highlights the fact that a modified cosmology may largely distort

the apparent messages from astrophysical observations of dark matter to inform particle

physics model building.
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Chapter 6

Conclusions

Throughout this thesis, we considered QFTs with two different goals: to study the dynamics

of gauge theories and/or to study possible extensions of the SM which explain phenomena

beyond the SM.

In the pursuit of the dynamics of gauge theories, we examined SUSY QFTs on R4, R3, and

R3 × S1 where the theory on the cylinder interpolates between the 3D and 4D theories. In

Chapter 2, we derived the fundamental zero modes of the KK monopole. The existence of

these zero modes explains how the 4D dynamics imparted by the KK monopole decouples

from the 3D dynamics of the theory to arrive at a truly 3Dtheory, and in some examples,

these zero modes become active in the 4D limit and are necessary to arrive at the correct

instanton-induced superpotential. In Chapter 3, we calculated quantum corrections to the

classical moduli space in 3D SUSY QCD with F < N flavors. These quantum corrections

“smooth out” the boundaries of the classical moduli space, allowing one to connect the

coordinate charts in all regions of the moduli space. When implemented as a Lagrange

multiplier in the superpotential, these corrections explain how the Coulomb branches of the

theory reproduce the appropriate 4D result in the large radius limit on a cyliner and how
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theories with F flavors flow to theories with F − 1 flavors under large mass deformations.

The study of electric-magnetic scattering in Chapter 4 makes progress towards both goals.

The on-shell methods developed in said chapter allow us to calcualte the dynamics in gauge

theories with magnetic charges where little was calculable. In particular, we derive new se-

lection rules for these scattering processes and fully relativistic answers for fermion-monopole

scattering which agree with previous non-relativistic results. Furthermore, this formalism

could help explain phenomena which is a result of magnetic charges in beyond the SM model

building.

Finally, in Chapter 5, we discuss a model beyond the SM which could explain the observed

dark matter abundance. This model consider thermal freeze out in a universe where QCD

experiences an early phase transition. The phase transition ensures that the hadrons are the

active degrees of freedom during thermal freeze out which alters the relationship between

the dark matter couplings, mass, and relic density. While most models of dark matter with

masses and couplings of order the electroweak scale are in tension with bounds from direct

detection experiments, this altered relationship between the dark matter’s observables allows

the model to explain the observed dark matter relic abundance without contradicting direct

detection observations.
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[22] A. Cherman, T. Schäfer, and M. Ünsal. Chiral Lagrangian from Duality and Monopole
Operators in Compactified QCD. Phys. Rev. Lett., 117(8):081601, 2016.

[23] C. Cheung. TASI Lectures on Scattering Amplitudes, pages 571–623. 2018.

[24] M. Cirelli, N. Fornengo, and A. Strumia. Minimal dark matter. Nucl. Phys., B753:178–
194, 2006.

[25] S. Coleman. Aspects of Symmetry: Selected Erice Lectures. Cambridge University
Press, Cambridge, U.K., 1985.

[26] K. Colwell and J. Terning. S-Duality and Helicity Amplitudes. JHEP, 03:068, 2016.

[27] E. Conde, E. Joung, and K. Mkrtchyan. Spinor-Helicity Three-Point Amplitudes from
Local Cubic Interactions. JHEP, 08:040, 2016.

[28] S. F. Cordes. The Instanton Induced Superpotential in Supersymmetric QCD. Nucl.
Phys. B, 273:629–648, 1986.

[29] D. Croon, J. N. Howard, S. Ipek, and T. M. P. Tait. QCD Baryogenesis. 2019.
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Appendix A

Squark Correlation Function

Calculation

This appendix first appeared in work previously published in collaboration with Yuri Shirman

[99].

In this appendix, we discuss the evaluation of the path integral for an SU(2) theory with

one flavor which leads to (3.4). We begin by deriving the instanton-monopole integration

measure, collective coordinates, one loop determinants and all. Then we derive the fermionic

zero mode functions and evaluate the integral. As a preparation for this discussion, let us

recall properties of the single monopole configuration corresponding to the first non-trivial

solution of the classical equations of motion [84, 101]

Aai (r) = εaij
nj

r
F (vr) , σa(r) = vnaH(vr) ,

F (ρ) = 1− ρ

sinh ρ
, H(ρ) =

cosh ρ

sinh ρ
− 1

ρ
.

