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Abstract: This article presents two quantum algorithms for computing the product of a circulant

matrix and a vector. The arithmetic complexity of the first algorithm is O(N log2 N) in most cases. For

the second algorithm, when the entries in the circulant matrix and the vector take values in C or R, the

complexity is O(
√

N log2 N) in most cases. However, when these entries take values from positive

real numbers, the complexity is reduced to O(log3 N) in most cases, which presents an exponential

speedup compared to the classical complexity of O(N log N) for computing the product of a circulant

matrix and vector. We apply this algorithm to the convolution calculation in quantum convolutional

neural networks, which effectively accelerates the computation of convolutions. Additionally, we

present a concrete quantum circuit structure for quantum convolutional neural networks.

Keywords: quantum algorithm; circulant matrix; quantum convolutional neural network

1. Introduction

Quantum computing, as a disruptive technology, has received widespread attention
from various fields, since it can efficiently accelerate the solving of some fundamental
computational problems. For example, Shor’s algorithm [1] can solve the factorization
problem in polynomial time, posing a great threat to modern cryptography in theory.
Grover’s algorithm [2] can achieve a square-root speedup in unstructured search. The HHL
algorithm [3] proposed in 2006 has an exponential speedup in solving linear equations.

As a linear equation solver, the HHL algorithm consists of three main parts. The first
part employs quantum phase estimation to achieve the eigenvalues of the matrix being
calculated. The second part applies quantum controlled gates to flip the auxiliary qubits
based on the given eigenvalues. The third part uses the inverse of quantum phase estima-
tion to undo the entanglement and restore some of the auxiliary qubits. By measuring the
remaining auxiliary qubits, one can obtain the target state. By modifying the second step of
the HHL algorithm, we can easily apply the idea of the HHL algorithm to matrix–vector
multiplication. It should be noted that the complexity of the HHL algorithm depends not
only on the size of the matrix but also on the condition number of the matrix. The condition
number of a matrix is an indicator of the sensitivity of the matrix to changes in the result,
and is an inherent property of the matrix. Therefore, it is difficult to manually constrain the
condition number of the matrix. There are some types of matrices that may have a high
condition number but contain some specific structures, which could lead to more efficient
computation. Circulant matrices are one of these types and, in this paper, we focus on
their computation.

Circulant matrices have been well studied in both classical and quantum settings.
In the classical setting, it was shown that the product of a circulant matrix and a vector of
size N can be computed with O(N log N) operations using FFT (Fast Fourier Transforma-
tion) [4]. By expressing a Toeplitz matrix as a circulant matrix, Golub and van Loan showed
that a Toeplitz matrix and a vector can also be multiplied in time O(N log N) [4]. Circulant
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matrices and related structured matrices were also studied in [5–7]. In the quantum setting,
different quantum expressions for the circulant matrix were presented in [8–10]. Refer-
ence [8] presents a quantum construction method for cyclic matrices. Where the Toeplitz
matrix can serve as a submatrix of the cyclic matrix, reference [9] provides an asymptotic
method for solving Toeplitz systems. Reference [10] applies cyclic matrices to quantum
string processing.

In this paper, we propose two new quantum algorithms for circulant matrix–vector
multiplication, which take advantage of the features of quantum mechanics and have better
computational complexity compared to classical algorithms. For the first algorithm we
propose, the complexity is O(N log2 N) in most case. For the second algorithm, if the
elements in the circulant matrix and vector are randomly chosen from R or C with a norm
no larger than d, then the proportion of matrices and vectors that can be computed with
complexity O(

√
N log2 N) approaches 1 as the dimension of the matrix increases. Similarly,

if the elements are randomly chosen from R+ with a norm no larger than d, then the
proportion of matrices that can be computed with complexity O(log3 N) also approaches 1
as the dimension increases.

Theorem 1. There exists two quantum algorithms which compute the multiplication of the circulant
matrix and vector. For the first algorithm, it computes the multiplication of a circulant matrix
and a vector over C (or R) with a probability of at least 1 − 1

N and complexity O(N log2 N),
where N is the dimension of the matrix, and the proportion of the circulant matrix and vector
combinations that can be effectively computed approaches 1 as the dimension increases. For the
second algorithm, it computes the multiplication of the most circulant matrix and vector over C (or
R) with a probability of at least 1− 1

N and complexity O(
√

N log2 N), where N is the dimension of
the matrix, and the proportion of the circulant matrix and vector combinations that can be effectively
computed approaches 1 as the dimension increases.

Compared to the approach similar to the HHL algorithm, our second algorithm has
two advantages. Firstly, our second algorithm directly performs calculations on quantum
states without the need for Hamiltonian simulations, thus reducing computational com-
plexity and errors. Secondly, our second algorithm does not have the process of quantum
phase estimation (QPE), thus reducing the use of auxiliary bits and errors. Our second
algorithm also has a measurement step and has the same complexity as the HHL approach
during measurement. The comparison is shown in the Table 1. In particular, when the
circulant matrix and vector values are in R+, the algorithm complexity is logarithmic with
respect to the size of the matrix.

Table 1. Comparison of HHL method, Algorithm 1, and Algorithm 2.

