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CHAPTER 1

Introduction

Perturbative calculations in quantum field theories, and Quantum Chromodynamics
(QCD) in particular, are the cornerstone in current research in high energy physics.
Experiments at hadron colliders demand maximally precise calculations to reduce the
theoretical uncertainty on observables. The combination of experimental and theoretical
efforts to reduce these uncertainties is key to making discoveries in collider physics, and
is highly important to extract maximum information from reactions involving e.g. the
recently discovered Higgs boson [1, 2].

Among the ample recent progress directly significant for phenomenology (for a
recent review see e.g. [3–5]) we mention a precise determination of parton distribution
functions and their uncertainties [6, 7], the development of jet algorithms and the study
of internal jet substructures [8], the automation of event generators at NLO [9] and
towards NNLO [10–12] and the develpment of new tools for hard partonic scattering
higher order [13–15] (that most notably culminated in the computation of the Higgs
cross-section at the impressive N3LO accuracy [16]).

This field is often regarded as a somewhat technical area, where it is difficult to
develop new interesting insights and the only aim is extending precision to ever more
digits. Although this is the driving force of this field, there is more structure than meets
the eye. Indeed, though the study of perturbative quantum field theories is quite old, it
continues to be an active area in revealing new elegant mathematical structures.

For instance, the search for an efficient evaluation of Feynman diagrams led to the
introduction in physics of so-called symbol technology [13]. This, together with the
recently improved approach of using differential equations [14, 17], was key in the
classification of functions in the result of Feynman diagrams in terms of generalized
polylogarithms [13]. Unitarity methods [18–22] have been very successful for processes
with large number of external legs [23] and led to a number of studies of scattering
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1. INTRODUCTION

amplitudes from more formal point of view, both in gauge and gravity theories [24–30].
Therefore, the field of perturbative calculations is an active area that is relevant both

for phenomenology and for more formal applications. In this context, this thesis aims at
investigating different aspects of perturbative QCD considering the specific case of the
Drell-Yan process.

Drell-Yan processes

The Drell-process is one of the most well-studied processes and is the prototype for many
other processes at hadron colliders. It describes the creation of a lepton-antilepton pair
of invariant mass Q2 through

h1 + h2 → `+ ¯̀+X , (1.1)

where h1 and h2 are two hadrons and X represents any other non-measured final states.
The production mechanism happens through the creation of an intermediate state of
invariant mass Q2. As shown in Fig. 1.1 for the muon-antimuon case, this can be quite
generally a meson or an electroweak boson. However, in this thesis we will focus on
the case of the production of an off-shell photon γ∗(Q2), without explicitly including
its subsequent decay into the lepton pair. Moreover, we will restrict our analysis to the
quark-antiquark channel of the partonic cross-section.

To stress the relevance of this process, we note that the original work of Drell and
Yan [32] was the first application in hadronic interactions of the parton model, originally
developed for Deep Inelastic Scattering (DIS). Moreover, it was the theoretical interpreta-
tion behind more than one breakthrough discovery in particle physics and served as a
benchmark for the experimental confirmation of the Standard Model. For instance, it led
to the Nobel prize discovery of the J/Ψ particle at Brookhaven National Laboratory in
1974, through the analysis of proton-nucleus collisions of the form p+ Be→ e+ + e−+X

that proved the existence of the charm quark [33]. In 1977 at Fermilab it led to discovery
of the Y particle through proton-nucleus collisions of the form p+Cu/Pt→ µ+ +µ−+X ,
which proved the existence of the bottom quark [34]. Then, in 1983 it led to the Nobel
prize discovery of the W± and Z bosons at the Super Proton Synchrotron via proton-
antiproton collisions [35–38]. Nowadays it is a benchmark process for the physics at
the Large Hadron Collider (LHC), as it provides valuable information on precision mea-
surements of the properties of the W± and Z bosons, and constitutes a sensitive test for
many new physics models.

From the computational point of view, the relevance of QCD corrections for this
process was soon realized and the first next-to-leading order (NLO) inclusive cross-
section appeared in 1979 [39]. More that ten years passed until the next-to-next-to-leading
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Figure 1.1: Cross-section measured in the CMS detector at the LHC in the µ+µ− chan-
nel as a function of the µ+µ− invariant mass [31]. In the peaks we note the resonant
production of the mesons η, φ, J/Ψ and Y and of the Z boson.

order (NNLO) matrix elements were published [40, 41], and even more years for rapidity
distributions [42], while fully differential distributions at NNLO were computed only
in the last decade [43, 44]. The importance of these computations goes beyond the pure
application in Drell-Yan measurements as they provides important tools also for other
processes, most notably for the Higgs boson production via gluon-fusion, which it shares
many features with.

This thesis

Despite this long history, in this thesis we will show that the Drell-Yan process can still
reveal surprising new insights in theoretical developments for perturbative quantum field
theory. In particular, we will use it as a case study to investigate two different aspects of
perturbative QCD: all-order corrections and “next-to-soft” factorization [45–48], and the
issue of unitarity and the development of new methods for fixed-order computations [49].

As we will discuss in detail in the following chapters, soft and collinear radiation
originates logarithms that in the Drell-Yan case depend on a variable z = Q2/s, where s
is the incoming partonic center-of-mass energy squared and z measures the distance to
threshold s→ Q2. These logarithms (called threshold logarithms) might damage the pre-

5



1. INTRODUCTION

dictivity of perturbation theory and need to be resummed to all orders. Much is known
about this resummation at leading power (LP) while no systematic framework is known
at next-to-leading power (NLP). In this thesis, we will tackle this issue by investigating
soft and collinear radiation at subleading power, known as “next-to-soft”. Focusing on
the NNLO Drell-Yan cross-section, we will investigate these next-to-soft corrections with
three different approaches: the use diagrammatic techniques, the expansion by regions
and the soft-collinear factorization formula. The final result of this process will be the
definition of a next-to-soft factorization formalism with predictive power for all NLP
threshold logarithms.

At the same time the Drell-Yan process shows also interesting insights from the
point of view of developing new methods for fixed order computation. Indeed, the
inclusiveness of a cross-section in terms of QCD radiation might make its analytic
structure relatively simpler and hence suggests the search for alternative methods for
its computation. This is certainly the case for the fully inclusive DIS, where the optical
theorem and the operator product expansion made possible a three-loop calculation
more than a decade ago. Processes like Drell-Yan or Higgs production, even though they
are only one-particle inclusive, possess a quite simple structure since the kinematics is
contained in one single dimensionless variable. We will then be able to generalize the use
of unitarity from DIS to the Drell-Yan case, which will require moving from the optical
theorem to the more general use of unitary cuts.

The structure of this thesis is as follows. In Chapter 2 we review the basis of soft-
collinear factorization, referring in particular to the case of the quark form factor, which
will be relevant in the application to the Drell-Yan case. Then, in Chapter 3 we present a
first attempt to organize next-to-soft corrections by means of diagrammatic techiniques.
In Chapter 4, which is based on [45], we present a calculation based on the so-called
method of regions, by means of which is it possible to analyze the entire soft and collinear
logarithmic structure of the NNLO cross-section. However, though powerful, it does
not give any information toward higher orders. This step will instead be achieved in
Chapter 5, based on [46], by means of the soft-collinear factorization formula derived in
Chapter 2. Finally, in Chapter 6, which is based on [49], we will develop a new method
to compute NNLO Drell-Yan corrections making use of unitarity in Mellin space.
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CHAPTER 2

Soft and collinear factorization

A central theme in this thesis is the analysis of soft and collinear singularities, from
here on occasionally referred to collectively as infrared (IR) singularities. These plague
QCD perturbation theory giving rise to large logarithms that need to be resummed to
all orders. The standard procedure to achieve this resummation usually passes through
factorization. This can be understood referring to the perhaps more familiar ultraviolet
(UV) renormalization: when operators are multiplicatively renormalizable, it is possible
to write an evolution equation whose solution resums all logarithms involving the
renormalization scale. Following the same strategy, we can factorize soft and collinear
emissions from the hard part of the process in terms of universal functions. Upon writing
an evolution equation for these, we can eventually get an all-order formula where the
contributions of soft and collinear origin are resummed.

This approach is nowadays a well-establish field, where many results have been
obtained for various cross-sections. Many of the insights in this area were developed in
the context of factorization for full QCD, and refer to the work done mainly by Collins,
Soper and Sterman in the ’80s and ’90s [50–53], where factorization theorems for various
processes are derived from first principles of QCD. This is the approach followed in this
thesis, and its key aspects will be reviewed in this chapter.

An alternative approach that has become very popular in last decade is given by the
use of soft-collinear effective field theories (SCET) [54–57]: in that context factorization
theorems are elegantly derived at the Lagrangian level, where soft and collinear modes
are defined through independent fields and effective operators describe their interaction.
Clearly, there are many connections between this and the more traditional diagrammatic
approach followed in this thesis.

The goal of this chapter is to introduce the key aspects of soft-collinear factorization
that will be relevant for the subsequent chapters of this thesis. In particular, we will
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2. SOFT AND COLLINEAR FACTORIZATION

focus on the specific example of the quark form factor which will be central for the
investigation of the Drell-Yan process. However, many of the observations are quite
general and can be implemented in more complicated cases. We note that even if a
proof is presented, we will not aim to be fully comprehensive, but refer the reader to
the extensive literature for a more detailed discussion. Specifically, we will follow the
approach of [58–61].

The structure of the chapter is as follows. In the first section, we start with very
general considerations about Feynman integrals, showing how singularities can be
identified. Then, we restrict our analysis to the case of the quark form factor. For this
specific case, we will organize singularities to all orders in leading singular regions, and
we will see how these can be disentangled by means of diagrammatic techniques. After
this set up, we will construct an operator interpretation for these regions. Finally, we will
implement this formalism to the one-loop accuracy.

2.1 Singularities of Feynman integrals

Divergences are usually regarded as a troublesome feature of the theory and often
that is the case from the merely computational point of view. However, from a more
theoretical perspective, scattering amplitudes must be regarded as complex-valued
integrals in the complex plane and, in the spirit of Cauchy’s theorem, all the information
is encoded in their singularity structure. Before discussing how to systematically identify
the singularities of a generic diagram, let us recall how these arise in perturbative
calculations.

Perhaps the best known singularity is the ultraviolet (UV) divergence. Such diver-
gences are completely under control with standard renormalization techniques and will
not be discussed here. But there are other singularities. If we consider for example
amplitudes involving massive particles, when the energy is sufficient to produce new
particles at rest, divergences known as threshold singularities appear. With massless
particles, instead, we have to deal with IR divergences.

To illustrate this point, let us consider the scalar propagator

1

(p+ k)2 + iη
=

1

2p · k + iη
, (2.1)

where we assumed that both p and k are on-shell momenta. Let us also assume that p
belongs to a fermion and k to a gluon. Infrared singularities arise when the denominator
vanishes.
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2.1. Singularities of Feynman integrals

Two cases are possible:

• kµ = 0 (soft singularity)

• p · k = 0 (collinear singularity)

The case pµ = 0 is not considered since, as we will see, a fermion never develops a
soft singularity by power counting. While the soft singularity is present also after Wick
rotating to the euclidean space-time, the collinear singularity is a specific feature of
the Minkowski signature. In dimensional regularization with space-time dimension
d = 4 − 2ε each of these give rise to a single pole ε−1, order by order in perturbation
theory. Of course the emission can be soft and collinear at the same time, and this would
give rise to a double pole ε−2.

However, as we will discuss in detail, the vanishing of a denominator is not a sufficient
condition for an actual diagram to be singular: propagators are part of a full integrand
with numerator insertions that must be integrated over loop momenta. Hence, some
of the singularities might actually be integrable. Let us now make these preliminary
considerations more systematic.

We consider a generic graph G(p1, . . . , pE) with L-loop, E-external legs and I-internal
lines. It can be written as

G(p1, . . . , pE) =

 L∏
j=1

∫
ddkj
(2π)d

 N (pr, kj)∏I
i=1(`2i −m2

i + iη)
, (2.2)

where r = (1, . . . , E), mi and `i = `i(pr, kj) are respectively the mass and the momentum
of the i-th propagator, which is function of the external momenta pr and loop momenta
kj . Introducing I Feynman parameters xi this becomes

G(p1, . . . , pE) =

(
I∏
i=1

∫ 1

0

dxi

)
δ(1−

I∑
k=1

xk)

 L∏
j=1

∫
ddkj
(2π)d

 Ñ (pr, kj , xi)

[D(pr, kj , xi)]I
, (2.3)

where Ñ (pr, kj , xi) gathers all numerator factors after the parametrization and

D(pr, kj , xi) =

I∑
i=1

xi
(
`2i −m2

i

)
+ iη . (2.4)

Landau [62] found a set of necessary (but not sufficient) conditions for such a general
Feynman integral to be divergent. The analysis starts from the observation that the
integrand must be read as a function of the complex integration variables (Feynman
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2. SOFT AND COLLINEAR FACTORIZATION

parameters xi and loop momenta kµj ). Potential singularities correspond to the zeroes of
the denominator

D(pr, kj , xi) = 0 . (2.5)

However, if the path of integration can avoid this singularity by deforming the contour
in the (xi, k

µ
j ) space, then by Cauchy’s theorem the integral is not divergent. Thus we

have to find the conditions that ensure that such a deformation is not possible in any
direction of this (d× L+ I)-dimensional space.1 This possibility is realized differently
for kµj and xi integrations:

• Two singularities can merge at the same point and “pinch” the contour (pinch
singularity). This is possible only for kµj integrations (and not for xi), since denom-
inators are quadratic in kµj (and linear in xi) and two zeroes can merge in a single
point. The condition for this to happen is

∂D(pr, kj , xi)

∂ kµn
= 0 , (2.6)

which combined with Eq. (2.4) gives

I∑
i=1

xi
∂`2i (pr, kj)

∂kµn
= 0 , (2.7)

or more explicitly ∑
j∈loopn

xj `
µ
j σj,n = 0 , (2.8)

where σj,n is +1 if the line momentum `j in the loop n flows in the same direction
as the loop momentum kn, -1 if in the opposite direction, zero otherwise.

• The singularity can be located at the end of the integration contour (endpoint
singularity). For kµj integrations this would correspond to the standard UV diver-
gence which is treated by renormalization and is not of interest here, since each
kµj runs from −∞ to +∞. Endpoint singularities instead are relevant for non-UV
divergences, specifically for xi integrations, when

xi = 0 , (2.9)

(xi = 1 ∀i does not fulfill the condition D = 0). However, if D does not depend on
xi, this condition cannot be applied. In that case we simply demand that

∂D/∂xi = 0 , (2.10)
1Indeed even if a single variable does not satisfy this condition, we can modify the contour in this subspace.
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2.1. Singularities of Feynman integrals

which amounts to requiring that the corresponding denominator `2i −m2
i vanishes.

So in conclusion we can combine 2.9 and 2.10 into

xi
∂D
∂xi

= 0 . (2.11)

These considerations constitute the Landau equations: they state that a necessary condi-
tion for a Feynman amplitude to be divergent is that its denominator must have a pinch
singularity for all loop momenta components kµj , and for every xi either must have an
endpoint singularity or must not depend on it:

∑
j∈loopn

xj `
µ
j σj,n = 0 ∀µ, n ,

xi
(
`2i −m2

i

)
= 0 ∀i .

(2.12)

Every singularity of a diagram is a solution of these equations. The use of line momenta
` = `(pr, kj) hides the fact that many ingredients are involved, and it might not be
immediately clear which are the unknowns that these relations must constrain and which
the parameters to be kept fixed. In this regard we can distinguish two different classes of
solutions:

• solutions that constrain external momenta, which means that the integral is di-
vergent for a particular kinematical configuration. This is the case for threshold
singularities.

• solutions for a given fixed set of masses and external momenta. This is the case for
soft and collinear singularities.

In Section 2.3 this machinery will become much clearer when we will explicitly solve
Landau equations for the one-loop quark form factor. However, at higher orders, finding
solutions to Landau equations becomes difficult. Fortunately, thanks to Coleman and
Norton [63], there is a much shorter and more intuitive way to solve this problem.

The starting point for the Coleman-Norton prescription is that the Landau equations
can be read as a different prescription for on-shell and off-shell lines: for the former
xi 6= 0 and we demand ∂D/∂kµj = 0, while for the latter simply xi = 0. We can define

∆sµi ≡ xi`
µ
i , (2.13)

whose spatial component can be interpreted as the displacement done in a proper time
xi`

0
i of a classical particle with momentum `µi and four-velocity vµ = (1,

−→
`i /`

0
i ). Then the
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2. SOFT AND COLLINEAR FACTORIZATION

p

Figure 2.1: A reduced diagram for a 2-point function corresponding to the threshold
solution p2 = 36m2. In the rest frame of the initial particle, there are always 6 particles
at rest relative to one another. The trajectories of the massive particles are drawn as
separate for clarity, but their relative momenta are zero.

Landau equations become:
∑

j∈loopn

∆sµj σj,n = 0 if `2j = m2
j ,

∆sµi = 0 if `2i 6= m2
i .

(2.14)

In this picture the “pinch condition” (∂D/∂kµj = 0) for on-shell lines (∂D/∂xi = 0) is
equivalent to the requirement that every loop made out of these corresponds to a closed
classical path (in the sense of a free propagation between vertices). Then these on-shell
lines make the diagram singular only if the off-shell ones do not propagate (“endpoint
condition” xi = 0).

Therefore every singularity of a given diagram can be represented as the original
diagram where some lines are kept off-shell (and thus shrunk into a point) and others are
kept on-shell and correspond to allowed classical trajectories with the given momenta.
Hence the task of finding all possible solutions to Landau equations is now simplified to
the graphical exercise of drawing all possible (classically allowed) reduced diagrams.

To see the power of the Coleman-Norton method at every order, let us apply it to the
2-point functions, as shown in Fig. 2.1. The scalar 2-point functions have only normal
threshold singularities, which correspond to the case when the momentum p satisfy

p2 = n2m2 , (2.15)

where m is the mass of the scalar fields. This can be easily seen in the reference frame
where pµ = {

√
p2, 0, 0, 0}: the allowed Coleman-Norton process corresponds to the

production of n particles at relative rest among each other. Every further particle cre-
ated with non-vanishing momentum must be balanced by another one in the opposite
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2.2. Leading regions and power counting

direction, by momentum conservation. But then in a free propagation they cannot meet
again, and thus this process is not allowed. We conclude that there are no singularities
other than normal thresholds. In the limit m → 0 the spectrum of solutions becomes
degenerate and corresponds to collinear solutions: in a semiclassical picture the only
way n massless particles can recombine is if they have mutually collinear momenta. Soft
divergences instead cannot arise here.

2.2 Leading regions and power counting

The discussion until now has been very general, allowing also for the presence of massive
particles. Now we focus on diagrams formed exclusively of massless lines. In this case,
solutions to Landau equations will not include threshold singularities but only soft
and collinear ones. Their general structure at all orders can be organized by the use
of reduced diagrams in the Coleman-Norton picture. Indeed, as we have seen, in a
reduced diagram all lines are on-shell and in the massless case they can be either soft or
collinear (non-singular lines are off-shell and have been contracted to a point). Now we
can introduce some definitions for the elements of such reduced diagrams.

A connected set of massless collinear lines is called a jet subdiagram. A set of massless
soft lines (not necessarily connected) whose momenta vanish in all the four components
is called a soft subdiagram. A vertex where lines from different jet subdiagrams meet
is called a hard vertex while a vertex between a jet and a soft line is called a soft vertex.
The number of jet subdiagrams must be less or equal to the number of external legs
otherwise that would imply external legs colliding at later time. From this follows that
there should be only a single hard vertex and that all collinear lines belong to different
sets of jet subdiagrams. The remaining lines are soft and can be collected in a single soft
subdiagram.

Summarizing, in the massless case a generic n-leg reduced diagram can be decom-
posed into a single hard vertex connected to one soft subdiagram and n jet subdiagrams
that are connected to this soft subdiagram and to the hard vertex. An example is shown
in Fig. 2.2. These jet and soft subdiagrams are mutually connected and thus not yet
completely independent. If one manages to prove that these connecting lines can be
somehow removed, then these subdiagrams are independent and a factorization picture
would emerge. This is indeed what we will achieve eventually, and moreover it will be
possible to re-define these leading regions as matrix elements of composite operators.
Before doing that, we have to get rid of solutions of the Landau equations that do not give
rise to a singularity. Indeed most of the lines connecting the subdiagrams correspond
to integrable singularities and thus can be removed. To prove this we need a precise IR
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2. SOFT AND COLLINEAR FACTORIZATION

(a)

H

J

S

(b)

Figure 2.2: A generic 4-parton amplitude (a). Soft and collinear lines are represented
respectively in green and red. Hard (off-shell) lines in blue are shrunk to a point in the
corresponding reduced graph (b), which can be represented with massless subgraphs.

power counting.
Indeed, with the Landau equations (and their graphical representation given by the

Coleman-Norton picture) we have seen that the vanishing of a denominator in a diagram
is not enough to develop a singularity, since some of the singular points can be avoided
by modifying the integration contour. Still, Landau equations are a necessary but not
sufficient condition for a diagram to be singular. There might be other contributions (e.g.
numerator factors or the integration measure) that would make a solution to Landau
equation not singular. In order to have full control of this at all orders in perturbation
theory we need a systematic power counting of the infrared singularities of a generic
diagram, as is well-known for UV divergences.

Given a diagram, every solution (ki = k̄i, xi = x̄i) to the Landau equations (i.e. every
reduced diagram) defines a surface S in the multidimensional space (ki, xi) that we call
a pinch surface2. At a given point of every surface we can distinguish in the ki subspace
two kinds of coordinates: intrinsic coordinates kintr

i , which parametrize the surface (and
thus assuming that there is only one pinch surface the integration over them would
be finite), and normal coordinates knorm

i , which are the actual singular ones and whose
variation measures how close we are to the singularity surface. Of course the choice of

2We call it pinch surface even if it contains also endpoint singularities. This is because the kj will always
be pinched, while the xi do not have to have an endpoint singularity.
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2.2. Leading regions and power counting

intrinsic and normal coordinates refers to a specified pinch surface: different surfaces
have different intrinsic and normal variables and the integration over the intrinsic ones
may be divergent when the surface intersect other pinch surfaces.

The power counting analysis starts by rescaling these normal variables with a param-
eter λ

knorm
i ≡ λai k̃norm

i , (2.16)

such that the singularity is approached for λ → 0. We assumed here the possibility
that different normal variables can scale with different powers ai with i = 1, . . . , Nnorm,
where Nnorm is the number of normal variables. To every surface we can associate
an integral, known as the homogeneous integral. It is constructed by expanding the
denominator of each propagator j to leading power in λ. We call this power Aj with
j = 1, . . . , Nlines where Nlines is the number of propagators. The integral corresponding
to the surface S then scales as λnS , where the degree of divergence nS is defined as

nS =

Nnorm∑
i=1

ai −
Nlines∑
j=1

Aj + nnum . (2.17)

The first contribution arises from the normal variables in the measure, the second from
denominators and the third from factors in the numerators that produces powers of λ. A
sufficient condition for the diagram to be divergent is

nS ≤ 0 . (2.18)

More precisely, the divergence is logarithmic if nS = 0 and linear or beyond if nS < 0.
The reason why counting leading powers of λ is a good way to measure the degree

of divergence is that almost always the remaining homogeneous integral is divergent at
the same pinch surface S of the original integral - i.e. no new IR divergence is created
(the same is not true for the UV case: spurious UV divergences usually appear in the
homogeneous integral, but these do not spoil the power counting of the IR ones).

However, the procedure fails when a subset of normal variables in a subsurface S ′

of S vanishes faster than the others. If this happens, one must repeat the procedure
and verify the power counting for S ′. Thus, as for the UV power counting, nS is only a
superficial degree of divergence, since there might be sub-divergences not caught by the λ
scaling.3 However, in the cases relevant for this thesis this can be avoided by a suitable

3An example is given by the one-loop form factor in QED, when a fermion anti-fermion pair of momenta p
and p̄ annihilate into a photon and a virtual photon of momentum k is exchanged between them: thanks to
the fermion mass m there are no collinear singularities but only soft ones whose pinch surface is kµ = 0. The
corresponding homogeneous integral scales like λ0 thus implying a logarithmic divergence. However, this
integral has a further pinch surface given by k0 = 0,k 6= 0 which corresponds to a threshold singularity when
p · p̄ = 2m2. At this surface the scaling is λ−1 so k0 vanishes faster than k making the original integral power
divergent [58].
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2. SOFT AND COLLINEAR FACTORIZATION

choice of coordinates. Moreover, it is generally assumed that, given a set of variables on
a pinch surface such that the homogeneous integral has no pinch surface different from
the original diagram, the diagram is IR finite if the superficial degree of divergence for
every set of variables on every pinch surface is positive.

The discussion so far has been very general. However, performing a precise IR power
counting for a generic n-leg graph requires discussing many aspects that are actually not
necessary for the purpose of this thesis. Thus from now on we will focus on the case
of the quark form factor: 2 jets and no internal masses. This encodes the fundamental
features of the factorization that can be generalized for a generic number of legs and,
importantly, is the fundamental building block of the Drell-Yan process we investigate in
this thesis.

2.3 The quark form factor

The quark form factor Γµ (p1, p2) is defined as the matrix elements of the electromagnetic
current jµ

Γµ (p, p̄) ≡ 〈0|jµ(0)|p, p̄〉 , (2.19)

which describes the annihilation of a quark-antiquark pair of momenta p and p̄ into a
photon of invariant mass Q2 [64, 65]. In a massless theory without any real radiation this
is the only scale involved besides the standard renormalization scale µ and one finds
Q2 = 2p · p̄, since all energy flows into the photon. The Lorentz algebra can be factorized
such that the form factor can be expressed in term of a scalar function Γ

(
µ2

Q2 , αs(µ), ε
)

.
Hence one can write

Γµ (p, p̄) = −iΓ

(
µ2

s
, αs(µ), ε

)
v̄(p̄) γµ u(p) , (2.20)

where for simplicity we have set to one the electromagnetic charge. QCD corrections can
be decoupled from the electromagnetic vertex. Indeed, gluons do not couple directly to jµ
(unless one consider some effective vertex such as for Higgs production via gluon-fusion).
Since the electromagnetic current is conserved, the form factor is a renormalization group
invariant. This is consistent with the fact that QCD corrections do not affect the electric
charge.

In this section we will first calculate the form factor at one-loop, in order to recall
the main ingredients for the calculation, which will be useful for an IR analysis at the
integrand level. We will not show the details of the integrations since these are standard
one-loop methods. Then we will move to the IR analysis at the integrand level, first at
one loop and then to all orders. At the end of this section we will see that the form factor
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2.3. The quark form factor

(a) (b) (c)

(d) (e) (f)

Figure 2.3: Diagrams contributing to the one-loop quark form factor. Solid dots represent
UV counterterms.

can be factorized into leading regions that are connected only through longitudinally
polarized gluons.

The relevant diagrams D(a)-(f) for the computation of the one-loop form factor are
depicted in Fig. 2.3. Gluon corrections bring IR divergences, which will will be discussed
in detail, but also UV ones. Hence they require the introduction of (standard) UV
counterterms. We will work in Feynman gauge.

Let us start with self energy graphsD(b) andD(c). Specifically, consider the self-energy
correction to the p line of diagram D(b). This is proportional to the integral

∫
ddk

(2π)d
γµ(/p− /k)γµ

(p− k)2k2
. (2.21)

For p2 = 0 the integral is scaleless4 and thus the diagram vanishes in dimensional
regulatization. The zero here has to be read as a cancellation between an IR and a UV

4This is a consequence of the chosen gauge. In axial gauge for example the presence of n2 and p · n makes
the integral different from zero.
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2. SOFT AND COLLINEAR FACTORIZATION

pole. Therefore we can write

D(b) = D(c) ∝
1

εUV
− 1

εIR
= 0 . (2.22)

This can be easily seen setting p2 6= 0 in the calculation. This off-shellness ensures that
no collinear divergence is present and the result is a pure UV pole.

The presence of UV divergent self-energy graphs reminds us that we need to add
diagrams D(e) and D(f): these are counterterms for each quark line which follow from
renormalizing the quark field ψ via a factor Zψ . Finally, one must include diagram D(d),
which is the counterterm for the electromagnetic vertex via the renormalization constant
Z1. As is well-known, gauge invariance implies that Z1 = Zψ, such that the sum of all
counterterms must vanish:

D(d) +D(e) +D(f) = 0 . (2.23)

This is consistent with the fact that QCD corrections cannot renormalize a QED vertex,
and thus the QED charge is conserved.

In conclusion, at one-loop the only diagram which requires an actual computation is
the triangle diagram

D(a) = g2CFµ
2ε

∫
ddk

(2π)d
v̄(p̄)γα(/̄p+ /k)γµ(/p− /k)γαu(p)

(k2 + iη) [(p− k)2 + iη]
2

[(p̄+ k)2 + iη]
2 . (2.24)

This is a standard one-loop calculation and the result leads to the one-loop expression
for the form factor:

Γ(1)

(
µ2

s
, ε

)
=
αs
4π
CF

(
−4πµ2

s

)ε
Γ2(1− ε)Γ(1 + ε)

Γ(1− 2ε)

2− ε+ 2ε2

ε2(2ε− 1)
(2.25)

=
αs
4π
CF

(
− µ̄

2

s

)ε(
− 2

ε2
− 3

ε
+
π2

6
− 8 + ε

(
−16 +

π2

4
+

14

3
ζ3

)

ε2

(
−32 +

2

3
π2 + 7ζ3 +

47

720
π4

)
+O(ε3)

)
, (2.26)

where we have introduced µ̄2 = 4πµ2e−γE (we have used MS-scheme counterterms).

Now we want to apply the general techniques discussed in Section 2.1 and Section 2.2
at the integrand level, first at one-loop and then at all orders. We will focus on the triangle
integral. After Feynman parametrization it reads

18



2.3. The quark form factor

(a) (b) (c)

Figure 2.4: Reduced diagrams for the one loop quark form factor. Diagram (a) corre-
sponds to the soft solution, while (b) and (c) to the collinear ones.

D(a) = 2 g2CFµ
2ε

∫
ddk

(2π)d

∫ 1

0

dy1dy2dy3 δ(1− y1 − y2 − y3)

×
v̄(p̄)γα(/̄p+ /k)γµ(/p− /k)γαu(p)

[y1k2 + y2(p− k)2 + y3(p̄+ k)2 + iη]
3 , (2.27)

while the Landau equations read
y1k

µ − y2(p− k)µ + y3(p̄+ k)µ = 0

y1 = 0 or k2 = 0

y2 = 0 or (p− k)2 = 0

y3 = 0 or (p̄+ k)2 = 0

. (2.28)

There is one soft solution

kµ = 0 ,
y2

y1
= 0 ,

y3

y1
= 0 , (2.29)

and there are two collinear oneskµ = a pµ , y3 = 0 , y1 = 1−a
a y2 ,

kµ = b p̄µ , y2 = 0 , y1 = −b−1
b y3 .

(2.30)

In order to prove that there is no other solution we can observe that there is no other
possible reduced diagram. For example a diagram like the one shown in Fig. 2.5 does
not have to be included.

Before moving to the power-counting, we need to identify the normal coordinates
for each solution. For the soft pinch surface defined by kµ = 0 this is trivial, since all
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2. SOFT AND COLLINEAR FACTORIZATION

Figure 2.5: This reduce diagram is obtained by shrinking the gluon line in D(a) into a
point. It does not correspond to a solution to Landau equations since it does not describe
a classical allowed configuration: two non-collinear particles cannot recombine after a
free path.

the kµ components are normal and there are no intrinsic coordinates. For the collinear
singularity, instead, the parametrization of pinch surfaces requires the introduction of
light-cone coordinates. We recall here some basic facts.

Light-cone variables mix the time and one spatial component of a standard Lorenz
vector (x0, x1, x2, . . . , xd) and are defined by

x+ ≡ x0 + x3

√
2

x− ≡ x0 − x3

√
2

. (2.31)

Since the other d− 2 coordinates do not change, they are collected as a single vectorial
x⊥ component. Thus light-cone components are indicated as (x+, x⊥, x

−). The metric
becomes

gµν =



0 0 1 0 · · ·
0 −1 0 0 · · ·
1 0 0 0 · · ·
0 0 0 −1
...

...
...

. . .


