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Abstract: Direct photons provide a possibility to test properties of hot matter created in proton–

proton (pp), proton–nucleus (p–A) or nucleus–nucleus (A–A) collisions. As they are created in

charged particles’ scatterings and freely escape the hot region, they provide a tool to test all stages

of the collision: the scattering of the partons of incoming nucleons, pre-equilibrium evolution and

collective expansion of hot quark–gluon matter created in nucleus–nucleus collisions. Comparing

direct photon production in pp, p–A and A–A collisions, one can check the scaling with the number

of binary collisions expected at a high transverse momentum range and obtain insight into the hot

and cold hadronic matter properties with soft photons. The collective elliptic flow of direct photons

is a unique possibility to trace the collective flow formation and space–time evolution of the fireball.

We review the experimental results on direct photon production in pp, p–A and A–A collisions at the

Super Proton Synchroton (SPS), the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron

Collider (LHC) energies and discuss an agreement of theoretical predictions with measurements.

Finally, we present predictions of direct photon spectra and collective flow for lower energy collisions

expected at the Nuclotron-based Ion Collider fAcility (NICA) and the Facility for Antiproton and Ion

Research (FAIR).

Keywords: heavy-ion collisions; direct photons; quark-gluon plasma; NICA; RHIC; LHC

1. Introduction

By measuring different properties of particles created in the ultra-relativistic nucleus–
nucleus collisions, one can study hot quark–gluon matter, which is commonly referred
to as quark–gluon plasma (QGP) [1]. Direct photons are the photons not originating
from hadronic decays but produced in electromagnetic interactions in the course of the
collision. Unlike hadrons, photons do not interact strongly with hot matter and thus provide
information about all stages of the collision, as they are created at different times. At early
times of the collision, prompt direct photons are produced in hard processes involving
partons of incoming nucleons, such as Compton scattering, annihilation, bremsstrahlung
or parton fragmentation. Once an (approximately thermalized) hot quark–gluon matter is
created, thermal direct photons are radiated by it. These photons, having an approximately
exponential spectrum, mainly occupy the low transverse momentum (low-pT) part of the
spectrum (pT . 2–3 GeV/c), while prompt direct photons with a power-law spectrum
dominate the high-pT part. However, the main source of photons, contributing more than
90% of the total photon yield, is the decays of hadrons. This presents a challenge to measure
direct photon spectra and correlations experimentally.

Below, we review available experimental results on direct photon production in high-
energy proton–proton (pp) and proton–nucleus (p–A) collisions and discuss an agreement
of these measurements with predictions of the perturbative quantum chromodynamics
(pQCD) (Section 2). In Section 3, we discuss the direct photon production in nucleus–
nucleus (A–A) collisions and the agreement of theoretical predictions with the experimental
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measurements. Finally, in Section 4, we present predictions of the direct photon production
at the energies of the future hadron accelerator facilities NICA and FAIR and discuss the
peculiarities of the direct photon production at low colliding energies.

2. Direct Photons in High Energy pp and p–A Collisions

Direct photons created in high energy pp, p–A or A–A collisions can be split into two
big classes: prompt direct photons produced in interactions of partons of incoming nucleons,
and thermal direct photons representing the possible emission of hot matter created in the
collision. Direct photons can be measured as the difference between an inclusive photon
yield and a yield of decay photons calculated from the measured spectra of final hadrons,
mainly π0 and η mesons. Technically, this is a complicated experimental task, requiring a
precise measurement of the neutral meson spectra. Instead, at high-pT one can measure
the spectrum of isolated photons, which are defined as photons without accompanying
hadrons in a cone with a typical size of

√

∆φ2 + ∆η2 ∼ 0.4, where ∆φ and ∆η denote the
distance between a hadron and the photon in an azimuthal angle and pseudorapidity. This
condition can be relatively easily implemented in an experiment, dramatically reduces a
contribution of hadronic decays (and also of fragmentation and bremsstrahlung processes)
and allows one to measure the isolated photon production on the event-by-event basis.