HHL Method Algorithm 1 Algorithm 2

Hamiltonian simulation need need not need not

QPE need need not need not

Number of auxiliary qubits O(log(N)) 2 log(N) + 2 log(N)

Measurement probability O(
√

N) O(N) O(
√

N)

Error exist no no

Furthermore, we apply our algorithms in convolution computation, which is an
important and fundamental problem in quantum machine learning (QML). The field
of quantum machine learning has been developing rapidly in recent years. Machine
learning algorithms suffer from computational bottlenecks as the dimensionality increases.
To promote experimental progress towards realizing quantum information processors,
the approach of using quantum computers to enhance conventional machine learning
tasks was proposed, and this led to the development of quantum convolutional neural
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networks (QCNNs). The earliest QCNN was proposed in [11] for solving quantum many-
body problems. Subsequently, in [12,13], QCNNs for image recognition were discussed.
The difference of their results is that the quantum circuit in [12] is a purely random quantum
circuit, while the quantum circuit in [13] has a simple design. In [12], the authors presented
real experiments to confirm that their algorithm still has some effect even when using
a fully random quantum circuit. The quantum circuit designed in [13] only entangles
different qubits without a more specific definition of the quantum circuit. In this paper, we
present an effective quantum circuit for computing convolutions, which may be used as a
sub-circuit in the quantum circuit of QCNNs.

The structure of this article is as follows. In Section 2, we introduce circulant matrices
and some basics of quantum computing, and present some quantum circuit structures
that will be used in the quantum algorithms for circulant matrix–vector multiplication.
In Section 3, we describe the details of our new algorithms and analyze their running
times. As both algorithms involve quantum measurements, Section 4 presents a probability
analysis of the measurements and, for parts where theoretical analysis is not available, we
present experimental results to support our algorithms. In Section 5, we discuss the specific
application of circulant matrix–vector multiplication in convolution computation. Finally,
conclusions and future directions are presented in Section 6.

2. Preliminaries

In this section, we will present some background information that will be used in
our later discussion of the circulant matrix–vector algorithm. This includes properties
of circulant matrices, existing results in quantum computing, and structures of quantum
circuits, as well as the effects that these structures can achieve in quantum circuits.

2.1. Circulant Matrix

For any vector a = (a0, a1, · · · , aN−1)
⊤ in CN , its corresponding circulant matrix is

denoted by A and is represented as follows:

A =











a0 a1 a2 · · · aN−1

aN−1 a0 a1 · · · aN−2
...

...
...

. . .
...

a1 a2 a3 · · · a0











(1)

The circulant matrix A can be represented as a linear combination of matrix T, denoted as

A =
N−1

∑
j=0

ajT
j, (2)

where T is the cyclic permutation matrix and can be represented as

T =

















0 1 0 · · · 0

0 0
. . .

. . .
...

...
...

. . .
. . . 0

0 0 · · · 0 1
1 0 · · · 0 0

















N×N

(3)

In addition, a circulant matrix can also be diagonalized by a Fourier matrix of the same

order. Let F be the Fourier matrix in CN×N , and let ω = e
2πi
N ; then, F can be expressed as
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F =











1 1 1 · · · 1

1 ω ω2 · · · ωN−1

...
...

...
. . .

...

1 ωN−1 ω2(N−1) · · · ω(N−1)2











(4)

Using F, we can diagonalize A to a diagonal matrix A′. Specifically, if we denote
diag{F−1a} as the diagonal matrix with F−1a on its diagonal, then, we have

A′ =
1

N
FAF−1 = diag{F−1a}. (5)

In this paper, we are calculating the matrix–vector multiplication of a circulant matrix A and
a vector x = (x0, x1, · · · , xN−1)

⊤ over C. Here, A is given by a vector a = (a0, a1, · · · , aN−1)
⊤,

and their correspondence can be found in Equation (1). It is easy to check that the k-th eigen-
value of A is λk = ∑

N−1
j=0 ajω

−jk, and Λk =
1√
N
(1, ω−k, · · · , ω−k(N−1))⊤ is the corresponding

eigenvector. Moreover, we have x = ∑
N−1
k=0 ( 1√

N
∑

N−1
j=0 xjω

jk)Λk and, in the following, we denote

1√
N

∑
N−1
j=0 xjω

jk by λx
k for simplicity.

To compute matrix–vector multiplication by a quantum algorithm, we need to repre-
sent the given two vectors by quantum states. The modulus squared of the coefficients of
the quantum state corresponds to the probability of measuring that quantum state. There-
fore, we first normalize the two given vectors and then convert them into the representation
of quantum states. Unless otherwise specified, the vectors a and x we use later are both in
the normalized form. As argued in most of quantum algorithms, we always assume that
the quantum states |a⟩ = ∑

N−1
j=0 aj |j⟩ and |x⟩ = ∑

N−1
j=0 xj |j⟩ are already effectively prepared

and we can directly use them for calculation. For example, our algorithm can serve as a
subroutine in a larger algorithm and, in this case, the required quantum states |a⟩ and |x⟩
have already been generated. Generally speaking, it is difficult to prepare an arbitrary
initial state, and there are only a few methods available now [14–16].

2.2. Quantum Computing

Definition 1. Let n ≥ 0 be an integer, and N = 2n. The quantum Fourier transform on n qubits
is defined by

FN : |x⟩ → 1√
2n

2n−1

∑
y=0

e2πixy/2n |y⟩ (0 ≤ x ≤ 2n − 1) (6)

The complexity of the quantum Fourier transform is O(n2), and its quantum circuit
diagram is as shown in Figure 1.

|x0⟩ H R2 R3 · · · Rn |y0⟩

|x1⟩ • H R2 · · · Rn−1 |y1⟩

|x2⟩ • • H · · · Rn−2 |y2⟩
...

. . .
. . .

. . .
...

|xn−1⟩ • • • H |yn−1⟩

Figure 1. Quantum circuit for the quantum Fourier transform.

Next, we introduce the quantum amplitude amplification algorithm [17]. The quantum
amplitude amplification algorithm can be classified into two types: the first type is when
we already know the success rate of the target algorithm, while the second type is when
we only know the possible values of the target algorithm. Both types achieve quadratic
speedup. The algorithm can be described as follows.