(A.1)

Such solutions satisfy the lower bound of the Bogomolnyi bound and are exact since the

adjoint scalar has no classical potential. There remain quantum fluctuations of the fields in
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this classical background. Some of these fluctuations do not have a corresponding change in

the action. These are the zero modes of the instanton-monopole. Index theorems guarantee

a certain number of zero modes.

Specifically, the single monopole has four bosonic zero modes: three for the position of the

monopole and one for a left over U(1) transformation. If we add a fermion ψ to the theory,

it also acquires zero modes satisfying

(iDµσ̄µ)ψ = (i∂iσ
i + Aai σ

iT a + σaT a)ψ = 0 , (A.2)

where the number of zero mode solutions and T a depend on the representation of ψ. We

normalize our generators such that Tr(T aT b) = δab/2 in the fundamental representation.

Fermions in the adjoint representation have two zero modes, and fermions in the fundamental

representation have a single zero mode.

A.1 Monopole-Instanton Measure

As discussed in section 3.2, the monopole contribution to the squark correlation function

is (3.1). In this formula, all fields have been expanded around their classical solution

φ = φcl. + φqu.. The quantum fluctuations come in two types: non-zero modes and zero

modes. To leading order, the non-zero mode fluctuations are gaussian and their evaluation

reduces to determinants of ∆− = /Dcl /̄Dcl and ∆+ = /̄Dcl /Dcl. ∆− has zero modes in self-dual

configurations which are excluded from the determinants (denoted with a det′). In 3D, the

contributions of non-zero modes do not cancel even in supersymmetric theories [43, 44]. As

a result, the path integral of the N = 2 theory with F fundamental flavors is proportional

to a factor of (Radj)
3/4 (Rfund)

−F/2, where the ratio of determinants RR for an arbitrary
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representation R is given by

RR =
det ∆+

det′∆−
= lim

µ→0

[
µIR(0) exp

(
−
∫ ∞
µ2

dM2

M2
IR(M2)

)]
. (A.3)

IR(M2) is the generalized zero mode index for representation R. The ratio of non-zero

mode determinants is Radj = (2v)4 for the adjoint and Rfund = v2 for the fundamental

representation [44].

After converting the zero mode integrals to collective coordinates and using zero mode solu-

tions normalized to one, the path integral measure becomes [43]

∫
[Dφ0] =

∫
d3z

(2π)3/2
(Scl)

3/2

∫
dθ

(2π)1/2

(
Scl
v2

)1/2 ∫
d2ξ

∫
dχ

∫
dχ̄ , (A.4)

where z and θ make up the bosonic collective coordinates, and the ξ, χ and χ̄ are Grass-

mannian collective coordinates for the gauginos and quarks respectively. If we expand the

effective squark action in supersymmetric gauge couplings, the correlation function simplifies

to

〈q̄i(x)qi(x)〉 =
(Radj)

3/4(Rfund)
−1/2

2π

(Scl)
2

v
e−Scl

∫
d3z

∫
d2ξ

∫
dχdχ̄

× q̄(x)q(x)

∫
d3y1 (q∗λψ)

∫
d3y2

(
q̄∗λψ̄

)
. (A.5)

Now we turn to deriving the fermionic zero modes.

A.2 Gaugino Zero Modes

Reverting to σa being the fourth component of the four-vector gauge field Aµ, the gaugino

has zero mode solutions resulting from supersymmetry transformations on the monopole
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field configuration

λa [β]
α (r) =

−1√
2

(σµν) β
α F a

µν ≡
√

2(σk) β
α Ba

k(r) , (A.6)

where Ba
k(r) is the kth component of the ath color magnetic field, Ba

k = −1
2
εijkF

a ij, in

monopole background and β labels the two zero modes. Explicit evaluation finds

Ba
k(r) = (δak − nkna)

vH(vr)

r
(1− F (vr)) + nkna

F (vr)

r2
(2− F (vr)) . (A.7)

After normalizing the gaugino zero modes and introducing a dimensionless function B̃a
k(vr) =

1
v2
Ba
k we find

λa [β]
α (r) =

√
g2v3

4π
(σk) β

α B̃a
k(vr) . (A.8)

