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Abstract: We analyze conditions for a tri-vector deformation of a supergravity background to preserve
some supersymmetry. Working in the formalism of the SL(5) exceptional field theory, we present
its supersymmetry transformations and introduce an additional USp(4) transformation to stay in
the supergravity frame. This transformation acts on local indices and deforms BPS equations of
exceptional field theory. The requirement for the deformation to vanish is the desired condition. The
condition is shown to be consistent with previous results on bi-vector deformations.
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1. Introduction

Gauge/gravity duality, in its most general form, sets up a correspondence between so-
lutions to supergravity equations of motion and gauge theories. The most well-understood
example is the AdS/CFT correspondence that is an equivalence between gravitational
degrees of freedom on the AdS5 × S5 background of Type IIB string theory and N = 4
d = 4 super Yang–Mills theory, which is a superconformal gauge theory. The correspon-
dence origins from the equivalence of two descriptions of the D3-brane: as a supergravity
solution in terms of closed strings and as a world-volume theory in terms of open strings [1].
Another well-known example is the correspondence between an AdS4 × S7 background
of 11-dimensional supergravity and the so-called ABJM theory [2], which is a N = 6
3-dimensional Chern–Simons superconformal theory with gauge group SU(N), describing
the world-volume theory of a stack of N M2-branes. These are particular examples of
the more general observation [3] that the partition function of a theory with particular
boundary data (given a boundary can be defined) can be rewritten as a partition function
of a different theory:

∫

Φ(∂M)=J
DΦe−iS[Φ] = eW[J] =

∫

Dφe−iS̃[φ]−iφJ . (1)

Here J represents the values of the fields Φ on the boundary ∂M of the d + 1-dimensional
space-time M, and φ denotes fields of the dual d-dimensional theory. The expression
above might seem trivial as it is simply a sort of Laplace transformation of the effective
action W[J]. The non-trivial part here is to determine whether the expression S̃[φ] can be
interpreted as an action for a sensible theory. In addition to the examples above, which are
pretty complicated and are based on string theory, one finds pairs of less involved theories:
(see [4] and references therein).

Due to its generality, the prescription (1) is not very suitable for searches of new pairs
of dual theories, for which reason more algorithmic approaches become of particular inter-
est. From the supergravity side, a powerful instrument is provided by solution-generating
techniques based, in particular, on (non-abelian) T(U)-dualities and Yang–Baxter deforma-
tions. As an example, one may mention the Lunin–Maldacena solution to the supergravity
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equation that is obtained by a T-duality coordinate shift and T-duality (TsT) of the AdS5 × S5

background [5]. This is known to be dual to the so-called β-deformation of Leigh–Strassler.
The latter belongs to the most general superconformal three-parametric deformation of
N = 4 d = 4 SYM theory preserving N = 1 supersymmetry [6]. The Lunin–Maldacena
deformation is a particular case of the so-called Yang–Baxter bi-vector deformations that,
for a given set of at least two Killing vectors {kα

m} of the initial background (g, b), can be
written as (for the NS-NS sector) [7–9]

(g′ + b′)−1 = (g + b)−1 + β,

φ′ = φ− 1
4

log
det g

det g′
.

(2)

Here βmn = rαβkα
mkβ

n is the bi-vector proportional to a constant matrix rαβ. The r-matrix
is required to satisfy the classical Yang–Baxter equation and the so-called unimodularity
constraint in order for the deformation to generate a solution

rβ1[α1 rα2|β2| fβ1β2
α3] = 0,

rαβ fαβ
γ = 0.

(3)

Concluding that the formalism of (generalized) Yang–Baxter deformations serves as a use-
ful tool for generating supergravity backgrounds, one becomes interested in interpreting
the generated solution terms of dual field theories. A general rule can be implemented
that a Yang–Baxter deformation on the field theory side is realized as a Drinfeld twist,
corresponding to the given r-matrix [10,11]. At this step, it is important to determine
whether a deformed supergravity solution preserves any of the supersymmetries of the
initial one. For bi-vector deformation, determined by an r-matrix rab satisfying a classical
Yang–Baxter equation, this question was investigated in the works [12,13], where a condi-
tion for deformation to preserve supersymmetry has been proposed. This is a non-linear
differential condition on the bi-vector βmn that has first been derived explicitly for abelian
deformations and then conjectured to be valid for non-abelian deformations. The conjecture
has been successfully checked against various examples.

When uplifted to 11-dimensional supergravity describing M-theory backgrounds,
bi-vector deformations must naturally be generalized to tri-vector deformations, which has
already been observed in [5] for the abelian case. Since then, tri-vector deformations have
been studied in a number of papers [12,14–18] and further from the point of view of the
exceptional Sasaki–Einstein geometry in [19]. A description of tri-vector deformations in
terms of symmetries of exceptional field theories, together with some explicit examples, was
first presented in [20,21]. A more systematic approach was developed in [22] that allowed
the fact that tri(six)-vector deformations always give solutions to supergravity equations
given a generalization of the classical Yang–Baxter equation is satisfied was shown. In
this work, we continue this study and derive a condition for a tri-vector deformation
to preserve supersymmetry. The main idea is to observe that when the fermionic sector
of exceptional field theory (ExFT) is included, a tri-vector deformation, that is, an Ed(d)

transformation, must be accompanied by a local transformation K that is an element of
the maximal compact subgroup of Ed(d). The reason is that a tri-vector deformation spoils
the upper-triangular form of the generalized vielbein, thus moving the theory out of the
supergravity frame. The latter is defined as the parametrization of the generalized vielbein
and other fields of ExFT in terms of the supergravity fields, i.e., the metric and the 3-form
field. To restore the upper-triangular form, one has to perform an additional transformation,
which depends on the tri-vector and background fields and acts non-trivially on fermions
in general. The bosonic sector of exceptional field theory can be formulated purely in terms
of a generalized metric that is a scalar under such transformation, and hence no additional
rotation is needed. Hence, the criterion for deformation to preserve supersymmetry is that
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the transformed Killing spinor ǫ′ = K · ǫ is again a Killing spinor, which eventually boils
down to a condition on K and hence on the tri-vector.

For simplicity, we work in the SL(5) exceptional field theory and restrict ourselves to
backgrounds of the form M4 ×M7, where the deformation is performed on Killing vectors
of the 4-dimensional manifold M4. This is the same truncation as has been used in [21] to
define deformations and earlier in [23] to generate a non-geometric U-duality partner of
the M2-brane. To investigate BPS equations, we construct supersymmetry transformation
rules for the theory following the same ideas as in [24,25], where supersymmetric versions
of the E7(7) and E6(6) ExFT’s have been constructed. Since there is no reason to believe
that the general approach breaks for the SL(5) group, we do not go through the check of
supersymmetry invariance of the full SL(5) ExFT action. Instead, we check commutation
rules of supersymmetry transformation against the correct supersymmetry algebra and
additionally compare to those of D = 7 maximal supergravity, which is reproduced when
fields of ExFT do not depend on the coordinates of the extended space.

The organization of the paper is as follows. In Section 2, we briefly introduce fields
of exceptional field theory, supersymmetry transformations and generalized torsion con-
straints. In Section 3, we define the transformation of fermionic fields under tri-vector
deformations and derive the condition where this preserves a Killing spinor. Finally, in
Section 4, we apply the derived condition to some examples. First, we show that it repro-
duces the expected result upon reduction to 10 dimensions and bi-vector deformations.
Second, we show that all tri-vector deformations of the M2-brane background that fit the
SL(5) theory framework does not preserve supersymmetry. The same happens to be true
for its near-horizon limit AdS4 × S7, as we show that deformation commutes near the
horizon limit.

2. Tri-Vector Deformations

In this section, we briefly review the SL(5) exceptional field theory and tri-vector
deformation that belongs to the SL(5) U-duality group. Full construction of the bosonic
sector can be found in [26]; its truncation to only scalar fields is described by a DFT-like
theory [27,28], and the representative structure of the fermionic sector is the same as that
of D = 7 supergravity [29]. In the construction of the supersymmetry transformation
below, in this section, we follow the conventions of [30] for the local USp(4) indices and
composite connections.

2.1. Bosonic Sector of the SL(5) Theory

Exceptional field theory is a reformulation of a supergravity covariant under U-duality
group Ed(d), where for d = 4, 5, the group is SL(5) and SO(5, 5), respectively. The covariance
is organized by decomposing fields of the 11-dimensional supergravity under the split
11 = D + d, collecting the obtained fields into irreducible representations of the global
duality group as in [31], and extending the d-dimensional space by an additional set of
coordinates such that the corresponding derivatives ∂M fill an irreducible representation
RV . Hence fields of the theory depend on a set of D +dimRV coordinates (xµ,XM) where
the index µ labels the so-called external coordinates D, andM = 1, . . . , dimRV are the
coordinates of the extended space. The time direction can, in principle, belong to any of the
two sets. For the SL(5) theoryRV = 10, it is convenient to label the extended coordinates
as XMN , where M = 1, . . . , 5, labels the fundamental 5 of SL(5). In this formalism, global
SL(5) U-duality transformations are a particular coordinate transformation of the extended
space. A general transformation can be written in the infinitesimal form as the so-called
generalized Lie derivative [32–34]:

LΛVM =
1
2

Λ
KL∂KLVM − 1

4
P

M
N

KL
PQ∂KLΛ

PQVN +
1
2

λV∂KLΛ
KLVM, (4)
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where PM
N

KL
PQ is the projector on the adjoint representation of SL(5) (see Appendix A).