, (2.32)

while the scalar product reads

x · y = xµy
µ = x−y+ + x+y− − x⊥ · y⊥ , (2.33)

where x⊥ · y⊥ is a standard Euclidean scalar product. The line and the volume element
become
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2.3. The quark form factor

ds2 = 2dx+dx− − dx2
⊥ ,

ddx = dx+dx−dd−2x⊥ = dx+dx−d|x⊥||x⊥|d−3dΩd−2 , (2.34)

where dΩd−2 = is the differential solid angle in d−2 dimensions (which for d = 4 reduces
to a single azimuthal angle dφ). Finally, we observe that for gamma matrices we have

(
γ±
)2

=
1

2

{
γ±, γ±

}
= g±± = 0 , (2.35)

while the Dirac equation /p u(p) = v̄(p̄)/̄p = 0, for p = (p+, 0⊥, 0) and p̄ = (0, 0⊥, p
−), can

be written simply as

γ−u(p) = v̄(p̄)γ+ = 0 . (2.36)

We can now write the propagators of the triangle diagram in light-cone coordinates,
after choosing the rest frame of the off-shell photon and setting p = (p+, 0⊥, 0) and
p̄ = (0, 0⊥, p

−):

k2 = 2k+k− − k2
⊥ ,

(p− k)2 = −2p+k− + 2k+k− − k2
⊥ ,

(p̄+ k)2 = 2p̄−k+ + 2k+k− − k2
⊥ . (2.37)

Let us consider the collinear singularity k ‖ p in which (p− k)2 → 0. The singularity is
achieved when both k− and k⊥ become 0, thus both are normal coordinates. Then the
remaining ones (the solid angle Ω and k+) are intrinsic.

Soft power counting

The power counting for soft singularities is straightforward. Rescaling every momentum
component as

kµ → λ2kµ , (2.38)

which is equivalent in light-cone components to the scaling (λ2, λ2, λ2), all the parts we
need in the integral scale as

ddk ∼ λ2d , k2 ∼ λ4 , (p− k)2 ∼ λ2 , (p̄+ k) ∼ λ2 ,

N ∼ 2p · p̄ v̄ (p̄)γµu(p) ∼ λ0 , (2.39)

where in the numerator N we used the Dirac equation /p u(p) = 0 and v̄(p̄) /̄p = 0. Taking
this limit in an amplitude goes under the name of eikonal approximation, where the
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2. SOFT AND COLLINEAR FACTORIZATION

emitting fermion line propagator and the vertex can be combined into a single scalar
effective Feynman rule. E.g. on the p line one has

(/p− /k) γµ u(p)

k2 − 2p · k
→ − pµ

p · k
. (2.40)

Hence the homogeneous integral is called eikonal integral Ieik and reads

Ieik = −λ2d−8 g2CFµ
2ε 2p · p̄ v̄ (p̄)γµu(p)

∫
ddk

1

(k2 + iη)(p · k − iη)(p̄ · k + iη)
, (2.41)

while the degree of IR divergence is

nS = 2d− 8 , (2.42)

which corresponds to a logarithmic singularity in d = 4. Ieik has a soft pinch surface at
kµ = 0 and collinear ones at k± = k⊥ = 0 . This can be immediately seen writing the
integral in light-cone components:

Ieik = −λ2d−8 2 g2CFµ
2ε v̄(p̄)γµu(p)

∫
dk+dk−d|k⊥|dΩd−2

× |k⊥|d−3

(2k+k− − k2
⊥ + iη)(k+ + iη)(k− − iη)

. (2.43)

Both pinch surfaces are present also in the original integral, hence Eq. (2.43) gives the
correct divergent behavior.

Collinear power counting

For the collinear case (say k ‖ p), demanding that the propagator in the second line of
Eq. (2.37) must be kept on-shell, we can rescale the intrinsic coordinates as

k− → λ2k− , k2
⊥ → λ2k2

⊥ , (2.44)

hence the light-cone components of a collinear vector will scale like kcoll p ∼ (1, λ, λ2).
The various contributions scale as

dk− ∼ λ2 , d|k⊥||k⊥|d−3 ∼ λd−2 , k2 ∼ λ2 , (p− k)2 ∼ λ2 , (p̄+ k) ∼ λ0 ,

N ∼ v̄(p̄) γ−(/̄p+ /k)γµ(/p− /k)γ+ u(p) ∼ λ0 , (2.45)

where in the numerator N we used again the Dirac equation. After some algebra, the
homogeneous integral Icoll can be rewritten as
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2.3. The quark form factor

Singularity Pinch surface Normal coord. Intrinsic coord. nS

Soft kµ = 0;y2y1 = y3
y1

= 0 {kµ} {0} 2d− 8

Collinear p kµ = a pµ; y3 = 0; y1 = 1−a
a y2 {k−, k⊥} {k+,Ωd−2} d− 4

Collinear p̄ kµ = b p̄µ; y2 = 0; y1 = −b−1
b y3 {k+, k⊥} {k−,Ωd−2} d− 4

Table 2.1: Singularity structure for the triangle integral D(a) that contributes to the
one-loop quark form factor.

Icoll = λd−4 g2CFµ
2ε

∫
dk+dk−d|k⊥||k⊥|d−3dΩd−2

×
v̄(p̄) γ−(/̄p+ /k)γµ(/p− /k)γ+ u(p)

(2p̄−k+ + iη)(2k+k− − k2
⊥ + iη)(2k+k− − 2p+k− − k2

⊥ + iη)
. (2.46)

It is easy to see that the integral over the normal variables {k−, |k⊥|} has a collinear pinch
surface k− = |k⊥| = 0 and the trivial soft one k+ = k− = |k⊥| = 0. Both are present also
in the original integral, so that we conclude that superficial degree of divergence is

nS = d− 4 , (2.47)

which is again a logarithmic singularity in d = 4.
Finally, we have seen that soft and collinear pinch surfaces intersect and give rise to a

soft-collinear pinch surface

k+ = k− = |k⊥| = 0 , (2.48)

which corresponds to the collinear subsurface of the soft surface of Eq. (2.43). This is
again a logarithmic divergence in d = 4, and it is responsible for the double pole of
the form factor. The structure of all singularities for the one-loop triangle diagram is
summarized in Table 2.1.

IR analysis at all orders

At higher orders the form factor involves loops made out of quarks and gluons, with 3-
and 4-gluon vertices. It is here that the use of reduced diagrams becomes an especially
powerful tool, allowing us to isolate the IR divergences without explicitly referring to
the complicated structure of Landau equations. From an analysis of the possible reduced
diagrams it follows that the structure of singularities found at one-loop persists at higher
orders. Collinear and soft lines can be organized in jet and soft subdiagrams respectively.
All these regions are in principle connected by gluons and fermions accordingly to the
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2. SOFT AND COLLINEAR FACTORIZATION

loop order the diagram corresponds to. It is possible to show by power counting that
many of these lines are suppressed and thus can be removed. The full derivation can be
found in the original work of [66] or in the reviews in [51,58,60]. Here we limit ourselves
to observe some key aspects of the procedure.

First of all, we can already conclude that lines between H and S are suppressed:
given a diagram, adding a soft line joining H and S would add another shrunk off-shell
line in H , which makes the diagram subleading. We can thus assume in the following
that in leading diagram no lines connect H and S.

Then, we are left with lines connecting all others leading regions. In order to remove
them, we need to determine the degree of divergence for the entire reduced diagram
S. This will be made of 2 jets and one soft subdiagram, and the superficial degree of
divergence will be the sum of these regions

nS = nSoft +

2∑
i=1

nJi . (2.49)

In principle, one has to work out separately nSoft and nJi . From the purely technical point
of view, this computation is a simple algebraic computation, given by the topological
properties of a generic diagram. However, this procedure is notoriously tedious, since
one has to introduce a nomenclature for all the lines connecting various subdiagrams.

The soft power counting is relatively easy and one can determine precisely the value
of nSoft. On the other hand, collinear power counting is much more involved due to
the non-trivial dependence of the numerator on normal variables. Specifically, after
discriminating gluons with longitudinal and transverse polarization, it is possible to
constrain nJi only with an inequality. Therefore, after combining soft and collinear
power counting, the final result of this procedure is only a lower bound for the superficial
degree of divergence. Recalling that the divergent behavior of the entire diagram is given
by the sign of nS , we have to determine the minimum value of this lower bound. By
looking at its explicit expression [58–60] this can be found demanding that:

• there is no line between H and S,

• J i and H are connected only through 1 fermion line and longitudinal polarized
gluons,

• J i and S are connected only by longitudinal polarized gluons

• every vertex in the jet is a three- or four-gluon vertex (in principle shrinking lines
in the reduced diagram may give rise to higher points vertices).
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2.4. Diagrammatic analysis and Wilson lines

Imposing these constraints simplifies quite a lot both the diagrammatic structure of the
full diagram in terms of leading regions and the lower bound for nS . However, we still
cannot specify the sign of nS . This can be determined only after fixing the number of
fermions and transverse polarized gluons connecting the hard and the jet subdiagrams.
To go further we have to make now some important observations about the choice of
gauge.

If we work in a physical gauge like the axial gauge where the gluon propagator is

Gµν(k) =
1

k2 + iη

(
−gµν +

nµkν + nνkµ
n · k

− n2 kµkν
(n · k)2

)
, (2.50)

then unphysical longitudinal polarizations are automatically suppressed since

kνGµν(k) =
nµ
n · k

− n2 kµ
(n · k)2

, (2.51)

has no pole at k2 = 0. Thus lines connecting H and J can be removed and

nS ≥ 0 , (2.52)

which yields at worst a logarithmic divergence for the original diagram.
Alternatively, we can choose a covariant gauge such as the Feynman gauge. Then

longitudinally polarized gluons between H and J do propagate. Such a configuration,
even if different from zero for a specified diagram, vanishes for a gauge invariant quantity
after summing over all the diagrams, via Ward identities. This is the case for the form
factor, as we saw at one-loop when we added self-energy and triangle diagrams (with
their relative UV counterterms). Therefore also for the Feynman gauge the form factor
has no line connecting J and H and nS ≥ 0. However, on a diagram by diagram basis,
this is not guaranteed as in the axial gauge.

We would like to have a factorization that is not gauge dependent. Thus we have still
to deal with these longitudinal polarized gluons and eventually prove that they can be
removed. This can be performed through some diagrammatic manipulation.

2.4 Diagrammatic analysis and Wilson lines

The results achieved in the previous sections are remarkable and would benefit from
a brief summary before proceeding further. Starting from very general tools to isolate
singularities at all orders, we considered the quark form factor, and we have shown that
soft and collinear singularities can be represented in the most general reduced diagram
through sub-diagrams collecting singular lines. Then we have derived constraints
showing that most of the lines connecting these regions are actually suppressed by power
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Figure 2.6: Diagrammatic representation of the factorization in covariant gauge for two
massless partons. The form factor in (a) consists of an arbitrary order QCD correction to
the electromagnetic vertex. Solving Landau equations we can represent the most general
singular diagram in the Coleman Norton picture as in (b), where S is a subdiagram
collecting on-shell soft lines, while J1 and J2 collect on-shell collinear lines; H is the hard
vertex collecting off-shell lines that have been shrunk to a point. After power counting
we select the actual singular contributions and we get diagram (c): no line connects H
and S, and gluons are only longitudinally polarized (indicated by a double line). Finally,
making use of Ward identities and some diagrammatic manipulation we can decouple
the longitudinal gluons with Wilson lines, as shown in (d). Note that S, J1 and J2 in the
last picture are merely subdiagrams and thus are somewhat different from the operator
definition of soft and jet functions S , J1 and J2 given in Eq. (2.63) and Eq. (2.64).
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counting arguments. Some of the lines survive the procedure, but their nature is very
particular: they are gluons with longitudinal polarizations, and therefore these physical
configurations are suppressed through Ward identities.

In axial gauge the ultimate goal has been reached: H , S and J are disconnected
regions and the form factor is factorized in terms of sub-diagrams that have a precise
definition as functions whose loop momenta are restricted to the leading region of the
sub-diagram they belong to. However, we would like to have a gauge-independent
framework where factorization is preserved on a diagram by diagram basis also for
covariant gauges. Moreover, we would like to have a generalization such that momenta
in each leading region are not constrained to that region.

To solve the last problem, one might try to mimic what happens in the axial gauge,
where the gauge vector n allows a separation of scales p · n and k · n. In this regard this n
does not only ensure gauge invariance, but also acts as a factorization vector, in the same
spirit as the common renormalization or factorization scales µR or µF separate different
scales of energy. The factorization we are trying to set up here involves an intricate
Lorentz and spinor structure, thus it is not too surprising that for this purposes we need
a vector instead of a simple energy scale.

The key ingredient for such a program is one of the few objects that is widely used
both in perturbative and non-perturbative physics: the Wilson line. It is defined as5

Φn(λ2, λ1) ≡ P exp

(
igµε

∫ λ2

λ1

dλ n ·A(λn)

)
, (2.53)

where the symbol P is the path ordering, which takes into account the non-abelian nature
of the gauge field A. Explaining the rich mathematics behind the Wilson line and its
applications is beyond the scope of this thesis. Perhaps the simplest way to introduce it
is thinking about it as a tool that makes combinations of operators like ψ̄(λ2)ψ(λ1) gauge
invariant: the role of the Wilson line is to “transport” the field along a path parametrized
by λ, from λ1 to λ2, keeping it parallel to the tangent of the line. When the path is closed,
it is often called Wilson loop, and becomes itself a gauge invariant quantity.

In this section we will discuss how all this can be used for factorization. First we will
show how soft and collinear interactions correspond to effective vertices whose Feynman
rules are generated by Wilson lines. This can be easily seen at one-loop by looking at
the triangle diagram of the one-loop form factor and can be generalized to all-orders
by means of Ward identities. In the next section we will use this all-order statement to

5In this chapter we assume that the the group generator into the field A is different when coupling to
particles or antiparticles respectively. Therefore, in the QED case, a different sign in the charge will not be
encoded by the extrema λ1 and λ2. This convention will be revisited in Chapter 5.
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2. SOFT AND COLLINEAR FACTORIZATION

re-define the subgraphs of a general reduced diagram as matrix elements of correlators of
Wilson lines, which will give the final factorization formula for the quark form factor.

We start by discussing soft gluons. Specifically, we consider a soft emission of momen-
tum k from an hard line of momentum p+ k. We also restrict our analysis focusing on
the abelian part and neglecting color generators. Then we have

(/p− /k)γµu(p)

(p− k)2
= − pµ

p · k − iη
+O(k2) . (2.54)

This can be easily generalized to higher orders since n ordered emissions lead to

pµ1

p · k1
× pµ2

p · (k1 + k2)
× · · · × pµn

p · (k1 + k2 + · · ·+ kn)
=

n∏
i=1

pµi

p ·
(∑i

j=1 kj

) . (2.55)

Summing over all possible orderings we get the so-called eikonal identity, which will be
discussed further in Chapter 3. It allows us to state that soft emissions can be expressed
in terms of the (scalar) eikonal Feynman rule pµ/p · k. It is easy to show that this type
of interaction can be described by a Wilson line Φn(∞, 0), by considering its Fourier
transform. One finds

Φn(∞, 0) = exp

(
igµε

∫ ∞
0

dλn ·A(λn)

)
= exp

(
gµε

∫
ddk

(2π)d
nµ

n · k
Ãµ(k)

)
. (2.56)

Expanding it in powers of g as

1 + g

∫
ddk

(2π)d
nµ

n · k
Ãµ(k) +

g2

2

∫
ddk1

(2π)d
ddk2

(2π)d
nµ

n · k1

nν

n · k2
Ãµ(k1)Ãν(k2) + . . . , (2.57)

we can read order by order in the Fourier modes the eikonal Feynman rule of soft gluon
emissions from a hard line in the same direction as the Wilson line.

Now let us consider the triangle diagram of the one-loop form factor at the integrand
level. In the limit in which the momentum kµ of the virtual gluon becomes soft, both
interactions with the hard legs become eikonal. Therefore, the soft limit is equivalent to
replacing the two quarks with two Wilson lines, as shown in Fig. 2.7(a).

The analysis carried out for the soft case can be taken further for the collinear region.
Let us consider once again the one-loop triangle diagram, in the limit kµ ‖ pµ. Then,
omitting coupling constants, we have

v̄(p̄) γ−(/̄p+ /k)γµ(/p− /k)γ+ u(p)

k2(p− k)2(p̄+ k)2
. (2.58)
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2.4. Diagrammatic analysis and Wilson lines

(a) (b)

Figure 2.7: Decoupling of soft (a) and collinear (b) virtual corrections from the hard part
of the one-loop quark form factor. In both cases the interaction is given by an eikonal
vertex which is generated by a Wilson line (indicated by the double line).

=    = H H HH H

Figure 2.8: Ward identity for one (longitudinally polarized) gluon, by means of which it
is possible to decouple J and H .

Taking the leading power in the normal variables, after some algebra, we get

v̄(p̄)γµ(/p− /k)γνu(p)

k2(p− k)2

p̄ν

p̄ · k
, (2.59)

where, as for the soft case, p̄ = (0, 0⊥, p̄
−) . We see that the interaction of the gluon with

the p̄ line is eikonal, while the vertex on the p line is not. Therefore, the interaction of the
collinear gluon can be described once again in term of a Wilson line whose direction is
proportional to p̄, as shown in Fig. 2.7(b). In order not to introduce spurious collinear
singularities associated with this line, it is customary to choose the Wilson line in the
generic direction n, demanding that n2 6= 0.

In conclusion we have seen from an explicit one-loop diagrammatic analysis that
soft and collinear interactions eikonalize and can be described in terms of a Wilson line.
To generalize this procedure to all orders, it is convenient to use Ward identities. As
is well-known, these relate different correlators summing over all possible momentum
insertions. To see how this can be useful for factorization, let us consider the decoupling
of the jet and the hard regions. If we consider only a single gluon, as shown in Fig. 2.8,

29



2. SOFT AND COLLINEAR FACTORIZATION

the number of possible momentum insertions is limited and we obtain that the first
diagram is opposite to the second. In this way we can move the momentum insertion
from the jet J to the hard line. This yields

H
/p− /k

(p− k)2
γαu(p)εα(k) . (2.60)

Then from the analysis of the previous section we know that the soft gluon couples
to a jet defined for the plus direction only through the minus component of both its
momentum and polarization. Inserting this information in Eq. (2.60) we obtain

H
/p− /k

(p− k)2
γ+u(p)ε−(k)

k−β+
1

k−β+
1

, (2.61)

where βµ1 is a light-like vector with only plus component. After some algebra this
becomes

−H u(p)
β1 · ε(k)

β1 · k
. (2.62)

We see that the soft emission has decoupled from the jet. Obviously the same calculation
can be applied to the other leg, choosing β2 with only a minus component.

This analysis can now be generalized to higher orders. The number of possible
insertions from the Ward identity increases. However making use of the eikonal identity
it is possible to show that the result is equivalent to Eq. (2.62), and thus all the emissions
can be expressed in term of the same eikonal Feynman rule.

2.5 A factorization formula

We have now all ingredients to write down a factorization formula for the quark form
factor in covariant gauge, following the formalism originally developed by Collins [60].
By means of Wilson lines, it is possible to build composite operators whose perturbative
expansion generate the leading singular regions of the form factor. However, the matrix
elements of these composite operators generate more than required and this must be
compensated in order to recover the contributions of the original singular regions.

Originally, in each leading region, momenta are restricted (e.g. in the jet subdiagram
all the lines are collinear) and thus, for a one-to-one correspondence, the soft and jet
functions should do the same. This seems to complicate the use of factorization severely
and thus the formula we are looking for involves jet and soft functions without any
restrictions on their internal momenta.

We start defining the soft function as

S
(
β1 · β2, αs(µ

2), ε
)

= 〈0 |φβ1(∞, 0)φβ2(∞, 0)| 0〉 , (2.63)
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2.5. A factorization formula

where β1 and β2 are proportional to p1 and p2 and fix the directions of the Wilson lines.
Secondly, in order to avoid a spurious collinear singularity in each jet function, it is
enough to set the direction of the Wilson line to be n2 6= 0. The definition for each leg i
will be then

Ji

(
(pi · ni)2

n2
iµ

2
, αs(µ

2), ε

)
u(p) = 〈0 |φni(∞, 0)ψ(0)| pi〉 . (2.64)

The only missing step is avoiding double counting issues between the soft and the jet
function: gluons which are both soft and collinear are contained in the operator definition
of both S and J and we have to remove them by an extra division. The overlap factor
can be seen either as the soft function whose gluons become collinear or as a jet function
whose collinear gluons become soft. In both cases the object is again a correlator of
light-like Wilson lines called eikonal jet function J , which for every leg i reads

Ji
(

(βi · ni)2

n2
iµ

2
, αs(µ

2), ε

)
= 〈0 |φni

(∞, 0)φβi
(∞, 0)| 0〉 . (2.65)

We are now able to write the final formula for the factorized form factor which reads

Γ

(
µ2

Q2
, αs(µ), ε

)
= H

(
µ2

Q2
, αs(µ

2)

)
S
(
β1 · β2, αs(µ

2), ε
) 2∏
i=1

Ji

(
(pi·ni)

2

n2
iµ

2 , αs(µ
2), ε

)
Ji
(

(βi·ni)2

n2
iµ

2 , αs(µ2), ε
) .

(2.66)

It is important to stress that this factorization for partonic amplitude is a multiplication
of scalar functions. Note that soft and jet functions here are universal functions (they
depend only on general properties of the external lines like spin and charge) and collect
respectively soft and collinear singularities. The hard function instead is the process
dependent part which might contain UV divergences but no IR ones. It is defined by
matching, in particular demanding that the n-dependence of the finite part is zero, thus
ensuring the gauge invariance of the amplitude.

The functional dependence of the functions in Eq. (2.66) (easily shown at one-loop and
valid at all orders) is a consequence of the homogeneity with respect to the vector nµ of
eikonal Feynman rule nµ/n ·k in the Wilson line of direction n, taking into account simple
dimensional analysis involving n2 6= 0. The same cannot be said for βµ since β2 = 0 and
thus the functions are not homogeneous in βµ: this leads to the cusp anomaly [67] and
is due to the presence of collinear singularities associated with the Wilson line in the
β direction. As we already discussed, this is indicated by the presence of singularities
which are both soft and collinear. However, in two combinations the anomaly cancels.
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2. SOFT AND COLLINEAR FACTORIZATION

• For each jet i we can define

Ji

(
Q2

µ2
, αs(µ

2), ε

)
≡
Ji

(
(pi·ni)

2

n2
iµ

2 , αs(µ
2), ε

)
Ji
(

(βi·ni)2

n2
iµ

2 , αs(µ2), ε
) , (2.67)

which collects collinear non-soft radiation. Now the soft function will contain the
soft-collinear poles.

• Alternatively, the double counting can be removed from the soft function by defin-
ing S which contains purely non-collinear radiation, while each jet function now
contains also soft-collinear poles:

S
(
ρ12, αs(µ

2), ε
)

=
S
(
β1 · β2, αs(µ

2), ε
)

J1

(
(β1·n1)2

n2
1µ

2 , αs(µ2), ε
)
J2

(
(β2·n2)2

n2
2µ

2 , αs(µ2), ε
) , (2.68)

where

ρ12 ≡
(β1 · β2)2 n2

1 n
2
2

(β1 · n1)2 (β2 · n2)2
. (2.69)

Another important remark about the factorization formula in Eq. (2.66) is that all
correlators involved are matrix elements of composite operators, which generate new
vertices and need a further UV renormalization. Even though introducing new singu-
larities in building objects that factorize IR singularities might seem odd, it does not
spoil the procedure. Indeed we have seen in the previous sections that the correct power
counting for pinch surfaces, and thus the factorization of leading regions, is preserved as
long as no new IR singularity is introduced in the process of expanding the integrands in
the leading regions. Thus introducing UV counterterms is perfectly allowed.

Finally, we note that it might be convenient for calculational purposes to keep n

on the light-cone, as will be further discussed in Chapter 5. As previously remarked,
this will introduce spurious collinear singularities in the calculation and is the standard
procedure followed for example in SCET. However, at least in this chapter, we will make
use of the factorization formula for n2 6= 0.

The factorization formula in Eq. (2.66) refers to the quark form factor. However, from
our discussion in the previous sections, it should be clear that the same procedure
applies to more generic amplitudes with generic number of external legs. The main
complications arise because of the more intricate color dependence, which for more than
two legs becomes non-trivial. However, this is only a technical problem. Much more
problematic is the question related to Glauber gluons, which might spoil factorization
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2.5. A factorization formula

and are not easy to bring under control. Examples of factorization issues due to these
effects exist in the literature and are a current topic of investigation [68–70].

However, if we ignore subtleties related to Glauber gluons, a factorized formula for
multiparton processes exists and it is the direct generalization of Eq. (2.66). The main
difference is that with a generic number m of partons, color flow becomes non-trivial
and thus the amplitude is a vectorM{αk} in color space, where the color indices {αk}
depend on the representations of the gauge group and k = 1, . . . ,m. The amplitude can
be decomposed after choosing a basis of independent color tensors (ca){αk}, where a
runs up to the number of irreducible representations of the gauge group which contribute
to the process. Then the factorization formula is a matrix equation and reads [71]

Ma

(
pi
µ
, αs(µ

2), ε

)
=
∑
b

Sab
(
ρij , αs(µ

2), ε
)
Hb
(
pi · pj
µ2

,
(pi · ni)2

n2
iµ

2
, αs(µ

2), ε

)

×
m∏
i=1

Ji

(
(pi · ni)2

n2
iµ

2
, αs(µ

2), ε

)
, (2.70)

where the indices a and b depend on the representation. The reduced soft matrix is the
obvious generalization of the 2-leg case and reads

Sab
(
ρij , αs(µ

2), ε
)

=
Sab(βi · βj , αs(µ2), ε)∏n

i=1 〈0|Φni
(∞, 0)Φβi

(∞, 0)|0〉
, (2.71)

where ρij is the generalization of Eq. (2.69) to two generic legs i and j. The definition of
the soft matrix S instead is more subtle compared to the two-leg case, since soft gluon
emissions from different Wilson lines mix the color component of the amplitude. One
defines

(ca){αk}Sab(βi · βj , αs(µ
2), ε) =

∑
{ηk}

〈0|
m∏
i=1

Φβi
(∞, 0)αk,ηk |0〉 (cb){ηk} . (2.72)

We note that while the (reduced) soft function is a matrix in color space, jet functions are
singlet, as can be proven by power counting [66]) and thus their definition is the same as
for the quark form factor. It is evident that factorization with more than two legs has a
richer structure and color plays a much more important role. Moreover, order by order in
perturbation theory it is possible to derive some constraint on the functional dependence
of the functions involved [71].

This concludes the section about the factorization of the quark form factor in terms of
hard, soft and jet functions. Now we will explicitly examine it at one loop.
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2. SOFT AND COLLINEAR FACTORIZATION

2.6 One-loop soft and jet functions

In this section we will explicitly compute the jet and soft functions at one loop, showing
that they reproduce the pole structure of the one-loop form factor, as discussed in [72].

We start with the soft function. In the series expansion over the coupling constant
αs = g2

s/4π, we define each term of the series as a coefficient of (αsCF /4π) to some
power, leading to

S
(
β1 · β2, αs(µ

2), ε
)
≡
∞∑
i=0

(
αsCF

4π

)i
S(i) . (2.73)

From the definition in Eq. (2.63), at leading order the functional dependence is trivial,
since each Wilson line equals 1, as shown in Fig. 2.9(a). Hence we have

S(0) = 1 . (2.74)

At one-loop, it is easy to show that the result reproduces the one-loop eikonal integral of
Eq. (2.41), introduced previously as the homogeneous integral of the form factor. Indeed(

αsCF
4π

)
S(1) = −g2

sµ
2ε βν1β

µ
2

∫ +∞

0

dζ1

∫ +∞

0

dζ2 〈0|Aν(ζ1β1) Aµ(ζ2β2) |0〉

= −g2
sµ

2ε βν1β
µ
2

∫ +∞

0

dζ1

∫ +∞

0

dζ2

∫
ddk

(2π)d
e−ik·(ζ2β2−ζ1β1) igµν

k2 + iη

= −ig2
sµ

2ε β1 · β2

∫
ddk

(2π)d
1

(k2 + iη)(β1 · k − iη)(β2 · k + iη)
. (2.75)

After Feynman parametrization and momentum integration this yields(
αsCF

4π

)
S(1) = 2 i g2

sµ
2ε 4β1 · β2

∫ 1

0

dx

∫ 1

0

dy y

(1− y)3∫
ddk

(2π)d
1[

k2 + y
1−y (2xβ1 · k − (1− x)2β2 · k)

]3
= −2 g2

sµ
2ε (−2β1 · β2)

d
2−2 Γ

(
3− d

2

)
(4π)

d
2∫ 1

0

dx [x(1− x)]
d
2−3

∫ 1

0

dy yd−5(1− y)3−d . (2.76)

While the x integration gives simply the Euler beta function B
(
d
2 − 2, d2 − 2

)
, the y

integration is identically zero

Iy ≡
∫ 1

0

dy yd−5(1− y)3−d =
Γ(d− 4)Γ(4− d)

Γ(0)
. (2.77)
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(a) (b) (c)

Figure 2.9: Diagrams contributing to the soft function at tree level (diagram (a)) and at
one loop ((b) and (c)). The black solid circle represents the UV counterterm.

This could have been seen from the beginning of the calculation, since the integral is
scaleless and thus vanishes in dimensional regularization. This remains valid at all orders
and hence we conclude that, in a bare calculation, radiative corrections do not contribute
and the soft function is equal to the identity

Sbare = S(0) = 1 ,

S(i)
bare = 0, i > 0 . (2.78)

However, we know that composite operators need further UV renormalization. In this
case, the UV divergence is due to the cusp formed by the two Wilson lines. Compared to
the original integral with quadratic propagator, this UV divergence is a spurious one,
due to the fact that we have linearized the propagator. In order to subtract it with a
counterterm, we should isolate it in the integration. This can be done by observing that
the vanishing of the scaleless integral in d = 4 is due to a cancellation of a IR and a UV
pole. Indeed let us consider the y integration Iy and multiply it by 1 = (1− y) + y. Then
it becomes

Iy =

∫ 1

0

dy yd−4(1− y)3−d +

∫ 1

0

dy yd−5(1− y)4−d

= Γ(d− 3)Γ(4− d) + Γ(d− 4)Γ(5− d) , (2.79)

which around d = 4 corresponds to a cancellation between two poles. Now, looking at
first line in Eq. (2.76), by simple power counting, we see that the momentum integration
has a different scaling for y = 0, 1:

y = 0 → S(1) ∼ ddk

k6
, (2.80)
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y = 1 → S(1) ∼ ddk

k3
. (2.81)

We conclude that the UV pole is located at y = 1 and thus is opposite to the contribution
multiplied by (1− y) which is −Γ(d− 4)Γ(5− d). The counterterm must cancel this and
thus in the MS scheme it equals

ICT
y = − 1

2ε
. (2.82)

In conclusion at one loop the soft function is a pure counterterm which is equivalent
to its IR pole (or equivalently minus the UV one). Inserting this into Eq. (2.76) we get

S(1) = 2

(
− 4πµ2

2β1 · β2

)2− d
2 Γ

(
3− d

2

)
Γ2
(
d
2 − 2

)
Γ (d− 4)

1

2ε
, (2.83)

which expanded in ε gives

S(1) = −
(

2

ε2
+

2

ε
log

(
− µ2

2β1 · β2

))
+O(ε0) . (2.84)

Now we move to the jet functions J and J . In analogy with the soft function, we
define their perturbative coefficients as

J
(
β1 · β2, αs(µ

2), ε
)
≡
∞∑
i=0

(
αs CF

4π

)i
J (i) . (2.85)

Starting from the definition in Eq. (2.64) we see that, as for the soft function, at leading
order the jet function reduces to the identity

J (0)u(p) = 〈0|ψ(0)|p〉 = u(p) . (2.86)

At one-loop there are two types of corrections: a self energy correction J (1)
p on the quark

line and a gluon exchange between the quark and the Wilson line (vertex correction J (1)
V ).

Let us start with the latter. From the definition we have to compute the following integral

J
(1)
V = 8πiµ2ε

∫
ddk

(2π)d
(/p− /k) /nu(p)

(k2 + iη)(k2 − 2p · k + iη)(2n · k + iη)
, (2.87)

whose result in the MS scheme reads

J
(1)
V = −

{(
n2µ2

(−2p · n)2

)ε(
1

ε2
+

1

ε
+ 2 +

5π2

12

)
+

2

ε
− 1

εUV

}
. (2.88)
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(a) (b)

(c) (d)

(e)

Figure 2.10: (a): Tree level jet function. (b)-(e): Diagrams contributing to the one-loop jet
function. The black solid circles represent UV counterterms.