A.3 Quark Zero Modes

Zero mode solutions for fundamental fermions were found in [66] and are given by

ψiα(r) = (σ2)iαC exp

[
−
∫ r

0

dr

(
v

2
H(vr) +

F (vr)

r

)]
, (A.9)

where C is the normalization constant. In supersymmetric gauge theories, there is a closed

form solution,

ψiα(r) = (σ2)iα

√
v3

8π

tanh vr
2√

vr sinh vr
:= (σ2)iα

√
v3

8π
X(vr) , (A.10)

where X(r) is implicitly defined. Similar solutions for the anti-fundamental modes can be

found by raising indices with the anti-symmetric tensor, εij. Reintroducing the Grassman-

nian coordinate, χ, to the fermion field, the zero mode is (ψ0)iα = ψiαχ.
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A.4 Evalulating the integral

Inserting (A.8) and (A.10) into (A.5) then performing the Grassmann integration and re-

placing the products of squark operators with their Green’s functions,1 one finds

〈q̄i(x)qi(x)〉 =
v2

g4
e−Scl

g2

16π3

∫
d3z

∏
i=1,2

∫
d3yi

e−
v
2
|x−yi|

v|x− yi|
Ω(v|z − yi|) , (A.11)

where Ω(ρ) = δkaX(ρ)B̃a
k(ρ). Shifting the center of integration such that yi → yi + z and

z → z + x, the x dependence drops out. The angular yi integrals can be evaluated and the

integral simplifies to

〈q̄i(x)qi(x)〉 =
v2

g4
e−Sclg2I , (A.12)

where I = 4
∫
dρz
∏

i=1,2

∫
dρiρi(e

−|ρz−ρi|/2 − e−|ρz+ρi|/2)Ω(ρi). Note that the ρi are the di-

mensionless magnitudes of the 3D vectors ρi = v|~yi|. It takes some work, but one can show

that the integrand of I is positive definite and converges quickly. Thus our answer is

〈q̄i(x)qi(x)〉 ∼ g2

(
v2

g4

)
e−Scl , (A.13)

which is non-holomorphic due to the factor of v2/g4. As explained in [44, 86], this non-

holomorphic factor reflects finite renormalization of g2 and can be absorbed into the definition

of the kinetic terms in the low energy theory. After taking this into account, the correlation

function becomes a holomorphic relation between chiral operators YM = g2.

1The integral should be dominated by regions where the squarks are essentially free, massive fields. In
these regions, the Green’s function is q∗i (x)qj(y) = Gji (|x− y|) ∼ δ

j
i e
−v|x−y|/2(4π|x− y|)−1.
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Appendix B

Notation and Conventions for

Chapter 4

This appendix first appeared in work previously published in collaboration with Csaba Csáki,

Sungwoo Hong, Yuri Shirman, Ofri Telem, and John Terning [31].

B.1 Notation

We work in mostly-minus signature (+,−,−,−). Our Pauli matrices are defined as

(σµ)αα̇ = (I , ~σ) , (σ̄µ)α̇α = (I , −~σ) , (B.1)
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where

σ1 =

 0 1

1 0

 , σ2 =

 0 −i

i 0

 , σ3 =

 1 0

0 −1

 . (B.2)

Undotted indices are raised and lowered by the two index epsilon symbol

εαβ = εαβ =

 0 1

−1 0

 , (B.3)

following a northwest-southeast convention:

λα = εαβλβ , λα = λβεβα . (B.4)

Similarly, dotted indices are raised and lowered with

εα̇β̇ = εα̇β̇ =

 0 −1

1 0

 , (B.5)

following a northwest-southeast convention:

λ̃α̇ = λ̃β̇ ε
β̇α̇ , λ̃α̇ = εα̇β̇ λ̃

β̇ . (B.6)
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We define symmetrized products as:

( |a1〉n1 · . . . · |ak〉nk ){α1,...α2J} ≡

N
∑
σk

|a1〉ασk(1) · . . . · |a1〉ασk(n1) · . . . · |ak〉ασk(2J−nk+1)
· . . . · |ak〉ασk(2J) ,

(B.7)

where
∑

ni = 2J , and the sum is over permutations on k elements. We choose the normal-

ization factor to be

N =

[
(2J)!

k∏
i=1

(ni)!

]− 1
2

. (B.8)

This choice of normalization gives us Wigner D-matrices when contracting symmetric prod-

ucts of spinors in the COM frame.