Explicitly one obtains

LΛVM =
1
2

Λ
KL∂KLVM + ∂KLΛ

MKVL +
(1

2
λV +

1
5

)

∂KLΛ
KLVM. (5)

Here VM is a generalized vector of weight λV , and Λ
MN is a parameter of the transfor-

mation. When the weight λV = 1/10, the above reproduces the usual expression for a
generalized Lie derivative of the scalar sector of the SL(5) theory. Such defined trans-
formations form a closed Lie algebra only if an additional section condition is imposed;
that is

ǫMNKLP∂MN • ∂KL• = 0, (6)

where bullets denote any combination of fields and theory derivatives. Basically, the
condition restricts the dependence on the coordinates of the extended space [35,36]. In
what follows, we assume the section condition is solved such that all fields depend only
on 4 coordinates out of 10, which corresponds to embedding of the full 11-dimensional
supergravity.

The field content of the theory is the same as that of the D = 7 maximal gauged
supergravity; however, with fields depending on the coordinates of the extended space
modulo the section constraint. The bosonic sector contains the metric, vector fields, 2-form
and scalar matrix:

eµ
α, Aµ

MN , BµνM, VM
AB. (7)

Here small Greek letters from the beginning of the alphabet label local “external” directions,
those from the end of the alphabet label “external” coordinates, capital Latin indices
M, N, K, . . . = 1, . . . , 5 label the 5 of SL(5), and capital Latin indices A, B, C, . . . = 1, . . . , 4
label the 4 of USp(4). In addition, there is a 3-form multiplet Cµνρ

M dual to the 2-form
multiplet. These fields do not enter the equations of the theory.

Scalar matrix VM
[AB] parametrizing the coset SL(5)/SO(5) contains a field scalar with

respect to external coordinate transformations and contains the internal metrics em
a, 3-form

field Cmnk, and a field φ proportional to a power of det eµ
α. Index notations are self-evident.

See that the adjoint representation of SL(5) decomposes under its GL(4) subgroup

24→ 150 + 10 + 4+5 + 4̄−5, (8)

where the subscript denotes weight with regard to the GL(1) subgroup. Hence, the set of
generators of SL(5) in GL(4) notations reads

bas sl(5) = {tm
n, tmnk, tmnk}. (9)

The coset element is then represented in the so-called triangular gauge as

V = exp[φ t(0)]V4 exp[Cmnktmnk], (10)

where t(0) is the GL(1) generator, and V4 ∈ SL(4)/SO(4) corresponds to the standard
non-linear realization of the 4-dimensional vielbein em

a.
According to the prescription of [22], a tri-vector deformation OM

N is a (generalized)
U-duality transformation generated by elements of negative weight

O = exp[Ωmnktmnk], (11)

and apparently does not preserve the triangular gauge. To restore that, one must com-
plement the action of the deformation by a USp(4) transformation, which restores the
triangular gauge. Upon the embedding SL(5) ←֓ USp(4), the adjoint representation de-
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composes as 24 → 10 + 14. The space of irreducible representation 10 is spanned by
symmetric tensors T(AB), while for elements of the space of 14, we have

14 ∋ T[AB]
[CD], TAB

CB = 0, T[AB]
[CD]ΩAB = 0 = T[AB]

[CD]Ω
CD, (12)

where ΩAB = −ΩBA is the invariant tensor of USp(4). In other words, starting with
T[AB], such that TAB

ΩAB = 0, parametrizing the 5, one observes that the decomposition
of 5 × 5 contains precisely 14. The conditions above remove the remaining irreducible
representations in the decomposition.

Hence, the complement USp(4) transformation must be constructed using generators
of SL(5), which remain in 10 under the decomposition. Since usp4 = so(5) these are
conveniently expressed in terms of SO(5) gamma-matrices ΓM̄

A
B:

{ΓM̄, ΓM̄} = 2ηM̄N̄ , η = diag[1, 1, 1, 1, 1], (13)

where we introduce “flat” SO(5) indices M̄, N̄, K̄, . . . = 1, . . . , 5. For explicit calculations,
we choose the following representation

Γ1 = σ1 ⊗ 1, Γ2 = σ2 ⊗ 1,

Γ3 = σ3 ⊗ σ1, Γ4 = σ3 ⊗ σ2, Γ5 = σ3 ⊗ σ3,
(14)

where σ1, σ2, σ3 are the standard Pauli sigma matrices. We define gamma-matrices with all
upper and all lower indices, such as the ones with indices raised and lowered by the invari-
ant tensor ΩAB = −ΩBA and its inverse Ω

AB, we derive the following symmetry properties

antisymmetric : ΓM
AB, ΓMNKL

AB;

symmetric : ΓMN
AB, ΓMNK

AB.
(15)

Gamma-matrices ΓM̄
AB define the pseudo-real irreducible representation 5 of USp(4) in

their upper indices since they are traceless ΓM̄
AB

ΩAB = 0 and satisfy

(ΓM̄
AB)∗ = ΩACΩBDΓM̄

CD. (16)

Hence these can be used as coefficients relating the fundamental, irreducible representation
of SL(5) to the pseudo-real irreducible representation 5 of USp(4) that allows the writing of

VM
AB =

1
2
VM

M̄
ΓM̄

AB. (17)

The prefactor is fixed by ensuring the usual definitions of the generalized metric:

MMN = VM
ABVCD

ΩACΩBD = VM
M̄VN

N̄ηM̄N̄ . (18)

2.2. Fermions and Connections

The fermionic sector of the theory contains the gravitino ψµ
A and dilatino χABC

fields, which have a hidden spinorial index. The spinors are symplectic Majorana, and the
corresponding reality condition for a spinor ψA reads

ψ̄T
A = ΩABCψB, (19)

where C is the charge conjugation matrix, defined as

(γµ)T = −CγµC−1, C = CT = −C−1 = −C†. (20)

We define an SL(5) covariant derivative in the usual way as

∇KLVM = ∂KLVM + ΓKL,N
MVN +

5
3

λV , ΓN[K,L]
NVM (21)
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where generalized Christoffel symbols are traceless ΓMN,K
K = 0, and each derivative ∂MN

adds −1/5 to the weight of a tensor. The non-covariant part of the transformation of the
Christoffel symbols is then

∆ΛΓKLN
M = ∂KL∂NPΛ

MP − 1
5

∂KL∂PQΛ
PQδM

N , (22)

which ensures the covariance of ∇MN under a generalized Lie derivative. Denoting the
weight of a spinor ψA in the 4 of USp(4) by λψ we write for its covariant derivative

∇MNψA = ∂MNψA − 1
4

ωMN
αβγαβψA −QMN B

AψB +
5
3

λψΓK[M,N]
KψA. (23)

The generalized vielbein postulate

0 = ∇MNVK
AB = ∂MNVK

AB + 2QMNC
[AVK

B]C − ΓMN,K
LVL

AB (24)

relates Christoffel symbols to the composite connection coefficients QMN B
A. Note that the

weight of the generalized vielbein is zero λV = 0. In turn, Christoffel symbols can be fixed
by imposing a vanishing torsion condition; that is

L∇
Λ
VM

A −L∂
Λ
VM

A = TKL,N
M

Λ
KLVN

A = 0, (25)

where the superscript of the generalized Lie derivative denotes whether one uses the
covariant or partial derivative. Using the fact that ΓMN,K

L is traceless, we are able to write
the generalized torsion as

TKL,N
M = P

M
N

P
Q

[

1
2

ΓKL,P
Q + ΓP[K,L]

Q − 2
3

ΓRP,[K
RδL]

Q

]

. (26)

Explicitly, the vanishing torsion condition then takes the following form

3
2

Γ[KLN]
M − ΓP[K,L

PδN]
M − 1

2
ΓP(N,K)

PδL
M +

1
2

ΓP(N,L)
PδK

M = 0, (27)

that implies that the torsion belongs to 10× 5̄ + 15 of SL(5). Decomposing the condition
into irreducible representations of USp(4) by explicit contraction of indices, we have

T ∈ 1 + 5 + 14 + 35′. (28)

On the other hand, Christoffel coefficients belong to the 10 × 10 of USp(4) that decom-
poses as

10× 10→ 1 + 5 + 14 + 35′ + 10 + 35. (29)

We find that the vanishing torsion condition allows the fixing of the first four irreducible
representations of generalized Christoffel indices in the decomposition above. The 10 is
fixed by an additional constraint on the covariant derivative of the external vielbein

eα
µ∇KLeµ

α = 0 −→ ΓMN = −3
7

e−1∂MNe. (30)

The remaining 35 is the undetermined part of the connection, which drops from all relevant
expressions, such as the Lagrangian, BPS equations, etc. Having such a piece in Christoffel
coefficients are the standard feature of generalized geometry in double field theory [37]
and in exceptional field theory [38–40].
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Denoting DMN = ∂MN +QMN , it is convenient to express Christoffel symbols as

ΓMN,K
L = VAB

LDMNVK
AB (31)

and substitute into (27) to arrive at a condition on the composite connection coefficients.
This can be rewritten in the following suggestive form

P
M̄

N̄
P̄

Q̄

[

VP̄
PDKLVP

Q̄ + 2VP̄
PDP[KVL]

Q̄

]

= 0, (32)

where barred indices can be understood as symmetrized pairs of USp(4) indices M̄↔ (AB).
Since the expression in brackets above belongs to algebra sl(5), it can be decomposed into
10 + 14 of USp(4), which gives the following conditions

VCD
PDKLVP

AB + 2VCD
PDP[KVL]

AB = 0. (33)

Defining, as usual, QMNA
B = −VAC

K∂MNVK
BC the part of V−1∂MNV in 10, the above

condition is explicitly solved as

QMN,A
B = QMN,A

B + VMN
(CD)

Ω
BEqCD,AE,

DMNVK
AB = VK

CDPMN,CD
AB − 2VMN

(EF)VK
C[A

Ω
B]DqEF,CD.