All the poles are of IR origin apart from εUV. The UV counterterm for this vertex (which
is not the usual vertex of QCD but it belongs specifically to the jet operator vertex where
the quark and the Wilson line meet) is then

J
(1)
V,CT = − 1

εUV
. (2.89)

For the self energy diagram the story is the same as for the calculation of the form
factor in Section 2.3, since the Wilson line is not involved here. The diagram vanishes in
dimensional regularization, and one is left with the standard wave function renormaliza-
tion counterterm

J (1)
p =

1

ε
. (2.90)

Finally, we turn to the last piece, which is the eikonal jet function. For this, the only
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(a) (b)

Figure 2.11: Diagrams contributing to the one loop eikonal jet function. The black solid
circle represents the UV counterterm.

non vanishing contribution comes from the vertex correction. The result is

J (1)
V = −

{
1

ε2
+

1

ε
log

(
n2µ2

2(β · n)2

)}
. (2.91)

Putting together all the contributions from soft and jet functions and considering only
the pole part, we see that indeed we reproduce the pole part of the one-loop form factor

2 J (1) − 2J (1)
V + S(1) = 2

(
J

(1)
V + J

(1)
V,CT + J (1)

p − J (1)
V

)
+ S(1)

=

[
− 2

ε2
− 2

ε
log

(
− µ

2

Q2

)
− 3

ε

]
, (2.92)

which matches with the pole structure of Eq. (2.26).
In conclusion, we have seen that the singular part of the one-loop form factor is

correctly reproduced by the universal functions which encode its soft and collinear
behavior. The finite part, as already mentioned, can be reproduced by matching to
the full QCD calculation, defining the hard function which depends on the particular
structure of the electromagnetic vertex.

This concludes the chapter, where we have discussed soft-collinear factorization at
leading power in the soft approximation. We have introduced three important concepts
that will be used in the rest of the thesis: the use of diagrammatic techniques based on
the eikonal approximation, the presence of leading singular regions, and the definition of
the factorization formula in terms of soft and jet functions. The following three chapters
will use in turn one of these three approaches to investigate the soft approximation at
subleading power.
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CHAPTER 3

A diagrammatic approach to next-to-soft
corrections

In this chapter the main topic of this thesis is introduced, which is extending the soft
approximation to subleading power. As such, many of the tools and the set up exposed
here will be relevant also for next chapters. In particular, the Drell-Yan process as a case
study is introduced here and will be used in the rest of the thesis as an application of the
various techniques developed. Though largely an introductory chapter, new results are
presented, namely the eikonal expansion of the quark form factor and the computation
of the factorizable contributions to the Drell-Yan K-factor.

The approach followed in this chapter is a diagrammatic one, building on the work
done in [73]. There it is shown that the use of effective vertices typical of the eikonal
approximation (E) can be generalized to subleading level, known as next-to-eikonal (NE).
Already here we can state that we do not expect this approach to be a complete picture.
Indeed it is well-known since the time of Low [74] that at subleading power in the soft
expansion there are terms that break the naive factorization framework and cannot be
caught by this effective Feynman rules approach. This issue will be thoroughly discussed
in next chapters, and is related to the main results discussed in this thesis. However, in
order to better clarify the structure of soft-collinear factorization at subleading power
and in order to introduce the main differences with the standard eikonal approximation,
it is interesting to show what can be reproduced with the use of these simple expanded
vertices, as these computations are not explicitly available in the literature. Moreover, it
is interesting to see the differences between threshold and soft expansion, and how this
naive factorization works at the amplitude and cross-section level.

The structure of the chapter is as follows. After introducing the reasons for going
beyond the soft approximation we explain how the next-to-eikonal effective rules can
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be constructed. Then, we implement them in the computation of the one-loop quark
form factor, showing how this can be decomposed in the various terms of the eikonal
expansion. Finally, we move from amplitude to cross section level and consider the
Drell-Yan K-factor. After presenting the results from a traditional full QCD computation,
we compute it in this effective framework, showing which parts of it are reproduced.

3.1 Beyond the soft approximation

It is well-known that IR singularities cancel for suitably defined inclusive cross sections,
after real and virtual diagrams are added. However, after this cancellation, potentially
large residual contributions can persist to all orders in the form of logarithms. Being so
numerically large, they might spoil the predictivity of perturbation theory and therefore
need to be resummed. Generally, the arguments of these logarithms might involve
different scales depending on the masses and kinematical invariants of the process. Here,
the class of logarithms we will discuss are called threshold logarithms.

The argument of these logarithms involves a dimensionless variable ξ, called threshold
variable, that is differently defined according to the specific process one is looking at.
Various examples include: Deep Inelastic Scattering (DIS), where ξ = 1− x with x equal
to the Bjorken variable; electroweak annihilation processes where ξ = 1 − z (such as
Higgs production via gluon fusion where z = M2

H/s and MH is the Higgs mass or
Drell-Yan production where z = Q2/s and Q2 is the invariant mass of the lepton pair);
tt̄ production where ξ = 1 − z = 1 − 4m2

t/s and mt is the top mass. In all these cases
s represents the squared partonic center-of-mass energy. When ξ → 0, expressions for
these cross sections follow the pattern

dσ

dξ
=

∞∑
n=0

αns

2n−1∑
m=0

[
anm

(
logm(ξ)

ξ

)
+

+ bnmδ(ξ) + cnm logm(ξ) +O(ξ)

]
, (3.1)

where the subscript + denotes the plus distribution, which arises by expanding in ε as

ξ−1+nε =
1

n ε
δ(ξ) +

m∑
i=0

(n ε)i

i!

(
logi(ξ)

ξ

)
+

+ O(εm+1) . (3.2)

Much is known about the coefficients anm and bnm, which belong to leading power (LP)
threshold logarithms and originate from pure soft and collinear gluon emissions. The
literature about the resummation of these terms is vast [53, 75–80], and largely relies
on the eikonal approximation. The knowledge of the coefficients cnm of the subleading
terms, known as next-to-leading power (NLP) threshold logarithms, requires the extension
of the standard techniques in soft gluon resummation at a subleading level, also known
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as next-to-eikonal level. For completeness, we recall that in Mellin space LP and NLP
logarithms correspond to logiN and (1/N) logiN respectively, whereas the threshold
limit is achieved for large-N . As several studies have shown [81–84], the inclusion
of these terms might be important for phenomenological applications. Preliminary
studies have been performed [73, 85–91], but a systematic framework that allows a full
resummation is still lacking.

Recently, this topic received also much attention in a more formal context. Studying
the symmetry of the quantum gravity S-matrix and certain particular transformations
acting on past and future null infinity, it has been conjectured that at tree-level the
Weinberg soft theorem [92] can be generalized with a universal next-to-soft factor [93].
This has led to a number of further studies both in gauge and gravity theories that have
investigated the breakdown of next-to-soft theorems at loop level [94–103]. This topic
has been investigated also with the use of effective field theories in [104]. There, besides
discussing next-to-soft theorems, a systematic approach to next-to-soft corrections is
presented in terms of effective operators at next-to-leading power.

In the next section we discuss the simplest approach to extend the soft approximation
to subleading power, through the use of diagrammatic techniques.

3.2 Diagrammatics

In the previous section we have motivated the investigation of the soft expansion at
subleading power, recalling that this is relevant both for phenomenology and for more
formal contexts. Now we shall explicitly construct a framework that is able to deal with
such subleading corrections.

As one might imagine, the simplest way to set this up is to perform the soft expansion
after the full QCD amplitudes have been constructed. In [73, 86] it was proven that
carrying these expansions is equivalent to the definition of effective Feynman rules for
eikonal (E) and next-to-eikonal (NE) emissions. The goal of this section is not to review
this proof, which is based on the exponentiation of these vertices, but rather to give the
reader an intuitive understanding of how these effective rules emerge, by considering
the case of a two gluon emission. For simplicity, we will present the calculation for the
abelian part of the amplitude, ignoring color generators. The result for full QCD can be
found in [73]. Even though the argumentation we present pertains to a gauge theory,
it is worthwhile to note that these techniques have been generalized to perturbative
gravity [94, 100].

We now consider the emission of two soft gluons of momenta k and q from a hard
fermion line of momentum p, and then sum over all possible insertions of them. The
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amplitude for such a process reads

M0(p)

(
/p− /q − /k

(p− q − k)2
γν

/p− /q
(p− q)2

γµ +
/p− /q − /k

(p− q − k)2
γµ

/p− /k
(p− k)2

γν
)
u(p) , (3.3)

whereM0(p) collects the rest of the amplitude and we have omitted the polarization vec-
tors of the gluons. We wish to expand this to NE level. Corrections to the denominators
are straightforward and give rise to four different NE combinations:

q2

2p · (k + q)(2p · q)2
,

(k + q)2

2p · q(2p · (k + q))2
,

k2

2p · (k + q)(2p · k)2
,

(k + q)2

2p · k(2p · (k + q))2
. (3.4)

Numerators are slightly more tedious. In the eikonal limit, after using the Dirac equation,
they are trivial (2pµ or 2pν) since all soft momenta in the numerator can safely be put
to zero. At NE level we have to consider the four possible combinations in which one
emission maintains all momenta. We get for each NE combination:

/pγ
ν(/p− /q)γµ u(p) = (−2pν/qγ

µ + 2p · qγνγµ − 2pµγν/q)u(p) , (3.5)

(/p− /q − /k)γν/pγ
µ u(p) = −2pµ(/q + /k)γνu(p) , (3.6)

/pγ
µ(/p− /k)γν u(p) = (−2pµ/kγν + 2p · kγµγν − 2pνγµ/k)u(p) , (3.7)

(/p− /q − /k)γµ/pγ
ν u(p) = −2pν(/q + /k)γµu(p) . (3.8)

We must now combine everything to the correct order in the soft expansion. Combin-
ing numerators and denominators at E level we find the well-known eikonal identity,
represented in Fig. 3.1,

1

(p · (k + q))(p · k)
+

1

(p · (k + q))(p · q)
=

1

p · k
1

p · q
, (3.9)

which tells us that, at leading order in the softness, soft emissions factorize and can be
expressed in terms of independent emissions whose vertices are given by the effective
eikonal rule

V µE (p, k) = − pµ

p · k − iη
. (3.10)

We see that this vertex is a scalar, due to the well-known fact that eikonal emissions are
insensitive to the spin of the emitting particle.

Extending this analysis to NE order, we compute separately corrections to numerators
and denominators. The latter are obtained after combining the sum of the four terms in
Eq. (3.4) with 4pµpν . After some algebra this yields

−pµpνq2

2(p · q)2p · k
+
−pµpνk2

2(p · q)2p · k
+

−pµpν(k · q)
2(p · (k + q))p · qp · k

. (3.11)
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+ =

k kq q k q

Figure 3.1: Eikonal identity for two gluons. Vertices are assumed to be eikonal on both
sides of the equation.

For numerator corrections, we have to combine the sum of Eq. (3.5) and Eq. (3.6) with
(4p · (k + q)p · q)−1, and the sum of Eq. (3.7) and Eq. (3.8)) with (4p · (k + q)p · k)−1. The
total contribution now reads

/qγµpν

2p · kp · q
+

/kγνpµ

2p · kp · q
− gµν

p · (k + q)
+

qνpµp · k + kµpνp · q
(p · (k + q))(p · q)(p · q)

. (3.12)

The first two terms in Eq. (3.11) with the first two in Eq. (3.12) form a combination of
two independent E and NE emissions, from which we can define a single-vertex NE
Feynman rule

V µNE(p, k) = =
k/γµ

2p · k
− pµk2

(p · k)2

= − pµk2

(p · k)2
+

kµ

2p · k
− i kαΣαµ

p · k
. (3.13)

where we introduced the Lorentz generator

Σαν =
i

4

[
γα, γν

]
, (3.14)

to isolate the spin dependent part of the NE emission. Notice that it takes the form of
a magnetic moment coupling to the fermion leg. The generalization to emitters with
different spin amounts to choosing the proper form of the Lorentz generator. Therefore,
at NE level soft emissions are sensitive to the spin of the emitting particles. Note also
that for real radiation, in Eq. (3.13) only the Σαν term is relevant: the first term is zero
by the on-shell condition k2 = 0 while the second one vanishes after contraction with
a physical polarization tensor obeying kµεµ(k) = 0. Finally, we remind that we are
considering only abelian-like emissions and that the QED charge (equals to −1 and +1

for incoming particles and incoming antiparticles respectively) has been already included
in the effective E and NE vertices.
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+ + +

+ +=

k k k k

k k k

q q q q

q q q

Figure 3.2: Next-to-Eikonal Identity for two gluons. Black solid circles represent a next-
to-eikonal emission while other vertices are eikonal. We note the presence of a 2-gluon
vertex in the right hand side of the equation.

The residual terms from Eq. (3.11) and Eq. (3.12) form a tensor Rµν that represents a
two-gluon (“seagull”) vertex:

Rµν(p, q, k) =
pνkµ(p · q) + pµqν(p · k)− (p · k)(p · q)gµν − pµpν(q · k)

p · (q + k) p · k p · q
. (3.15)

The derivation is represented graphically in Fig. 3.2.

The argument presented here for two gluons can be generalized to n gluons, including
also color generators. The structure remains the same, as the emissions can be rearranged
in terms of single-gluon and seagull-type vertices, where the last ones represent a
sum over all possible correlations between pairs of gluons. A pattern emerges and
shows that these vertices exponentiate and therefore can be regarded in every respect
as effective Feynman rules [73]. An alternative and somewhat more elegant proof of
this exponentiation has been given in [86] with path integral techniques. There, next-
to-soft emissions are regarded as fluctuations along the classical trajectory defined by
the external hard line. The exponentiation then follows from standard quantum field
theories properties of connected diagrams.

In any case, the fact that the structure of these effective vertices persists at all orders
is a first hint that, at least for the contributions that can be described by such vertices,
a factorization picture at next-to-soft level can be constructed. However, even in this
simple analysis it is already evident that building up a factorization for NE corrections
is much tougher than the pure eikonal ones, as can be seen by the presence of a seagull
vertex that makes the soft emissions dependent on each other.
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Having reviewed how next-to-eikonal Feynman rules emerge, we can now implement
them at amplitude level in the one-loop quark form factor.

3.3 Eikonal expansion of the form factor

The eikonal Feynman rules constructed in the previous section are the simplest and
more intuitive way in which subleading corrections in the soft expansion can be made
systematic. However, at this point we have to make an important distinction when
applying these rules. When dealing with real gluons, it is clear why one should use
effective (next-to-)soft vertices to describe soft gluon emissions, since for on-shell particles
the softness of their momentum corresponds to the vanishing of their energy. As we will
see for the Drell-Yan process in the next sections, this implies that the soft (or eikonal)
and the threshold expansion coincide. However, next-to-soft effective rules can also be
applied to virtual gluons. In this case it is less intuitive how to handle these soft vertices,
as the off-shell momentum of the virtual gluon can be also hard.

However, there are cases where one is allowed to use them, such as in the computation
of the soft function [72]. As we described in the introduction, the soft function governs
the soft behavior of the amplitudes at all orders and it is defined in terms of correlators
of Wilson lines. Order by order in perturbation theory this corresponds to the inclusion
of gluon exchanges between the Wilson lines, whose interactions are described by the
eikonal effective vertex. Moreover, the argument that enters in the exponent of the soft
function is made by a subset of diagrams: in the abelian case this is the set of all connected
diagrams [105], while in the non-abelian case is the set of the so-called webs [106–109]. It
has been shown in [108] that the use of webs can be generalized to next-to-eikonal level,
and requires the use of NE effective vertices. Motivated by this, and by the general goal
of shedding light on the structure of next-to-eikonal corrections at all-orders, we are now
going to investigate the effects of NE vertices for virtual gluons.

The amplitude we consider is the one-loop quark form factor Γ we introduced in the
previous chapter and whose integral representation is repeated here

Γ = g2CFµ
2ε

∫
ddk

(2π)d
v̄(p̄)γα(−/̄p− /k)γµ(/p− /k)γαu(p)

k2(p− k)2(p̄+ k)2
. (3.16)

If we rescale the virtual gluon momentum kµ → λkµ, this implies the following expansion
for the form factor

Γ =

∞∑
n=1

Γiλ
i , (3.17)
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where every term Γi in the series corresponds to an expansion of the integrand in powers
of λ. A we saw in the previous section, this is equivalent at E and NE level to the
use of effective Feynman rules. Therefore we define the leading and subleading order
contributions respectively as the eikonal and next-to-eikonal form factor ΓE and ΓNE . From
its definition, it is clear that ΓE should be equal to the soft function already defined in
the first chapter. We recall here some basic facts about it. At one-loop the computation
involves the basic scalar integral I , which reads

I =

∫
ddk

(2π)d
1

(k2 + iη)(2 p · k − iη)(2 p̄ · k + iη)
. (3.18)

Upon Feynman parametrizing it and performing the momentum integration we get

I =
i

(4π)2

(
−4π

s

)ε
1

s
Γ(1 + ε)B(−ε,−ε)

∫ 1

0

dy y−1+2ε(1− y)−1−2ε . (3.19)

The integration over y vanishes because of a cancellation between a UV and a IR pole,
and it is a consequence of the fact that the eikonal approximation linearizes propagators
and therefore introduces spurious UV divergences in d = 4 − 2ε. Those need to be
subtracted by a counterterm and thus evaluating the (renormalized) integral amounts to
extracting its UV part, as we discussed in the first chapter. The final expression for the
eikonal form factor, after restoring prefactors, reads

ΓE =
αsCF

4π

(
−4πµ2

s

)ε
Γ(1 + ε)B(−ε,−ε)

ε
. (3.20)

We stress that this expression holds to all orders in ε.
We can now move to subleading corrections in the eikonal expansion. As discussed

in detail in the previous subsections, two kinds of corrections are possible, due to either
numerator or denominator. In the case of the one-loop form factor, in the former there
are only E, NE and NNE terms, while in the latter all terms in the series are present. We
start analyzing NE corrections to the numerator, which involves the basic vector integral
Iµ, defined as

Iµ =

∫
ddk

(2π)d
kµ

(k2 + iη)(2 p · k − iη)(2 p̄ · k + iη)
. (3.21)

After using standard techniques we get

Iµ =
−i

(4π)2

(
−4π

s

)ε
1

s
Γ(1 + ε)B(1− ε,−ε)(pµ − p̄µ)

∫ 1

0

dy (1− y)−2εy−2+2ε . (3.22)

As in the eikonal case, we are left with a y-integral that vanishes. However, the situation
here is more subtle, as this does not correspond to a cancellation of UV and IR poles
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E =

(a)

NNE =

(b)

NE = +

(c)

Figure 3.3: Depiction of the eikonal, next-to-eikonal and next-tonext-to eikonal form
factors in terms of the effective Feynman rules.

in d = 4. Nonetheless, if we analytically continue our function from d = 4 to d = 3,
we see that the situation is similar to the eikonal case, as there is a UV pole given by
1/(d− 3) = 1/(1− 2ε). More generally, whenever we find an integral G(d, n) defined as

G(d, n) =

∫ 1

0

yn−1−d(1− y)d−n−1 , (3.23)

since this integral vanishes because of a cancellation between IR and UV poles around
d = n, we can define a procedure to evaluate the renormalized integral in dimensional
regularization, replacing it by its UV counterterm in d = n:

G(d, n)→ 1

d− n
=

1

4− 2ε− n
. (3.24)

In doing so, the basic NE vector integral reads

Iµ =
−i

(4π)2

(
−4π

s

)ε
1

s

Γ(1 + ε)Γ(1− ε)Γ(−ε)
Γ(2− 2ε)

(pµ − p̄µ) . (3.25)

Before presenting the result for the NE form factor, we consider the second basic
integral we need, defined as

Iµν =

∫
ddk

(2π)d
kµkν

(k2 + iη)(2 p · k − iη)(2 p̄ · k + iη)
. (3.26)
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After using standard techniques and Eq. (3.24) for n = 2, it becomes

Iµν =
1

(4π)2

(
−4π

s

)ε
1

s

1

2− 2ε
B(1− ε, 1− ε)

×

[
s

2
gµνΓ(ε)−

(
pµp̄ν + pν p̄µ +

1− ε
ε

(pµpν + p̄µp̄ν)

)
Γ(1− ε)

]
. (3.27)

Note that in the above expression special care must be taken for the case µ = ν. Indeed
in that particular case the integral has no UV pole for d = 2, and thus the application
of the rule of Eq. (3.24) makes no sense anymore. From a straightforward evaluation of
Eq. (3.27) one get a factor 2− 2ε which cancels the same factor in the denominator (which
represents the UV pole around d = 2). So in this case the integral must be set to zero. It
can be verified that the same behavior appears with higher powers of k2, and therefore
all denominators corrections, which involve only powers of k2, vanish in this setting.

We conclude that at NE level only the basic integral Iµ is needed. Inserting it in the
full spin-dependent numerator yields

ΓNE =
αsCF

4π

(
−4πµ2

s

)ε
4 Γ(1 + ε)Γ(1− ε)Γ(−ε)

Γ(2− 2ε)
. (3.28)

Now, looking at the full form factor, we can define a remainder term that collects all
corrections which are subleading with respect to the NE form factor (i.e. NNE, NNNE,
etc.). However, we note that the only non-vanishing contribution is order NNE, because
all other subleading terms in the eikonal expansion are due to denominator corrections.
Thus, using Eq. (3.27) we get the (remainder) NNE form factor:

ΓNNE =
αsCF

4π

(
−4πµ2

s

)ε
(1− 2ε)Γ(ε)B(1− ε, 1− ε) . (3.29)

Adding Eq. (3.20), Eq. (3.28) and Eq. (3.29), and comparing with Eq. (2.26), we see that

Γ = ΓE + ΓNE + ΓNNE , (3.30)

at every order in ε. This verifies the eikonal expansion set up so far and forms a non-trivial
check of the diagrammatic approach based on effective rules.

However, to get full sense of the strength and the weakness of this approach, we have
to refer to an example of phenomenological interest, such as the Drell-Yan process.

3.4 The Drell-Yan K-factor in full QCD

Until now we have been working at amplitude level, considering generic gluon emissions
at leading and subleading power in the soft expansion. However, to see how this
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approach can be useful for phenomenology applications, we have to move from the
amplitude to the cross-section level. In particular, referring to Eq. (3.1), we would like to
understand how LP and NLP terms in the threshold expansion are related to the use of E
and NE effective rules.

As announced, we consider the Drell-Yan process, i.e. the inclusive production of an
off-shell vector boson of invariant mass Q2

q(p) + q̄(p̄) → V ∗(Q) , (3.31)

where the vector boson V could be a photon, a Z or a W± boson. There is more than one
reason for choosing such a process. The first is phenomenological, as this is an important
process to test the electroweak sector of the Standard Model. Moreover it forms the
prototype for other processes at hadron colliders, such as the Higgs boson production
through gluon fusion. A final important motivation is that kinematical constraints in
the case of the Drell-Yan process force threshold radiation to be soft, and therefore every
logarithm enhancement corresponds to the vanishing of the energy of at least one real
gluon. However, as we shall discuss in the following chapters, this does not imply that
these logarithms are insensitive to virtual gluons. In particular, we will see that part
of the NLP logarithms are sensitive to a virtual gluon when its momentum becomes
collinear to one of the incoming quarks.

The object we investigate is not the cross-section, but rather the K-factor defined as

K(n)(z) =
1

σ(0)

dσ(n)(z)

dz
, (3.32)

where σ(0) is the Born cross section and n is the order of expansion in αs. One of the ad-
vantages of working with this quantity is that in the computation of the diagrams, order
by order in perturbation theory, overall factors shared with σ(0) such as the electroweak
coupling or the color average drop out.

For simplicity, we will consider in this thesis not the entire K-factor, but only the
terms proportional to the color prefactor C2

F . These terms are the same as those that
would appear in an abelian theory, and therefore can be obtained neglecting diagrams
involving three- or four-gluon couplings. This is sufficient to illustrate the key points of
the different approaches outlined in this thesis reducing technical complications.

To further restrict our analysis, we will investigate the two-loop K-factor K(2), for the
following reasons. At two loops, we can distinguish three different sets of contributions
to the K-factor: the double-real (RR), the real-virtual interference (RV) and the double
virtual (VV). In the VV contributions no other final state is produced other than the
electroweak boson. Therefore its invariant mass squaredQ2 will be equal to the incoming
energy squared s, which implies that all contributions will be proportional to δ(1− z).
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This set of LP terms is under control [110] and is not further investigated in this thesis.
Instead, RR and RV contributions will have a non-trivial dependence on z, as final state
gluons will take part of the available incoming energy. The functional dependence will be
quite complicated, and in general the description will require harmonic polylogarithms
[41, 111]. However, as we said, in the threshold limit z → 1, the functional dependence
is reduced to LP and NLP logarithms, which follows in the generic pattern of Eq. (3.1).
Our goal will be to reproduce with three different approaches the result obtained from
the threshold limit of the full QCD calculation. In Section 3.5 we will implement the
approach based on diagrammatic techniques, while the other two will be discussed in
Chapter 4 and Chapter 5 respectively.

We can now make a further distinction beween RR and RV diagrams. In the former
all gluons are real, therefore the soft limit on both emissions corresponds in the limit
in which the total energy flows into the vector boson propagator: soft and threshold
expansion coincide. Hence we expect that for this class of diagrams the use of effective
rules is sufficient to reproduce the full result. This has been verified in [73] and the
conclusion is that both LP and NLP are reproduced with the next-to-eikonal Feynman
rules.

The story for the RV case is clearly different. Taking the soft limit in both gluons will
still imply that the incoming energy tends to entirely flow in the vector boson. However,
configurations where the real gluon is soft but the virtual is not, are not taken into account
in this setting and will still contribute to the threshold limit. Therefore, to disentangle
IR singularities and to test various approaches towards this issue, we focus on the RV
diagrams. Before discussing this in the effective approach, let us review the result in the
full QCD calculation.

The relevant Feynman diagrams are shown in Fig. 3.4, leading to the following con-
tributions to the squared diagrams (suppressing overall coupling, colour factors and
integration measures)

(a) :
Tr [6 p̄γµ(k1− 6 p̄)γα( 6p+ 6k1− 6k2)γν(6p+ 6k1)γµ 6pγα(− 6 p̄+ 6k2)γν ]

k2
1(k1 − p̄)2(p+ k1 − k2)2(p+ k1)2(p̄− k2)2

,

(b) :
Tr [6 p̄γµ(k1− 6 p̄)γα( 6p+ 6k1− 6k2)γν(6p+ 6k1)γµ 6pγν(6p− 6k2)γα]

k2
1(k1 − p̄)2(p+ k1 − k2)2(p+ k1)2(p− k2)2

,

(c) :
Tr [6 p̄γµ(k1− 6 p̄)γα( 6p+ 6k1− 6k2)γµ(6p− 6k2)γν 6pγα(− 6 p̄+ 6k2)γν ]

k2
1(k1 − p̄)2(p+ k1 − k2)2(p− k2)2(k2 − p̄)2

,

(d) :
Tr [6 p̄γµ(k1− 6 p̄)γα( 6p+ 6k1− 6k2)γµ(6p− 6k2)γν 6pγν(6p− 6k2)γα]

k2
1(k1 − p̄)2(p+ k1 − k2)2(p− k2)2(p− k2)2

,

(e) :
Tr [6 p̄γα( 6p− 6k2)γµ(6p+ 6k1− 6k2)γν(6p+ 6k1)γµ 6pγν(6p− 6k2)γα]

k2
1(p− k2)2(p+ k1 − k2)2(p+ k1)2(p− k2)2

,
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3.4. The Drell-Yan K-factor in full QCD

Figure 3.4: Squared diagrams contributing to DY production at NNLO, involving one real
and one virtual emission. Diagrams obtained by interchanging p↔ p̄ and/or complex
conjugation are not shown.

(f) :
Tr [6 p̄γα( 6p− 6k2)γµ( 6p+ 6k1− 6k2)γν(6p+ 6k1)γµ 6pγα(− 6 p̄+ 6k2)γν ]

k2
1(p− k2)2(p+ k1 − k2)2(p+ k1)2(k2 − p̄)2

,

(g) :
Tr [6 p̄γα(6p− 6k2)γµ( 6p+ 6k1− 6k2)γµ(6p− 6k2)γν 6pγν(6p− 6k2)γα]

k2
1(p− k2)2(p+ k1 − k2)2(p− k2)2(p− k2)2

,

(h) :
Tr [6 p̄γα(6p− 6k2)γµ( 6p+ 6k1− 6k2)γµ(6p− 6k2)γν 6pγα(− 6 p̄+ 6k2)γν ]

k2
1(p− k2)2(p+ k1 − k2)2(p− k2)2(k2 − p̄)2

. (3.33)

After carrying out the Dirac trace and performing virtual integration over the loop
momentum k1, one may expand the squared amplitude as a Laurent series in (1 − z),
where the NE order corresponds to the first subleading corrections. Then the integration
over the two-particle phase space follows straightforwardly. It is useful to present results
for each individual Feynman diagram. In so doing, we will neglect all transcendental
constants for brevity, as these do not bring any relevant information and can be easily
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3. A DIAGRAMMATIC APPROACH TO NEXT-TO-SOFT CORRECTIONS

reconstructed from overall pre-factors. One finds:

(a) :
(αs

4π
CF

)2
[
−24 + 24D0(z)

ε3
+
−88 + 24D0(z)− 72D1(z) + 88L(z)

ε2

+
−104 + 48D0(z)− 72D1(z) + 108D2(z) + 272L(z)− 148L2(z)

ε

− 208 + 96D0(z)− 144D1(z) + 108D2(z)− 108D3(z)

+ 352L(z)− 416L2(z) +
476

3
L3(z)

]
,

(b) :
(αs

4π
CF

)2
[

8

ε2
+

8− 8L(z)

ε
+ 32− 4L2(z)

]
,

(c) :
(αs

4π
CF

)2
[
−8 + 8D0(z)

ε3
+
−8 + 24D0(z) + 8D1(z)− 24L(z)

ε2

+
−80 + 80D0(z)− 24D1(z)− 44D2(z)− 80L(z) + 84L2(z)

ε

− 192 + 160D0(z)− 112D1(z)− 12D2(z)

+
196

3
D3(z) + 224L2(z)− 116L3(z)

]
,

(d) : 0;

(e) :
(αs

4π
CF

)2
[

4

ε2
+

4− 12L(z)

ε
+ 8− 12L(z) + 18L2(z)

]
,

(f) :
(αs

4π
CF

)2
[
− 12D0(z)

ε2
+

12− 12D0(z) + 36D1(z)

ε

− 24D0(z) + 36D1(z)− 54D2(z)− 36L(z)

]
,

(g) : 0;

(h) :
(αs

4π
CF

)2
[
−12 + 12D0(z)

ε2
+
−36 + 12D0(z)− 36D1(z) + 36L(z)

ε

− 48 + 24D0(z)− 36D1(z) + 54D2(z)

+ 108L(z)− 54L2(z)

]
. (3.34)

Each expression has been multiplied by 4 to take account of complex conjugate diagrams
and those obtained from Fig. 3.4 by p ↔ p̄. We have also introduced the short-hand
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3.5. The Drell-Yan K-factor with effective rules

notation

Di(z) =

(
logi(1− z)

1− z

)
+

and Li(z) = logi(1− z) . (3.35)

It is interesting to note here that there are eikonal terms in graphs (e)–(h) that cancel when
all such contributions are added together. As noted in ref. [45], the fact that such terms
appear in individual diagrams is an artifact of our (Feynman) gauge choice. Summing
all diagrams together, one obtains

K(2)(z) =
(αs

4π
CF

)2
[

32D0(z)− 32

ε3
+
−64D1(z) + 48D0(z) + 64L(z)− 96

ε2

+
64D2(z)− 96D1(z) + 128D0(z)− 64L2(z) + 208L(z)− 196

ε

− 128D3(z)

3
+ 96D2(z)− 256D1(z) + 256D0(z)

+
128

3
L3(z)− 232L2(z) + 412L(z)− 408 + O(1− z)

]
, (3.36)

which is in agreement with the result found in the literature [40, 41].
This is the result we are going to use as a theoretical laboratory to test different

methods discussed here and in the next two chapters of this thesis. The first one is the
effective Feynman rule approach described above and will be illustrated in the next
section.

3.5 The Drell-Yan K-factor with effective rules

The simplest way to set up the calculation with the effective Feynman rules vertices is
to refer to the diagrammatic depiction of the NE identity shown in Fig. 3.2. To show
explicitly how this works, we can consider two (next-to)soft-gluon attachment on the
quark p-line, as schematically shown in Fig. 3.5. Rearranging the terms in this way, we
see that the contributions can be written in terms of a two-gluon vertex and the E and
NE form factors calculated in Section 3.3. We will now calculate these contributions
separately.

We start with the diagrams with a two-gluon vertex. These are shown in the first and
second line of Fig. 3.6. The amplitude on the left hand side of the cut is proportional to
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3. A DIAGRAMMATIC APPROACH TO NEXT-TO-SOFT CORRECTIONS

E NE

+ + + + +

+ + +

+

Figure 3.5: The application of the E and NE identities with one real and one virtual gluon.
In the upper line, the first four diagrams are rearranged via the NE identity (yielding the
first three terms in second line) while the last two with the E identity (yielding last term
in second line). On the third line, the E and NE form factors are completely factorized
from E and NE emissions. Therefore, the sum of the contributions from the first line is
rearranged in a two-gluon vertex and form factors contributions.