B.1.1 Conventions

The fermions in our paper are all left-handed Weyl, while their hermitian conjugates are

right-handed:

f ≡ LH Weyl , f † ≡ RH Weyl . (B.9)

We work in the all-outgoing convention for the S-matrix, for consistency with the rest of

the scattering S-matrix literature. In practice it means that h = 1
2

(−1
2
) for the initial
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(i.e. originally incoming but crossed to outgoing) LH (RH) Weyl fermions, and h = −1
2

(1
2
)

for the final (outgoing) LH (RH) Weyl fermions.

Reduced matrix elements are labeled as

MJ
−hin,hout (B.10)

in our all-outgoing convention, hin = 1
2

(−1
2
) for incoming f (f̄ †), and hout = −1

2
(1

2
) for

outgoing f (f̄ †). This means that the labels on MJ respect particle identity: MJ
− 1

2
, 1
2

is for

f → f̄ † while MJ
1
2
,− 1

2

is for f̄ † → f , etc.
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Appendix C

Spinor-helicity variables in the COM

frame and in the heavy monopole

limit

This appendix first appeared in work previously published in collaboration with Csaba Csáki,

Sungwoo Hong, Yuri Shirman, Ofri Telem, and John Terning [31].

In the COM frame of a dyon pair i, j we have

pµi = (Ec
i , + p̂c)

pµj =
(
Ec
j , − p̂c

)
, (C.1)
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where p̂c is in the direction given by {θc, φc} and

pc =

√
(pi · pj)2 −m2

im
2
j

s
, Ec

i,j =
√
m2
i,j + p2

c . (C.2)

In this case, the Lorentz transformation Lp taking the reference momenta Eq. (4.13) to pi, pj

is just a rotation

Lp = Rz (φc) Ry (θc) . (C.3)

Acting with the spinor version of this transformation on the reference pairwise spinors

|k[±ij 〉α,
[
k[±ij
∣∣
α̇
, etc. we get

|p[±ij 〉α =
√

2pc | ± p̂c〉α ,
[
p[±ij
∣∣
α̇

=
√

2pc [ ± p̂c|α̇ , (C.4)

where we use “-” instead of − inside the brackets for ease of reading. In the equation above

we use the notation

|n̂〉α ≡

 cn

sn

 , [n̂|α̇ ≡ (cn , s
∗
n)

| -n̂〉α ≡

 −s∗n
cn

 , [ -n̂|α̇ ≡ (−sn , cn) . (C.5)

where sn = eiφn sin
(
θn
2

)
, cn = cos

(
θn
2

)
. In particular, under a parity transformation n̂ ↔
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−n̂, we have

|n̂〉α ↔ − eiφn | -n̂〉α , [n̂|α̇ ↔ − e−iφn [ -n̂|α̇ . (C.6)

The expressions for 〈 ± n̂|α and | ± n̂]α̇ are obtained by raising the spinor indices with εαβ

and εα̇β̇, following the northwest-southeast convention for α and the southwest-northeast

convention for α̇. Explicitly,

〈n̂|α = (sn , − cn) , |n̂]α̇ =

 s∗n

−cn


〈 -n̂|α = (cn , s

∗
n) , | -n̂]α̇ =

 cn

sn

 . (C.7)

Also, since in the center of mass frame p̂i = −p̂j = p̂c , we automatically get the following

relations in the mi → 0 limit

|p[+ij 〉α = | i 〉α ,
[
p[+ij
∣∣
α̇

= [ i |α̇

|p[−ij 〉α =
√

2pc |η̂i〉α ,
[
p[−ij
∣∣
α̇

=
√

2pc [η̂i|α̇ , (C.8)

where |i〉α, [i|α̇ are the standard massless spinor-helicity variables, and |η̂i〉α, [η̂i|α̇ are the

(dimensionless) Parity-conjugate massless spinors that appear in the massless limit of the

massive spinors |i〉Iα, [i|Iα̇ (see [7] for their definition). Consequently, the following contrac-
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tions vanish:

[
p[+ij i

]
=
〈
i p[+ij

〉
=
[
η̂i p

[−
ij

]
=
〈
p[−ij η̂i

〉
= 0[

p[−ij i
]

=
〈
i p[−ij

〉
=
[
η̂i p

[+
ij

]
=
〈
p[+ij η̂i

〉
= 2pc , (C.9)

since [-n̂ | n̂] = 〈n̂ | -n̂〉 = 1. Note that the above equations are Lorentz and LG invariant,

and so hold in any other reference frame as well.