There exists a quantum algorithm QSearch with the following property. Let A be any
quantum algorithm that uses no measurements, and let χ : Z → {0, 1} be any Boolean
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function. The Boolean function χ : Z → {0, 1} induces a partition of the values of algorithm
A into a direct sum of two subspaces, a good subspace and a bad subspace. The probability
that the measurement result of the quantum algorithm A falls onto a good subspace is a.
Algorithm QSearch finds a good solution using an expected number of applications of A
and A−1, which are in O( 1√

a
) if a > 0, and otherwise runs forever. Please refer to [17] for

more specific details.

2.3. Quantum Circuit

Here, we will introduce some quantum circuits that we will use and their roles.

Quantum Arithmetic Operation

We only need addition among quantum arithmetic operations. Here, we use the
quantum adder given in [18], which consists of two parts. The first part is the calculation
of carry, composed of the sub-circuit MAJ, and the second part is the addition process
using the carry calculation, composed of the sub-circuit UMA.This adder is an in-place
circuit, and its result is stored in the second register to reduce the number of qubits used.
The relevant structures and circuit diagrams of the sub-circuits are shown below (calculate
a2a1a0 + b2b1b0 = c3s2s1s0).

In Figure 2, M and U correspond to the sub-circuits MAJ and UMA in Figure 3,
respectively, as detailed below:

0

M

a0

U

0

b0 a0 ⊕ b0 s0

a0 c1

M

a1 ⊕ c1

U

c1 a0

b1 a1 ⊕ b1 s1

a1 c2

M

a2 ⊕ c2

U

c2 a1

b2 a2 ⊕ b2 s2

a2 c3 • a2

0 c3

Figure 2. Quantum addition circuit.

(a) MAJ (b) UMA

Figure 3. Sub-circuits of quantum addition circuit.

From the above circuit diagrams, we can see that the number of gates required to
perform the addition of two n-bit numbers is O(n).

2.4. Quantum Circuit for the U
i Transformation

In this subsection, we suppose that we have the quantum circuit for the unitary matrix
U; then, we introduce the quantum circuit for the Ui transformation, which appears as
a sub-circuit in quantum phase estimation. Specifically, given a quantum state |a⟩ and a
unitary matrix U, the U j transformation

|0⟩⊗n |a⟩ →
2n−1

∑
i=0

1√
2n

|i⟩Ui |a⟩ (7)
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can be implemented as shown in Figure 4.

|0⟩ H • |i1⟩

|0⟩ H • |i2⟩
...

...
...

|0⟩ H • |in−1⟩

|0⟩ H • |in⟩

|a⟩ U20
U21

U2n−2
U2n−1 |b⟩

Figure 4. Quantum controlled-U circuit.

This circuit requires n controlled-U gates and performs a total of O(n) quantum gates.
Later, we will present the specific structure of the U gate to analyze the complexity of our
first algorithm.

2.4.1. Quantum Circuit for the Cyclic Permutation

According to Equation (2) in Section 2.1, we know that the circulant matrix A can be
represented by the cyclic permutation matrix T. Here, we present a specific implementation
for T, where T is a 2n × 2n cyclic permutation matrix.

Let F be the 2n × 2n Fourier matrix. It is easy to check that

T′ = FTF−1 = diag{ω0, ω−1, · · · , ω−(2n−1)} (8)

is a diagonal unitary matrix, and T′ can be implemented in Figure 5:

|j0⟩ Rω−1(n − 1) |y0⟩

|j1⟩ Rω−1(n − 2) |y1⟩

|j2⟩ Rω−1(n − 3) |y2⟩
· · ·

|jn−1⟩ Rω−1(0) |yn−1⟩
Figure 5. Quantum circuit for transformation T′.

where

Rω−1(k) =

(

1 0

0 ω−2k

)

. (9)

As introduced in Definition 1, we can implement F with complexity O(n2). Then,
using T = F−1T′F, we can derive the implementation of T from those of F and T′. Moreover,
we can construct T2s

similarly. Since we have T2s
= (F−1T′F)2s

= F−1T′2s
F, we only need to

construct T′2s
. From our previous result, we have T′2s

= diag{ω0·2s
, ω−1·2s

, · · · , ω−(2n−1)·2s};
thus, the circuit for T2s

can be easily achieved by replacing Rω−1(k) with Rω−2s (k) in the
circuit for T′, where

Rω−2s (k) =

(

1 0

0 ω−2k+s

)

. (10)
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In this way, for any s ∈ {0, 1, · · · , n − 1}, we can implement the matrix T′2s
with

O(n) quantum operations, and we can further implement the matrix T2s
with O(n2)

quantum operations.

2.4.2. Quantum Extraction Circuit

We introduce a circuit that can extract the target state ∑
2n−1
i=0 caixi |i⟩ |0⟩ from a given

quantum state ∑
2n−1
i=0 ∑

2n−1
j=0 aixj |i⟩ |j⟩, where c is the change coefficient due to the collapse of

the original state to the target state after measurement. For example, if n = 3, the quantum
extraction circuit is in Figure 6:

|i1⟩ • |i1⟩
|i2⟩ • |i2⟩
|i3⟩ • |i3⟩
|j1⟩

|j2⟩

|j3⟩
Figure 6. Quantum extraction circuit.

When the measurement results for the last three qubits are |000⟩, we can obtain our
target state. In this way, the probability of obtaining the target state is ∑

2n−1
i=0 |aixi|2. This

probability can be increased by using the quantum amplitude amplification algorithm,
and we will give a specific probability analysis later.