Rµν(k1, k2)p̄ν ∝ (p · k2)(k1 · p̄)pµ + (p · k1)(p · p̄)kµ2
− (p · k1)(p · k2)p̄µ − (k1 · k2)(p · p̄)pµ. (3.37)

Contracting with eikonal Feynman rules for the right hand side of the cut, the upper
and lower two-gluon vertex graphs of Fig. 3.6 are proportional to pµRµν p̄ν and p̄µRµνpν
respectively. We may simplify these combinations as follows. From Eq. (3.37) one finds

pµR
µν p̄ν = 0 , (3.38)

where p2 = 0 has been used. Next, one has

p̄µR
µν p̄ν ∝ −(p · p̄)2kµ1 k

ν
2

[
ηµν −

p(µp̄ν)

p · p̄

]
, (3.39)

where we introduced the shorthand notation a(µbν) = aµbν + aνbµ. The bracketed term
in eq. (3.39) acts on an arbitrary 4-vector to project out the part that is orthogonal to
both pµ and p̄µ. The cross-section integrated over the virtual momentum kµ1 will then be
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3.5. The Drell-Yan K-factor with effective rules

NE

 E

E

E

E

NE

Figure 3.6: The sum of the diagrams in fully factorized form. The vertices shown here are
the local ones of the effective theory (E and NE). As such, the emissions are completely
factorized from form factors, whose incoming momenta are not shifted by the real gluon
momentum. Hence, these form factors are only scalar functions multiplying the diagrams.
As before, diagrams resulting from p ↔ p̄ exchange and complex conjugation are not
shown.

proportional to [
ηµν −

p(µp̄ν)

p · p̄

] ∫
ddk1

kµ1
k2

1 p · k1 p̄ · k1 p · (k1 + k2)

=

[
ηµν −

p(µp̄ν)

p · p̄

]
[A(p · k2, p · p̄)pµ +B(p · k2, p · p̄)p̄µ]

= 0 , (3.40)

where the absence of term proportional to kµ2 in the decomposition in the second line
follows from the absence of k1 · k2 in the denominator of the integral. Hence, we see that
this contribution vanishes due to the action of the projector. Arguments similar to the
above may be used to show that the diagrams in which the two-gluon vertex attaches
to the antiquark leg also vanish. Therefore, the contribution to the K-factor from the
two-gluon vertex is zero.

It is interesting to note that the two-gluon vertex was also found to give no contribu-
tion to the RR part of the NNLO Drell-Yan K-factor [73]. It presumably will contribute,
however, in more complicated amplitudes. For example, Eq. (3.40) will not vanish if con-
tracted with a leg whose momentum is neither p nor p̄. This indicates that the two-gluon
vertex will contribute in amplitudes with more external partons.
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3. A DIAGRAMMATIC APPROACH TO NEXT-TO-SOFT CORRECTIONS

Figure 3.7: Tree-level building blocks.

As a result of our operations we are left with expressions that have the structure of
tree level diagrams multiplied by E or NE form factors that factorize from the tree level
diagrams. The task of evaluating the diagrams of Fig. 3.4 to E and NE order is now
simplified: one need only evaluate the tree-level building blocks of Fig. 3.7, combine
them with scalar form factors and phase space measure. In this procedure terms of order
(1− z)1 will be dropped.

Before presenting the results, it is important to make the following remark. The
eikonal approximation in phase space, form factor and tree level building blocks will
result in LP terms while NE corrections in either the phase space or the building block
yields simple logarithms (NLP). NE corrections to the form factor instead, being a
function of ε and not of (1− z) or k2, will be not subleading in the threshold expansion
and will produce LP logarithms. Applying this procedure to the diagrams of Fig. 3.6, we
get the following contribution:

KE+NE =
(αs

4π
CF

)2
[

32D0 − 32

ε3
+

64D0 − 64D1 + 64L1 − 32

ε2

128D0 − 128D1 + 64D2 + 64L1 − 64L2 − 64

ε
(3.41)

256D0 − 256D1 + 128D2 −
128

3
D3 + 128L1 − 64L2 +

128

3
L3 − 128

]
.

We have thus worked out an expression which is the contribution to the K-factor due
to the sum of E and NE rules combined with an expansion at NLP power. Comparing
this result with the result from the full QCD calculation of Eq. (3.36), we see that there is
no full agreement. Specifically, the only agreement is found for LP terms with highest
power (e.g. D3 in the finite part).

The fact that both LP and NLP terms are missing is not surprising, since we considered
an expanded form factor rather than the full one. Indeed, one may improve upon the
previous approximation in a somewhat heuristic way and collect the entire factorizable
contribution to the Drell-Yan K-factor. The effective Feynman rule is then applied only
to the real gluon, assuming that this completely factorizes from the virtual gluon. With
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this choice, virtual corrections are not written anymore with effective rules and form the
full one-loop form factor. Clearly the eikonal expansion of the form factor is then not
needed. However, we can still make use of that expansion by noting that in this way the
only missing factorizable contribution comes from the NNE form factor.

Therefore, combining phase space, tree level building blocks and full form factor, and
then expanding the final result at NLP, we get

KΓ =
(αs

4π
CF

)2
[

32D0 − 32

ε3
+

48D0 − 64D1 + 64L1 − 80

ε2

128D0 − 96D1 + 64D2 + 160L1 − 64L2 − 176

ε
(3.42)

256D0 − 256D1 + 96D2 −
128

3
D3 + 352L1 − 160L2 +

128

3
L3 − 384

]
.

Comparing this result with the full one in Eq. (3.36), we see that all LP and the leading
NLP terms are correctly reproduced, confirming that this naive factorization works at
eikonal level. Parts of the NLP logarithms however are still missing.

3.6 Conclusions

In this chapter we analyzed next-to-soft corrections by means of effective Feynman rules
and diagrammatic techniques, building upon the work of [73]. First we showed how
this can be applied at amplitude level in order to decompose the quark form factor. This
is equivalent to calculations required for next-to-eikonal webs. Then we moved to the
cross-section level and we introduced the logarithmic structure of the Drell-Yan K-factor,
which will be used also in next chapters. The application of the effective rules to both
real and virtual gluons allowed us to identify the logarithms that naturally exponentiate,
thanks to a naive factorization of both emissions. Then we applied this effective rule only
to the real gluon, assuming a factorization of the full form factor. In this way all LP and
the leading NLP logarithms are fully reproduced.

Part of the missing NLP terms are easy to trace, thanks to the work of Low, Burnett
and Kroll [74, 112]. Indeed, even though for these terms virtual and real emissions do
not factorize, following gauge symmetry arguments it is possible to relate the amplitude
with a real emission to the non radiative amplitude. Even after this correction, there
are further missing NLP logarithms that are of collinear nature, as first observed by Del
Duca [113].

The precise calculation of these missing logarithms and the exposition of their uni-
versal nature, which is the key in the path towards a resummation formalism, will be
investigated in the two following chapters.
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CHAPTER 4

Drell-Yan with the method of regions

Feynman integrals depend on various kinematical invariants formed from the momenta
of the external legs and the masses of the particles involved. From these quantities it is
possible to build dimensionless ratios, whose values may take small or large values for
particular kinematical configurations. In the limit in which one of these ratios is small,
one may think that, upon expanding the integrand, the original integral is converted into
a series of simpler terms. This is the general idea behind the strategy followed by Beneke
and Smirnov in [114] and is called expansion by regions (also known in the literature as
strategy of regions or method of regions).

For a general review we refer the reader to [115, 116], where also the mathematical
foundations of the expansion are investigated. Here we are not going to present the
method in full generality, since we are only interested in exploiting it in the computation
of NNLO Drell-Yan K-factor that we introduced in Chapter 3. Specifically, we will see
that all leading power (LP) and next-to-leading power (NLP) threshold logarithms will
be reproduced.

The structure of the chapter is the following. After reviewing the basic features of the
method, we set up the formalism of the expansion for the specific case of Drell-Yan in the
threshold limit. Then we will show how the expansion can be performed considering a
representative case of the calculation. Finally we will present the result of each region for
the K-factor. The result for each individual diagram is discussed in an appendix at the
end of this chapter.

4.1 The expansion by regions approach

The method of regions consists in the application of the following prescriptions for
computing loop integrals. First, one has to consider a specified asymptotic limit, given in
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4. DRELL-YAN WITH THE METHOD OF REGIONS

the simplest case by a large hierarchy between two scales. Then, in this limit, one has
to divide the space of loop momenta into different regions, according to the singular
behavior of the integrand. Finally, one can expand the integrand in each region and
perform the integration over the whole integration domain. Adding the contributions
from all regions, one can reconstruct the original integral.

When the asymptotic limit involves only masses and time-like off-shell momenta
squared, the expansion can be defined in Euclidian space. In this case it is also called
“expansion by subgraphs” in the literature, and some arguments have been provided
towards its mathematical consistency [115, 117]. For general cases, a formal proof is
still lacking but at present there are no known cases where this procedure breaks down.
Moreover, it has passed several highly non-trivial checks, such as a N3LO computation
in Higgs production with more than 30 powers of the expansion [118, 119].

In order to show the basic features of the method, before moving to the actual imple-
mentation in NNLO Drell-Yan production, we would like to see how this machinery
works in a simple toy example, along the lines of the discussion in [57]. Let us consider
the following Feynman integral

I =

∫
ddk

1

(k2 −m2)(k2 −M2)

= i πd/2 Γ

(
1− d

2

)
m2Md −M2md

m2M2 (m2 −M2)
, (4.1)

where the second line is obtained with standard techniques. Now we consider the case
in which M � m, and observe that the result can be written as an asymptotic series in
m2/M2. Taking only the leading contribution, it yields

I = −i πd/2 Γ

(
1− d

2

)
Md−2 −md−2

M2
+O

(
m2

M2

)
. (4.2)

In this limit, we expect the contribution to the integral to come from two different regions:
one where the momentum k2 ∼ m2 and another where k2 ∼ M2. We call the two
regions respectively soft and hard. Therefore, we recompute the integral in Eq. (4.1), first
expanding the integrand in these regions. In the soft region we can expand in powers of
k2/M2, as

Isoft =

∫
ddk

−1

(k2 −m2)M2

(
1 +

k2

M2
+

k4

M4
+ · · ·

)
= i πd/2 Γ

(
1− d

2

)
md−2

M2
+O

(
m2

M2

)
, (4.3)
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where only the first term of the expansion has been integrated. In the hard region instead
the expansion is in powers of m2/k2, which gives

Ihard =

∫
ddk

1

k2(k2 −M2)

(
1 +

m2

k2
+
m4

k4
· · ·
)

= −i πd/2 Γ

(
1− d

2

)
Md−2

M2
+O

(
m2

M2

)
, (4.4)

where once again we have integrated only the first term of the expansion. Adding
Eq. (4.3) and Eq. (4.4) we recover the result for the original integral in Eq. (4.2).

This toy example shows the basic features of the expansion by regions. A key point is
that the soft and the hard regions have a different scaling, md−2 and Md−2 respectively.
This guarantees that, even if the integration has been performed on the whole integration
domain, no double counting is introduced. The matching between the sum over the
regions and the original integral has been verified at leading order in m2/M2. Actually,
in this simple example it is possible to make a further check, verifying that this holds at
all orders in the expansion. However, it is clear that when this method is applied to more
complicated cases, this is not feasible anymore.

In this chapter we will apply these techniques to the Drell-Yan process in the threshold
limit z → 1. Therefore, the role of the expansion parameter m2/M2 will be played by
the threshold variable (1 − z). Being interested in reproducing NLP logarithms, the
expansion in each region must be performed at second non-trivial order in the expansion
parameter. The formalism we will use will be slightly different than the one used in this
example. Indeed, since collinear divergences will be present, the classification of the
different momentum regions will be defined in light-cone coordinates. Moreover, since
p2 = p̄2 = 0, we will introduce an auxiliary vector n to rescale the collinear directions.

As a final remark, we observe that in the way the method of regions has been intro-
duced in this section, it might seem merely a tool to perform integrations. However, it is
noteworthy that the expansion by regions approach is much more powerful: it is possible
to define an effective field theory whose degrees of freedom reproduce the result in dif-
ferent momentum regions. For massless theories where soft and collinear are the typical
regions required, one may define Soft-Collinear Effective Theories (SCET). However,
in the following we will not set up any Lagrangian and we simply use the method to
disentangle the NNLO Drell-Yan K-factor in different regions, and to understand which
of them contribute at NLP. Moreover, this will serve as a non-trivial check of the method
itself at subleading power.
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4.2 The regions for Drell-Yan production

In this section we set up the formalism for the specific case of the Drell-Yan production.
The K-factor for this process has already been introduced in the previous chapter, where
a calculation in full QCD and in an effective approach has been presented. Here we wish
to repeat the calculation with the method of regions.

In the following we will consider again only the set of the (abelian-like) real-virtual
interference diagrams of the NNLO cross-section. We recall that our main motivation
here is to analyze the entangled effect of soft and collinear radiation. For what concerns
the definitions of the different regions, we note that for this class of diagrams, where we
have one real and one virtual gluon, the softness of the momentum k2 of the real gluon
defines the asymptotic limit (which coincides with the threshold limit z → 1) while the
loop integral over the momentum k1 can be decomposed in different regions.

We introduce a set of auxiliary vectors ni collinear to each hard line i. For Drell-Yan
production we define n+ and n− collinear respectively to p and p̄ such that n2

+ = n2
− = 0

and n−·n+ = 2. With this definition, and introducing the short-hand notation n±` = n±·l,
each vector lµ can be decomposed as

`µ = (n−`)
nµ+

2
+ (n+`)

nµ−
2

+ `µ⊥ , (4.5)

or equivalently

` = (n−`, `⊥, n+`) . (4.6)

Now we can distinguish the different regions for the loop momentum k1 according
to the different scaling of its components. Introducing a book-keeping parameter λ ∼√

1− z which defines the soft limit z → 1, the relevant regions are defined by the
following scaling of the loop momentum:

hard : k1 ∼ (1, 1, 1) collinear : k1 ∼ (1, λ, λ2)

soft : k1 ∼ (λ2, λ2, λ2) anticollinear : k1 ∼ (λ2, λ, 1) . (4.7)

By definition, the momentum k2 of the real gluon is soft and therefore, before phase
space integration, its scaling is fixed on

k2 ∼ (λ2, λ2, λ2) . (4.8)

One might ask why we considered only these regions. Indeed, a priori we might have
included regions that scale as (λ, λ, λ) or more generally (λn, λn, λn). However, the set of
diagrams that involve gluon exchanges between two hard massless legs is a well-studied
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case in the literature (see for instance [120]) and we know that for this case it is sufficient
to consider the regions of Eq. (4.7). Other scalings would produce only scaleless integrals,
as it could be explicitly proven [121], and therefore can be ignored. More generally,
finding the set of all non-vanishing regions contributing to an integral is a non-trivial
task and requires the use of automated implementations like asy.m [122, 123].

The task of computing Feynman diagrams at leading and subleading order in the
threshold expansion now turns into an evaluation of simpler loop integrals, obtained
after performing an expansion in powers of λ at the proper order. Different contributions
to the Drell-Yan K-factor will come from different regions of the loop momentum k1. To
set the correct accuracy in λ before any integration, one should also include the expansion
of the loop and phase space measures, which can be combined as∫

[dk1][dk2](2π)δ(k2
2)θ(k0

2)δ

(√
s(1− z)

2
− k0

2

)
, (4.9)

where the integration measure [dki] is defined as∫
[dki] ≡

eεγE

(4π)ε
µ̄2ε

∫
ddki
(2π)d

, (4.10)

with µ̄ = µe−γE/2(4π)1/2. Observing that∫
ddk

(2π)d
=

1

2

∫ +∞

−∞

dn+k

2π

∫ +∞

−∞

dn−k

2π

∫
dd−2k⊥
(2π)d−2

, (4.11)

we can see that, around d = 4, the scaling of [dk1] will be 1 for the hard region, λ4 for the
(anti)-collinear region and λ8 for the soft region.

Before presenting results for the DY amplitudes in different regions, it is instructive
to show the expansion procedure in a representative example from the full calculation.

4.3 Structure of the calculation

After the review of the general set-up for an expansion in regions, the procedure to
follow is now clear: in every region we have a well defined scaling of k1 and k2 which
determines an expansion both of the integration measure and the amplitude. However,
the order in λ to reach at the amplitude level is different for various components, since
the integration measure has a different scaling in every region. Therefore, the simplest
way to illustrate the structure of the calculation is to show explicitly the expansion of a
single propagator. In particular, we consider the most complicated propagator involved
in the calculation, which is

p/+ k/1 − k/2

(p+ k1 − k2)2
. (4.12)
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We will expand this to second non-trivial order in λ in every region.
In the hard and soft regions all components have the same scaling, which considerably

simplifies the algebra. Moreover, in both these cases the expansion is in powers of λ2.
Specifically, the expansion of the hard region starts at O(λ0) and yields

Hard :

√
ŝ n/+2 + k/1

k2
1 + (n+k1)

√
ŝ

+

[
− k/2

k2
1 + (n+k1)

√
ŝ

+

(
(n+k2)

√
ŝ+ 2(k1k2)

)(√
ŝ n/+2 + k/1

)
(k2

1 + (n+k1)
√
ŝ)2

]
+ O(λ4) . (4.13)

The soft region instead starts at order O(λ−2) and reads

Soft :
1

(n+k1)− (n+k2)

n/+

2
+

[
1

(n+k1)− (n+k2)

k/1 − k/2√
ŝ

− 1(
(n+k1)− (n+k2)

)2 (k1 − k2)2

√
ŝ

n/+

2

]
+O(λ2) . (4.14)

Collinear and anticollinear regions require more algebraic manipulation, since the differ-
ent scaling of each component produces more terms. In both regions the expansion is in
powers of λ. Specifically, the anticollinear region starts at order O(λ0) and reads

Anticollinear :
1√
ŝ

n/−
2

+
1

(n+k1)

n/+

2
+

[
1

(n+k1)

k/1⊥√
ŝ

+

(
− k2

1⊥

(n+k1)2
√
ŝ

+
(n+k2)

(n+k1)2
+

(n−k2)

(n+k1)
√
ŝ

)
n/+

2

]

+

[(
− k2

1

(n+k1) ŝ
+

(n+k2)

(n+k1)
√
ŝ

+
(n−k2)

ŝ

)
n/−
2

− k/2

(n+k1)
√
ŝ

]
+O(λ3) . (4.15)

The collinear region is the most involved calculation and starts at O(λ−2). One finds

Collinear :

(√
ŝ+ (n−k1)

)
n/+
2

k2
1 + (n+k1)

√
ŝ− (n+k2)

(√
ŝ+ (n−k1)

)
+

[
k/1⊥

k2
1 + (n+k1)

√
ŝ− (n+k2)

(√
ŝ+ (n−k1)

)
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+
2 (k1⊥k2⊥)

(√
ŝ+ (n−k1)

)
n/+
2(

k2
1 + (n+k1)

√
ŝ− (n+k2)

(√
ŝ+ (n−k1)

))2

]

+

[
(n+k1) n−2 − k/2

k2
1 + (n+k1)

√
ŝ− (n+k2)

(√
ŝ+ (n−k1)

)
+

2 (k1⊥k2⊥)k/1⊥ +
(
(n+k1) (n−k2)− k2

2

) (√
ŝ+ (n−k1)

)
n/+
2(

k2
1 + (n+k1)

√
ŝ− (n+k2)

(√
ŝ+ (n−k1)

))2

+
4 (k1⊥k2⊥)2

(√
ŝ+ (n−k1)

)
n/+
2(

k2
1 + (n+k1)

√
ŝ− (n+k2)

(√
ŝ+ (n−k1)

))3

]
+O(λ) .

(4.16)

In the above results, different powers of λ are enclosed in each squared brackets. As
we can see, the subleading order in λ to be included for this propagator is different for
every region, and could even correspond to O(λ3).

The same procedure applies to other propagators. However, it should be pointed
out that not all other propagators are independent from one another. For example the
collinear regions on one leg can be obtained from the anticollinear region of the other leg
from exchanging p↔ p̄.

This example shows in the Drell-Yan case how the expansion by regions works in
practice, before performing any integration. Even if many terms are produced and the
expressions look lengthy, the method is systematic and will produce simpler integrals.
In the next section we will present results in different regions after loop and phase space
integrals have been performed.

4.4 Results for each region

The procedure sketched in the previous section can be applied to all amplitudes shown
in Fig. 3.4. Expanding to subleading order in λ both amplitudes and integration measure
will produce a result that extends to subleading power in the threshold expansion,
leading to both LP and NLP threshold logarithms.

The results for individual diagrams in all regions are presented at the end of this
chapter in Section 4.A. Here we will discuss the total result for each region, stressing in
a subscript to K the distinction between contributions that, after loop integration but
before phase space integration, are respectively leading (E) and subleading (NE) in λ.
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The terminology here clearly refers to the eikonal expansion, forming a natural bridge to
the diagrammatic approach described in Chapter 3.

Soft region

In this region all integrals are scaleless, and therefore vanish in dimensional regular-
ization. As we observed in Chapter 2, this is due to a cancellation of IR and UV poles.
Since we are performing a bare calculation, UV poles are not separated from the IR ones,
and one is left with a vanishing integral. This may seems counterintuitive since it is
known that a subset of logarithms in the K-factor comes from the softness of the virtual
gluon, and we have just concluded that this momentum region is zero. However, this
contribution has migrated into the hard region, as can be seen applying the scaling of
4.7. This is consistent with the fact that dimensional regularization can shift singularities
from the IR to the UV.

Hard region

The hard region of diagrams (e)-(h) vanishes after integrating over the loop momentum
k1, so that the contribution to the hard region arises exclusively from diagrams (a)-(d). It
reads

K
(2)
E, h(z) =

(αs
4π
CF

)2
[

32D0(z)

ε3
+
−64 + 48D0(z)− 64D1(z)

ε2

+
−96 + 128D0(z)− 96D1(z) + 64D2(z) + 128L(z)

ε

+ 256D0(z)− 256D1(z) + 96D2(z)− 128D3(z)

3

+ 192L(z)− 128L2(z)− 256

]
, (4.17)

K
(2)
NE, h(z) =

(αs
4π
CF

)2
[
− 32

ε3
+

16 + 64L(z)

ε2
+
−80 + 32L(z)− 64L2(z)

ε

+ 160L(z)− 32L2(z) +
128

3
L3(z)− 128

]
, (4.18)

As we did in Chapter 3, we have omitted terms involving transcendental functions, and
we have set µ2

MS
= Q2. Already at this point we observe that all LP logarithms of the

exact NNLO Drell-Yan calculation are reproduced by K
(2)
E, h(z). Therefore, we expect

other contributions to contribute only at NLP.
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Collinear and anticollinear region

Even though the expressions in Eq. (4.15) and Eq. (4.16) are not identical, after summing
all diagrams (including those related by p ↔ p̄ symmetry and complex conjugation)
collinear and anticollinear regions give the same contributions. This could have been
guessed from the symmetry of the diagrams. Therefore we present result with the
subscript c+ c̄. The total contribution reads

K
(2), (a)−(d)
NE, c+c̄ (z) =

(αs
4π
CF

)2
[
− 8

ε2
+

24L(z)

ε
− 36L2(z) + 16

]
, (4.19)

K
(2), (e)−(h)
NE, c+c̄ (z) =

(αs
4π
CF

)2
[
− 8

ε2
+
−20 + 24L(z)

ε
+ 60L(z)− 36L2(z)− 40

]
.

(4.20)

As expected, the collinear regions contribute only at NLP and thus do not spoil
the LP logarithmic structure already reproduced with the hard region. However, on a
diagram by diagram basis, the collinear region does contain LP terms, which fortunately
cancel between diagrams where the attachment of the real and virtual gluon to the p
leg is swapped. The intermediate appearance of LP terms is a consequence of having
used a non-physical gauge i.e. the Feynman gauge, since non-physical polarization
contributions for individual diagrams may reduce the order in the threshold expansion.

4.5 Total contribution

We can now combine the results from the soft, hard and collinear regions, to arrive at an
expression for the total abelian-like K-factor for real-virtual interference diagrams from
the method of regions. One finds

K(2)(z) =
(αs

4π
CF

)2
[

32D0(z)− 32

ε3
+
−64D1(z) + 48D0(z) + 64L(z)− 96

ε2

+
64D2(z)− 96D1(z) + 128D0(z)− 64L2(z) + 208L(z)− 196

ε

− 128D3(z)

3
+ 96D2(z)− 256D1(z) + 256D0(z)

+
128

3
L3(z)− 232L2(z) + 412L(z)− 408 + O(1− z)

]
. (4.21)

This is in perfect agreement with the result of Eq. (3.36), which was obtained from
expanding to subleading order in (1− z) the result from the full calculation (both LP and
NLP, including constant terms, which are not logarithmic enhanced). This confirms the
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conjecture that one can carry out these calculations as a threshold expansion in (1− z),
not only at leading order in this parameter, but also including subleading contributions.

We can now compare the result presented in each region with the diagrammatic
approach developed in Chapter 3. In particular, the comparison can be performed not
only for the total result, but also on a diagram by diagram basis, using the results shown
in Section 4.A. This is indeed possible since in both calculations no UV renormalization
has been carried out and the same (Feynman) gauge has been adopted.

We start by analyzing diagrams with vertex corrections, i.e. diagrams (a)-(d) of
Fig. 3.4. In particular, we consider separately the sums (a) + (c) and (b) + (d). Each of
these two combinations represents a sum of two diagrams where the attachment of the
real and virtual gluons on the p-leg is swapped. In the spirit of the eikonal identity of
Eq. (3.9), we know that in a factorization picture the summing over these permutations
yields a factorized external emission that multiplies a one-loop form factor.

We focus first on the sum (a) + (c), observing that eikonal collinear regions cancel
out. As we already pointed out, the presence of these terms in each diagram is due to
the choice an unphysical gauge. We are then left with the hard region (both E and NE)
and the collinear region (only NE). From direct comparison, the E and NE hard regions
correspond to the result given in a diagrammatic approach, where the loop form factor is
factored out from the E and NE real emission diagram. From this analysis we see that
the collinear region has been completely left out in the diagrammatic approach. We also
note that this effect is only NE, and therefore does not affect LP logarithms.

We now move to the sum (b) + (d). In the diagrammatic approach this contribution
vanishes. This is easy to understand: assuming that the form factor is external to the
amplitude, we are left with a non-crossed diagram where the gluon connects two p-leg
lines. This contribution is zero both at E and NE level. Therefore, in this case both the
hard and the collinear regions are left out from the diagrammatic approach. Again the
effect is only NE.

Finally, we consider diagrams (e)-(h), where one-loop virtual corrections involve only
one leg. Similar conclusions can be reached: the collinear region is completely left out by
the diagrammatic approach, and this effect is again only NE. Moreover, this is the only
non-vanishing region for this class of diagrams. In the diagrammatic approach all these
diagrams vanish: assuming that the one-loop correction can be factored out from the
external leg, we are left with a self energy correction only. This yields a scaleless integral
and therefore vanishes in dimensional regularization.

In conclusion, in a naive factorization picture such as the diagrammatic approach
described in Chapter 3, the hard region of diagram (b) and the entire collinear region
of all diagrams are completely left out. Both effect are of NE order. On the contrary,
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the hard region is partially reproduced (entirely at E level and partially at NE level) by
the diagrammatic approach and therefore the use of E and NE Feynman rules catches
only this region. As explained in the previous section, the fact that this (next-to-)soft
contribution manifests itself in the hard region (and not in the soft one) is due to the
standard transformation of IR poles into UV ones.

4.6 Loop effects on the soft expansion

The results presented in the previous section can be examined in the light of recently
proposed next-to-soft theorems [93,96,98,100]. All these studies deal with a generalization
at next-to-soft level of Weinberg theorem [92], originally proposed for soft gravitons.
We will discuss these issues more quantitatively in Section 5.4. Here, it suffices to say
that these theorems have been proposed at tree-level, and there has been interest in
understanding how loop corrections affect them. In particular, the discussion under
investigation [95, 97] was whether the order in which the dimensional regularization and
soft expansions are carried out is relevant, and which one has to be chosen.

The computation of the Drell-Yan K-factor with the method of regions presented in
this chapter can shed light on this matter. For this purpose, we have to look at the scaling
of the diagrams in the real gluon momentum k2. Clearly, the results presented in each
region do not depend on neither the real nor the virtual gluon momenta, as those are
integrated out. Therefore, we look at each region before integrating over the phase space.
In particular, after integrating over the loop momentum k1, we find the following scaling
for the hard and the collinear regions:

Hard ∼ (2p · p̄)−ε

ε2
[E + NE + . . . ] +O(ε−1) (4.22)

Collinear ∼ (−2p · k2)−ε

ε
[NE + . . . ] +O(ε0) (4.23)

Anticollinear ∼ (−2p̄ · k2)−ε

ε
[NE + . . . ] +O(ε0) (4.24)

where E and NE denote respectively terms of order O(k−1
2 ) and O(k0

2), while the ellipsis
represent further subleading corrections in the soft expansion. These scalings can be
understood following the standard soft-collinear factorization formula derived in Chap-
ter 2. Indeed, in that formula, soft and collinear virtual radiation is captured by hard, soft
and jet functions. No extra soft real gluon is present and therefore it cannot depend on
k2. We know that eikonal terms can be explained as single emissions factorized from the
form factor and therefore that formula can handle them. Hence, they must be contained
in the hard function, whose scaling does not contain k2. The collinear and anticollinear
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regions, on the other hand, do depend on k2. They both can be converted into a (1− z)
scaling with

(−2p · k2)−ε ∼ (1− z)−ε(−2p̄ · k2)−ε ∼ (1− z)−ε . (4.25)

This has to be integrated over the phase space, which contributes with an overall power
of [(1− z)z]1−2ε [73]. Moreover this integration yields an additional single pole ε−1. The
resulting total scaling is then

(1− z)−3ε

ε2
=

1

ε2
− 3

log(1− z)
ε

+
9

2
log2(1− z) , (4.26)

which is precisely the same pattern of Eq. (4.19) and Eq. (4.20) after restoring the proper
normalization.

These considerations resolve the issue of the soft expansion in the context of di-
mensional regularization. The factor (p · k2) would be absent if the soft expansion was
performed before the expansion in ε, as this would imply that the soft expansion had
been performed before the integration over the loop momentum k1. This can be further
clarified looking at a particular example. Considering diagram (a), performing the soft
expansion before loop integration is equivalent to make the replacement

1

p− k1 − k2
→ 1

p− k1
. (4.27)

It is clear that with this replacement no logarithm of (p · k2) can appear in the final result,
and this would result in a wrong evaluation of the total Drell-Yan K-factor. Neglecting
terms proportional to k2 in the numerator would not spoil the result, as these terms do
not contribute to the singularity of the Feynman integral, as discussed in Chapter 2. This
fixes the order in which the soft and the dimensional regularization expansions must be
carried out: the soft expansion has to be performed after virtual integration, otherwise
contributions that scale with powers of (p · k2) or (p̄ · k2), that govern the (anti)collinear
region, cannot be detected. Collinear effects are responsible for the breakdown of the
Low-Burnett-Kroll theorem at next-to-soft level, as first noted by Del Duca in [113]. This
will be the subject of Chapter 5.

4.7 Conclusions

In this chapter we have used the method of regions to compute the Drell-Yan K-factor.
After the full QCD calculation and the diagrammatic approach presented in Chapter 3,
this is the third calculation for this object presented so far in this thesis. We have seen
that the result fully agrees with the full QCD calculation, and therefore can be used to
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investigate the missing terms from the diagrammatic approach. In particular, comparing
it with the diagrammatic approach, we have identified the regions that explicitly break
a naive factorization approach, namely the entire collinear region and part of the hard
region. As expected both regions affect only NLP logarithms.

On a more general grounds, the method has been useful in clarifying the source
of breakdown at loop-level of the recently proposed next-to-soft theorems. By explicit
calculation, we have shown that at loop level the collinear region plays a key role and
fixes unambiguously the order of soft and dimensional regularization expansion.

Despite these strengths, and the fact that we have been able to address a specific
singular region (hard, soft or collinear) to every threshold logarithm, the method however
does not give any further insight into higher orders and has no predictive power towards
contributions from higher orders as such. Therefore, on the road towards a resummation
formalism for NLP threshold logarithms, we need to move to a factorization approach,
which will be discussed in the next chapter.
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4.A Results for each diagram

We present here the regions for the diagrams of Fig. 3.4. As we did for the total result,
we distinguish between eikonal (E) and next-to-eikonal (NE) contributions, which cor-
respond respectively to the leading and next-to-leading term in the λ expansion before
phase space integration. Results for the hard regions are indicated with the subscript h,
while c+ c̄ indicates the sum of the collinear and anti-collinear regions.