The PHENIX experiment was able to measure the spectra of direct and isolated
photons simultaneously in pp collisions at the center-of-mass energy

√
s = 200 GeV [2] and

confirmed the theoretical expectations that at low pT ∼ 5 GeV/c there is a considerable, up
to ∼ 50%, contribution of fragmentation and bremsstrahlung photons, but at high pT ∼ 15,
the GeV/c isolated photon spectrum almost coincides with the direct photon one and can
be used as a good proxy for the direct photon spectrum.

A summary of direct and isolated photon spectra in pp and p–A collisions at different√
s is shown in Figure 1; see [3] for the references to the measured spectra. One can observe

a universal scaling if spectra are plotted as a function of xT = 2pT/
√

s and cross-sections
are scaled by (

√
s/GeV)n, with n = 4.5. First, note that the direct photon spectra measured

with PHENIX, ALICE, E704, E706, NA24, WA70 experiments in this plot follow the same
trend as isolated photon spectra (measurements of ATLAS, CMS, D0, CDF, UA1, UA2, UA6
experiments), confirming that isolated photons provide a good proxy for direct photons at
high xT. Some discontinuity at xT ∼ 3 · 10−3 is related to the comparison of direct photon
spectra containing additional bremsstrahlung and fragmentation contributions at lower
xT and isolated photon spectra at higher xT. The second important observation concerns
the power of n necessary for this scaling. The operator product expansion [4] allows one
to classify processes according to a power of the hard scale. It suggests that for the 2 → 2
processes, the leading twist process should provide scaling n ∼ 4, and contributions of the
higher twist processes increase this power. The observed scaling with n = 4.5 for photons
supports these speculations and appears to be smaller than the similar scaling of high-
pT hadron production [5], which led to the conclusion of the importance of higher-twist
processes [6].

The yield of prompt direct photons can be calculated within perturbative QCD using
structure functions of incoming nucleons, textbook cross-sections of parton scatterings and
fragmentation functions of final partons. However, these calculations strongly underesti-
mate the experimental results. A theoretical description of prompt photon production was
dramatically improved thanks to the efforts of A.P. Contogouris et al. [7] and Gordon and
Vogelsang [8], who proposed a technique to perform threshold and recoil resummations.
These resummations were implemented in the Jetphox package [9], which demonstrated
a good agreement with the data available at that time (see the review of measurements
at SPS, Tevatron proton-antiproton collider (Tevatron) [10] and Hadron-Electron Ring
Accelerator (HERA) [11]). A detailed comparison of the recent measurements of the iso-
lated direct photons in pp collisions at the LHC energy is presented in Figure 2. The left
plot represents measurements of the ATLAS collaboration in four rapidity regions up to
very high pT ∼ 2000 GeV/c. ATLAS data are compared to next-to-leading order (NLO)
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calculations [10,12] with two recent parameterizations of structure functions and to next-to-
next-to-leading order (NNLO) calculations [13]. The data agrees with the calculations with
accuracies of about 10%. The right plot in Figure 2 shows the comparison of the low-pT part
of the isolated photon spectra measured by 3 LHC collaborations to theoretical predictions.
Note that the definition of the isolated photons is slightly different from one experiment
to another, and theoretical calculations are adjusted, respectively. Due to the dedicated
design of the apparatus, ALICE was able to extend the previous measurements down to
pT ∼ 10 GeV/c.
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Figure 1. World data compilation of xT-scaled direct and isolated photons spectra in pp(p̄) (left) and

p–A (right) collisions. See [3] for the references to the measured spectra.

An extraction of prompt direct photons in p–A or A–A collisions proves that the
very beginning of the p–A or A–A collision can be modelled as a combination of the Ncoll

nucleon–nucleon collisions, where the number of binary collisions Ncoll can be estimated
from the Glauber model [14]. Moreover, it allows one to constrain the possible modification
of the nucleon structure functions in the nuclei. Note that if one uses pp data to estimate
the prompt photon yield in A–A collisions at the same energy, one should take into account
the isospin difference between protons and neutrons, which results in some decrease in the
yield in A–A collisions at high xT compared to the scaled pp spectrum [2]. Examples of di-
rect photon spectra measured in Au–Au collisions at the center-of-mass energy per nucleon
pair

√
s

NN
= 200 GeV (left) and Pb–Pb collisions at

√
s

NN
= 2.76 TeV (right) are presented in

Figure 3. At the high-pT part of the spectra, data are reproduced either by pQCD calcu-
lations or spectra measured in pp collisions at the same energy scaled with Ncoll. Other
measurements at LHC energies made by ATLAS [15] and CMS [16] collaborations also
demonstrate a good agreement between measurements and Ncoll-scaled pp predictions at a
high-pT region.
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Figure 3. (Left): Direct photon spectra measured in Au–Au and pp collisions at
√

sNN = 200 GeV [19].