3. Multiplication of Circulant Matrices and Vectors

We present two different algorithms for computing the product of a circulant matrix
and a vector, which result in different representations. It should be noted that, when the
entries of the circulant matrix and the vector are all in R+, our second algorithm can achieve
exponential acceleration compared to classical algorithms. In this section, the computation
of the indices and the binary numbers (or integers) corresponding to basis states is in the
ring ZN , where N = 2n and n is the number of qubits. For the sake of simplicity, we omit
the “mod N” symbol in their expression. Specifically, for a variable ai or a basis state |i⟩
with i ≥ N or i < 0, we mean aj or |j⟩, with j = i mod N.

3.1. The First Algorithm

Theorem 2. There exists a quantum algorithm that computes the multiplication of a circulant
matrix and a vector over C (or R) with a probability of at least 1− 1

N and complexity O(N log2 N),
where N is the dimension of the matrix, and the proportion of the circulant matrix and vector
combinations that can be effectively computed approaches 1 as the dimension increases.

We suppose that a = (a0, a1, · · · , an−1)
⊤, and A is the corresponding circulant matrix

for a. Let x = (x0, x1, · · · , xn−1)
⊤. Then, the input of our algorithm is

|0⟩⊗n |a⟩ |b⟩ =
N−1

∑
j=0

N−1

∑
k=0

ajxk |0⟩⊗n |j⟩ |k⟩ (11)

where |a⟩ = ∑
N−1
j=0 aj |j⟩ and |x⟩ = ∑

N−1
k=0 xk |k⟩ are the quantum states corresponding to the

vectors a and x, respectively.
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Obviously, we have

Ax =





















a0x0+ · · · +aN−1xN−1

aN−1x0+ · · · +aN−2xN−1
...

...
aN−kx0+ · · · +aN−k−1xN−1

...
...

a1x0+ · · · +a0xN−1





















=





















a0x0+ · · · +aN−1xN−1

a1x2+ · · · +a0x1
...

...
akx2k+ · · · +ak−1x2k−1

...
...

aN−1xN−2+ · · · +aN−2xN−3





















(12)

If we remove the + sign on the right-hand side, then we can achieve a matrix A∗ with
A∗

ij = ai+jx2i+j. Then, the output of our algorithm is the quantum state (∑2n−1
i=0 (∑2n−1

j=0 ai+jx2i+j)

|i⟩) |0⟩⊗n |0⟩⊗n, whose amplitudes are equal to Ax.
Our algorithm is presented in Algorithm 1. In the following, we provide a detailed

analysis of each step of this algorithm.

Algorithm 1 Multiplication of a circulant matrix and a vector

Input: The quantum state |0⟩⊗n |a⟩ |x⟩
Output: The quantum state

(∑2n−1
i=0 (∑2n−1

j=0 ai+jx2i+j) |i⟩) |0⟩⊗n |0⟩⊗n .

1: Apply the Hn transformation on the first register.
2: Apply the Ti transformation on the second register, then get the state

∑
2n−1
i=0 ∑

2n−1
j=0

1√
2n

aj |i⟩Ti |j⟩ |x⟩
= ∑

2n−1
i=0 ∑

2n−1
j=0

1√
2n

ai+j |i⟩ |j⟩ |x⟩ .
(13)

3: Double the basis state of the first register, then get the state

2n−1

∑
i=0

2n−1

∑
j=0

1√
2n

ai+j |2i⟩ |j⟩ |x⟩ . (14)

4: Apply the quantum adder for the states of the first two registers with the result stored
in the first register, then get the state

2n−1

∑
i=0

2n−1

∑
j=0

1√
2n

ai+j |2i + j⟩ |j⟩ (
2n−1

∑
k=0

xk |k⟩) =
2n−1

∑
i=0

2n−1

∑
j=0

2n−1

∑
k=0

1√
2n

ai+jxk |2i + j⟩ |j⟩ |k⟩ . (15)

5: Run the quantum state extraction circuit in Figure 6. Then, with some probability the
state of the first three registers is

2n−1

∑
i=0

2n−1

∑
j=0

c√
2n

ai+jx2i+j |2i + j⟩ |i⟩ |0⟩⊗n . (16)

6: Reverse the quantum arithmetic operations performed on the first register, then get
the state
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2n−1

∑
i=0

2n−1

∑
j=0

ai+jx2i+j |i⟩ |j⟩ |0⟩⊗n . (17)

7: Apply the Hn transformation on the second register, and then measure the second
register, when the measurement results for the second register is |0⟩⊗n, then get the state

c′(
2n−1

∑
i=0

(
2n−1

∑
j=0

ai+jx2i+j) |i⟩) |0⟩⊗n |0⟩⊗n . (18)

8: return (∑2n−1
i=0 (∑2n−1

j=0 ai+jx2i+j) |i⟩) |0⟩⊗n |0⟩⊗n.

Step 1. We apply the Hn transformation on the first register.
Step 2. We apply the Ti transformation to the second register, with the qubits in the

first register serving as the control qubits. Based on the circuit in Figure 4 and the properties
of the matrix T, we can easily obtain the circuit of the controlled-T operations as shown
in Figure 7:

|0⟩ H • |i1⟩
...

...
...

|0⟩ H • |in−1⟩

|0⟩ H • |in⟩

|a⟩ F T′20
T′21

T′2n−1
F−1 |b⟩

Figure 7. Quantum C-T circuit.

In this circuit, implementing F and F−1 requires O(n2) operations as mentioned
earlier, and implementing each controlled-T′2s

requires O(n) operations. Therefore, Step 1
requires O(n2) operations. It should be noted that, for a basis state |j⟩, T |j⟩ = |j − 1⟩;
hence, Ti |j⟩ = |j − i⟩. Therefore, by modifying the indices of these ajs, we can obtain the
expression in Equation (13).