C.1 2 → 2 scattering in the COM frame and Wigner

D-matrices

We now explicitly present the relevant formulas for 2→ 2 scattering in the COM frame. We

take the colliding momenta to be

pµi = (Ec
i , n̂ pc ) , pµj =

(
Ec
j , −n̂ pc

)
p̃µi =

(
Ec
i , k̂ pc

)
, p̃µj =

(
Ec
j , −k̂ pc

)
, (C.10)

where n̂ is in the (θn, φn) direction and k̂ is in the (θk, φk) direction. Later we will specialize

to the case θn = 0 in which the initial momenta point along the ẑ direction. From Eq. (C.5)

we have

〈
-n̂ | -k̂

〉∗
=

〈
n̂ | k̂

〉
= sn ck − cn sk

−
〈
n̂ | -k̂

〉∗
=

〈
-n̂ | k̂

〉
= cn ck + s∗n sk . (C.11)
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where si = eiφi sin (θi/2) , ci = cos (θi/2) for i = n, k. We put a | to separate contractions

involving a “-” for ease of reading. The expression for square brackets are obtained by

[ab] = 〈ba〉∗.

When writing down 2→ 2 electric-magnetic S-matrix elements, we encounter the ubiquitous

spinor contraction

B̃J(∆,∆′) =
(
〈 -n̂|J+∆〈 n̂|J−∆

){α1,...,α2J}
(
| -k̂〉J+∆′ | k̂〉J−∆′

)
{α1,...,α2J}

. (C.12)

By simple combinatorics, this expression simplifies to the sum

B̃J(∆,∆′) =
∑
i

wi

〈
-n̂ | -k̂

〉i 〈
n̂ | k̂

〉i−∆−∆′ 〈
-n̂ | k̂

〉J+∆−i 〈
n̂ | -k̂

〉J+∆′−i
.(C.13)

where the sum is over max(0,∆ + ∆′) ≤ i ≤ J + min(∆,∆′). The coefficients ωi are

combinatoric factors denoting the number of equivalent contractions [67],

wi =

√
J + ∆)! (J −∆)! (J + ∆′)! (J −∆′)!

i! (i−∆−∆′)! (J + ∆− i)! i! (J + ∆′ − i)!
. (C.14)

Note that to get wi we have used our particular normalization for symmetrized products,

Eq. (B.8). Substituting the values Eq. (C.11) in Eq. (C.12), one can check explicitly that

the following relation holds:

B̃J(∆,∆′) = (−1)J−∆′
J∑

p=−J

DJp,−∆ (φn, θn,−φn) DJ∗p,∆′ (φk, θk,−φk) . (C.15)
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DJm,m′ (α, β, γ) is the Wigner D-matrix, defined as

DJm,m′ (α, β, γ) ≡ 〈J,m|R(α, β, γ)|J,m′〉 = e−i (mα+m′ γ) dJm,m′ (β) , (C.16)

where R(α, β, γ) = e−iαJze−iβJye−iγJz is a 3-dimensional rotation operator, and therefore

dJm,m′ (β) ≡
〈
J,m | e−iJyβ | J,m′

〉
. (C.17)

Since our D-matrices always involve γ = −α = −φ, β = θ, we use the shorthand notation

DJm,m′ (Ω) ≡ DJm,m′ (φ, θ,−φ) , (C.18)

where Ω = {θ, φ}. In the particular case where the initial momenta are along the ±ẑ

direction, we have θn = 0, and Eq. (C.15) reduces to

B̃J(∆,∆′) = (−1)J−∆′ DJ∗−∆,∆′ (Ωk) . (C.19)

We make use of this expression in section 4.6, where we consider 2 → 2 electric-magnetic

S-matrix elements in the COM frame.
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C.2 The heavy particle limit

In the mj →∞ limit, Eq. (4.32) leads to very simple expressions for the spatial parts of the

pairwise momenta,

~p [±
ij = ± ~pi . (C.20)

Note that in this limit pi ∼ pc up to O
(
m−1
j

)
corrections. That implies

|p[±ij 〉α =
√

2pc |±p̂i〉α ,
[
p[±ij
∣∣
α̇

=
√

2pc [± p̂i|α̇ , (C.21)

and we are free to use all the expressions derived throughout appendix C for the COM

frame also in any other frame with the substitution p̂c → p̂i. This is correct up to O
(
m−1
j

)
corrections.