(Right): Direct photon spectrum in Pb–Pb collisions [20] at
√

sNN = 2.76 TeV.

3. Thermal Photon Production in High-Energy A–A Collisions

As it was discussed in the previous section, direct photon spectra measured in A–A
collisions at RHIC and LHC energies, shown in Figure 3, demonstrate an agreement with
prompt photon expectations at high-pT. At the same time, in the left plot one can clearly
observe an excess of direct photons over the scaled pp yield at pT < 3 GeV/c. This excess is
interpreted as a yield of thermal direct photons. In the right plot of Figure 3, a comparison
of the direct photon spectra measured in Pb–Pb collisions at

√
s

NN
= 2.76 TeV with several

models is presented. All models include the prompt photon contribution dominating at
high pT and thermal photon contribution. Theoretical calculations of thermal direct photons
include either a hydrodynamic description of the evolution of hot matter (Paquet et al. [21],
v. Hees et al. [22], Chatterjee et al. [23]) or the transport model PHSD (Parton-Hadron-
String Dynamics) [24], with an accounting of the direct photon production. The measured
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direct photon spectrum is somewhat higher than the model predictions, but is consistent,
however, with the uncertainties.

The systematic comparison of the direct photon spectra measured in Au–Au collisions
at

√
s

NN
= 200 GeV by PHENIX [25] and STAR [26] collaborations and preliminary ALICE

results on Pb–Pb collisions at
√

s
NN

= 5.02 TeV with predictions of the same hydrodynamic
model is presented in Figure 4. While STAR and preliminary ALICE results are consis-
tent with the model predictions within uncertainties, the PHENIX measurements show a
2–4 times higher yield, both with respect to the STAR measurements at the same energy
and hydrodynamic model predictions. The reason of this tension between two experiments
is not clear so far. PHENIX implemented several experimental techniques to extract the
direct photon spectrum: the internal conversion method [27] consists of the measurement
of the di-electron invariant mass distribution at low mee < mη and the extrapolation of the
excess of virtual photons over the cocktail to the real photon spectrum using the Kroll-Wada
relation [28]. The same method was used by the STAR collaboration in [26]. Moreover, the
PHENIX utilized photon reconstruction in the electromagnetic calorimeter or via an e+e−

pair produced as a result of a photon conversion on the detector material. Recently, PHENIX
presented final direct-photon spectra in Au–Au collisions at

√
s

NN
= 200 GeV from the

high-statistics 2014 data set [25]. A significant excess above the direct photon spectrum in
pp collisions at

√
s = 200 GeV scaled by the Ncoll is observed, and an agreement between

different methods was confirmed.

ALI-PREL-524131

Figure 4. The ratio of direct photon spectra measured in Au–Au and Pb–Pb collisions for the

hydrodynamic model predictions [29].

As the thermal photon yield was observed in A–A collisions at different energies, one
can calculate the dependence of the integrated direct photon yield on the charged particles’
multiplicity. The PHENIX collaboration performed a systematic study of direct photon
production in Au–Au and Cu–Cu collisions at

√
s

NN
= 39, 64, 200 GeV. In all colliding

systems, an excess of direct photons was observed. The summary of the integrated di-
rect photon yield (dNγ,dir/dy) vs. charged particles’ multiplicity ((dNch/dη)) is shown in
Figure 5. Data agrees with power-law scaling dNγ,dir/dy ∝ (dNch/dη)α with the power

parameter α = 1.11 ± 0.02 (stat) +0.09
−0.08(syst) [25]. The dashed line fits the previously pub-

lished data, which provided α = 1.23 ± 0.06 (stat) ±0.18(syst) [30], and the magenta band
represents a fit to the Ncoll scaled pp data.