Step 3. We double the basis states of the first register: |inin−1 · · · i1⟩ → |inin−1 · · · i10 mod 2n⟩
= |in−1in−2 · · · i10⟩. This can be implemented directly by some swap gates, CNOT gates, and
one auxiliary qubit.

In Figure 8, we present the circuit for doubling the basis state of four qubits. In this
circuit, we want to double |i3i2i1i0⟩. By using one auxiliary qubit, we convert |0i3i2i1i0⟩ to
|i3i2i1i00⟩, and the output we need is |i2i1i00⟩. This means that |i3⟩ on the auxiliary qubit is
a garbage output. Here, we do not restore it to |0⟩ immediately, since its value will not affect
the following steps. In Step 5, this auxiliary qubit will be restored to |0⟩ by uncomputation.
Therefore, we omit this qubit in the description of our algorithm.

|i0⟩ × • |0⟩
|i1⟩ × × |i0⟩
|i2⟩ × × |i1⟩
|i3⟩ × |i2⟩
|0⟩ • |i3⟩
Figure 8. Quantum circuit for doubling.

Step 4. We use the quantum adder in Figure 2 to apply the modular addition for the
first two registers and store the result in the first register. It should be noted that the mod 2n
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operation can be easily implemented by removing the operations that generate the highest
carry in the quantum adder circuit. Therefore, the complexity of this step is O(n).

Step 5. We run the quantum state extraction circuit in Figure 6 for the first and third
registers in order to obtain the desired state. The complexity of this step is O(n). The
probability of obtaining this result is 1

2n . Since the state of the third register collapses to

|0⟩⊗n, the normalized state is multiplied by a coefficient c, which is equal to
√

2n and can be
cancelled out with the denominator. As the probability of the measurement outcome being
|0⟩⊗n is 1

2n , the quantum amplitude amplification algorithm can increase the probability

to over 1 − 1
2n with complexity O(

√
2n). A detailed analysis of the measurement success

probability will be presented in Section 4.
Step 6. We reverse the quantum arithmetic operations performed on the first register.

This step has a complexity of O(n).
Step 7. We apply the Hn transformation on the second register, and then measure

the second register; the normalized state is multiplied by a coefficient c′; the probability of
the measurement outcome being |0⟩⊗n is O(

√
N) in most case. A detailed analysis of the

measurement success probability will be presented in Section 4.
Step 8. We return the quantum state of the three registers.
After organizing the complexity of the previous calculations, the overall complexity

of the algorithm was determined to be O(N log2(N)). Ultimately, we obtained a quantum
state containing result information. Compared with classical results, the quantum state we
obtained may have more applications, for example, when used in quantum convolutional
neural networks.

In this section, we also present a new quantum representation method for circulant
matrices, which is given through controlled matrices and related quantum states, with the
expectation of having better applications.

3.2. The Second Algorithm

Theorem 3. There exists a quantum algorithm which computes the multiplication of the most
circulant matrix and vector over C (or R) with a probability of at least 1 − 1

N and complexity

O(
√

N log2 N), where N is the dimension of the matrix, and the proportion of the circulant matrix
and vector combinations that can be effectively computed approaches 1 as the dimension increases.

We suppose that a = (a0, a1, · · · , an−1)
⊤, and A is the corresponding circulant matrix

for a. Let x = (x0, x1, · · · , xn−1)
⊤; then, we have that computing Ax = b is equivalent

to computing FAF−1Fx = Fb. Moreover, we have FAF−1 = diag(F−1a), so Fb can be
computed by F−1a and Fx. We can then use a quantum extraction circuit to extract the
target state, and the whole algorithm is presented in Algorithm 2.

Algorithm 2 Multiplication of a circulant matrix and a vector

Input: The quantum state |a⟩ |x⟩
Output: The quantum state

c√
(2n)

∑
2n−1
r=0 (∑2n−1

j=0 ajxj+r) |r⟩
1: Apply the inverse quantum Fourier transform (QFT†) to |a⟩ and the quantum Fourier

transform (QFT) to |x⟩, then get the state

1

2n

2n−1

∑
j=0

aj(
2n−1

∑
k=0

e−2πijk/2n |k⟩)
2n−1

∑
p=0

xp(
2n−1

∑
q=0

e2πipq/2n |q⟩). (19)

2: Use the quantum extraction circuit in Figure 6 to extract our target state from the first
two registers. Then, with some probability, we get the state

c

2n

2n−1

∑
k=0

(
2n−1

∑
j=0

aje
−2πijk/2n

)(
2n−1

∑
p=0

xpe2πipk/2n
) |k⟩ |0⟩⊗n . (20)
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3: Perform QFT† on the first register, then get the state

c

(2n)
3
2

2n−1

∑
k=0

(
2n−1

∑
j=0

aje
−2πijk/2n

)(
2n−1

∑
p=0

xpe2πipk/2n
)(

2n−1

∑
r=0

e−2πirk/2n |r⟩). (21)

4: Return the quantum state

c
√

(2n)

2n−1

∑
r=0

(
2n−1

∑
j=0

ajxj+r) |r⟩ . (22)

Here, we analyze the complexity of each step in detail.
Step 1. We apply QFT† to |a⟩ and QFT to |x⟩. Obviously, the complexity of this step

is O(n2).
Step 2. We use the quantum extraction circuit in Figure 6 to extract our target state

from the first two registers. This step has a complexity of O(n). When the measurement
outcome is |0⟩⊗n, we obtain the target state. Since the state of the second register collapses
to |0⟩⊗n, the normalized state is multiplied by a coefficient c. If the elements of vectors a

and x (not normalized) are randomly chosen from (−1, 1) (over R), or the ball (over C)
with a norm of 1, then, for most cases, the probability of the measurement outcome being
|0⟩⊗n exceeds 1