164



Appendix D

Definition of the electric-magnetic

S-matrix

In this section we define the S-matrix rigorously following Weinberg [112], making changes

when necessary to adapt to the electric-magnetic case. We work in the Heisenberg picture,

where all of the time dependence is concentrated in the operators rather than in the quantum

states. As in the standard definition of the S-matrix, we separate the full Hamiltonian of

the system into a free and interacting part, as in Eq. (4.24). Note that in the case of electric-

magnetic scattering, the free part H0 and the full Hamiltonian H have different conserved

angular momentum operators,

[
H, ~J

]
=
[
H0, ~J0

]
= 0, ~J 6= ~J0 . (D.1)

This means that the Lorentz group is represented differently on the eigenstates of H and

H0. We’ll return to this point below.
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As a first step towards the definition of the S-matrix, we define the eigenstates |α; free〉 of

the non-interacting part H0 such that,

H0 |α; free〉 = Eα |α; free〉 . (D.2)

The label α denotes the different eigenstates of H0. Since H0 is free, its eigenfunctions are

just direct products (or sums of direct products) of one-particle states,

|α; free〉 =
∏
i∈α

|pi; si; ni〉 , (D.3)

where pi and si are the momentum and spin/helicity of each particle, and ni denotes its

charges and gauge representations.

As in [112], we define our in (out) states as eigenstates of H. Since the interaction V vanishes

asymptotically, the eigenstates of H and H0 coincide, and we can write

H |α; ±〉 = Eα |α; ±〉 , (D.4)

where ‘+’ denotes in states and ‘−’ denotes out states. In Weinberg’s definition, the labels in

(out) define two different eigenbases of H, which differ by their asymptotic forms at t→ ±∞.

From this limiting relation and using J = J0 (valid in his case but not in ours), he deduces

how the Lorentz group is represented on in/out- states, and more importantly, that the in-

and out- representations are identical.

In the case of an electric-magnetic S-matrix, J 6= J0 by the non-vanishing asymptotic value of
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the angular momentum in the EM field. Inspired by Zwanziger [119], we follow an opposite

route to Weinberg, namely, we define our in out states by their different representations

under the Lorentz group, and derive the implications for the S-matrix. The transformation

rule that we impose on our in- and out- states is given in Eq. (4.26), and we repeat it here

for completeness,

U(Λ) |p1, . . . , pn ; ±〉 =
∏
i

D(Wi) |Λp1, . . . ,Λpn ; ±〉 e±iΣ

Ufree(Λ) |p′′1 . . . p′′l ; free〉 =
∏
i

D(Wi)|Λp′′1 . . .Λp′′l ; free〉 , (D.5)

where Σ ≡
∑

i>j qij φ(pi, pj,Λ). We explicitly present the momenta pi of the particles in-

volved but suppress their spin/helicity labels, which are implicit in the LG transformations

D(Wi). The magnetic part of the transformation for in/out-states is evident in the qij de-

pendence of Σ, where qij = eigj − ejgi is the pairwise helicity of each particle pair. In

section 4.2.3 we prove that these transformation rules constitute a unitary representation

of the Lorentz group, by explicitly constructing them through the method of induced rep-

resentations. The transformation rule Eq. (D.5) is a departure from Weinberg’s standard

definition of the S-matrix, in the sense that the Lorentz group is represented differently on

in- and out- sates.

Having defined our in/out states in terms of their representations under Lorentz transfor-

mation, we can now take their t → ±∞ limits to get relations similar to Weinberg’s Eq.

3.1.12. In these limits, we would like to make the statement that our in- and out- states

approach free states, since the interaction term V vanishes for t→ ±∞. However, our naive

expectation is hindered by the extra phases in the transformation of our in- and out-states.
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To compensate for that, we define our compensated free states:

|p′′1 . . . p′′l ; (free±) 〉 ≡ C±(p′′1 . . . p
′′
l ) |p′′1 . . . p′′l ; free 〉 , (D.6)

where C± is a “compensator” function of the momenta which satisfies

C±(p′′1 . . . p
′′
l ) = e±iΣ C±(Λp′′1 . . .Λp

′′
l )

|C±(p′′1 . . . p
′′
l )|

2
= 1 . (D.7)

The compensator functions are unique up to a constant phase, and we can construct them

explicitly from our pairwise spinor-helicity variables, as we demonstrate for the 2 → 2 case

in section 4.8.