As different stages of hot matter evolution can contribute to different pT ranges, it is
interesting to study the dependence of the integrated direct photon yield, starting from sev-
eral minimal pmin

T , on the charged particles’ multiplicity. Hydrodynamic calculations [31]
predicted that the thermal emission from the hadron gas (HG) and from the QGP scale
as αHG ≈ 1.23 and αQGP ≈ 1.83, respectively, while hard scattering contribution scales as
αpQCD ≈ 1.25. Thus, one could expect a strong pmin

T dependence of the power parameter.
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PHENIX, however, found that the α(pT) is independent on pT and equal to α ≈ 1.1; see
Figure 6, left plot. This value is smaller than the power parameter α ≈ 1.6 expected for
thermal photons; see Figure 6 in [31]. Thus, the low value of α may be related to an addi-
tional source of direct photons in these measurements, but uncertainties are still too large
to make a firm conclusion here.
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The effective temperature of thermal photons can be obtained as the inverse of the
slope of the exponential function that best fits to the pT distributions in the low-pT region.
PHENIX extracted the inverse slope parameter Teff in two fit ranges for various centralities
(see Figure 6, right plot). The inverse slope parameter is independent of the centrality but
increases with increasing pT. The possible explanation of this dependence is an increase in
the early-time contribution with high temperature at larger pT. This slope can be compared
to the ALICE measurements in 0-20% centrality class Pb–Pb collisions at

√
s

NN
= 2.76 TeV

in the fitting range 0.9 < pT < 2.1 GeV/c: Teff = 297 ± 12(stat) ± 41(syst) MeV. The
temperature extracted at LHC is slightly greater than that obtained by PHENIX in Au–Au
collisions at

√
sNN = 200 GeV.
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3.1. Direct Photon Elliptic Flow

Measurement of azimuthal anisotropy of particle production is a powerful tool to
study initial conditions, time-space evolution and transport properties of the system.
Collective flow is described with Fourier series coefficients vn of particle yield with respect
to the reaction plane angle. The elliptic flow, quantified by the second order coefficient,
v2 originates from the fact that the initial spacial anisotropy of the colliding nuclei is
transformed to the final anisotropy in momentum space via strong interactions in the
dense matter.

Direct photon elliptic flow was measured for the first time in Au–Au collisions at√
sNN = 200 GeV by the PHENIX collaboration [32] and was found to be similar in

magnitude to the elliptic flow of hadrons. This similarity can be explained neither with
hydrodynamic nor with transport models, which commonly predict considerably lower
values of v2 for direct photons as a significant part of thermal photons, and is emitted at
early times when the collective flow is still developing; see Figure 7. This finding, usually
referred to as a “direct photon puzzle”, is widely debated in the literature [33].

Figure 7. (Left plot): Direct photon flow v2 measured in Au-Au collisions at
√

sNN = 200 GeV [34]

with calorimeter (black) and photon conversion method (green), compared to phenomenological

calculations (dark violet and cyan) [35], PHSD transport model (magenta) [36], magnetic field

effect (black) [37], and hydrodynamic calculations (red, orange, and pink) [21,31]. (Right plot): the

direct photon elliptic flow measured in Pb–Pb collisions at
√

sNN = 2.76 TeV [38] compared to the

hydrodynamic [21,39] and PHSD transport model [40] calculations.

The ALICE collaboration measured the direct photon elliptic flow in Pb–Pb collisions
at

√
sNN = 2.76 TeV in two centrality classes, 0–20% and 20–40% [38]; see Figure 7. The

direct photon elliptic flow was found to be similar in magnitude to the elliptic flow of
decay photons and systematically larger than predictions from hydrodynamic or transport
models, although large systematic uncertainties of the measurements prevent us from
drawing strong conclusions.