2N . With a complexity of O(
√

N), the quantum amplitude amplification

algorithm can increase this probability to at least 1 − 1
N . Moreover, if the elements of |a⟩

and |x⟩ are randomly chosen from (0, 1), then, for most cases, the probability of obtaining
|0⟩⊗n exceeds 1

2 . The specific analysis will be discussed in the next section.
Step 3. We perform QFT† on the first register, with a complexity of O(n2). Then, the

amplitude of |r⟩ is

c

(2n)
3
2

2n−1

∑
k=0

(
2n−1

∑
j=0

aje
−2πijk/2n

)(
2n−1

∑
p=0

xpe2πipk/2n
)e−2πirk/2n

=
c

(2n)
3
2

2n−1

∑
j=0

2n−1

∑
p=0

2n−1

∑
k=0

ajxpe
2πi(−j+p−r)k

2n

=
c

(2n)
3
2

2n−1

∑
j=0

2n−1

∑
t=0

ajxt+j(
2n−1

∑
k=0

e
2πi(−j+(t+j)−r)k

2n )

/* Substitute p with t + j */ (23)

=
c

(2n)
3
2

2n−1

∑
j=0

2n−1

∑
t=0

ajxt+j(
2n−1

∑
k=0

e
2πi(t−r)k

2n )

=
c2n

(2n)
3
2

2n−1

∑
j=0

ajxj+r =
c

√

(2n)

2n−1

∑
r=0

(
2n−1

∑
j=0

ajxj+r)

Step 4. We return the quantum state c√
(2n)

∑
2n−1
r=0 (∑2n−1

j=0 ajxj+r) |r⟩ .

In summary, the output of this algorithm is exactly the result of the circulant matrix–
vector product given in the first algorithm. If the components of the vectors a and x (not
normalized) are randomly selected from (−1, 1) (over R), or the ball (over C) with a norm
of 1, then, for most cases, the complexity of this algorithm is O(

√
N log2(N)). If the compo-

nents of |a⟩ and |x⟩ are randomly selected from (0, 1), then the complexity of this algorithm
is O(log3(N)), achieving exponential acceleration compared to classical algorithms.
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4. Measurement Success Probability Calculation

In this section, we will present a detailed analysis of the probability of obtaining the
target states after measurements in Algorithms 1 and 2. Here, we also omit the “mod
N” symbol in the indices with N = 2n. The vectors a and x in this section are no longer
normalized, and the conditions they satisfy will be given below.

For Algorithm 1, we have the following success rate of measurement in Step 4:

Prsucc =
∑

2n−1
i=0 ∑

2n−1
j=0 ( 1√

2n
ai+jx2i+j)(

1√
2n

āi+j x̄2i+j)

∑
2n−1
i=0 ∑

2n−1
j=0 ∑

2n−1
k=0 ( 1√

2n
ai+jxk)(

1√
2n

āi+j x̄k)

=
∑

2n−1
i=0 ∑

2n−1
j=0 ( 1√

2n
ai+jx2i+j)(

1√
2n

āi+j x̄2i+j)

1
2n ∑

2n−1
i=0 ∑

2n−1
j=0 ai+j āi+j ∑

2n−1
k=0 xk x̄k

=
2n−1

∑
i=0

2n−1

∑
j=0

(
1√
2n

ai+jx2i+j)(
1√
2n

āi+j x̄2i+j) (24)

=
1

2n

2n−1

∑
i=0

2n−1

∑
t=0

ai+(t−i)x2i+(t−i) āi+(t−i) x̄2i+(t−i)

=
1

2n

2n−1

∑
t=0

at āt(
2n−1

∑
i=0

xi+t x̄i+t)

=
1

2n

In Step 7, we have the state

1√
2n

(
2n−1

∑
i=0

(
2n−1

∑
j=0

ai+jx2i+j) |i⟩) |0⟩⊗n |0⟩⊗n + |⊥⟩ , (25)

where |⊥⟩ is orthogonal to

1√
2n

(
2n−1

∑
i=0

(
2n−1

∑
j=0

ai+jx2i+j) |i⟩) |0⟩⊗n |0⟩⊗n , (26)

so the success rate of measurement in Step 7 is 1
N (∑2n−1

i=0 (∑2n−1
j=0 ai+jx2i+j)(∑

2n−1
j=0 āi+j x̄2i+j))

and is O(
√

N) in most cases. We will use experiments later to illustrate.
For the probability calculation of Algorithm 2, unfortunately, we were unable to

present an explicit formula. Therefore, we used experimental results to demonstrate that,
for most matrices, we can effectively compute them in Algorithm 2. Our goal was to
estimate the proportion of circulant matrix–vector combinations that our algorithm could
effectively compute, in all circulant matrix–vector combinations. We randomly generated
matrices and vectors by selecting elements from a given interval, and then used classical
algorithms to calculate the required probability. We then recorded the proportion of
circulant matrix–vector combinations that we could effectively compute, and observed how
this proportion changes with the interval and dimension.