(34)

Here VMN
(CD) = V[MCAVN]

DB
ΩAB and the tensor qAB,CD = q(AB),(CD) contributing to the

composite connection, in general, belongs to

qAB,CD ∈ 10⊗ 10 = 1 + 5 + 10 + 14 + 35 + 35′ (35)

and should be constructed solely for PAB,CDEF = VAB
MN PMN,CDEF ∈ 10× 14 to make the

torsion vanish. Explicit calculations using the computer algebra system Cadabra [41] show
that the vanishing torsion condition contains only expressions of the type

Ω
EFPE(A,B)FCD ∈ 35. (36)

Moreover, the 35′ part of qAB,CD drops from the condition and is basically the undetermined
part u(ABCD) of the connection. Hence, the only irreducible representation of qABCD to be
identified is the 35. Hence, finally, we have

qABCD = P35
CABD + uABCD, (37)

where

P35
ABCD ∈

C A B
D

. (38)

In tensor components, this reads

P35
ABCD =

3
4

P(ABC)D −
3
4

P(ABD)C. (39)

This completely determines the Christoffel symbols and hence the composite connection
up to the undetermined part uABCD, which is of no interest.
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2.3. BPS Equations

Supersymmetry transformations rules for fields of the SL(5) exceptional field theory
have the following form

δeα
µ =

1
2

ǭAγαψA
µ ,

δAµ
MN =− 2

√
2VAB

[MVCD
N]

Ω
BD

(

1
2

Ω
AE ǭEψµ

C +
1
4

ǭeγµχCAE

)

,

δVM
AB =

1
4
VM

CD

(

ΩE[C ǭD]χ
ABE +

1
4

ΩCD ǭEχABE + ΩCEΩDF ǭGχCF[A
Ω

B]G

+
1
4

ΩCEΩDFΩ
AB ǭGχCFG

)

,

(40)

δBµνM = 8
√

2VM
AB

(

−ΩAC ǭBγ[µψC
ν] +

1
8

ΩACΩBD ǭEγµνχCDE

)

+ 2
√

2ǫMNPQR A[µ
NPδAν]

QR,

∆Cµνρ
M = VAB

M

(

−3
8

Ω
AC ǭCγ[µνψB

ρ] −
1
32

ǭCγµνρχABC

)

,

(41)

for bosonic fields and

δψµ
A = DµǫA + ΩCDVMACVNBD

ΩBF

(

−4
5
∇+

MN

(

γµǫF
)

+
3
4

γµ∇+
MNǫF

)

− 1
15
VBC

NFνρλNΩ
AB

(

γνρλ
µ +

9
2

γνρδλ
µ

)

ǫC,

δχABC = 2Ω
CDPµDE

ABγµǫE − 8ΩEDVMCEVN[A|D|∇+
MNǫB]

+
8
5

(

Ω
ABδC

G −Ω
C[Aδ

B]
G

)

ΩDEΩFHVMGFVNDH∇+
MNǫE

− 1
6

(

Ω
AD

Ω
BEVDE

LFµνρLγµνρǫC − 1
5

(

Ω
AB

Ω
CF + 4Ω

C[A
Ω

B]F
)

VFE
LFµνρLγµνρǫE

)

(42)

for fermionic fields, where

DµǫA = DµǫA +
1
4

ωµ
abγabǫA + QµB

AǫB,

Dµ = ∂µ −LAµ
.

(43)

In addition, following the analogy with the E6(6) case, we define two shifted-covariant
derivatives of spinors

∇±MNǫA = ∂MNǫA +
1
4

eµ[α∂MNe
β]
µ γαβǫA ± 1

4
FµνMNeµαeνβγαβǫA

−QMN B
AǫB +

5
3

λǫΓK[M,N]
KǫA,

(44)

The derivative ∇+
MN enters the SUSY rules above, while ∇−MN might be necessary for

writing the full supersymmetric action of the theory, as was the case in [25]. Note, however,
that, e.g., in the supersymmetric E7(7) theory, one needs only one such derivative. We do
not aim for the construction of the supersymmetric action, hence the derivatives ∇−MN will
not be used here. Finally, the scalar current 1-form with components in the 14 of USp(4) is
defined as usual as

Pµ
ABCD = DµVM

[ABVCD]M, (45)

Although we do not construct a full invariant supersymmetric action for the theory,
we check the above transformation rules by other means. First, the above precisely re-
produces the SUSY rules of the maximal D = 7 supergravity when ∂M = 0. Second,
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these form a Lie (super-)algebra together with other symmetries of the theory: D = 7
Lorenz transformations, external diffeomorphisms, generalized diffeomorphisms, and
gauge transformations. In Appendix B, we start with the most general form of supersym-
metry transformations rendering D = 7 SUSY rules upon ∂M = 0, which contain various
numerical coefficients. Then, we fix these by requiring the correct commutation rules,
which are supersymmetry transformations close to diffeomorphisms, both external and
generalized, local SO(1,6) transformations, and gauge transformation. The only arbitrary
coefficient left can be absorbed into a redefinition of, say, the field Cµνρ

M.

3. Deformation of Supersymmetry

Tri-vector-generalized Yang–Baxter deformation, as defined in [22], is a SL(5) trans-
formation generated by elements of sl(5) with negative levels with regard to the gl(4)
decomposition, which preserves generalized fluxes. The latter is constructed of a properly
rescaled generalized vielbein. The rescaling is necessary to render the theory purely in
terms of such fluxes and the external vielbein, i.e., truncate SL(5) ExFT to only the external
gravity and internal scalar sector. Such theory describes only backgrounds of the form
M4 ×M7 with vanishing fields Aµ

MN and BµνM. Among the backgrounds covered by the
truncation are AdS vacuum solutions, which are of interest for holography applications
and some M-theory and IIA brane solutions.

Explicitly, rescaling is defined as

eµ
α = e−φ(y)e

1
5 ēµ

α(x),

VM
M̄ = e−φ(y)e

1
5 VM

M̄(y),
(46)

where e = det ||em
a(y)|| denotes the determinant of the internal vielbein and is restricted

to depend only on the coordinates ym parametrizing M4. The same holds for φ = φ(y) and
VM

A = VM
A(y), while ēµ

α = ēµ
α(x) are functions of external coordinates xµ only. As it

has been shown in [21], this provides a consistent truncation to a subsector of the theory.
Explicitly, generalized vielbein for the truncated theory reads

VM
M̄ = e

φ
2

[

e−
1
2 em

a e
1
2 va

0 e
1
2

]

, (47)

where va = em
avm and vm = 1/3!εmnklCnkl . Tri-vector deformation is then

V → V′ = O V,

O = exp[Ωmnktmnk] =

[

δm
n e−1Wn

0 1

]

.
(48)

Here, Wm = 1/3!εmnklΩ
nkl , and hence O does not depend on the background fields.

3.1. Local Deformation and Composite Connections

The generalized vielbein (47) is in the upper-triangular form, which means a parametriza-
tion in terms of supergravity fields eµ

α, em
a and Cmnk. The transformation (48) breaks this

parametrization, introducing the left lower block. Note that the generalized metric defined
as mMN = VM

M̄VN
N̄δM̄N̄ does not depend on the choice of parametrization and can always

be understood as a matrix of the form

mMN = eφ

[

h−
1
2 hmn −vm

−vn h
1
2 (1 + vkvk)

]

. (49)

Here hmn = em
aen

bhab and h = det ||hmn||. This allows to read-off transformations of the
bosonic fields φ, hmn and Cmnk under tri-vector deformation.
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For the supersymmetric formulation of ExFT one, however, should use vielbein rather
than metric, which makes it necessary to introduce an additional transformation that re-
stores the upper-triangular frame. Since from the point of view of the Usp(4) subgroup
breaking of the triangular gauge precisely introduces the 10 part of the sl(5) algebra, to re-
move that, one should act by a transformation K ∈ USp(4) constructed exclusively of Ω

mnk,
space-time fields, and generators of USp(4). Now, the matrices ΓM̄N̄

A
B are proportional to

generators of SO(5) or equivalently USp(4), which allows us to write

K(4) = exp[α(W)Wa
Γ5a], (50)

where we denote Wa =
1
3! ǫabcdΩ

bcd (flat indices) and α(W) as some functions of Wa and Va

to be determined later. Explicit calculation shows

K(4) = cos
(

α(W)W
)

+
1

W
sin

(

α(W)W
)

Wa
Γ5a (51)

with the obvious notation W2 = WaWa, note also det K = 1. Function α(W) is deter-
mined by the condition that K restores the supergravity frame. For that, we write the
transformation in the representation 5 of SO(5):

KM̄
N̄ =

1
4

Γ
M̄

ABΓN̄
CDKA

CKB
D. (52)

Explicitly, in the component form, this reads

K(5) =







δa
b − 2 sin2(αW)

WaWb

W2 sin(2αW)
Wa

W

− sin(2αW)
Wb

W
cos(2αW).