Several ideas were proposed to explain this puzzle. One of the most exciting models [41]
predicts that the presence of a strong magnetic field at the very beginning of an A–A
collision results in the creation of Landau levels for quarks and a characteristic dependence
of the direct photon elliptic flow due to transitions between these levels: for sufficiently
small pT . |eB|, the elliptic flow of thermal photons becomes negative. This prediction
differs from the one in any hydrodynamic or transport calculations that predict positive v2

for any pT. In order to discriminate between these scenarios, an extension of measurements
to the lower pT is required.
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3.2. Direct Photons in Small Systems

One of the exciting open questions in the direct photon production is, do we observe
thermal photon emission in small systems, such as pp or p–A collisions? How small can
the system be to still be able to emit thermal photons? Prompt photon emission is clearly
detected in all measured pp and p–A collisions, but it is not clear whether some excess of
thermal photon emission at low pT was observed. The PHENIX collaboration presented
preliminary results on the direct photons’ nuclear modification factor, defined as

Rp+Au =
dN

p+Au
γ,dir /dpT

Ncoll dN
pp
γ,dir/dpT

which shows some excess of direct photons at low pT in the Minimum Bias and slightly
more significant excess in 0–5% of the most central p–Au collisions [42]; see Figure 8. Both
observed excesses are still within a 2σ deviation from the unity and should be considered
as a hint of a possible physical effect.

Figure 8. Nuclear modification factor Rp+Au for direct photon production in Minimum Bias (left) and

0–5% of the most central (right) p–Au collisions at
√

sNN = 200 GeV. Ref. [42] compared to predictions

of hydrodynamic model [43].

The ALICE experiment measured direct photon excess Rγ = Nincl.
γ /N

decay
γ as a func-

tion of the photon pT in the Minimum Bias (left) and 0–20% of the most central (right) p–Pb
collisions at

√
s

NN
= 5.02 TeV; see Figure 9. At high pT, the observed excess over the unity

agrees with the prompt photon contribution shown as NLO pQCD in the figure. However,
at low pT, the data agree both with the hydrodynamic calculation predicting the thermal
photon yield (Shen et al. [44]) and with the unity, which corresponds to the absence of the
thermal emission. So far, there is no clear evidence found of the thermal photon emission
in small systems, such as the high-multiplicity pp or p–A collisions.
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Figure 9. Direct photon excess Rγ = Nincl.
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decay
γ as a function of photon pT in Minimum Bias (left)

and 0–20% of the most central (right) p–Pb collisions at
√

sNN = 5.02 TeV.
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4. Direct Photons at Low Colliding Energies

Prompt photon production at NICA and FAIR energies will be a probe to structure
functions in a high-x region, where they are relatively poorly constrained. To estimate
uncertainties of the pQCD calculations of the prompt photon yield at NICA energies,
we used Jetphox NLO pQCD calculations [9] with several recent parameterizations of
the proton or nuclei structure functions; see Figure 10. The left plot represents the ratio
of the prompt photon yield calculated using the proton structure functions (CT18 [45],
NNPDF3.1 [46] and ABMP16 [47]) divided by the calculation with MMHT14 [48]. The
right plot is the similar ratio but with 208Pb nuclei structure functions nCTEQ15 [49],
EPPS16 [50], nNNPDF2.0 [51] and TUJU16 [52]. At a low pT < 1 GeV/c, the difference
between predictions is modest and reaches a few tens of percents, but rapidly increases
with pT and can reach a factor of ∼ 10 at pT ∼ 1.5 GeV/c. Therefore, measurements of
prompt photons in pp collisions at NICA and FAIR energies will provide strong constraints
for structure functions at high x.
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Figure 10. Ratio of prompt photon spectra calculated in pp (left) and A–A (right) collisions at
√

sNN = 5 GeV with Jetphox package and several recent parameterizations of structure functions.

First, measurements of the direct photon production in relativistic heavy-ion collisions
were performed in the experiment WA98 at SPS [53]. A large excess of the direct photon
yield was observed, see Figure 11. Thanks to almost zero material budget between the
calorimeter and the interaction point and fixed target setup of the experiment, this mea-
surement covered a pT range, from 0.5 to 4 GeV/c (providing only the upper limits of direct
photon yield in the range 0.5 < pT < 1.5 GeV/c). Unfortunately, there is no measurement
of direct photons in pp or p–A collisions at the same energy, and the WA98 collaboration
had to scale the available data to the necessary energy. An excess of direct photons over the
scaled p–A data was observed, which can be interpreted as the thermal photon emission.