Diagrams (a)-(d) involve one-loop vertex corrections while diagrams (e)-(h) include
self energy corrections. For all diagrams we include the contribution from complex
conjugated diagrams or from the diagrams with emission from the lower leg.

Diagram (a)

K
(2)
NE(z)|(a), h =

(αs
4π

)2
(
C2
F −

CACF
2

) [
16

ε3
+

8− 32 log(1− z)
ε2

+
32 log2(1− z)− 16 log(1− z) + 40

ε

− 64

3
log3(1− z) + 16 log2(1− z)− 80 log(1− z) + 64

+ ε

(
32

3
log4(1− z)− 32

3
log3(1− z) + 80 log2(1− z)

−128 log(1− z) + 128

)]
, (4.28)

K
(2)
E (z)|(a), c+c̄ =

(αs
4π

)2
(
C2
F −

CACF
2

) [
24D0(z)

ε3
+
−72D1(z) + 24D0(z)− 48

ε2

+
108D2(z)− 72D1(z) + 48D0(z) + 144 log(1− z)− 48

ε
− 108D3(z) + 108D2(z)− 144D1(z) + 96D0(z)

− 216 log2(1− z) + 144 log(1− z)− 96

+ ε
(
81D4(z)− 108D3(z) + 216D2(z)

− 288D1(z) + 192D0(z) + 216 log3(1− z)

− 216 log2(1− z) + 288 log(1− z)− 192
)]
, (4.29)

K
(2)
NE(z)|(a), c+c̄ =

(αs
4π

)2
(
C2
F −

CACF
2

) [
− 40

ε3
+
−48 + 120 log(1− z)

ε2

+
−180 log2(1− z) + 144 log(1− z)− 96

ε
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+ 180 log3(1− z)− 216 log2(1− z) + 288 log(1− z)− 176

+ ε
(
− 135 log4(1− z) + 216 log3(1− z)− 432 log2(1− z)

+528 log(1− z)− 336
)]
. (4.30)

Diagram (b)

K
(2)
NE(z)|(b), h =

(αs
4π

)2
(
C2
F −

CACF
2

) [
16

ε2
+

24− 32 log(1− z)
ε

+ 32 log2(1− z)− 48 log(1− z) + 64

+ ε

(
− 64

3
log3(1− z) + 48 log2(1− z)

− 128 log(1− z) + 128

)]
, (4.31)

K
(2)
NE(z)|(b), c+c̄ =

(αs
4π

)2
(
C2
F −

CACF
2

) [
− 8

ε2
+
−16 + 24 log(1− z)

ε
(4.32)

− 36 log2(1− z) + 48 log(1− z)− 32

+ ε
(
36 log3(1− z)− 72 log2(1− z) + 96 log(1− z)− 64

)]
.

Diagram (c)

K
(2)
E (z)|(c), h =

(αs
4π

)2

C2
F

[
32D0(z)

ε3
+
−64D1(z) + 48D0(z)− 64

ε2

+
64D2(z)− 96D1(z) + 128D0(z) + 128 log(1− z)− 96

ε

− 128

3
D3(z) + 96D2(z)− 256D1(z) + 256D0(z)

− 128 log2(1− z) + 192 log(1− z)− 256

+ε

(
64

3
D4(z)− 64D3(z) + 256D2(z)

− 512D1(z) + 512D0(z) +
256

3
log3(1− z)

− 192 log2(1− z) + 512 log(1− z)− 512

)]
, (4.33)

K
(2)
NE(z)|(c), h =

(αs
4π

)2

C2
F

[
− 48

ε3
+
−40 + 96 log(1− z)

ε2
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+
−96 log2(1− z) + 80 log(1− z)− 144

ε

+ 64 log3(1− z)− 80 log2(1− z) + 288 log(1− z)− 256

+ ε

(
− 32 log4(1− z) +

160

3
log3(1− z)− 288 log2(1− z)

+ 512 log(1− z)− 512

)]
, (4.34)

K
(2)
E (z)|(c), c+c̄ =

(αs
4π

)2

C2
F

[
− 24D0(z)

ε3
+

72D1(z)− 24D0(z) + 48

ε2

+
−108D2(z) + 72D1(z)− 48D0(z)− 144 log(1− z) + 48

ε
+ 108D3(z)− 108D2(z) + 144D1(z)− 96D0(z)

+ 216 log2(1− z)− 144 log(1− z) + 96

+ ε
(
− 81D4(z) + 108D3(z)− 216D2(z)

+ 288D1(z)− 192D0(z)− 216 log3(1− z)

+ 216 log2(1− z)− 288 log(1− z) + 192
)]
, (4.35)

K
(2)
NE(z)|(c), c+c̄ =

(αs
4π

)2

C2
F

[
40

ε3
+

48− 120 log(1− z)
ε2

+
180 log2(1− z)− 144 log(1− z) + 112

ε

+ 180 log3(1− z) + 216 log2(1− z)− 336 log(1− z) + 224

+ ε
(
135 log4(1− z)− 216 log3(1− z) + 504 log2(1− z)

−672 log(1− z) + 448
)]
. (4.36)

Diagram (d)

The contribution from this diagram is zero.

Diagram (e)

K
(2)
NE(z)|(e), c+c̄ =

(αs
4π

)2
(
C2
F −

CACF
2

) [
4

ε2
+

4− 12 log(1− z)
ε

+ 18 log2(1− z)

− 12 log(1− z) + 8 + ε
(
− 18 log3(1− z)

+ 18 log2(1− z)− 24 log(1− z) + 16
)]
. (4.37)
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Diagram (f)

K
(2)
E (z)|(f), c+c̄ =

(αs
4π

)2
(
C2
F −

CACF
2

) [
−12D0(z)

ε2
+

36D1(z)− 12D0(z) + 24

ε

− 54D2(z) + 36D1(z)− 24D0(z)− 72 log(1− z) + 24

+ ε
(
54D3(z)− 54D2(z) + 72D1(z)− 48D0(z)

+ 108 log2(1− z)− 72 log(1− z) + 48
)]
, (4.38)

K
(2)
NE(z)|(f), c+c̄ =

(αs
4π

)2
(
C2
F −

CACF
2

) [
− 12

ε
+ 36 log(1− z)− 24

+ ε
(
− 54 log2(1− z) + 72 log(1− z)− 48

)]
.(4.39)

Diagram (g)

The contribution from this diagram is zero.

Diagram (h)

K
(2)
E (z)|(h), c+c̄ =

(αs
4π

)2

C2
F

[
12D0(z)

ε2
+
−36D1(z) + 12D0(z)− 24

ε

+ 54D2(z)− 36D1(z) + 24D0(z) + 72 log(1− z)− 24

+ ε
(
− 54D3(z) + 54D2(z)− 72D1(z) + 48D0(z)

− 108 log2(1− z) + 72 log(1− z)− 48
)]
, (4.40)

K
(2)
NE(z)|(h), c+c̄ =

(αs
4π

)2

C2
F

[
− 12

ε2
+
−12 + 36 log(1− z)

ε
− 54 log2(1− z)

+ 36 log(1− z)− 24 + ε
(
54 log3(1− z)− 54 log2(1− z)

+ 72 log(1− z)− 48
)]
. (4.41)
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CHAPTER 5

A next-to-soft factorization theorem

In this chapter we investigate next-to-soft corrections with a factorization approach.
Specifically, building upon the work of Low [74], Burnett and Kroll [112] and more
recent modifications by Del Duca [113], we derive a factorization theorem valid up
to next-to-soft level, by means of which it is possible to have full control of the NLP
threshold logarithms to NNLO. In so doing, we will use the soft-collinear factorization
formalism derived in Chapter 2, putting the auxiliary vector n on the light-cone. In
particular, by presenting the theorem in different forms, we will discuss also a one-
loop expanded version that will turn out to be useful to clarify the recently proposed
next-to-soft theorems.

The structure of the chapter is as follows. In Section 5.1 we recall the formalism of
soft-collinear factorization, stressing the difference between choosing n2 = 0 and n2 6= 0.
Using this language, in Section 5.2 we will derive the so-called LBKD theorem, without
any assumption on n. Then, in the subsequent sections we will simplify the factorization
formula of the theorem, first setting n2 = 0, and then expanding it to one-loop. Finally,
in Section 5.5, we will implement the one-loop formula in the NNLO Drell-Yan K-factor,
showing that all NLP threshold logarithms (and even the constant terms) are reproduced.

5.1 Factorization on and off the light-cone

The starting point is the soft-collinear factorization formula for a partonic non-radiative
amplitude with two external hard lines, which reads

A
(
Q2

µ2
, αs(µ

2), ε

)
= H

(
{pi}, {ni}, αs(µ2), ε

)
× S

(
{βi}, αs(µ2), ε

)
×

2∏
i=1

[
Ji
(
pi, ni, αs(µ

2), ε
)

Ji (βi, ni, αs(µ2), ε)

]
, (5.1)
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where Q is the scale associated with the hard interaction, pi and βi are respectively the
momentum and velocity of the i-th hard external leg and ni are the auxiliary four-vectors
that separate collinear and hard modes. The derivation of this formula has been already
discussed in Chapter 2. However, the formalism that will be used in this chapter is
slightly different, since we are going to put the ni vectors on the light-cone, i.e. n2

i = 0.
This choice will slightly complicate the structure of singularities but it will be useful from
the computational point of view in the rest of this chapter. Before discussing this, it is
useful to recall for sake of completeness the main ingredients of this formula, without
any assumption on ni.

Soft and collinear singularities are captured respectively by the soft function S and
the jet functions Ji, defined as

Ji

(
pi, ni, αs(µ

2), ε
)
u(pi) ≡ 〈0 |Φni(∞, 0)ψ(0)| pi〉 , (5.2)

S
(
β1 · β2, αs(µ

2), ε
)
≡ 〈0 |Φβ2(∞, 0)Φβ1(0,−∞)| 0〉 . (5.3)

Both definitions require the introduction of the Wilson line Φ, which ensures gauge
invariance in the factorization of soft and collinear divergences. The convention used in
this chapter is that a Wilson line Φ in the direction v is defined as

Φv(λ2, λ1) ≡ P exp

[
igsµ

ε

∫ λ2

λ1

dλ v ·A(λv)

]
, (5.4)

where the group generator contained in A is defined to be the same for coupling with
particles and antiparticles. Divergences due to radiation which is at the same time soft
and collinear to the i-th external line, which show up as double poles in 1/ε at one-loop,
are included both in the soft S and in the jet function Ji. To remove this double counting,
each jet line must be divided by an eikonal jet function, defined as

Ji
(
βi, ni, αs(µ

2), ε
)
≡ 〈0 |Φni

(∞, 0)Φβi
(0,−∞)| 0〉 . (5.5)

The ratio Ji/Ji constructed in this way has no soft divergence but only collinear ones,
while the soft function S gathers soft radiation which could be also collinear. Alterna-
tively, one could perform the eikonal subtraction1 directly in the soft function rather than
in the set of jet functions. Hence, one can introduce a function called reduced soft function
S which collects only soft wide-angle radiation, defined as

S
(
{βi}, {ni}, αs(µ2), ε

)
≡ S(β1 · β2, αs(µ

2), ε)∏
i Ji(βi, ni, αs(µ2), ε)

. (5.6)

1Even though strictly speaking it is a division, it becomes a subtraction order by order in perturbation
theory.
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Soft-collinear poles are in this way contained in jet functions.
Traditionally, to explore factorization issues by means of formula Eq. (5.1), it is

common to set n2
i 6= 0. This has the advantage of not introducing any spurious collinear

singularity in the jet functions. Moreover, nice functional properties of the factorization
formula emerge: the dependence of the jet function on pi and ni will be through the
combination (p · n)2/n2, while the eikonal jet will be a function of (β · n)2/n2. Hence,
with this choice, both the jet and the eikonal jet functions are invariant under rescaling
ni → κini. Moreover, the reduced soft function S defined in Eq. (5.6) will depend on the
kinematical invariants only through the combination

ρ12 ≡
(β1 · β2)2n2

1n
2
2

(β1 · n1)2(β2 · n2)2
, (5.7)

which is manifestly invariant rescaling of both βi and ni.
However, moving from the analysis of formal factorization properties to actual

calculations with jet and soft functions, one soon realizes that the functional dependence,
and therefore the computation itself, is greatly simplified setting n2

i = 0. This is also
the standard choice adopted in effective field theory calculations. The price to pay,
of course, is that some of the above properties are spoiled since spurious collinear
singularities are now produced in the jet functions. In particular, jet and eikonal jet will
be functions respectively of pi ·ni and βi ·ni, while the reduced soft function will depend
on (β1·β2)2

(β1·n1)2(β2·n2)2 . The spurious singularities will however cancel when combined in
Eq. (5.1).

In the following section, we will generalize this formalism to the next-to-soft level
by means of the LBKD theorem. To make the derivation as general as possible, no
assumption will be made on nµ; the simplification of setting it on the light-cone will
be presented in a subsequent section. Moreover, when we will move to the actual
implementation in the the Drell-Yan cross-section, we will make a further restriction,
rescaling ni → niQ/2 and setting n1 = p̄ and n2 = p.

Finally, in order to have expressions that are easier to be handled, it is convenient to
define a function H that combines the hard functionH and the reduced soft function S.
Suppressing the functional dependence for simplicity, this means

H ≡ H× S . (5.8)

With this definition, H collects everything that is not collinear. The factorization formula
5.1 can now be written simply as

A = H ×
2∏
i=1

Ji . (5.9)
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We now discuss the LBKD theorem with this formalism.

5.2 The LBKD theorem

The question of the factorization of hard and soft modes has a long history, and dates
back to the time of Low [74]. In his seminal work, Low considered the emission of soft
photons from hard scalar particles. The result he achieved, known as Low’s theorem, is
that the radiative amplitude can be fully expressed in terms of the non-radiative one,
which includes its derivative. This was later extended to the case of fermionic hard
emitters by Burnett and Kroll [112], and the subsequent generalization is then referred to
as the Low-Burnett-Kroll theorem.

An underlying assumption in these theorems is that the mass m of the emitting
particle is non-vanishing, such that the limit E/m → 0 is well defined, where E is the
energy of the soft emitted particle. However, in order to eventually apply this machinery
to QCD, a generalization of this procedure to the case of massless emitters is needed.
This program was carried out by Del Duca in the early 90s [113], who extended the
analysis of soft photons in the region m2/Q ≤ E < m, where Q is the energy scale of the
hard emitter. In this region one can safely take the limit m→ 0 and collinear divergences
are properly taken into account.

In this section we will revisit, in more modern language, this body of work, col-
lectively referred to as Low-Burnett-Kroll-Del Duca (LBKD) theorem, in the light of
the soft-collinear factorization formula described in the previous section, which was
formalized in subsequent years [72]. In particular, we will reformulate it taking special
care of the notion of eikonal jet functions, and keeping track of the auxiliary gauge vector
ni.

To construct a factorization formalism that is valid up to next-to-soft level and that
takes into account virtual and real emissions, we have to generalize the soft-collinear
factorization formula of Eq. (5.1) for the non-radiative amplitude A to the radiative case
Aµ, when an extra (next-to-)soft gluon is emitted. To achieve this, we will build upon the
work of [113]. Using Eq. (5.9) and including polarization tensors, this radiative amplitude
may be decomposed into three terms, where the soft gluon attaches respectively to the H
function or one of the J functions. One can write

Aµ εµ(k) = AJ1µ εµ(k) +AJ2µ εµ(k) +AHµ εµ(k) . (5.10)

All these amplitudes must be properly defined in terms of correlators. The procedure we
follow is to define first AJiµ , the amplitude for the emission of a gluon from the i-th jet,
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(a) (b) (c)

J

J

J

J

J

J

H H H

Figure 5.1: In (a) the non-radiative amplitude is factorized into a non-collinear function
H = S ×H and collinear jet functions J . In (b) and (c) it is shown how the factorization
in (a) implies a factorization also for the radiative amplitude, where the emitted gluon
can be attached either to the H or J .

and then reconstruct AHµ from it. To define AJiµ , we need to introduce a new object called
radiative jet function Jµ (also called jet emission function), defined as

Jµ
(
p, n, k, αs(µ

2), ε
)
u(p) ≡

∫
ddy e−i(p−k)·y 〈0 | Φn(y,∞)ψ(y) jµ(0) | p〉 . (5.11)

This definition is very similar to the standard non-radiative jet function J in Eq. (5.2), the
only difference being the presence of the current jµ(0), which is defined in this QED-like
case as

jµa (x) = ψ(x) γµ Ta ψ(x) , (5.12)

where coupling constants and color factors have been suppressed. This current is valid
also in QCD as long as one does not consider gluon jets and only fermion emitting lines.
As we will see at the end of this chapter, this restriction will be enough to implement
these techniques in the real-virtual interference diagrams of the Drell-Yan cross-section.
To stress further the difference between the radiative and non-radiative jet function, we
see that in the latter the initial state |p〉 is annihilated by the field ψ at position 0. Here, a
Wilson line is created and generates all the interactions with the initial quark line. For
the radiative jet function instead, following the definition Eq. (5.11), before the creation
of a Wilson line at the generic point y, the quark field has lost part of its momentum at
point 0 through the emission of a gluon.

Clearly, even if the emitted gluon attaches to the jet, also the hard and soft functions
(captured by H) are affected by this emission: the momentum of the external leg i where
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the emitted gluon is attached and that enters the hard and soft functions becomes pi − k.
The other leg is instead unaffected. The expression for AJiµ in Eq. (5.10) is then

AJiµ ≡ AJµ(pi; k) ≡ H(pi − k; pj , nj) Jµ(pi, k, ni)
∏
j 6=i

J(pj , nj) . (5.13)

To elaborate upon Eq. (5.10) and Eq. (5.13), we need to discuss further the radiative jet
function Jµ. At this point we do not need an expression for it, and therefore an explicit
one-loop calculation is postponed to Section 5.4. For the purposes of deriving the LBKD
theorem, it is sufficient to explore general all-order properties of the radiative jet and the
factorized radiative amplitude as a whole. In particular, we note that the radiative jet
function obeys the Ward identity [113]

kµ Jµ
(
p, n, k, αs(µ

2), ε
)

= q J
(
p, n, αs(µ

2), ε
)
, (5.14)

where q, which represent the electric charge in the QED case, can be −1 or +1 according
to whether the momentum p is incoming or outgoing respectively. For the QCD case, one
has to replace q with the generator Ta. However, since eventually we are interested in
applying this formalism to the threshold logarithms proportional to C2

F , we can continue
to use q in the rest of the chapter. Therefore, upon contracting with kµ, each radiative jet
is converted in a non-radiative jet function. Using Eq. (5.14) and Eq. (5.13) we can state
that

kµ
2∑
i=1

AJµ(pi, k) =

2∑
i=1

qiH(pi − k; pj , nj)

2∏
j=1

J(pj , nj) . (5.15)

Until now we did not make any assumption on the momentum k of the emitted gluon.
Now we impose the condition that this gluon is next-to-soft. Then, we can expand
H(pi − k; pj , nj) to next-to-leading order in k and neglect terms of order O(k2). We find

kµ
2∑
i=1

AJµ(pi, k) =

2∑
i=1

qi

[
H(pi; pj , nj) + kµ

(
∂

∂kµ
H(pi − k; pj , nj)

)
k→0

]∏
j

J(pj , nj)

=

2∑
i=1

qi

[
H(pi; pj , nj)− kµ

∂

∂pµi
H(pi; pj , nj)

]∏
j

J(pj , nj)

= −
2∑
i=1

qi

(
kµ

∂

∂pµi
H(pi; pj , nj)

)∏
j

J(pj , nj) , (5.16)

where we exploited the functional dependence of H to turn a derivative with respect to
kµ into a derivative with respect to pµ, and we used charge conservation leading to the
vanishing of the zeroth order term.
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Now we consider the Ward identity for the entire amplitude

kµAµ = 0 , (5.17)

which implies

kµAHµ = − kµ
(
AJ1µ +AJ2µ

)
. (5.18)

Therefore, the information on the radiative jets can be transferred to the emission from the
H function. In particular, if we assume that inAHµ there are no contributions proportional
to kµ, we have

AHµ (pi, k) =

2∑
i=1

qi

(
∂

∂pµi
H(pi; pj , nj)

) 2∏
j=1

J(pj , nj) . (5.19)

In principle AHµ could also contain transverse contributions like kµ/(ni · k). However,
these terms must cancel in the full amplitude, which is gauge invariant, as is argued
in [74, 101, 102]. Therefore we neglect them in the derivation below.

Now we return to amplitude AJµ that describes the emission from the jet. For reasons
that will become clear later, following [113,124], it is convenient to decompose AJµ in two
pieces, each of which get contracted with a particular projection of the metric tensor ηµν .
Specifically, for each hard line of momentum pi, we define

ηµν ≡ Gµνi +Kµν
i , Kµν(pi; k) ≡ Kµν

i ≡ (2pi − k)ν

2pi · k − k2
kµ . (5.20)

We note that Gµνi satisfies

(pi)µG
µν
i = O(k) , Gµνi kν = 0 , (5.21)

while the K tensor may be expanded as

Kµν(p; k) = kµ
(
pν

p · k
− kν

2p · k
+

pν k2

2(p · k)2
+O(k2)

)
. (5.22)

In the brackets we recognize the expression of the effective vertices described in Sec-
tion 3.2 for a soft emission of momentum k from an hard line of momentum p. More
precisely, looking at the ν component of Eq. (5.22) and comparing with Eq. (3.10) and
Eq. (3.13) (after adjusting the sign of k that here is assumed to be outgoing), we recognize
the sum of an eikonal vertex of and the scalar part of a next-to-eikonal vertex. We will
come back to this point in Section 5.4. In the rest of the derivation we will continue using
the more compact notation of Eq. (5.20) for the K-tensor. Finally, we observe that, in
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the calculation we discuss here, the emitted gluon will be assumed to be on-shell. The
generalization to the off-shell case is straightforward.

With these definitions, we can decompose accordingly the sum over polarizations of
the emitted gluon from the jet function. In particular we will talk about G-gluon and a
K-gluon respectively for contractions of a radiative amplitude with Gµν and Kµν . We
start examining a K-gluon emission from the i-th jet. Combining Eq. (5.13) and Eq. (5.14),
it reads

AJiν Kνµ(pi; k) = qi
(2pi − k)µ

2pi · k − k2
H(pi − k; pj , nj)

2∏
j=1

J(pj , nj)

= qi

 (2pi − k)µ

2pi · k − k2
A−

(
Kνµ
i

∂

∂pνi
H(pi; pj , nj)

) 2∏
j=1

J(pj , nj)

 , (5.23)

where we expanded up to O(k2) and we isolated the total non-radiative amplitude A.
Here we see the simplification given by the K tensor: its contraction with the amplitude
generated kµJµ , which, by means of the Ward identity, turns the radiative jet function
into the non-radiative one.

Now we can combine this result with the emission from the hard function, given in
Eq. (5.19). One finds

AH,µ +

2∑
i=1

AJiν K
νµ
i =

2∑
i=1

qi

 (2pi − k)µ

2pi · k − k2
A+

(
Gνµi

∂

∂pνi
H(pi; pj , nj)

)∏
j

J(pj , nj)

 .
(5.24)

Using the factorization of the non-radiative amplitude of Eq. (5.9), we can rewrite this in
a more useful form as

AH,µ +

2∑
i=1

AJiν K
νµ
i =

2∑
i=1

qi

[(
(2pi − k)µ

2pi · k − k2
+Gνµi

∂

∂pνi

)
A

− H(pi; pj , nj)G
νµ
i

∂

∂pνi

2∏
j=1

J(pj , nj)

]
, (5.25)

so that derivatives with respect to hard momenta act on the full non-radiative amplitude
and on the process-independent jet functions.

The last missing piece is the G-gluon emission from the jet function, which reads

2∑
i=1

AJiν Gνµi =

2∑
i=1

Gνµi H(pi − k; pj , nj) Jν(pi, k, ni)
∏
j 6=i

J(pj , nj) . (5.26)

Again we can expandH(pi−k; pj , nj) up to orderO(k2). However, this time the presence
of the G-tensor in place of the K-tensor does not allow us to fully convert, by means

84



5.3. The theorem for light-like n

of the Ward identity, the radiative jet function into the non-radiative one. Therefore,
for this contribution, we are forced to deal with this new object. After this algebraic
manipulation, combining Eq. (5.26) and Eq. (5.25) and restoring the notation withH and
S via Eq. (5.8), we find

Aµ(pj , k) =

2∑
i=1

[
qi

(
(2pi − k)µ

2pi · k − k2
+Gνµi

∂

∂pνi

)
A(pi; pj) (5.27)

+ H(pj , nj)S(βj , nj)G
νµ
i

(
Jν(pi, k, ni)− qi

∂

∂pνi
J(pi, ni)

)∏
j 6=i

J(pj , nj)

]
.

This is the result of the LBKD theorem, re-derived within the modern language of
the soft-collinear factorization formalism. It relates the amplitude of an emission of a
next-to-soft (abelian-like) gluon to the non-radiative one. Looking at Eq. (5.27), both
terms in the first line and the second term in the second line were already present in the
analysis of Low, Burnett and Kroll (though in a different formalism). They are related to
the pure soft regime, and persist also in the case of a massive emitter. The first term on
the second line instead contains the radiative jet function first introduced by Del Duca,
and encodes the presence of collinear effects.

Upon contracting Eq. (5.27) with the polarization vector εµ(k), we get a factorization
theorem at amplitude level that is the next-to-soft generalization of the leading power
factorization formula of Eq. (5.1). Moreover, we expect that, when Eq. (5.27) is contracted
with a soft real emission diagram to construct a NNLO annihilation cross-section, all
NLP threshold logarithms are reproduced. We will verify this in Section 5.5.

It is noteworthy that no assumption on ni has been made so far. Therefore the
formula is valid also in the case n2

i 6= 0. However, as we discussed, setting n2
i = 0 many

simplifications can be performed. This is the subject of the following section.

5.3 The theorem for light-like n

As we discussed in Section 5.1, in the literature about factorization it is common to
work with an auxiliary gauge vector nµ that is off the light-cone. Therefore, in this case,
explicit expressions for jet and soft functions are already available and can be found e.g.
in [53, 72].

In order to investigate how Eq. (5.27) can be simplified setting n2 = 0, we need to
recompute those functions with this particular choice. The function to start with can be
chosen by generic arguments. For instance,A andH are process dependent while S does
not depend on nµ. Therefore, for the moment we focus on the jet function J , since this is
not process-dependent and contains a dependence on nµ. A priori, one has to perform a
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J
(1)
n2 J

(1)
PJ

(1)
V J

(1)
V,CT

Figure 5.2: Diagrams contributing to the vertex correction to the one-loop jet function.
Here J (1)

V,CT
denotes the counterterm associated with the vertex graph J (1)

V .

renormalized calculation up to a given order in perturbation theory. We can consider
for instance the vertex correction to the one-loop jet function depicted in Fig. 5.2, which
includes a counterterm. However, as we shall see at the end of this section, a shortcut
can be used.

We can anticipate that the function will depend on p · n. Indeed for n2 = p2 = 0 this
is the only invariant which is possible to form. As we discussed in Section 5.1, this choice
explicitly breaks the rescaling invariance nµ → κnµ. This might seems contradictory, as
we know that gluon corrections originating from the Wilson line are described by an
eikonal Feynman rule, which is manifestly invariant under such a rescaling. The solution
to this puzzle is that all integrals are scaleless and can be set to zero in dimensional
regularization. This remains true at all orders in perturbation theory. However, with
n2 = 0, UV counterterms will bring a dependence on p · n, since the Wilson line carries a
spurious collinear divergence. This explain why the renormalized light-like jet function
will depend on p · n. Let us clarify this issue by looking at a specific one-loop example.

We consider the first diagram in Fig. 5.2, which represents a one-loop vertex correction
and is denoted by J (1)

V . It reads

J
(1)
V (p, n; ε) = 2iµ2εg2

s

∫
ddk

(2π)d
( 6p− 6k) 6n

k2 2n · k (p− k)2
(5.28)

= 2iµ2εg2
s

∫
ddk

(2π)d

∫ 1

0

dx

∫ 1

0

dy
2y (6p− 6k) 6n[

yk2 − 2xyk · p+ 2(1− y)n · k
]3

=
αs
2π

(
4πµ2

)ε
(−2p · n)

−ε Γ(1 + ε)

ε(ε− 1)

∫ 1

0

dy y−1+ε (1− y)−1−ε ,

where in the second line we introduced Feynman parameters and in the third line we
used the Dirac equation and we carried out the standard momentum integration. The
integration over y yields B(ε,−ε) = 0 and hence the integral vanishes. More precisely,
this is due to a cancellation between an IR pole (arising from the region y → 1) and a
UV pole (arising from the region y → 0), as can be seen by looking at the second line of
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Eq. (5.28). Since we are performing a renormalized calculation, we have to add J (1)
V,CT

(the
second diagram in Fig. 5.2), which equals minus the UV pole. Repeating the procedure
described in Section 2.6 for the soft function, this can be easily identified by multiplying
by 1 = (y + (1− y)). The UV counterterm is then given by the term which vanishes for
y → 0 (or equivalently minus the one for y → 1), which yields

J
(1)
V,CT

=
αs
2π

(
4πµ2

)ε
(−2p · n)

−ε Γ(ε)Γ(1 + ε)Γ(1− ε)
ε(1− ε)

. (5.29)

Therefore in this one-loop example we have proven that the bare contributions is scaleless
and vanishes, while the counterterm reintroduces a p · n dependence.

In principle we could move on computing the other diagrams needed order by order
in perturbation theory. At the end of such a procedure, we would end up with a final
expression for the renormalized jet function that, when substituted into Eq. (5.27), will
give a (hopefully simpler) factorization formula valid at a given loop order. Here, instead,
we will use a shortcut that will simplify considerably the calculation. Moreover, we will
get a simplified version of the factorized formula that will be still valid at all orders.

We note that the left-hand side of Eq. (5.27) is an on-shell scattering amplitude, and
therefore it is a renormalization group (RG) invariant: all counterterms for Aµ must
cancel. The same can be stated for the non-radiative amplitude A. Therefore, the first
line on the right-hand side, which is made only of A (and no other function like J ,H or
S) is a RG invariant as well. To better exploit this property, we can rewrite Eq. (5.27) as

Aµ(pj , k) =

2∑
i=1

{
qi

(
(2pi − k)µ

2pi · k − k2
+Gνµi

∂

∂pνi

)
(5.30)

+ Gνµi

[
Jν(pi, k, ni)

J(pi, ni)
− qi

∂

∂pνi

(
ln J(pi, ni)

)]}
A(pi; pj) .

Now also the second line is a RG invariant. This means that the UV divergences of the
radiative jet functions will be the same as those of the non-radiative one. Moreover,
the ratio Jν/J is free of UV divergences (and subsequently IR ones, thanks to the
correspondence between them) and contains only collinear divergences. This remains
true also if we work in a scheme different from dimensional regularization. In conclusion,
we are free to neglect UV counterterms in the computation of the entire right-hand side
of Eq. (5.27) or Eq. (5.30).

Now the advantage of working with n2 = 0 (and with dimensional regularization)
emerges: for light-like nµ, radiative corrections to the bare jet function vanish at all-orders
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in perturbation theory, so that we have2

J(pi, ni) = 1 ,
∂

∂pνi
J(pi, ni) = 0 . (5.31)

Thus in this scheme the above properties of the ratio Jν/J are recovered by the radiative
jet function itself, which contains only collinear poles, and the factorization formula takes
the simple expression

Aµ(pj , k) =

2∑
i=1

(
qi

(2pi − k)µ

2pi · k − k2
+ qiG

νµ
i

∂

∂pνi
+Gνµi Jν(pi, k)

)
A(pi; pj) . (5.32)

This is the form of the LBKD theorem for n2 = 0. We stress again that this formula holds
at all orders in perturbation theory. Moreover, this form is valid only in dimensional
regularization and for bare Jν(pi, k).

In order to implement it in a NNLO computation, we can simplify further this formula,
expanding all its components at one-loop. While this is a process-dependent procedure
for A, the radiative jet function is universal. Its one-loop calculation is presented in the
next section.

5.4 The theorem at one-loop

The main ingredient to be computed at one-loop is the radiative jet function. First intro-
duced by Del Duca, this term was never computed explicitly before. For the reasons just
explained we will perform a bare computation. As we have seen, this choice consider-
ably simplified the calculation of the non-radiative jet function J , since, thanks to the
absence of a scale that preserve the rescaling invariance, all radiative corrections vanish
at all-order in perturbation theory. The same cannot be said for the radiative jet function
Jµ. The emitted gluon brings an additional momentum k that can form new scales and
makes the resulting integral non-vanishing. Finally, we recall that, working with n2 = 0,
also here we find the presence of spurious collinear singularities.