=

[

Π
a

b 0
0 0

]

+

[

nanb cos(2αW) sin(2αW)na

− sin(2αW)nb cos(2αW)

]

,

(53)

where we define na = Wa/W and the projector Π
a

b = δa
b − nanb on the hyperplane

orthogonal to Wa. Such defined K(5) restores the upper triangular gauge for V if

tan(2α(W)W) =
W

1−Wava
. (54)

Reduced to only bi-vector deformations and Va = 0, the above gives the same condition as
the one derived in [13]. Note the special case when Wmvm = 1, where the above expression
is not applicable. In this case, the condition for K(5) to restore the upper-triangular gauge is
W2 = 0 or cos(2αW) = 0. The former does not have non-trivial solutions in the Euclidean
case, while the latter implies

2α(W)W =
π

2
+ πn, n ∈ Z. (55)

In what follows, we assume Wmvm 6= 1. Using the gamma matrix identity Γ
M̄

CDΓM̄
AB =

4δAB
CD −Ω

AB
ΩCD, one can rewrite the inverse relation between matrices in the 4 and in

the 5:

K[A
CKB]

D =
1
4

Γ
M̄

CDΓN̄
ABKN̄

M̄ −
1
4

Ω
AB

ΩCD. (56)

Given that (generalized) Yang–Baxter transformations are defined as such poly-vector
deformations that preserve generalized fluxes, the vanishing torsion condition (25) and the
generalized vielbein postulate (24) allow the relation of the composite USp(4) connection
QMN,A

B to components of the generalized flux. Indeed, the latter is defined as

L∂
VAB,CD

VEF
M = FAB,CD,EF

GHVGH
M, (57)
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where the superscript ∂ again denotes that the generalized Lie derivative is written in terms
of partial derivatives ∂MN .

Vielbein VAB
M is related to vielbein VAB

M via the rescaling

VAB
M = ρ−1VAB

M, (58)

where ρ = e−
φ
2 e

1
10 is a generalized scalar of weight λρ = 1/10 and vielbein VAB

M has
weight λV = 1

10 . On the other hand, the vanishing torsion condition states that one can
equivalently replace partial derivatives in generalized Lie derivative by D = ∂ + Γ, which
for the rescaled vielbein reads

DMNVAB
K = −2QMN,[A

CVB]C
K + ρ−1∇MNρVAB

K. (59)

Moving the composite connection term to the LHS we have

0 = ∇MNVAB
K = ∇MN(ρ

−1VAB
K) = −ρ−2∇MNρ VAB

K + ρ−1∇MNVAB
K. (60)

Note that we denote ∇ as the fully covariant derivative, which includes all connections
Γ, Q, ω. This allows us to express the LHS of (57) in terms of the composite connection
coefficients and ∂MNρ and relate these to components of the generalized flux. Rewriting
DMNVAB

K in terms of QMNA
B we have

FABCDEF
GH = −VABCD

KLQKLE
A1

∆FA1
GH −QKL[A

A1
∆B]A1

GHVCDEF
KL

+QKL[C
A1

∆D]A1
GHVABEF

KL +QKL[A
A1VB]A1

K
∆CD

GHVEF
L −QKL[C

A1VD]A1
K

∆AB
GHVEF

L

− 1
2
QKL[A

A1VB]A1CD
KL

∆EF
GH +

1
2
QKL[C

A1VD]A1AB
KL

∆EF
GH

+
(

VABCD
KL

∆EF
GH + ∆AB

GHVCDEF
KL − ∆CD

GHVABEF
KL

)

ρ−1∇KLρ,

(61)

where we define VABCD
MN = VAB

[MVCD
N]. The left-hand side above is invariant under

the generalized Yang–Baxter transformation; hence so is the right-hand side.
Let us now show that QABC

D = VAB
MNQMNC

D contains the same irreducible rep-
resentations as FAB,CD

EF. Starting with the latter, we first notice that it belongs to the
10 + 15 + 40 of SL(5), which decomposes into

FAB,CD
EF ∈ 10 + 1 + 14 + 5 + 35′. (62)

For the composite connection, we have

QAB,C
D ∈ 10× 10 = 10 + 1 + 14 + 5 + 35′ + 35. (63)

The last 35 represented by a fully symmetric tensor of four indices, trivially drops from
the LHS of (57). This is the undetermined part of the connection, which does not enter
BPS equations and will be obliviated from now on. Hence, we see that the irreducible
representations inside the connection QAB,C

D are precisely the same as the ones in the
generalized flux. The only subtlety is with the 10 part of the flux, which is the trombone,
which contains an additional term:

θ(AB) ∝ FC(A,B)D,EF
EF

Ω
CD = −1

2

(

QC(A,B)
C − 3ρ−1∇ABρ

)

. (64)

Imposing the invariance of this combination, we define “the invariant connection” Q̂AB,C
D,

which does not transform under generalized Yang–Baxter deformations

Q̂AB,C
D = QAB,C

D − 3
2

δ(A
Dρ−1∇B)Cρ− 1

2
Ω

DE
ΩC(Aρ−1∇B)Eρ +

1
2

ρ−1∇ABρδC
D (65)
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Furthermore, under local USp(4) transformations, components of the generalized flux
transform covariantly.

This is an extremely important result for further narrative, as it allows us to take into
account the complicated generalized Yang–Baxter equation by simply rewriting covariant
derivatives in terms of the invariant composite connection. Note, however, that this
has its own flaws as we will be investigating what we call “non-covariant” parts of tri-
vector transformation of BPS equations further. These are the differences between BPS
equations written for the transformed Killing spinor on the transformed background and
the initial BPS equations. Since we keep the connection Q̂AB,C

D invariant, the expression
will be explicitly non-covariant with regard to the internal 4-dimensional diffeomorphisms.
However, this is only a consequence of the chosen approach, and the covariance is actually
hidden, given the generalized Yang–Baxter equation and Killing vector conditions are taken
into account. This simply follows from the fact that the initial BPS equation was covariant
as is the tri-vector deformation and the new BPS equation on the new background. Hence
the difference must also be covariant. Keeping in mind that at some point, we simply
restore explicit covariance by hand. This trick saves a huge amount of explicit calculations
involving the generalized Yang–Baxter equation.

3.2. Preserving Killing Spinors

Consider now the BPS equations for the truncated theory, where we keep the initial
(not rescaled) spinors

δψA
µ = DµǫA − 4

5
ΩCDVMACVNBD

ΩBF

(

(

∇MNγµ

)

ǫF +
2
5

γµ∇MNǫF

)

,

δχABC =− 8 ΩEDVMCEVN[A|D|∇MNǫB]

+
8
5

(

Ω
ABδC

G −Ω
C[Aδ

B]
G

)

ΩDEΩFHVMGFVNDH∇MNǫE

(66)

here
∇MNǫA = ∂MNǫA −QMN B

AǫB +
5
3

λǫΓK[M,N]
KǫA,

DµǫA = ∂µǫA +
1
4

ωµ
αβγαβǫA.

(67)

The so(1, 6) spin-connection ωµ
αβ is defined by the vanishing torsion condition

∂[µeν]
α + ω[µβ

αeν]
β = 0, (68)

which gives

ωαβγ =
1
2

(

fαβγ − fβγα + fγαβ

)

,

fβγ
α = −2e[β

µeγ]
ν∂µeν

α.
(69)

Note that the dilatino variation does not contain trace and antisymmetric parts:

δχ[ABC] = 0, δχABC
ΩAB = 0. (70)

Contracting the gravitino variation with γµ we have

− 25
28

γ̄µDµǫA + ρ−1
Ω

AB
(

∇BCǫC + 5ρ−1∇BCρ ǫC
)

= 0. (71)

Substituting ∇ABǫB expressed from the above into the dilatino equation we have

δχABC = −4∇C[AǫB] + 4
(

Ω
AB

Ω
CD −Ω

C[A
Ω

B]D
)

ρ−1∇DEρǫE

+
5ρ

7

(

Ω
AB

Ω
CD −Ω

C[A
Ω

B]D
)

ΩDEγ̄µDµǫE = 0,
(72)
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where we use the following

VMN
AB = ΩCDVM

ACVN
BD,

∂MN = VMN
AB∂AB,

∂AB = 2VAB
MN∂MN ,

VAB
MNVCD

MN =
1
2

δ(C
AδD)

B.

(73)

Here, the second line is a definition of ∂(AB) and the third line follows from the identity in
the fourth line.

Let us rewrite the derivative ∇C[AǫB] in terms of the connection Q̂AB,C
D that trans-

forms covariantly under generalized Yang–Baxter deformation:

∇C[AǫB] = ∇̂C[AǫB] +
3
4

ρ−1∇C[AρǫB] − 3
4

(

Ω
AB

Ω
CE −Ω

C[A
Ω

B]E
)

ρ−1∇EDρǫD

∇ABǫB = ∇̂ABǫB − 3ρ−1∇ABρǫB.
(74)

Given that the gravitino and dilatino equations become

δψA
µ = DµǫA − 4

25
Ω

ACρ−1γ̄µ

[

∇̂CBǫB + 2ρ−1∇ABρǫB
]

= 0,

δχABC = 4
[

∇̂C[AǫB] +
3
4

ρ−1∇C[Aρ ǫB] − 7
4

(

Ω
AB

Ω
CD −Ω

C[A
Ω

B]D
)

ΩDEρ−1∇DEρǫE

]

+
5ρ

7

(

Ω
AB

Ω
CD −Ω

C[A
Ω

B]D
)

ΩDEγ̄µDµǫE = 0.