To calculate the direct photon yield and collective flow of vn for NICA and top FAIR
energies (

√
s

NN
= 5 and 11 GeV), we use a description of the dynamics of a heavy-ion

collision with the Ultra-relativistic Quamtum Molecular Dynamics (UrQMD) model [54]
version 3.4. This model uses the non-equilibrium dynamics of hadron strings in the
initial state followed by a hadron re-scattering. An option to describe the thermalized
system with ideal fluid dynamics is implemented within the latest versions of the UrQMD
model [55]. In our calculations, the “Bag model” equation of state was used. It was shown
in [56] that the contribution to the direct photon spectrum from the non-equilibrium initial
stage and from the stage after the freeze-out in the pT range below 3 GeV/c for the “Bag
model” option is small. Direct photon production rates of the hadronic gas [57] and of the
quark–gluon plasma [58] are implemented to evaluate the thermal photon yield. Finally,
we verified that the model reproduces the thermal photon yield calculations for higher
colliding energies [56,59] and in particular, reproduced WA98 measurements.
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Spectra of direct photons, π0 mesons, and decay photons calculated in Au–Au colli-
sions at

√
s

NN
= 11 and 5 GeV, are shown in Figure 12. The impact parameter for these

simulations was distributed within the range 0 < b < 4.5 fm, which corresponds to about
0–10% centrality. The blue band around the direct photon spectra represents the amount
of event-by-event fluctuations (RMS) in the direct photon yield due to fluctuations of the
initial state of the collision. The direct photon excess factor Rγ for the same collisions
is presented in Figure 13. The expected excess of direct photons on the level of 3–5% is
challenging, but, it is a realistic experimental task.
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Figure 11. Direct photon spectrum measured in 20% central Pb–Pb collisions at
√

sNN = 17.3 GeV.

Figure 12. Simulated spectra of direct photons, spectra of π0 mesons, and spectra of their decay

photons in Au–Au collisions at
√

sNN = 11 GeV (left) and 5 GeV (right). Impact parameter is

generated within 0 < b < 4.5 fm. Red points correspond to calculations of central Au–Au collisions at

beam energy of Elab = 15A GeV from [59].
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The dependence of the directed and elliptic collective flow of direct photons v1 and v2

on rapidity is shown in Figures 14 and 15 for Au–Au collisions at
√

s
NN

= 11 and 5 GeV.
The directed flow v1 is found to have a similar dependence on the rapidity to the one
predicted for charged hadrons (e.g., protons) at the same center-of-mass energies [60]. The
blue bands represent the RMS of event-by-event variations of flow due to fluctuations in
the initial state. Variations are found to be larger in collisions with

√
s

NN
= 5 GeV than

for
√

s
NN

= 11 GeV. One of the interesting measurements at NICA would be to explore
correlations between the direct photon and hadron directed and elliptic flow to trace how
fluctuations in the initial state influence hadron collective flow.
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5. Conclusions

Direct photons created in A–A collisions can be split into prompt and thermal photons.
Prompt direct (as well as isolated) photon production is a powerful tool to test perturbative
QCD predictions, parameterizations of structure functions, and control the initial state
of A–A collisions. Measurements in pp and p–A collisions at low and high energies are
consistent with NLO pQCD calculations. Thermal direct photons appear as an excess
of direct photons over prompt direct photon contribution in the low-pT range. Presently,
WA98, PHENIX, and ALICE confirmed an excess of thermal radiation in A–A collisions and
estimated the effective temperature of the quark–gluon plasma. No thermal photon excess
in minimum bias or high multiplicity pp collisions was observed. Thermal photon excess in
p–A collisions is not yet confirmed. The direct photon collective flow provides information
on the evolution of the QGP and flow formation mechanisms: the direct photon elliptic
flow measured by the PHENIX collaboration is large and not reproduced by hydrodynamic
or transport models. A similar measurement of the ALICE collaboration seems to support
this conclusion, but the uncertainties are too large to make a firm conclusion.

The results on direct photon production at NICA and FAIR energies are well antici-
pated. These measurements will provide constraints on proton and nuclear PDFs, signal
about QGP formation through thermal photon excess and suggest possible hints for a
critical point in the QCD phase diagram. We presented hybrid model calculations for direct
photons’ yield and flow at NICA and FAIR energies. Thermal direct photons excess at
the top NICA energy (

√
s

NN
= 11 GeV) is expected on the level of 5% in 0-10% centrality.

Predictions for direct and elliptic flow of direct photons are also presented.
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