We first considered the circulant matrix–vector multiplication on R with the norm of
the elements not exceeding d. Let a = (a0, a1, · · · , as−1)

⊤ and x = (x0, x1, · · · , xs−1)
⊤ be

two vectors with each component randomly chosen from (−d, d). To satisfy the condition
of quantum state, we need to normalize them, which gives

a′ = (
a0

√

∑
s−1
i=0 a2

i

,
a1

√

∑
s−1
i=0 a2

i

, · · · ,
as−1

√

∑
s−1
i=0 a2

i

)⊤. (27)
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Moreover, we have

a′ = (
a0
d

√

∑
s−1
i=0 (

ai
d )

2
,

a1
d

√

∑
s−1
i=0 (

ai
d )

2
, · · · ,

as−1
d

√

∑
s−1
i=0 (

ai
d )

2
)⊤. (28)

If ai is randomly chosen from (−d, d), then ai
d is randomly chosen from (−1, 1). There-

fore, to simplify the computation, we can assume d = 1. Similarly, we have

x′ = (
x0

√

∑
s−1
i=0 x2

i

,
x1

√

∑
s−1
i=0 x2

i

, · · · ,
xs−1

√

∑
s−1
i=0 x2

i

)⊤. (29)

We consider the trend of the proportion of circulant matrix–vector combinations whose
probability of obtaining the target state under this interval condition is greater than 1

2s as the
dimension s varies. We randomly selected 1000 sets of a and x for each s ∈ (1, 2, · · · , 100)
in the manner described above, and plotted Figure 9a based on the proportion of circulant
matrix–vector combinations whose probability of obtaining the target state was greater
than 1

2s .
We notice that, as s increases, the values of the proportions from Figure 9a gradually

approach 1. Therefore, we believe that our algorithm can effectively compute most of the
circulant matrix–vector combinations on R with the norm of the elements in the matrix and
vector not exceeding d, and the proportion of circulant matrix–vector combinations that
can be effectively computed gradually approaches 1 as s increases. (It is obvious that the
success rate is 1 when s = 1).

Further, we consider the computation of circulant matrix–vector products with the
norm of elements not exceeding 1 over C, and discuss it in the same way as over R,
obtaining (b) of Figure 9. We also believe that our algorithm can effectively compute most
circulant matrix–vector combinations over C with the elements’ norm in matrix and vector
not exceeding 1, and the proportion of circulant matrix–vector combinations that can be
effectively computed gradually approaches 1 as s increases.

When the elements are all in R+, we can obtain more exciting results compared to
the first two domains under the same conditions. We raised the baseline probability of the
target to 1

2 . The proportion of circulant matrices and vector combinations that satisfy the

condition of having a probability greater than 1
2 to measure the target state changes with

the dimension s, as shown in Figure 9c. We find that this proportion also approaches 1 as s
increases. Since 1

2 is a constant, for matrix–vector combinations that satisfy the condition of

having a probability greater than 1
2 , we need k measurements to get the target state with a

probability of more than 1 − 1
2k .

Here, we also present some theoretical analysis results that we obtained. Let |a⟩ =
∑

N−1
k=0 ak |k⟩ , |x⟩ = ∑

N−1
k=0 xk |k⟩; then, we have

F−1 |a⟩ = 1√
N

N−1

∑
j=0

(
N−1

∑
k=0

ake
−2πijk

N ) |j⟩ , (30)

F |x⟩ = 1√
N

N−1

∑
j=0

(
N−1

∑
k=0

xke
2πijk

N ) |j⟩ , (31)

(F−1 |a⟩)⊗ (F |x⟩) = 1

N

N−1

∑
j0=0

N−1

∑
j1=0

[(
N−1

∑
k=0

ake
−2πij0k

N )(
N−1

∑
k=0

xke
2πij1k

N )] |j0⟩ |j1⟩ . (32)

The coefficients of the basis state |j0⟩ |j1⟩ in the aforementioned state can be denoted
as Fj0 j1 . Let Ft = ∑

N−1
j=0 ajxj+t; then, we have

Fkk =
1

N

N−1

∑
t=0

N−1

∑
j=0

ajxj+te
2πitk

N =
1

N

N−1

∑
t=0

e
2πitk

N Ft (33)
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(a)R

(b)C

(c)R+

Figure 9. Proportion of valid circulant matrix–vector combinations on different domains with the

change of dimension.
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The probability of obtaining the target state is

N−1

∑
k=0

|Fkk|2 =
N−1

∑
k=0

Fkk · F̄kk

=
1

N2

N−1

∑
k=0

(
N−1

∑
t=0

e
2πitk

N Ft)(
N−1

∑
t=0

e
−2πitk

N F̄t)

=
1

N2

N−1

∑
k=0

(
N−1

∑
t0=0

N−1

∑
t1=0

e
2πik(t0−t1)

N Ft0 F̄t1
) (34)

=
1

N2

N−1

∑
t=0

(
N−1

∑
k=0

Ft F̄t)

=
1

N

N−1

∑
t=0

Ft F̄t

We look forward to someone providing an explicit formula for the probability distri-
bution that correspond to the above expression when the entries of |a⟩ and |b⟩ satisfy some
specific distributions.

If the approach modified by the HHL algorithm is used, we only need to calculate the
multiplication instead of finding the inverse, so we have the state

√

1

∑
N−1
k=0 (λx

k )
2λ̂k

2
C2

n−1

∑
k=0

Cλx
k λ̂k |0⟩ |0⟩⊗m |Λk⟩ (35)

where C is chosen to be O(1) and λ̂k = λk
λmax

. Since λk = ∑
N−1
j=0 ajω

−jk ≤ ∑
N−1
j=0 |aj| ≤√

N, λmax ≤
√

N. The complexity of quantum state extraction is O(∑N−1
k=0 (λx

k )
2λ̂k

2
C2) =

O(∑N−1
k=0 |Fkk|2). So, our second algorithm has the same probability of obtaining the target

state as the approach modified by the HHL algorithm.

5. Quantum Convolution Computation

Quantum machine learning is a rapidly developing direction in quantum computing.
Quantum convolutional neural networks have been proposed for image recognition and
classical information classification. An example of a convolutional neural network was
first proposed in [11]. For a typical image recognition problem, the input image undergoes
convolution to generate a feature map, which is then classified. Rather than completing
general convolution calculations like classical convolutional neural networks, existing
convolutional neural networks use one of the following three approaches to entangle
different qubits and improve parameters through optimization algorithms: use a fully
random circuit, treat the circuit as a black box, and simply use CNOT gates. In contrast, we
can use a quantum circuit to complete general convolution calculations.