We start defining the perturbative expansion of the radiative jet function as

Jν (p, n, k ;αs, ε) = gs

∞∑
i=0

(αs
4π

)i
J (i)
ν (p, n, k ; ε) . (5.33)

The tree-level coefficient is easy to compute. Looking at the definition Eq. (5.11), the
Wilson line can be set equal to the identity and the radiative jet is simply described by

2Strictly speaking, from now onward we should append a subscript “bare” to every jet and radiative jet
function. However, this would make the notation rather heavy. Hence, we leave implicit that both J and Jµ in
the following sections do not include their UV counterterms.
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Jν(1)
cJ

ν(1)
bJν(1)

a J
ν(1)
d

Figure 5.3: Diagrams contributing to the one-loop (bare) radiative jet function.

the emission form a quark line of momentum p. Neglecting terms of order O(k2), one
finds the (on-shell) effective vertices described in Eq. (3.10) and Eq. (3.13):

Jν(0) (p, n, k) = − pν

p · k
+

kν

2p · k
− i kαΣαν

p · k
= V µE (p, k) + V µNE(p, k), (5.34)

where the Lorentz generator Σαν is defined in Eq. (3.14).
At one-loop the calculation is more complicated, and one has to explicitly compute the

diagrams depicted in Fig. 5.3. Self-energy corrections to the external legs (i.e. those where
the radiated gluon is internal with respect to the virtual correction) are not included here
since they are different from zero only after adding UV counterterms (which we do not
do for this bare calculation). In this section we present only the results for the diagrams,
postponing the details of the computation to Section 5.A.

Diagrams (c) and (d) are the standard radiative corrections to the emission amplitude:
they belong only to the quark line and therefore carry no nµ dependence. They yield

J
ν(1)
c+d (p, n, k ; ε) = (2p · k)

−ε

[
1

ε

(
6kγν

p · k
+

kν

p · k

)
+

5

2

6kγν

p · k
+

kν

p · k

+ ε

(
5
6kγν

p · k
+ 2

kν

p · k

)]
. (5.35)

Note that in this one-loop computation we are also keeping terms of order ε. This is
because when we use the next-to-soft factorization formula to reconstruct the NLP thresh-
old logarithms by contracting the radiative jet function with a real emission diagram, the
integration over the phase space will bring an additional 1/ε pole, whose combination
with the O(ε) term in Eq. (5.35) yields finite contributions.

The calculation of diagrams (a) and (b) is considerably more involved, since there are
gluons connecting the incoming quark with the Wilson line. Specifically, they represent
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Feynman integrals with a combination of linear and quadratic propagators and therefore
have a more intricate kinematic dependence. The result is

J
ν(1)
a+b (p, n, k ; ε) = (2p · k)

−ε

{(
2

ε
+ 4 + 8ε

)[
n · k
p · k

pν

p · n
− 6kγ

ν

2p · k
− nν

p · n

]

+ (1 + 3ε)

(
− 2kν

p · k
+
γν 6n
p · n

− pν 6k 6n
p · k p · n

)}
. (5.36)

We remark that while Eq. (5.36) has a only a single pole, individual diagrams have double
pole which cancel in their combination.

Adding Eq. (5.35) and Eq. (5.36) we obtain the full result for the bare one-loop
radiative jet function

Jν(1) (p, n, k ; ε) = (2p · k)
−ε

[(
2

ε
+ 4 + 8ε

)(
n · k
p · k

pν

p · n
− nν

p · n

)
− (1 + 2ε)

i kαΣαν

p · k

+

(
1

ε
− 1

2
− 3ε

)
kν

p · k
+ (1 + 3ε)

(
γν 6n
p · n

− pν 6k 6n
p · k p · n

)]
+O(ε2, k) , (5.37)

where we used Eq. (3.14) to isolate the spin dependent part in the part without nµ-
dependence.

We can check the result for the tree level and one-loop jet functions by means of the
Ward identity. From Eq. (5.34), Eq. (5.37) and Eq. (5.31) it is straightforward to verify that

kν J
ν(0) (p, n, k) = − J (0)(p, n) = −1 , (5.38)

kν J
ν(1) (p, n, k) = − J (1)(p, n) = 0 . (5.39)

Here we used the fact that the emitted gluon is assumed to be on-shell, and therefore the
above identities have been verified neglecting terms of order O(k2).

Finally, we note that the radiative jet function enters Eq. (5.30) and Eq. (5.32) only
through the combination GνµJν , where the G-tensor has been defined in Eq. (5.20). One
finds

GνµJ (0)
ν (p, n, k) = − i kα Σαµ

p · k
, (5.40)

GνµJ (1)
ν (p, n, k) = Jµ(1) (p, n, k) , (5.41)

where we used again Eq. (5.34) and Eq. (5.31). Therefore, for the tree level radiative jet
the role of the G-tensor is to project out the pure spin dependent part of a full next-to-soft
emission, represented by J (0)

ν . At one-loop instead it is remarkable that the radiative jet
is an eigenfunction of G.
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We have now all the ingredients to expand the next-to-soft factorization formula for
the full radiative amplitude at one-loop. We start writing Eq. (5.32) as

Aµ,(1)(pj , k) =

2∑
i=1

[(
qi

(2pi − k)µ

2pi · k − k2
+ qiG

νµ
i

∂

∂pνi
+Gνµi J (0)

ν (pi, k)

)
A(1)(pi; pj)

+ Gνµi J (1)
ν (pi, k)A(0)(pi; pj)

]
, (5.42)

where we have defined

A =

∞∑
n=0

(αs
4π

)n
A(n) . (5.43)

Next, we consider the first and the third term in the first line of Eq. (5.42). Making use of
Eq. (5.40) and expanding up to O(k2), for the quark line (qi = −1) they yield

− (2pi − k)µ

2pi · k − k2
−Gνµi J (0)

ν (pi, k) = − pµi
pi · k

+
6k2γ

µ

2pi · k
, (5.44)

and similarly for the antiquark line. In the diagrammatic language of Chapter 3, this
forms the sum of an eikonal and next-to-eikonal vertex. We then have

Aµ,(1)(pj , k) =

2∑
i=1

[
qi

(
pµi
pi · k

− 6kγµ

2pi · k

)
A(1)(pi; pj) + qi

(
Gνµi

∂

∂pνi

)
A(1)(pi; pj)

+ Jµ (1)(pi, k)A(0)(pi; pj)

]
, (5.45)

where we left implicit that the order of the spinor matrices must be reversed for qi = −1.
This is the one-loop expanded form of the LBKD theorem for n2 = 0, where Jµ (1)(pi, k)

is given by Eq. (5.37).

It is interesting to interpret this result in the light of the recently proposed next-to-
soft theorems in gravity and gauge theories [93, 96, 100]. Focusing on the gauge theory
case, these theorems state that the tree-level amplitude An+1 for an emission of n-hard
particles of momenta pi and one (next-to-)soft gluon of momentum k can be factorized as

An+1({pi}, k) = S0
nAn({pi}) ,

An+1({pi}, k) = S1
nAn({pi}) , (5.46)

where S0
n and S1

n are respectively the soft and next-to-soft factor, defined as

S0
n =

n∑
i=1

εµ(k) pµi
pi · k

,
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S1
n =

n∑
i=1

εµ(k) kα J
(i)µα

pi · k
, (5.47)

where J (i)µα is the total angular momentum of the i-th leg. Recent studies investigated
the possibility of the extension of the theorem at loop level [95, 97]. Here we can shed
light on this issue, looking at the one-loop form of the LBKD theorem in Eq. (5.45), and
considering the antiquark terms. In particular, we note that the first two lines of Eq. (5.45),
upon contracting with εµ(k), can be rearranged as

εµ(k) pµi
pi · k

A(1) +
i εµ(k) kν

pi · k

[
L(i)
µν + Σ(i)

µν

]
A(1) , (5.48)

where Σ
(i)
µν is the spin part of the angular momentum of the leg i defined in Eq. (3.14),

and L(i)
µν is the orbital angular momentum of the leg i, defined as

L(i)
µν = xiµpiν − xiνpiµ = i

(
piµ

∂

∂pνi
− piν

∂

∂pµi

)
. (5.49)

Clearly, we see that the terms in Eq. (5.48) correspond to Eq. (5.47). In particular, the
next-to-soft term represents the coupling to the total angular momentum. However,
looking at the second line of Eq. (5.45), we see that there is an additional term coupling
to the spin angular momentum only. Indeed this term contains the one-loop radiative
jet function that, as we discussed in Section 5.2, cannot be expressed as a derivative of
the full form factor. In the following section we shall see that this is related to purely
collinear effects. This shows the breakdown at loop level of the next-to-soft theorem in
the form of Eq. (5.47).

Returning to Eq. (5.45), we see that we have a factorized amplitude that can be directly
implemented in a NNLO calculation, upon contracting it with a real emission amplitude,
and subsequently integrating over the phase space. This is therefore the version of the
LBKD theorem that we will use in the next section to reconstruct the NLP threshold
logarithms of the Drell-Yan K-factor.

5.5 Drell-Yan K-factor revisited

The theorems described in the previous sections are quite general and can be applied
to several processes, as long as one takes into account some restrictions, such as having
only two hard incoming lines. In this section, we are going to test this formalism in the
case of the Drell-Yan production. In particular we will compute the C2

F part of the NNLO
K-factor for real-virtual interference diagrams, already computed with other methods in
Chapter 3 and Chapter 4.
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The calculation will consist of contracting the amplitude of Eq. (5.45), which we call
here Arv as involves a real and a virtual gluon, with the real emission amplitude Ar.
Including the integration over the phase space, whose definition can be found in [73],
the contribution to the K-factor can be written as

K(2)
rv (z) =

1

16π2

(4π)ε

Γ(2− ε)
zε (1− z)1−2ε

∫ 1

0

dy
[
y(1− y)

]−ε [A†rvAr +A†r Arv

]
, (5.50)

where

y =
k · p̄

s(1− z)
, (5.51)

and as usual s = 2p · p̄ is the partonic center-of-mass energy, while z = Q2/s is the
threshold variable. In order to reproduce the structure of NLP threshold logarithms, this
formula has to be expanded at next-to-leading power in (1− z). This is has to be done
both in the phase space pre-factor

dΦ = dΦLP + dΦNLP + . . . , (5.52)

and in the integrand

A†rvAr +A†r Arv = PLP + PNLP + . . . . (5.53)

With this notation, the contribution to the K-factor up to NLP will be of the form

K(2)
rv ∼ dΦLP (PLP + PNLP ) + dΦNLPPLP . (5.54)

Let us now we analyze the integrand P , and in particular its main component Arv,
given by Eq. (5.45). First we note that the non-radiative amplitude for the Drell-Yan
process is the well-known quark form factor, whose one-loop expression has been already
calculated in the introduction. Then, most importantly, we observe that Eq. (5.45) can be
decomposed in three contributions. For the i-th leg, they are in turn:

• a (next-to-)soft emission external to the form factor(
pµi

pi · k2
− 6k2γ

µ

2pi · k2

)
A(1)(pi; pj) , (5.55)

• a derivative of the form factor(
Gνµi

∂

∂pνi

)
A(1)(pi; pj) , (5.56)

• the radiative jet contribution

Jµ (1)(pi, k)A(0)(pi; pj) . (5.57)
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X k1

k2

Figure 5.4: Schematic depiction of the external contribution. The next-to-soft emission is
completely factorized from the form factor.

We define the contributions of these three terms to theK-factor to be respectivelyK(2)
ext(z),

K
(2)
∂A(z) and K(2)

radJ(z), such that

K(2)
rv = K

(2)
ext +K

(2)
∂A +K

(2)
radJ . (5.58)

We now compute each term separately.

The external contribution

The external contribution is completely factorized from the one-loop form factor, as
shown in Fig. 5.4. At NLP it belongs to the Σαµ term of Eq. (5.48). This has been
computed in the introduction, and reads

A(1)(z) = − αs
4π

zε
Γ2(1− ε)Γ(1 + ε)

Γ(1− 2ε)

(
2

ε2
+

3

ε
+ 8 + 16ε+O(ε2)

)
. (5.59)

We recall that Eq. (5.59) has been evaluated with µ2
MS

= Q2. The external gluon, instead,
has to be contracted with its equivalent on the complex conjugated side, at the proper
order in the (1− z) expansion (LP or NLP). Specifically, at LP we have to square the real
emission matrix element

|Ar,LP|2 = 16 (1− ε) g2
s

s2

ut
, (5.60)

where we introduced the Mandelstam invariants t = −2k · p and u = −2k · p̄. At NLP we
have to consider only one of the two amplitudes to be subleading, as

A†r,NLPAr,LP +A†r,LPAr,NLP = 8 (1− ε) g2
s

(s
t

+
s

u

)
. (5.61)
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Combining Eq. (5.60) with both dΦLP and dΦNLP and Eq. (5.61) with only dΦLP , we
find the following contribution to the K-factor:

K
(2)
ext(z) =

(αs
4π
CF

)2
{

32

ε3

[
D0(z)− 1

]
+

8

ε2

[
− 8D1(z) + 6D0(z) + 8L(z)− 14

]
+

16

ε

[
4D2(z)− 6D1(z) + 8D0(z)− 4L2(z) + 14L(z)− 14

]
− 128

3
D3(z) + 96D2(z)− 256D1(z) + 256D0(z)

+
128

3
L3(z)− 224L2(z) + 448L(z)− 512

}
. (5.62)

Comparing this result with the total result from the full QCD calculation in Eq. (3.36),
we see that all LP logarithms are correctly reproduced. This is not surprising: we expect
that plus distributions belong to the eikonal approximation, and we already verified in
Chapter 3 that the use of effective eikonal Feynman rules correctly reproduces the LP
structure. More precisely, we see that the result in Eq. (5.62) is the same as the contribution
computed in Chapter 3 with the use of effective Feynman rules. Already at that point we
concluded that LP logarithms were under control with simple diagrammatic techniques.
Moreover, we recall that this result coincides with the factorizable contribution from the
hard region of Chapter 4. Here, we recover that contribution as one of the terms coming
from the LBKD theorem.

Thus we have verified that the next-to-soft factorization formula of the LBKD theorem
does not spoil the well-known leading power soft factorization. We therefore expect the
remaining two contributions (K(2)

∂A and K(2)
radJ) to be strictly NLP.

The derivative contribution

As we have seen in Eq. (5.49), the derivative contribution corresponds to the interaction of
the emitted particle with the orbital angular momentum Lµν . The explicit computation of
this contribution in the amplitude is straightforward, upon using Eq. (2.26). Considering
for instance the derivative with respect to p, one gets

Gνµ(p, k)
∂A(1)

∂pν
=

[
− ε

p · p̄

(
−pµ +

p̄ · k
p · k

p̄µ
)]
A(1) . (5.63)

Of course, we have to include the contribution from both legs. Again we contract with
the real emission amplitude and integrate over the phase space, at the correct order in
the threshold expansion. The final contribution to the K-factor is

K
(2)
∂A(z) =

(αs
4π

CF

)2
{

32

ε2
+

16

ε

[
− 4L(z) + 3

]
+ 64L2(z)− 96L(z) + 128

}
. (5.64)
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Figure 5.5: Schematic depiction of the derivative contribution. In Feynman gauge, it
corresponds to the hard region of the diagram shown here.

We can now interpret this result in the light of the method-of-region calculation of
Chapter 4. In particular, comparing with Eq. (4.31), we see that the derivative contribution
catches the non-factorizable part of the hard region, as schematically depicted in Fig. 5.5.

We then conclude that the total hard region of the K-factor is reproduced by the
sum of the external and the derivative contribution. Both contributions were part of the
original analysis of Low, Burnett and Kroll and physically correspond to the interaction
of the radiated gluon with the total angular momentum of the emitting fermion line.

However, there are still missing NLP logarithms, which must belong to the third and
last contribution.

The radiative jet contribution

The two contributions computed so far have no dependence on the vector n. This is not
the case for the radiative jet contribution, for which we have to discuss how to deal with
this auxiliary vector.

At LP, it is possible to keep nµ generic and to see explicitly at one-loop that its
dependence cancels in the form factor. More precisely, the cancellation happens at pole
level between the jets and the eikonal jets. In the finite part instead, one can define the
hard coefficient by matching, and thus demanding that the total amplitude does not
depend on nµ.

At NLP the situation is more complicated, and carrying the vector nµ completely
generic increases considerably the difficulty of the calculation. This is why we already
made a choice setting n2 = 0. To achieve a full cancellation of the n-dependence we
should introduce a further subtraction, replacing collinear poles in the direction ni with
those associated with the physical momentum of the parton colliding with parton i.
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However, there is a shortcut. Motivated by the fact that the Wilson line in the direction ni
acts as a replacement for the parton colliding with parton i, we can rescale ni → niQ/2

and set
n = p̄ , n̄ = p . (5.65)

This is also the standard choice made with a method of region calculation (and more
generally in effective field theory approaches). One can generalize this procedure for
processes with more legs, simply choosing ni to be the anti-collinear direction of the leg i.

Therefore, using Eq. (5.65), we can compute the contribution to the K-factor, contract-
ing with the real emission and integrating over the phase space, in the same way as it
has been done for the external and the derivative contributions. One finds

K
(2)
radJ(z) =

(αs
4π

CF

)2
{
− 16

ε2
+

4

ε

[
12L(z)− 5

]
− 72L2(z) + 60L(z)− 24

}
. (5.66)

As expected, the contribution is strictly NLP. Moreover, comparing with the method
of region analysis, we see that this contribution is precisely identical to the collinear
region of the K-factor, given by the sum of Eq. (4.19) and Eq. (4.20). This was again
expected, since this term corresponds to the Del Duca modification of to the analysis of
Low, Burnett and Kroll that takes into account also collinear effects.

Adding Eq. (5.62), Eq. (5.64) and Eq. (5.66) we reproduce the total result from the full
QCD calculation, given in Eq. (3.36). Therefore, we conclude that with the LBKD theorem
we have a factorization picture for all NLP logarithms at NNLO. We stress that, quite
remarkably, this include also constant terms, which are not logarithmically enhanced.

5.6 Conclusions

In this chapter, building upon the work in [113], we have presented a theorem that
extends the standard soft-collinear factorization formula at subleading level. In particular,
using factorization techniques with modern definition of the universal hard, soft and jet
functions, we carefully accounted for eikonal double counting in the jet contributions
and addressed the dependence on auxiliary vector n. The crucial part of this analysis
was the definition of a new object, the radiative jet function, which we computed for the
first time at one-loop.

Implementing this theorem in the NNLO Drell-Yan K-factor, we found perfect agree-
ment for all NLP threshold logarithms between the result given by this factorization
formula and the one obtained from the threshold limit of a full QCD calculation. More-
over, we have been able to make a detailed comparison with the diagrammatic approach
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of Chapter 3 and the method of regions of Chapter 4. Reproducing all NLP threshold
logarithms by means of universal functions that are part of a factorization theorem
introduces for the first time predictive power to this class of logarithms. It is therefore an
important result that should pave the way for a full resummation formalism.
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5.A The one-loop radiative jet function

In this appendix we compute the diagrams that contribute to the one-loop radiative jet
function shown in Fig. 5.3. We recall here that this object depends only on the spin of
the emitting particle and therefore the results presented here can be used for a variety of
processes.

Diagram (a)

The contributions Jν(1)
a and Jν(1)

b evaluate to

2iµ2εg3
s

∫
ddk1

(2π)d

[
(6p− 6k1− 6k2)γµ(6p− 6k1) 6n

k2
1(p− k1 − k2)2(p− k1)22n · k1

+
(6p− 6k1− 6k2) 6n(6p− 6k2)γµ

k2
1(p− k1 − k2)2(p− k2)22n · k1

]
u(p) (5.67)

respectively. Beginning with the first term, one must evaluate the scalar, vector and
tensor integrals

Sa = 2
ddk1

(2π)d
1

k2
1(p− k1 − k2)2(p− k1)22n · k1

,

V µa = 2
ddk1

(2π)d
kµ1

k2
1(p− k1 − k2)2(p− k1)22n · k1

,

Tµνa = 2
ddk1

(2π)d
kµ1 k

ν
1

k2
1(p− k1 − k2)2(p− k1)22n · k1

. (5.68)

Considering the scalar integral, one introduces Feynman parameters to obtain

Sa = 2

∫
ddk1

(2π)d
1

k2
1 2n · k1 (k1 − p)2 (p− k1 − k2)2

= 2

∫
ddk̃1

(2π)d

(
4∏
i=1

∫ 1

0

dαi

)
6δ(
∑
αi − 1)

(α1 + α3 + α4)4[k̃2
1 −M2]4

, (5.69)

where

k̃1 = k1 +
1

(α1 + α3 + α4)
(α2n+ α3(k2 − p)− α4p)

M2 =
1

(α1 + α3 + α4)2
[α1α3(2k2 · p) + α2α3(2n · k2)− α2(α3 + α4)(2n · p)] . (5.70)

One may now transform to the variables

α1 = xy, α2 = x(1− y), α3 = (1− x)z, α4 = (1− x)(1− z), (5.71)
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with Jacobian
J = x(1− x). (5.72)

Carrying out the momentum integral yields

Sa =
2i

(4π)d/2
Γ(4− d/2)I(0, 0, 0), (5.73)

where we have defined the master integral

Ia(n1, n2, n3) =

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz xd/2−3+n1(1− x)d/2−3+n2(1− y)n1

× zn3 [1− x(1− y)]
4−d−n1−n2

× [yz(2p · k2) + (1− y)z(2n · k2)− (1− y)(2p · n)]
d/2−4

, (5.74)

Likewise, one finds for the vector integral

V µ = 2

∫
ddk1

(2π)d
kµ1

k2
1 2n · k1 (k1 − p)2 (p− k1 − k2)2

= − 2i

(4π)d/2
Γ(4− d/2) [Ia(1, 0, 0)nµ + Ia(0, 1, 1)kµ2 − Ia(0, 1, 0)pµ] . (5.75)

For the tensor integral, upon shifting the momentum variable according to eq. (5.70),
there is a term that is quadratic in k̃1 in the numerator. Using∫

ddk̃1

(2π)d
k̃µ1 k̃

ν
1

[k̃2
1 −M2]4

=
ηµν

6

∫
ddk̃1

(2π)d
1

[k̃2
1 −M2]3

, (5.76)

one finds

Tµν |quadratic =
2i

(4π)d/2

(
−η

µν

2

)
Γ(3− d/2)Ka , (5.77)

where

Ka =

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz [x(1− x)]d/2−2 [1− x(1− y)]
2−d

× [yz(2p · k2) + (1− y)z(2n · k2)− (1− y)(2p · n)]
d/2−3

. (5.78)

There is a second term with no k̃1 dependence in the numerator, and this can be shown
to be equal to

2i

(4π)d/2
Γ(4− d/2)

[
Ia(2, 0, 0)nµ, nν + Ia(0, 2, 0)pµ pν + Ia(1, 1, 1)n(µk

ν)
2

−Ia(1, 1, 0)n(µpν) − Ia(0, 2, 1)k
(µ
2 pν)

]
+ . . . (5.79)
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where the ellipsis denotes terms that are suppressed by two factors of soft momentum,
and we have used the conventional notation

a(µbν) = aµ bν + aν bµ .

One must now calculate the master integrals Ia(n1, n2, n3) and Ka. For the former, we
start by noticing that the x-integral can be carried out yielding a hypergeometric function:∫ 1

0

dxxn1+d/2−3(1− x)n2+d/2−3 [1− x(1− y)]
4−d−n1−n2

=
Γ(n1 + d/2− 2)Γ(n2 + d/2− 2)

Γ(d− 4 + n1 + n2)

× 2F 1 (d− 4 + n1 + n2, n1 + d/2− 2; d− 4 + n1 + n2; 1− y) . (5.80)

Using the identity

2F 1(a, b; a; z) = (1− z)−b, (5.81)

one then has

Ia(n1, n2, n3) =
Γ(n1 + d/2− 2)Γ(n2 + d/2− 2)

Γ(d− 4 + n1 + n2)
y2−d/2−n1(1− y)n1zn3

× [yz(2p · k2) + (1− y)(2n · k2)− (1− y)(2p · n)]
d/2−4

. (5.82)

At this point, it is better to separately consider different integer values of n3. Beginning
with n3 = 0, the z-integral in this case is of the form∫ 1

0

dz[A−Bz]d/2−4 = − 1

B(d/2− 3)

{
[A−B]

d/2−3 −Ad/2−3
}
,

where
A = −(2p · n)(1− y), B = −(2n · k2)(1− y)− (2p · k2)y. (5.83)

One thus finds∫ 1

0

dz[A−Bz]d/2−4 =
1

(d/2− 3)
[2n · k2(1− y) + 2p · k2y]

−1

×
{

[2p · k2y + 2n · (k2 − p)(1− y)]
d/2−3

− [−2p · n(1− y)]
d/2−3

}
. (5.84)

The first term can be integrated to give

1

d/2− 3

Cd/2−3

2n · k2

Γ(3− d/2− n1)Γ(1 + n1)

Γ(4− d/2)
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× F1

(
3− d

2
− n1; 1, 3− d

2
; 4− d

2
; 1− 2p · k2

2n · k2
,
D

C

)
, (5.85)

where F1 is the Appell function, and we defined

C = 2n · (k2 − p), D = C − 2p · k2. (5.86)

We may simplify this result using the identity

F1(α;β, β′;β + β′;x, y) = (1− y)−α2F1

(
α;β;β + β′;

x− y
1− y

)
. (5.87)

The expression in Eq. (5.85) then becomes

1

d/2− 3

Γ(3− d/2− n1)Γ(1 + n1)

Γ(4− d/2)

1

2n · k2
(2p · k2)n1+d/2−3 [2n · (k2 − p)]−n1

× 2F1

(
3− d

2
− n1, 1; 4− d

2
;

2n · p
2n · k2

)
. (5.88)

There is a problem here, in that the last argument of the hypergeometric function is
singular as k2 → 0, thus hampering the ability to perform the soft expansion. To
circumvent this, one may transform the hypergeometric function using the identity

2F1(a, b; c; z) =
Γ(b− a)Γ(c)

Γ(b)Γ(c− a)
(−z)−a2F1(a, a− c+ 1; a− b+ 1; 1/z)

+
Γ(a− b)Γ(c)

Γ(a)Γ(c− b)
(−z)−b2F1(b, b− c+ 1;−a+ b+ 1; 1/z). (5.89)

Then Eq. (5.90) becomes

× 1

d/2− 3

Γ(3− d/2− n1)Γ(1 + n1)

Γ(4− d/2)

1

2n · k2
(2p · k2)n1+d/2−3 [2n · (k2 − p)]−n1[

Γ(d/2− 2 + n1)Γ(4− d/2)

Γ(n1 + 1)

(
− 2n · p

2n · k2

)n1+d/2−3(
1− 2n · k2

2n · p

)n1

+
Γ(2− d/2− n1)(3− d/2)

Γ(3− d/2− n1)

(
− 2n · p

2n · k2

)−1

2F1

(
1,
d

2
− 2;n1 +

d

2
− 1;

2n · k2

2n · p

)]
.

(5.90)

One must also perform the y integral in the second term in Eq. (5.84), which gives

− 1

d/2− 3

(−2p · n)d/2−3

2n · k2
Γ(3− d/2− n1)Γ(n1 + d/2− 2)

(
2p · k2

2n · k2

)n1+d/2−3

, (5.91)

where we have again used Eq. (5.81). Substituting Eq. (5.90) and Eq. (5.91) into Eq. (5.82),
one finally finds

Ia(n1, n2, 0) =
Γ(n1 + d/2− 2)Γ(n2 + d/2− 2)Γ(2− d/2− n1)Γ(1 + n1)

Γ(4− d/2)Γ(d− 4 + n1 + n2)

(2p · k2)n1+d/2−3

2n · p
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× [2n · (k2 − p)]−n1
2F1

(
1,
d

2
− 2;n1 +

d

2
− 1;

2n · k2

2n · p

)
. (5.92)

Now we consider the case n3 = 1. In this case the z integral is of the form∫ 1

0

dz z [A−Bz]d/2−4
= − (A−B)d/2−3

B(d/2− 3)
− (A−B)d/2−2

B2(d/2− 3)(d/2− 2)

+
Ad/2−2

B2(d/2− 3)(d/2− 2)
, (5.93)

where A and B have already been defined in eq. (5.83). From now on, all integrals can be
carried out in a similar fashion to the previous section. The answer is

Ia(n1, n2, 1) =
Γ(n1 + d/2− 2)Γ(n2 + d/2− 2)

Γ(d− 4 + n1 + n2)

{
Γ(3− d/2− n1)Γ(d/2− 2 + n1)

d/2− 3

× (2n · k2)2−d/2−n1(2p · k2)n1+d/2−3(−2n · p)d/2−3 − Γ(2− d/2− n1)Γ(1 + n1)

Γ(4− d/2)

×(2p · k2)n1+d/2−3 [2n · (k2 − p)]−n1

(−2n · p) 2F1

(
1,
d

2
− 2;n1 +

d

2
− 1;

2n · k2

2n · p

)
− 1

(d/2− 3)(d/2− 2)

[2n · (k2 − p)]1−n1

(2n · k2)2
(2p · k2)n1+d/2−3

×Γ(3− d/2− n1)Γ(1 + n1)

Γ(4− d/2)

[
Γ(n1 + d/2− 1)Γ(4− d/2)

Γ(1 + n1)

×
(
− 2n · p

2n · k2

)n1+d/2−3

2F1

(
3− d

2
− n1,−n1; 2− d

2
− n1;

2n · k2

2n · p

)
+

Γ(1− d/2− n1)Γ(4− d/2)

Γ(3− d/2− n1)Γ(2− d/2)

×
(
− 2n · p

2n · k2

)−2

2F1

(
2,
d

2
− 1;n1 +

d

2
;

2n · k2

2n · p

)]
+

1

(d/2− 3)(d/2− 2)

× (−2p · n)d/2−2

(2n · k2)2
Γ(3− d/2− n1)Γ(n1 + d/2− 1)

(
2p · k2

2n · k2

)n1+d/2−3
}
.

(5.94)

We also need to determine the integral in Eq. (5.78). This can be carried out similarly
to the scalar integral Ia(0, 0, 0), and the answer is

Ka =
1

(d/2− 2)

Γ2(d/2− 1)Γ(1− d/2)

Γ(d− 2)Γ(2− d/2)

(2p · k2)d/2−2

(−2p · n)
2F1

(
1,
d

2
− 1;

d

2
;

2n · k2

2n · p

)
. (5.95)

One may substitute the results of eqs. (5.92, 5.94, 5.95) into eqs. (5.73, 5.75, 5.77, 5.79),
before using these in eq. (5.67).
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Diagram (b)

For diagram (b), one defines the scalar and vector integrals

Sb = 2

∫
1

k2
1(k1 + k2 − p)22n · k1

;

V µb = 2

∫
kµ1

k2
1(k1 + k2 − p)22n · k1

. (5.96)

For the scalar integral, one may introduce Feynman parameters to get

Sb = 2

∫
ddk̃1

(2π)d

∫ 1

0

dx

∫ 1

0

dy
2y

[k̃2
1 −M2]3

, (5.97)

where

k̃1 = k1 + (1− x)(k2 − p) +
(1− y)

y
n,

M2 = −(1− x)2(2p · k2) + 2n · (k2 − p)(1− x)
(1− y)

y
+ 2(1− x)p · k2

= (1− x)

[
2(1− y)

y
n · (k2 − p) + 2xp · k2

]
. (5.98)

Performing the momentum integration in eq. (5.97) then gives

Sb = −2iΓ(3− d/2)

(4π)d/2
Ib(0, 0), (5.99)

where we have defined the master integral

Ib(n1, n2) =

∫ 1

0

dx

∫ 1

0

dy y1−d/2−n1(1− y)n1(1− x)n2+d/2−3

× [2n · (k2 − p)(1− y) + 2xyp · k2] . (5.100)

For the vector integral one finds

V µb = −2iΓ(3− d/2)

(4π)d/2
[−Ib(0, 1)(k2 − p)µ − Ib(1, 0)nµ] . (5.101)

The master integral in this case is relatively straightforward to calculate. First one
performs the y integral, which has form∫ 1

0

y1−d/2−n1(1− y)n1

[
Ã− B̃y

]d/2−3

, (5.102)

where
Ã = 2n · (k2 − p), B̃ = Ã− 2xp · k2. (5.103)
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The integral is hypergeometric, and using the identity of eq. (5.81) one finds∫ 1

0

y1−d/2−n1(1− y)n1

[
Ã− B̃y

]d/2−3

=
Γ(2− d/2− n1)Γ(1 + n1)

Γ(3− d/2)
[2n · (k2 − p)]−1−n1

× (2p · k2)n1+d/2−2xn1+d/2−2. (5.104)

The remaining x integral is a simple beta-function, and one finds after restoring all
prefactors

Ib(n1, n2) =
Γ(n1 + d/2− 1)Γ(n2 + d/2− 2)Γ(2− d/2− n1)Γ(1 + n1)

Γ(n1 + n2 + d− 3)Γ(3− d/2)

× [2n · (k2 − p)]−1−n1(2p · k2)n1+d/2−2. (5.105)

Substituting this into Eq. (5.99) and Eq. (5.101), one may combine results with diagram
(a) before expanding in k2, to give the result quoted in Eq. (5.36).