(75)

Under tri-vector deformations, we have the following transformation rules for the fields

V′M
AB = KA

CKB
DVN

CDOM
N ,

ǫA ′ = KA
BǫB,

(76)

For derivatives of the USp(4) spinor ǫA this implies

∇̂′ABǫ′C = KA
EKB

FKC
G∇̂EFǫG

+ 2KA
EKB

FVEFMN∂MNKC
GǫG + 4KA

EKB
FVEFML

∆L
N∂MNKC

GǫG

+ 4KA
EKB

FVEFMLKC
G

[

∆L
N∂MNǫG +

5
3

λǫ∆L
N

ΓMNǫG
]

,

(77)

where we have used the fact that Q̂AB,C
D transforms covariantly and ∆M

N = OM
N − δM

N

has the only non-vanishing component ∆m
5 = Wm. The structure of the above expression

is as follows. The first line is a covariant USp(4) transformation and will always vanish
upon substitution into the BPS equations. The second line is the desired non-covariant part,
which will define the supersymmetry preservation condition. The last line can be shown to
vanish, given the Kosmann–Lie derivative of ǫA vanishes. We show that we start with the
last term of the last line and show that ∆[L

N
ΓM]N = 3/5∂N[L∆M]

N . For that, we recall the
expression (30) for ΓMN and consider the only non-vanishing components ∆[l

N
Γm]N :

∆[l
N

Γm]N =
3
7

W̃[le
−1∂m]e = −

3
3! 7

ǫpqr[lΩ
pqre−1∂m]e = −

9
3! 14

ǫmlpqΩ
pqre−1∂re

= − 9
3! 14

ǫmlpqe−1ραβγkα
pkβ

qkγ
r∂re =

9
3! 10

ǫmlpqραβγkα
pkβ

q∂rkγ
r

=
9

3! 10
∂r

(

ǫmlpqΩ
pqr

)

= −3
5

∂[mW̃l] =
3
5

∂K[l∆m]
K.

(78)
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Here, in the first line, we denote ǫmnkl as the epsilon symbol; in the second line, we used
Lke = 0 with the weight λ[eµ

α] = 1/5, and in the last line, we used the unimodularity
condition to move all Killing vectors under the derivative. To reshuffle indices, we used
[mlpqr] ≡ 0 in four dimensions. Hence Equation (77) takes the following form

∇̂′ABǫ′C = KA
EKB

FKC
G∇̂EFǫG

+ 2KA
EKB

FVEFMN∂MNKC
GǫG + 4KA

EKB
FVEFML

∆L
N∂MNKC

GǫG

+ 4KA
EKB

FVEFMLKC
G

[

∆L
N∂MNǫG − λǫ∂NL∆L

NǫG
]

.

(79)

Now we notice that both the LHS of the above expression and the first line are covariant
under local so(1, 6) transformations and local coordinate shifts. Therefore, the remaining
terms must also be covariant, although explicitly, the covariance is broken. As it was
advertised at the beginning of the section, this is the consequence of taking into account
the generalized Yang–Baxter equation in the form of invariance of the connection Q̂AB,C

D.
Hence, in principle, one may restore covariance explicitly, which we will not do at this step.

Instead, we go further on the way of breaking explicit covariance by choosing a
specific so(4) frame, where Lkem

a = 0, which is certainly not true in general, even though
the Killing vector condition Lkgmn = 0 holds. This allows us to show that in the chosen
frame, the terms in brackets in (79) vanish, given the Kosmann–Lie derivative of ǫA along
Killing vectors kα

m is zero. For that, we write

LkǫA = kmDm[ω]ǫA +
1
4
∇m[Γ]kn(Γ

mn)A
BǫB + λǫ∂mkmǫA, (80)

where Dm[ω] = ∂m + 1/4ωm
ab

Γab is the standard so(5) derivative and∇m[Γ] is a derivative
covariant with regard to the standard Levi–Civita connection. Note the weight term. Using
the Killing vector property, the first two terms above can be simplified as follows

km∂mǫA +
1
4

kmωm
ab

Γab
A

BǫB +
1
4

em
a en

b∇m[Γ]kn(Γ
ab)A

BǫB

= km∂mǫA +
1
4

kmωm
ab

Γab
A

BǫB +
1
4

kmebn∇m[Γ]ea
n(Γab)A

BǫB

= km∂mǫA +
1
4

kmωm
ab

Γab
A

BǫB − 1
4

kmωm
ab

Γab
A

BǫB = km∂mǫA

(81)

where in the second line, we used Lken
a = 0 and the vanishing torsion condition, and in

the third line, we used the vielbein postulate ∇[Γ, ω]em
a = 0. In [12] it was observed that

for a spinor ǫA to stay Killing after abelian T-duality, its Kosmann–Lie derivative along the
corresponding isometry must be zero. Now the selected terms

∆[M
K∂N]KǫA − λǫ∂K[N∆M]

KǫA (82)

have only components [MN] = [mn] given the section condition ∂mn = 0 and the structure
of ∆M

N . These components can be rewritten as

1
4

ǫmnpqραβγkα
pkβ

q
[

kγ
r∂rǫA + λǫ∂rkγ

rǫA
]

= 0. (83)

Given all the above, the non-covariant part of the transformation of ∇̂ABǫC under a
generalized Yang–Baxter deformation simply becomes

∆Ω

(

∇̂ABǫC
)

= 2KA
EKB

FVEFMN∂MNKC
GǫG. (84)
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The same analysis shows that the non-covariant transformation of ∇ABρ vanishes. Indeed,
for the full transformations, we have

∇′ABρ = KA
CKB

D
[

∇CDρ + 4VCD
ML

∆L
N∇MNρ

]

, (85)

where the first term is the covariant transformation. For the only non-vanishing components
of the second term, we write

∆[m
K∇n]Kρ = −1

4
ǫmnpqραβγkα

pkβ
q
[

kγ
r∂rρ + λρ∂rkγ

rρ
]

≡ 0. (86)

As a result, we have the following transformations of the gravitino and dilatino
supersymmetry variations

δψ′µ
A = KA

Bδψµ
B − 4

25
Ω

ABρ−1γ̄µ∆Ω

[

∇̂BCǫC
]

δχ′ABC = KA
DKB

EKC
FδχDEF − 4∆Ω

[

∇̂C[AǫB]
]

.
(87)

Note that the non-covariant transformation of gravitino is a trace of that of dilatino. Hence,
we conclude that for a spinor ǫA to remain Killing under a tri-vector deformation, the
non-covariant variations in the expressions above must vanish. This is a condition of the
same sort as that imposed on generalized fluxes required to transform them covariantly
under SL(5) transformations to keep the equations of motion satisfied. Now we require the
same for USp(4) transformations, which are necessary to restore the upper-triangular form
of the generalized vielbein. Note that due to generalized Bianchi identities, this does not
impose further constraints on KA

B from generalized fluxes.
We now calculate ∆Ω∇̂AB ǫ̂C, which gives the main contribution to the supersymmetry

preservation condition

∆Ω∇̂AB ǫ̂C = sin(2αW)
1
4

eφKM̄
K̄KN̄

L̄VM̄
MVN̄

L
(

2δN
L + 4∆

N
L

)

Γ
K̄L̄ AB∂MNKC

DǫD

= W
(

na sin(2αW)vm + Π
b

aeb
m + eb

mnanb cos(2αW)
)

Γ
5a AB∇mKC

DǫD !
= 0.

(88)

Here we replaced the partial derivative on K with the ordinary gl(4) covariant derivative
∇m = ∂m + Γm to restore the hidden covariance of the expression.

3.2.1. Pure Metric Backgrounds: Cmnk = 0

For simplicity’s case, consider where the initial background has no gauge field, i.e.,
vm = 0. Then α(W) depends only on W2 = WaWa and the derivative ∂mK(4) becomes
particularly simple:

∂mK(4) =
(

− sin(αW) + cos(αW)(nΓ)
)

(αW)′∂mW + sin(αW)∂mnaΓ
5a

= K(4)(nΓ)(αW)′∂mW + sin(αW)∂mnaΓ
5a,

(89)

where prime denotes the derivative with regard to W, and we denote (nΓ) ≡ naΓ
5a. Given

condition (54), the derivative (αW)′ can be rewritten as follows

(αW)′ =
1
2

cos2(2αW) =
1

2(1 + W2)
. (90)

The antisymmetric pair of indices in the expression ∆Ω(∇̂A[B ǫ̂C]) belongs, in general,
to the 5⊕ 1 of USp(4). It is convenient to analyze these separately. Let us start with the
singlet, which is

∆Ω(∇̂A[B ǫ̂C])ΩBC = W
(

Π
b

aeb
m + eb

mnanb cos(2αW)
)

Γ
5a A

B∇mKB
C ǫ̂D (91)
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The 5 can be conveniently rewritten by contracting the above with ΓM̄BC, which gives two
sets of conditions, which are M̄ = 5 and M̄ = a. The former is the same as (91) multiplied
by Γ

5, while for the latter, we have

[

eb
m − (1− cos(2αW))nmnb

]

Γ
5b

Γa∇mKê

=
[

eb
m − (1− cos(2αW))nmnb

]

(

2Γ
5δa

b + ΓaΓ
5b
)

∇mKǫ̂.
(92)

The second term in the parentheses is proportional to (91) multiplied by Γa and hence
vanishes, leaving us with the following condition

en
a

[

δn
m − (1− cos(2αW))nmnn

]

Γ
5∇mKǫ̂ = 0. (93)

Multiplying this by Γ
a we obtain precisely (91); hence (93) is the only condition for a spinor

to remain Killing. Finally, the determinant of the matrixOm
n = δn

m− (1− cos(2αW))nmnn

is equal to cos(2αW), which does not vanish for any finite value of W. Hence, it does not
have zero eigenvalues, which implies

∇mK(4) ǫ̂ = 0. (94)

Hence, the condition for a spinor to remain Killing is that it belongs to the kernel of map
∇mK, where K is the local tri-vector transformation, which restores the supergravity frame.