Because of the compensator functions, the compensated free states have the same transfor-

mation rule as their in/out- counterparts, so they can serve as the right limits at t→ ±∞.

We now make this statement in a more formal manner. Since we are working in the Heisen-

berg picture, we define time dependent superpositions of in, out, and free states as

|g, t; ±〉 = exp (−iH t)

∫
dα g(α) |α; ±〉

|g, t; (free±)〉 = exp (−iH0 t)

∫
dα g(α) |α; (free±) 〉 . (D.8)

Taking the t → ±∞ limit of our in/out- superpositions, and noting that H → H0 in this
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limit, we get the limiting forms

lim
t→∓∞

|g, t ; ±〉 = lim
t→∓∞

|g, t ; (free±) 〉 . (D.9)

A different way of stating the same relation is the formal expression

|α; ±〉 = Ω(∓∞) |α; (free±) 〉 , (D.10)

where Ω(t) ≡ exp(iHt) exp(−iH0t). This relation should be understood in terms of super-

positions as in Eq. (D.8). The S-matrix is defined as usual as:

Sβα = 〈β; − |α; + 〉 , (D.11)

or equivalently as

Sβα = 〈β; (free−) |S|α; (free +) 〉 , (D.12)

where S ≡ Ω†(∞) Ω(−∞).
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Appendix E

Zwanziger’s Vectors

The first derivation of the LG transformation for electric-magnetic S-matrix elements was

given by Zwanziger for qij = 1 in a seminal paper [119]. Beyond deriving the LG transfor-

mation similarly1 to our section 4.2.3, Zwanziger also defined LG covariant vectors, which he

used to construct manifestly LG covariant S-matrix elements. Unfortunately, Zwanziger’s

vectors were explicitly Lorentz non-invariant, as they have an explicit dependence on an ar-

bitrary direction n̂. This was not a major detractor from his formalism, though, since all of

the n̂ dependence canceled out when taking the absolute value squared of the S-matrix. Our

use of pairwise spinors rather than vectors eliminates this n̂ dependence, up to our choice of

the canonical Lorentz transformation Lp which takes ki,j → pi,j. However, this is no different

from the usual choice of a canonical Lorentz transformation in the standard Wigner method.

The other main detractor from using Zwanziger’s pairwise vectors was the fact that they

have pairwise helicity ±1 rather than ±1
2
, which excludes writing down S-matrix elements

with half integer q. Our formalism closes this gap, and allows us to write down pairwise LG

covariant S-matrix elements in their most general form.

1The main difference between our derivation and Zwanziger’s original derivation is our choice of the
reference momenta ki,j to be the COM momenta rather than the momenta in the monopole rest frame. This
makes our formalism more symmetric and suitable for the introduction of pairwise spinors.
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In this appendix we define Zwanziger’s vectors in terms of our pairwise spinor-helicity vari-

ables, and reproduce his results from section V of [119]. To define LG covariant vectors, we

first pick a reference vector nµ and define:

aµ+ = i

√√√√〈p[+ij |n|p[−ij ]〈
p[−ij |n|p[+ij

] 〈p[−ij |σµ|p[+ij ]
aµ− = aµ∗+ . (E.1)

We’ve constructed these vectors so that (a+ + a−) · n = 0. Additionally, we have a± · pi =

a± · pj = 0. To see this, note that

a+ · pi ∼
〈
p[−ij | i |p[+ij

]
, (E.2)

and since pi is a linear combination of p[+ij and p[−ij the whole expression is zero by the Dirac

equation. By similar arguments a± · pi = a± · pj = 0.