Here, we focus on the problem of image recognition. First, we consider the conversion
from classical information to quantum information. For this goal, Venegas-Andraca et al. [19]
proposed a storage method based on a “qubit lattice”, where each pixel in an input image is
represented by a qubit, requiring at least 2n bits of storage. Le et al. [20] proposed an FRQI
model, which associates pixel values and positions through the tensor product of quantum
states. One qubit is used to encode pixel values, and color information is encoded in the
probability amplitude. In [21], a NEQR model was proposed, which also associates pixel
values and positions through tensor products, but uses d qubits to encode pixel values
and encodes grayscale information in the basis state. In [22], a QImR model is proposed to
encode 2D images into quantum pure states. In this model, pixel values are represented by
the probability amplitude of the quantum state, and pixel positions are represented by the
basis state of the quantum state.
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We used the QImR model and assumed that we completed the representation of the
image. We considered a one-dimensional convolution calculation and, below, we give the
definition of convolution calculation.

a = (a0, a1, · · · , am−1)
⊤ and x = (x0, x1, · · · , xn−1)

⊤ are sequences of length m
and n, respectively. Their convolution is denoted as h = (h0, h1, · · · , hm+n−2), where
hi = ∑

i
j=0 xjai−j.

We set D to be the minimal integer satisfying D ≤ m + n − 1 and D = 2l for certain
l ∈ N. According to the definition of the QImR model, the quantum states |a⟩ and |x⟩ are
given as follows: |a⟩ = ∑

D−1
i=0 a′i |i⟩ and |x⟩ = ∑

D−1
i=0 x′i |i⟩, where a′i and x′i satisfy

a′i =







ai
√

∑
m−1
j=0 a2

j

i ∈ [0, m − 1]

0 i ∈ (m − 1, D)
(36)

x′i =







xi
√

∑
n−1
j=0 x2

j

i ∈ [0, n − 1]

0 i ∈ (n − 1, D)
(37)

Their convolution is denoted as |h⟩ = ∑
D−1
i=0 h′i |i⟩, where h′i satisfies

h′i =







hi
√

(∑m−1
j=0 a2

j )(∑
n−1
k=0 x2

k )
i ∈ [0, m + n − 2]

0 i ∈ (m + n − 2, D)
(38)

We plan to use circular matrix–vector multiplication to compute the convolution.
The circular matrix corresponding to |a⟩ and required for convolution computation should
be of the form

A =











a′0 a′D−1 a′D−2 · · · a′1
a′1 a′0 a′D−1 · · · a′2
...

...
...

. . .
...

a′D−1 a′D−2 a′D−3 · · · a′0











(39)

It should be noted that the matrix here is the transpose of the matrix we previously
introduced. Therefore, we need to construct |a′⟩ from |a⟩, where |a′⟩ = ∑

D−1
i=0 a′′i |i⟩ and

a′′i = a′D−i. We can first use apply an X gate to each qubit of the state |a⟩ = ∑
D−1
i=0 a′i |i⟩ to

obtain ∑
D−1
i=0 a′D−1−i |i⟩, then apply T−1 to obtain the target state |a′⟩. The complexity of

this part is O(log2 D).
Then, our two different multiplication algorithms can be used according to different

result requirements. Compared with the classical one-dimensional convolution with a
complexity of O(D log D), our algorithm can effectively accelerate it. The computation of
two-dimensional convolution can also be extended in the same way.

In recent years, quantum neural networks have continuously developed, and improv-
ing their performance is a worthwhile research topic. For example, reference [23] proposes
a new framework, ResQuNNs, as an improvement direction. The algorithm presented in
this paper can improve the circuit of each layer and be combined with other methods to
expect good results. On the other hand, quantum machine learning also poses significant
challenges, such as the existence of plateaus. For this issue, improvements can be made
in terms of framework and structure, as seen in references [24,25]. On the other hand,
improvements can also be made to each layer of the circuit, combining the two aspects to
further reduce the impact of high altitude.

6. Conclusions

We present two different algorithms for computing the multiplication of a circu-
lant matrix and a vector. The two algorithms yielded results of different forms, and the
appropriate algorithm can be chosen according to the computational needs. For most
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circulant matrices and vectors with elements in C or R, our algorithm has a complexity
of O(

√
N log2 N) to compute their product. For most circulant matrices and vectors with

elements in R+, we were able to reduce the complexity to O(log3 N), which achieves ex-
ponential acceleration compared to the classical complexity of O(N log N) for computing
circulant matrix–vector multiplication.

Our algorithms are based on efficient quantum circuits for circulant matrices. With quan-
tum circuits that can efficiently implement the quantum Fourier transforms, the multipli-
cation of circulant matrices and vectors can be significantly accelerated. Compared to the
HHL algorithm, our algorithms have the following advantages. First, we can complete
the matrix operation through quantum circuits and corresponding vectors; hence, we no
longer need to use quantum simulation to simulate the matrix to be calculated. Second,
our complexity is no longer affected by the condition number, and we can present effective
calculation for matrices with large condition numbers.

Furthermore, we have applied our approach to accelerate the basic convolution cal-
culations for convolutional neural networks in machine learning. Our quantum circuit
holds significant potential for applications in quantum machine learning , especially in
convolutional neural networks.

In the success rate analysis of our second algorithm, we only presented some experi-
mental results, which should also be expressed more clearly through probability theory
in the future. Since different problems have different calculation intervals, finding more
effective calculation intervals for this algorithm is also an interesting problem.
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