The obtained condition can be further rewritten in a more convenient form in terms of
deformation parameters Wm. For that, we first observe that since det K(4) = 1, we can safely
multiply the above by another copy of K(4) to have ∂m(K(4)K(4))ǫ̂ = 0. Given condition (54),
the derivative can be easily calculated as follows

∇m(K(4)K(4)) = ∇m

(

cos(2αW)
(

1 + (WΓ)
)

)

= − sin(2αW)2(αW)′(1 + (WΓ))∂mW + cos(2αW)∇mWnΓ
5n

= −2 cos(2αW)(αW)′
[

(1 + (WΓ))W∂mW − (1 + W2)∇mWnΓ
5n
]

= −2 cos(2αW)(αW)′(1 + (WΓ))
[

W∂mW − (1− (WΓ))∇mWnΓ
5n
]

(95)

where (WΓ) = WaΓ
5a. Here, in the third line, we used relation (90) for the derivative (αW)′

and in the last line simply factored out 1 + (WΓ). Now, we notice that neither of the terms
outside the brackets in the last line vanishes for finite values of W. Hence, we are left with
the condition

[

W∂mW − (1− (WΓ))∇mWnΓ
5n
]

ǫ̂ = 0. (96)

Finally, writing W∂mW = Wk∇mWk and expanding the parentheses we obtain the
final result

[

∇mWnΓ
5n + Wk∇mWnΓ

kn
]

ǫ̂ = 0. (97)

3.2.2. Backgrounds with Non-Vanishing 3-Form

To generalize the above backgrounds with non-vanishing vm it is enough to make the
following two observations. First, the matrix

Om
n = δn

m − (1− cos(2αW))nmnn + sin(2αW)nnvm (98)

has determinant detO = cos(2αW)
(

1− (v · n)
)−1, where (n · v) = nmvm, which is never

zero, as discussed above. Hence, Om
n is non-degenerate, and the condition for a spinor to

remain Killing still has the form
∇mK(4) ǫ̂ = 0, (99)
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with dependence on vm hidden in K(4). The second observation is that αW is actually a
function of a new single variable ω, which is a combination of W and vm:

tan(2αW) =
W

1−Wmvm
=

1
W−1 − (n · v) =: ω. (100)

Hence, all steps of the previous case can be repeated with (2αW)′ now meaning a derivative
with regard to ω. In particular, we have

(2αW)′ω = cos2(2αW) =
1

1 + ω2 . (101)

Condition (96) now becomes
[

ω∂mω−
(

1− (nΓ)ω
)

∂m

(

naΓ
5aω

)

]

ǫ̂ = 0. (102)

The form of the condition above suggests the definition ωm ≡ ωnm, which allows us
to repeat all the steps from the previous case with Wm → ωm to arrive at

0 =
[

∇mωnΓ
5n + ωk∇mωnΓ

kn
]

ǫ̂,

ωm =
Wm

1−Wnvn
.

(103)

This is the final equation in the form most convenient for direct calculations. Note that both
∇mWn and ∇mωn are symmetric given the unimodularity constraint. Indeed, we write

∇mωn =
1

1−Wv

[

∇mWn +
WmWn

1−Wv
∇kvk

]

, (104)

where ∇mvm = 1
4! ε

mnkl Fmnkl , which implies ∇[mωn] = 0.

4. Examples

Equation (103) is the condition for a spinor ǫA to remain Killing under a tri-vector
deformation parametrized by Wm = 1/3!ǫmnklΩ

nkl . This is a differential condition on
the deformation tensor Wm such that an operator can be constructed, which projects the
spinor ǫ to zero. Spinors belonging to the kernel of this operator remain Killing. As we
will see below, for the considered setup, the condition is very restrictive, and for the most
interesting and accessible cases, such as the AdS4 × S7 background, the kernel contains
only zero spinors.

4.1. Reduction to Ten Dimensions

Let us first compare the condition obtained above for pure metric backgrounds to
the condition of [13] for a bi-vector deformation to preserve the Killing vector. For that,
we assume the unimodularity of the corresponding bi-vector deformations and keep only
component Wm̄ with m̄ = 1, 2, 3 labeling three directions of the 10 = 7 + 3 decomposition. In
this case, we observe that the first term of (103) reproduces precisely the same condition as
that of [13], given no R-R fields are present. The quadratic term can be shown to vanish, for
which we consider ∇m̄W[k̄Wn̄]. Contracting this with ǫn̄k̄l̄Tl̄ where Tl̄ is arbitrary, we have

Wn̄∇m̄Wk̄ǫn̄k̄l̄Tl̄ =
1

3!3!
ǫn̄ p̄q̄ǫk̄r̄s̄β p̄q̄∇m̄βr̄s̄ǫn̄k̄l̄Tl̄ = −

1
3!3!

ǫp̄n̄k̄ǫq̄r̄s̄β p̄q̄∇m̄βr̄s̄ǫn̄k̄l̄Tl̄

= − 2
3!3!

ǫq̄r̄s̄β p̄q̄∇m̄βr̄s̄Tp̄ =
2

3!3!
ǫm̄r̄s̄β p̄q̄∇q̄βr̄s̄Tp̄

=
2
3!

ǫm̄[r̄s̄β p̄q̄∇q̄βr̄s̄Tp̄] ≡ 0,

(105)
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where in the first line, we used antisymmetrization in four indices [ p̄n̄k̄q̄] = 0, and in the
second line, we first used antisymmetrization in [q̄r̄s̄m̄] = 0 together with the unimodularity
constraint ∇m̄βm̄n̄ = 0.

Hence, we conclude that our condition for a tri-vector deformation of 11D backgrounds
of a certain form to preserve a Killing spinor agrees with the same for general bi-vector
deformations of 10D backgrounds of [13]. In principle, the approach we develop here
allows us to drop all the restrictions and derive a generalization of the condition valid for
any 11D backgrounds.

4.2. Membranes and Near-Horizon Geometry

Let us first illustrate the method on the example of the M2-brane solution, which is a
1/2BPS background, i.e., preserves 16 spinors. For N M2-branes, the background metric
and gauge field can be written in the following form:

ds2 = H−2/3
(

−dt2 + dx2 + dy2
)

+ H1/3
(

dr2 + r2dΩ
2
7

)

,

Ctxy = −H−1, H = 1 +
L6

r6 .
(106)

Here L = 25/6π2/6N1/6lp with lp denoting the Planck length. We choose the longitudinal
coordinates x0, x1, x2 and the radial coordinate r to be internal. Hence the fields for the
truncated SL(5) ExFT read:

hmn = diag
[

H−
2
3 , H−

2
3 , H−

2
3 , H

1
3

]

,

Vm =
[

0, 0, 0, H−
1
6

]

,

e−φ = r H
1
6 ,

(107)

and metric ḡµν invariant under tri-vector transformations is that of the transverse S7. The
relevant isometry group is SO(1, 2)⋉R3, which is the Poincare symmetry group of the
world volume. Denoting generators Pα and Mαβ with α = 0, 1, 2 we, in principle, can
construct deformations with terms proportional to the coordinates xα in zero, first, second,
and third powers. However, the only unimodular tri-vector deformation here is Ω

012 = −ρ,
i.e., the abelian PPP deformation. In this case

Wm =
[

0, 0, 0, ρH−
5
6

]

. (108)

The condition (103) simply boils down to the system of equations

(

ρ− (ρ + H)Γ4
)

ǫ = 0,

Γ
4ǫ = 0,

(109)

which does not have non-trivial solutions. Hence, we conclude that the M2-brane back-
ground does not have tri-vector deformations that preserve SUSY within the SL(5) setup.

A similar conclusion can be made for the AdS4×S7 solution, which is the near-horizon
limit of the previous background. To see that, we choose a new coordinate u as

r =
N1/4l3/2
√

u
(110)
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and rescale (x, y, t)→ 1
2 (x, y, t), l = N−1/6L to rewrite solution (106) as

ds2 =
1
4

(

1 + N−1/2l−3u3
)−2/3(

−dt2 + dx2 + dy2
)

+
(

1 + N−1/2l−3u3
)1/3

l3N1/2
(

1
4u3 du2 +

1
u

dΩ
2
7

)

,

Ctxy =− 1
8

(

1 + N−1/2l−3u3
)−1

(111)

The near-horizon limit, giving the AdS4 × S7 solution, can then be performed as follows:

ds2
(h) ≡ lim

N→0

ds2

N1/3 =
l2

4u2

(

−dt2 + dx2 + dy2 + du2
)

+ l2dΩ
2
7,

C(h)txy ≡ lim
N→0

Ctxy

N1/2 = −1
8

l3u−3.
(112)

Interestingly enough, as for the bi-vector case analyzed in [42], taking the near-horizon limit
commutes with tri-vector deformations, meaning that the latter descends to world-volume
theories. Let us demonstrate that using explicit examples of two types of deformations:
PPP and PPM.