Diagram (c)

The sum of Jν(1)
c and Jν(1)

d reads Fig. 5.3 reads

iµ2εg3
s

∫
ddk1

(2π)d

[
( 6p− 6k2)γµ( 6p− 6k1− 6k2)γν(6p− 6k1)γµ
k2

1(p− k1 − k2)2(p− k1)2(p− k2)2

+
( 6p− k2)γµ(6p− 6k1− 6k2)γµ(6p− 6k2)γν

k2
1(p− k1 − k2)2(p− k2)4

]
u(p) . (5.106)

For diagram (c), one needs the scalar, vector and tensor integrals

Sc =

∫
ddk1

(2π)d
1

k2
1(k1 − p)2(k1 + k2 − p)2

;

Vc =

∫
ddk1

(2π)d
kµ1

k2
1(k1 − p)2(k1 + k2 − p)2

;

Tµνc =

∫
ddk1

(2π)d
kµ1 k

ν
1

k2
1(k1 − p)2(k1 + k2 − p)2

. (5.107)

One may introduce Feynman parameters to obtain

Sc =

∫
ddk̃1

(2π)d

∫ 1

0

dx

∫ 1

0

dy
2y

[k̃2
1 −M2]3

, (5.108)

where

k̃µ1 = kµ1 − (1− xy)pµ + (1− y)kµ2 , M2 = (2p · k2)xy(1− y). (5.109)
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Carrying out the momentum integral, one then finds

Sc = − i

(4π)d/2
(2p · k2)d/2−3Γ(3− d/2)Ic(0, 0), (5.110)

where we defined the master integral

Ic(n1, n2) =

∫ 1

0

dx

∫ 1

0

dyxd/2−3+n1yd/2−2+n1(1− y)d/2−3+n2

=
Γ(d/2− 2 + n1)Γ(d/2− 2 + n2)

Γ(d− 3 + n1 + n2)
. (5.111)

Likewise, one finds

V µc = − i

(4π)d/2
(2p · k2)d/2−3Γ(3− d/2) [pµ (Ic(0, 0)− Ic(1, 0))− kµ2 Ic(0, 1)] . (5.112)

For the tensor integral, after shifting the integration variable there is a term whose
numerator is quadratic in k̃µ1 . Using the result,∫

ddk̃1
k̃µ1 k̃

ν
1

[k̃2
1 −M2]3

=
ηµν

4

∫
ddk̃1

1

[k̃2
1 −M2]2

, (5.113)

one may carry out the momentum and Feynman parameter integrations to get

Tµνc |quad. =
i

(4π)d/2
(2p · k2)d/2−2 η

µν

2

Γ(2− d/2)Γ2(d/2− 1)

Γ(d− 1)
. (5.114)

There is also a contribution to Tµνc whose numerator does not depend on k̃µ1 . For this
one finds

Tµνc |non−quad. =
i

(4π)d/2
(2p · k2)d/2−3Γ(3− d/2) [pµpν (Ic(0, 0)− 2Ic(1, 0) + Ic(2, 0))

−p(µk
ν)
2 (Ic(0, 1)− Ic(1, 1)) + kµ2 k

ν
2Ic(0, 2)

]
. (5.115)

Expanding the first term in Eq. (5.106) into its scalar, vector and tensor components,
one may then use Eqs. (5.110), (5.112), (5.114) and (5.115) to obtain the contribution of
diagram (c) to Eq. (5.35), after expanding in k2.

Diagram (d)

For diagram (d) one needs the scalar and vector integrals

Sd =

∫
ddk1

(2π)d

∫ 1

0

dx
1

k2
1(k1 + k2 − p)2

,
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V µd =

∫
ddk1

(2π)d/2

∫ 1

0

dx
kµ1

k2
1(k1 + k2 − p)2

. (5.116)

Introducing a Feynman parameter, one obtains

Sd =

∫
ddk̃1

(2π)d

∫ 1

0

1

[k̃2
1 −M2]2

, (5.117)

where
k̃µ1 = kµ1 + x(k2 − p)µ, M2 = (2p · k2)x(1− x). (5.118)

Carrying out the momentum integral in eq. (5.117) then gives

Sd =
i

(4π)d/2
Γ(2− d/2)(2p · k2)(2p · k2)d/2−2Id(0), (5.119)

with

Id(n) =

∫ 1

0

dxxn+d/2−2(1− x)d/2−2

=
Γ(n+ d/2− 1)Γ(d/2− 1)

Γ(n+ d− 2)
. (5.120)

Likewise, one finds for the vector integral

V µ =
i

(4π)d/2
Γ(2− d/2)(2p · k2)d/2−2(p− k2)µId(1). (5.121)

Using these results, together with those of the previous section, in Eq. (5.106) yields the
expression quoted in Eq. (5.35).
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CHAPTER 6

Drell-Yan moments with unitary cuts

The Drell-Yan process has been the main application of the techniques developed so far
in this thesis. In particular, we have used it as a case study to investigate the sublead-
ing behaviour in the threshold expansion around z = 1, where threshold logarithms
dominate the cross-section and need to be organized in an all-order framework. In this
chapter, we will consider once again an expansion in z, but this time around z = ∞
and without any truncation at finite order. Despite this similarity, the purpose is totally
different: we are not interested in all-order properties but rather in the development of a
novel, efficient method to perform fixed-order computations.

Specifically, we will investigate how the use of unitarity, which in the form of the
optical theorem turned out to be successful for the fully inclusive DIS up to three
loops [125–130], can be extended to the Drell-Yan case. In this regard, we will relate the
Mellin moments of the cross-section with the series coefficients of the forward amplitude
expanded in powers of 1/z. The main feature that makes this generalization highly non-
trivial is the semi-inclusiveness of the process, which implies the presence of unphysical
cuts. To tackle this problem, we will move from the optical theorem to the more general
use of unitarity cuts.

The structure of this chapter is the following. We begin by reviewing how unitarity
can be implemented in Mellin space to work out cross sections of fully inclusive processes.
Then, in Section 6.2 we discuss how this can be generalized to single-particle inclusive
cross-sections. The key aspect is to move to a diagram-by-diagram approach and to
deal with unphysical cuts. In Section 6.3 we explain how these cuts can be efficiently
removed directly in Mellin space. In order to exhibit the main features of the method, in
Section 6.4 we will apply these techniques in the computation of the one-loop Drell-Yan
K-factor. Although we discuss this case in detail, the method works also beyond one-
loop. Therefore in Section 6.5 we briefly describe how it can be implemented in two-loop
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cases.

6.1 The optical theorem in Mellin Space

The optical theorem relates the cross section σa+b→X of a fully inclusive process to the
imaginary part of its corresponding forward amplitudeMa+b→a+b:

σa+b→X = 2Ecm pcm ImMa+b→a+b , (6.1)

where Ecm is the total center-of-mass energy and pcm is the momentum of both particles
in the center-of-mass frame. The inclusiveness is a crucial property to prove Eq. (6.1),
because when summing over all intermediate states X one uses

∑
X |X〉 〈X| = 1. The

most straightforward application of the theorem can be done in fully inclusive DIS, which
at parton level is described as the scattering of an electron e of momentum l off a quark q
of momentum p through the exchange of a photon of (space-like) momentum q:

e(l) + q(p) −→ e(l − q) +X , (6.2)

where X represents any QCD final states allowed by current conservation. It is well-
known [58] that the cross-section can be written in terms of a leptonic and an hadronic
tensor Lµν and Wµν . The latter collects QCD corrections and can be expressed in term of
two scalar functions Wi(x,Q

2), with i = 1, 2, which are function of

Q2 = −q2, x =
Q2

2p · q
. (6.3)

Thanks to the inclusiveness of the process, we can use the optical theorem and relate
Wi(x,Q

2) to the imaginary part of the forward Compton amplitude Tµν which describes
the scattering of an off-shell photon and a quark:

γ∗(q) + q(p) −→ γ∗(q) + q(p) . (6.4)

Since Tµν has the same tensor structure of Wµν [58], it can be also expressed in term of
two scalar functions

Ti

(
ω =

1

x
,Q2

)
, (6.5)

where we introduced the variable ω for later purposes. The optical theorem can now be
expressed in term of scalar functions and reads

Wi

(
x,Q2

)
= 2 ImTi

(
ω,Q2

)
. (6.6)
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ω

−1 1

C0

(a)

ω

−1 1

C1 C1

(b)

Figure 6.1: Branch cut structure of T (ω) with the two contours used for T (n). On the left
the contour C0 wraps around the origin, while on the right the contour C1 encloses the
two branch cuts. Note that the combination ω−n−1T (ω) in Eq. (6.10) has an additional
pole at the origin.

Before moving to Mellin space, we have to stress the analytic properties of the forward
amplitude in the ω-plane. In particular, it can be shown [58] that Ti has two branch cuts
along the intervals [1,+∞) and (−∞,−1], and satisfies the property

Ti
(
ω,Q2

)
= Ti

(
−ω,Q2

)
. (6.7)

This branch cut structure guarantees that the imaginary part can be written in term of
the discontinuity of the amplitude DiscTi(ω) across one of the branch cut

2 ImTi
(
ω,Q2

)
= −iDiscω Ti

(
ω,Q2

)
, (6.8)

where we defined the discontinuity of a function f in the variable x as

Discx f(x) = lim
η→0

(f(x+ iη)− f(x− iη)) . (6.9)

Now we will explore how this can be translated to Mellin space. Specifically, we
will see that it is possible to relate the Mellin moments of Wi

(
x,Q2

)
with the series

coefficients of Ti
(
ω,Q2

)
. We start expanding the forward amplitude around ω = 0 and

considering its series coefficient T (n)
i (Q2), defined as

T
(n)
i (Q2) ≡ 1

n!

dnTi(ω,Q
2)

dωn

∣∣∣∣
ω=0

=

∮
C0

dω

2πi
ω−n−1Ti(ω,Q

2) , (6.10)

where in the second equation we used the Cauchy’s differentiation formula and the
contour C0 wraps around the origin. Then we can deform the contour C0 into C1, as
depicted in Fig. 6.1. This yields
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T
(n)
i (Q2) =

1

2πi

∫ −1

−∞
dω ω−n−1

(
Ti(ω + iη,Q2)− Ti(ω − iη,Q2)

)
+

1

2πi

∫ ∞
1

dω ω−n−1
(
Ti(ω + iη,Q2)− Ti(ω − iη,Q2)

)
= (1 + (−1)n)

1

2πi

∫ +∞

1

dω ω−n−1Discω Ti(ω,Q2) , (6.11)

where in the last line we used Eq. (6.7). The presence of the factor (1 + (−1)n) implies
that only even moments are non-vanishing. Now we can move from ω to x, defined in
Eq. (6.5), relate the discontinuity with the imaginary part via Eq. (6.8) and use the optical
theorem of Eq. (6.6). One finds

T
(n)
i (Q2) = 0 for odd n ,

T
(n)
i (Q2) =

1

π

∫ 1

0

dxxn−1Wi(x,Q
2) for even n .

(6.12)

Defining the Mellin transformMn as

Mn[f(x)] ≡
∫ 1

0

xn−1 f(x) , (6.13)

we finally have

T
(n)
i (Q2) =

1

π
Mn

[
Wi(Q

2)
]
. (6.14)

This proves that, for a forward amplitude with branch cut structure as the one shown in
Fig. 6.1, the Mellin moments of a fully inclusive cross section can be reconstructed from
the series coefficients of the forward amplitude. Translating back the result to momentum
space can be easily done, and up to three loops produces combinations of Harmonic
Polylogarithms (HPL’s) [111].

6.2 From the optical theorem to unitary cuts

Now we move to the central issue of this chapter, which is whether this approach can
be used for the computation of the cross-sections for single-particle inclusive processes
like Drell-Yan or Higgs production. Specifically, we will focus again on the (partonic)
Drell-Yan process, which reads

q(p) + q̄(p̄) −→ V (Q) + X , (6.15)

and on the corresponding forward amplitude

q(p) + q̄(p̄) −→ q(p) + q̄(p̄) . (6.16)
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6.2. From the optical theorem to unitary cuts

Here we introduce

ω =
1

z
, (6.17)

where z = Q2/s is the threshold variable we used in the previous chapters and s is the
squared partonic center-of-mass energy. The variable z is the analogous to the Bjorken
variable x for DIS.

The differences between Drell-Yan and DIS are numerous, and listing them all is
not the goal of this chapter. Here, we limit ourselves to observe those differences at the
parton level that are relevant for using unitarity and Mellin moments. We begin with
very general observations that do not specifically belong to Mellin space.

The Drell-Yan amplitudes can be obtained from the DIS ones by crossing the ex-
changed off-shell photon to the final state, and the outgoing quark to the initial state.
This simple procedure has important consequences. First, the momentum of the photon
becomes time-like and therefore its off-shellness can be effectively regarded as a mass.
Hence, the forward amplitude will contain a massive propagator. Then, there is another
important difference. The presence of this massive boson in the final state implies that the
process is not fully inclusive but only single-particle inclusive. Indeed, unlike DIS, there
are cut diagrams that do not contribute to the Drell-Yan cross-section. This implies that
the optical theorem cannot used here and the imaginary part of the forward amplitude
does not give the cross-section.

When moving to Mellin space further complications arise. We note that the physical
branch cut in the ω plane lies along the interval [1,+∞) only and no symmetry relates the
forward amplitude with opposite values of ω. Hence, we expect that, if it is still possible
to reconstruct the Mellin moments from the series coefficient of the forward amplitude,
those will be both odd and even. However, there is a further complication. Besides the
physical cut, other (unphysical) branch cuts are present and may have a branch point
at the origin. This is clearly an obstacle for expanding the forward amplitude around
ω = 0.

These problems can be solved after moving from the optical theorem to the more
general use of unitarity through the cutting equation. Using Cutkosky rules, it is possible
to interpret the sum over intermediate states of the optical theorem as a sum over all
possible branch cut discontinuities of the forward amplitude in the s-channel. More
precisely, in the optical theorem every cut is a phase space integration of squared matrix
elements, and all these cut diagrams contribute to the cross section. When we move to a
single-particle inclusive process, some of these cuts do not contribute to the cross-section.
Therefore we leave the optical theorem approach and we move to a diagram-by-diagram
analysis.
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p
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p

p̄

(a) vertex cut

p

p̄

p

p̄

(b) s-channel cut

p

p̄

p

p̄

(c) t-channel cut

p

p̄

p̄

p

(d) u-channel cut

Figure 6.2: Generic cuts of forward amplitudes with two initial massless particles with
momenta p and p̄. The cuts of type (a) and (c) vanish for p2 = p̄2 = 0. Note that the
u-channel cut differs from the t-channel cut by interchange of the two outgoing momenta.

A priori, given a generic Feynman diagram F , we can consider a different discontinu-
ity for each channel. This can be an s-channel (i.e. a phase space integration) or another
channel formed with kinematical invariants. For a generic x-channel, we can compute
the discontinuity in the variable x using [131]

Discx F =
∑
k∈x-ch

CutkF , (6.18)

where the subscript k ∈ x-ch means that the sum is restricted to cuts in the x-channel.
However, when looking at forward amplitudes, and in particular in a two-scale problem
like Drell-Yan, there is one dimensionless variable only (e.g. ω) and therefore all the cuts
of a diagram will contribute to the same discontinuity. In particular, for each forward
Feynman diagram f(ω) the discontinuity in the variable ω is given by the sum over all
possible cuts of the diagram, as follows

Discω f(ω) =
∑
k

Cutkf(ω) . (6.19)

Let us now discuss in more detail how to organize the possible cuts of a generic
forward diagram f(ω). Let us assume for a moment that the amplitude is not actually
forward, but that outgoing external momenta can be different from the incoming ones,
such that we have different channels given by the Mandelstam variables s, t, u and
the off-shellness of the external legs. Then, we can measure the discontinuity in each
channel, cutting the diagram in all possible ways as shown in Fig. 6.2. Now we return to
the forward on-shell amplitude but we keep the same terminology to classify all cuts.
Clearly in a forward amplitude the only kinematical invariant is s, (or equivalently ω,
assuming that the mass Q2 is fixed). Therefore, despite our terminology, all these cuts
measure the discontinuity in the s-channel. The physical cuts are those contributing to
the cross-section and therefore are only of the s-channel type and must cut the massive
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6.3. Removing unphysical cuts

boson propagator. Accordingly to whether the cut passes through the massive line or
not we define the cut to be massive or massless respectively.

With this set-up, it seems that the number of unphysical cut diagrams might increase
considerably with the order of the computation. However, we can observe that most
of them actually vanish. Indeed, if we consider the vertex-type diagram of Fig. 6.2, we
note that it isolates a single external leg of momentum p2, and therefore it measure the
discontinuity of the cross-section in this channel. Since the cross-section does not depend
on p2 = 0, we can conclude that this type of cut vanishes. Following the same arguments,
t-channel cuts isolate on one side of the cut two legs with same momentum and therefore
vanish. In conclusion, the only non-vanishing unphysical cuts are the massless s-channel
cuts and the (massive and massless) u-channel cuts.

The method we want to present aims to reconstruct the cross section from the forward
amplitude making use of Eq. (6.19). In order to do that, we should remove from the
discontinuity of the forward amplitude all unphysical cuts.1 At first glance, this approach
does not seem very efficient, as one should compute unphysical cuts on top of the forward
amplitude, and these might be even more complicated than the physical ones. However,
we will see that moving to Mellin space, it is possible to define a set of prescriptions that
select automatically the physical branch cut. Once unphysical branch cuts are removed,
the procedure described for DIS in Eq. (6.10) and Eq. (6.11) and shown in Fig. 6.1 can be
repeated. One finds

f
(n)
phys =

1

2πi
Mn

[
Cutphys F

]
, (6.20)

where F is the forward Feynman diagram and f
(n)
phys are the series coefficients of the

modified forward amplitude without unphysical cuts. Therefore, the Mellin moments of
the cross-section can be reconstructed from the forward amplitude.

Let us now discuss how the unphysical cuts can be removed.

6.3 Removing unphysical cuts

From the previous section, we have seen that the only unphysical cuts that need a
special treatment are the massless s-channel cut and the u-channel cut (both massive
and massless). The prescription to remove these unphysical cuts passes through the
analysis of the analytic properties of the forward amplitude. Hence, before discussing

1Clearly, a diagram-by-diagram approach that makes use of Eq. (6.19) can be applied also to fully inclusive
processes like DIS: for a given diagram, the discontinuity across the physical cut can be reconstructed from the
forward amplitude after removing the unphysical cuts in different channels. However, for DIS, the optical
theorem is a shortcut that allows us not to deal with them: leaving a diagram-by-diagram approach and
considering the full amplitude we get only cuts that contribute to the cross-section.
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ω
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s-channel cuts

ω
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Massless

s-channel cuts
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l
Massless

t-channel cuts

ω
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Massive

t-channel cuts

PHYSICAL UNPHYSICAL

Figure 6.3: Branch cut structures of the NNLO forward diagrams. Only the first type of
cut is physical, i.e. contributes to the Drell-Yan cross-section. The remaining three types
of cuts are unphysical.

the prescription in Mellin space, we start by observing general properties of the branch
cut structure of the forward amplitude.

Different cut diagrams correspond to different branch cuts in the ω-plane. Consider-
ing diagrams up to NNLO, this classification is shown in Fig. 6.3. We will now analyze
these cuts in turn.

• Massive s-channel cuts are the only physical ones. Replacing the massive boson
propagator with a delta function δ(q2 −Q2) fixes the off-shellness of the photon to
be Q2. They correspond to the phase space integration of matrix elements with one
massive particle plus zero, one or two real massless particles. As it is well-known,
this phase space integration carries a θ(s − Q2). Looking at the ω-plane, these
diagrams have a branch cut in the semi-axis ω > 1.

• Massless s-channel cuts can be regarded as phase space integrations as well. How-
ever, since no massive line is cut, they contain a θ(s). Their branch point in the
ω-plane is shifted from ω = 1 to the origin. The presence of this kind of cuts in the
forward amplitude is due to factors of (−ω)kε. This clearly prevents the forward
amplitude to be expanded around ω = 0. We will solve this issue by a method that
we call shifting procedure.

• Massless u-channel cuts cannot be naively regarded as phase space integrations,
since the integration measure contains a θ(−s). This corresponds to a branch cut
in the negative semi-axis in ω-plane. In the forward amplitude, the presence of
this kind of cuts emerges with factors of (+ω)kε. Therefore, these kinds of cuts are
similar to the massless s-channel cuts described above and can be treated with the
same shifting procedure.
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6.3. Removing unphysical cuts

• At one-loop, the only unphysical cuts are those described above. At two-loop we
have to deal also with the massive u-channel cuts. The presence of a cut massive
line shifts the branch point of the massless u-channel cut from the origin to ω = −1.
As such, we will see that the shifting procedure cannot remove this unphysical cut.
Our solution involves the definition of a set of replacement rules in Mellin space.

The general strategy we follow is to re-define the forward amplitude such that it
contains the physical branch cut only. Indeed this is a perfectly allowed procedure as long
as the discontinuity across the physical branch cut remains the same. This is achieved
through several steps. First we make the following observation. Let us assume that the
forward amplitude may be expanded as

f(ω) =

∞∑
n=n0

cn ω
n , n0 > 0 . (6.21)

Considering a new lower bound n1 > 0 is equivalent to adding polynomials in ω to the
original function. These do not contain any singularity and therefore the discontinuity
of f(ω) is not affected. Also a negative original lower bound is not a problem, as this
would correspond to (unphysical) isolated poles at the origin that must be removed. In
other words, the physical information in the series coefficients of the forward amplitude
is carried only by their n-dependence and not by the lowest moment. Therefore, in the
following when writing series coefficients we will omit the lower bound of the sum,
unless when strictly necessary, assuming that this is a finite positive integer.

The idea of modifying the forward amplitude might be further exploited, and is
at the basis of the shifting procedure, required for massless unphysical cuts, and the
replacement procedure, required for the massive unphysical cuts. Now we discuss in
turn these two methods. We start with the former.

Shifting procedure

The goal of the shifting procedure is to redefine the forward amplitude such that it
contains no factor of (±ω)kε, with k integer. To illustrate the method, let us consider the
function

f(ω) = ωkεg(ω) , (6.22)

where g(ω) is an analytic function. Expanding g(ω) around ω = 0 yields

f(ω) =

∞∑
n=n0

cn ω
n+kε =

∞∑
n=n0+kε

cn−kε ω
n , (6.23)
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ωf1(ω)

(a)

ωf̃1(ω)

(b)

Figure 6.4: Analytic structure of the functions f1(ω) and f̃1(ω), related by the shifting
procedure.

where in the last equation we formally defined a sum starting at non-integer value α ∈ C
as
∑∞
n=α cn = (cα + cα+1 + . . . ). The shifting procedure consists in setting ε = 0 in the

lower bound of the sum. This defined a new function f̃(ω)

f̃(ω) ≡
∞∑

n=n0

cn−kε ω
n ≡

∞∑
n=n0

c̃n ω
n , (6.24)

with no branch cut starting in the origin.
To see that the physical cut is not altered by this procedure, we consider a toy example,

also illustrated in Fig. 6.4. Consider

f1(ω) = log(1− ω)ω−ε = −
∞∑
n=1

1

n
ωn−ε . (6.25)

The shifting procedure yields

f̃1(ω) = −
∞∑
n=1

1

n+ ε
ωn . (6.26)

The discontinuity can be easily computed order by order in ε. We first write

f1(ω) = log(1− ω)

∞∑
k=0

(−ε)k logk ω

k!
, (6.27)

f̃1(ω) = −
∞∑
k=0

(−ε)kLik+1ω , (6.28)

where Lis(ω) is the polylogarithm function. Then, we can verify that for each k-th term
in the ε-expansion we have

Discω≥1f
(k)
1 (ω) = Discω≥1f̃

(k)
1 (ω) = −2πi

logk ω

k!
, (6.29)
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ωf̃2(ω)

(a)

ωf̂2(ω)

(b)

Figure 6.5: Analytic structure of the functions f̃2(ω) and f̂2(ω), related by the replacement
procedure.

and therefore the discontinuity across the physical branch cut is not altered by the shifting
procedure.

This method can be applied to the massless unphysical cuts described above. For
these indeed the non-analyticity of f(ω) can be captured only by overall factors of (±ω)kε,
as can be argued by dimensional analysis [49]. We claim that up to NNLO for a generic
forward diagram F containing only massless unphysical branch cuts we have

c̃n [F ] =
1

2πi
Mn

∑
phys

cuts k

Cutk F

 , (6.30)

as required by Eq. (6.20).

Replacement procedure

At two-loop the shifting procedure is not sufficient for every diagram, as massive u-
channel cuts might be present. For this case, we shall replace the forward amplitude by a
new function f̂(ω) whose branch cut along ω ∈ (−∞, 1] is removed while its branch cut
discontinuity around the physical region ω ∈ (1,∞] remains unchanged.

To illustrate the method, let us consider a generic function f̃(ω) whose discontinuity
is given by

Discω f̃(ω) = gunphys(ω) θ(−ω − 1) + gphys(ω) θ(ω − 1) , (6.31)

where, thanks to the theta functions, gunphys(ω) and gphys(ω) are the discontinuities across
the physical and unphysical branch cut respectively, as illustrated in Fig. 6.5. The tilde
notation for f̃(ω) suggests that this function might be the result of the shifting procedure
and that no unphysical branch cut other than (−∞, 1] is present. The method consists of
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defining a new function

f̂(ω) =
∑
n

ĉn ω
n , (6.32)

where the coefficients ĉn can be determined by following the same procedure carried out
in Section 6.1. One finds

ĉn =
1

2πi
Mn

[
gphys(ω)

]
. (6.33)

Comparing ĉn and c̃n, and focusing on the case where the functions are constructed with
HPLs (as it is the case up to two-loop), the replacement c̃n → ĉn involves a replacement
of only harmonic sums with negative indices [111], as these are the only one giving rise
to a branch cut at (−∞, 1]. This defines a “dictionary” of replacement rules for harmonic
sums that may then be applied to any diagram.

As we did for the shifting procedure, the method is best illustrated with a toy example.
Let us consider

f̃2(ω) = log(1 + ω) log(1− ω) , (6.34)

whose discontinuity is given by

Discω f̃2(ω) = 2πi log(1− ω)θ(−ω − 1)− 2πi log(1 + ω)θ(ω − 1) . (6.35)

We define a new function f̃2(ω) with series coefficients

ĉn = −
∫ 1

0

zn−1 log

(
1 +

1

z

)
= − 1

n2
+

(−1)nS−1(n)

n
+

((−1)n − 1) log 2

n
, (6.36)

where S`(n) is the harmonic sum, whose definition for multiple indices can be found
in [132]. Upon reorganizing harmonic sums into a convenient basis [133] we can resum
the coefficients to get an expression for f̂(ω) in terms of HPLs [111]. One finds

f̂2(ω) = −Li2

(
1 + ω

2

)
+ log 2 log(1− ω)− log2 2

2
+
π2

12
, (6.37)

which has the required branch cut discontinuity, as one can check explicitly.
This method can be applied to more complicated cases which exhibit massive u-

channel cuts. We claim that for a generic forward diagram F up to NNLO we have

ĉn[F ] =
1

2πi
Mn

∑
phys

cuts k

Cutk F

 , (6.38)

as required by Eq. (6.20).
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Figure 6.6: Diagrams needed for the one-loop DY cross sections. From left to right:
Cutphys T , Cutphys B1 and Cutphys B2. Diagrams obtained by complex conjugation or
exchanging p↔ p̄ are omitted. Arrows on the lines indicate momentum flow.

6.4 The one-loop cross-section

In this section we apply the methods described in the previous sections to the one-
loop Drell-Yan cross-section. The diagrams required for this calculations are shown in
Fig. 6.6. They involve the phase space integration of matrix elements for real and virtual
corrections. The former are given by the cut triangle Cutphys T , the latter by the normal-
box and crossed-box cut diagrams Cutphys B1 and Cutphys B2. Since they contribute to
the cross-section, these cut diagrams are all physical (as stressed in the subscript) and,
using the language of Section 6.2, they are massive s-channel cuts. Similarly to what was
done in the other chapters, we will work with the one-loop K-factor

K(1) =
1

σB

dσ(1)

dz
, (6.39)

where σB is the tree level cross-section. Therefore, in the results presented in this section
we will assume that both forward and cut diagrams have this normalization (i.e. divided
by σB). The contributions of the diagrams of Fig. 6.6 to the one-loop cross-section,
including complex conjugated diagrams and diagrams related by p↔ p̄ symmetry, reads

K(1) = 2<e
(
Cutphys T

)
+ 2 Cutphys B1 + 2 Cutphys B2 . (6.40)

In this section, we will compute these three contributions in turn, following the
method described in the previous sections: from the series coefficients of the forward
amplitudes T , B1 and B2, we will extract the Mellin moments of the physical cuts,
removing unphysical cuts when necessary. In particular, the triangle diagram T has
a non-vanishing massless s-channel cut while the crossed-box diagram B2 has a non-
vanishing massless u-channel cut. As we have discussed, both kinds of cuts can be
removed in Mellin space by the shifting procedure.
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Figure 6.7: Cutting equation for the forward triangle diagram T . The right-hand side
features both a physical massive s-channel cut (Cutphys T ) and an unphysical massless
s-channel cut (Cutunphys T ).

Finally, we observe that, given the simplicity of this one-loop calculations, it is possible
to perform a calculation exactly in ε. For simplicity, in the following we will set µ̄2 = Q2,
where µ̄2 = 4πe−γEµ2.

Triangle diagram

The cutting equation for the triangle diagram is depicted in Fig. 6.7. It shows the presence
of an unphysical massless s-channel cut Cutunphys T . Both the forward amplitude and the
physical cut involve the computation of the same loop integral. This is the one-loop form
factor Γ(1) that was already evaluated in Eq. (2.26). With the notation of this chapter, it
reads

Γ(1)(ω, ε) =
αs CF

4π
C(ε) (−ω)−ε , (6.41)

where we expressed the result as a function of ω = 1/z = s/Q2 and we defined

C(ε) =
Γ2(1− ε)Γ(1 + ε)

Γ(1− 2ε)

2− ε+ 2ε2

ε2(2ε− 1)
. (6.42)

Then, the evaluation of both the forward amplitude and the cut diagram follows straight-
forwardly. From direct evaluation over the one-particle phase space one has

Cutphys T = Γ(1)(ω, ε) δ(1− z)

=
αs CF

4π
C(ε) (−z)ε δ(1− z) . (6.43)

The forward amplitude can be computed by simple application of the Cutkosky cutting
rule. It yields

T = − 1

2πi
Γ(1)(ω, ε)

s

s−Q2

=
αs CF

4π
C(ε) 1

2πi
(−ω)−ε

ω

1− ω
. (6.44)
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At this point the presence of an unphysical cut is manifest, due to the factor (−ω)−ε

in Eq. (6.44). Upon computing also the unphysical cut Cutunphys T , one can explicitly
check that

Discω T = Cutphys T + Cutunphys T . (6.45)

Therefore, to reconstruct the physical cut in z-space from the forward amplitude, one
should subtract (and thus compute) the unphysical cut.

In Mellin space the procedure is simpler. One first writes a series representation for
the forward amplitude as

T =
αs CF

4π
C(ε) 1

2πi
(−ω)−ε

∞∑
n=1

ωn . (6.46)

The presence of (−ω)−ε prevents us from expanding the entire amplitude around ω = 0

as T =
∑
n cnω

n. Therefore we apply the shifting procedure of Section 6.3, which yields
a new function

T̃ =
αs CF

4π
C(ε) 1

2πi

∞∑
n=1

ωn , (6.47)

whose series coefficients are

c̃n[T ] =
αs CF

4π
C(ε) 1

2πi
. (6.48)

The Mellin moments of the physical cut can be easily computed as well. They read

Mn

[
Cutphys T

]
=
αs CF

4π
C(ε)

∫ 1

0

dz (−z)ε δ(1− z)

=
αs CF

4π
C(ε) . (6.49)

Comparing Eq. (6.48) and Eq. (6.49) we see that

c̃n[T ] =
1

2πi
Mn

[
Cutphys T

]
, (6.50)

which verifies the cutting equation in Mellin space in the form of Eq. (6.20).
In this example we have seen how the shifting procedure removes the unphysical cut

and yields the correct Mellin moments. However, the application has been quite simple,
since the moments are constant. In the next diagram we will have instead a non-trivial
n-dependence.
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Figure 6.8: Cutting equation for the one-loop box diagram.