Finally, we reproduce Zwanziger’s Eq. (5.9):

aµ+a
ν∗
+ =

〈
p[−ij |σµ|p[+ij

] 〈
p[+ij |σν |p[−ij

]
aµ−a

ν∗
− =

〈
p[+ij |σµ|p[−ij

] 〈
p[−ij |σν |p[+ij

]
. (E.3)
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Using the identity

〈v|σµ|u] 〈u|σν |v] =
1

v · u
[vµuν + uµvν − (v · u) gµν + i εµνρσ vµuρ] ,

(E.4)

valid for any null vector u, v, we have

aµ± a
ν∗
± =

1

(p[+ij · p[−ij )

[
pµ;[+
ij pν;[−

ij + pµ;[−
ij pν;[+

ij −
(
p[+ij · p[−ij

)
gµν ∓ i εµνρσ p[+µ;ijp

[−
ρ;ij

]
,

(E.5)

or explicitly

aµ± a
ν∗
± = − gµν +

(pi · pj)
(
pµi p

ν
j + pµj p

ν
i

)
−m2

j p
µ
i p

ν
i − m2

i p
µ
j p

ν
j

(pi · pj)2 −m2
i m

2
j

−

∓ i εµνρσ pµ;ipν;j√
(pi · pj)2 −m2

i m
2
j

. (E.6)

This is exactly Zwanziger’s Eq. (5.9). Contracting this with gµν , we see that

−1

2
(a± · a∗±) = 1 , (E.7)

and so ε̂µ ≡ i
2
(aµ+ + aµ∗+ ) and ζ̂µ ≡ 1

2
(aµ+ − a

µ∗
+ ) are two orthonormal vectors, orthogonal to

pµi,j. By definition ε̂ · n = 0.
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To show the LG covariance of aµ±, we follow Zwanziger’s argument. We note that

aµ±(Λpi,Λpj, n) = Λµ
ν a

ν
±(pi, pj,Λ

−1n) . (E.8)

As we Lorentz transform, n, ε̂ remains in the plane orthogonal to pi,j and so is rotated by

the angle φij such that

cosφij = ε̂(Λ−1n) · ε̂(n) . (E.9)

Since ζ̂ · ε̂ = 0 and is also in the ζ̂ same plane orthogonal to pi,j, it is rotated by the same

angle. But since aµ± = iε̂µ ± ζ̂µ, this rotation amounts to a phase factor exp(±iφij) for aµ±.

Summing up, we have

aµ±(Λpi,Λpj, n) = Λµ
ν a

ν
±(pi, pj, n) exp(±iφij) . (E.10)

The last thing to show is that the angle φij is the same LG angle as in Eq. (4.22). But

Zwanziger shows that we can always fix the U(1) ambiguity in the definition of L(pi, pj)

such that:

L(pi, pj)
µ
2 = ε̂µ , (E.11)

and consequently the LG rotation angle is exactly the rotation angle of ε̂.
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Appendix F

Comparison of amplitude formalism

to QM calculations

Here we show that Eq. (4.101) exactly reproduces the angular dependence of the higher

partial amplitudes in [68]. Starting from their partial amplitude

SJf→f = SJf̄→f̄ =

N e−iπµ
µ

cos(θc/2)

[√
4π

2j
qYj− 1

2
,−q(−Ωc) −

√
4π

2j + 2
qYj+ 1

2
,−q(−Ωc)

]
, (F.1)

where −Ωc = (π − θc,−φc) and µ ≡
√

(J + 1
2
)2 − q2. and using the relation Eq. (4.98)

between the qYlm and Wigner D-matrices, we can cast it in the form

SJf→f = SJf̄→f̄ = N e−iπµ
µ

cos(θc/2)

[
DJ−

1
2
∗

q,−q (Ωc) +DJ+ 1
2
∗

q,−q (Ωc)
]
. (F.2)
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Finally we can use D-matrix identities in sec 4.8.2 of [110] to transform this expression to

SJf→f = SJf̄→f̄ =

N (2J + 1) e−iπµ DJ∗
q− 1

2
,−q− 1

2
(Ωc) = N (2J + 1) e−iπµ DJ∗

q+ 1
2
,−q+ 1

2
(Ωc) . (F.3)

Comparing this to the result obtained in our amplitude formalism,Eq. (4.101), implies that

MJ
± 1

2
,± 1

2
= e−iπµ . (F.4)

where µ =
√(

J + 1
2

)2 − q2. Combining this expression with the unitarity condition leads to

∣∣∣MJ
± 1

2
,∓ 1

2

∣∣∣2 = 1−
∣∣∣MJ

± 1
2
,± 1

2

∣∣∣2 = 0 , (F.5)

for helicity-flip J > |g| − 1
2

processes in an agreement with the explicit calculation in [68].
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