We start with P ∧ P ∧ P deformation with Ω-shift given by t, x, y coordinate translations:

Ω = 4η∂t ∧ ∂x ∧ ∂y (113)

Using explicit formulas for tri-vector deformations, for the deformed background, we get

ds2 =
1
4
(1 + η( +N−1/2l−3u3

)−1
)−2/3

(

1 + N−1/2l−3u3
)−2/3(

−dt2 + dx2 + dy2
)

+

(

1 + η
(

1 + N−1/2l−3u3
)−1

)1/3 1
4

l3N1/2

u3

(

1 + N−1/2l−3u3
)1/3

du2

+

(

1 + η
(

1 + N−1/2l−3u3
)−1

)1/3
(

1 + N−1/2l−3u3
)1/3 l3N1/2

u
dΩ

2
7,

Ctxy = −1
8

(

1 + η
(

1 + N−1/2l−3u3
)−1

)

(

1 + N−1/2l−3u3
)−1

.

(114)

To go to the near-horizon area, we write η = η̂N−1/2 and keep η̂ fixed in the limit,
which gives:

ds2
(h) =

l2

4u2

(

1 + η̂
l3

u3

)−2/3
(

−dt2 + dx2 + dy2
)

+

(

1 + η̂
l3

u3

)1/3(
l2

4u2 du2 + dΩ
2
7

)

,

C(h)txy = −1
8

(

1 + η̂
l3

u3

)−1

.

(115)

This exactly reproduces P ∧ P ∧ P deformation of the AdS4 × S7 solution of [21].
For P ∧ P ∧M deformation, we have

Ω = 4ρα̇xα̇∂t ∧ ∂x ∧ ∂y, (116)

which for the deformed background gives:
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ds2 =
1
4

(

1 + ρα̇xα̇
(

1 + N−1/2l−3u3
)−1

)−2/3
(

1 + N−1/2l−3u3
)−2/3(

−dt2 + dx2 + dy2
)

+

(

1 + ρα̇xα̇
(

1 + N−1/2l−3u3
)−1

)1/3 1
4

l3N1/2

u3

(

1 + N−1/2l−3u3
)

du2

+

(

1 + ρα̇xα̇
(

1 + N−1/2l−3u3
)−1

)1/3
(

1 + N−1/2l−3u3
)1/3 l3N1/2

u
dΩ

2
7,

Ctxy = −1
8

(

1 + ρα̇xα̇
(

1 + N−1/2l−3u3
)−1

)

(

1 + N−1/2l−3u3
)−1

.

(117)

Now, fixing the deformation parameter ρ̂α1 = N1/2ρα1 in the near-horizon, we get the
following background:

ds2
(h) =

l2

4

(

u3 + l3ρ̂α̇xα̇
)−2/3(

−dt2 + dx2 + dy2
)

+
1
u

(

u3 + l3ρ̂α̇xα̇
)1/3

(

l2

4u2 du2 + dΩ
2
7

)

,

C(h)txy =− 1
8

(

1 + ρ̂α̇xα̇ l3

u3

)−1

.

(118)

This is exactly the P ∧ P ∧M deformation of the AdS4 × S7 solution of [21]. Note that this
deformation is non-unimodular in the full space-time of the M2-brane, including the near-
horizon area. Hence, we conclude that both unimodular and non-unimodular tri-vector
deformations commute with the near-horizon limit.

This result shows that there are no tri-vector deformations of the AdS4 × S7 back-
ground preserving SUSY as well, at least in the SL(5) setup. Indeed, since deformation
and using the near-horizon limit commute is the only way to preserve SUSY, we get to
keep some of the supersymmetry restored in the limit, which is an additional 16 spinors.
However, the second equation in system (109) does not change when the limit is taken, and
det Γ

4 6= 0 renders ǫ = 0. Explicit calculation using AdS metric for given deformations
gives the same result.

5. Conclusions

In this work, we consider conditions under which a tri-vector deformation given by an
SL(5) transformation parametrized by Wm = 1/3!ǫmnklΩ

nkl preserves the supersymmetry
of 11D backgrounds. Our results give a particular generalization of those presented in [13]
for bi-vector deformations preserving the supersymmetry of 10D backgrounds. The main
idea behind our approach is to notice that the SL(5) tri-vector deformation breaks the
upper-triangular parametrization of a generalized vielbein defining the supergravity frame
of the SL(5) exceptional field theory. To restore it, one performs an additional USp(4) <
SL(5) transformation K, which depends on the deformation parameter Wm and background
fields. This local transformation acts on indices of fermionic fields as well as on the Killing
spinor entering BPS equations. Requiring the BPS equations to hold, we arrive at the
desired condition (103).

To write BPS equations for the fields of the SL(5) ExFT, we first derive supersymmetry
transformations of the theory. This we perform by first imposing them in a general form
inspired by the E6(6) supersymmetric ExFT of [25] and then requiring them to satisfy the
correct algebra of local symmetries of the theory and to reproduce SUSY rules of maximal
D = 7 gauged supergravity. This fixes all free coefficients in transformations up to a single
one, which gets absorbed into a single field redefinition.

The general setup of the tri-vector deformation formalism within the SL(5) theory, as
defined in [21], significantly restricts the number of possible examples to check against the
general formula. In particular, only backgrounds of the form M4 ×M7 with three forms in
the directions of M4 are allowed. Given that we investigate supersymmetry preservation
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under deformations of the M2-brane background and of AdS4 × S7 as its near-horizon
limit, the result is negative: no deformation within the setup preserves any supersymmetry.
This provides a few directions in which the research can be continued.

The most interesting and suggestive would be to construct a poly-vector deformation
scheme for a full Ed(d) theory (SL(5) for d = 4), extending the results of [21,22] to back-
grounds with non-diagonal components in the full 11D metric and a more general 3-form
field. On the one hand, this could change condition (103); on the other hand, this would
allow us to consider more general examples of deformed backgrounds and hopefully find
ones with preserved supersymmetries. Another approach that would extend the space
of possibilities is to allow non-unimodular deformations, i.e., ∇[mWn] 6= 0. This will, in
general, move us out of the space of supergravity solutions generating backgrounds to
solve equations of the generalized 11D supergravity of [43,44]. This is an 11-dimensional
uplift of the 10-dimensional generalized supergravity [45].
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Appendix A. Conventions and Notations

Generators in the 5 and 10

(tM
N)K

L = δM
LδK

N − 1
5

δM
NδK

L,

(tM
N)KL

PQ = 4(tM
N)[K

[PδQ]
L].

(A1)

The factor in the second line has been chosen such that the commutation relations read

[tM
N , tK

L] = δK
NtM

L − δM
LtK

N (A2)

and contraction of indices M,N labelling 10 is performed by an additional prefactor
of 1/2:

AMBM =
1
2

AMN BMN . (A3)

Projectors on the adjoint representation of SL(5) in 5 and in the mixed representation
are given by

P
M

N
K

L = (tQ
P)N

M(tP
Q)L

K,

P
M

N
KL

PQ = P
M

N
[K

[PδQ]
L].

(A4)

These satisfy
P

M
N

K
LP

L
K

P
Q = P

M
N

P
Q,

P
M

N
N

M = dim(adj) = 24,
1
4
P

M
N

PQ
RSP

K
L

RS
PQ = 3PM

N
K

L.

(A5)

Some useful gamma-matrices relations:

γµρσ = γρσγµ + 2gµ[ργσ],

γµρσ = γµγρσ − 2gµ[ργσ]
(A6)

[γµ, γρλ] = 2δ
ρ
µγλ − 2δλ

µ γρ (A7)
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γµ5 γµ1µ2µ3µ4 = γµ1µ2µ3µ4µ5 + 4gµ5[µ1 γµ2µ3µ4] (A8)

γµ1µ2µ3 = γµ3 γµ1µ2 + 2γ[µ1 gµ2]µ3 = γµ1µ2 γµ3 − 2γ[µ1 gµ2]µ3 (A9)

Using the USp(4) invariant tensor ΩAB, it is possible to define an analog of the epsilon-
tensor of SL(4), which defines relations between, say, two realizations of the 4 irreducible
representation, T[ABC] and TA:

ΩABCD = 3Ω[ABΩCD]. (A10)

The prefactor is chosen in order to ensure that ΩABCD has the same properties under
contraction with Ω

ABCD as the epsilon-tensor.
Sometimes we use the following rewriting of fields in 10:

ΩCDT[MN]VMACVNBD =

√
2

4
T(AB). (A11)

Appendix B. Supersymmetry Rules

Here we perform all necessary checks for supersymmetry transformations of the SL(5)
exceptional field theory. We start with transformations of the gravitino and dilatino fields

δψA
µ = DµǫA + ΩCDVMACVNBD

ΩBF

(

α11∇+
MN

(

γµǫF
)

+ α12γµ∇+
MNǫF

)

+ α13VN
BCFνρλNΩ

AB

(

γνρλ
µ +

9
2

γνρδλ
µ

)

ǫC,

δχABC = 2Ω
CDPµDE

ABγµǫE + α21ΩEDVMCEVN[A|D|∇+
MNǫB]

+ α22

(

Ω
ABδC

G −Ω
C[Aδ

B]
G

)

ΩDEΩFHVMGFVNDH∇+
MNǫE

+ α23

(

Ω
AD

Ω
BEVDE

LFµνρLγµνρǫC

− 1
5

(

Ω
AB

Ω
CF + 4Ω

C[A
Ω

B]F
)

VFE
LFµνρLγµνρǫE

)

(A12)

here

∇±MNǫA = ∂MNǫA +
1
4

eµα∂MNe
β
µγαβǫA ± α0

1
4
FµνMNeµαeνβγαβǫA

−QMN B
AǫB +

5
3

λǫΓK[M,N]
KǫA.