Normal box diagram

The cutting equation for the normal box diagram B1 involves only a physical massive
s-channel cut, as shown in Fig. 6.8. The forward diagrams can be easily computed with
standard techniques and reads

B1 = −αsCF
4π

1

2πi

2(1− ε)2Γ(ε)Γ(1− ε)
Γ(1− 2ε)

[
2F 1(1, ε, 2− ε;ω)

+ (ω − 1) 2F1(1, 1 + ε, 2− ε;ω)
]
. (6.51)

As expected, the function is analytical in ω = 0. The physical cut can be easily computed
as well. The result exact in ε is

CutphysB1 = −αsCF
4π

zε(1− z)1−2ε 2 (1− ε)2 Γ(1− ε)
ε (1− 2ε) Γ(1− 2ε)

. (6.52)

After expanding in ε one can explicitly check that Eq. (6.52) matches the known expression
in the literature [39].

As for the triangle diagram, it is possible to verify the cutting equation in z-space,
showing that Discω B1 = CutphysB1. We will now translate this in Mellin space. We
start expanding the forward amplitude around ω = 0 as B1 =

∑
n cnω

n. This yields the
following series coefficients

cn[B1] = −αsCF
4π

1

2πi

2 (1− ε)2 Γ(1− ε)
ε

Γ(n+ ε)

Γ(n+ 2− ε)
. (6.53)

Then we compute the Mellin moments of the physical cuts. One finds

Mn

[
CutphysB1

]
= −αsCF

4π

2 (1− ε)2 Γ(1− ε)
ε (1− 2ε) Γ(1− 2ε)

∫ 1

0

dz zn−1+ε(1− z)1−2ε (6.54)

= −αsCF
4π

2 (1− ε)2Γ(1− ε)
ε

Γ(n+ ε)

Γ(n+ 2− ε)
(6.55)

Comparing Eq. (6.53) and Eq. (6.55) yields

cn[B1] =
1

2πi
Mn

[
CutphysB1

]
, (6.56)
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which verifies the cutting equation in Mellin space in the form of Eq. (6.20). Once again
we stress that this relation is exact in ε.

Crossed box diagram
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Figure 6.9: Cutting equation for the one-loop crossed-box diagram B2, featuring on
the right-hand side both the physical s-channel cut (Cutphys B2) and the unphysical
u-channel cut (Cutunphys B2).

The crossed boxB2 is the most difficult diagram that enters the one-loop cross-section,
since it exhibits both a non-physical cut and a non-trivial n-dependence in Mellin space,
as shown in Fig. 6.9. Now we will compute in turn the forward amplitude and the
physical cut to show that the cutting equation can be verified in Mellin space by means
of the shifting procedure.

The forward diagram can be computed with the same techniques used for the triangle
and normal-box diagrams. The algebra is however slightly more complicated. The final
result is

B1 =
αs CF

4π

1

2πi

Γ(1− ε)
Γ(1− 2ε)

[
2ω1−εΓ(1− ε)Γ(ε+ 1) 2F1(1, 1− ε; 1− 2ε;ω)

ε2

− 2ωΓ(1− 2ε)Γ(ε+ 1) 2F1(1, 1; 1− ε;ω)

ε2Γ(1− ε)

+
2ωΓ(1− 2ε)Γ(ε+ 1) 2F1(1, ε+ 1; 1− ε;ω)

ε2Γ(1− ε)

− 2ω−εΓ(1− 2ε)Γ(1− ε)Γ(ε+ 1) 2F1(1, 1− ε; 2− 2ε;ω)

Γ(2− 2ε)

+
4ωΓ(1− 2ε)Γ(ε+ 1) 2F1(1, ε+ 1; 2− ε;ω)

εΓ(2− ε)

+
2Γ(1− 2ε)Γ(ε+ 1) 2F1(1, 1; 2− ε;ω)

Γ(2− ε)

− 2εΓ(1− 2ε)Γ(ε) 2F1(1, ε; 2− ε;ω)

Γ(2− ε)
+

2εω−εΓ(1− 2ε)Γ(1− ε)Γ(ε)

Γ(2− 2ε)

]
. (6.57)
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As for the triangle diagram, the presence of unphysical cuts is revealed by non-integer
powers of ω. To be able to expand the result around ω = 0, we make use of the shifting
procedure, which yields the following series coefficients

c̃n[B2] =
αs CF

4π

1

πi

(
−ε(−1 + ε+ ε2) + n+ n2

)
Γ(1− ε) Γ(n+ ε)

ε2 Γ(2− ε+ n)
. (6.58)

Now we move to the computation of the physical cut diagram Cutphys B2. In this
regard we need to perform the phase space integration with one massive and one
massless particle in the final state. The result, exact in ε, reads

Cutphys B2 = −αs CF
4π

2

ε

Γ(1− ε)
Γ(1− 2ε)

zε

[
2z(1− z)−1−2ε +

ε2

1− 2ε
(1− z)1−2ε

]
, (6.59)

which, as for the normal box, matches the known result [39] after expanding in ε and
making use of Eq. (3.2).

The Mellin moments can now be computed easily and read

Mn

[
Cutphys B2

]
= −αs CF

4π

4

ε

Γ(1− ε)
Γ(1− 2ε)

[∫ 1

0

dz zn+ε(1− z)−1−2ε

− 2ε

1− 2ε

∫ 1

0

dz zn−1+ε(1− z)1−2ε

]

=
αs CF

4π

2
(
−ε(−1 + ε+ ε2) + n+ n2

)
Γ(1− ε)Γ(n+ ε)

ε2 Γ(2− ε+ n)
. (6.60)

Comparing Eq. (6.58) and Eq. (6.60) we conclude that

c̃n[B2] =
1

2πi
Mn

[
Cutphys B2

]
, (6.61)

which verifies the cutting equation in Mellin space in the form of Eq. (6.20). As for the
triangle and the normal box, this relation holds exactly in ε.

In conclusion, with the shifting procedure we have been able to remove all unphysical
cut from the forward amplitudes and we reproduced the correct Mellin moments of the
physical cuts. These can then be easily converted to z-space and yields order by order
in ε the well-known coefficient and splitting functions [39]. Hence, this provides an
alternative method to compute the one-loop Drell-Yan cross-section. Admittedly, this
one-loop correction is long known and the method, which turns phase space integrations
into loop integrals, does not seem to offer a great simplification. The value of this
approach becomes manifest beyond one-loop, as we will discuss in the next section.
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6.5 The method at two-loop

In the previous section we have been able to test our method exactly in ε. This is not
feasible at higher loops, where it is customary to compute results as Laurent series in
ε. To this end, we first note that a powerful tool for computing higher loop diagrams
is given by the so-called integration by parts identities (IBPs). These relate different
diagrams, once a common topology is identified (i.e. a integral representation where
propagators are elevated to a symbolic power). By means of these relations it is possible
to decompose a diagram into a finite sum of master integrals.

The idea of relating different diagrams with a common topology can be taken further
and new relations can be found by introducing derivatives with respect to the kinematical
invariants of the process. This turns the above relations into differential equations that,
supplemented by suitable boundary conditions, yield the solutions to the unknown
master integrals. Computing Feynman diagrams via differential equations is now a
mature field where many insights have been achieved (for a recent review see [134]).

For the purposes of the method described in the previous section, we note that we
are interested in computing the series coefficients of the forward amplitude. As we
discussed, this has to take into account the possibility that the function has a branch
point at ω = 0. Therefore, we assume that the each forward amplitude can be described
by the following two-loop ansatz

f(ω) =
∑
n

cnω
n +

∑
n

dnω
n−ε +

∑
n

enω
n−2ε , (6.62)

where cn, dn and en are functions of ε. The ansatz for the one-loop case amounts to
dropping the last term in Eq. (6.62). Substituting this ansatz into the differential equation
and equating equal powers of ω produces a set of difference equations for the series
coefficients cn, dn and en. Such a difference equation in general reads

a1(n, ε) cn + a2(n, ε) cn+1 + · · ·+ ar(n, ε) cn+r = F (n, ε) , (6.63)

and similarly for dn and en. If r = 1 the difference equation becomes simply a recursion
relation and the coefficients can be found exactly in ε. For r > 1, as it happens in two-
loop examples, one should first expand in ε the unknown cn and then find a solution
order-by-order in ε. To simplify further this task, we observe that at a given order in ε we
expect the unknown coefficients cn to be made out of combinations of harmonic sums
S`(n) with different values of ` and shifted argument. Therefore, we find solutions to the
difference equations of the form

cn =
∑
k,`,m

Ak,`,m ε
k S`(n−m) , (6.64)
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Figure 6.10: Representative examples for the unphysical cuts appearing at two loops: (a)
massless s-channel cut; (b) massless u-channel cut; (c) massive u-channel cut.

for reasonable choice of k, ` and m.
After cn, dn and en are found by following these prescriptions, we can apply the

shifting procedure of Section 6.3, which yields the series coefficients of f̃(ω)

c̃n = cn + dn+ε + en+2ε . (6.65)

Clearly, if no massless cut is present, the shifting procedure is unnecessary and one can
deal with cn only. Then, if massive unphysical cuts are present, one has also to apply the
replacement procedure described in Section 6.3, which amounts to perform f̃(ω)→ f̂(ω).

This set of routines has been successfully applied to the three diagrams shown in
Fig. 6.10 in [49], where it is shown that the Mellin moments of the physical cut are indeed
correctly reproduced. Hence the method also works at two-loop order.

6.6 Conclusions

In this chapter we presented a method to compute the Mellin moments of the Drell-
Yan process making use of unitary cuts of forward amplitudes. As such, this method
generalizes the optical theorem approach for DIS to a diagram-by-diagram approach.
The key feature of this procedure is the removal of unphysical cuts from the discontinuity
of the forward amplitude. This has been achieved through a shifting prescription in
Mellin space for unphysical massless cuts. For unphysical massive cuts instead, which
appear only from two-loop onwards, we defined a replacement procedure which yields
the Mellin moments of the physical cut.

With this method we have been able to recompute the one loop Drell-Yan K-factor,
where we saw that only massless unphysical cuts need to be removed, and therefore the
shifting procedure was sufficient. Moreover, in [49] it has been shown that this method
works also for representative two-loop cases.
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6.6. Conclusions

Being based on forward amplitudes (turning cut integrals into loop integrals), this
method is particularly suitable for phase space integrations, while it does not bring any
new insight for purely virtual corrections. Moreover, a key element is the presence of
a single dimensionless scale, as it is the case for Higgs or Drell-Yan production, that
allowed us to deal with just a single Mellin variable. Finally, we note that an underlying
assumption in the method consists of the knowledge of the analytic structure of the
amplitude and its functional dependence given by combinations of HPLs. Although
these assumptions need to be revisited at higher loops, the method seems a promising
tool for the computation of cross-sections at N3LO.
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CHAPTER 7

Conclusions

In this thesis we have considered perturbative aspects of the Drell-Yan process to investi-
gate two different topics: the search for a next-to-soft factorization formalism to organize
NLP threshold logarithms, and the development of new methods based on unitarity to
efficiently compute cross sections of single-particle inclusive processes.

Specifically, next-to-soft corrections have been investigated considering the abelian
part of the real-virtual interference diagrams of the two-loop Drell-YanK-factor. We have
first computed this in full QCD after expanding at next-to-leading power in the threshold
variable, such that the result contained both LP and NLP terms. Then we have compared
this with the result given by three different approaches. The first one (in Chapter 3)
is a diagrammatic approach that built upon the work of [73], by means of which it is
possible to correctly identify all LP terms and the NLP term with highest power. Then
in Chapter 4 we moved to an approach based on the expansion by regions. With this
method we correctly reproduced all NLP terms, achieving a precise undertanding of
each contribution to the K-factor from the hard, soft and collinear regions [45]. This
however did not bring any information towards higher orders, as it is required for any
formalism that leads to resummation. Therefore in Chapter 5 we moved to a factorization
approach based on the LBKD theorem and the soft-collinear factorization formula. With
this approach we have been able to correctly reproduce all NLP terms, thus introducing
for the first time predictive power to this class of logarithms and paving the way for a
full resummation formalism [46]. Progress in this direction is underway, and needs the
inclusion of non-abelian terms into the formalism and all-order analysis of phase-space
corrections to generalize the factorization formula at cross-section level.

In Chapter 6 instead we have proposed a new method to compute the Drell-Yan
process by means of unitary cuts in Mellin space. Specifically, we have generalized the
optical theorem approach for DIS to a diagram-by-diagram approach based on unitary
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cuts. Crucial to this analysis has been the removal of unphysical cuts by means of a
diagram-independent prescription in Mellin space. We presented the details of the
calculation here for the one-loop K-factor. However, as shown in [49], the method
works also at two-loop level. Although specific features of the Drell-Yan process have
been fundamental in the definition of the method (such as the presence of a single
dimensionless scale and the knowledge of the functional class of the solution) this seems
a promising tool for the computation of inclusive cross-sections at N3LO.

In conclusion, we have seen that the Drell-Yan process, even though it has a long
history, can still reveal surprising new insights in theoretical developments for pertur-
bative quantum field theory, both at fixed and all orders, which are interesting both for
phenomenological applications and for more formal contexts.
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Summary

In this summary I aim to give a description of the themes of this thesis without discussing
technical details. In particular, I hope that it offers the reader a more intuitive insight
at least into the meaning of three keywords that compose the title of this thesis: the
Drell-Yan process, (next-to-soft) factorization and unitarity.

A different way of seeing

The field of particle physics, to some extent, can be seen as a branch of microscopy, in
the sense that it is aimed at viewing things that cannot be seen with the naked eye. In
general, the process of observing requires different instruments according to the size of
the object we want to study. Normally, in everyday life, we simply use our eyes. Already
when we wish to observe human cells we need an artificial instrument like an optical
microscope. For nanostructures we have to leave the idea of using light in the common
sense and we need more powerful instruments like an atomic-force microscope. For
elementary particles we need to go even further and build a particle accelerator. And the
smaller the size we want to test, the larger the accelator (and thereby its energy) should
be.

All these instrument seems very different from one another. However, they are all
based on a scattering process. The idea is quite straightforward and can be intuitively
understood thinking about a mysterious object, of which we want to reconstruct the
shape. This can be reconstructed throwing another object against it and seeing how it
bounces. This we can repeat again and again until, from the pattern of the scattering, we
can reconstruct the shape. Even if might be odd, our sight is based on the same principle.
When we look at an object illuminated by the sunshine or the light from a bulb, our eye is
detecting photons scattered by the surface of this object. Then according to the intensity,
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the direction and the color (i.e. the frequency) our brain reconstructs from the detected
image the shape of the object. High energy experiments are based on exactly the same
idea.

Clearly, for actual proton collisions like those that happen at the CERN Large Hadron
Collider (LHC) we have to modify a little bit the picture described above. The entangled
effect of special relativity and quantum mechanics makes it possible that new particles
are created during these scattering processes, and the role of particle physicists is to
understand the mechanism that governs the interactions among these particles. In this
regard, we can distinguish experimentalists, who take part in the actual measurements
of cross-sections (i.e. how these particles are scattered), and theorists, who predict these
cross-sections based on a mathematical well-defined framework. Among theorists efforts
we can discriminate those that predict the cross-sections in presence of new particles still
to be discovered, and those that predict the so-called background, i.e. the cross-section for
known effects due to pure Quantum Chromodynamical effects (the theory that governs
the nuclear interactions, shortly indicated as QCD). The work presented in this thesis
is set in the last group, as it computes QCD corrections to one particular cross-section
known as Drell-Yan process.

Feynman diagrams and the Drell-Yan process

In a particle accelerator like the LHC at CERN protons collide and many particles are
created and detected as final states. The Drell-Yan process describes a particular outcome
for such collisions when among the final particles there is a lepton-antilepton pair. These
are two particles that are insensitive to the nuclear force like muons and electrons. This
production mechanism can be explained in the context of the parton model. This assumes
that protons are made of elementary particles called quarks and gluons collectively called
partons. In the Drell-Yan process, when two protons collide at very high energy, a parton
from one proton annihilates with another parton in the other proton, creating a photon.
However, this photon is not a physical one (whose mass is zero) but has a virtual mass
less or equal to the incoming energy of the two partons. This might sounds a bit strange
but, thanks to the magic of quantum mechanics, in Feynman diagrams particles can
violate some constraint typical of physical particles, provided they do so for the briefest
of moments (technically they are called off-shell particles). Therefore, this unphysical
photon is an unstable particle and it decays in the lepton pair described above.

To predict the occurrence rate for this process one makes use of the so-called Feynman
diagrams, like the one shown on the cover of this thesis. Apart from getting an intuitive
picture of how particles interact, we can associate to each of these diagrams a number,
which represents the probability that the process will happen through this specified

134



diagram. Computing this number is the goal of a particle theorists because this number
can be compared with an experimental measurement. However this task might be very
complicated. In particular, the higher the number of particles in a diagram, the more
complicated the calculation will be.

The reason why it is convenient to compute cross-sections with Feynman diagrams
is the fact that partons are almost free at high energy, and therefore diagrams with
many interactions are unlikely and can be neglected. Therefore, we can approximate
the probability for the entire cross-section with a subset of easier-to-compute diagrams.
Mathematically speaking, we are using perturbation theory and we are approximating
the exact result with the first terms of the series. Experiments demand very precise
predictions, hence sometimes cross sections have been calculated with many of these
Feynman diagrams.

In this thesis we have investigated these computations for the Drell-Yan process both
when it is possible to consider only a few diagrams (by means of unitarity methods) and
when one is forced to take into account a specific effect from all diagrams (by means of
factorization methods). Let us now discuss them in turn.

Next-to-soft factorization

In a collider experiment the energy of the final particles will clearly depend on the
energy of the particles we want to collide. In particular, the incoming energy should be
greater than the mass of the particle we want to create. When we accelerate protons we
typically control the energy of the protons, but we cannot have control of the energy of
its components (quarks and gluons). Hence, we have to take into account the possibility
that the energy of these might be very close to the threshold energy required to produce
the final particles. For the Drell-Yan case, this corresponds to the situation when the
energy is sufficient to produce the lepton-antilepton pair, and all other particles produced
are soft (particles with little energy are called soft, while very energetic ones are called
hard).

In this limiting situation, the approximation of taking only a few diagrams is not
valid anymore and one has to take into account all diagrams with many soft gluons.
Mathematically speaking, when we are close to the threshold limit the results of the
computations are plagued by logarithms that need to be resummed to all orders. This
process can be achieved through a so-called factorization. Indeed, after factorizing the
effects of soft gluons, the soft part of the process becomes independent from the hard
part and can be organized such that it gives predictions for more complicated diagrams
(higher order terms). This well-known procedure called soft-gluon resummation is a
well-established field and many cross sections have been computed including these
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effects.
In this thesis we have extended this factorization procedure to a considerably more

precise level, known as next-to-soft. In this case the emitted gluons are less soft than the
purely soft case, and the hard particle recoils somewhat after the emission. Specifically,
we have studied these next-to-soft effects with three different approaches (a diagrammatic
one, the method of regions, and the soft-collinear factorization formula) and we have
shown that it is possible to organize the logarithms due to next-to-soft effects to all orders.
With this preliminary work the door is now open to more research that can be done, as
eventually we would like to use this factorization to compute a full resummed result.

Unitarity

In the last chapter of this thesis we have investigated how to develop new methods for
computing Feynman diagrams of the Drell-Yan process. Some of these methods made
use of a property called unitarity. The name of this feature comes from the fact that, in
a consistent theory, the sum of all probabilities (which as we discussed are related to
Feynman diagrams) should be equal to one. With more mathematical precision, for some
processes this is defined through a theorem, called the optical theorem.

For the Drell-Yan process this theorem cannot be used at face value and thus we might
think that these types of methods cannot be used. However, in this thesis we have shown
that it is indeed possible, after moving from the optical theorem to the more general use
of cuts of a diagram. This consists in literally cutting a diagrams in two parts with a
separator line, and making every particle cut by this line physical (technically, putting
it on-shell). The virtue of this perhaps somewhat mysterious procedure is that upon
summing over all possible cuts of a diagram, it is possible to reconstruct the full cross-
section. For some processes, this is intimately connected to the optical theorem, and hence
these cuts are called unitarity cuts. With this method we have shown that it is possible to
recompute the Drell-Yan cross sections (and thereby related cross sections such as for
Higgs boson production), thus providing a new method for fixed order-computation.

This concludes the summary, where I hope I gave a glimpse of what has been presented
in this thesis, omitting technical details. For a more rigorous discussion, the interested
reader can simply begin reading the introduction of this thesis.
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Samenvatting

In deze samenvatting probeer ik een beschrijving te geven van de thema’s in dit proef-
schrift zonder technische details te bespreken. In het bijzonder hoop ik dat het een
intuïtief inzicht verschaft aan de lezer, tenminste met betrekking de drie sleutelwoor-
den in de titel van dit proefschrift: het Drell-Yan proces, (één-na-zacht) factorisatie en
unitariteit.

Een andere manier van kijken

Het vakgebied van deeltjesfysica kan gezien worden als een tak van microscopie, met
dien verstande dat het gericht is op het bekijken van dingen die voor het blote oog
onzichtbaar zijn. In het algemeen vereist het proces van observatie verschillende instru-
menten, al naar gelang de grootte van het te bestuderen object. Normaal gesproken, in het
alledaagse leven, gebruiken we simpelweg onze ogen. Maar wanneer we bijvoorbeeld
een menselijke cel willen observeren hebben we al een kunstmatig instrument nodig
zoals een optische microscoop. Voor nano-structuren moeten we zelfs het idee laten
varen om normaal licht te gebruiken en hebben we krachtigere instrumenten nodig zoals
een atoomkrachtmicroscoop. Voor elementaire deeltjes gaan we nog een stap verder en
bouwen we een deeltjesversneller. Hoe kleiner de schaal van wat we willen testen, des te
groter moet de versneller zijn (en daarmee diens energie).

Al deze instrumenten lijken heel verschillend van elkaar. Desalniettemin zijn ze
allemaal gebaseerd op een verstrooiingsproces. Het onderliggende idee is simpel en kan
intuïtief begrepen worden door te denken aan een mysterieus voorwerp waarvan we de
vorm willen reconstrueren. Dit kan gedaan worden door er een ander voorwerp tegenaan
te schieten en te bekijken hoe dat terugkaatst. Dit kunnen we keer op keer herhalen,
totdat we uit het verstrooiingspatroon de vorm kunnen reconstrueren. Ook al klinkt dit
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misschien gek, ons zicht is gebaseerd op hetzelfde principe. Wanneer we kijken naar een
object dat verlicht wordt door de zon of door het licht van een gloeilamp, dan detecteert
ons oog de fotonen die verstrooid worden door het oppervlak van het object. Al naar
gelang de intensiteit, de richting en de kleur (ofwel frequentie) reconstrueren onze
hersenen de vorm van het object uit het gevormde beeld. Hoge energie experimenten
zijn gebaseerd op precies hetzelfde idee.

Vanzelfsprekend moeten we deze beschrijving een beetje aanpassen voor daadw-
erkelijke botsingen tussen protonen, zoals die plaatsvinden in de CERN Large Hadron
Collider (LHC). Het gecombineerde effect van speciale relativiteitstheorie en kwan-
tummechanica maken het mogelijk dat nieuwe deeltjes worden gecreëerd tijdens deze
verstrooiingsprocessen, en de rol van de deeltjesfysicus is om de mechanismen te be-
grijpen die de interacties tussen deze deeltjes dicteren. In dit verband kunnen we
onderscheid maken tussen experimentatoren, die deelnemen aan het daadwerkelijk
meten van werkzame doorsneden (hoe deeltjes verstrooid worden), en theoretici, die
deze werkzame doorsneden voorspellen op basis van een solide wiskundig bouwwerk.
Binnen de inspanningen van theoretici kunnen we verder onderscheid maken tussen
zij die werkzame doorsneden berekenen van nieuwe onontdekte deeltjes, en zij die een
voorspelling doen van de zogenaamde achtergrond, oftewel de werkzame doorsnede ten
gevolge van zuivere kwantumchromodynamische effecten (de theorie welke de nucleaire
interacties beschrijft, kortweg aangeduid met QCD). Het werk dat gepresenteerd wordt
in dit proefschrift valt binnen de laatste categorie, aangezien het berekeningen bevat van
QCD correcties op een specifieke werkzame doorsnede, bekend als het Drell-Yan proces.

Feynman diagrammen en het Drell-Yan proces

In een deeltjesversneller, zoals de LHC op CERN, botsen protonen en daarbij worden veel
deeltjes geproduceerd en gedetecteerd als eindtoestand. Het Drell-Yan proces beschrijft
een specifieke uitkomst voor zulke botsingen waarbij zich een lepton-antilepton paar
bevindt in de eindtoestand. Dit zijn twee deeltjes die ongevoelig zijn voor de sterke
kernkracht, zoals bijvoorbeeld muonen of elektronen. Het productiemechanisme kan
beschreven worden in de context van het parton model. Dit model neemt aan dat
protonen opgebouwd zijn uit elementaire deeltjes genaamd quarks en gluonen, tezamen
partonen genaamd. In het Drell-Yan proces zal, wanneer twee protonen met hoge energie
op elkaar botsen, een parton van het ene proton samenkomen met een parton uit het
andere proton, waarna ze elkaar wederzijds vernietigen en daarbij een foton produceren.
Dit foton is echter geen fysisch deeltje (wiens massa nul is), maar het heeft een massa
kleiner of gelijk aan de inkomende energie van de twee partonen. Dit klinkt misschien
vreemd, maar dankzij de magie van de kwantummechanica kunnen deeltjes in Feynman
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diagrammen sommige behoudswetten schenden die typisch gelden voor fysische deeltjes,
mits ze dat doen gedurende een zeer korte tijd (technische gesproken heten dit off-shell
deeltjes). Daarom is dit on-fysische foton een instabiel deeltje en zal het vervallen tot het
bovengenoemde lepton paar.

Om de kans op dit proces te voorspellen gebruikt men zogenaamde Feynman dia-
grammen, zoals bijvoorbeeld die op de omslag van dit proefschrift. Afgezien van het
verkrijgen van een gevoelsmatig beeld van de interacties tussen de deeltjes kunnen we
bovendien aan zulke diagrammen getallen toewijzen, welke staan voor de kans waarmee
het proces kan plaatsvinden volgens het betreffende diagram. Het berekenen van dit
getal is de taak van de deeltjestheoreticus, omdat dit getal kan worden vergeleken met
een experimentele meting. Deze taak kan echter zeer moeilijk zijn. In het bijzonder zal
de berekening moeilijker zijn naarmate er zich meer deeltjes in het diagram bevinden.

De reden waarom Feynman diagrammen zo geschikt zijn om werkzame doorsneden
uit te rekenen is vanwege het feit dat partonen zich bijna vrij kunnen bewegen bij hoge
energie, zodat diagrammen met veel interacties onwaarschijnlijk zijn en dus mogen
worden verwaarloosd. Dientengevolge kunnen we de waarschijnlijkheid voor de gehele
werkzame doorsnede benaderen met een deelverzameling van gemakkelijk-te-berekenen
diagrammen. Wiskundig gesproken maken we gebruik van storingstheorie en benaderen
we het exacte resultaat met de eerste paar termen in een serie. De experimenten vereisen
heel nauwkeurige voorspellingen, dus zijn sommige werkzame doorsneden uitgerekend
met veel van deze Feynman diagrammen.

In dit proefschrift hebben we deze berekeningen onderzocht voor het Drell-Yan proces,
zowel in het geval waarbij het mogelijk is om slechts enkele diagrammen te beschouwen
(met behulp van unitariteit methoden), als ook in het geval dat men gedwongen wordt
om een specifiek effect van alle diagrammen in aanmerking dient te nemen (met behulp
van factorisatie methoden). We zullen deze methoden om de beurt nader bespreken.

Eén-na-zacht factorisatie

In een botsingsexperiment zal de energie van de eindtoestand deeltjes uiteraard afhangen
van de energie van de deeltjes die we willen laten botsen. In het bijzonder zal de energie
van de inkomende deeltjes groter moeten zijn dan de massa van het deeltje wat we
willen produceren. Wanneer we protonen accelereren, dan hebben we de energie van de
protonen onder controle, maar niet de energie van diens partonen (quarks en gluonen).
Daarom moeten we rekening houden met de mogelijkheid dat de partonen slechts net
genoeg energie hebben om de eindtoestand deeltjes te produceren. Voor het Drell-Yan
proces correspondeert dit met de situatie waarbij de energie net genoeg is om het lepton-
antilepton paar te produceren, terwijl alle andere geproduceerde deeltjes zacht zijn
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(deeltjes met weinig energie worden zachte deeltjes genoemd, terwijl zeer energetische
deeltjes hard zijn).

In dit grensgeval is het beschouwen van enkele diagrammen geen goede benadering
meer en moet men alle diagrammen met veel zachte gluonen in aanmerking nemen.
Wiskundig gesproken worden de resultaten van de berekeningen rond dit grensgeval
geplaagd door logarithmen, welke hersommeerd moeten worden tot alle orden. Dit kan
worden bereikt door een zogenaamde factorisatie. Inderdaad, na het factoriseren van
de effecten van zachte gluonen, wordt het zachte deel van het proces onafhankelijk van
het harde deel, en kan het zo worden georganiseerd dat het voorspellingen geeft van
meer ingewikkelde diagrammen (hogere orde termen). Deze welbekende procedure heet
zachte-gluon hersommatie en is een gevestigd terrein en veel werkzame doorsneden zijn
berekend met inbegrip van deze effecten.

In dit proefschrift hebben we deze factorisatie procedure uitgebreid tot een aanzienlijk
nauwkeuriger niveau, bekend als één-na-zacht. In dit geval zijn de uitgestraalde gluonen
minder zacht dan in het zuiver zachte geval, en ervaren de harde deeltjes iets van
terugslag na uitstraling van zachte gluonen. In het bijzonder hebben we deze één-
na-zacht effecten bestudeerd met drie verschillende aanpakken (een diagrammatische
aanpak, de methode van regio’s, alsmede de zacht-collineaire factorisatie formule) en
hebben we laten zien dat het mogelijk is om de logarithmen ten gevolge van deze één-
na-zacht effecten te organiseren tot op alle orden. Met dit voorbereidend werk staat nu
de deur open tot meer onderzoek wat gedaan kan worden, aangezien we uiteindelijk
deze factorisatie willen gebruiken om een volledig hersommeerd resultaat te berekenen.

Unitariteit

In het laatste hoofdstuk van dit proefschrift hebben we onderzoek gedaan naar nieuwe
methoden om Feynman diagrammen voor het Drell-Yan proces te berekenen. Sommige
van deze methoden maken gebruik van een eigenschap genaamd unitariteit. De naam
van deze eigenschap komt voort uit het feit dat in een consistente theorie de som van
waarschijnlijkheden (welke zoals besproken gerelateerd zijn aan Feynman diagrammen)
gelijk is aan één. Wiskundig nauwkeuriger gesproken is dit gedefinieerd als een stelling,
genaamd de optische stelling.

Op het Drell-Yan proces kan deze stelling op het eerste gezicht echter niet worden
gebruikt, waardoor we zouden denken dat dit type methoden niet van toepassing is.
Maar in dit proefschrift hebben we laten zien dat dit toch mogelijk is, nadat we overgaan
van de optische stelling naar het meer algemene gebruik van snedes van diagrammen.
Dit bestaat uit het letterlijk snijden van diagrammen in twee stukken door middel van
een scheidingslijn, waarbij alle deeltjes die door deze lijn worden gesneden fysische
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deeltjes zijn (technisch, on-shell). De deugd van deze wellicht mysterieuze procedure
is dat de gehele werkzame doorsnede gereconstrueerd wordt door het optellen van
alle mogelijke sneden. Voor sommige processen is dit innig verbonden met de optische
stelling, waardoor aan deze sneden gerefereerd wordt als unitariteits sneden. Met deze
methode hebben we laten zien dat het mogelijk is om de Drell-Yan werkzame doorsnede
te herberekenen (en daarmee gerelateerde werkzame doorsneden zoals voor Higgs boson
productie), waardoor een nieuwe methode is geleverd voor het doen van gefixeerde orde
berekeningen.

Dit concludeert deze samenvatting, waarbij ik hoop dat ik een glimp gaf van wat er
gepresenteerd is in dit proefschrift, zonder technische details. Voor een meer rigoureuze
discussie kan de geïnteresseerde lezer simpelweg beginnen met lezen van de introductie
in dit proefschrift.
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