(A13)

Comparing to the SUSY transformation rules of the ungauged D = 7 supergravity in the
notations of [30], we have

α12 = −3
5

α11, α22 = −1
5

α21, α21 = 10α11,

α23 =
5
3

α13,
(A14)

which leaves three coefficients. These can be determined by fixing the relations between the
field strengths F of ExFT and H of D = 7 maximal supergravity, and between the coset
fields and components of the generalized metric, which we perform later.

Supersymmetry transformations for bosonic fields can be composed in the follow-
ing form:
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δeα
µ =

1
2

ǭAγαψA
µ ,

β1δAMN
µ = −V

[M
ab V

N]
cd Ω

bd

(

1
2

Ω
ae ǭeψc

µ +
1
4

ǭeγµχcae

)

,

δVab
M =

1
4
Vcd

M

(

Ωe[c ǭd]χ
abe +

1
4

Ωcd ǭeχabe + ΩceΩd f ǭgχc f [a
Ω

b]g +
1
4

ΩceΩd f Ω
ab ǭgχc f g

)

,

β2δBµνM = V ab
M

(

−Ωac ǭbγ[µψc
ν] +

1
8

ΩacΩbd ǭeγµνχcde

)

+ 2β1
2ǫMNPQR ANP

[µ δAQR
ν| ,

∆CM
µνρ = VM

ab

(

−3
8

Ω
ac ǭcγ[µνψb

ρ] −
1

32
ǭcγµνρχabc

)

.

(A15)

Transformation of the 3-form field

∆CN
µνρ ≡

(

β3δCN
µνρ − 3β1β2B[µνPδAPN

ρ] + 2β1
3ǫPQRST ANP

[µ AQR
ν δAST

ρ]

)

, (A16)

fixes the coefficient β3.
Let us now check that the supersymmetry transformation, say, on the vielbein, closes

correctly into the algebra of symmetries of the theory. For that, we consider commutator

[δǫ1 , δǫ2 ]eµ
α =

1
2

ǭ2Aγαδǫ1 ψA
µ − (1↔ 2) =

1
2

ǭ2AγαDµǫA
1

+ ΩCDΩBF
1
2

ǭ2AγαVMACVNBD
(

α11∇+
MN

(

γµǫF
1

)

+ α12γµ∇+
MNǫF

1

)

+ α13
1
2

ǭ2AγαVN
BCFνρλNΩ

AB

(

γνρλ
µ +

9
2

γνρδλ
µ

)

ǫC
1 − (1↔ 2)

(A17)

Using γ-matrices relations, we rewrite the terms with derivative Dµ hitting the
SUSY parameter:

1
2

ǭ2AγαDµǫA
1 −

1
2

ǭ1AγαDµǫA
2 =

1
2

ǭ2AγαDµǫA
1 +

1
2
Dµ ǭ2AγαǫA

1 =
1
2
Dµ(ǭ2AγαǫA

1 ) (A18)

For the terms containing ∇+
MN , we have the following:

ΩCDΩBF
1
2
VMACVNBDα11(ǭ2Aγm∇+

MN

(

γµǫF
1

)

− ǭ1Aγα∇+
MN

(

γµǫF
2

)

)

= ΩCDΩBF
1
2
VMACVNBDα11

(

ǭ2A

(

γα
β + δα

β

)

ǫF
1∇+

MNe
β
µ + ǭ2A

(

γα
β + δα

β

)

e
β
µ∇+

MNǫF
1

−ǭ1A

(

γα
β + δα

β

)

∇+
MNǫF

2 e
β
µ − ǭ1A

(

γα
β + δα

β

)

ǫF
2∇+

MNeα
µ

)

= ΩCDΩBF
1
2
VMACVNBDα11

(

2δα
β ǭ2AǫF

1∇+
MNeµ

β + δα
β∇+

MN

(

ǭ2AǫF
1

)

eµ
β

+ ǭ2Aγm
n∇+

MNǫF
1 en

µ −∇+
MN ǭ2Aγα

βǫF
1 eµ

β
)

(A19)

This can be simplified as follows:

ΩCDΩBF
1
2
VMACVNBDα12

(

ǭ2A

(

γα
µ + eµ

α
)

∇+
MNǫF

1 − ǭ1A

(

γα
µ + eµ

α
)

∇+
MNǫF

2

)

= ΩCDΩBF
1
2
VMACVNBDα12

(

em
µ∇+

MN

(

ǭ2AǫF
1

)

+ ǭ2Aγm
µ∇+

MNǫF
1 −∇+

MN ǭ2Aγm
µǫF

1

)

(A20)

Finally, we rewrite the remaining terms as
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α13
1
2

ǭ2AγαVN
BCFνρλNΩ

AB

(

γνρλ
µ +

9
2

γνρδλ
µ

)

ǫC
1

− α13
1
2

ǭ1AγαVN
BCFνρλNΩ

AB

(

γνρλ
µ +

9
2

γνρδλ
µ

)

ǫC
2

= α13
1
2
VN

BCFνρλNΩ
AB

(

ǭ2A

(

γνρλ
µ

α + 4gα[νγρλ]
µ

)

ǫC
1 +

9
2

ǭ2A

(

γνρα − 2γ[νgρ]α
)

δλ
µ ǫC

1

)

− (1↔ 2) = α13VN
BCFνρλNΩ

AB ǭ2A

(

γνρλ
µ

α + 9gανγρδλ
µ

)

ǫC
1

(A21)

Collecting the above together, for the commutator we obtain:

[δǫ1 , δǫ2 ]eµ
α =

1
2
Dµ(ǭ2AγνǫA

1 eα
ν) + α11ΩCDΩBFVMACVNBD ǭ2AǫF

1∇+
MNeµ

α

+ (α11 + α12)ΩCDΩBF
1
2
VMACVNBD∇+

MN

(

ǭ2Aǫ
f
1

)

em
µ

+

(

(α11 + α12)ΩCDΩBF
1
2
VMACVNBD

(

ǭ2Aγ
α

β∇+
MNǫ

f
1 −∇+

MN ǭ2Aγα
βǫF

1

)

+ α13VN
BCFνρλNΩ

AB ǭ2A

(

γνρλ
β

α + 9gmνγρδλ
β

)

ǫC
1

)

eµ
α

(A22)

In the final step, we use the generalized vielbein postulate and vanishing torsion condition
to rewrite the commutator in the following form

[δǫ1 , δǫ2 ]eµ
α = Dµξνeν

α + ξνDνen
µ + Λ

MN∂MNeµ
α +

(α11 + α12)

2α11
Λ

MN∂MNΛ
MN + Λ

α
βeµ

β. (A23)

Here, on the RHS, we recognize external diffeomorphisms, generalized Lier derivatives,
and the so(1, 6) Lorentz transformation with parameters given by

ξν = ǭ2AγνǫA
1 ,

Λ
MN = α11ΩCDΩBFVMACVNBD ǭ2AǫF

1 ,

Λ
α

β =

(

(α11 + α12)ΩCDΩBF
1
2
VMACVNBD

(

ǭ2Aγα
β∇+

MNǫ
f
1 −∇+

MN ǭ2Aγm
nǫF

1

)

+ α13VN
BCFνρλNΩ

AB ǭ2A

(

γνρλ
β

α + 9gανγρδλ
β

)

ǫC
1

)

−Λ
MNω+

MN
α

β

(A24)

Similarly, the closure of the algebra can be checked for all other fields, which we prefer not
to go through here. Indeed, all structures of ExFT have already been used in the calculation
above and one based on the similar calculation for the E6(6) case [25], we do not expect new
issues to come up but simply various fixes of arbitrary coefficients. Instead, we perform a
reduction to the maximal D = 7 ungauged supergravity, which is already enough to fix
the transformations.

First, comparing the Lagrangian of the maximal D = 7 SUGRA and the SL(5) ExFT,
we fix coefficients in the bosonic supersymmetry rules

β1 =
1

2
√

2
, β2 =

1

8
√

2
, β3 = − 1

32
. (A25)

Hence, these are simply due to various field rescalings. Next, we compare SUSY rules of
ExFT when ∂MN = 0 to those of the maximal D = 7 SUGRA, which gives

α12 = −3
5

α11, α22 = −1
5

α21

α0α11 = −4
5

, α13 = − 1
15

,

α0α21 = −8, α23 = −1
6

.

(A26)



Symmetry 2022, 14, 2525 25 of 26

This leaves one free coefficient α0 that can be reabsorbed into the remaining field redefini-
tions and we set α0 = 1. This completely determines the SUSY rules.
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